WO2020242228A1 - 열가소성 수지 조성물 및 이를 이용한 성형품 - Google Patents

열가소성 수지 조성물 및 이를 이용한 성형품 Download PDF

Info

Publication number
WO2020242228A1
WO2020242228A1 PCT/KR2020/006937 KR2020006937W WO2020242228A1 WO 2020242228 A1 WO2020242228 A1 WO 2020242228A1 KR 2020006937 W KR2020006937 W KR 2020006937W WO 2020242228 A1 WO2020242228 A1 WO 2020242228A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
thermoplastic resin
compound
weight
isosorbide
Prior art date
Application number
PCT/KR2020/006937
Other languages
English (en)
French (fr)
Inventor
홍재근
권기혜
김경주
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Publication of WO2020242228A1 publication Critical patent/WO2020242228A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • thermoplastic resin composition relates to a thermoplastic resin composition and a molded article using the same.
  • PC resin is one of the engineering plastics and is widely used in the plastics industry.
  • Polycarbonate resin has a high heat resistance as the glass transition temperature (Tg) reaches about 150°C due to a bulk molecular structure such as bisphenol-A, and is an amorphous polymer and has excellent transparency.
  • polycarbonate resins have a disadvantage of low fluidity and are often used in an alloy form with various resins in order to supplement moldability and post-processability.
  • PC/ABS polycarbonate/acrylonitrile-butadiene-styrene copolymer
  • PC/ABS alloy lacks resistance to chemicals such as cosmetics and air fresheners used in the interior of a vehicle, so there is a risk of damage when applied to automobile interior materials.
  • polyester resin has excellent mechanical properties, electrical properties, and chemical resistance, and especially has excellent moldability due to its high crystallization rate, but its heat resistance is low due to its low glass transition temperature. There is a problem with low impact.
  • PC/polyester alloy which uses a polyester resin with a high crystallization rate together with a polycarbonate resin, has excellent heat resistance and impact resistance, as well as moldability and chemical resistance, but as the content of polyester resin increases, polycarbonate There is a fear that the excellent heat resistance and impact resistance of the resin will rapidly deteriorate.
  • the heat stability and/or moldability of PC/polyester alloy may be deteriorated due to transesterification between polyester and polycarbonate, but there is a limit to improving this by introducing a conventional heat stabilizer. .
  • thermoplastic resin composition having excellent heat resistance, impact resistance, and thermal stability compared to existing PC/polyester alloys.
  • thermoplastic resin composition excellent in both heat resistance, impact resistance and thermal stability, and a molded article using the same.
  • the structural unit derived from cyclohexanedimethanol contains 50 to 75 mol%
  • the isosorbide-derived structural unit may be included in 5 to 20 mol%.
  • the (A) polyester resin may be a copolyester in which a diol compound including a cyclohexanedimethanol compound and an isosorbide compound and a dicarboxylic acid compound are copolymerized.
  • the diol compound may further include a C2 to C20 aliphatic diol (excluding a cyclohexanedimethanol compound and an isosorbide compound), a C8 to C40 aromatic diol, or a combination thereof.
  • the dicarboxylic acid compound may include a C8 to C20 aromatic dicarboxylic acid, a C4 to C20 aliphatic dicarboxylic acid, or a combination thereof.
  • the (C) aliphatic phosphate compound may be represented by the following formula (2).
  • R 3 is a C1 to C30 alkyl group, or a C4 to C30 cycloalkyl group,
  • n is an integer of 0 to 2.
  • R 3 may be a C14 to C30 alkyl group.
  • the thermoplastic resin composition further comprises at least one additive selected from a compatibilizer, a flame retardant, a nucleating agent, a coupling agent, a glass fiber, an inorganic filler, a plasticizer, an antibacterial agent, a release agent, a lubricant, an antioxidant, an ultraviolet stabilizer, an antistatic agent, a pigment, and a dye.
  • a compatibilizer e.g., a flame retardant, ethylene glycol dimethacrylate, polysulfate, polysulfate, polysulfate, polyethylene glycol dimethacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium
  • thermoplastic resin composition according to an embodiment may be provided.
  • the molded article may have a notched Izod impact strength measured at room temperature (23° C.) according to ASTM D256 of 35 kgf ⁇ cm/cm or more.
  • the molded article may have a melt flow index (MFI) of 25 g/10min or more, measured at 250° C. and 10 kg load condition with reference to ISO 1133.
  • MFI melt flow index
  • the molded article may have a Vicat softening temperature of 125°C or higher measured under 50N conditions according to ASTM D1525.
  • thermoplastic resin composition according to one embodiment and the molded article using the same can be widely applied to the molding of various products used for painting or non-painting, in particular, automobile interior/exterior materials, etc., as they have excellent heat resistance, impact resistance, and thermal stability. It can be usefully applied to the use of.
  • FIG. 1 to 4 are images for showing the thermal stability and appearance evaluation criteria of specimens for appearance verification using a thermoplastic resin composition according to an embodiment, respectively, grade 1 (Fig. 1), grade 2 (Fig. 2), grade 3 (Fig. 3) and 4 grades (Fig. 4) are shown respectively.
  • the average particle diameter is a volume average diameter, and refers to a Z-average particle diameter measured using a dynamic light scattering analyzer.
  • the polyester resin according to an embodiment includes a structural unit derived from cyclohexanedimethanol and a structural unit derived from isosorbide.
  • the polyester resin may be a copolyester in which a diol compound including a cyclohexanedimethanol compound and an isosorbide compound and a dicarboxylic acid compound are copolymerized.
  • -derived structural unit refers to a compound having a corresponding functional group and/or a part derived from a compound having a corresponding chemical structure
  • structural unit refers to a chemical reaction when the compound participates in a chemical reaction. It means a certain unit included in the result of the reaction.
  • a structural unit derived from cyclohexanedimethanol, a structural unit derived from isosorbide, and a structural unit derived from dicarboxylic acid are each of a cyclohexanedimethanol compound as a raw material based on polyester formed by esterification or condensation polymerization.
  • Examples of the cyclohexanedimethanol compound may include 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, or a combination thereof.
  • the cyclohexanedimethanol compound may include 1,4-cyclohexanedimethanol.
  • the polyester resin to be produced may have excellent impact resistance.
  • the isosorbide compound is a heterocyclic compound that can be obtained through a simple dehydration process of sorbitol that can be obtained through biomass, and a known isosorbide compound can be used without limitation. I can.
  • the diol compound may further include a C2 to C20 aliphatic diol (excluding a cyclohexanedimethanol compound and an isosorbide compound), a C8 to C40 aromatic diol, or a combination thereof.
  • the diol compound may be ethylene glycol.
  • dicarboxylic acid compound may include a C8 to C20 aromatic dicarboxylic acid, a C4 to C20 aliphatic dicarboxylic acid, or a combination thereof.
  • the dicarboxylic acid compound may be terephthalic acid.
  • the structural unit derived from cyclohexanedimethanol is 50 to 75 mol%, for example 55 to 75 mol%, for example 55 to 70 mol%, for example 60 To 70 mol% may be included.
  • the isosorbide-derived structural unit may be included in 5 to 20 mol%, for example 10 to 20 mol%, for example 10 to 15 mol%.
  • the polyester resin can be added together with an aliphatic phosphate compound to be described later to maintain excellent heat resistance and impact resistance of the thermoplastic resin composition, while securing excellent thermal stability.
  • the polyester resin may be included in an amount of 20 to 60% by weight, for example 20 to 55% by weight, for example 25 to 55% by weight, for example 25 to 50% by weight, based on 100% by weight of the base resin.
  • excellent heat resistance and impact resistance may be exhibited.
  • the polyester resin is contained in an amount of less than 20% by weight, the moldability of the thermoplastic resin composition may be greatly reduced, and if it exceeds 60% by weight, various physical properties such as heat resistance and/or impact resistance of the molded article using the thermoplastic resin composition There is a risk of deterioration.
  • the polycarbonate resin is a polyester having a carbonate bond, and its kind is not particularly limited, and any polycarbonate resin available in the field of resin composition may be used.
  • the polycarbonate resin according to an embodiment may be prepared by reacting a diphenol compound represented by the following Formula 1 with a compound selected from the group consisting of phosgene, halogen acid ester, carbonate ester, and combinations thereof.
  • A is a single bond, a substituted or unsubstituted C1 to C30 alkylene group, a substituted or unsubstituted C2 to C5 alkenylene group, a substituted or unsubstituted C2 to C5 alkylidene group, a substituted or unsubstituted C1 to C30 haloalkyl A ene group, a substituted or unsubstituted C5 to C6 cycloalkylene group, a substituted or unsubstituted C5 to C6 cycloalkenylene group, a substituted or unsubstituted C5 to C10 cycloalkylidene group, a substituted or unsubstituted C6 to C30 arylene group , A substituted or unsubstituted C1 to C20 alkoxyl group, a halogen acid ester group, a carbonate ester group, a linking group selected from the group consisting of CO, S and SO 2
  • R 1 and R 2 are each independently a substituted or unsubstituted C1 to C30 alkyl group or a substituted or unsubstituted C6 to C30 aryl group,
  • n1 and n2 are each independently an integer of 0 to 4.
  • Two or more of the diphenol compounds represented by Formula 1 may be combined to form a repeating unit of the polycarbonate resin.
  • diphenol compound examples include hydroquinone, resorcinol, 4,4'-dihydroxydiphenyl, 2,2-bis(4-hydroxyphenyl)propane (also referred to as'bisphenol-A'), 2 ,4-bis(4-hydroxyphenyl)-2-methylbutane, bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 2,2-bis(3- Chloro-4-hydroxyphenyl)propane, 2,2-bis(3-methyl-4-hydroxyphenyl)propane, 2,2-bis(3,5-dimethyl-4-hydroxyphenyl)propane, 2, 2-bis(3,5-dichloro-4-hydroxyphenyl)propane, 2,2-bis(3,5-dibromo-4-hydroxyphenyl)propane, bis(4-hydroxyphenyl)sulfoxide , Bis(4-hydroxyphenyl)ketone, bis(4-hydroxyphenyl)ether, and
  • diphenol compounds preferably 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(3-methyl-4-hydroxyphenyl)propane, 2,2-bis(3,5 -Dimethyl-4-hydroxyphenyl)propane, 2,2-bis(3,5-dichloro-4-hydroxyphenyl)propane or 1,1-bis(4-hydroxyphenyl)cyclohexane can be used. More preferably, 2,2-bis (4-hydroxyphenyl) propane may be used.
  • the polycarbonate resin may be a mixture of a copolymer prepared from two or more diphenol compounds.
  • the polycarbonate resin may be a linear polycarbonate resin, a branched polycarbonate resin, a polyester carbonate copolymer resin, or the like.
  • a specific example of the linear polycarbonate resin may be a bisphenol-A-based polycarbonate resin.
  • a specific example of the branched polycarbonate resin may be a resin prepared by reacting a polyfunctional aromatic compound such as trimellitic anhydride and trimellitic acid with diphenols and carbonates.
  • the polyester carbonate copolymer resin may be prepared by reacting a difunctional carboxylic acid with diphenols and carbonates, and the carbonate used herein may be a diaryl carbonate such as diphenyl carbonate or ethylene carbonate.
  • the polycarbonate resin may be prepared using an interfacial polymerization method (also called a solvent polymerization or a phosgene method) or a melt polymerization method.
  • an interfacial polymerization method also called a solvent polymerization or a phosgene method
  • melt polymerization method also called a melt polymerization method.
  • the polycarbonate resin having a weight average molecular weight of 10,000 to 200,000 g/mol and for example, it is effective to use one having a weight average molecular weight of 14,000 to 40,000 g/mol.
  • the weight average molecular weight of the polycarbonate resin is within the above range, the thermoplastic resin composition using the same can obtain excellent impact resistance and fluidity.
  • the polycarbonate resin may be included in 40 to 80% by weight based on 100% by weight of the base resin, for example 45 to 80% by weight, for example 45 to 75% by weight, for example 50 to 75% by weight. I can.
  • the polycarbonate resin is less than 40% by weight, the mechanical strength of the thermoplastic resin composition using the same is not good, and when it exceeds 80% by weight, moldability may be deteriorated.
  • the polycarbonate resin may have a melt flow index (MFI) of, for example, 5 g/10min or more, for example, 7 g/10min or more, measured under a load condition of 300°C and 1.2 kg according to ASTM D1238, For example, it may be 25 g/10min or less, for example, 20 g/10min or less, and for example, it may be 5 to 25 g/10min, such as 7 to 20 g/10min.
  • MFI melt flow index
  • the polycarbonate resin may have a melt flow index (MFI) of, for example, 5 g/10min or more, for example, 7 g/10min or more, measured under a load condition of 300°C and 1.2 kg according to ASTM D1238, For example, it may be 25 g/10min or less, for example, 20 g/10min or less, and for example, it may be 5 to 25 g/10min, such as 7 to 20 g/10min.
  • the thermoplastic resin composition using the same can obtain excellent impact resistance and moldability.
  • the polycarbonate resin may be used by mixing two or more polycarbonate resins having different weight average molecular weight or melt flow index. By mixing and using polycarbonate resins of different weight average molecular weight or melt flow index, it is easy to control the thermoplastic resin composition to have the desired moldability.
  • the aliphatic phosphate compound according to an embodiment performs a function of preventing the thermoplastic resin composition from being decomposed by heat in the manufacturing process of the thermoplastic resin composition and/or the manufacturing process of a molded article using the thermoplastic resin composition.
  • thermoplastic resin composition is not preferable because there is a concern that various physical properties (impact resistance, heat resistance, appearance, etc.) of the thermoplastic resin composition may be deteriorated. That is, the aliphatic phosphate compound can enable the thermoplastic resin composition to maintain excellent moldability and thermal stability even at a high molding temperature.
  • the aliphatic phosphate compound may be represented by the following formula (2).
  • R 3 is a C1 to C30 alkyl group, or a C4 to C30 cycloalkyl group,
  • n is an integer of 0 to 2.
  • the aliphatic phosphate compound according to an embodiment may be a higher aliphatic phosphate compound in which R 3 is a C14 to C30 alkyl group.
  • the aliphatic phosphate lubricant may be used in combination of two or more within the range satisfying the above-described Formula 2.
  • a compound in which m is 0 and a compound in which m is 1 may be mixed and used.
  • the aliphatic phosphate compound may be included in an amount of 0.1 to 0.5 parts by weight based on 100 parts by weight of the base resin, for example, 0.1 to 0.4 parts by weight, for example, 0.1 to 0.3 parts by weight. If the aliphatic phosphate compound is less than 0.1 part by weight, it is difficult to obtain the effect of preventing thermal decomposition of the thermoplastic resin composition containing it, and if it exceeds 0.5 part by weight, the target properties (impact resistance, heat resistance, appearance, etc.) of the thermoplastic resin composition are difficult. There is a risk of deterioration.
  • thermoplastic resin composition in addition to the components (A) to (C), the thermoplastic resin composition according to an embodiment is used to balance the physical properties under conditions that maintain excellent heat resistance, impact resistance, and thermal stability, or the final composition of the thermoplastic resin composition. It may further include one or more additives required according to the use.
  • a compatibilizer a flame retardant, a nucleating agent, a coupling agent, a glass fiber, an inorganic filler, a plasticizer, an antibacterial agent, a release agent, a lubricant, an antioxidant, an ultraviolet stabilizer, an antistatic agent, a pigment, a dye , etc.
  • a compatibilizer a flame retardant, a nucleating agent, a coupling agent, a glass fiber, an inorganic filler, a plasticizer, an antibacterial agent, a release agent, a lubricant, an antioxidant, an ultraviolet stabilizer, an antistatic agent, a pigment, a dye , etc.
  • a compatibilizer e.g., a flame retardant, e.g., a nucleating agent, a coupling agent, a glass fiber, an inorganic filler, a plasticizer, an antibacterial agent, a release agent, a lubricant, an antioxidant, an ultraviolet stabilizer, an antistatic agent, a pigment, a
  • thermoplastic resin composition may be appropriately included within a range that does not impair the physical properties of the thermoplastic resin composition, and specifically, may be included in an amount of 20 parts by weight or less based on 100 parts by weight of the base resin, but is not limited thereto.
  • thermoplastic resin composition according to the present invention can be prepared by a known method for producing a thermoplastic resin composition.
  • thermoplastic resin composition according to the present invention may be prepared in the form of pellets by mixing the components of the present invention with other additives and then melt-kneading in an extruder.
  • a molded article according to an embodiment of the present invention may be manufactured from the above-described thermoplastic resin composition.
  • the molded article has a notched Izod impact strength of 35 kgf ⁇ cm/cm or more, eg, 40 kgf ⁇ cm/cm or more, eg 45 kgf, measured at room temperature (23°C) according to ASTM D256. *Cm/cm or more, for example 50 kgf ⁇ cm/cm or more.
  • the molded article may have a melt flow index (MFI) of 25 g/10min or more, for example, 30 g/10min or more, for example, 35 g/10min or more, measured under a load condition of 250°C and 10 kg with reference to ISO 1133. .
  • MFI melt flow index
  • the molded article has a Vicat softening temperature of 125°C or more, for example 126°C or more, for example 127°C or more, for example 128°C or more, as measured under 50N condition according to ASTM D1525. It may be 129°C or higher, for example 130°C or higher.
  • thermoplastic resin composition has excellent heat resistance, impact resistance, and thermal stability, and has excellent moldability and can be widely applied to the molding of various products used for painting or non-painting. Specifically, it is useful for automotive interior/exterior materials. Can be applied in a way.
  • thermoplastic resin compositions of Examples 1 to 4 and Comparative Examples 1 to 9 are in the component content ratios described in Table 1 (Examples 1 to 4) and Table 2 (Comparative Examples 1 to 9) below. Was prepared according to.
  • Polycyclohexylene terephthalate resin that does not contain isosorbide-derived structural units (SK Chemicals, SKYPURA)
  • Polycyclohexylene terephthalate glycol resin that does not contain isosorbide-derived structural units SK Chemical, SKYGREEN
  • Phosphite compound represented by the following formula 3 (Dover Chemical, DOVERPHOS)
  • Hindered phenol compound represented by the following formula 4 (BASF, IRGANOX)
  • thermoplastic resin compositions of Examples and Comparative Examples pelleted in a cylinder of an injection molding machine with a cylinder temperature of about 300°C was held for 5 minutes, and then the width x length x thickness of 50 For a specimen for appearance verification of mm x 200 mm x 2 mm, gas generated in the standard area (50 mm wide x 50 mm long) centered on the pin-point-shaped injection gate It was judged by the area of.
  • class 1 when no gas is generated within the standard area, class 2 when a weak annular gas is generated around the injection gate, class 3 when a dark circular gas is generated around the injection gate, and the area around the injection gate.
  • class 2 when a weak annular gas is generated around the injection gate
  • class 3 when a dark circular gas is generated around the injection gate
  • the area around the injection gate In the case where circular gas is generated in a large area, it is classified into 4 grades.
  • FIG. 1 to 4 are images for showing the thermal stability and appearance evaluation criteria of specimens for appearance verification using a thermoplastic resin composition according to an embodiment, respectively, grade 1 (Fig. 1), grade 2 (Fig. 2), grade 3 (Fig. 3) and 4 grades (Fig. 4) are shown respectively.
  • thermoplastic resin composition and the molded article using the same can exhibit excellent impact resistance, heat resistance, and thermal stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(A) 사이클로헥산디메탄올 유래 구조단위 및 아이소소바이드 유래 구조단위를 포함하는 폴리에스테르 수지 20 내지 60 중량%; 및 (B) 폴리카보네이트 수지 40 내지 80 중량%을 포함하는 기초 수지 100 중량부에 대하여 (C) 지방족 포스페이트 화합물 0.1 내지 0.5 중량부를 포함하는 열가소성 수지 조성물, 및 이를 이용한 성형품에 관한 것이다.

Description

열가소성 수지 조성물 및 이를 이용한 성형품
열가소성 수지 조성물 및 이를 이용한 성형품에 관한 것이다.
폴리카보네이트(polycarbonate, PC) 수지는 엔지니어링 플라스틱 중 하나로서 플라스틱 산업에서 폭넓게 사용되고 있는 재료이다.
폴리카보네이트 수지는 비스페놀-A와 같은 벌크한 분자 구조에 의해 유리전이온도(Tg)가 약 150℃에 이르게 되어 높은 내열도를 나타내며, 비정질 고분자로 투명성이 우수한 특성을 가지고 있다.
그러나, 폴리카보네이트 수지는 유동성이 낮은 단점이 있어 성형성 및 후가공성을 보완하기 위하여 다양한 수지와의 얼로이(alloy) 형태로도 많이 사용된다.
이 중 폴리카보네이트/아크릴로니트릴-부타디엔-스티렌 공중합체(PC/ABS) 얼로이는 내구성, 성형성, 내열성, 내충격성, 치수안정성 등이 우수하여 전기/전자 분야, 자동차 분야, 건축 분야 및 기타 생활 소재 등 광범위한 분야에 적용되고 있다.
그러나, PC/ABS 얼로이는 차량 실내 등에서 사용하는 화장품, 방향제와 같은 화학약품에 대한 내성이 부족하여 자동차 내장재에 적용할 경우 손상될 우려가 있다.
한편, 폴리에스테르(polyester) 수지는 기계적 특성, 전기적 특성, 내약품성 등이 우수하고 특히 결정화 속도가 빨라 성형성이 우수하지만, 유리전이온도가 낮은 편이어서 내열성이 낮으며, 상온 및 저온에서의 내충격성이 낮은 문제가 있다.
결정화 속도가 빠른 폴리에스테르 수지를 폴리카보네이트 수지와 함께 사용하는 폴리카보네이트/폴리에스테르(PC/polyester) 얼로이는 내열성, 내충격성뿐만 아니라 성형성, 내약품성이 우수하나 폴리에스테르 수지 함량이 증가할수록 폴리카보네이트 수지가 갖는 우수한 내열성과 내충격성이 급격히 저하될 우려가 있다. 또한, 폴리에스테르와 폴리카보네이트 간 에스테르 교환반응(transesterification)으로 인해 PC/polyester 얼로이의 열안정성 및/또는 성형성이 저하될 수 있는데 통상적인 열안정제를 도입하는 방법으로는 이를 개선하는데 한계가 있다.
따라서, 상기와 같은 문제점을 해결하기 위하여 기존 PC/polyester 얼로이 대비 내열성, 내충격성 및 열안정성이 모두 우수한 열가소성 수지 조성물의 개발이 필요한 실정이다.
내열성, 내충격성 및 열안정성이 모두 우수한 열가소성 수지 조성물 및 이를 이용한 성형품을 제공하는 것이다.
일 구현예에 따르면, (A) 사이클로헥산디메탄올 유래 구조단위 및 아이소소바이드 유래 구조단위를 포함하는 폴리에스테르 수지 20 내지 60 중량%; 및 (B) 폴리카보네이트 수지 40 내지 80 중량%을 포함하는 기초 수지 100 중량부에 대하여 (C) 지방족 포스페이트 화합물 0.1 내지 0.5 중량부를 포함하는 열가소성 수지 조성물이 제공된다.
상기 (A) 폴리에스테르 수지 100 몰%에 대하여
상기 사이클로헥산디메탄올 유래 구조단위는 50 내지 75 몰% 포함되고,
상기 아이소소바이드 유래 구조단위는 5 내지 20 몰% 포함될 수 있다.
상기 (A) 폴리에스테르 수지는 사이클로헥산디메탄올 화합물 및 아이소소바이드 화합물을 포함하는 디올 화합물과 디카르복실산 화합물이 공중합된 코폴리에스테르일 수 있다.
상기 디올 화합물은 C2 내지 C20의 지방족 디올(사이클로헥산디메탄올 화합물 및 아이소소바이드 화합물 제외), C8 내지 C40의 방향족 디올 또는 이들의 조합을 더 포함할 수 있다.
상기 디카르복실산 화합물은 C8 내지 C20의 방향족 디카르복실산, C4 내지 C20의 지방족 디카르복실산 또는 이들의 조합을 포함할 수 있다.
상기 (C) 지방족 포스페이트 화합물은 하기 화학식 2로 표시될 수 있다.
[화학식 2]
Figure PCTKR2020006937-appb-I000001
화학식 2에서,
R3는 C1 내지 C30의 알킬기, 또는 C4 내지 C30의 사이클로알킬기이고,
m은 0 내지 2의 정수이다.
R3는 C14 내지 C30의 알킬기일 수 있다.
상기 열가소성 수지 조성물은 상용화제, 난연제, 핵제, 커플링제, 유리섬유, 무기 충진제, 가소제, 항균제, 이형제, 활제, 산화 방지제, 자외선 안정제, 정전기 방지제, 안료, 염료 중에서 선택되는 적어도 하나의 첨가제를 더 포함할 수 있다.
한편, 일 구현예에 따른 열가소성 수지 조성물을 이용한 성형품이 제공될 수 있다.
상기 성형품은 ASTM D256에 따라 상온(23℃)에서 측정한 노치 아이조드(Izod) 충격강도가 35 ㎏f·㎝/㎝ 이상일 수 있다.
상기 성형품은 ISO 1133을 참고하여 250℃, 10 kg 하중 조건에서 측정한 용융흐름지수(MFI)가 25 g/10min 이상일 수 있다.
상기 성형품은 ASTM D1525에 따라 50N 조건에서 측정한 비카트 연화 온도(Vicat softening temperature)가 125℃ 이상일 수 있다.
일 구현예에 따른 열가소성 수지 조성물과 이를 이용한 성형품은 우수한 내열성, 내충격성 및 열안정성을 가짐에 따라 도장, 무도장으로 사용하는 여러 가지 제품의 성형에 광범위하게 적용될 수 있으며, 특히, 자동차 내/외장재 등의 용도에 유용하게 적용될 수 있다.
도 1 내지 도 4는 각각 일 구현예에 따른 열가소성 수지 조성물을 이용한 외관 검증용 시편들의 열안정성 외관 평가 기준을 나타내기 위한 이미지로, 1 등급(도 1), 2등급(도 2), 3등급(도 3), 4등급(도 4)의 경우를 각각 나타낸 것이다.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 첨부된 청구범위에 의해 정의될 뿐이다.
본 발명에 있어서 특별히 언급하지 않는 한 평균 입경이란 체적평균 직경이고, 동적 광산란(Dynamic light scattering) 분석장비를 이용하여 측정한 Z-평균 입경을 의미한다.
일 구현예에 따르면, (A) 사이클로헥산디메탄올 유래 구조단위 및 아이소소바이드 유래 구조단위를 포함하는 폴리에스테르 수지 20 내지 60 중량%; 및 (B) 폴리카보네이트 수지 40 내지 80 중량%을 포함하는 기초 수지 100 중량부에 대하여 (C) 지방족 포스페이트 화합물 0.1 내지 0.5 중량부를 포함하는 열가소성 수지 조성물이 제공된다.
이하, 상기 열가소성 수지 조성물에 포함되는 각 성분에 대하여 구체적으로 설명한다.
(A) 폴리에스테르 수지
일 구현예에 따른 폴리에스테르 수지는 사이클로헥산디메탄올 유래 구조단위와 아이소소바이드 유래 구조단위를 포함한다. 구체적으로, 상기 폴리에스테르 수지는 사이클로헥산디메탄올 화합물 및 아이소소바이드 화합물을 포함하는 디올 화합물과 디카르복실산 화합물이 공중합된 코폴리에스테르일 수 있다.
본 명세서에서 "~유래 구조단위"란 해당 관능기를 갖는 화합물 및/또는 해당 화학구조를 갖는 화합물로부터 유래한 부분을 의미하는 것이며, "구조단위"는 해당 화합물이 화학 반응에 참여하였을 때, 그 화학 반응의 결과물에 포함되는 일정한 단위를 의미한다. 예컨대 사이클로헥산디메탄올 유래 구조단위, 아이소소바이드 유래 구조단위, 디카르복실산 유래 구조단위 각각은 에스테르화 반응 또는 축중합 반응으로 형성되는 폴리에스테르를 기준으로 볼 때 각각 원료인 사이클로헥산디메탄올 화합물, 아이소소바이드 화합물, 디카르복실산 화합물로부터 유래된 구조단위를 의미한다.
상기 사이클로헥산디메탄올 화합물의 예시로는 1,2-사이클로헥산디메탄올, 1,3-사이클로헥산디메탄올, 1,4-사이클로헥산디메탄올 또는 이들의 조합을 포함할 수 있다.
일 구현예에서, 상기 사이클로헥산디메탄올 화합물은 1,4-사이클로헥산디메탄올을 포함할 수 있다. 이 경우, 제조되는 폴리에스테르 수지가 우수한 내충격성을 가질 수 있다.
한편, 상기 아이소소바이드 화합물은 바이오매스(biomass)를 통해 얻을 수 있는 소르비톨(sorbitol)의 간단한 탈수화 공정을 통해 얻을 수 있는 헤테로사이클릭(heterocyclic) 화합물로서 공지된 아이소소바이드 화합물을 제한 없이 사용할 수 있다.
상기 디올 화합물은 C2 내지 C20의 지방족 디올(사이클로헥산디메탄올 화합물 및 아이소소바이드 화합물 제외), C8 내지 C40의 방향족 디올 또는 이들의 조합을 더 포함할 수 있다. 구체적으로 상기 디올 화합물은 에틸렌글리콜일 수 있다.
상기 디카르복실산 화합물의 예시로는 C8 내지 C20의 방향족 디카르복실산, C4 내지 C20의 지방족 디카르복실산, 또는 이들의 조합을 포함할 수 있다. 구체적으로 디카르복실산 화합물은 테레프탈산일 수 있다.
일 구현예에서, 폴리에스테르 수지 100 몰%에 대하여, 사이클로헥산디메탄올 유래 구조단위는 50 내지 75 몰%, 예를 들어 55 내지 75 몰%, 예를 들어 55 내지 70 몰%, 예를 들어 60 내지 70 몰% 포함될 수 있다. 또한 아이소소바이드 유래 구조단위는 5 내지 20 몰%, 예를 들어 10 내지 20 몰%, 예를 들어 10 내지 15 몰% 포함될 수 있다. 사이클로헥산디메탄올 유래 구조단위와 아이소소바이드 유래 구조단위가 각각 전술한 몰비를 만족할 경우, 일 구현예에 따른 폴리에스테르 수지는 아이소소바드 유래 구조단위를 포함하지 않는 폴리에스테르 수지 대비 우수한 내열성과 내충격성을 나타낼 수 있다.
한편, 폴리에스테르 수지는 후술할 지방족 포스페이트 화합물과 함께 첨가되어 열가소성 수지 조성물의 내열성, 내충격성을 우수하게 유지하면서도 우수한 열안정성을 확보할 수 있다.
상기 폴리에스테르 수지는 기초 수지 100 중량%에 대하여 20 내지 60 중량%, 예를 들어 20 내지 55 중량%, 예를 들어 25 내지 55 중량%, 예를 들어 25 내지 50 중량%로 포함될 수 있다. 폴리에스테르 수지가 전술한 범위로 포함되는 경우 우수한 내열성 및 내충격성을 나타낼 수 있다.
반면, 폴리에스테르 수지가 20 중량% 미만으로 포함되면 열가소성 수지 조성물의 성형성이 크게 저하될 우려가 있고, 60 중량%를 초과하면 열가소성 수지 조성물을 이용한 성형품의 내열성 및/또는 내충격성 등 제반 물성이 저하될 우려가 있다.
(B) 폴리카보네이트 수지
폴리카보네이트 수지는 카보네이트 결합을 가진 폴리에스테르로서 그 종류가 특별히 제한되지 않으며, 수지 조성물 분야에서 이용 가능한 임의의 폴리카보네이트 수지를 사용할 수 있다.
예컨대, 일 구현예에 따른 폴리카보네이트 수지는 하기 화학식 1로 표시되는 디페놀 화합물과, 포스겐, 할로겐산 에스테르, 탄산 에스테르 및 이들의 조합으로 이루어진 군에서 선택되는 화합물을 반응시켜 제조될 수 있다.
[화학식 1]
Figure PCTKR2020006937-appb-I000002
상기 화학식 1에서,
A는 단일 결합, 치환 또는 비치환된 C1 내지 C30 알킬렌기, 치환 또는 비치환된 C2 내지 C5 알케닐렌기, 치환 또는 비치환된 C2 내지 C5 알킬리덴기, 치환 또는 비치환된 C1 내지 C30 할로알킬렌기, 치환 또는 비치환된 C5 내지 C6 사이클로알킬렌기, 치환 또는 비치환된 C5 내지 C6 사이클로알케닐렌기, 치환 또는 비치환된 C5 내지 C10 사이클로알킬리덴기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환된 C1 내지 C20 알콕실렌기, 할로겐산 에스테르기, 탄산 에스테르기, CO, S 및 SO2로 이루어진 군에서 선택되는 연결기이며,
R1 및 R2는 각각 독립적으로 치환 또는 비치환된 C1 내지 C30의 알킬기 또는 치환 또는 비치환된 C6 내지 C30의 아릴기이며,
n1 및 n2는 각각 독립적으로 0 내지 4의 정수이다.
상기 화학식 1로 표시되는 디페놀 화합물은 2종 이상이 조합되어 폴리카보네이트 수지의 반복단위를 구성할 수도 있다.
상기 디페놀 화합물의 구체적인 예로는, 히드로퀴논, 레조시놀, 4,4'-디히드록시디페닐, 2,2-비스(4-히드록시페닐)프로판('비스페놀-A'라고도 함), 2,4-비스(4-히드록시페닐)-2-메틸부탄, 비스(4-히드록시페닐)메탄, 1,1-비스(4-히드록시페닐)사이클로헥산, 2,2-비스(3-클로로-4-히드록시페닐)프로판, 2,2-비스(3-메틸-4-히드록시페닐)프로판, 2,2-비스(3,5-디메틸-4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판, 2,2-비스(3,5-디브로모-4-히드록시페닐)프로판, 비스(4-히드록시페닐)술폭사이드, 비스(4-히드록시페닐)케톤, 비스(4-히드록시페닐)에테르 등을 들 수 있다. 상기 디페놀 화합물 중에서, 바람직하게는 2,2-비스(4-히드록시페닐)프로판, 2,2-비스(3-메틸-4-히드록시페닐)프로판, 2,2-비스(3,5-디메틸-4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판 또는 1,1-비스(4-히드록시페닐)사이클로헥산을 사용할 수 있다. 더 바람직하게는 2,2-비스(4-히드록시페닐)프로판을 사용할 수 있다.
상기 폴리카보네이트 수지는 2종 이상의 디페놀 화합물로부터 제조된 공중합체의 혼합물일 수 있다.
또한 상기 폴리카보네이트 수지는 선형 폴리카보네이트 수지, 분지형(branched) 폴리카보네이트 수지, 폴리에스테르카보네이트 공중합체 수지 등을 사용할 수 있다.
상기 선형 폴리카보네이트 수지의 구체적인 예로는 비스페놀-A계 폴리카보네이트 수지일 수 있다. 상기 분지형 폴리카보네이트 수지의 구체적인 예로는 트리멜리틱 무수물, 트리멜리틱산 등과 같은 다관능성 방향족 화합물을 디페놀류 및 카보네이트와 반응시켜 제조되는 수지일 수 있다. 상기 폴리에스테르카보네이트 공중합체 수지는 이관능성 카르복실산을 디페놀류 및 카보네이트와 반응시켜 제조할 수 있으며, 여기서 사용되는 카보네이트는 디페닐카보네이트와 같은 디아릴카보네이트 또는 에틸렌 카보네이트일 수 있다.
상기 폴리카보네이트 수지는 계면 중합법[용제법(Solvent polymerization) 또는 포스겐(Phosgene)법으로도 불리움] 또는 용융 중합법(Melt polymerization)을 이용하여 제조될 수 있다.
상기 폴리카보네이트 수지는 중량평균분자량이 10,000 내지 200,000 g/mol 인 것을 사용하는 것이 바람직하며, 예를 들어, 14,000 내지 40,000 g/mol인 것을 사용하는 것이 효과적이다. 폴리카보네이트 수지의 중량평균분자량이 상기 범위 내인 경우, 이를 이용한 열가소성 수지 조성물은 우수한 내충격성 및 유동성을 얻을 수 있다.
상기 폴리카보네이트 수지는 기초 수지 100 중량%에 대하여 40 내지 80 중량%로 포함될 수 있으며, 예를 들어 45 내지 80 중량%, 예를 들어 45 내지 75 중량%, 예를 들어 50 내지 75 중량%로 포함될 수 있다. 폴리카보네이트 수지가 40 중량% 미만인 경우에는 이를 이용한 열가소성 수지 조성물의 기계적 강도가 좋지 않으며, 80 중량%를 초과하는 경우에는 성형성이 떨어질 수 있다.
상기 폴리카보네이트 수지는 ASTM D1238에 따라 300℃, 1.2 kg 하중 조건에서 측정한 용융흐름지수(Melt flow index, MFI)가 예를 들어 5 g/10min 이상, 예를 들어 7 g/10min 이상일 수 있고, 예를 들어 25 g/10min 이하, 예를 들어 20 g/10min 이하일 수 있고, 예를 들어 5 내지 25 g/10min, 예를 들어 7 내지 20 g/10min일 수 있다. 상기 범위 내의 용융흐름지수를 갖는 폴리카보네이트 수지를 사용할 경우 이를 이용한 열가소성 수지 조성물은 우수한 내충격성 및 성형성을 얻을 수 있다.
또한, 상기 폴리카보네이트 수지는 중량평균분자량 또는 용융흐름지수가 서로 다른 2종 이상의 폴리카보네이트 수지들을 혼합하여 사용할 수도 있다. 서로 다른 중량평균분자량 또는 용융흐름지수의 폴리카보네이트 수지를 혼합하여 사용함으로써 열가소성 수지 조성물이 원하는 성형성을 갖도록 조절하기 용이하다.
(C) 지방족 포스페이트 화합물
일 구현예에 따른 지방족 포스페이트(phosphate) 화합물은 열가소성 수지 조성물의 제조 공정 및/또는 열가소성 수지 조성물을 이용한 성형품의 제조 공정 등에서 열가소성 수지 조성물이 열에 의해 분해되는 것을 방지하는 기능을 수행한다.
열가소성 수지 조성물의 열분해는 열가소성 수지 조성물의 제반 물성들(내충격성, 내열성, 외관 등)의 저하를 야기할 우려가 있으므로 바람직하지 않다. 즉, 지방족 포스페이트 화합물은 고온의 성형온도에서도 열가소성 수지 조성물이 우수한 성형성과 열적 안정성을 유지할 수 있도록 할 수 있다.
일 구현예에서, 상기 지방족 포스페이트 화합물은 하기 화학식 2로 표시되는 것일 수 있다.
[화학식 2]
Figure PCTKR2020006937-appb-I000003
화학식 2에서,
R3는 C1 내지 C30의 알킬기, 또는 C4 내지 C30의 사이클로알킬기이고,
m은 0 내지 2의 정수이다.
구체적으로, 일 구현예에 따른 지방족 포스페이트 화합물은 R3가 C14 내지 C30의 알킬기인 고급 지방족 포스페이트 화합물일 수 있다.
상기 지방족 포스페이트 활제는 전술한 화학식 2를 만족하는 범위 내에서 2종 이상 혼합하여 사용할 수 있다. 예컨대 화학식 2에서 m이 0인 화합물과 m이 1인 화합물을 혼합하여 사용할 수 있다.
상기 지방족 포스페이트 화합물은 기초 수지 100 중량부에 대하여 0.1 내지 0.5 중량부로 포함될 수 있으며, 예를 들어 0.1 내지 0.4 중량부, 예를 들어 0.1 내지 0.3 중량부로 포함될 수 있다. 지방족 포스페이트 화합물이 0.1 중량부 미만인 경우 이를 포함하는 열가소성 수지 조성물의 열분해 방지 효과를 얻기 어려우며, 0.5 중량부를 초과하는 경우에는 열가소성 수지 조성물이 목표로 하는 제반 물성들(내충격성, 내열성, 외관 등)이 저하될 우려가 있다.
(D) 기타 첨가제
일 구현예에 따른 열가소성 수지 조성물은 상기 성분 (A) 내지 (C) 외에도, 내열성, 내충격성 및 열안정성을 우수하게 유지하는 조건 하에서 각 물성들 간의 균형을 맞추기 위해, 혹은 상기 열가소성 수지 조성물의 최종 용도에 따라 필요한 1종 이상의 첨가제를 더 포함할 수 있다.
구체적으로, 상기 첨가제로는 상용화제, 난연제, 핵제, 커플링제, 유리섬유, 무기 충진제, 가소제, 항균제, 이형제, 활제, 산화 방지제, 자외선 안정제, 정전기 방지제, 안료, 염료 등이 사용될 수 있고 이들은 단독으로 혹은 2종 이상의 조합으로 사용될 수 있다.
이들 첨가제는, 열가소성 수지 조성물의 물성을 저해하지 않는 범위 내에서 적절히 포함될 수 있고, 구체적으로는 기초 수지 100 중량부에 대하여 20 중량부 이하로 포함될 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 따른 열가소성 수지 조성물은 열가소성 수지 조성물을 제조하는 공지의 방법에 의해서 제조될 수 있다.
예를 들어, 본 발명에 따른 열가소성 수지 조성물은 본 발명의 구성 성분과 기타 첨가제들을 혼합한 후 압출기 내에서 용융 혼련하는 방법에 의하여 펠렛의 형태로 제조될 수 있다.
본 발명의 일 실시예에 의한 성형품은 상술한 열가소성 수지 조성물로부터 제조될 수 있다.
상기 성형품은 ASTM D256에 따라 상온(23℃)에서 측정한 노치 아이조드(Izod) 충격강도가 35 ㎏f·㎝/㎝ 이상, 예를 들어 40 ㎏f·㎝/㎝ 이상, 예를 들어 45 ㎏f·㎝/㎝ 이상, 예를 들어 50 ㎏f·㎝/㎝ 이상일 수 있다.
상기 성형품은 ISO 1133을 참고하여 250℃, 10 kg 하중 조건에서 측정한 용융흐름지수(MFI)가 25 g/10min 이상, 예를 들어 30 g/10min 이상, 예를 들어 35 g/10min 이상일 수 있다.
상기 성형품은 ASTM D1525에 따라 50N 조건에서 측정한 비카트 연화 온도(Vicat softening temperature)가 125℃ 이상, 예를 들어 126℃ 이상, 예를 들어 127℃ 이상, 예를 들어 128℃ 이상, 예를 들어 129℃ 이상, 예를 들어 130℃ 이상일 수 있다.
상기 열가소성 수지 조성물은 내열성, 내충격성 및 열안정성이 모두 우수하고, 성형성이 뛰어나 도장, 무도장으로 사용하는 여러 가지 제품의 성형에 광범위하게 적용 가능하며, 구체적으로 자동차 내/외장재 등의 용도에 유용하게 적용될 수 있다.
이하, 본 발명의 바람직한 실시예를 기재한다. 다만, 하기의 실시예는 본 발명의 바람직한 일 실시예일뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
실시예 1 내지 실시예 4 및 비교예 1 내지 비교예 9
실시예 1 내지 실시예 4 및 비교예 1 내지 비교예 9의 열가소성 수지 조성물은 하기 표 1(실시예 1 내지 실시예 4)과 표 2(비교예 1 내지 비교예 9)에 기재된 성분 함량비에 따라 제조되었다.
표 1과 표 2에서, (A), (A'), (A'') 및 (B)는 기초 수지에 포함되는 것으로 기초 수지 총 중량을 기준으로 중량%로 나타내었고, (C), (C') 및 (D)는 기초 수지에 첨가되는 것으로서 기초 수지 100 중량부에 대한 중량부로 나타내었다.
표 1과 표 2에 기재된 성분을 건식 혼합하고 이축 압출기(L/D=44, φ=35mm)의 공급부에 정량적으로 연속 투입하여 용융/혼련하였다. 이 때, 이축 압출기의 배럴 온도는 약 260℃로 설정하였다. 이어서 이축 압출기를 통해 펠렛화된 열가소성 수지 조성물을 약 100℃에서 약 2시간 동안 건조한 후, 실린더 온도 약 250℃, 금형 온도 약 60℃로 설정한 6 oz 사출 성형기를 사용하여 물성 측정용 시편을 사출 성형하였다.
Figure PCTKR2020006937-appb-T000001
Figure PCTKR2020006937-appb-T000002
상기 표 1과 표 2에 기재된 각 구성에 대한 설명은 다음과 같다.
(A) 폴리에스테르 수지
(A-1) 아이소소바이드 유래 구조단위 함유 폴리사이클로헥실렌 테레프탈레이트 수지-1
1,4-사이클로헥산디메탄올 유래 구조단위가 60 몰%, 아이소소바이드 유래 구조단위가 12 몰% 포함된 폴리사이클로헥실렌 테레프탈레이트 수지 (SK케미칼社, ECOZEN)
(A-2) 아이소소바이드 유래 구조단위 함유 폴리사이클로헥실렌 테레프탈레이트 수지-2
1,4-사이클로헥산디메탄올 유래 구조단위가 70 몰%, 아이소소바이드 유래 구조단위가 15 몰% 포함된 폴리사이클로헥실렌 테레프탈레이트 수지 (SK케미칼社, ECOZEN)
(A') 폴리사이클로헥실렌 테레프탈레이트 수지
아이소소바이드 유래 구조단위를 포함하지 않는 폴리사이클로헥실렌 테레프탈레이트 수지 (SK케미칼社, SKYPURA)
(A'') 폴리사이클로헥실렌 테레프탈레이트 글리콜 수지
아이소소바이드 유래 구조단위를 포함하지 않는 폴리사이클로헥실렌 테레프탈레이트 글리콜 수지 (SK케미칼社, SKYGREEN)
(B) 폴리카보네이트 수지
ASTM D1238 규격에 따라 300℃, 1.2 kg 하중 조건에서 측정한 용융흐름지수(melt flow index)가 약 18 g/10min인 폴리카보네이트 수지 (롯데첨단소재社)
(C) 지방족 포스페이트 화합물
스테아릴 포스페이트 (Adeka社, ADK STAB)
(C') 포스파이트 화합물
하기 화학식 3으로 표시되는 포스파이트 화합물 (Dover Chemical社, DOVERPHOS)
[화학식 3]
Figure PCTKR2020006937-appb-I000004
(D) 산화 방지제
하기 화학식 4로 표시되는 힌더드 페놀 화합물 (BASF社, IRGANOX)
[화학식 4]
Figure PCTKR2020006937-appb-I000005
실험예
실험 결과를 하기 표 3 (실시예 1 내지 실시예 4)과 표 4 (비교예 1 내지 비교예 9)에 각각 나타내었다.
(1) 내충격성(㎏f·㎝/㎝): 두께 1/8" 시편에 대하여 ASTM D256에 따라 상온(23℃)에서 노치 아이조드(Izod) 충격강도를 측정하였다.
(2) 유동성(g/10min): ISO 1133을 참고하여 250℃, 10 kg 하중 조건에서 용융흐름지수(MFI)를 측정하였다.
(3) 내열성(℃): ASTM D1525에 따라 50N 조건에서 비카트 연화 온도(Vicat softening temperature)를 측정하였다.
(4) 열안정성: 실린더 온도를 약 300℃로 설정한 사출 성형기 실린더 내에 펠렛화된 실시예들과 비교예들의 열가소성 수지 조성물 각각을 5분 간 체류시킨 후 사출 성형한 가로 x 세로 x 두께가 50 mm x 200 mm x 2 mm 인 외관 검증용 시편에 대해, 핀 포인트(Pin-point) 형태의 사출 게이트(gate)를 중심으로 한 규격 면적(가로 50 mm x 세로 50 mm)에 발생한 가스(gas)의 면적으로 판단하였다.
구체적으로 규격 면적 내 가스 미발생 시 1등급, 사출 게이트 주위부에 약한 환형의 가스가 발생한 경우를 2등급, 상기 사출 게이트 주위부에 진한 원형의 가스가 발생한 경우를 3등급, 상기 사출 게이트 주위 부에 원형의 가스가 큰 면적으로 발생한 경우를 4등급으로 각각 분류하였다.
도 1 내지 도 4은 각각 일 구현예에 따른 열가소성 수지 조성물을 이용한 외관 검증용 시편들의 열안정성 외관 평가 기준을 나타내기 위한 이미지로, 1등급(도 1), 2등급(도 2), 3등급(도 3), 4등급(도 4)의 경우를 각각 나타낸 것이다.
Figure PCTKR2020006937-appb-T000003
Figure PCTKR2020006937-appb-T000004
상기 표 3 내지 표 4와 도 1 내지 도 4로부터, 전술한 사이클로헥산디메탄올 유래 구조단위 및 아이소소바이드 유래 구조단위를 포함하는 폴리에스테르 수지, 폴리카보네이트 수지, 및 지방족 포스페이트 화합물을 최적의 함량으로 사용함으로써, 열가소성 수지 조성물 및 이를 이용한 성형품이 우수한 내충격성, 내열성 및 열안정성을 나타낼 수 있음을 확인할 수 있다.
이상에서 본 발명을 앞서 기재한 바에 따라 바람직한 실시예를 통해 설명하였지만, 본 발명은 이에 한정되지 않으며 다음에 기재하는 특허청구범위의 개념과 범위를 벗어나지 않는 한, 다양한 수정 및 변형이 가능하다는 것을 본 발명이 속하는 기술 분야에 종사하는 자들은 쉽게 이해할 것이다.

Claims (12)

  1. (A) 사이클로헥산디메탄올 유래 구조단위 및 아이소소바이드 유래 구조단위를 포함하는 폴리에스테르 수지 20 내지 60 중량%; 및
    (B) 폴리카보네이트 수지 40 내지 80 중량%을 포함하는 기초 수지 100 중량부에 대하여
    (C) 지방족 포스페이트 화합물 0.1 내지 0.5 중량부를 포함하는 열가소성 수지 조성물.
  2. 제1항에서,
    상기 (A) 폴리에스테르 수지 100 몰%에 대하여
    상기 사이클로헥산디메탄올 유래 구조단위는 50 내지 75 몰% 포함되고,
    상기 아이소소바이드 유래 구조단위는 5 내지 20 몰% 포함되는 열가소성 수지 조성물.
  3. 제1항 또는 제2항에서,
    상기 (A) 폴리에스테르 수지는 사이클로헥산디메탄올 화합물 및 아이소소바이드 화합물을 포함하는 디올 화합물과 디카르복실산 화합물이 공중합된 코폴리에스테르인 열가소성 수지 조성물.
  4. 제3항에서,
    상기 디올 화합물은 C2 내지 C20의 지방족 디올(사이클로헥산디메탄올 화합물 및 아이소소바이드 화합물 제외), C8 내지 C40의 방향족 디올 또는 이들의 조합을 더 포함하는 열가소성 수지 조성물.
  5. 제3항에서,
    상기 디카르복실산 화합물은 C8 내지 C20의 방향족 디카르복실산, C4 내지 C20 지방족 디카르복실산, 또는 이들의 조합을 포함하는 열가소성 수지 조성물.
  6. 제1항 내지 제5항 중 어느 한 항에서,
    상기 (C) 지방족 포스페이트 화합물은 하기 화학식 2로 표시되는 열가소성 수지 조성물:
    [화학식 2]
    Figure PCTKR2020006937-appb-I000006
    화학식 2에서,
    R3는 C1 내지 C30의 알킬기, 또는 C4 내지 C30의 사이클로알킬기이고,
    m은 0 내지 2의 정수이다.
  7. 제6항에서,
    R3는 C14 내지 C30의 알킬기인 열가소성 수지 조성물.
  8. 제1항 내지 제7항 중 어느 한 항에서,
    상용화제, 난연제, 핵제, 커플링제, 유리섬유, 무기 충진제, 가소제, 항균제, 이형제, 활제, 산화 방지제, 자외선 안정제, 정전기 방지제, 안료, 염료 중에서 선택되는 적어도 하나의 첨가제를 더 포함하는 열가소성 수지 조성물.
  9. 제1항 내지 제8항 중 어느 한 항에 따른 열가소성 수지 조성물을 이용한 성형품.
  10. 제9항에서,
    ASTM D256에 따라 상온(23℃)에서 측정한 노치 아이조드(Izod) 충격강도가 35 ㎏f·㎝/㎝ 이상인 성형품.
  11. 제9항에서,
    ISO 1133을 참고하여 250℃, 10 kg 하중 조건에서 측정한 용융흐름지수(MFI)가 25 g/10min 이상인 성형품.
  12. 제9항에서,
    ASTM D1525에 따라 50N 조건에서 측정한 비카트 연화 온도(Vicat softening temperature)가 125℃ 이상인 성형품.
PCT/KR2020/006937 2019-05-31 2020-05-28 열가소성 수지 조성물 및 이를 이용한 성형품 WO2020242228A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190064818A KR102311477B1 (ko) 2019-05-31 2019-05-31 열가소성 수지 조성물 및 이를 이용한 성형품
KR10-2019-0064818 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020242228A1 true WO2020242228A1 (ko) 2020-12-03

Family

ID=73554122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/006937 WO2020242228A1 (ko) 2019-05-31 2020-05-28 열가소성 수지 조성물 및 이를 이용한 성형품

Country Status (2)

Country Link
KR (1) KR102311477B1 (ko)
WO (1) WO2020242228A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070120104A (ko) * 2005-03-16 2007-12-21 테이진 카세이 가부시키가이샤 수지 조성물
KR20110075486A (ko) * 2009-12-28 2011-07-06 에스케이케미칼주식회사 장식 물질을 포함하는 열가소성 성형제품
JP2012077238A (ja) * 2010-10-05 2012-04-19 Mitsubishi Engineering Plastics Corp ポリカーボネート−ポリエステル複合樹脂組成物及び成形品
KR20130044867A (ko) * 2011-10-25 2013-05-03 에스케이케미칼주식회사 폴리에스테르/폴리카보네이트 블렌드
KR20180079173A (ko) * 2016-12-30 2018-07-10 롯데첨단소재(주) 열가소성 수지 조성물 및 이를 이용한 성형품

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070120104A (ko) * 2005-03-16 2007-12-21 테이진 카세이 가부시키가이샤 수지 조성물
KR20110075486A (ko) * 2009-12-28 2011-07-06 에스케이케미칼주식회사 장식 물질을 포함하는 열가소성 성형제품
JP2012077238A (ja) * 2010-10-05 2012-04-19 Mitsubishi Engineering Plastics Corp ポリカーボネート−ポリエステル複合樹脂組成物及び成形品
KR20130044867A (ko) * 2011-10-25 2013-05-03 에스케이케미칼주식회사 폴리에스테르/폴리카보네이트 블렌드
KR20180079173A (ko) * 2016-12-30 2018-07-10 롯데첨단소재(주) 열가소성 수지 조성물 및 이를 이용한 성형품

Also Published As

Publication number Publication date
KR20200137836A (ko) 2020-12-09
KR102311477B1 (ko) 2021-10-08

Similar Documents

Publication Publication Date Title
WO2010143796A1 (ko) 폴리에스테르/폴리카보네이트 얼로이 수지 조성물 및 이를 이용한 성형품
WO2011013882A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2012053698A1 (ko) 폴리카보네이트 수지 조성물 및 이를 이용한 성형품
WO2012091307A2 (ko) 난연성 열가소성 수지 조성물
WO2020263015A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2010150956A1 (ko) 폴리유산 수지 조성물 및 이를 이용한 성형품
WO2015026014A1 (ko) 열전도성 폴리카보네이트 수지 조성물 및 이로부터 형성된 성형품
WO2018124790A2 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2018124748A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2013100303A1 (ko) 고광택 폴리카보네이트계 수지 조성물 및 그 성형품
WO2016108539A1 (ko) 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품
WO2020242228A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2014181921A1 (ko) 투명 폴리카보네이트 조성물 및 이를 포함한 성형품
WO2013100410A1 (ko) 열가소성 수지 조성물
WO2014104484A1 (ko) 폴리카보네이트 수지 조성물 및 이로부터 형성된 성형품
WO2017111337A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2019112183A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2020111778A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2019212222A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2023128485A1 (ko) 열가소성 수지 조성물 및 이로부터 제조되는 성형품
US8088849B2 (en) Scratch-resistant polycarbonate resin composition
WO2016137065A1 (ko) 폴리에스테르카보네이트 수지, 이의 제조방법 및 이를 포함하는 성형품
WO2011081305A2 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2021066558A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2019107919A1 (ko) 수지 조성물 및 이로부터 제조된 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813265

Country of ref document: EP

Kind code of ref document: A1