WO2020262080A1 - 電源装置とこの電源装置を備える電動車両及び蓄電装置 - Google Patents

電源装置とこの電源装置を備える電動車両及び蓄電装置 Download PDF

Info

Publication number
WO2020262080A1
WO2020262080A1 PCT/JP2020/023444 JP2020023444W WO2020262080A1 WO 2020262080 A1 WO2020262080 A1 WO 2020262080A1 JP 2020023444 W JP2020023444 W JP 2020023444W WO 2020262080 A1 WO2020262080 A1 WO 2020262080A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply device
battery cell
elastic
separator
Prior art date
Application number
PCT/JP2020/023444
Other languages
English (en)
French (fr)
Inventor
奈央 古上
宏行 高橋
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to EP20833165.2A priority Critical patent/EP3993139A4/en
Priority to US17/619,989 priority patent/US20220359945A1/en
Priority to JP2021528225A priority patent/JPWO2020262080A1/ja
Priority to CN202080033395.9A priority patent/CN113906624A/zh
Publication of WO2020262080A1 publication Critical patent/WO2020262080A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a power supply device in which a large number of battery cells are stacked, and an electric vehicle and a power storage device provided with this power supply device.
  • a power supply device in which a large number of battery cells are stacked is a power supply that is mounted on an electric vehicle and supplies power to a motor that runs the vehicle, a power supply that is charged with natural energy such as solar cells or midnight power, and a backup power supply for power outages. Suitable for.
  • a separator is sandwiched between the stacked battery cells. The separator insulates the heat conduction between the battery cells and suppresses the induction of thermal runaway of the battery cells. Thermal runaway of a battery cell occurs due to an internal short circuit caused by a short circuit between the positive electrode and the negative electrode inside, or an incorrect handling. When a battery cell undergoes thermal runaway, a large amount of heat is generated.
  • the battery cells expand in a charged / discharged state.
  • the battery block in which the battery cells are stacked has a pair of end plates arranged on both end surfaces, and the pair of end plates are connected by a bind bar.
  • the bind bar and end plate hold the battery cell under pressure at a fairly strong pressure to prevent malfunction due to relative movement or vibration of the battery cell.
  • a pair of end plates are arranged on both end faces of the battery block, held in the pressurized state with considerably strong pressure from both end faces, and connected by a bind bar. ing.
  • This power supply device strongly pressurizes and fixes the battery cells to prevent malfunction due to relative movement and vibration of the battery cells.
  • the end plate is pressed with a strong force of several tons and fixed with a bind bar.
  • a separator having excellent heat insulating properties is used in order to block the heat conduction of the battery cells stacked adjacent to each other.
  • a separator having excellent heat insulating properties is produced for the purpose of reducing heat conduction, it cannot absorb the expansion of the battery cell in a state where the internal pressure of the battery cell rises and expands. Therefore, when the battery cell expands, the surface pressure with the separator rapidly increases, and an extremely strong force acts on the end plate and the bind bar. Therefore, the end plate and the bind bar are required to have an extremely tough material and shape, which has an adverse effect that the power supply device is heavy and large, and the material cost is high.
  • the power supply device is provided with a rubber-like elastic sheet on the entire surface of the separator, and this rubber-like elastic sheet can be laminated on the entire surface of the battery cell to absorb the expansion of the battery cell.
  • the rubber-like elastic sheet pressed against the battery cell is thinly pressed to absorb the expansion of the battery cell. Since the rubber-like elastic sheet that absorbs the expansion of the battery cell in this state reduces in volume and absorbs the expansion of the battery cell, it is difficult to absorb the expansion of the battery cell reasonably.
  • the present invention has been developed for the purpose of eliminating the above drawbacks, and one of the objects of the present invention is to provide a technique capable of smoothly absorbing the expansion of a battery cell fixed in a pressurized state. is there.
  • the power supply device includes a battery block 10 in which a plurality of battery cells 1 are laminated in the thickness direction with a separator 2 interposed therebetween, and a pair of end plates arranged on both end surfaces of the battery block 10. 3 and a bind bar 4 which is connected to a pair of end plates 3 and fixes the battery block 10 in a pressurized state via the end plates 3.
  • the separator 2 includes a heat insulating sheet 5 and an elastic layer 6 laminated on the surface of the heat insulating sheet 5, and the elastic layer 6 partially adheres to the case surface of the battery cell 1 to expand the battery cell 1.
  • It has an elastic protrusion 6a that deforms, and has a deformation space 7 between the battery cell 1 and the separator 2 that is pressed by the battery cell 1 and the elastic protrusion 6a moves in the outer peripheral direction perpendicular to the pressing direction.
  • the electric vehicle includes the power supply device 100, a traveling motor 93 to which power is supplied from the power supply device 100, a vehicle body 91 including the power supply device 100 and the motor 93, and a motor 93. It is equipped with wheels 97 that are driven by the vehicle and run the vehicle body 91.
  • the power storage device includes the power supply device 100 and a power supply controller 88 that controls charging / discharging to the power supply device 100, and the power supply controller 88 is used to power the secondary battery cell 1 from the outside. It is possible to charge the battery cell 1 and the secondary battery cell 1 is controlled to be charged.
  • the above power supply device has a feature that the expansion of the battery cell fixed in the pressurized state can be absorbed by the separator to reduce the expansion of the battery cell and the excessive stress acting on the end plate and the bind bar.
  • FIG. 1 It is a perspective view of the power supply device which concerns on one Embodiment of this invention. It is a vertical sectional view of the power supply device shown in FIG. It is a horizontal sectional view of the power supply device shown in FIG. It is a perspective view which shows the separator and the battery cell. It is an enlarged cross-sectional view which shows the laminated state of a separator and a battery cell. It is an enlarged cross-sectional view which shows the laminated state of the separator and the battery cell which concerns on another Example. It is a partially enlarged perspective view which shows another example of a separator. It is a partially enlarged perspective view which shows another example of a separator. It is a partially enlarged perspective view which shows another example of a separator. It is a partially enlarged perspective view which shows another example of a separator. It is a partially enlarged perspective view which shows another example of a separator.
  • the power supply device of the first embodiment of the present invention includes a battery block in which a plurality of battery cells are laminated in the thickness direction with a separator sandwiched between them, and a pair of end plates arranged on both end surfaces of the battery block.
  • a power supply device including a bind bar connected to a pair of end plates and fixing a battery block in a pressurized state via the end plates, in which a separator is laminated on the heat insulating sheet and the surface of the heat insulating sheet.
  • the elastic layer has an elastic protrusion that partially adheres to the case surface of the battery cell and is deformed by the expansion of the battery cell, and is pressed against the battery cell between the battery cell and the separator.
  • the elastic protrusion has a deformation space that moves in the outer peripheral direction perpendicular to the pressing direction.
  • the separator reasonably absorbs the expansion caused by the rise in the internal pressure of the battery cell. Therefore, the expanding battery cell can be arranged at a fixed position, and the stress acting on the end plate and the bind bar can be relaxed even when the battery cell expands. That is, the separator provides an elastic layer on the surface of the heat insulating sheet, the elastic layer is partially adhered to the case surface of the battery cell, and the elastic protrusion deformed by the expansion of the battery cell, and the elastic protrusion This is because a deformation space that is pressed by the battery cell and moves in the outer peripheral direction perpendicular to the pressing direction is provided.
  • the separator can also absorb the expansion of the battery cell by laminating an elastic sheet on the entire surface of the heat insulating sheet. Since this elastic sheet becomes thin due to the expansion of the battery cell and absorbs the expansion of the battery cell, it is necessary to absorb the expansion of the battery cell by reducing the volume. Regarding the displacement amount due to the volume reduction of the elastic sheet, it is difficult to control the displacement amount with respect to the pressing force, and it is difficult to optimally set the displacement amount with respect to the pressing force.
  • the elastic layer provided on the separator is provided with an elastic protrusion and a deformation space in which the elastic protrusion is pressed and deformed.
  • the elastic protrusion is pressed by the expanding battery cell, it is pushed out into the deformation space and becomes thin. Therefore, unlike the elastic sheet laminated on the entire surface of the battery cell, it does not become thin only by changing the density, but moves to the deformation space and becomes thin, so that the expansion of the battery cell can be absorbed reasonably and the expansion of the battery cell is further performed.
  • the expansion absorption range that can absorb the battery can be increased.
  • the power supply device that expands the battery cell and moves the elastic body of the elastic protrusion to the deformation space effectively absorbs the expansion of the battery cell into the separator, prevents the battery cell from shifting, and binds to the end plate. Relieve the stress of the bar.
  • This power supply can reduce the strength of the end plate bind bar to prevent damage, so it also realizes the advantage of reducing the weight of the end plate and bind bar.
  • a power supply device capable of preventing the relative misalignment of the battery cell in which the elastic layer expands can prevent a failure of the connection portion between the electrode terminal and the bus bar due to the expansion of the battery cell.
  • the heat insulating sheet is a hybrid material of an inorganic powder and a fiber reinforced material.
  • the thermal conductivity of the heat insulating sheet is reduced to improve the heat insulating properties of the separator, and the elastic layer absorbs the expansion of the battery cell, and the hybrid material of the heat insulating sheet is pressurized to insulate. It also realizes a feature that can suppress the harmful effects of deterioration of characteristics.
  • the inorganic powder is silica airgel.
  • the thermal conductivity of the heat insulating sheet is extremely reduced to significantly improve the heat insulating properties of the separator, and the elastic layer absorbs the expansion of the battery cell to improve the heat insulating properties of the silica airgel of the heat insulating sheet. It also realizes a feature that can suppress the harmful effects of being pressurized and lowered.
  • the heat insulating sheet made of fiber reinforcing material and silica airgel exhibits excellent heat insulating properties due to the extremely low thermal conductivity of fine inorganic grain silica airgel, but it is added because the inorganic fluid silica airgel is filled in the fiber gaps. The thickness does not change even when pressed.
  • silica airgel is a fine particle composed of a skeleton of silicon dioxide (SiO2) and 90% to 98% of air, and is destroyed when a strong compressive stress is applied to reduce the thermal conductivity.
  • the elastic layer laminated on the surface of the heat insulating sheet is thinly deformed by the pressure of the battery cell, so that the compressive stress of the silica airgel that increases due to the expansion of the battery cell is reduced.
  • the expanding battery cell pressurizes the heat insulating sheet to prevent the silica airgel from being destroyed, and maintains the excellent heat insulating properties of the heat insulating sheet.
  • a separator that maintains excellent thermal insulation properties even when the battery cell is inflated keeps adjacent battery cells in excellent thermal insulation for a long period of time, preventing thermal runaway of the battery cell from being induced next to it. As a result, the safety of the power supply device is guaranteed for a long period of time.
  • the elastic layer laminated on the heat insulating sheet is thinly deformed to reduce the internal stress of the heat insulating sheet, so that the heat insulating sheet itself is deformed by pressure.
  • the heat insulating sheet itself is deformed by pressure.
  • the power supply device has an elastic layer having an elastic protruding portion having a central portion protruding and being in close contact with the battery cell.
  • the above power supply device has a feature that the elastic protrusion of the elastic layer is pressed by the expanding battery cell and deforms more smoothly to absorb the expansion of the battery cell. This is because the amount of movement of the rubber-like elastic body in the elastic protrusion can be reduced and the amount of mutation that is thinly crushed can be increased.
  • the elastic layer has a plurality of elastic protrusions.
  • the above power supply device has a feature that the expansion state of the expanding battery cell can be controlled to the optimum state by adjusting the arrangement in which the elastic protrusions are provided.
  • a gap provided between adjacent elastic protrusions is used as a deformation space.
  • the above power supply device has a feature that each elastic protrusion can be smoothly deformed to absorb the expansion of the battery cell.
  • the separator has elastic layers laminated on both sides of the heat insulating sheet.
  • the elastic protrusion is joined to the case surface of the battery cell.
  • the above power supply device has a feature that the elastic protrusion can be arranged on the surface of the battery cell without misalignment.
  • the elastic layer is at least one selected from synthetic rubber, thermoplastic elastomer, and urethane foam.
  • the thickness of the elastic layer in the uncompressed state is 0.2 mm or more and 3 mm or less.
  • the power supply device 100 shown in the perspective view of FIG. 1, the vertical sectional view of FIG. 2, and the horizontal sectional view of FIG. 3 includes a battery block 10 in which a plurality of battery cells 1 are laminated in the thickness direction with a separator 2 interposed therebetween.
  • the battery cell 1 of the battery block 10 is a square battery cell having a quadrangular outer shape, and the sealing plate 12 is laser-welded to the opening of the battery case 11 whose bottom is closed and airtightly fixed. The inside is sealed.
  • the sealing plate 12 is provided with a pair of positive and negative electrode terminals 13 projecting from both ends.
  • An opening 15 of the safety valve 14 is provided between the electrode terminals 13. The safety valve 14 opens when the internal pressure of the battery cell 1 rises above a predetermined value to release the gas inside. The safety valve 14 prevents the internal pressure of the battery cell 1 from rising.
  • the battery cell 1 is a lithium ion secondary battery.
  • the power supply device 100 in which the battery cell 1 is a lithium ion secondary battery has a feature that the charge capacity with respect to the capacity and weight can be increased.
  • the battery cell 1 can be any other rechargeable battery such as a non-aqueous electrolyte secondary battery other than the lithium ion secondary battery.
  • End plate 3 is a metal plate having an outer shape substantially equal to the outer shape of the battery cell 1 that is not deformed by being pressed by the battery block 10, and bind bars 4 are connected to both side edges.
  • the bind bar 4 connects the battery cells 1 in which the end plates 3 are laminated in a pressurized state, and fixes the battery block 10 in the pressurized state at a predetermined pressure.
  • the separator 2 is sandwiched between the stacked battery cells 1 to absorb the expansion of the battery cells 1, further insulate the adjacent battery cells 1, and further block the heat conduction between the battery cells 1.
  • a bus bar (not shown) is fixed to an electrode terminal 13 of an adjacent battery cell 1, and the battery cells 1 are connected in series or in parallel. Since a potential difference is generated in the battery case 11, the battery cells 1 connected in series are insulated by the separator 2 and laminated. The battery cells 1 connected in parallel do not generate a potential difference in the battery case 11, but are insulated and laminated by a separator 2 in order to prevent the induction of thermal runaway.
  • the separator 2 has an elastic layer 6 laminated on the surface of the heat insulating sheet 5.
  • the heat insulating sheet 5 is a hybrid material 5A of an inorganic powder and a fiber reinforced material.
  • the inorganic powder is preferably silica airgel.
  • the heat insulating sheet 5 of the hybrid material 5A is filled with an inorganic powder such as silica airgel having an extremely low thermal conductivity in the gaps between the fibers.
  • a resin sheet may be used in addition to the hybrid material 5A.
  • the elastic layer 6 has an elastic protrusion 6a that is thinly elastically deformed under pressure. Further, around the elastic protrusion 6a, a deformation space 7 for moving the elastic body 6 of the elastic protrusion 6a is provided between the battery cell 1 and the separator 2. In the elastic layer 6, the elastic protrusion 6a is elastically crushed by the pressing force of the battery cell 1 to absorb the expansion and contraction of the battery cell 1. In addition to absorbing the expansion of the battery cell 1, the elastic layer 6 protects the heat insulating sheet 5 from excessive pressure and prevents deterioration of the heat insulating property due to pressure.
  • the heat insulating sheet 5 made of the hybrid material 5A of silica airgel and fiber reinforced material deteriorates its heat insulating properties when the fragile silica airgel is compressed and destroyed.
  • the elastic layer 6 reduces the compressive stress of the silica airgel during expansion of the battery cell 1 to prevent fracture, guarantees the excellent heat insulating properties of the heat insulating sheet 5 for a long period of time, and ensures thermal runaway and heat of the battery cell 1. Prevent the induction of runaway.
  • the heat insulating sheet 5 is a hybrid material 5A of an inorganic powder such as silica airgel and a fiber reinforced material.
  • the heat insulating sheet 5 of the hybrid material 5A is composed of a silica airgel having a nano-sized porous structure and a fiber sheet.
  • the heat insulating sheet 5 is manufactured by impregnating fibers with a gel raw material of silica airgel. After impregnating a fiber sheet with silica airgel, the fibers are laminated, and the gel raw materials are reacted to form a wet gel, and the surface of the wet gel is hydrophobized and dried with hot air.
  • the fibers of the fiber sheet are polyethylene terephthalate (PET). However, as the fibers of the fiber sheet, inorganic fibers such as flame-retardant acrylic oxide fibers and glass wool can also be used.
  • the fiber sheet of the heat insulating sheet 5 preferably has a fiber diameter of 0.1 to 30 ⁇ m.
  • the fiber diameter of the fiber sheet can be made smaller than 30 ⁇ m, the heat conduction by the fibers can be reduced, and the heat insulating characteristics of the heat insulating sheet 5 can be improved.
  • Silica airgel is an inorganic fine particle composed of 90% to 98% of air, and has micropores between skeletons formed by clusters in which nano-order spheres are bonded, and has three-dimensional fine porosity. It has a structure.
  • the heat insulating sheet 5 made of a fiber sheet and silica airgel is thin and exhibits excellent heat insulating properties.
  • the heat insulating sheet 5 is set to a thickness capable of preventing the induction of thermal runaway of the battery cell 1 in consideration of the energy generated by the battery cell 1 due to thermal runaway.
  • the energy generated by thermal runaway of the battery cell 1 increases as the charging capacity of the battery cell 1 increases. Therefore, the thickness of the heat insulating sheet 5 is set to an optimum value in consideration of the charging capacity of the battery cell 1.
  • the thickness of the heat insulating sheet 5 is 0.5 mm to 2 mm, and optimally about 1 mm to 1.5 mm.
  • the present invention does not specify the thickness of the heat insulating sheet 5 in the above range, and the thickness of the heat insulating sheet 5 has the heat insulating characteristics of thermal runaway composed of the fiber sheet and silica airgel, and the thermal runaway of the battery cell 1. It is set to the optimum value in consideration of the heat insulating properties required to prevent the induction of.
  • the separator 2 has an elastic layer 6 laminated on the surface of the heat insulating sheet 5.
  • the thick separator 2 is laminated between the battery cells 1 to enlarge the battery block 10. Since the battery block 10 is required to be miniaturized, the separator 2 is required to be as thin as possible to have heat insulating properties. This is because the power supply device 100 is required to increase the charging capacity with respect to the volume. In the power supply device 100, in order to reduce the size of the battery block 10 and increase the charging capacity, it is important that the separator 2 is thinned as a whole to prevent the induction of thermal runaway of the battery cell 1.
  • the elastic layer 6 is set to, for example, 0.2 mm or more and 2 mm or less, more preferably 0.3 mm to 1 mm or less, to suppress an increase in compressive stress due to expansion of the battery cell 1. Further, the elastic layer 6 reduces the compressive stress at the time of expansion of the battery cell 1 while being thinner than the heat insulating sheet 5.
  • the elastic layer 6 is a non-foaming elastic body.
  • a thermoplastic elastomer or an elastic body made of urethane foam may be used.
  • the elastic protrusion 6a made of a non-foaming elastic body pushes the compressed and crushed elastic body into the deformation space 7 due to the incompressibility that is compressed and the volume hardly changes, and the elastic protrusion 6a is thinly deformed.
  • the elastic body of the elastic layer 6 is preferably synthetic rubber, a thermoplastic elastomer, or urethane foam.
  • the synthetic rubber a synthetic rubber having a heat resistance limit temperature of 100 ° C. or higher is suitable.
  • This synthetic rubber includes, for example, silicon rubber, fluororubber, urethane rubber, isoprene rubber, styrene butadiene rubber, butadiene rubber, chloropron rubber, nitrile rubber, hydride nitrile rubber, horiisobutylene rubber, ethylene propylene rubber, and ethylene vinyl acetate.
  • Polymer rubber, chlorosulfonated polyethylene rubber, acrylic rubber, epichlorohydrin rubber, thermoplastic olefin rubber, ethylenepropylene diene rubber, butyl rubber, polyether rubber and the like can be used.
  • fluororubber and silicone rubber have a considerably high heat resistance limit temperature of 230 ° C., retain rubber-like elasticity in a state of being heated by the high-temperature battery cell 1, and stabilize the expansion of the battery cell 1 that generates heat at a high temperature. It has the characteristic that it can be absorbed.
  • the heat-resistant limit temperature of acrylic rubber is 160 ° C
  • the heat-resistant limit temperatures of hydrogenated nitrile rubber, ethylene propylene rubber, and butyl rubber are 140 ° C and 100 ° C or higher, so expansion is stable even when the battery cell 1 generates heat at a high temperature. Can be absorbed.
  • FIGS. 4 to 13 show the separator 2 provided with the elastic protrusion 6a and the deformation space 7.
  • one elastic protrusion 6a is provided at the center of the heat insulating sheet 5, and a deformation space 7 is provided around the elastic protrusion 6a.
  • the cross-sectional view of FIG. 6 and the separator 2 shown in the perspective views of FIGS. 7 to 10 are provided with a plurality of elastic protrusions 6a in a region excluding the upper and lower ends, and the separator 2 of FIGS. 11 to 13 has both side edges.
  • An elastic protrusion 6a is provided in a region other than the portion, and a deformation space 7 is provided between the elastic protrusions 6a.
  • the elastic layer 6 laminated on the heat insulating sheet 5 is provided with an elastic protruding portion 6a whose central portion protrudes in a chevron shape and is in close contact with the battery cell 1.
  • These elastic protrusions 6a are provided with a contact portion 6x of the battery cell 1 in the central portion, and have a shape in which the outside of the contact portion 6x is inclined downward toward the outer periphery.
  • the separator 2 of FIGS. 4 and 5 has a strip-shaped contact portion 6x extending in the width direction.
  • the separator 2 can adjust the vertical width of the strip-shaped contact portion 6x to adjust the area in which the elastic protrusion 6a is in close contact with the battery cell 1.
  • the elastic protrusion 6a can widen the vertical width of the contact portion 6x to reduce the surface pressure of the battery cell 1 with the case surface, and narrow it to increase the surface pressure.
  • the separator 2 of FIGS. 4 and 5 is provided with a row of elastic protrusions 6a at the center. In the separator 2 of FIGS. 7 to 10, a plurality of rows of elastic protrusions are arranged in a parallel posture.
  • the strip-shaped elastic protrusions 6a may be provided in a posture extending in the width direction as shown in the figure, in a posture extending in the vertical direction as shown in FIGS. 11 to 13, or in a grid pattern (not shown). it can.
  • the separator 2 provided with the plurality of rows of elastic protrusions 6a can adjust the contact pressure of the battery cell 1 with the case surface by changing the interval and height of the elastic protrusions 6a. Further, the shape of the expanding battery cell 1 can be controlled by the shape, width, height, etc. of each elastic protrusion 6a.
  • a plurality of elastic protrusions 6a are arranged so as to be locally scattered.
  • the elastic layer 6 of the separator 2 can optimally control the shape of the case surface of the expanding battery cell 1 by adjusting the arrangement, size, height, etc. of each elastic protrusion 6a.
  • the separator 2 provided with the elastic protrusions 6a in a plurality of rows is a case of a battery cell that expands by adjusting the shape, arrangement, width, pitch, height, etc. of the elastic protrusions 6a.
  • the shape of the surface can be controlled to the optimum shape.
  • the shape in which the internal pressure rises and the battery cell expands can be controlled by the elastic protrusions 6a, but the separators 2 in FIGS. 9 and 10 can be controlled. Since the elastic protrusions 6a of the upper and lower portions are raised to limit the expansion, the expansion shape of the battery cell 1 can be made such that the upper and lower portions are lowered and the upper and lower central portions are raised. As shown in FIGS. 11 and 12, the separator provided with the elastic protrusion 6a extending in the vertical direction has the height of the elastic protrusion 6a higher in the upper and lower portions and the central portion as shown in the cross-sectional view of FIG.
  • the expansion shape of the battery cell 1 can be made low in the upper and lower portions and high in the upper and lower central portions.
  • the cross-sectional shape of the elastic protrusions 6a in a plurality of rows is a triangular chevron shape (FIGS. 8, 10, 12) or an arch-shaped chevron shape (FIGS. 7, 9, 9).
  • the elastic protrusion 6a can greatly deform the battery cell that expands as a triangular chevron with respect to the pressing force, and can reduce the amount of deformation of the battery cell that expands as an arched chevron with respect to the pressing force.
  • the power supply device 100 described above preferably has a structure in which all the separators 2 have elastic layers 6 laminated on both sides of the heat insulating sheet 5, but not necessarily all the separators 2 have elastic layers 6 laminated on both sides of the heat insulating sheet 5. It is not necessary to have a structure that does. Although not shown, the separator may have an elastic layer laminated on one side of the heat insulating sheet. Further, in the power supply device, it is not necessary for all the separators to have a laminated structure of a heat insulating sheet and an elastic layer, and a separator having only a heat insulating sheet and a separator having a laminated structure of a heat insulating sheet and an elastic layer can be provided in a mixed manner. ..
  • the elastic layer 6 and the heat insulating sheet 5 are laminated at a fixed position by joining them via an adhesive layer or an adhesive layer or by using two-color molding.
  • the separator 2 and the battery cell 1 are also joined to each other via an adhesive layer or an adhesive layer and arranged at a fixed position.
  • the separator can also be arranged in a fixed position of a battery holder (not shown) in which the battery cell is arranged in a fixed position in a fitting structure.
  • the battery cell 1 is a square battery cell having a charging capacity of 6 Ah to 80 Ah, and the heat insulating sheet 5 of the separator 2 is filled with silica airgel in a fiber sheet to have a thickness of 1 mm.
  • the elastic layer 6 laminated on both sides of the heat insulating sheet 5 is made of silicon rubber having a maximum thickness of 2 mm of the elastic protruding portion 6a, and is expanded by increasing the internal pressure of a specific battery cell 1. Can be absorbed without difficulty.
  • the above power supply device can be used as a power source for a vehicle that supplies electric power to a motor that runs an electric vehicle.
  • an electric vehicle equipped with a power supply device an electric vehicle such as a hybrid vehicle or a plug-in hybrid vehicle that runs on both an engine and a motor, or an electric vehicle that runs only on a motor can be used, and is used as a power source for these vehicles.
  • a large number of the above-mentioned power supply devices are connected in series or in parallel, and a large-capacity, high-output power supply device 100 to which a necessary control circuit is added will be described as an example. ..
  • FIG. 15 shows an example in which a power supply device is mounted on a hybrid vehicle that runs on both an engine and a motor.
  • the vehicle HV equipped with the power supply device shown in this figure includes a vehicle body 91, an engine 96 for traveling the vehicle body 91, a motor 93 for traveling, and wheels driven by these engines 96 and a motor 93 for traveling. 97, a power supply device 100 for supplying electric power to the motor 93, and a generator 94 for charging the battery of the power supply device 100 are provided.
  • the power supply device 100 is connected to the motor 93 and the generator 94 via the DC / AC inverter 95.
  • the vehicle HV runs on both the motor 93 and the engine 96 while charging and discharging the battery of the power supply device 100.
  • the motor 93 is driven to drive the vehicle in a region where the engine efficiency is low, for example, when accelerating or traveling at a low speed.
  • the motor 93 is driven by being supplied with electric power from the power supply device 100.
  • the generator 94 is driven by the engine 96 or by regenerative braking when braking the vehicle to charge the battery of the power supply device 100.
  • the vehicle HV may be provided with a charging plug 98 for charging the power supply device 100. By connecting the charging plug 98 to an external power source, the power supply device 100 can be charged.
  • FIG. 16 shows an example in which a power supply device is mounted on an electric vehicle traveling only by a motor.
  • the vehicle EV equipped with the power supply device shown in this figure supplies electric power to the vehicle body 91, the motor 93 for traveling the vehicle body 91, the wheels 97 driven by the motor 93, and the motor 93.
  • the power supply device 100 and the generator 94 for charging the battery of the power supply device 100 are provided.
  • the power supply device 100 is connected to the motor 93 and the generator 94 via the DC / AC inverter 95.
  • the motor 93 is driven by being supplied with electric power from the power supply device 100.
  • the generator 94 is driven by the energy used for regenerative braking of the vehicle EV to charge the battery of the power supply device 100.
  • the vehicle EV is provided with a charging plug 98, and the charging plug 98 can be connected to an external power source to charge the power supply device 100.
  • the power supply device for power storage device
  • the present invention does not specify the use of the power supply device as the power source of the motor for traveling the vehicle.
  • the power supply device according to the embodiment can also be used as a power source for a power storage device that charges and stores a battery with electric power generated by solar power generation, wind power generation, or the like.
  • FIG. 17 shows a power storage device that charges and stores the battery of the power supply device 100 with the solar cell 82.
  • the power storage device shown in FIG. 17 charges the battery of the power supply device 100 with the electric power generated by the solar cell 82 arranged on the roof or roof of a building 81 such as a house or factory.
  • This power storage device uses the solar cell 82 as a power source for charging, charges the battery of the power supply device 100 with the charging circuit 83, and then supplies power to the load 86 via the DC / AC inverter 85. Therefore, this power storage device has a charge mode and a discharge mode.
  • the DC / AC inverter 85 and the charging circuit 83 are connected to the power supply device 100 via the discharge switch 87 and the charging switch 84, respectively.
  • the ON / OFF of the discharge switch 87 and the charge switch 84 is switched by the power controller 88 of the power storage device.
  • the power controller 88 switches the charging switch 84 to ON and the discharge switch 87 to OFF to allow the charging circuit 83 to charge the power supply device 100.
  • the power controller 88 turns off the charging switch 84 and turns on the discharge switch 87 to switch to the discharge mode, and the power supply device 100 Allows discharge from to load 86.
  • the charge switch 84 can be turned on and the discharge switch 87 can be turned on to supply power to the load 86 and charge the power supply device 100 at the same time.
  • the power supply device can also be used as a power source for a power storage device that charges and stores batteries using midnight power at night.
  • a power supply device charged with midnight power can be charged with midnight power, which is surplus power of a power plant, and output power in the daytime when the power load is large, so that the peak power in the daytime can be limited to a small value.
  • the power supply can also be used as a power source for charging with both solar cell output and midnight power. This power supply device can effectively utilize both the power generated by the solar cell and the midnight power, and can efficiently store electricity while considering the weather and power consumption.
  • the above-mentioned power storage devices include backup power supply devices that can be mounted in computer server racks, backup power supply devices for wireless base stations such as mobile phones, power storage power supplies for homes or factories, power supplies for street lights, etc. It can be suitably used for power storage devices combined with solar cells, backup power sources for traffic lights and traffic indicators for roads, and the like.
  • the power supply device can be suitably used as a power source for a large current used for a power source of a motor for driving an electric vehicle such as a hybrid vehicle, a fuel cell vehicle, an electric vehicle, or an electric motorcycle.
  • a power supply device for a plug-in type hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle, or the like that can switch between an EV driving mode and a HEV driving mode can be mentioned.
  • a backup power supply device that can be mounted in a computer server rack, a backup power supply device for wireless base stations such as mobile phones, a power storage device for home use and factories, a power storage device for street lights, etc. , Can also be used as appropriate for backup power supplies such as traffic lights.

Landscapes

  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

加圧状態に固定される電池セルの膨張をスムーズに吸収するために、電源装置は、複数の電池セル(1)をセパレータ(2)を挟んで厚さ方向に積層してなる電池ブロックと、電池ブロックの両端面に配置してなる一対のエンドプレートと、一対のエンドプレートに連結されて、エンドプレートを介して電池ブロックを加圧状態に固定してなるバインドバーとを備えている。セパレータ(2)は、断熱シート(5)と、断熱シート(5)の表面に積層してなる弾性層(6)を備え、弾性層(6)が、電池セル(1)のケース表面に部分的に密着して、電池セル(1)の膨張で変形する弾性突出部(6a)と、電池セル(1)に押圧されて弾性突出部(6a)が押圧方向と直行する外周方向に移動する変形スペース(7)とを有している。

Description

電源装置とこの電源装置を備える電動車両及び蓄電装置
 本発明は、多数の電池セルを積層している電源装置と、この電源装置を備える電動車両及び蓄電装置に関する。
 多数の電池セルを積層している電源装置は、電動車両に搭載されて車両を走行させるモータに電力を供給する電源、太陽電池等の自然エネルギーや深夜電力で充電される電源、停電のバックアップ電源に適している。この構造の電源装置は、積層している電池セルの間にセパレータを挟着している。セパレータは、電池セル間の熱伝導を断熱して、電池セルの熱暴走の誘発を抑制する。電池セルの熱暴走は、正極と負極が内部で短絡して発生する内部ショートや誤った取り扱い等で発生する。電池セルが熱暴走すると大量の熱を発生するので、セパレータの断熱性が充分でないと、隣接する電池セルに熱暴走を誘発する。電池セルの熱暴走が誘発されると、電源装置全体は極めて大きな熱エネルギーを放出して装置としての安全性を阻害する。この弊害を防止するために、積層する電池セルの間には断熱シートを積層している。
 断熱シートのセパレータを介して複数の電池セルを積層している電源装置は、充放電される状態で電池セルが膨張する。膨張する電池セルを定位置に配置するために、電池セルを積層している電池ブロックは、両端面に一対のエンドプレートを配置して、一対のエンドプレートをバインドバーで連結している。バインドバーとエンドプレートは、電池セルを相当に強い圧力で加圧状態に保持して、電池セルの相対移動や振動による誤動作を防止する。(特許文献1参照)
特開2015-220117号公報
 電池セルを加圧状態に固定している電源装置は、電池ブロックの両端面に一対のエンドプレートを配置して、両端面から相当に強い圧力で加圧状態に保持してバインドバーで連結している。この電源装置は、電池セルを強く加圧して固定して電池セルの相対移動や振動による誤動作を防止している。この電源装置は、たとえば、積層面の面積を約100cmとする電池セルを使用する装置において、エンドプレートを数トンもの強い力で押圧してバインドバーで固定している。この構造の電源装置は、隣接して積層される電池セルの熱伝導を遮断するために、断熱特性の優れたセパレータが使用される。優れた断熱特性のセパレータは、熱伝導を小さくする目的として制作されるので、電池セルの内圧が上昇して膨張する状態で、電池セルの膨張を吸収できない。このため、電池セルが膨張するとセパレータとの面圧が急激に高くなって、エンドプレートやバインドバーに極めて強い力が作用する。このため、エンドプレートとバインドバーには、極めて強靭な材質と形状が要求されて、電源装置が重く、大きく、材料コストが高くなる弊害がある。
 電源装置は、セパレータの全面にゴム状弾性シートを設け、このゴム状弾性シートを電池セルの全面に積層して電池セルの膨張を吸収できる。このセパレータは、電池セルに加圧されるゴム状弾性シートが薄く押されて電池セルの膨張を吸収する。この状態で電池セルの膨張を吸収するゴム状弾性シートは、体積が減少して電池セルの膨張を吸収するので、電池セルの膨張を無理なく吸収するのが難しい。
 本発明は、以上の欠点を解消することを目的に開発されたもので、本発明の目的の一は、加圧状態に固定される電池セルの膨張をスムーズに吸収できる技術を提供することにある。
 本発明のある態様に係る電源装置は、複数の電池セル1をセパレータ2を挟んで厚さ方向に積層してなる電池ブロック10と、電池ブロック10の両端面に配置してなる一対のエンドプレート3と、一対のエンドプレート3に連結されて、エンドプレート3を介して電池ブロック10を加圧状態に固定してなるバインドバー4とを備えている。セパレータ2は、断熱シート5と、断熱シート5の表面に積層してなる弾性層6を備え、弾性層6が、電池セル1のケース表面に部分的に密着して、電池セル1の膨張で変形する弾性突出部6aを有し、電池セル1とセパレータ2の間に電池セル1に押圧されて弾性突出部6aが押圧方向と直行する外周方向に移動する変形スペース7を有している。
 本発明のある態様に係る電動車両は、上記電源装置100と、電源装置100から電力供給される走行用のモータ93と、電源装置100及びモータ93を搭載してなる車両本体91と、モータ93で駆動されて車両本体91を走行させる車輪97とを備えている。
 本発明のある態様に係る蓄電装置は、上記電源装置100と、電源装置100への充放電を制御する電源コントローラ88と備えて、電源コントローラ88でもって、外部からの電力により二次電池セル1への充電を可能とすると共に、二次電池セル1に対し充電を行うよう制御している。
 以上の電源装置は、加圧状態に固定される電池セルの膨張をセパレータで吸収して、電池セルが膨張してエンドプレートとバインドバーに過大な応力が作用するのを減少できる特徴がある。
本発明の一実施形態に係る電源装置の斜視図である。 図1に示す電源装置の垂直断面図である。 図1に示す電源装置の水平断面図である。 セパレータと電池セルを示す斜視図である。 セパレータと電池セルの積層状態を示す拡大断面図である。 他の実施例に係るセパレータと電池セルの積層状態と示す拡大断面図である。 セパレータの他の一例を示す一部拡大斜視図である。 セパレータの他の一例を示す一部拡大斜視図である。 セパレータの他の一例を示す一部拡大斜視図である。 セパレータの他の一例を示す一部拡大斜視図である。 セパレータの他の一例を示す一部拡大斜視図である。 セパレータの他の一例を示す一部拡大斜視図である。 セパレータの他の一例を示す垂直断面図である。 弾性層が変形する状態を示す要部拡大断面図である。 エンジンとモータで走行するハイブリッド車に電源装置を搭載する例を示すブロック図である。 モータのみで走行する電気自動車に電源装置を搭載する例を示すブロック図である。 蓄電用の電源装置に適用する例を示すブロック図である。
 以下、図面に基づいて本発明を詳細に説明する。なお、以下の説明では、必要に応じて特定の方向や位置を示す用語(例えば、「上」、「下」、及びそれらの用語を含む別の用語)を用いるが、それらの用語の使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が制限されるものではない。また、複数の図面に表れる同一符号の部分は同一もしくは同等の部分又は部材を示す。さらに以下に示す実施形態は、本発明の技術思想の具体例を示すものであって、本発明を以下に限定するものではない。また、以下に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り、本発明の範囲をそれのみに限定する趣旨ではなく、例示することを意図したものである。また、一の実施の形態、実施例において説明する内容は、他の実施の形態、実施例にも適用可能である。また、図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張していることがある。
 本発明の第1の実施形態の電源装置は、複数の電池セルをセパレータを挟んで厚さ方向に積層してなる電池ブロックと、電池ブロックの両端面に配置してなる一対のエンドプレートと、一対のエンドプレートに連結されて、エンドプレートを介して電池ブロックを加圧状態に固定してなるバインドバーとを備える電源装置であって、セパレータが、断熱シートと、断熱シートの表面に積層してなる弾性層を備え、弾性層が、電池セルのケース表面に部分的に密着して、電池セルの膨張で変形する弾性突出部を有し、電池セルとセパレータの間に電池セルに押圧されて弾性突出部が押圧方向と直行する外周方向に移動する変形スペースを有している。
 以上の電源装置は、電池セルの内圧上昇による膨張をセパレータが無理なく吸収する。このため、膨張する電池セルを定位置に配置し、さらに電池セルが膨張する状態においても、エンドプレートやバインドバーに作用する応力を緩和できる。それは、セパレータが、断熱シートの表面に弾性層を設けて、この弾性層を電池セルのケース表面に部分的に密着して、電池セルの膨張で変形する弾性突出部と、この弾性突出部が電池セルに押圧されて押圧方向に直行する外周方向に移動する変形スペースとを設けているからである。
 セパレータは、断熱シートの全面に弾性のシートを積層して電池セルの膨張を吸収することもできる。この弾性シートは、電池セルの膨張で薄くなって電池セルの膨張を吸収するので、電池セルの膨張を体積の減少で吸収する必要がある。弾性シートの体積減少による変位量は、押圧力に対する変位量のコントロールが難しく、押圧力に対する変位量を最適に設定するのが難しい。
 以上の電源装置は、セパレータに設けている弾性層に、弾性突出部を設けると共に、弾性突出部が押圧されて変形する変形スペースとを設けている。この弾性突出部は、膨張する電池セルに押圧されると、変形スペースに押し出されて薄くなる。したがって、電池セルの全面に積層される弾性シートのように、密度変化のみで薄くなるのでなく、変形スペースに移動して薄くなるので、電池セルの膨張を無理なく吸収でき、さらに電池セルの膨張を吸収できる膨張吸収範囲をも大きくできる特長がある。
 以上の電源装置は、図14の拡大断面図に示すように、電池セル1が膨張して弾性層6の弾性突出部6aが押圧されると、矢印で示すように、弾性突出部6aの弾性体が変形スペース7に向かって移動する。弾性体は、圧縮されてほとんど体積が変化しない非圧縮性があるので、弾性突出部6aが薄く圧縮されると、弾性突出部6aからはみ出して、押圧方向に直交する方向に押し出されて変形スペース7に向かって移動する。変形スペース7に移動する弾性体は、弾性突出部6aを薄く変形させる。電池セルが膨張して、弾性突出部の弾性体を変形スペースに移動する電源装置は、電池セルの膨張をセパレータに効果的に吸収して、電池セルの位置ずれを防止し、エンドプレートとバインドバーの応力を緩和する。この電源装置は、エンドプレートのバインドバーの強度を低くして、損傷を防止できるので、エンドプレートとバインドバーを軽量化できる特長も実現する。
 また、以上の電源装置は、電池セルの膨張で弾性層が薄く変形するので、電池セルが膨張して相対位置がずれるのも抑制できる。隣接する電池セルの相対的な位置ずれは、電池セルの電極端子に固定している金属板のバスバーと電極端子とを損傷させる原因となる。弾性層が膨張する電池セルの相対的な位置ずれを阻止できる電源装置は、電池セルの膨張で電極端子とバスバーとの接続部の故障を防止できる。
 本発明の第2の実施形態の電源装置は、断熱シートが、無機粉末と繊維強化材とのハイブリッド素材としている。
 以上の電源装置は、断熱シートの熱伝導率を小さくして、セパレータの断熱特性を向上し、さらに、弾性層が電池セルの膨張を吸収して、断熱シートのハイブリッド素材が加圧されて断熱特性が低下する弊害を抑制できる特長も実現する。
 本発明の第3の実施形態の電源装置は、無機粉末をシリカエアロゲルとしている。
 以上の電源装置は、断熱シートの熱伝導率を極めて小さくして、セパレータの断熱特性を著しく向上し、さらに、弾性層が電池セルの膨張を吸収して、断熱シートのシリカエアロゲルの断熱特性が加圧されて低下する弊害を抑制できる特長も実現する。
 繊維強化材とシリカエアロゲルからなる断熱シートは、微細な無機粒のシリカエアロゲルの極めて低い熱伝導率によって、優れた断熱特性を示すが、無機流体のシリカエアロゲルを繊維隙間に充填しているので加圧されても厚さは変形しない。この断熱シートが電池セルの強い圧力で加圧されて圧縮応力が強くなると、無機粒のシリカエアロゲルは破壊されて断熱特性が低下する。シリカエアロゲルは、二酸化ケイ素(SiO2)の骨格と、90%~98%の空気で構成された微粒子で、強い圧縮応力が作用すると破壊されて熱伝導率が低下する。断熱シートの表面に積層している弾性層は、電池セルの圧力で薄く変形するので、電池セルが膨張して増加するシリカエアロゲルの圧縮応力を減少する。このため、膨張する電池セルが断熱シートを加圧してシリカエアロゲルを破壊するのを抑制して、断熱シートの優れた断熱特性を維持する。電池セルが膨張する状態においても、優れた断熱特性を維持するセパレータは、長期間にわたって隣接する電池セルを優れた断熱状態に保持して、電池セルの熱暴走が隣に誘発されるのを防止して、電源装置の安全性を長期間にわたって保障する。
 さらに、以上の電源装置は、電池セルが膨張する状態においては、断熱シートに積層している弾性層が薄く変形して、断熱シートの内部応力を減少させるので、断熱シート自体を圧力で変形する特別な構造とする必要がない。このため、圧力で押し潰されない断熱シートを使用しながら、シリカエアロゲルの破壊による断熱特性の低下を抑制できる。
 本発明の第4の実施形態の電源装置は、弾性層が、中央部が突出して電池セルに密着してなる弾性突出部を有している。
 以上の電源装置は、弾性層の弾性突出部が、膨張する電池セルに押圧されてよりスムーズに変形して電池セルの膨張を吸収できる特長がある。それは、弾性突出部のゴム状弾性体の移動量を少なくして、薄く押し潰される変異量を大きくできるからである。
 本発明の第5の実施形態の電源装置は、弾性層が複数の弾性突出部を有している。以上の電源装置は、弾性突出部を設ける配列を調整して、膨張する電池セルの膨張状態を最適な状態にコントロールできる特長がある。
 本発明の第6の実施形態の電源装置は、隣接する弾性突出部の間に設けてなる空隙を変形スペースとしている。以上の電源装置は、各々の弾性突出部をスムーズに変形させて、電池セルの膨張を吸収できる特長がある。
 本発明の第7の実施形態の電源装置は、セパレータが、断熱シートの両面に弾性層を積層している。
 本発明の第8の実施形態の電源装置は、弾性突出部が電池セルのケース表面に接合されている。以上の電源装置は、弾性突出部を位置ずれなく電池セルの表面に配置できる特長がある。
 本発明の第9の実施形態の電源装置は、弾性層を合成ゴム、熱可塑性エラストマー、発泡ウレタンから選ばれる少なくとも一つとしている。
 本発明の第10の実施形態の電源装置は、非圧縮状態における弾性層の厚さを、0.2mm以上であって3mm以下としている。
(実施の形態1)
 以下、さらに具体的な電源装置詳述する。
 図1の斜視図と図2の垂直断面図と図3の水平断面図に示す電源装置100は、複数の電池セル1をセパレータ2を挟んで厚さ方向に積層している電池ブロック10と、電池ブロック10の両端面に配置している一対のエンドプレート3と、一対のエンドプレート3を連結してエンドプレート3を介して電池ブロック10を加圧状態に固定しているバインドバー4とを備える。
(電池ブロック10)
 電池ブロック10の電池セル1は、図4に示すように、外形を四角形とする角形電池セルで、底を閉塞している電池ケース11の開口部に封口板12をレーザー溶接して気密に固定して、内部を密閉構造としている。封口板12は、両端部に正負一対の電極端子13を突出して設けている。電極端子13の間には安全弁14の開口部15を設けている。安全弁14は、電池セル1の内圧が所定値以上に上昇した際に開弁して、内部のガスを放出する。安全弁14は、電池セル1の内圧上昇を防止する。
(電池セル1)
 電池セル1は、リチウムイオン二次電池である。電池セル1をリチウムイオン二次電池とする電源装置100は、容量と重量に対する充電容量を大きくできる特長がある。ただし、電池セル1は、リチウムイオン二次電池以外の非水系電解液二次電池等、他の充電できる全ての電池とすることができる。
(エンドプレート3、バインドバー4)
 エンドプレート3は、電池ブロック10に押圧されて変形しない、電池セル1の外形にほぼ等しい外形の金属板で、両側縁にバインドバー4を連結している。バインドバー4は、エンドプレート3が積層している電池セル1を加圧状態で連結して、電池ブロック10を所定の圧力で加圧状態に固定している。
(セパレータ2)
 セパレータ2は、積層している電池セル1の間に挟まれて、電池セル1の膨張を吸収し、さらに隣接する電池セル1を絶縁し、さらに電池セル1間における熱伝導を遮断する。電池ブロック10は、隣接する電池セル1の電極端子13にバスバー(図示せず)を固定して、電池セル1を直列又は並列に接続している。直列に接続される電池セル1は、電池ケース11に電位差が発生するので、セパレータ2で絶縁して積層する。並列に接続される電池セル1は、電池ケース11に電位差は発生しないが、熱暴走の誘発を防止するために、セパレータ2で断熱して積層する。
 セパレータ2は、図4と図5に示すように、断熱シート5の表面に弾性層6を積層している。断熱シート5は、無機粉末と繊維強化材とのハイブリッド素材5Aである。無機粉末は、好ましくはシリカエアロゲルである。ハイブリッド素材5Aの断熱シート5は、繊維の隙間に熱伝導率の極めて小さいシリカエアロゲル等の無機粉末を充填している。また、断熱シート5は、上記ハイブリッド素材5A以外に、樹脂シートを用いることもできる。
 弾性層6は、加圧されて薄く弾性変形する弾性突出部6aを有する。さらに、弾性突出部6aの周囲に、電池セル1とセパレータ2の間に弾性突出部6aの弾性体6を移動させる変形スペース7を設けている。弾性層6は、電池セル1の加圧力で弾性突出部6aが弾性的に押し潰されて、電池セル1の膨張と収縮を吸収する。弾性層6は、電池セル1の膨張を吸収することに加えて、断熱シート5を過大な圧力から保護して、圧力による断熱特性の劣化を防止する。
 シリカエアロゲルと繊維強化材とのハイブリッド素材5Aからなる断熱シート5は、脆弱なシリカエアロゲルが圧縮されて破壊されると断熱特性が低下する。弾性層6は、電池セル1の膨張時におけるシリカエアロゲルの圧縮応力を減少して破壊を防止し、長期間にわたって断熱シート5の優れた断熱特性を保障して、電池セル1の熱暴走と熱暴走の誘発を防止する。
(断熱シート5)
 断熱シート5は、シリカエアロゲル等の無機粉末と繊維強化材とのハイブリッド素材5Aである。ハイブリッド素材5Aの断熱シート5は、ナノサイズの多孔質構造を有するシリカエアロゲルと繊維シートからなる。この断熱シート5は、シリカエアロゲルのゲル原料を、繊維に含浸して製造される。シリカエアロゲルを繊維シートに含浸した後、繊維を積層し、ゲル原料を反応させて湿潤ゲルを形成し、さらに湿潤ゲル表面を疎水化、熱風乾燥して製造される。繊維シートの繊維は、ポリエチレンテレフタレート(PET)である。ただ、繊維シートの繊維は、難燃処理を施した酸化アクリル繊維やグラスウールなどの無機繊維も使用できる。
 断熱シート5の繊維シートは、好ましくは繊維径を0.1~30μmとする。繊維シートの繊維径を30μmより細くし、繊維による熱伝導を小さくして、断熱シート5の断熱特性を向上できる。シリカエアロゲルは、90%~98%を空気で構成している無機質の微粒子で、ナノオーダの球状体が結合したクラスタで形成される骨格間に微細孔があって、三次元的な微細な多孔性構造をしている。
 繊維シートとシリカエアロゲルからなる断熱シート5は、薄くて優れた断熱特性を示す。この断熱シート5は、電池セル1が熱暴走して発熱するエネルギーを考慮して、電池セル1の熱暴走の誘発を阻止できる厚さに設定する。電池セル1が熱暴走して発熱するエネルギーは、電池セル1の充電容量が大きくなると大きくなる。したがって、断熱シート5の厚さは、電池セル1の充電容量を考慮して最適値に設定される。たとえば、充電容量を5Ah~20Ahとするリチウムイオン二次電池を電池セル1とする電源装置は、断熱シート5の厚さを0.5mm~2mm、最適には約1mm~1.5mmとする。ただし、本発明は断熱シート5の厚さを以上の範囲に特定するものでなく、断熱シート5の厚さは、繊維シートとシリカエアロゲルからなる熱暴走の断熱特性と、電池セル1の熱暴走の誘発を防止するために要求される断熱特性を考慮して最適値に設定される。
(弾性層6)
 セパレータ2は、図4と図5に示すように、断熱シート5の表面に弾性層6を積層している。厚いセパレータ2は、各々の電池セル1の間に積層されて電池ブロック10を大きくする。電池ブロック10は小形化が要求されるので、セパレータ2はできる限り薄くして断熱特性が要求される。電源装置100において、容積に対して充電容量を大きくすることが要求されるからである。電源装置100は、電池ブロック10を小形化して充電容量を大きくするために、セパレータ2には、全体を薄くして、電池セル1の熱暴走の誘発を阻止することが大切である。このことから、弾性層6は、たとえば0.2mm以上であって2mm以下、さらに好ましくは0.3mm~1mm以下として、電池セル1の膨張による圧縮応力の増加を抑制する。さらに、弾性層6は、好ましくは断熱シート5よりも薄くしながら、電池セル1の膨張時の圧縮応力を低下させる。
 弾性層6は、非発泡の弾性体である。但し、非発泡の弾性体以外に、熱可塑性エラストマー、発泡ウレタンの弾性体でも良い。非発泡の弾性体からなる弾性突出部6aは、圧縮されて体積がほとんど変化しない非圧縮性によって、圧縮して押し潰された弾性体を変形スペース7に押し出して、弾性突出部6aを薄く変形する。弾性層6の弾性体は、好ましくは合成ゴム、熱可塑性エラストマー、発泡ウレタンである。合成ゴムは、耐熱限界温度を100℃以上とする合成ゴムが適している。この合成ゴムは、たとえば、シリコンゴム、フッ素ゴム、ウレタンゴム、イソプレンゴム、スチレンブタジエンゴム、ブタジエンゴム、クロロプロンゴム、ニトリルゴム、水素化ニトリルゴム、ホリイソブチレンゴム、エチレンプロピレンゴム、エチレン酢酸ビニル共重合体ゴム、クロロスルホン化ポリエチレンゴム、アクリルゴム、エピクロルヒドリンゴム、熱可塑性オレフィンゴム、エチレンプロピレンジエンゴム、ブチルゴム、ポリエーテルゴムなどが使用できる。
 とくに、フッ素ゴムとシリコンゴムは、耐熱限界温度が230℃と相当に高く、高温の電池セル1に加熱される状態でゴム状弾性を保持して、高温に発熱する電池セル1の膨張を安定して吸収できる特徴がある。さらにアクリルゴムの耐熱限界温度は160℃、水素化ニトリルゴム、エチレンプロピレンゴム、ブチルゴムの耐熱限界温度が140℃と100℃以上であるので、電池セル1が高温に発熱する状態においても膨張を安定して吸収できる。
 図4ないし図13の断面図と斜視図は、弾性突出部6aと変形スペース7とを設けているセパレータ2を示している。図4と図5のセパレータ2は、断熱シート5の中央部にひとつの弾性突出部6aを設けて、弾性突出部6aの周囲に変形スペース7を設けている。図6の断面図と、図7~図10の斜視図に示すセパレータ2は、上下の端部を除く領域に複数の弾性突出部6aを設け、図11ないし図13のセパレータ2は、両側縁部を除く領域に弾性突出部6aを設けて、弾性突出部6aの間に変形スペース7を設けている。これ等のセパレータ2は、断熱シート5に積層している弾性層6に、中央部が山形に突出して電池セル1に密着している弾性突出部6aを設けている。これ等の弾性突出部6aは、中央部に電池セル1の当たり部6xを設けて、当たり部6xの外側を外周に向かって下り勾配に傾斜する形状としている。
 図4と図5のセパレータ2は、当たり部6xを幅方向に伸びる帯状としている。このセパレータ2は、帯状である当たり部6xの上下幅を調整して、弾性突出部6aが電池セル1に密着する面積を調整できる。弾性突出部6aは、当たり部6xの上下幅を広くして、電池セル1のケース表面との面圧を低くでき、狭くして面圧を高くできる。図4と図5のセパレータ2は、中央部に一列の弾性突出部6aを設けている。図7ないし図10のセパレータ2は、複数列の弾性突出部を平行姿勢に配置している。帯状の弾性突出部6aは、図に示すように幅方向に伸びる姿勢で、あるいは図11ないし図13に示すように、上下方向に伸びる姿勢で、あるいはまた、図示しないが格子状に設けることもできる。複数列の弾性突出部6aを設けるセパレータ2は、弾性突出部6aの間隔や高さを変更して、電池セル1のケース表面との接触圧を調整できる。また、各々の弾性突出部6aの形状、横幅、高さ等で、膨張する電池セル1の形状をコントロールすることもできる。
 図6のセパレータ2は、複数個の弾性突出部6aを局部的に点在させて配置する。このセパレータ2の弾性層6は、各々の弾性突出部6aの配列、大きさ、高さ等を調整して、膨張する電池セル1のケース表面の形状を最適なようにコントロールできる。図7ないし図13に示すように、複数列の弾性突出部6aを設けるセパレータ2は、弾性突出部6aの形状、配列、横幅、ピッチ、高さ等を調整して、膨張する電池セルのケース表面の形状を最適形状にコントロールできる。複数列のあるいは複数個の弾性突出部6aを設けているセパレータ2は、内圧が上昇して電池セルが膨張する形状を各々の弾性突出部6aでコントロールできるが、図9と図10のセパレータ2は、上下部分の弾性突出部6aを高くして膨張を制限する形状とするので、電池セル1の膨張形状を上下部分を低くして、上下の中央部を高く突出する形状にできる。図11と図12に示すように、上下方向に伸びる弾性突出部6aを設けているセパレータは、図13の断面図に示すように、弾性突出部6aの高さを上下部分で高く、中央部で低くして、電池セル1の膨張形状を上下部分を低く、上下の中央部を高く突出する形状にできる。図7ないし図12のセパレータ2は、複数列の弾性突出部6aの断面形状を、三角形の山形(図8、図10、図12)とし、あるいはアーチ状の山形(図7、図9、図11)として、膨張する電池セルで押し潰される状態をコントロールすることができる。弾性突出部6aは、三角形の山形として膨張する電池セルの押圧力に対する変形を大きく、アーチ状の山形として膨張する電池セルの押圧力に対する変形量を小さくできる。
 以上の電源装置100は、好ましくは全てのセパレータ2を、断熱シート5の両面に弾性層6を積層する構造とするが、必ずしも全てのセパレータ2を、断熱シート5の両面に弾性層6を積層する構造とする必要はない。セパレータは、図示しないが、断熱シートの片面に弾性層を積層することもできる。また、電源装置は、全てのセパレータを断熱シートと弾性層の積層構造とする必要はなく、断熱シートのみのセパレータと、断熱シートと弾性層の積層構造のセパレータとを混在して設けることもできる。
 弾性層6と断熱シート5は、接着層や粘着層を介して、あるいは二色成型を用いて接合して定位置に積層される。セパレータ2と電池セル1も接着層剤や粘着層を介して接合されて定位置に配置される。ただ、セパレータは、電池セルを嵌合構造で定位置に配置する電池ホルダー(図示せず)の定位置に配置することもできる。
 以上の電源装置100は、電池セル1を充電容量を6Ah~80Ahとする角形電池セルとし、セパレータ2の断熱シート5を、繊維シートにシリカエアロゲルを充填している厚さが1mmである「パナソニック製のNASBIS(登録商標)」とし、断熱シート5の両面に積層している弾性層6を弾性突出部6aの最大厚さが2mmのシリコンゴムとして、特定の電池セル1の内圧上昇による膨張を無理なく吸収できる。
 以上の電源装置は、電動車両を走行させるモータに電力を供給する車両用の電源として利用できる。電源装置を搭載する電動車両としては、エンジンとモータの両方で走行するハイブリッド自動車やプラグインハイブリッド自動車、あるいはモータのみで走行する電気自動車等の電動車両が利用でき、これらの車両の電源として使用される。なお、車両を駆動する電力を得るために、上述した電源装置を直列や並列に多数接続して、さらに必要な制御回路を付加した大容量、高出力の電源装置100を構築した例として説明する。
(ハイブリッド車用電源装置)
 図15は、エンジンとモータの両方で走行するハイブリッド自動車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両HVは、車両本体91と、この車両本体91を走行させるエンジン96及び走行用のモータ93と、これらのエンジン96及び走行用のモータ93で駆動される車輪97と、モータ93に電力を供給する電源装置100と、電源装置100の電池を充電する発電機94とを備えている。電源装置100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。車両HVは、電源装置100の電池を充放電しながらモータ93とエンジン96の両方で走行する。モータ93は、エンジン効率の悪い領域、例えば加速時や低速走行時に駆動されて車両を走行させる。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、エンジン96で駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、電源装置100の電池を充電する。なお、車両HVは、図15に示すように、電源装置100を充電するための充電プラグ98を備えてもよい。この充電プラグ98を外部電源と接続することで、電源装置100を充電できる。
(電気自動車用電源装置)
 また、図16は、モータのみで走行する電気自動車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両EVは、車両本体91と、この車両本体91を走行させる走行用のモータ93と、このモータ93で駆動される車輪97と、このモータ93に電力を供給する電源装置100と、この電源装置100の電池を充電する発電機94とを備えている。電源装置100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、車両EVを回生制動する時のエネルギーで駆動されて、電源装置100の電池を充電する。また車両EVは充電プラグ98を備えており、この充電プラグ98を外部電源と接続して電源装置100を充電できる。
(蓄電装置用の電源装置)
 さらに、本発明は、電源装置の用途を、車両を走行させるモータの電源には特定しない。実施形態に係る電源装置は、太陽光発電や風力発電等で発電された電力で電池を充電して蓄電する蓄電装置の電源として使用することもできる。図17は、電源装置100の電池を太陽電池82で充電して蓄電する蓄電装置を示す。
 図17に示す蓄電装置は、家屋や工場等の建物81の屋根や屋上等に配置された太陽電池82で発電される電力で電源装置100の電池を充電する。この蓄電装置は、太陽電池82を充電用電源として充電回路83で電源装置100の電池を充電した後、DC/ACインバータ85を介して負荷86に電力を供給する。このため、この蓄電装置は、充電モードと放電モードを備えている。図に示す蓄電装置は、DC/ACインバータ85と充電回路83を、それぞれ放電スイッチ87と充電スイッチ84を介して電源装置100と接続している。放電スイッチ87と充電スイッチ84のON/OFFは、蓄電装置の電源コントローラ88によって切り替えられる。充電モードにおいては、電源コントローラ88は充電スイッチ84をONに、放電スイッチ87をOFFに切り替えて、充電回路83から電源装置100への充電を許可する。また、充電が完了し満充電になると、あるいは所定値以上の容量が充電された状態で、電源コントローラ88は充電スイッチ84をOFFに、放電スイッチ87をONにして放電モードに切り替え、電源装置100から負荷86への放電を許可する。また、必要に応じて、充電スイッチ84をONに、放電スイッチ87をONにして、負荷86への電力供給と、電源装置100への充電を同時に行うこともできる。
 さらに、電源装置は、図示しないが、夜間の深夜電力を利用して電池を充電して蓄電する蓄電装置の電源として使用することもできる。深夜電力で充電される電源装置は、発電所の余剰電力である深夜電力で充電して、電力負荷の大きくなる昼間に電力を出力して、昼間のピーク電力を小さく制限することができる。さらに、電源装置は、太陽電池の出力と深夜電力の両方で充電する電源としても使用できる。この電源装置は、太陽電池で発電される電力と深夜電力の両方を有効に利用して、天候や消費電力を考慮しながら効率よく蓄電できる。
 以上のような蓄電装置は、コンピュータサーバのラックに搭載可能なバックアップ電源装置、携帯電話等の無線基地局用のバックアップ電源装置、家庭内用または工場用の蓄電用電源、街路灯の電源等、太陽電池と組み合わせた蓄電装置、信号機や道路用の交通表示器などのバックアップ電源用などの用途に好適に利用できる。
 本発明に係る電源装置は、ハイブリッド自動車、燃料電池自動車、電気自動車、電動オートバイ等の電動車両を駆動するモータの電源用等に使用される大電流用の電源として好適に利用できる。例えばEV走行モードとHEV走行モードとを切り替え可能なプラグイン式ハイブリッド電気自動車やハイブリッド式電気自動車、電気自動車等の電源装置が挙げられる。またコンピュータサーバのラックに搭載可能なバックアップ電源装置、携帯電話等の無線基地局用のバックアップ電源装置、家庭内用、工場用の蓄電用電源、街路灯の電源等、太陽電池と組み合わせた蓄電装置、信号機等のバックアップ電源用等の用途にも適宜利用できる。
 100…電源装置、1…電池セル、2…セパレータ、3…エンドプレート、4…バインドバー、5…断熱シート、6…弾性層、6a…弾性突出部、6x…当たり部、7…変形スペース、10…電池ブロック、11…電池ケース、12…封口板、13…電極端子、14…安全弁、15…開口部、81…建物、82…太陽電池、83…充電回路、84…充電スイッチ、85…DC/ACインバータ、86…負荷、87…放電スイッチ、88…電源コントローラ、91…車両本体、93…モータ、94…発電機、95…DC/ACインバータ、96…エンジン、97…車輪、98…充電プラグ、HV、EV…車両

Claims (12)

  1.  複数の電池セルをセパレータを挟んで厚さ方向に積層してなる電池ブロックと、
     前記電池ブロックの両端面に配置してなる一対のエンドプレートと、
     前記一対のエンドプレートに連結されて、前記エンドプレートを介して前記電池ブロックを加圧状態に固定してなるバインドバーとを備える電源装置であって、
     前記セパレータが、
      断熱シートと、
      前記断熱シートの表面に積層してなる弾性層を備え、
     前記弾性層が、
      前記電池セルのケース表面に部分的に密着して、前記電池セルの膨張で変形する弾性突出部を有し、
     前記電池セルと前記セパレータの間に前記電池セルに押圧されて前記弾性突出部が押圧方向と直行する外周方向に移動する変形スペースを有することを特徴とする電源装置。
  2.  請求項1に記載される電源装置であって、
     前記断熱シートが、無機粉末と繊維強化材とのハイブリッド素材であることを特徴とする電源装置。
  3.  請求項2に記載される電源装置であって、
     前記無機粉末がシリカエアロゲルであることを特徴とする電源装置。
  4.  請求項1ないし3いずれかに記載される電源装置であって、
     前記弾性層が、中央部が突出して前記電池セルに密着してなる弾性突出部を有することを特徴とする電源装置。
  5.  請求項4に記載される電源装置であって、
     前記弾性層が複数の前記弾性突出部を有することを特徴とする電源装置。
  6.  請求項5に記載される電源装置であって、
     隣接する前記弾性突出部の間に設けてなる空隙を前記変形スペースとしてなることを特徴とする電源装置。
  7.  請求項1ないし6いずれかに記載される電源装置であって、
     前記セパレータが、
      断熱シートの両面に前記弾性層を積層してなることを特徴とする電源装置。
  8.  請求項1ないし7のいずれかに記載する電源装置であって、
     前記弾性突出部が前記電池セルのケース表面に接合されてなることを特徴とする電源装置。
  9.  請求項1ないし8のいずれかに記載する電源装置であって、
     前記弾性層が合成ゴム、熱可塑性エラストマー、発泡ウレタンから選ばれる少なくとも一つであることを特徴とする電源装置。
  10.  請求項1ないし9のいずれかに記載する電源装置であって、
     非圧縮状態における前記弾性層の厚さが、0.2mm以上であって3mm以下であることを特徴とする電源装置。
  11.  請求項1ないし10のいずれかに記載の電源装置を備える電動車両であって、
     前記電源装置と、
     該電源装置から電力供給される走行用のモータと、
     前記電源装置及び前記モータを搭載してなる車両本体と、
     前記モータで駆動されて前記車両本体を走行させる車輪とを備えることを特徴とする電動車両。
  12.  請求項1ないし10のいずれかに記載の電源装置を備える蓄電装置であって、
     前記電源装置と、
     該電源装置への充放電を制御する電源コントローラとを備え、
     前記電源コントローラでもって、外部からの電力により前記二次電池セルへの充電を可能とすると共に、該二次電池セルに対し充電を行うよう制御することを特徴とする蓄電装置。
PCT/JP2020/023444 2019-06-28 2020-06-15 電源装置とこの電源装置を備える電動車両及び蓄電装置 WO2020262080A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20833165.2A EP3993139A4 (en) 2019-06-28 2020-06-15 POWER SUPPLY DEVICE, VEHICLE EQUIPPED WITH POWER SUPPLY DEVICE AND ENERGY STORAGE DEVICE
US17/619,989 US20220359945A1 (en) 2019-06-28 2020-06-15 Power supply device, electric vehicle equipped with said power supply device, and power storage device
JP2021528225A JPWO2020262080A1 (ja) 2019-06-28 2020-06-15
CN202080033395.9A CN113906624A (zh) 2019-06-28 2020-06-15 电源装置和具有该电源装置的电动车辆以及蓄电装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019122220 2019-06-28
JP2019-122220 2019-06-28

Publications (1)

Publication Number Publication Date
WO2020262080A1 true WO2020262080A1 (ja) 2020-12-30

Family

ID=74061916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023444 WO2020262080A1 (ja) 2019-06-28 2020-06-15 電源装置とこの電源装置を備える電動車両及び蓄電装置

Country Status (5)

Country Link
US (1) US20220359945A1 (ja)
EP (1) EP3993139A4 (ja)
JP (1) JPWO2020262080A1 (ja)
CN (1) CN113906624A (ja)
WO (1) WO2020262080A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113178642A (zh) * 2021-03-03 2021-07-27 安徽力普拉斯电源技术有限公司 耐冻式动力电池
CN114335866A (zh) * 2021-12-22 2022-04-12 重庆长安新能源汽车科技有限公司 阻隔热失控蔓延的电池模组
JP2022182616A (ja) * 2021-05-28 2022-12-08 プライムプラネットエナジー&ソリューションズ株式会社 組電池用スペーサーおよび該組電池用スペーサーを備えた組電池
WO2023000859A1 (zh) * 2021-07-21 2023-01-26 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置
DE102022106343A1 (de) 2022-03-18 2023-09-21 Audi Aktiengesellschaft Energiespeicheranordnung für ein Kraftfahrzeug und Verfahren zum Herstellen einer Energiespeicheranordnung
EP4231423A4 (en) * 2021-04-05 2024-05-22 LG Energy Solution, Ltd. BATTERY MODULE COMPRISING A COMPRESSION CUSHION TO IMPROVE INSULATION PROPERTIES AND ASSEMBLY SUITABILITY, BATTERY PACK COMPRISING SAME, AND VEHICLE

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4131596A4 (en) * 2020-03-31 2024-03-20 SANYO Electric Co., Ltd. POWER SUPPLY DEVICE, ELECTRIC VEHICLE EQUIPPED WITH POWER SUPPLY DEVICE, AND ENERGY STORAGE DEVICE
DE102021132608A1 (de) 2021-12-10 2023-06-15 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Batteriemodul und Batteriesystem Batteriemodul und Batteriesystem mit durch hitzebeständige Trennplatte getrennten Batteriezellen
CN117013187A (zh) * 2022-04-29 2023-11-07 宁德时代新能源科技股份有限公司 电池和用电设备
CN116157948A (zh) * 2022-06-27 2023-05-23 宁德时代新能源科技股份有限公司 热管理装置、电池及用电装置
CN115051079B (zh) * 2022-08-15 2022-11-29 江苏时代新能源科技有限公司 加热装置、电池以及用电装置
FR3141566A1 (fr) * 2022-10-27 2024-05-03 Keey Aerogel Séparateur isolant pour batterie électrique
FR3143875A1 (fr) * 2022-12-19 2024-06-21 Renault S.A.S Module de batteries d’accumulateurs, procédé et outil de fabrication de ce module
CN115832565B (zh) * 2022-12-28 2024-01-26 厦门海辰储能科技股份有限公司 电池模组及电池包
CN115954585B (zh) * 2023-03-15 2023-06-06 湖北祥源高新科技有限公司 一种多孔发泡材料及其制备方法、电池模组和汽车电池包

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023302A (ja) 2009-07-17 2011-02-03 Sanyo Electric Co Ltd 組電池及びこれを備える車両並びに組電池用のバインドバー
CN103325977A (zh) * 2012-03-23 2013-09-25 三星Sdi株式会社 电池模块
JP2015220117A (ja) 2014-05-19 2015-12-07 本田技研工業株式会社 蓄電モジュール
CN205657108U (zh) * 2016-04-11 2016-10-19 蔚来汽车有限公司 电池组和用于电池组的隔膜
US20160308186A1 (en) * 2015-04-17 2016-10-20 Samsung Sdi Co., Ltd. Battery module
JP2017045508A (ja) 2015-08-24 2017-03-02 パナソニックIpマネジメント株式会社 組電池
CN206059484U (zh) * 2016-10-14 2017-03-29 宁德时代新能源科技股份有限公司 电池模组
WO2018061894A1 (ja) * 2016-09-27 2018-04-05 パナソニックIpマネジメント株式会社 電池、電池モジュール及びセパレータの製造方法
WO2018207608A1 (ja) * 2017-05-12 2018-11-15 三洋電機株式会社 電源装置及びこれを備える車両、蓄電装置並びに電源装置用セパレータ
JP2018204708A (ja) 2017-06-06 2018-12-27 パナソニックIpマネジメント株式会社 断熱材とそれを用いた発熱ユニット、および、電池ユニット
WO2019042698A1 (de) 2017-08-29 2019-03-07 Carl Freudenberg Kg Energiespeichersystem
WO2019123903A1 (ja) 2017-12-19 2019-06-27 三洋電機株式会社 電源装置と電源装置用のセパレータ
EP3627030A1 (en) 2017-05-15 2020-03-25 Panasonic Intellectual Property Management Co., Ltd. Heat-insulating material and heat-insulating structure employing same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4508221B2 (ja) * 2007-08-27 2010-07-21 豊田合成株式会社 組電池装置
US8865331B2 (en) * 2010-06-16 2014-10-21 Toyota Jidosha Kabushiki Kaisha Secondary battery assembly
JP5966314B2 (ja) * 2011-10-28 2016-08-10 三洋電機株式会社 電源装置
JP5429381B2 (ja) * 2011-12-27 2014-02-26 トヨタ自動車株式会社 二次電池アセンブリ
CN105229819A (zh) * 2013-05-07 2016-01-06 波士顿电力公司 避免电池组中单元至单元的热失控传导的装置
JP6424426B2 (ja) * 2013-12-26 2018-11-21 三洋電機株式会社 組電池
WO2018110055A1 (ja) * 2016-12-12 2018-06-21 パナソニックIpマネジメント株式会社 断熱シートおよびその製造方法およびこれを用いた二次電池
JP7037720B2 (ja) * 2017-11-21 2022-03-17 トヨタ自動車株式会社 組電池と、組電池に用いられる単電池の製造方法
WO2020194938A1 (ja) * 2019-03-27 2020-10-01 三洋電機株式会社 電源装置と電動車両

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023302A (ja) 2009-07-17 2011-02-03 Sanyo Electric Co Ltd 組電池及びこれを備える車両並びに組電池用のバインドバー
CN103325977A (zh) * 2012-03-23 2013-09-25 三星Sdi株式会社 电池模块
JP2015220117A (ja) 2014-05-19 2015-12-07 本田技研工業株式会社 蓄電モジュール
US20160308186A1 (en) * 2015-04-17 2016-10-20 Samsung Sdi Co., Ltd. Battery module
JP2017045508A (ja) 2015-08-24 2017-03-02 パナソニックIpマネジメント株式会社 組電池
CN205657108U (zh) * 2016-04-11 2016-10-19 蔚来汽车有限公司 电池组和用于电池组的隔膜
WO2018061894A1 (ja) * 2016-09-27 2018-04-05 パナソニックIpマネジメント株式会社 電池、電池モジュール及びセパレータの製造方法
CN206059484U (zh) * 2016-10-14 2017-03-29 宁德时代新能源科技股份有限公司 电池模组
WO2018207608A1 (ja) * 2017-05-12 2018-11-15 三洋電機株式会社 電源装置及びこれを備える車両、蓄電装置並びに電源装置用セパレータ
EP3627030A1 (en) 2017-05-15 2020-03-25 Panasonic Intellectual Property Management Co., Ltd. Heat-insulating material and heat-insulating structure employing same
JP2018204708A (ja) 2017-06-06 2018-12-27 パナソニックIpマネジメント株式会社 断熱材とそれを用いた発熱ユニット、および、電池ユニット
WO2019042698A1 (de) 2017-08-29 2019-03-07 Carl Freudenberg Kg Energiespeichersystem
WO2019123903A1 (ja) 2017-12-19 2019-06-27 三洋電機株式会社 電源装置と電源装置用のセパレータ

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113178642A (zh) * 2021-03-03 2021-07-27 安徽力普拉斯电源技术有限公司 耐冻式动力电池
CN113178642B (zh) * 2021-03-03 2022-07-26 安徽力普拉斯电源技术有限公司 耐冻式动力电池
EP4231423A4 (en) * 2021-04-05 2024-05-22 LG Energy Solution, Ltd. BATTERY MODULE COMPRISING A COMPRESSION CUSHION TO IMPROVE INSULATION PROPERTIES AND ASSEMBLY SUITABILITY, BATTERY PACK COMPRISING SAME, AND VEHICLE
JP2022182616A (ja) * 2021-05-28 2022-12-08 プライムプラネットエナジー&ソリューションズ株式会社 組電池用スペーサーおよび該組電池用スペーサーを備えた組電池
JP7361069B2 (ja) 2021-05-28 2023-10-13 プライムプラネットエナジー&ソリューションズ株式会社 組電池用スペーサーおよび該組電池用スペーサーを備えた組電池
WO2023000859A1 (zh) * 2021-07-21 2023-01-26 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置
CN114335866A (zh) * 2021-12-22 2022-04-12 重庆长安新能源汽车科技有限公司 阻隔热失控蔓延的电池模组
DE102022106343A1 (de) 2022-03-18 2023-09-21 Audi Aktiengesellschaft Energiespeicheranordnung für ein Kraftfahrzeug und Verfahren zum Herstellen einer Energiespeicheranordnung

Also Published As

Publication number Publication date
US20220359945A1 (en) 2022-11-10
EP3993139A1 (en) 2022-05-04
JPWO2020262080A1 (ja) 2020-12-30
EP3993139A4 (en) 2022-05-25
CN113906624A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
WO2020262080A1 (ja) 電源装置とこの電源装置を備える電動車両及び蓄電装置
JP7491903B2 (ja) 電源装置と電動車両
WO2020262081A1 (ja) 電源装置とこの電源装置を備える電動車両及び蓄電装置
WO2019155713A1 (ja) 電源装置及びこの電源装置を備える電動車両及び蓄電装置
WO2020261729A1 (ja) 電源装置とこの電源装置を備える電動車両及び蓄電装置
JP7422739B2 (ja) 電源装置と電動車両
WO2020262079A1 (ja) 電源装置とこの電源装置を備える電動車両及び蓄電装置
JP2021061087A (ja) 電源装置及びこの電源装置を備える電動車両及び蓄電装置
WO2021199545A1 (ja) 電源装置とこの電源装置を備える電動車両及び蓄電装置
WO2020262085A1 (ja) 電源装置とこの電源装置を備える電動車両及び蓄電装置
JP7387223B2 (ja) 電源装置とこの電源装置を備える電動車両及び蓄電装置
WO2021199492A1 (ja) 電源装置とこの電源装置を備える電動車両及び蓄電装置
WO2021199546A1 (ja) 電源装置とこの電源装置を備える電動車両及び蓄電装置
WO2021199547A1 (ja) 電源装置とこの電源装置を備える電動車両及び蓄電装置
WO2020261727A1 (ja) 電源装置とこの電源装置を備える電動車両及び蓄電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20833165

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021528225

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020833165

Country of ref document: EP