WO2020261729A1 - 電源装置とこの電源装置を備える電動車両及び蓄電装置 - Google Patents
電源装置とこの電源装置を備える電動車両及び蓄電装置 Download PDFInfo
- Publication number
- WO2020261729A1 WO2020261729A1 PCT/JP2020/016992 JP2020016992W WO2020261729A1 WO 2020261729 A1 WO2020261729 A1 WO 2020261729A1 JP 2020016992 W JP2020016992 W JP 2020016992W WO 2020261729 A1 WO2020261729 A1 WO 2020261729A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power supply
- supply device
- sheet
- separator
- battery
- Prior art date
Links
- 238000003860 storage Methods 0.000 title claims description 20
- 230000002093 peripheral effect Effects 0.000 claims abstract description 32
- 238000007789 sealing Methods 0.000 claims abstract description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 50
- 239000000463 material Substances 0.000 claims description 47
- 239000000377 silicon dioxide Substances 0.000 claims description 25
- 239000000835 fiber Substances 0.000 claims description 24
- 238000010030 laminating Methods 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- 229920003051 synthetic elastomer Polymers 0.000 claims description 5
- 239000005061 synthetic rubber Substances 0.000 claims description 5
- 229920002430 Fibre-reinforced plastic Polymers 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims description 3
- 239000011151 fibre-reinforced plastic Substances 0.000 claims description 3
- 239000011230 binding agent Substances 0.000 abstract 1
- 229920001971 elastomer Polymers 0.000 description 12
- 239000005060 rubber Substances 0.000 description 12
- 238000012856 packing Methods 0.000 description 7
- 230000006698 induction Effects 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000012779 reinforcing material Substances 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000010397 one-hybrid screening Methods 0.000 description 3
- -1 polyethylene terephthalate Polymers 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 229920002725 thermoplastic elastomer Polymers 0.000 description 3
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 229920006311 Urethane elastomer Polymers 0.000 description 2
- 229920000800 acrylic rubber Polymers 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 229920001973 fluoroelastomer Polymers 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 229920002681 hypalon Polymers 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 239000011240 wet gel Substances 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004433 Thermoplastic polyurethane Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920005558 epichlorohydrin rubber Polymers 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 229920001821 foam rubber Polymers 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 229920003049 isoprene rubber Polymers 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920003225 polyurethane elastomer Polymers 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229920002397 thermoplastic olefin Polymers 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
- H01M50/207—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
- H01M50/209—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/249—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/262—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
- H01M50/264—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/289—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
- H01M50/293—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/44—Fibrous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/454—Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/441—Methods for charging or discharging for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/10—Batteries in stationary systems, e.g. emergency power source in plant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a power supply device in which a large number of battery cells are stacked, and an electric vehicle and a power storage device provided with this power supply device.
- a power supply device in which a large number of battery cells are stacked is a power supply that is mounted on an electric vehicle and supplies power to a motor that runs the vehicle, a power supply that is charged with natural energy such as solar cells or midnight power, and a backup power supply for power outages. Suitable for.
- a separator is sandwiched between the stacked battery cells. The separator insulates the heat conduction between the battery cells and suppresses the induction of thermal runaway of the battery cells. Thermal runaway of a battery cell occurs due to an internal short circuit caused by a short circuit between the positive electrode and the negative electrode inside, or an incorrect handling. When a battery cell undergoes thermal runaway, a large amount of heat is generated.
- each battery cell stacked via the separator is placed in a fixed position and misaligned. It is also important to prevent.
- expansion and contraction of the battery cell, as well as vibration and impact also cause misalignment. Relative misalignment of the battery cell in use may cause damage to the connection with the bus bar of the metal plate fixed to the electrode terminal of the adjacent battery cell, damage to the bus bar itself, or malfunction due to vibration. It becomes a harmful effect of.
- the power supply device fixes the stacked battery cells in a pressurized state.
- a pair of end plates are arranged on both end surfaces of a battery block in which a large number of battery cells are stacked, and the pair of end plates are fixed by bind bars.
- the bind bar and the end plate hold the battery cell in a pressurized state with a considerably strong pressure to prevent malfunction due to relative movement and vibration of the battery cell.
- the end plate is pressed with a strong force of several tons and fixed with a bind bar.
- the end plate when the internal pressure rises and the battery cell expands, the end plate is pressed to increase the internal stress of the bind bar and the end plate. Since the bind bar is fixed to the end plate in a state where a strong tensile force acts and fixes the battery cell in a pressurized state, a stronger tensile force acts when the battery cell expands due to an increase in internal pressure. If the bind bar is extended in this state, the battery cells will be displaced, so that it is necessary to use a tough metal plate or the like that can withstand an extremely strong tensile force for the bind bar, which makes the bind bar thick and heavy.
- the present invention has been developed for the purpose of eliminating the above-mentioned drawbacks, and one of the objects of the present invention is to prevent damage to the opening of the battery cell because the expansion of the battery cell is not absorbed by the separator. It is to provide the technology that can be done.
- the power supply device includes a battery block 10 in which a plurality of battery cells 1 are laminated in the thickness direction with a separator 2 interposed therebetween, and a pair of end plates arranged on both end surfaces of the battery block 10. 3 and a bind bar 4 which is connected to a pair of end plates 3 and fixes the battery block 10 in a pressurized state via the end plates 3.
- the sealing plate 12 is airtightly fixed to the opening edge of the battery case 11 whose bottom is closed.
- the separator 2 has a laminated plane 2A formed by laminating the battery case 11 on the facing plane 11A in a surface contact state.
- the laminated plane 2A has elasticity to deform and absorb the expansion due to the increase in the internal pressure of the battery cell 1, and is the outer peripheral edge portion of the laminated plane 2A and is located inside the Young's modulus of the upper edge portion 2a and the outer peripheral edge portion. Unlike the Young's modulus of the internal region 2b, the Young's modulus of the upper edge portion 2a is higher than that of the internal region 2b.
- the "upper edge” of the separator is specified in the figure.
- the battery cells are stacked in such a posture that the sealing plate is arranged on the top, so that the "upper edge portion" of the separator is the outer peripheral edge along the sealing plate of the battery cell. Therefore, in the present specification, the upper edge portion of the separator means the outer peripheral edge along the sealing plate of the battery cell.
- the electric vehicle includes the power supply device 100, a traveling motor 93 to which power is supplied from the power supply device 100, a vehicle body 91 including the power supply device 100 and the motor 93, and a motor 93. It is equipped with wheels 97 that are driven by the vehicle and run the vehicle body 91.
- the power storage device includes the power supply device 100 and a power supply controller 88 that controls charging / discharging to the power supply device 100, and the power supply controller 88 is used to power the secondary battery cell 1 from the outside. It is possible to charge the battery cell 1 and the secondary battery cell 1 is controlled to be charged.
- FIG. 7 is a sectional view taken along line VIII-VIII of the separator shown in FIG. It is a vertical sectional view which shows another example of a separator. It is a vertical sectional view which shows another example of a separator. It is a vertical sectional view which shows another example of a separator.
- the power supply device includes a battery block in which a plurality of battery cells are stacked in the thickness direction with a separator sandwiched between them, a pair of end plates arranged on both end surfaces of the battery block, and a pair of end plates. It is provided with a bind bar that is connected to a pair of end plates and fixes the battery block in a pressurized state via the end plates.
- the battery cell airtightly fixes the sealing plate to the opening edge of the battery case that closes the bottom.
- the separator has elasticity to absorb expansion due to an increase in the internal pressure of the battery cell by deforming the laminated plane formed by laminating in a surface contact state on the facing plane of the battery case, and is an outer peripheral edge portion of the laminated plane and an upper edge portion.
- the Young's modulus of the above edge is different from the Young's modulus of the inner region located inside the outer peripheral edge, and the Young's modulus of the upper edge is higher than that of the inner region.
- the above power supply device is the outer peripheral edge portion of the laminated plane of the separator, and has high rigidity by increasing the Young's modulus of the upper edge portion along the outer peripheral edge of the sealing plate of the battery cell to increase the Young's modulus of the inner region of the laminated plane. Is made smaller than the upper edge portion to have low rigidity. Therefore, in a state where the internal pressure of the battery cell rises and expands, the expansion of the internal region of the laminated plane has low rigidity while suppressing the deformation of the upper edge portion.
- the separator is thinly deformed and absorbed.
- the upper edge of the laminated plane of the separator is located in the region along the outer peripheral edge of the sealing plate of the battery cell.
- the sealing plate is airtightly fixed to the tubular opening that closes the bottom by a method such as laser welding.
- a method such as laser welding.
- the internal region of the laminated plane can absorb deformation even if the central portion of the battery cell is curved so as to protrude, even if the internal region of the battery cell is deformed in a state of rising and expanding, fatigue damage is extremely small. .. Therefore, the above power supply device has a feature that the separator can efficiently absorb the expansion of the battery cell due to the increase in internal pressure, and can prevent damage due to fatigue of the upper edge portion of the battery cell.
- the power supply device absorbs the expansion of the battery cell by the separator, the stress acting on the end plate and the bind bar increases in the state where the internal pressure rises and the battery cell expands. Can be suppressed and the maximum stress can be reduced. This is effective in making the end plate and the bind bar thinner and lighter.
- the above power supply device absorbs the expansion of the battery cells by the separator, it is possible to suppress the deviation of the relative positions of the respective battery cells in the state where the internal pressure of the battery cells rises and expands.
- the relative misalignment of adjacent battery cells causes damage to the bus bar of the metal plate fixed to the electrode terminals of the battery cells and the electrode terminals.
- a power supply device capable of preventing the relative misalignment of the battery cell in which the separator expands due to an increase in internal pressure can prevent a failure of the connection portion between the electrode terminal and the bus bar due to the expansion of the battery cell.
- the Young's modulus of the upper edge portion is increased and the Young's modulus of the internal region is reduced without making the entire surface of the separator the same Young's modulus, so that the battery cell has an internal region of the laminated plane. Even if it expands with, the pressure rise between the battery cell and the separator is suppressed.
- the pressing force acting on the entire surface of the stacking plane acts on the end plate, but when the battery cells are inflated, the power supply device that can reduce the pressure in the internal region of the stacking plane is a battery.
- the pressure exerted by the battery block on the end plate can be reduced to reduce the maximum stress acting on the end plate and busbar. Further, the pressing force on the entire surface where the battery cell stresses the separator is also reduced, and there is also a feature that the battery cell can be suppressed from being displaced due to an increase in the pressing force.
- the separator is a hybrid material of an inorganic powder and a fiber reinforced material. Further, in the power supply device of the third embodiment of the present invention, the inorganic powder is silica airgel.
- the above separator is sandwiched between adjacent battery cells to insulate adjacent battery cells.
- the hybrid material suppresses thermal runaway from being induced by a battery cell that has been heated to a high temperature by heating an adjacent battery cell.
- the separator also functions as an insulating sheet that insulates the stacked battery cells.
- the power supply device uses a separator as a single hybrid material. Further, in the power supply device according to the fifth embodiment of the present invention, the hybrid material has a higher packing density of silica airgel at the upper edge than that of the internal region.
- the separator comprises a high-rigidity sheet and a low-rigidity sheet having a Young's modulus smaller than that of the high-rigidity sheet, and both the high-rigidity sheet and the low-rigidity sheet are made of silica airgel. It is a hybrid material with a fiber reinforced material, and a high-rigidity sheet is arranged at the upper edge and a low-rigidity sheet is arranged in an internal region.
- the power supply device has a higher packing density of silica airgel in the high-rigidity sheet than in the low-rigidity sheet.
- the low-rigidity sheet is a laminated sheet of a hybrid material and an elastic sheet.
- the elastic sheet is a rubber-like elastic sheet.
- the rubber-like elastic sheet is a synthetic rubber sheet.
- the thickness of the separator is 0.5 mm or more and 3 mm or less.
- the power supply device 100 shown in the perspective view of FIG. 1, the vertical sectional view of FIG. 2, and the horizontal sectional view of FIG. 3 includes a battery block 10 in which a plurality of battery cells 1 are laminated in the thickness direction with a separator 2 interposed therebetween.
- the battery cell 1 of the battery block 10 is a square battery cell having a quadrangular outer shape, and the sealing plate 12 is laser-welded to the opening of the battery case 11 whose bottom is closed and airtightly fixed. The inside is sealed.
- the sealing plate 12 is provided with a pair of positive and negative electrode terminals 13 projecting from both ends.
- An opening 15 of the safety valve 14 is provided between the electrode terminals 13. The safety valve 14 opens when the internal pressure of the battery cell 1 rises above a predetermined value to release the gas inside. The safety valve 14 prevents the internal pressure of the battery cell 1 from rising.
- the battery cell 1 is a lithium ion secondary battery.
- the power supply device 100 in which the battery cell 1 is a lithium ion secondary battery has a feature that the charge capacity with respect to the capacity and weight can be increased.
- the battery cell 1 can be any other rechargeable battery such as a non-aqueous electrolyte secondary battery other than the lithium ion secondary battery.
- End plate 3 is a metal plate having an outer shape substantially equal to the outer shape of the battery cell 1 that is not deformed by being pressed by the battery block 10, and bind bars 4 are connected to both side edges.
- the bind bar 4 connects the battery cells 1 in which the end plates 3 are laminated in a pressurized state, and fixes the battery block 10 in the pressurized state at a predetermined pressure.
- the separator 2 is sandwiched between the stacked battery cells 1 and laminated in a surface contact state on the facing plane 11A of the battery case 11, absorbs the expansion due to the increase in the internal pressure of the battery cell 1, and further adjacent batteries.
- the cell 1 is insulated, and the heat conduction between the battery cells 1 is also insulated.
- a metal plate bus bar (not shown) is fixed to an electrode terminal 13 of an adjacent battery cell 1, and the battery cells 1 are connected in series or in parallel. Since a potential difference is generated in the battery case 11, the battery cells 1 connected in series are insulated by the separator 2 and laminated.
- the battery cells 1 connected in parallel do not generate a potential difference in the battery case 11, but are insulated and laminated by a separator 2 in order to prevent the induction of thermal runaway.
- the separator 2 is entirely made of a hybrid material 20 of an inorganic powder and a fiber reinforced material, or an elastic sheet is laminated on the hybrid material 20.
- the inorganic powder is preferably silica airgel.
- fine gaps of fibers are filled with fine silica airgel having low thermal conductivity.
- the silica airgel is supported and placed in the gaps of the fiber reinforced plastic.
- the hybrid material 20 is composed of a fiber sheet of a fiber reinforcing material and a silica airgel having a nano-sized porous structure, and is produced by impregnating fibers with a gel raw material of the silica airgel.
- the fibers After impregnating the fiber sheet with silica airgel, the fibers are laminated, the gel raw materials are reacted to form a wet gel, and the surface of the wet gel is hydrophobized and dried with hot air to produce the product.
- the fibers of the fiber sheet are polyethylene terephthalate (PET).
- PET polyethylene terephthalate
- inorganic fibers such as flame-retardant acrylic oxide fibers and glass wool can also be used.
- the fiber reinforcing material preferably has a fiber diameter of 0.1 to 30 ⁇ m.
- the fiber reinforcing material can improve the heat insulating properties of the hybrid material 20 by making the fiber diameter smaller than 30 ⁇ m and reducing the heat conduction by the fibers.
- Silica airgel is an inorganic fine particle composed of 90% to 98% of air, and has micropores between skeletons formed by clusters in which nano-order spheres are bonded, and has three-dimensional fine porosity. It has a structure.
- the hybrid material 20 of silica airgel and fiber reinforced plastic is thin and exhibits excellent heat insulating properties.
- the separator 2 made of the hybrid material 20 is set to a thickness capable of preventing the induction of thermal runaway of the battery cell 1 in consideration of the energy generated by the battery cell 1 due to thermal runaway.
- the energy generated by thermal runaway of the battery cell 1 increases as the charging capacity of the battery cell 1 increases. Therefore, the thickness of the separator 2 is set to an optimum value in consideration of the charging capacity of the battery cell 1.
- the thickness of the hybrid material 20 is 0.5 mm to 3 mm, and optimally about 1 mm to 2.5 mm.
- the present invention does not specify the thickness of the hybrid material 20 in the above range, and the thickness of the hybrid material 20 is determined by the thermal runaway characteristics of the fiber sheet and the silica airgel and the thermal runaway of the battery cell. The optimum value is set in consideration of the adiabatic characteristics required to prevent induction.
- the hybrid material 20 of the separator 2 is a sheet that is thinly deformed by being pressurized by the battery cell 1 that expands as the internal pressure rises.
- the separator 2 becomes thinner due to the pressure of the expanding battery cell 1, and when the expanded battery cell 1 is restored to its original state, the crushed state is restored to its original state, and the battery cell is restored to its original state. Absorbs the expansion and contraction of 1.
- the separator 2 made of one hybrid material 20 is not a hybrid material having elasticity that uniformly deforms the entire surface.
- the separator 2 of the hybrid material 20 has a Young's modulus different from that of the upper edge portion 2a sandwiched between the openings of the battery case 11 of the adjacent battery cell 1 and the internal region 2b of the laminated plane 2A of the battery cell 1.
- the Young's modulus of the upper edge portion 2a along the sealing plate 12 is made higher than the internal region 2b of the laminated plane 2A in order to suppress the deformation of the upper edge portion of the battery cell 1.
- the separator 2 has the upper edge portion 2a having a higher rigidity than the internal region 2b, and suppresses the deformation of the upper edge portion 2a less than the internal region 2b in a state where the internal pressure rises and the battery cell 1 expands.
- the perspective view of FIG. 4 shows the separator 2 having the upper edge portion 2a having high rigidity and the internal region 2b having low rigidity.
- a plurality of through holes 23 are provided in a high-rigidity sheet 21 having a high Young's modulus, and a low-rigidity sheet 22 having a low Young's modulus is arranged in the through holes 23.
- the outer shape of the low-rigidity sheet 22 arranged in the through hole 23 is made equal to the inner shape of the through hole 23 of the high-rigidity sheet 21.
- the high-rigidity sheet 21 and the low-rigidity sheet 22 are arranged without a gap, and the entire surface can have excellent heat insulating characteristics.
- the high-rigidity sheet 21 has a higher Young's modulus than the low-rigidity sheet 22 so that deformation of the upper edge portion 2a can be suppressed when the battery cell 1 in which the internal pressure rises is pressurized.
- the Young's modulus of the sheet 21 is, for example, 1.5 times or more, preferably 2 times or more that of the low-rigidity sheet 22.
- the separator 2 is provided with a through hole 23 in a region excluding the outer peripheral edge portion of the separator 2 in order to make the region provided with the through hole 23 a low rigidity region having a small Young's modulus. Since the low-rigidity sheet 22 is arranged in the through hole 23 provided in the region excluding the outer peripheral edge portion, the region excluding the outer peripheral edge portion of the separator 2 becomes a low-rigidity region having a small Young's modulus.
- the separator 2 of FIG. 4 has a plurality of through holes 23 in the region excluding the outer peripheral edge portion, that is, inside the outer peripheral edge portion, and has high rigidity between the adjacent through holes 23 and around the through holes 23.
- the sheet 21 is arranged.
- the Young's modulus of the internal region 2b can be adjusted by changing the area ratio in which the high-rigidity sheet 21 and the low-rigidity sheet 22 are arranged.
- the separator 2 can make the area of the low-rigidity sheet 22 larger than that of the high-rigidity sheet 21 to reduce the substantial Young's modulus of the region including the internal region 2b excluding the outer peripheral edge portion, and conversely, the area of the low-rigidity sheet 22.
- a plurality of through holes 23 are provided in the region excluding the outer peripheral edge portion, and the Young's modulus of the inner region 2b is lower than that of the outer peripheral edge portion including the upper edge portion 2a.
- the separator 2 in which the high-rigidity sheet 21 is provided with a through hole 23 and the low-rigidity sheet 22 is arranged therein can manufacture the high-rigidity sheet 21 and the low-rigidity sheet 22 separately, so that the high-rigidity sheet 21 and the low-rigidity sheet 22 can be manufactured separately.
- the high-rigidity sheet 21 and the low-rigidity sheet 22 can be efficiently mass-produced while significantly changing the Young's modulus of 22.
- the Separator 2 which is a hybrid material 20 of silica airgel and a fiber reinforcing material, can adjust Young's modulus by, for example, the packing density of silica airgel, the high-rigidity sheet 21 has a higher packing density of silica airgel than the low-rigidity sheet 22. Then, the Young's modulus can be increased.
- the low-rigidity sheet 22 is arranged in the through hole 23 of the high-rigidity sheet 21, the upper edge portion 2a has high rigidity, and the internal region 2b has low rigidity.
- the separator 2 is shown in FIG.
- the upper edge portion 2a of one hybrid material 20 can be made high-rigidity, and the internal region 2b can be made low-rigidity.
- the separator 2 that realizes this structure with the hybrid material 20 of the silica airgel and the fiber reinforced material can be realized by changing the packing density of the silica airgel at the upper edge portion 2a and the inner region 2b.
- the upper edge portion 2a has a high rigidity by increasing the packing density of silica airgel, and the inner region 2b has a low packing density of silica airgel to have low rigidity. Since the entire separator 2 is made of one hybrid material 20, it can be laminated between the battery cells 1 to uniformly insulate and insulate the entire surface of the laminated plane 11A.
- the low-rigidity sheet 22 in the internal region 2b is a laminated sheet of the hybrid material 20 and the elastic sheet 24.
- the elastic sheet 24 has a Young's modulus smaller than that of the high-rigidity sheet 21, and is easily deformed by being pressed by the expanding battery cell 1.
- a rubber-like elastic sheet 24A or a thermoplastic elastomer can be used as the elastic sheet 24, a rubber-like elastic sheet 24A or a thermoplastic elastomer can be used.
- the surface layers on both sides are used as the high-rigidity sheet 21 of the hybrid material 20, and the frame-shaped high-rigidity sheet 21 is laminated on the outer peripheral edge of the intermediate layer, and the inside of the frame-shaped high-rigidity sheet 21 is laminated.
- the elastic sheet 24 having the same thickness as the frame-shaped high-rigidity sheet 21 is laminated to have the same thickness as a whole.
- the elastic sheet 24 laminated on the high-rigidity sheet 21 is set to, for example, 0.1 mm or more and 1 mm or less, more preferably 0.2 mm or more and 0.5 mm or less, and is the internal region of the battery cell 1. Absorbs the expansion of 2b.
- the rubber-like elastic sheet 24A is preferably thinner than the hybrid material 20 and absorbs the expansion of the internal region 2b of the battery cell 1 to reduce the compressive stress.
- the outer peripheral edge portion including the upper edge portion 2a has a high rigidity
- the inner region 2b which is an inner region of the outer peripheral edge portion, has a low rigidity.
- the separator 2 in these figures is a central portion of the high-rigidity sheet 21 which is a hybrid material 20, and a through hole 23 is provided in a region excluding the outer peripheral edge portion.
- the elastic sheet 24 is arranged in the through hole 23. It has a low rigidity region.
- the outer shape of the elastic sheet 24 arranged in the through hole 23 is made equal to the inner shape of the through hole 23 of the high rigidity sheet 21, and the thickness of the high rigidity sheet 21 and the elastic sheet 24 is made substantially the same.
- the high-rigidity sheet 21 and the elastic sheet 24 are arranged without a gap.
- the outer peripheral edge portion including the upper edge portion 2a is made highly rigid, and the region inside the outer peripheral edge portion is made high.
- the internal region 2b is low rigidity, but in these separators 2, the internal region 2b is a laminated sheet of the hybrid material 20 and the elastic sheet 24.
- the separator 2 shown in the figure is a central portion of a high-rigidity sheet 21 which is a hybrid material 20, and has a recess 25 provided in an internal region 2b excluding an outer peripheral edge portion.
- An elastic sheet 24 is arranged in the recess 25.
- the low-rigidity sheet 22 is composed of a laminated sheet of a high-rigidity sheet 21 and an elastic sheet 24.
- a recess 25 is provided on one surface of the high-rigidity sheet 21, and an elastic sheet 24 is arranged in the recess 25 to form a low-rigidity sheet 22 having a two-layer structure.
- recesses 25 are provided on both sides of the high-rigidity sheet 21, and elastic sheets 24 are arranged in the recesses 25 to form a low-rigidity sheet 22 having a three-layer structure.
- the outer shape of the elastic sheet 24 arranged in the recess 25 is made equal to the inner shape of the recess 25 of the high-rigidity sheet 21, and the thickness of the elastic sheet 24 arranged in the recess 25 is adjusted.
- the high-rigidity sheet 21 and the elastic sheet 24 are arranged without gaps so as to be substantially equal to the depth of the recess 25.
- the upper edge portion 2a has a high rigidity, and the region other than the upper edge portion 2a and below the upper edge portion is defined. As the internal region 2b, this internal region 2b has low rigidity.
- a high-rigidity sheet 21 which is a hybrid material 20 is arranged on the upper edge portion 2a, and an internal region 2b below the upper edge portion 2a is a laminated sheet of the hybrid material 20 and the elastic sheet 24. ..
- a step recess 26 is provided by cutting a step shape below the upper edge portion, and the step recess 26 is elastic.
- the sheet 24 is arranged to form a low-rigidity sheet 22 having a two-layer structure.
- the surface on the opposite side is a smooth surface of the high-rigidity sheet 21 and is a surface that comes into contact with the corresponding battery cell.
- a step recess 26 is provided by cutting a step shape below the upper edge portion 2a, and the elastic sheet 24 is arranged in the step recess 25.
- the low-rigidity sheet 22 has a three-layer structure.
- the separator 2 having the above structure also has a structure in which the internal region 2b has low rigidity and can absorb deformation due to expansion of the opposing battery cell, while the upper edge 2a has high rigidity to suppress deformation of the upper edge of the battery cell. It has a structure.
- the elastic sheet 24 is a non-foamed rubber-like elastic body, foam rubber, or thermoplastic elastomer.
- the elastic sheet 24 has a shape and pressure at the boundary between the laminated region and the non-laminated region by extruding the rubber compressed in the laminated region into the non-laminated region due to the incompressibility that is compressed and the volume hardly changes. Mitigate changes in.
- a synthetic rubber sheet is suitable for the elastic sheet 24.
- Synthetic rubber sheets include isoprene rubber, styrene butadiene rubber, butadiene rubber, chloropron rubber, nitrile rubber, horiisobutylene rubber, ethylene propylene rubber, ethylene vinyl acetate copolymer rubber, chlorosulfonated polyethylene rubber, acrylic rubber, fluororubber, Any of epichlorohydrin rubber, urethane rubber, silicone rubber, thermoplastic olefin rubber, ethylenepropylene diene rubber, butyl rubber, and polyether rubber can be used alone or in combination of a plurality of synthetic rubber sheets.
- ethylene propylene rubber, ethylene vinyl acetate copolymer rubber, chlorosulfonated polyethylene rubber, acrylic rubber, fluororubber, and silicone rubber have excellent heat insulating properties, so it takes a long time to heat runaway and heat melt. And higher safety can be achieved.
- the rubber-like elastic sheet 6 is made of urethane rubber, it is particularly preferable to use thermoplastic polyurethane rubber or foamed polyurethane rubber.
- thermoplastic elastomer thermoplastic polyester, thermoplastic polyether and the like are suitable.
- the rubber-like elastic sheet 24A is not laminated on the entire surface of the high-rigidity sheet 21.
- the separator 2 absorbs the expansion of the internal region 2b of the battery cell 1 by laminating the rubber-like elastic sheet 24A in the region excluding the outer peripheral edge portion of the battery cell 1.
- the separator 2 can efficiently absorb the expansion of the battery cell 1 by laminating the rubber-like elastic sheet 24A over a wide area in the internal region 2b of the battery cell 1.
- the separator is made by laminating a high-rigidity frame-shaped rubber-like elastic sheet with a high Young's modulus instead of the rubber-like elastic sheet on the outer peripheral edge, and rubber having a low Young's modulus inside the frame-shaped rubber-like elastic sheet. It is also possible to stack elastic sheets.
- the highly rigid frame-shaped elastic sheet having a high Young's modulus polypropylene, polycarbonate, polybutylene terephthalate or the like can also be used as the resin having a high Young's modulus.
- the high-rigidity rubber-like elastic sheet has a higher Young's modulus than the low-rigidity rubber-like elastic sheet, and suppresses deformation of the upper edge of the battery cell.
- a sheet having a high Young's modulus that hardly deforms when the internal pressure of the battery cell rises is preferably used.
- a high-rigidity elastic sheet and a low-rigidity elastic sheet are combined to form a separator, there are a method of bonding using an adhesive, a tape, or the like, or a method of combining the two sheets by two-color molding.
- the separator is laminated at a fixed position on the battery cell via an adhesive layer or an adhesive layer.
- the separator 2 can also be arranged at a fixed position of a battery holder (not shown) in which the battery cell 1 is arranged at a fixed position in a fitting structure.
- the above power supply device 100 is a square battery cell having a charging capacity of 6Ah to 80Ah in the battery cell 1, and the hybrid material 20 of the separator 2 is a hybrid material of silica airgel and a fiber reinforcing material, "NASBIS made by Panasonic (NASBIS). As a registered trademark) ”, it is possible to forcibly cause a specific battery cell 1 to run away due to heat and prevent the adjacent battery cell 1 from being induced to run away from heat.
- the above power supply device can be used as a power source for a vehicle that supplies electric power to a motor that runs an electric vehicle.
- an electric vehicle equipped with a power supply device an electric vehicle such as a hybrid vehicle or a plug-in hybrid vehicle that runs on both an engine and a motor, or an electric vehicle that runs only on a motor can be used, and is used as a power source for these vehicles.
- a large number of the above-mentioned power supply devices are connected in series or in parallel, and a large-capacity, high-output power supply device 100 to which a necessary control circuit is added will be described as an example. ..
- FIG. 13 shows an example in which a power supply device is mounted on a hybrid vehicle that runs on both an engine and a motor.
- the vehicle HV equipped with the power supply device shown in this figure includes a vehicle body 91, an engine 96 for traveling the vehicle body 91, a motor 93 for traveling, and wheels driven by these engines 96 and a motor 93 for traveling. 97, a power supply device 100 for supplying electric power to the motor 93, and a generator 94 for charging the battery of the power supply device 100 are provided.
- the power supply device 100 is connected to the motor 93 and the generator 94 via the DC / AC inverter 95.
- the vehicle HV runs on both the motor 93 and the engine 96 while charging and discharging the battery of the power supply device 100.
- the motor 93 is driven to drive the vehicle in a region where the engine efficiency is low, for example, when accelerating or traveling at a low speed.
- the motor 93 is driven by being supplied with electric power from the power supply device 100.
- the generator 94 is driven by the engine 96 or by regenerative braking when braking the vehicle to charge the battery of the power supply device 100.
- the vehicle HV may be provided with a charging plug 98 for charging the power supply device 100. By connecting the charging plug 98 to an external power source, the power supply device 100 can be charged.
- FIG. 14 shows an example in which a power supply device is mounted on an electric vehicle traveling only by a motor.
- the vehicle EV equipped with the power supply device shown in this figure supplies electric power to the vehicle body 91, the motor 93 for traveling the vehicle body 91, the wheels 97 driven by the motor 93, and the motor 93.
- the power supply device 100 and the generator 94 for charging the battery of the power supply device 100 are provided.
- the power supply device 100 is connected to the motor 93 and the generator 94 via the DC / AC inverter 95.
- the motor 93 is driven by being supplied with electric power from the power supply device 100.
- the generator 94 is driven by the energy used for regenerative braking of the vehicle EV to charge the battery of the power supply device 100.
- the vehicle EV is provided with a charging plug 98, and the charging plug 98 can be connected to an external power source to charge the power supply device 100.
- the power supply device for power storage device
- the present invention does not specify the use of the power supply device as the power source of the motor for traveling the vehicle.
- the power supply device according to the embodiment can also be used as a power source for a power storage device that charges and stores a battery with electric power generated by solar power generation, wind power generation, or the like.
- FIG. 15 shows a power storage device in which the battery of the power supply device 100 is charged by the solar cell 82 to store electricity.
- the power storage device shown in FIG. 15 charges the battery of the power supply device 100 with the electric power generated by the solar cell 82 arranged on the roof or roof of a building 81 such as a house or factory.
- This power storage device uses the solar cell 82 as a power source for charging, charges the battery of the power supply device 100 with the charging circuit 83, and then supplies power to the load 86 via the DC / AC inverter 85. Therefore, this power storage device has a charge mode and a discharge mode.
- the DC / AC inverter 85 and the charging circuit 83 are connected to the power supply device 100 via the discharge switch 87 and the charging switch 84, respectively.
- the ON / OFF of the discharge switch 87 and the charge switch 84 is switched by the power controller 88 of the power storage device.
- the power controller 88 switches the charging switch 84 to ON and the discharge switch 87 to OFF to allow the charging circuit 83 to charge the power supply device 100.
- the power controller 88 turns off the charging switch 84 and turns on the discharge switch 87 to switch to the discharge mode, and the power supply device 100 Allows discharge from to load 86.
- the charge switch 84 can be turned on and the discharge switch 87 can be turned on to supply power to the load 86 and charge the power supply device 100 at the same time.
- the power supply device can also be used as a power source for a power storage device that charges and stores batteries using midnight power at night.
- a power supply device charged with midnight power can be charged with midnight power, which is surplus power of a power plant, and output power in the daytime when the power load is large, so that the peak power in the daytime can be limited to a small value.
- the power supply can also be used as a power source for charging with both solar cell output and midnight power. This power supply device can effectively utilize both the power generated by the solar cell and the midnight power, and can efficiently store electricity while considering the weather and power consumption.
- the above-mentioned power storage devices include backup power supply devices that can be mounted in computer server racks, backup power supply devices for wireless base stations such as mobile phones, power storage power supplies for homes or factories, power supplies for street lights, etc. It can be suitably used for power storage devices combined with solar cells, backup power sources for traffic lights and traffic indicators for roads, and the like.
- the power supply device can be suitably used as a power source for a large current used for a power source of a motor for driving an electric vehicle such as a hybrid vehicle, a fuel cell vehicle, an electric vehicle, or an electric motorcycle.
- a power supply device for a plug-in type hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle, or the like that can switch between an EV driving mode and a HEV driving mode can be mentioned.
- a backup power supply device that can be mounted in a computer server rack, a backup power supply device for wireless base stations such as mobile phones, a power storage device for home use and factories, a power storage device for street lights, etc. , Can also be used as appropriate for backup power supplies such as traffic lights.
- 100 ... Power supply device 1 ... Battery cell, 2 ... Separator, 2A ... Laminated plane, 2a ... Upper edge, 2b ... Inner region, 3 ... End plate, 4 ... Bind bar, 10 ... Battery block, 11 ... Battery case, 11A ... Facing plane, 12 ... Seal plate, 13 ... Electrode terminal, 14 ... Safety valve, 15 ... Opening, 20 ... Hybrid material, 21 ... High rigidity sheet, 22 ... Low rigidity sheet, 23 ... Through hole, 24 ... Elastic sheet , 24A ... rubber elastic sheet, 25 ... recess, 26 ... step recess, 81 ... building, 82 ... solar cell, 83 ... charging circuit, 84 ... charging switch, 85 ...
- DC / AC inverter 86 ... load, 87 ... discharge Switch, 88 ... power controller, 91 ... vehicle body, 93 ... motor, 94 ... generator, 95 ... DC / AC inverter, 96 ... engine, 97 ... wheels, 98 ... charging plug, HV, EV ... vehicle
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
電池セルの膨張をセパレータで吸収しなから、電池セルの開口部の損傷を防止するために、電源装置は、複数の電池セル(1)をセパレータ(2)を挟んで厚さ方向に積層してなる電池ブロックと、電池ブロックの両端面に配置してなる一対のエンドプレートと、一対のエンドプレートに連結されて、エンドプレートを介して電池ブロックを加圧状態に固定してなるバインドバーとを備えている。電池セル(1)は、底を閉塞している電池ケースの開口縁に気密に封口板(12)を固定している。セパレータ(2)は、電池ケースの対向平面(11A)に面接触状態に積層してなる積層平面(2A)が変形して電池セル(1)の内圧上昇による膨張を吸収する弾性を有し、積層平面(2A)の外周縁部であって上縁部(2a)のヤング率を、外周縁部の内側に位置する内部領域(2b)のヤング率よりも高くしている。
Description
本発明は、多数の電池セルを積層している電源装置と、この電源装置を備える電動車両及び蓄電装置に関する。
多数の電池セルを積層している電源装置は、電動車両に搭載されて車両を走行させるモータに電力を供給する電源、太陽電池等の自然エネルギーや深夜電力で充電される電源、停電のバックアップ電源に適している。この構造の電源装置は、積層している電池セルの間にセパレータを挟着している。セパレータは、電池セル間の熱伝導を断熱して、電池セルの熱暴走の誘発を抑制する。電池セルの熱暴走は、正極と負極が内部で短絡して発生する内部ショートや誤った取り扱い等で発生する。電池セルが熱暴走すると大量の熱を発生するので、セパレータの断熱性が充分でないと、隣接する電池セルに熱暴走を誘発する。電池セルの熱暴走が誘発されると、電源装置全体は極めて大きな熱エネルギーを放出して装置としての安全性を阻害する。この弊害を防止するために断熱特性の優れたセパレータを電池セルの間に挟着している電源装置が開発されている。(特許文献1参照)
セパレータを挟んで多数の電池を積層している電源装置は、セパレータで電池セル間を絶縁することに加えて、セパレータを介して積層している各々の電池セルを定位置に配置して位置ずれを防止することも大切である。電源装置は、電池セルの膨張や収縮、さらに振動や衝撃も位置ずれの原因となる。使用状態において電池セルの相対的な位置ずれは、隣接する電池セルの電極端子に固定している金属板のバスバーとの接続部が損傷し、あるいはバスバー自体が損傷し、あるいは又振動による誤動作などの弊害となる。
電池セルの位置ずれを阻止するために、電源装置は積層した電池セルを加圧状態に固定している。この電源装置は、多数の電池セルを積層している電池ブロックの両端面に一対のエンドプレートを配置して、一対のエンドプレートをバインドバーで固定している。バインドバーとエンドプレートは、電池セルを相当に強い圧力で加圧状態に保持して、電池セルの相対移動や振動による誤動作を防止している。この電源装置は、たとえば、電池セルに挟着されるセパレータの面積を約100平方センチとする装置において、エンドプレートを数トンもの強い力で押圧してバインドバーで固定している。この構造の電源装置は、内圧が上昇して電池セルが膨張すると、エンドプレートが押圧されてバインドバーとエンドプレートの内部応力を増加させる。バインドバーは、強い引張力が作用する状態でエンドプレートに固定されて、電池セルを加圧状態に固定しているので、内圧上昇で電池セルが膨張するとさらに強い引張力が作用する。この状態でバインドバーが伸びると、電池セルが位置ずれするので、バインドバーには極めて強い引張力に耐える強靱な金属板などを使用する必要があって、厚くて重くなる。
以上の弊害は、電池セルの膨張を吸収する弾力性のあるセパレータを使用して抑制できる。しかしながら、この電源装置は、電池セルの膨張でバインドバーの引張力が増加するのは抑制できるが、電池セルの経時的な疲労によるダメージが大きくなる。電池セルのダメージは、電池ケースの開口部を気密に閉塞している封口板の領域で甚だしい。
本発明は、さらに以上の欠点を解消することを目的に開発されたもので、本発明の目的のひとつは、電池セルの膨張をセパレータで吸収しなから、電池セルの開口部の損傷を防止できる技術を提供することにある。
本発明のある態様に係る電源装置は、複数の電池セル1をセパレータ2を挟んで厚さ方向に積層してなる電池ブロック10と、電池ブロック10の両端面に配置してなる一対のエンドプレート3と、一対のエンドプレート3に連結されて、エンドプレート3を介して電池ブロック10を加圧状態に固定してなるバインドバー4とを備えている。電池セル1は、底を閉塞している電池ケース11の開口縁に封口板12を気密に固定している。セパレータ2は、電池ケース11の対向平面11Aに面接触状態に積層してなる積層平面2Aを有している。積層平面2Aは、電池セル1の内圧上昇による膨張を変形して吸収する弾性を有し、積層平面2Aの外周縁部であって上縁部2aのヤング率と、外周縁部の内側に位置する内部領域2bのヤング率とが異なり、上縁部2aのヤング率を内部領域2bよりも高くしている。
本明細書において、セパレータの「上縁部」は図において特定する。図1と図2に示す電源装置は、封口板を上に配置する姿勢で電池セルを積層しているので、セパレータの「上縁部」は電池セルの封口板に沿う外周縁となる。したがって、本明細書において、セパレータの上縁部は、電池セルの封口板に沿う外周縁を意味するものとする。
本発明のある態様に係る電動車両は、上記電源装置100と、電源装置100から電力供給される走行用のモータ93と、電源装置100及びモータ93を搭載してなる車両本体91と、モータ93で駆動されて車両本体91を走行させる車輪97とを備えている。
本発明のある態様に係る蓄電装置は、上記電源装置100と、電源装置100への充放電を制御する電源コントローラ88と備えて、電源コントローラ88でもって、外部からの電力により二次電池セル1への充電を可能とすると共に、二次電池セル1に対し充電を行うよう制御している。
以上の電源装置は、電池セルの膨張をセパレータで吸収しなから、電池セルの開口部の損傷を有効に防止できる。
以下、図面に基づいて本発明を詳細に説明する。なお、以下の説明では、必要に応じて特定の方向や位置を示す用語(例えば、「上」、「下」、及びそれらの用語を含む別の用語)を用いるが、それらの用語の使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が制限されるものではない。また、複数の図面に表れる同一符号の部分は同一もしくは同等の部分又は部材を示す。
さらに以下に示す実施形態は、本発明の技術思想の具体例を示すものであって、本発明を以下に限定するものではない。また、以下に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り、本発明の範囲をそれのみに限定する趣旨ではなく、例示することを意図したものである。また、一の実施の形態、実施例において説明する内容は、他の実施の形態、実施例にも適用可能である。また、図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張していることがある。
さらに以下に示す実施形態は、本発明の技術思想の具体例を示すものであって、本発明を以下に限定するものではない。また、以下に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り、本発明の範囲をそれのみに限定する趣旨ではなく、例示することを意図したものである。また、一の実施の形態、実施例において説明する内容は、他の実施の形態、実施例にも適用可能である。また、図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張していることがある。
本発明の第1の実施形態の電源装置は、複数の電池セルをセパレータを挟んで厚さ方向に積層している電池ブロックと、電池ブロックの両端面に配置している一対のエンドプレートと、一対のエンドプレートに連結されて、エンドプレートを介して電池ブロックを加圧状態に固定しているバインドバーとを備えている。電池セルは、底を閉塞している電池ケースの開口縁に気密に封口板を固定している。セパレータは、電池ケースの対向平面に面接触状態に積層してなる積層平面が変形して電池セルの内圧上昇による膨張を吸収する弾性を有し、積層平面の外周縁部であって上縁部のヤング率と、外周縁部の内側に位置する内部領域のヤング率とが異なり、上縁部のヤング率を内部領域よりも高くしている。
以上の電源装置は、セパレータの積層平面の外周縁部であって、電池セルの封口板の外周縁に沿う上縁部のヤング率を高くして高剛性とし、積層平面の内部領域のヤング率を、上縁部よりも小さくして低剛性とするので、電池セルの内圧が上昇して膨張する状態では、上縁部の変形を抑制しながら、積層平面の内部領域の膨張は、低剛性のセパレータを薄く変形させて吸収する。セパレータの積層平面の上縁部は、電池セルの封口板の外周縁に沿う領域に位置する。電池セルは、底を閉塞している筒状の開口部に封口板をレーザー溶接などの方法で気密に固定している。この構造の電池セルは、筒体状の電池ケースの開口縁の封口板を固定している部分が内圧上昇で変形すると、疲労が大きくなって故障の原因となる。積層平面の内部領域は、電池セルの中央部分が突出するように湾曲しても変形を吸収できるので、電池セルの内圧が上昇して膨張する状態で変形しても、疲労のダメージは極めて少ない。したがって、以上の電源装置は、内圧上昇による電池セルの膨張をセパレータが効率よく吸収しながら、電池セルの上縁部の疲労による損傷を防止できる特徴がある。
さらに、以上の特徴に加えて、電源装置は、セパレータでもって電池セルの膨張を吸収するので、内圧が上昇して電池セルが膨張する状態で、エンドプレートやバインドバーに作用する応力が増加するのを抑制して、最大応力を減少できる。このことは、エンドプレートとバインドバーを薄く、軽量化することに効果がある。また、以上の電源装置は、電池セルの膨張をセパレータで吸収するので、電池セルの内圧が上昇して膨張する状態での、各々の電池セルの相対位置のずれも抑制できる。隣接する電池セルの相対的な位置ずれは、電池セルの電極端子に固定している金属板のバスバーと電極端子とを損傷させる原因となる。セパレータが内圧上昇で膨張する電池セルの相対的な位置ずれを阻止できる電源装置は、電池セルの膨張で電極端子とバスバーとの接続部の故障を防止できる。
さらにまた、以上の電源装置は、セパレータの全面を同じヤング率とすることなく、上縁部のヤング率を高くして、内部領域のヤング率を小さくするので、電池セルが積層平面の内部領域で膨張しても、電池セルとセパレータとの圧力上昇を抑制する。電池セルを積層している電池ブロックは、積層平面全面に作用する押圧力がエンドプレートに作用するが、電池セルが膨張する状態で、積層平面の内部領域の圧力を減少できる電源装置は、電池セルが内圧上昇して膨張する状態で、電池ブロックがエンドプレートを押圧する加圧力を低くして、エンドプレートとバスバーに作用する最大応力を減少できる。さらに電池セルがセパレータを応力する全面の押圧力も小さくなって、押圧力の増加で電池セルが位置ずれするのを抑制できる特徴もある。
本発明の第2の実施形態の電源装置は、セパレータを、無機粉末と繊維強化材とのハイブリッド素材としている。また、本発明の第3の実施形態の電源装置は、無機粉末をシリカエアロゲルとしている。
以上のセパレータは、隣接する電池セル間に挟まれて、隣接する電池セルを断熱する。ハイブリッド素材は、熱暴走して高温に発熱した電池セルが隣の電池セルを加熱して熱暴走が誘発されるのを抑制する。さらに、セパレータは、積層される電池セルを絶縁する絶縁シートとしても機能する。
本発明の第4の実施形態の電源装置は、セパレータを、1枚のハイブリッド素材としている。また、本発明の第5の実施形態の電源装置は、ハイブリッド素材が、上縁部のシリカエアロゲルの充填密度を、内部領域よりも高くしている。
本発明の第6の実施形態の電源装置は、セパレータが、高剛性シートと、高剛性シートよりもヤング率の小さい低剛性シートからなり、高剛性シートと低剛性シートの両方が、シリカエアロゲルと繊維強化材とのハイブリッド素材で、高剛性シートを上縁部に配置して、低剛性シートを内部領域に配置している。
本発明の第7の実施形態の電源装置は、低剛性シートよりも高剛性シートのシリカエアロゲルの充填密度を高くしている。
本発明の第8の実施形態の電源装置は、低剛性シートを、ハイブリッド素材と弾性シートとの積層シートとしている。また、本発明の第9の実施形態の電源装置は、弾性シートを、ゴム状弾性シートとしている。さらにまた、本発明の第10の実施形態の電源装置は、ゴム状弾性シートを、合成ゴムシートとしている。
本発明の第11の実施形態の電源装置は、セパレータの厚さを、0.5mm以上であって3mm以下としている。
(実施の形態1)
以下、さらに具体的な電源装置を詳述する。
図1の斜視図と図2の垂直断面図と図3の水平断面図に示す電源装置100は、複数の電池セル1をセパレータ2を挟んで厚さ方向に積層している電池ブロック10と、電池ブロック10の両端面に配置している一対のエンドプレート3と、一対のエンドプレート3を連結してエンドプレート3を介して電池ブロック10を加圧状態に固定しているバインドバー4とを備える。
以下、さらに具体的な電源装置を詳述する。
図1の斜視図と図2の垂直断面図と図3の水平断面図に示す電源装置100は、複数の電池セル1をセパレータ2を挟んで厚さ方向に積層している電池ブロック10と、電池ブロック10の両端面に配置している一対のエンドプレート3と、一対のエンドプレート3を連結してエンドプレート3を介して電池ブロック10を加圧状態に固定しているバインドバー4とを備える。
(電池ブロック10)
電池ブロック10の電池セル1は、図4に示すように、外形を四角形とする角形電池セルで、底を閉塞している電池ケース11の開口部に封口板12をレーザー溶接して気密に固定して、内部を密閉構造としている。封口板12は、両端部に正負一対の電極端子13を突出して設けている。電極端子13の間には安全弁14の開口部15を設けている。安全弁14は、電池セル1の内圧が所定値以上に上昇した際に開弁して、内部のガスを放出する。安全弁14は、電池セル1の内圧上昇を防止する。
電池ブロック10の電池セル1は、図4に示すように、外形を四角形とする角形電池セルで、底を閉塞している電池ケース11の開口部に封口板12をレーザー溶接して気密に固定して、内部を密閉構造としている。封口板12は、両端部に正負一対の電極端子13を突出して設けている。電極端子13の間には安全弁14の開口部15を設けている。安全弁14は、電池セル1の内圧が所定値以上に上昇した際に開弁して、内部のガスを放出する。安全弁14は、電池セル1の内圧上昇を防止する。
(電池セル1)
電池セル1は、リチウムイオン二次電池である。電池セル1をリチウムイオン二次電池とする電源装置100は、容量と重量に対する充電容量を大きくできる特長がある。ただし、電池セル1は、リチウムイオン二次電池以外の非水系電解液二次電池等、他の充電できる全ての電池とすることができる。
電池セル1は、リチウムイオン二次電池である。電池セル1をリチウムイオン二次電池とする電源装置100は、容量と重量に対する充電容量を大きくできる特長がある。ただし、電池セル1は、リチウムイオン二次電池以外の非水系電解液二次電池等、他の充電できる全ての電池とすることができる。
(エンドプレート3、バインドバー4)
エンドプレート3は、電池ブロック10に押圧されて変形しない、電池セル1の外形にほぼ等しい外形の金属板で、両側縁にバインドバー4を連結している。バインドバー4は、エンドプレート3が積層している電池セル1を加圧状態で連結して、電池ブロック10を所定の圧力で加圧状態に固定している。
エンドプレート3は、電池ブロック10に押圧されて変形しない、電池セル1の外形にほぼ等しい外形の金属板で、両側縁にバインドバー4を連結している。バインドバー4は、エンドプレート3が積層している電池セル1を加圧状態で連結して、電池ブロック10を所定の圧力で加圧状態に固定している。
(セパレータ2)
セパレータ2は、積層している電池セル1の間に挟まれて、電池ケース11の対向平面11Aに面接触状態に積層されて、電池セル1の内圧上昇による膨張を吸収し、さらに隣接する電池セル1を絶縁し、さらにまた電池セル1間の熱の伝導を断熱する。電池ブロック10は、隣接する電池セル1の電極端子13に金属板のバスバー(図示せず)を固定して、電池セル1を直列又は並列に接続している。直列に接続される電池セル1は、電池ケース11に電位差が発生するので、セパレータ2で絶縁して積層する。並列に接続される電池セル1は、電池ケース11に電位差は発生しないが、熱暴走の誘発を防止するために、セパレータ2で断熱して積層する。
セパレータ2は、積層している電池セル1の間に挟まれて、電池ケース11の対向平面11Aに面接触状態に積層されて、電池セル1の内圧上昇による膨張を吸収し、さらに隣接する電池セル1を絶縁し、さらにまた電池セル1間の熱の伝導を断熱する。電池ブロック10は、隣接する電池セル1の電極端子13に金属板のバスバー(図示せず)を固定して、電池セル1を直列又は並列に接続している。直列に接続される電池セル1は、電池ケース11に電位差が発生するので、セパレータ2で絶縁して積層する。並列に接続される電池セル1は、電池ケース11に電位差は発生しないが、熱暴走の誘発を防止するために、セパレータ2で断熱して積層する。
セパレータ2は、全体を無機粉末と繊維強化材とのハイブリッド素材20とし、あるいはハイブリッド素材20に弾性シートを積層している。無機粉末は好ましくはシリカエアロゲルである。このハイブリッド素材20は、繊維の微細な隙間に、熱伝導率の低い微細なシリカエアロゲルを充填している。シリカエアロゲルは担持されて繊維強化材の隙間に配置される。このハイブリッド素材20は、繊維強化材の繊維シートと、ナノサイズの多孔質構造を有するシリカエアロゲルとからなり、シリカエアロゲルのゲル原料を、繊維に含浸して製造される。シリカエアロゲルを繊維シートに含浸した後、繊維を積層し、ゲル原料を反応させて湿潤ゲルを形成し、さらに湿潤ゲル表面を疎水化、熱風乾燥して製造される。繊維シートの繊維は、ポリエチレンテレフタレート(PET)である。ただ、繊維シートの繊維は、難燃処理を施した酸化アクリル繊維やグラスウールなどの無機繊維も使用できる。
繊維強化材は、好ましくは繊維径を0.1~30μmとする。繊維強化材は、繊維径を30μmより細くし、繊維による熱伝導を小さくして、ハイブリッド素材20の断熱特性を向上できる。シリカエアロゲルは、90%~98%を空気で構成している無機質の微粒子で、ナノオーダの球状体が結合したクラスタで形成される骨格間に微細孔があって、三次元的な微細な多孔性構造をしている。
シリカエアロゲルと繊維強化材とのハイブリッド素材20は、薄くて優れた断熱特性を示す。このハイブリッド素材20からなるセパレータ2は、電池セル1が熱暴走して発熱するエネルギーを考慮して、電池セル1の熱暴走の誘発を阻止できる厚さに設定する。電池セル1が熱暴走して発熱するエネルギーは、電池セル1の充電容量が大きくなると大きくなる。したがって、セパレータ2の厚さは、電池セル1の充電容量を考慮して最適値に設定される。たとえば、充電容量を5Ah~20Ahとするリチウムイオン二次電池を電池セル1とする電源装置は、ハイブリッド素材20の厚さを0.5mm~3mm、最適には約1mm~2.5mmとする。ただし、本発明はハイブリッド素材20の厚さを以上の範囲に特定するものでなく、ハイブリッド素材20の厚さは、繊維シートとシリカエアロゲルからなる熱暴走の断熱特性と、電池セルの熱暴走の誘発を防止するために要求される断熱特性を考慮して最適値に設定される。
セパレータ2のハイブリッド素材20は、内圧上昇で膨張する電池セル1に加圧されて薄く変形するシートである。セパレータ2は、膨張する電池セル1の加圧力で薄くなり、また膨張していた電池セル1が元の状態に復元する状態では押し潰された状態がもとの状態に復元して、電池セル1の膨張と収縮を吸収する。
1枚のハイブリッド素材20からなるセパレータ2は、全面が均一に変形する弾性を有するハイブリッド素材ではない。ハイブリッド素材20のセパレータ2は、隣接する電池セル1の電池ケース11の開口部に挟着されている上縁部2aと、電池セル1の積層平面2Aの内部領域2bとはヤング率が異なる。封口板12に沿う上縁部2aのヤング率は、電池セル1の上縁部の変形を抑制するために、積層平面2Aの内部領域2bよりも高くしている。セパレータ2は、上縁部2aを内部領域2bよりも高剛性として、内圧が上昇して電池セル1が膨張する状態で、上縁部2aの変形を内部領域2bよりも少なく抑制する。
図4の斜視図は、上縁部2aを高剛性として、内部領域2bを低剛性とするセパレータ2を示している。この図のセパレータ2は、ヤング率の高い高剛性シート21に複数の貫通穴23を設けて、貫通穴23にはヤング率の低い低剛性シート22を配置している。セパレータ2は、貫通穴23に配置する低剛性シート22の外形を、高剛性シート21の貫通穴23の内形に等しくしている。このセパレータ2は、高剛性シート21と低剛性シート22とを隙間なく配置して、全面を優れた断熱特性にできる。
高剛性シート21は、内圧が上昇する電池セル1に加圧される状態において、上縁部2aの変形を抑制できるように、低剛性シート22よりもヤング率を高くしているが、高剛性シート21のヤング率は、たとえば、低剛性シート22の1.5倍以上、好ましくは2倍以上とする。
セパレータ2は、貫通穴23を設けた領域をヤング率の小さい低剛性領域とするために、セパレータ2の外周縁部を除く領域に貫通穴23を設けている。外周縁部を除く領域に設けられた貫通穴23には、低剛性シート22が配置されるので、セパレータ2は外周縁部を除く領域が、ヤング率の小さい低剛性領域となる。図4のセパレータ2は、外周縁部を除く領域、すなわち外周縁部の内側には、複数の貫通穴23があって、隣接する貫通穴23の間や貫通穴23の周囲には、高剛性シート21が配置される。したがって、内部領域2bを含む外周縁部の内側は、高剛性シート21と低剛性シート22とが交互に混在される状態となる。このセパレータ2は、高剛性シート21と低剛性シート22とを配置する面積比率を変更して、内部領域2bのヤング率を調整できる。セパレータ2は、低剛性シート22の面積を高剛性シート21よりも大きくして、外周縁部を除く内部領域2bを含む領域の実質的なヤング率を小さくでき、反対に低剛性シート22の面積を高剛性シート21よりも小さくして、外周縁部を除く内部領域2bを含む領域の実質的なヤング率を高くできる。
図4のセパレータ2は、外周縁部を除く領域に複数の貫通穴23を設けて、内部領域2bのヤング率を上縁部2aを含む外周縁部よりも低くしているが、セパレータ2は内部領域2bにひとつの貫通穴23を設け、この貫通穴23に低剛性シート22を配置する等して、上縁部2aのヤング率を高く、内部領域2bのヤング率を低くすることもできる。
高剛性シート21に貫通穴23を設けて、ここに低剛性シート22を配置するセパレータ2は、高剛性シート21と低剛性シート22とを別々に製造できるので、高剛性シート21と低剛性シート22のヤング率を大幅に変更しながら、高剛性シート21と低剛性シート22を能率よく多量生産できる特徴がある。
シリカエアロゲルと繊維強化材とのハイブリッド素材20であるセパレータ2は、たとえば、シリカエアロゲルの充填密度でヤング率を調整できるので、高剛性シート21は低剛性シート22よりもシリカエアロゲルの充填密度を高くして、ヤング率を高くできる。
以上のセパレータ2は、高剛性シート21の貫通穴23に低剛性シート22を配置して、上縁部2aを高剛性として内部領域2bを低剛性とするが、セパレータ2は、図5に示すように、1枚のハイブリッド素材20の上縁部2aを高剛性として、内部領域2bを低剛性とすることもできる。この構造を、シリカエアロゲルと繊維強化材とのハイブリッド素材20で実現するセパレータ2は、上縁部2aと内部領域2bとで、シリカエアロゲルの充填密度を変更して実現できる。上縁部2aはシリカエアロゲルの充填密度を高くして高剛性とし、内部領域2bはシリカエアロゲルの充填密度を低くして低剛性とする。このセパレータ2は、全体を1枚のハイブリッド素材20とするので、電池セル1の間に積層されて積層平面11Aの全面を均一に絶縁して断熱できる。
図6の断面図に示すセパレータ2は、内部領域2bの低剛性シート22を、ハイブリッド素材20と弾性シート24との積層シートとしている。弾性シート24は高剛性シート21よりもヤング率が小さく、膨張する電池セル1に加圧されて変形しやすいシートである。弾性シート24は、ゴム状弾性シート24A又は熱可塑性エラストマーが使用できる。このセパレータ2は、両側の表面層をハイブリッド素材20の高剛性シート21として、中間層の外周縁部には、枠状の高剛性シート21を積層して、枠状の高剛性シート21の内側には、枠状の高剛性シート21と同じ厚さの弾性シート24を積層して、全体を同じ厚さとしている。
電源装置100は、電池ブロック10を小形化して充電容量を大きくするために、セパレータ2を薄くして、電池セル1の熱暴走の誘発を阻止することが大切である。このことから、高剛性シート21に積層される弾性シート24は、たとえば0.1mm以上であって1mm以下、さらに好ましくは0.2mm以上であって0.5mm以下として、電池セル1の内部領域2bの膨張を吸収する。ゴム状弾性シート24Aは、好ましくはハイブリッド素材20よりも薄くしながら、電池セル1の内部領域2bの膨張を吸収して圧縮応力を低下させる。
図7の斜視図と図8の断面図に示すセパレータ2は、上縁部2aを含む外周縁部を高剛性として、外周縁部の内側の領域である内部領域2bを低剛性としている。これらの図のセパレータ2は、ハイブリッド素材20である高剛性シート21の中央部であって、外周縁部を除く領域に貫通穴23を設けており、この貫通穴23に弾性シート24を配置して低剛性領域としている。セパレータ2は、貫通穴23に配置する弾性シート24の外形を、高剛性シート21の貫通穴23の内形に等しくすると共に、高剛性シート21と弾性シート24の厚さをほぼ等しくして、高剛性シート21と弾性シート24とを隙間なく配置している。
さらに、図9と図10の断面図に示すセパレータ2も、図7の斜視図に示すセパレータ2と同様に、上縁部2aを含む外周縁部を高剛性として、外周縁部の内側の領域である内部領域2bを低剛性とするが、これらのセパレータ2は、内部領域2bを、ハイブリッド素材20と弾性シート24との積層シートとしている。図に示すセパレータ2は、ハイブリッド素材20である高剛性シート21の中央部であって、外周縁部を除く内部領域2bに凹部25を設けており、この凹部25に弾性シート24を配置して、高剛性シート21と弾性シート24の積層シートからなる低剛性シート22としている。
図9に示すセパレータ2は、高剛性シート21の一方の面に凹部25を設けて、この凹部25に弾性シート24を配置して2層構造の低剛性シート22としている。図10に示すセパレータ2は、高剛性シート21の両面に凹部25を設けて、この凹部25に弾性シート24を配置して3層構造の低剛性シート22としている。これらの図に示すセパレータ2は、凹部25に配置する弾性シート24の外形を、高剛性シート21の凹部25の内形に等しくすると共に、この凹部25に配置される弾性シート24の厚さを凹部25の深さとほぼ等しくして、高剛性シート21と弾性シート24とを隙間なく配置している。
さらに、図11の斜視図と図12の斜視図に示すセパレータ2は、上縁部2aを高剛性とする共に、上縁部2a以外の領域であって、上縁部よりも下方の領域を内部領域2bとして、この内部領域2bを低剛性としている。図に示すセパレータは、上縁部2aにハイブリッド素材20である高剛性シート21を配置すると共に、上縁部2aよりも下方の内部領域2bをハイブリッド素材20と弾性シート24との積層シートとしている。
図11に示すセパレータ2は、ハイブリッド素材20である高剛性シート21の一方の面において、上縁部よりも下方を段差形状に切除して段差凹部26を設けており、この段差凹部26に弾性シート24を配置して2層構造の低剛性シート22としている。反対側の面は、高剛性シート21の平滑面として、対応する電池セルに当接する面としている。また、図12に示すセパレータ2は、高剛性シート21の両面において、上縁部2aよりも下方を段差形状に切除して段差凹部26を設けており、この段差凹部25に弾性シート24を配置して3層構造の低剛性シート22としている。
以上の構造のセパレータ2も、内部領域2bを低剛性として、対向する電池セルの膨張による変形を吸収できる構造としながら、上縁部2aを高剛性として電池セルの上縁部の変形を抑制する構造としている。
弾性シート24は、非発泡のゴム状弾性体、発泡ゴム、又は熱可塑性エラストマーである。この弾性シート24は、圧縮されて体積がほとんど変化しない非圧縮性によって、積層領域で圧縮されたゴムが非積層領域に押し出されて、積層領域と非積層領域との境界部において、形状と圧力の変化を緩和する。弾性シート24は合成ゴムシートが適している。合成ゴムシートは、イソプレンゴム、スチレンブタジエンゴム、ブタジエンゴム、クロロプロンゴム、ニトリルゴム、ホリイソブチレンゴム、エチレンプロピレンゴム、エチレン酢酸ビニル共重合体ゴム、クロロスルホン化ポリエチレンゴム、アクリルゴム、フッ素ゴム、エピクロルヒドリンゴム、ウレタンゴム、シリコーンゴム、熱可塑性オレフィンゴム、エチレンプロピレンジエンゴム、ブチルゴム、ポリエーテルゴムの何れかが、単独であるいは複数の合成ゴムシートを積層したものが使用できる。とくに、エチレンプロピレンゴム、エチレン酢酸ビニル共重合体ゴム、クロロスルホン化ポリエチレンゴム、アクリルゴム、フッ素ゴム、シリコーンゴムは、優れた断熱特性があるので、熱暴走して熱溶融するまでの時間を長くしてより高い安全性を実現できる。また、ウレタンゴムでゴム状弾性シート6を構成する場合は、特に、熱可塑性ポリウレタンゴム、発泡ポリウレタンゴムを用いることが好ましい。
さらに、熱可塑性エラストマーとしては、熱可塑性ポリエステル、熱可塑性ポリエーテルなどが適している。
さらに、熱可塑性エラストマーとしては、熱可塑性ポリエステル、熱可塑性ポリエーテルなどが適している。
図6のセパレータ2は、高剛性シート21の全面にはゴム状弾性シート24Aを積層していない。セパレータ2は、電池セル1の外周縁部を除く領域にゴム状弾性シート24Aを積層して、電池セル1の内部領域2bの膨張を吸収する。セパレータ2は、電池セル1の内部領域2bに広い面積でゴム状弾性シート24Aを積層して、電池セル1の膨張を効率よく吸収できる。
セパレータは、外周縁部にゴム状弾性シートに代わって、ヤング率の高い高剛性の枠状のゴム状弾性シートを積層して、枠状のゴム状弾性シートの内側に、ヤング率の低いゴム状弾性シートを積層することもできる。ここで、ヤング率の高い高剛性の枠状弾性シート以外にヤング率の高い樹脂として、ポリプロピレン、ポリカーボネート、ポリブチレンテレフタレートなどを使用することもできる。高剛性のゴム状弾性シートは低剛性のゴム状弾性シートよりもヤング率が高く、電池セルの上縁部の変形を抑制する。枠状のゴム状弾性シートは、好ましくは電池セルの内圧上昇ではほとんど変形しないヤング率の高いシートを使用する。
また、高剛性の弾性シートと、低剛性の弾性シートを組み合わせてセパレータとする場合、接着剤、テープなどを用いて貼り合わせる方法、あるいは二色成型により2つのシートを組み合わせる方法がある。
また、高剛性の弾性シートと、低剛性の弾性シートを組み合わせてセパレータとする場合、接着剤、テープなどを用いて貼り合わせる方法、あるいは二色成型により2つのシートを組み合わせる方法がある。
セパレータは、接着層や粘着層を介して電池セルの定位置に積層される。ただ、セパレータ2は、電池セル1を嵌合構造で定位置に配置する電池ホルダー(図示せず)の定位置に配置することもできる。
以上の電源装置100は、電池セル1の充電容量を6Ah~80Ahとする角形電池セルとし、セパレータ2のハイブリッド素材20を、シリカエアロゲルと繊維強化材とのハイブリッド素材である「パナソニック製のNASBIS(登録商標)」として、特定の電池セル1を強制的に熱暴走させて、隣接する電池セル1への熱暴走の誘発を防止できる。
以上の電源装置は、電動車両を走行させるモータに電力を供給する車両用の電源として利用できる。電源装置を搭載する電動車両としては、エンジンとモータの両方で走行するハイブリッド自動車やプラグインハイブリッド自動車、あるいはモータのみで走行する電気自動車等の電動車両が利用でき、これらの車両の電源として使用される。なお、車両を駆動する電力を得るために、上述した電源装置を直列や並列に多数接続して、さらに必要な制御回路を付加した大容量、高出力の電源装置100を構築した例として説明する。
(ハイブリッド車用電源装置)
図13は、エンジンとモータの両方で走行するハイブリッド自動車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両HVは、車両本体91と、この車両本体91を走行させるエンジン96及び走行用のモータ93と、これらのエンジン96及び走行用のモータ93で駆動される車輪97と、モータ93に電力を供給する電源装置100と、電源装置100の電池を充電する発電機94とを備えている。電源装置100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。車両HVは、電源装置100の電池を充放電しながらモータ93とエンジン96の両方で走行する。モータ93は、エンジン効率の悪い領域、例えば加速時や低速走行時に駆動されて車両を走行させる。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、エンジン96で駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、電源装置100の電池を充電する。なお、車両HVは、図13に示すように、電源装置100を充電するための充電プラグ98を備えてもよい。この充電プラグ98を外部電源と接続することで、電源装置100を充電できる。
図13は、エンジンとモータの両方で走行するハイブリッド自動車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両HVは、車両本体91と、この車両本体91を走行させるエンジン96及び走行用のモータ93と、これらのエンジン96及び走行用のモータ93で駆動される車輪97と、モータ93に電力を供給する電源装置100と、電源装置100の電池を充電する発電機94とを備えている。電源装置100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。車両HVは、電源装置100の電池を充放電しながらモータ93とエンジン96の両方で走行する。モータ93は、エンジン効率の悪い領域、例えば加速時や低速走行時に駆動されて車両を走行させる。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、エンジン96で駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、電源装置100の電池を充電する。なお、車両HVは、図13に示すように、電源装置100を充電するための充電プラグ98を備えてもよい。この充電プラグ98を外部電源と接続することで、電源装置100を充電できる。
(電気自動車用電源装置)
また、図14は、モータのみで走行する電気自動車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両EVは、車両本体91と、この車両本体91を走行させる走行用のモータ93と、このモータ93で駆動される車輪97と、このモータ93に電力を供給する電源装置100と、この電源装置100の電池を充電する発電機94とを備えている。電源装置100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、車両EVを回生制動する時のエネルギーで駆動されて、電源装置100の電池を充電する。また車両EVは充電プラグ98を備えており、この充電プラグ98を外部電源と接続して電源装置100を充電できる。
また、図14は、モータのみで走行する電気自動車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両EVは、車両本体91と、この車両本体91を走行させる走行用のモータ93と、このモータ93で駆動される車輪97と、このモータ93に電力を供給する電源装置100と、この電源装置100の電池を充電する発電機94とを備えている。電源装置100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、車両EVを回生制動する時のエネルギーで駆動されて、電源装置100の電池を充電する。また車両EVは充電プラグ98を備えており、この充電プラグ98を外部電源と接続して電源装置100を充電できる。
(蓄電装置用の電源装置)
さらに、本発明は、電源装置の用途を、車両を走行させるモータの電源には特定しない。実施形態に係る電源装置は、太陽光発電や風力発電等で発電された電力で電池を充電して蓄電する蓄電装置の電源として使用することもできる。図15は、電源装置100の電池を太陽電池82で充電して蓄電する蓄電装置を示す。
さらに、本発明は、電源装置の用途を、車両を走行させるモータの電源には特定しない。実施形態に係る電源装置は、太陽光発電や風力発電等で発電された電力で電池を充電して蓄電する蓄電装置の電源として使用することもできる。図15は、電源装置100の電池を太陽電池82で充電して蓄電する蓄電装置を示す。
図15に示す蓄電装置は、家屋や工場等の建物81の屋根や屋上等に配置された太陽電池82で発電される電力で電源装置100の電池を充電する。この蓄電装置は、太陽電池82を充電用電源として充電回路83で電源装置100の電池を充電した後、DC/ACインバータ85を介して負荷86に電力を供給する。このため、この蓄電装置は、充電モードと放電モードを備えている。図に示す蓄電装置は、DC/ACインバータ85と充電回路83を、それぞれ放電スイッチ87と充電スイッチ84を介して電源装置100と接続している。放電スイッチ87と充電スイッチ84のON/OFFは、蓄電装置の電源コントローラ88によって切り替えられる。充電モードにおいては、電源コントローラ88は充電スイッチ84をONに、放電スイッチ87をOFFに切り替えて、充電回路83から電源装置100への充電を許可する。また、充電が完了し満充電になると、あるいは所定値以上の容量が充電された状態で、電源コントローラ88は充電スイッチ84をOFFに、放電スイッチ87をONにして放電モードに切り替え、電源装置100から負荷86への放電を許可する。また、必要に応じて、充電スイッチ84をONに、放電スイッチ87をONにして、負荷86への電力供給と、電源装置100への充電を同時に行うこともできる。
さらに、電源装置は、図示しないが、夜間の深夜電力を利用して電池を充電して蓄電する蓄電装置の電源として使用することもできる。深夜電力で充電される電源装置は、発電所の余剰電力である深夜電力で充電して、電力負荷の大きくなる昼間に電力を出力して、昼間のピーク電力を小さく制限することができる。さらに、電源装置は、太陽電池の出力と深夜電力の両方で充電する電源としても使用できる。この電源装置は、太陽電池で発電される電力と深夜電力の両方を有効に利用して、天候や消費電力を考慮しながら効率よく蓄電できる。
以上のような蓄電装置は、コンピュータサーバのラックに搭載可能なバックアップ電源装置、携帯電話等の無線基地局用のバックアップ電源装置、家庭内用または工場用の蓄電用電源、街路灯の電源等、太陽電池と組み合わせた蓄電装置、信号機や道路用の交通表示器などのバックアップ電源用などの用途に好適に利用できる。
本発明に係る電源装置は、ハイブリッド自動車、燃料電池自動車、電気自動車、電動オートバイ等の電動車両を駆動するモータの電源用等に使用される大電流用の電源として好適に利用できる。例えばEV走行モードとHEV走行モードとを切り替え可能なプラグイン式ハイブリッド電気自動車やハイブリッド式電気自動車、電気自動車等の電源装置が挙げられる。またコンピュータサーバのラックに搭載可能なバックアップ電源装置、携帯電話等の無線基地局用のバックアップ電源装置、家庭内用、工場用の蓄電用電源、街路灯の電源等、太陽電池と組み合わせた蓄電装置、信号機等のバックアップ電源用等の用途にも適宜利用できる。
100…電源装置、1…電池セル、2…セパレータ、2A…積層平面、2a…上縁部、2b…内側領域、3…エンドプレート、4…バインドバー、10…電池ブロック、11…電池ケース、11A…対向平面、12…封口板、13…電極端子、14…安全弁、15…開口部、20…ハイブリッド素材、21…高剛性シート、22…低剛性シート、23…貫通穴、24…弾性シート、24A…ゴム状弾性シート、25…凹部、26…段差凹部、81…建物、82…太陽電池、83…充電回路、84…充電スイッチ、85…DC/ACインバータ、86…負荷、87…放電スイッチ、88…電源コントローラ、91…車両本体、93…モータ、94…発電機、95…DC/ACインバータ、96…エンジン、97…車輪、98…充電プラグ、HV、EV…車両
Claims (13)
- 複数の電池セルをセパレータを挟んで厚さ方向に積層してなる電池ブロックと、
前記電池ブロックの両端面に配置してなる一対のエンドプレートと、
前記一対のエンドプレートに連結されて、前記エンドプレートを介して前記電池ブロックを加圧状態に固定してなるバインドバーとを備える電源装置であって、
前記電池セルは、
底を閉塞している電池ケースの開口縁に封口板を気密に固定しており、
前記セパレータは、
前記電池ケースの対向平面に面接触状態に積層してなる積層平面を有し、
該積層平面は前記電池セルの内圧上昇による膨張を変形して吸収する弾性を有し、
前記積層平面の外周縁部であって上縁部のヤング率と、
前記積層平面の外周縁部の内側に位置する内部領域のヤング率とが異なり、
前記上縁部のヤング率が前記内部領域よりも高いことを特徴とする電源装置。 - 請求項1に記載される電源装置であって、
前記セパレータが、
無機粉末と繊維強化材とのハイブリッド素材であることを特徴とする電源装置。 - 請求項2に記載される電源装置であって、
前記無機粉末がシリカエアロゲルであることを特徴とする電源装置。 - 請求項2又は3に記載される電源装置であって、
前記セパレータが、1枚の前記ハイブリッド素材であることを特徴とする電源装置。 - 請求項4に記載される電源装置であって、
前記ハイブリッド素材が、
前記上縁部のシリカエアロゲルの充填密度を、前記内部領域よりも高くしてなることを特徴とする電源装置。 - 請求項1ないし3いずれかに記載される電源装置であって、
前記セパレータが、
高剛性シートと、高剛性シートよりもヤング率の小さい低剛性シートからなり、
前記高剛性シートと前記低剛性シートの両方が、シリカエアロゲルと繊維強化材とのハイブリッド素材で、
前記高剛性シートが前記上縁部に配置されて、
前記低剛性シートが前記内部領域に配置されてなることを特徴とする電源装置。 - 請求項6に記載される電源装置であって、
前記高剛性シートが、
前記低剛性シートよりもシリカエアロゲルの充填密度が高いことを特徴とする電源装置。 - 請求項6に記載される電源装置であって、
前記低剛性シートが、
前記ハイブリッド素材と弾性シートとの積層シートであることを特徴とする電源装置。 - 請求項8に記載される電源装置であって、
前記弾性シートが、ゴム状弾性シートであることを特徴とする電源装置。 - 請求項9に記載される電源装置であって、
前記ゴム状弾性シートが、
合成ゴムシートであることを特徴とする電源装置。 - 請求項1ないし10のいずれかに記載される電源装置であって、
前記セパレータの厚さが、
0.5mm以上であって3mm以下であることを特徴とする電源装置。 - 請求項1ないし10のいずれかに記載の電源装置を備える電動車両であって、
前記電源装置と、
該電源装置から電力供給される走行用のモータと、
前記電源装置及び前記モータを搭載してなる車両本体と、
前記モータで駆動されて前記車両本体を走行させる車輪とを備えることを特徴とする電動車両。 - 請求項1ないし10のいずれかに記載の電源装置を備える蓄電装置であって、
前記電源装置と、
該電源装置への充放電を制御する電源コントローラとを備え、
前記電源コントローラでもって、外部からの電力により前記二次電池セルへの充電を可能とすると共に、該二次電池セルに対し充電を行うよう制御することを特徴とする蓄電装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20833153.8A EP3993146A4 (en) | 2019-06-28 | 2020-04-20 | POWER SUPPLY DEVICE AND ELECTRIC VEHICLE AND POWER STORAGE DEVICE WITH A POWER SUPPLY DEVICE |
CN202080033307.5A CN113906616B (zh) | 2019-06-28 | 2020-04-20 | 电源装置和具有该电源装置的电动车辆以及蓄电装置 |
JP2021527412A JPWO2020261729A1 (ja) | 2019-06-28 | 2020-04-20 | |
US17/619,428 US20220247040A1 (en) | 2019-06-28 | 2020-04-20 | Power supply device, and electric vehicle and power storage device comprising power supply device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019122218 | 2019-06-28 | ||
JP2019-122218 | 2019-06-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020261729A1 true WO2020261729A1 (ja) | 2020-12-30 |
Family
ID=74061408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/016992 WO2020261729A1 (ja) | 2019-06-28 | 2020-04-20 | 電源装置とこの電源装置を備える電動車両及び蓄電装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220247040A1 (ja) |
EP (1) | EP3993146A4 (ja) |
JP (1) | JPWO2020261729A1 (ja) |
CN (1) | CN113906616B (ja) |
WO (1) | WO2020261729A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113764796A (zh) * | 2021-09-07 | 2021-12-07 | 深圳市富兰瓦时技术有限公司 | 一种电池模组 |
JP7448499B2 (ja) | 2021-02-26 | 2024-03-12 | トヨタ自動車株式会社 | 蓄電装置 |
JP7567874B2 (ja) | 2022-07-25 | 2024-10-16 | トヨタ自動車株式会社 | 蓄電装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114122559A (zh) * | 2021-11-26 | 2022-03-01 | 淮北津奥铝业有限公司 | 一种新能源汽车的电池箱体 |
CN217334279U (zh) * | 2022-05-25 | 2022-08-30 | 宁德时代新能源科技股份有限公司 | 电池及用电装置 |
DE102022212886A1 (de) | 2022-11-30 | 2024-06-06 | Volkswagen Aktiengesellschaft | Batteriesystem, insbesondere für ein Kraftfahrzeug, und Kraftfahrzeug |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014002907A (ja) * | 2012-06-18 | 2014-01-09 | Gs Yuasa Corp | 組電池 |
JP2015138753A (ja) * | 2014-01-24 | 2015-07-30 | 日立オートモティブシステムズ株式会社 | 電池モジュール |
JP2017212120A (ja) * | 2016-05-26 | 2017-11-30 | トヨタ自動車株式会社 | バッテリ |
JP2018204708A (ja) | 2017-06-06 | 2018-12-27 | パナソニックIpマネジメント株式会社 | 断熱材とそれを用いた発熱ユニット、および、電池ユニット |
JP2019099984A (ja) * | 2017-11-30 | 2019-06-24 | パナソニックIpマネジメント株式会社 | 断熱シートおよびその製造方法、ならびに電子機器および電池ユニット |
WO2019123903A1 (ja) * | 2017-12-19 | 2019-06-27 | 三洋電機株式会社 | 電源装置と電源装置用のセパレータ |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN205657108U (zh) * | 2016-04-11 | 2016-10-19 | 蔚来汽车有限公司 | 电池组和用于电池组的隔膜 |
CN116207408A (zh) * | 2016-09-27 | 2023-06-02 | 松下知识产权经营株式会社 | 电池模块 |
WO2018207608A1 (ja) * | 2017-05-12 | 2018-11-15 | 三洋電機株式会社 | 電源装置及びこれを備える車両、蓄電装置並びに電源装置用セパレータ |
CN107452982B (zh) * | 2017-06-17 | 2019-05-24 | 华为技术有限公司 | 一种柔性电池及其制备方法 |
KR102461577B1 (ko) * | 2017-07-17 | 2022-11-01 | 삼성에스디아이 주식회사 | 이차전지 모듈 |
CN109853226A (zh) * | 2017-11-30 | 2019-06-07 | 松下知识产权经营株式会社 | 绝热片和其制造方法以及电子设备和电池单元 |
-
2020
- 2020-04-20 EP EP20833153.8A patent/EP3993146A4/en active Pending
- 2020-04-20 JP JP2021527412A patent/JPWO2020261729A1/ja active Pending
- 2020-04-20 US US17/619,428 patent/US20220247040A1/en active Pending
- 2020-04-20 WO PCT/JP2020/016992 patent/WO2020261729A1/ja active Application Filing
- 2020-04-20 CN CN202080033307.5A patent/CN113906616B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014002907A (ja) * | 2012-06-18 | 2014-01-09 | Gs Yuasa Corp | 組電池 |
JP2015138753A (ja) * | 2014-01-24 | 2015-07-30 | 日立オートモティブシステムズ株式会社 | 電池モジュール |
JP2017212120A (ja) * | 2016-05-26 | 2017-11-30 | トヨタ自動車株式会社 | バッテリ |
JP2018204708A (ja) | 2017-06-06 | 2018-12-27 | パナソニックIpマネジメント株式会社 | 断熱材とそれを用いた発熱ユニット、および、電池ユニット |
JP2019099984A (ja) * | 2017-11-30 | 2019-06-24 | パナソニックIpマネジメント株式会社 | 断熱シートおよびその製造方法、ならびに電子機器および電池ユニット |
WO2019123903A1 (ja) * | 2017-12-19 | 2019-06-27 | 三洋電機株式会社 | 電源装置と電源装置用のセパレータ |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7448499B2 (ja) | 2021-02-26 | 2024-03-12 | トヨタ自動車株式会社 | 蓄電装置 |
CN113764796A (zh) * | 2021-09-07 | 2021-12-07 | 深圳市富兰瓦时技术有限公司 | 一种电池模组 |
JP7567874B2 (ja) | 2022-07-25 | 2024-10-16 | トヨタ自動車株式会社 | 蓄電装置 |
Also Published As
Publication number | Publication date |
---|---|
US20220247040A1 (en) | 2022-08-04 |
CN113906616B (zh) | 2023-10-24 |
EP3993146A1 (en) | 2022-05-04 |
EP3993146A4 (en) | 2023-03-08 |
CN113906616A (zh) | 2022-01-07 |
JPWO2020261729A1 (ja) | 2020-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020262080A1 (ja) | 電源装置とこの電源装置を備える電動車両及び蓄電装置 | |
WO2020261729A1 (ja) | 電源装置とこの電源装置を備える電動車両及び蓄電装置 | |
WO2020262081A1 (ja) | 電源装置とこの電源装置を備える電動車両及び蓄電装置 | |
JP7491903B2 (ja) | 電源装置と電動車両 | |
JP7422739B2 (ja) | 電源装置と電動車両 | |
WO2019155713A1 (ja) | 電源装置及びこの電源装置を備える電動車両及び蓄電装置 | |
JP2021061087A (ja) | 電源装置及びこの電源装置を備える電動車両及び蓄電装置 | |
WO2020262079A1 (ja) | 電源装置とこの電源装置を備える電動車両及び蓄電装置 | |
WO2021199545A1 (ja) | 電源装置とこの電源装置を備える電動車両及び蓄電装置 | |
WO2021199546A1 (ja) | 電源装置とこの電源装置を備える電動車両及び蓄電装置 | |
JP2021009786A (ja) | 電源装置とこの電源装置を備える電動車両及び蓄電装置、電池セルユニット、電源装置の製造方法 | |
WO2021199492A1 (ja) | 電源装置とこの電源装置を備える電動車両及び蓄電装置 | |
WO2020262085A1 (ja) | 電源装置とこの電源装置を備える電動車両及び蓄電装置 | |
JP7387223B2 (ja) | 電源装置とこの電源装置を備える電動車両及び蓄電装置 | |
JP7570327B2 (ja) | 電源装置とこの電源装置を備える電動車両及び蓄電装置 | |
WO2021199547A1 (ja) | 電源装置とこの電源装置を備える電動車両及び蓄電装置 | |
WO2020261727A1 (ja) | 電源装置とこの電源装置を備える電動車両及び蓄電装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021527412 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2020833153 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20833153 Country of ref document: EP Kind code of ref document: A1 |