WO2020261840A1 - 回転機械駆動システムおよび回転機械駆動システムの制御方法 - Google Patents

回転機械駆動システムおよび回転機械駆動システムの制御方法 Download PDF

Info

Publication number
WO2020261840A1
WO2020261840A1 PCT/JP2020/020780 JP2020020780W WO2020261840A1 WO 2020261840 A1 WO2020261840 A1 WO 2020261840A1 JP 2020020780 W JP2020020780 W JP 2020020780W WO 2020261840 A1 WO2020261840 A1 WO 2020261840A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
drive system
abnormality
rotary machine
transmission
Prior art date
Application number
PCT/JP2020/020780
Other languages
English (en)
French (fr)
Inventor
祐貴 馬飼野
伸之 成澤
見多 出口
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to EP20831440.1A priority Critical patent/EP3993258A4/en
Priority to CN202080007247.XA priority patent/CN113228498B/zh
Priority to US17/419,936 priority patent/US11632073B2/en
Publication of WO2020261840A1 publication Critical patent/WO2020261840A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/023Power-transmitting endless elements, e.g. belts or chains
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/0822Integrated protection, motor control centres
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/028Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the motor continuing operation despite the fault condition, e.g. eliminating, compensating for or remedying the fault

Definitions

  • the present invention relates to a rotary machine drive system and a control method for the rotary machine drive system.
  • compressors There are many types of belt-driven rotating machines that are driven by receiving the transmission of the driving force of the electric motor by the belt, such as compressors, refrigerators, and fans. Even if limited to compressors, there are a wide variety of compressors such as reciprocating air compressors, scroll compressors, screw compressors, and pump compressors.
  • a reciprocating air compressor an electric motor that gives rotational force is connected to the compression mechanism via a power transmission belt and a pulley.
  • the compression mechanism takes in air from the intake filter and reciprocates the piston provided in the compression mechanism to compress the air.
  • electrical information current, voltage, etc.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8--10065
  • Patent Document 1 load fluctuation is checked from the applied current of the motor, and when the load of the motor is reduced, it is determined that the filter is clogged abnormally, and when the abnormality is determined, compressed air is supplied to the filter. , A technique for removing dust adhering to a filter is disclosed.
  • a rotary machine system for example, the reciprocating air compressor
  • the driving force of an electric machine is transmitted by a belt
  • a pulley on the electric machine side that is directly connected to the electric motor shaft and outputs a rotary driving force
  • a pulley of the rotating machine A belt for power transmission is hung between the pulley on the rotating machine side that applies the rotational driving force to the compression mechanism. Therefore, as the belt wears and deteriorates, the frictional force between the pulley and the belt decreases, slipping occurs, and the driving force transmission is insufficient.
  • the belt may be broken or damaged due to long-term use, resulting in insufficient driving force transmission.
  • the rotational driving force of the electric motor cannot be properly transmitted to the compression mechanism, and normal operation cannot be continued.
  • the air compression by the compressor becomes insufficient, and the air pressure cannot reach a predetermined pressure value.
  • an object of the present invention is a rotating machine capable of diagnosing an abnormality in transmission of rotational driving force in a belt drive transmitting unit composed of a pulley and a belt existing between an electric machine and a rotating machine. It is to provide a control method of a drive system and a rotary machine drive system.
  • the present invention includes, for example, a power supply, an electric motor driven by the electric power supplied from the power supply, a rotating machine, and an electric motor side pulley that outputs the rotational driving force of the electric motor.
  • a rotary machine drive system including a rotary machine side pulley for driving the rotary machine, a belt drive transmission unit having a belt hung between the motor side pulley and the rotary machine side pulley, and electrical information of the electric motor. Based on the electrical information and the electrical information detection sensor that detects the above, it is determined whether or not the transmission abnormality of the rotational driving force in the belt drive transmission unit has occurred, and when the transmission abnormality is determined, the abnormality detection signal is transmitted. It is a rotary machine drive system provided with a diagnostic unit for output.
  • a power source an electric motor driven by the electric power supplied from the power source, a rotating machine, an electric motor side pulley for outputting the rotational driving force of the electric motor, and the rotating machine are driven.
  • a rotary machine system including a rotary machine side pulley, a belt drive transmission unit having a belt hung between the electric motor side pulley and the rotary machine side pulley, and an electric information detection sensor for detecting electric information of the electric motor. It is a control method, and based on the detected electrical information, it is determined whether or not a transmission abnormality of the rotational driving force in the belt drive transmission unit has occurred, and when the transmission abnormality is determined, an abnormality detection signal is output. This is a control method for the rotary machine drive system that outputs.
  • Other configurations relating to the present invention will become clear from the description of Examples described later.
  • the present invention it is possible to realize a rotary machine drive system and a control method for the rotary machine drive system that can reliably detect a transmission abnormality of the rotary drive force in the belt drive transmission unit during the operation period of the rotary machine. it can.
  • FIG. 1 It is a figure which shows the rotary machine drive system which concerns on Example 1 of this invention. It is explanatory drawing of the reciprocating air compressor which concerns on Example 1.
  • FIG. It is explanatory drawing of the periodic load torque of the rotary machine which concerns on Example 1.
  • FIG. It is explanatory drawing of the current waveform of the diagnostic part which concerns on Example 1.
  • FIG. It is a figure which shows the rotary machine drive system which concerns on Example 2 of this invention. It is explanatory drawing of the driving force pattern, the phase current waveform, and the q-axis current which concerns on Example 2.
  • FIG. It is a figure which shows the rotary machine drive system which concerns on Example 3 of this invention. It is a figure which shows the rotary machine drive system which concerns on Example 4 of this invention.
  • Example a specific embodiment for carrying out the present invention (hereinafter referred to as “Example”) will be described in detail with reference to the drawings.
  • the present invention is not limited to the examples described below. Further, in each of the drawings used in the following description, the same reference numerals are given to the common devices and devices, and the description of the devices, devices and operations already described may be omitted.
  • FIG. 1 is a diagram showing a rotary machine drive system according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing a reciprocating air compressor which is an example of the rotating machine in the first embodiment.
  • FIG. 3 shows the load torque of the reciprocating air compressor.
  • FIG. 4 is an explanatory diagram of the current waveform of the diagnostic unit.
  • the three-phase AC power supply 1 supplies electric power to the electric motor 3 via a switch 2 that turns on and off the power supply. That is, by operating the switch 2 at the start of operation and turning on the power, the electric motor 3 is rotationally driven by the electric power of the AC power source 1.
  • a three-phase AC motor (for example, an induction motor) is used as the motor 3.
  • various other electric motors can be used.
  • the breaker 7 cuts off the electric power supplied to the electric motor 3 by the abnormality detection signal AB output when the belt drive transmission unit 8 is abnormal.
  • the rotating machine 4 receives the rotational driving force of the electric motor 3 from the belt 5 and rotationally drives the rotating machine 4.
  • the rotating machine 4 is referred to as a "reciprocating air compressor".
  • the schematic configuration of the reciprocating air compressor will be described later.
  • the electric motor 3 has a pulley 3P, and the rotary machine 4 also has a pulley 4P.
  • a belt 5 is hung between these pulleys 3P and 4P, and a "belt drive transmission unit 8" is formed by the pulley and the belt.
  • Reference numeral 6 is a current sensor.
  • a current phase current in this example
  • it can be similarly realized by using a voltage. That is, a voltage sensor may be used instead of the current sensor 6.
  • Reference numeral 10 is a diagnostic unit for diagnosing an abnormality in the driving force of the belt drive transmission unit 8.
  • the diagnostic unit 10 calculates the estimated rotation frequency fce of the rotating machine 4 based on the acquired electrical information (in this example, the detected current of the current sensor 6). Further, the diagnostic unit 10 calculates a reference rotation frequency fc as a reference by using the rotation speed (rotation frequency) of the electric motor 3 and the ratio (ratio) of the diameter of the pulley 3P of the electric motor to the diameter of the pulley of the rotating machine. To do.
  • the ratio of the diameters of the pulleys is a constant value and is set in advance. This reference rotation frequency fc matches the rotation frequency of the rotating machine when the belt transmission is normal.
  • the diagnostic unit 10 compares the difference (deviation) ⁇ f between the estimated rotation frequency fce and the reference rotation frequency fc with the threshold value S for determination stored in advance, and the difference ⁇ f exceeds the threshold value S. In this case, it is determined that the transmission of the rotational driving force in the belt driving transmission unit 8 is abnormal. Details of the specific configuration and operation of the determination unit 10 will be described later.
  • the alarm device 50 causes the worker to recognize (notify) that fact. belongs to.
  • the alarm device 50 for example, a known device such as a buzzer that generates a buzzer sound, a voice recognition device that notifies an abnormality by voice, a lamp that notifies by light, and a display device that notifies by screen display can be used.
  • the diagnostic unit 10 outputs an abnormality detection signal AB indicating an abnormality in the transmission of the driving force in the belt drive transmission unit 8
  • the information transmission unit 60 sends the monitoring center 70 at a location (remote location) separated from the rotating machine. On the other hand, it is for transmitting the information of the abnormality detection signal.
  • FIG. 2 is an air tank, and a compressor main body 102 and an electric motor 3 are installed on the air tank 101.
  • the compressor main body 102 is provided with a crankcase 103 fixed to an air tank 101, two compression mechanisms 104 composed of a cylinder and a piston, and an intake port 105 for sucking compressed air.
  • An electric motor side pulley 3P is provided on the back side surface of the compressor main body 102, and the belt 5 is hung around the pulley 4P on the compressor main body 102 side connected to the back side surface of the electric motor 3.
  • the rotational driving force of the electric motor 3 is transmitted to the compressor main body 102 by the belt drive transmission unit by the pulley 3P, the belt 5, and the pulley 4P to rotate, and the compression mechanism 104 operates.
  • the compressor body 102 rotates, it repeats four steps of inhaling air, compressing air, discharging compressed air, and expanding air. Specifically, in the compressor main body 102, the air sucked from the intake port 105 is compressed by the compression mechanism 104. Then, the compressed air is accumulated in the air tank 101 via the discharge pipe 106.
  • FIG. 3 shows a schematic diagram of the load torque waveform when the compressor main body 102 is rotated.
  • the torque is maximized at the rotation angle when the piston air is compressed and reaches top dead center, and the load torque is minimized at bottom dead center where the expansion stroke begins.
  • the periodic load torque fluctuation cycle is synchronized with the rotation speed of the compressor main body 102.
  • 107 is a pressure sensor, and when the pressure of the air tank 101 exceeds a predetermined value, the breaker 7 installed in the control device 108 is operated to stop the power supply to the electric motor 3. Note that this control is not shown in FIG.
  • the control device 108 includes a current sensor 6 and a diagnostic unit 10 which are electrical information detecting means.
  • the diagnostic unit 10 can be realized by a computer, but in FIG. 1, the processing in the computer is represented as a block diagram.
  • the program that performs the processing operation and the data information required for processing are stored in the internal memory and centrally processed.
  • the department executes a series of processing operations using the program and data information.
  • each operation process of the diagnostic unit 10 is represented as a functional block in order to facilitate understanding of those operations.
  • the electric motor 3 is a three-phase AC electric motor, and there are three wires, R, S, and T, from the AC power supply 1 to the electric motor 3.
  • the AC power source may be a single-phase power source, and the electric motor 3 may be a single-phase electric motor.
  • the current sensor 6 detects the current supplied to the electric motor 3.
  • the rotational driving force of the electric motor 3 is transmitted to the rotary machine 4 by the belt drive transmission unit 8 composed of the electric motor side pulley 3P, the rotary machine side pulley 4P, and the belt 5.
  • the current waveform that changes at the current frequency fm [Hz] of the electric motor 3 is modulated by the periodic load torque of the rotary machine 4 at the frequency fc [Hz]. Is observed.
  • the belt transmission is normal, that is, when slip does not occur between the pulley and the belt, or when the belt or the like is not damaged, the relationship between the current frequency fm and the rotation frequency fc of the rotating machine is expressed in Eq. (1).
  • P1 is the diameter of the pulley 3P on the electric motor side
  • P2 is the diameter of the pulley 4P on the rotary machine 4 side.
  • Pm is a pole logarithm determined by the structure of the electric motor 3, and is a coefficient for converting the rotation frequency of the mechanical motor shaft and the electric frequency of the electric motor.
  • the rotation frequency fm corresponding to the rotation speed of the electric motor can be known in advance from the frequency of the AC power supply supplied to the electric motor.
  • the rotation frequency fm may be detected by a sensor.
  • fc P2 / P1 ⁇ fm / Pm ......... (1)
  • the diagnostic unit 10 includes an AD converter 11 that converts an analog signal into a digital signal, and a controller 12.
  • the controller 12 can be realized by a computer.
  • the controller 12 includes an estimated rotation frequency calculation unit 13 that calculates the rotation frequency fce estimated from the current of the current sensor 6, a reference rotation frequency calculation unit 14 that calculates the reference rotation frequency fc, and these two rotation frequencies. It has a function of an abnormality determination unit 15 that determines an abnormality based on the above.
  • the calculation of the reference rotation frequency calculation unit 14 is as described in the above equation (1).
  • the detected current Ir of the current sensor 6 is input to the estimated rotation frequency calculation unit 13 in the controller 12 via the AD converter 11.
  • the AD converter 11 is unnecessary.
  • the estimated rotation frequency calculation unit 13 is composed of an envelope detection unit 16 that extracts the envelope signal IhL, a frequency conversion unit 17, and a maximum frequency extraction unit 18.
  • the envelope detection unit 16 inputs the detected current Ir, processes the current Ir at the envelope detection unit 16, and extracts the envelope signal IhL.
  • the envelope detection unit 16 performs heterodyne detection. In heterodyne detection, as shown in Eq. (2), the detected current Ir is multiplied by a sinusoidal function that changes with the electric frequency fm of the motor.
  • the sine wave function generator 163 outputs a sine wave function using the electric frequency fm of the electric motor.
  • the multiplier 161 multiplies the current Ir by a sinusoidal function.
  • the electric frequency fm of the electric motor can be known in advance from the frequency of the AC power supply.
  • Ih Ir ⁇ sin (2 ⁇ ⁇ fm ⁇ t) .
  • Ir ⁇ Io ⁇ sin (2 ⁇ ⁇ fc ⁇ t) ⁇ ⁇ sin (2 ⁇ ⁇ fm ⁇ t) .
  • Io is the current amplitude
  • the right-hand side term indicates that the current of the amplitude Io changes with the frequency fc of the equation (1).
  • equation (2) can be transformed like equation (4) using a half-angle formula.
  • LPF low-pass filter 162
  • IhL ⁇ Io ⁇ sin (2 ⁇ ⁇ fc ⁇ t) ⁇ / 2 .
  • the envelope detection unit 16 calculates the envelope signal IhL.
  • Figure 4 shows the current waveform. Although the current waveform of one phase is shown here, the current of all phases may be detected.
  • 401 is the detected current waveform and 402 is the envelope signal.
  • the envelope signal IhL is converted into the intensity at each frequency by the frequency conversion unit 17.
  • the maximum frequency extraction unit 18 extracts the frequency having the maximum amplitude, and calculates the estimated rotation frequency fce of the rotating machine 4.
  • the estimated rotation frequency calculation unit 13 outputs the calculated estimated rotation frequency fce of the rotating machine 4 to the abnormality determination unit 15.
  • the abnormality determination unit 15 determines an abnormality based on the estimated rotation frequency fce which is the calculation output of the estimated rotation frequency calculation unit 13 to be calculated and the reference rotation frequency fc which is the calculation output of the reference rotation frequency calculation unit 14. I do.
  • the comparison unit 152 when the deviation ⁇ f is larger than the threshold value S ( ⁇ f ⁇ S), it is assumed that the belt drive transmission unit 8 has a rotational driving force transmission abnormality due to slip or the like between the pulley and the belt. to decide.
  • the comparison unit 152 determines that the transmission is abnormal, the abnormality determination unit 15 outputs an “abnormality detection signal” indicated by reference numeral AB.
  • the rotation frequency [Hz] described above can be replaced with an angular rotation speed [rad / s], a rotation speed [min -1 ], or the like.
  • the diagnosis unit 10 can reliably detect an abnormality in the transmission of the driving force by the belt (abnormality in the transmission of the rotational driving force in the belt drive transmission unit 8) as the output of the abnormality determination unit 15.
  • the diagnosis unit 10 detects an abnormality, the diagnosis unit 10 outputs an abnormality detection signal AB.
  • the diagnosis unit 10 when the diagnosis unit 10 outputs the abnormality detection signal AB, the operation corresponding to the transmission abnormality is executed.
  • One of the measures is to operate the breaker 7 based on the output of the abnormality detection signal AB to cut off the power supply to the electric motor 3. Note that in FIG. 1, relays, amplifiers, and the like for operating the breaker are omitted.
  • the alarm device 50 By outputting the abnormality detection signal AB to the alarm device 50, the alarm device 50 operates and notifies the operator of the abnormality.
  • known devices such as a buzzer, a voice recognition device, a lamp, and a display device can be used.
  • the abnormality detection signal AB is transmitted to the monitoring center 70 by using the information transmission unit 60 composed of 61, the communication line 62, and the like.
  • the abnormality detection signal AB is transmitted to the server 71 in the monitoring center 70, and the terminal device 72 executes an operation such as displaying the content corresponding to the abnormality detection signal AB on the screen. Further, in this case, the operator can also operate the terminal device 72 to instruct the rotating machine drive system to take appropriate measures.
  • the monitoring center 70 is composed of the server 71 and the terminal device 72, but the present invention is not limited to this, and for example, the server 71 may not be provided and only the terminal device 72 may be used. In that case, the abnormality detection signal AB is transmitted to the terminal device 72.
  • the diagnostic unit 10 shown in FIG. 1 described above determines only whether or not the driving force transmission of the belt drive transmission unit 8 is abnormal. However, it is possible to detect not only the detection of an abnormality determination but also the difference in the degree (abnormality level) of the transmission abnormality of the rotational driving force. That is, in order to detect a plurality of abnormality levels, the abnormality determination unit 15 prepares a plurality of threshold values corresponding to the abnormality levels, and compares the frequency deviation ⁇ f with those threshold values to determine the degree of abnormality. It is possible to perform multiple levels of abnormality detection according to the situation.
  • threshold values S1, S2, and S3 corresponding to the level are prepared, and each of these threshold values is compared with the frequency deviation ⁇ f. To do. Then, if S1 ⁇ f, it is “normal”, if S1 ⁇ ⁇ f ⁇ S2, it is “abnormal level 1”, if S2 ⁇ ⁇ f ⁇ S3, it is “abnormal level 2”, and if S3 ⁇ f, it is “abnormal level 3”. Can be judged as.
  • the present invention similarly uses the ratio thereof instead of the deviation ⁇ f. Can be carried out.
  • the threshold value of the comparison unit 152 may be a value corresponding to those ratios.
  • FIG. 5 is a diagram showing a rotary machine drive system according to a second embodiment of the present invention.
  • FIG. 6 is a waveform diagram of electrical information used for explaining the operation of the second embodiment.
  • the electric motor control device 20 is provided to supply the electric power supplied to the electric motor 3 via the power conversion device 21, and the diagnostic unit 10 uses a part of the calculated output of the electric motor control device 20. It is used to diagnose abnormalities.
  • Example 2 is different from Example 1 described above in these configurations. Other points are the same as in the first embodiment. Therefore, here, the matters already described in the first embodiment will be omitted, and the configurations and operations peculiar to the second embodiment will be mainly described.
  • the electric motor control device 20 includes a power conversion device 21 and a control controller 22 that controls the power conversion device 21.
  • the power conversion device 21 includes a rectifying circuit 23 that converts an AC power supply 1 into a DC power supply, and a switching circuit 24 that applies a three-phase voltage (U, V, W) to the electric motor 3 based on a voltage command Vg from the controller 22. It includes a current sensor 25 that detects a direct current, and current sensors 26 and 27 that measure the phase current of the current supplied to the electric motor 3.
  • an AC voltage is rectified to a DC voltage by using a diode bridge and a capacitor.
  • the controller 22 outputs a voltage command Vg that controls the rotation speed of the electric motor 3 based on the direct current Idca, the U-phase current Iua, and the W-phase current Iwa measured by the current sensors 25 to 27. Further, the controller 22 transmits the electric information CS such as the current acquired from the current sensor and the control information used for controlling the electric motor to the diagnostic unit 10.
  • the detection signals (analog signals) of the current sensors 25 to 27 are input to the microcontroller 220 via the AD converters 221 to 223.
  • the microcontroller 220 calculates the voltage command of the power supply supplied to the electric motor 3 from these input signals.
  • the U-phase current Iu and the W-phase current Iw are converted on the dq axis by the rotating coordinate conversion to obtain the torque current Iq correlated with the torque and the magnetic flux current Id correlated with the magnetic flux.
  • This rotating coordinate conversion formula follows the formula (6).
  • Iv is a V-phase current and can be obtained by Eq. (7) from the three-phase parallel condition.
  • Iv -Iu --Iw ......... (7)
  • is the rotor position of the electric motor, and although not shown, a value calculated by an observer or the like for estimating the rotor position is used.
  • the dq axis is a control axis synchronized with the rotor position ⁇ . After that, the torque current Iq is current-controlled so as to obtain a predetermined speed command by using proportional integration control or the like.
  • the diagnostic unit 10 receives the electrical information CS from the microcontroller 220.
  • This electrical information CS includes torque current Iq in addition to U-phase current Iu, W-phase current Iw, and direct current Idc acquired from current sensors 25 to 27.
  • the control information also includes the command value of the torque current Iq calculated by using proportional integration control and the like, and the voltage commands Vd and Vq calculated on the dq axis.
  • FIG. 6 shows waveforms of U-phase current Iu, W-phase current Iw, DC current Idc, V-phase current Iv calculated by equation (7), and torque current Iq calculated by equation (6) obtained from the microcontroller 220. Is shown.
  • FIG. 6A shows each phase current, and 601 shows the pulsating cycle.
  • the diagnostic unit 10 calculates the estimated rotation frequency fce of the rotating machine and the reference rotation frequency fc based on the received electrical information.
  • the estimated rotation frequency fce and the reference rotation frequency fc are input to the abnormality determination unit 15 (see FIG. 1), although not shown in FIG.
  • the abnormality determination unit 15 obtains these deviations ⁇ f, and determines the abnormality of the driving force transmission in the belt drive transmission unit 8 by comparing and determining the deviation ⁇ f and the threshold value S. If it is determined that the abnormality is present, the diagnosis unit 10 outputs the abnormality detection signal AB to the outside.
  • the abnormality detection signal AB is transmitted to the electric motor control device 20 (control controller 22).
  • the control controller 22 controls the power conversion device 21 and performs control that reduces the speed of the electric motor 3.
  • the deviation ⁇ f is input from the diagnostic unit 10 together with the abnormality detection signal AB so that the deviation ⁇ f is eliminated, that is, the abnormality of the belt drive transmission unit 8 is eliminated or the abnormal state is alleviated.
  • the breaker 7 can be controlled to cut off the power supply to the electric motor 3.
  • the abnormality detection signal AB is set as a signal indicating a plurality of abnormality levels corresponding to the abnormality state as described above, the control of the electric motor can be easily realized by the abnormality detection signal AB corresponding to the abnormality level. it can. Further, by supplying the abnormality detection signal AB to the alarm device 50, it is possible to notify the operator of the abnormality. Alternatively, the abnormality detection signal AB can be transmitted to the server 71 in the monitoring center 70 via the information transmission unit 60 to notify the operator of the abnormality. The operation of the alarm device 50 and the operation of transmitting the abnormality detection signal to the monitoring center 70 are as described in detail in the description of the first embodiment (FIG. 1).
  • the diagnostic unit 10 receives electrical information from the control controller 22 and uses the electrical information to perform an abnormality diagnosis. However, as in the first embodiment described above, The diagnostic unit 10 may input electrical information from a sensor that detects current or voltage to perform an abnormality diagnosis.
  • the electric motor control device 20 and the diagnostic unit 10 are separately installed, but the diagnostic unit 10 is not provided and the functional operation of the diagnostic unit 10 is executed in the electric motor control device 20. You may do so. That is, if the function of the diagnostic unit 10 is provided in the control controller 22 of the electric motor control device 20, it is not necessary to separately install the diagnostic unit 10. In that case, the configuration becomes very simple.
  • the abnormality diagnosis is performed using the deviation ⁇ f between the estimated rotation frequency fce and the reference rotation frequency fc, but the present invention similarly uses the ratio thereof instead of the deviation ⁇ f. Can be carried out.
  • the threshold value of the comparison unit 152 may be a value corresponding to those ratios.
  • the degree of transmission abnormality may be detected as a plurality of abnormality levels.
  • the second embodiment of the present invention has the same effect as that of the first embodiment.
  • the motor deceleration control for eliminating the abnormality can be performed based on the abnormality detection signal.
  • electrical information can be obtained from this electric motor control device, it is not necessary to provide a detection sensor for detecting a new current or voltage.
  • the estimated rotation frequency of the rotating machine can be calculated without performing the envelope detection process.
  • FIG. 7 is a diagram showing a rotary machine drive system according to the third embodiment.
  • the diagnostic unit 10 for detecting the driving force transmission abnormality by the belt is not provided adjacent to the rotating machine, but the diagnostic unit 10 is installed in the monitoring center 70 installed at a remote location. There is. In that respect, it differs from the above-described embodiment. Others are the same as in Example 1. Therefore, the matters already described will be omitted, and the configurations and operations peculiar to the third embodiment will be mainly described.
  • the electric motor control device 20 uses the information transmission unit 60 to transmit an electric signal for diagnosing an abnormality in the driving force transmission by the belt to the server 71 in the monitoring center 70.
  • the electric motor control device 20 transmits an electric signal for diagnosing an abnormality, but the current or voltage may be transmitted to the server 71 as in the first embodiment.
  • the server 71 stores this electrical information and gives it to the diagnostic unit 10.
  • the diagnosis unit 10 uses this electrical signal to perform the above-mentioned abnormality diagnosis. Since the operation content of this diagnosis overlaps with the above, the description thereof is omitted here.
  • the diagnosis unit 10 detects a driving force transmission abnormality by the belt as a result of the diagnosis, the diagnosis unit 10 outputs an abnormality detection signal AB to the server 71.
  • the server 71 stores the abnormality detection signal AB and transmits it to the control controller 22 in the electric motor control device 20 via the information transmission unit 60.
  • control controller 22 When the control controller 22 inputs this signal, it executes deceleration control and stop control of the electric motor, and outputs an abnormality detection signal to the alarm device 50.
  • the alarm device 50 executes the alarm operation by this signal.
  • FIG. 8 is a diagram showing a configuration of a rotary machine drive system according to a fourth embodiment of the present invention.
  • the rotating machine is driven by an electric motor, but in the fourth embodiment of the present invention, the rotating machine drives an electric motor (generator) to generate electric power.
  • the rotating machine drives an electric motor (generator) to generate electric power.
  • the matters already described will be omitted, and the configurations and operations peculiar to the fourth embodiment will be mainly described.
  • the rotary machine 4 generates a mechanical rotary driving force like an internal combustion engine.
  • the rotational driving force of the rotary machine 4 is transmitted to the electric motor 3 by the pulley 4P of the rotary machine 4, the belt 5, and the belt drive transmission unit 8 by the pulley 3P of the electric motor 3.
  • the electric motor 3 receives this driving force and generates (generates) AC power. That is, the electric motor functions as a generator.
  • This AC power is converted into DC power by the power conversion device 80.
  • the power storage device 90 stores this DC power.
  • the rotary machine drive system in FIG. 8 is configured such that the rotary machine drives the electric motor and the electric power generated by the electric motor is stored in the power storage device 90.
  • the electric motor 3 may generate DC power instead of AC power. In that case, the generated power is directly stored in the power storage device 90 without going through the power conversion device 80. Further, the generated electric power may be supplied to a load that requires electric power without being stored in the electric power storage device 90.
  • the diagnostic unit 10 in this embodiment has the same configuration as the diagnostic unit 10 in FIG. That is, the diagnostic unit 10 inputs the current Ir detected by the current sensor 6 by the same method as in the first embodiment, and diagnoses whether or not the driving force transmission by the belt is in an abnormal state. If the result of the diagnosis is abnormal, the abnormality detection signal AB is output.
  • the alarm device 50 executes an alarm operation to notify the abnormality. Further, when the monitoring center 70 exists in a remote place, the abnormality detection signal AB is transmitted via the information transmission unit 60.
  • the present invention is not limited to the above-described embodiment, and can be widely implemented as long as it is a rotary machine drive system that transmits a driving force by a belt.
  • the envelope detection method and the frequency change have been described when calculating the estimated rotation frequency of the rotating machine, but the present invention is not limited to this.
  • the occurrence time of the peak interval of the envelope may be counted, and the estimated rotation frequency of the rotating machine may be calculated from the interval.
  • the above-described examples are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, it is possible to add / delete / replace a part of the configuration of the embodiment with another configuration.
  • the above-mentioned mechanisms and configurations are shown as necessary for explanation, and do not necessarily show all the mechanisms and configurations.
  • Communication line 70 ... Monitoring center, 71 ... Server, 72 ... Terminal device, 80 ... Power converter, 90 ... Power storage device, 151 ... Subtraction unit, 152 ... Comparison unit, 161 ... Multiplier, 162 ... Low pass filter, 220 ... Micro controller, 221 to 223 ... AD converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

この発明では、電動機と回転機械との間に存在するプーリーとベルトにより構成されるベルト駆動伝達部の伝達異常が発生していることを判断する。 電動機と、回転機械と、それらの間に設置されたベルト駆動伝達部とを備えており、電動機の電流又は電圧を検出し、その電流又は電圧に基づいて、ベルト駆動伝達部の伝達異常を判断し、前記伝達異常を判断したとき異常検知信号を出力する診断部を設けている。診断部では、検出した電流に基づき前記回転機械の推定回転速度情報を演算し、前記電動機の回転速度と前記回転機側プーリーと前記回転機械側プーリーとから基準回転周波数を演算し、該推定回転速度情報と該基準回転周波数との差又比を用いて前記伝達異常を判断する。

Description

回転機械駆動システムおよび回転機械駆動システムの制御方法
 本発明は、回転機械駆動システムおよび回転機械駆動システムの制御方法に関する。
 ベルトにより電動機の駆動力の伝達を受けて駆動されるベルト駆動の回転機械としては、圧縮機、冷凍機、ファン等多数存在する。圧縮機に限定しても、往復動空気圧縮機、スクロール圧縮機、スクリュー圧縮機、ポンプ圧縮機など多種多様のものがある。
 例えば、往復動空気圧縮機では、回転力を与える電動機が動力伝達ベルトとプーリーを介して圧縮機構に接続されている。圧縮機構は、吸気フィルタより空気を取込み、圧縮機構に備わったピストンを往復動作させることで、空気を圧縮する。このような空気圧縮機において、電気情報(電流、電圧、等)を用いて回転機械の状態を判断し、異常があると判断した場合にはその異常が無くなるように回転機械を制御する技術が、特開平8-100765号公報(特許文献1)に開示されている。
 この特許文献1には、電動機の印加電流から負荷変動をチェックし、電動機の負荷が低下したときにフィルタの目詰まり異常と判断し、異常を判断した場合にはフィルタに圧縮空気を供給して、フィルタに付着した塵埃を除去する技術が開示されている。
特開平8-100765号公報
 ところで、電動機の駆動力をベルトにより回転機械の伝達する回転機械システム(例えば、上記往復動空気圧縮機)では、電動機軸と直結して回転駆動力を出力する電動機側のプーリーと、回転機械の圧縮機構に回転駆動力を与える回転機械側のプーリーとの間に動力伝達用のベルトが掛けられる構成になっている。そのため、ベルトの摩耗や劣化が進むと、プーリーとベルト間の摩擦力が低下して滑り(スリップ)が発生し、駆動力伝達不足が発生する。また、長期間の使用によりベルトの破断や損傷が発生し、駆動力伝達不足が発生する。このような場合、電動機の回転駆動力を圧縮機構に適切に伝達することができなくなり、正常な運転の継続ができなくなる。例えば、往復動空気圧縮機の場合には、圧縮機による空気圧縮が不十分となり、空気圧が所定の圧力値まで到達することができなくなる。
 そこで、本発明の目的は、電動機と回転機械との間に存在するプーリーとベルトにより構成されるベルト駆動伝達部において回転駆動力の伝達異常が発生していることを診断することができる回転機械駆動システム及び回転機械駆動システムの制御方法を提供することである。
 上記課題を解決するため、本発明は、その一例を挙げると、電源と、該電源から供給される電力により駆動する電動機と、回転機械と、前記電動機の回転駆動力を出力する電動機側プーリー、前記回転機械を駆動する回転機械側プーリー及び該電動機側プーリーと該回転機械側プーリー間に掛けられるベルトを有するベルト駆動伝達部と、を備えた回転機械駆動システムであって、前記電動機の電気情報を検出する電気情報検出センサと、該電気情報に基づいて、前記ベルト駆動伝達部における前記回転駆動力の伝達異常が発生しているかどうかを判断し、前記伝達異常を判断したとき異常検知信号を出力する診断部と、を設けた回転機械駆動システムである。
 また、本発明の他の一例を挙げると、電源と、該電源から供給される電力により駆動する電動機と、回転機械と、前記電動機の回転駆動力を出力する電動機側プーリー、前記回転機械を駆動する回転機械側プーリー、該電動機側プーリー及び該回転機械側プーリー間に掛けられるベルトを有するベルト駆動伝達部と、前記電動機の電気情報を検出する電気情報検出センサと、を備えた回転機械システムの制御方法であって、該検出した該電気情報に基づいて、前記ベルト駆動伝達部における前記回転駆動力の伝達異常が発生しているかどうかを判断し、前記伝達異常を判断したとき異常検知信号を出力する回転機械駆動システムの制御方法である。
  本発明に関するその他の構成は、後述する実施例の記載から明らかとなる。
 本発明によれば、回転機械の運転期間中において、ベルト駆動伝達部における回転駆動力の伝達異常を確実に検知することができる回転機械駆動システムおよび回転機械駆動システムの制御方法を実現することができる。
本発明の実施例1に係る回転機械駆動システムを示す図である。 実施例1に係る往復動空気圧縮機の説明図である。 実施例1に係る回転機械の周期的な負荷トルクの説明図である。 実施例1に係る診断部の電流波形説明図である。 本発明の実施例2に係る回転機械駆動システムを示す図である。 実施例2に係る駆動力パターン、相電流波形、q軸電流の説明図である。 本発明の実施例3に係る回転機械駆動システムを示す図である。 本発明の実施例4に係る回転機械駆動システムを示す図である。
 以下、本発明を実施するための具体的な形態(以下「実施例」という)について、図面を参照して詳細に説明する。なお、本発明は、以下に説明する実施例に限定されるものではない。また、以下の説明において使用する各図面において、共通する各装置、各機器には同一の符号を付しており、すでに説明した各装置、機器および動作の説明を省略する場合がある。
 次に、本発明の実施例1について、図1~図4を用いて説明する。図1は、本発明の実施例1における回転機械駆動システムを示す図である。図2は、実施例1における回転機械の一例である往復動空気圧縮機を示す図である。図3は往復動空気圧縮機の負荷トルクを示している。図4は診断部の電流波形説明図である。
 (回転駆動システムの構成)
 まず、図1を用いて、実施例1における回転機械駆動システムの構成を説明する。
  図1において、三相の交流電源1は、電源の投入と遮断を行うスイッチ2を介して、電動機3に電力を供給する。つまり、運転開始時にスイッチ2を操作し、電源投入することにより、交流電源1の電力により電動機3は回転駆動する。この電動機3には、三相交流電動機(例えば誘導電動機)を使用する。もちろん、電動機3は、それ以外の種々の電動機を使用することができる。遮断機7は、ベルト駆動伝達部8が異常の場合に出力される異常検知信号ABにより電動機3に供給する電力を遮断する。回転機械4は、ベルト5から電動機3の回転駆動力を受け、回転駆動する。この実施形態では回転機械4を「往復動空気圧縮機」とする。なお、往復動空気圧縮機の概略構成は後述する。電動機3はプーリー3Pを有しており、また回転機械4もプーリー4Pを有している。これらのプーリー3Pと4Pの間にはベルト5が掛けられており、プーリーとベルトによる「ベルト駆動伝達部8」が形成されている。6は電流センサである。この実施例では、電気情報として、電流(この例では相電流)を用いた例で説明するが、本発明では、電圧を使用しても同様に実現することができる。つまり、電流センサ6の代わりに、電圧センサを用いても良い。
 10はベルト駆動伝達部8の駆動力の異常を診断する診断部である。診断部10は、取得した電気情報(この例では、電流センサ6の検出電流)に基づいて回転機械4の推定回転周波数fceを演算する。また、診断部10は、電動機3の回転速度(回転周波数)と、電動機のプーリー3Pの径と回転機械のプーリーの径の比(比率)とを用いて、基準となる基準回転周波数fcを演算する。プーリーの径の比率は一定値であり予め設定しておく。この基準回転周波数fcをは、ベルト伝達が正常である場合における回転機械の回転周波数と合致する。そして、診断部10は、この推定回転周波数fceと基準回転周波数fcとの差分(偏差)Δfと、予め記憶しておいた判断のための閾値Sとを比較し、差分Δfが閾値Sを上回る場合に、ベルト駆動伝達部8における回転駆動力の伝達異常と判断する。この判断部10の具体的な構成および動作の詳細については後述する。
 図1において、発報装置50は、診断部10がベルト駆動伝達部8における回転駆動力の伝達異常を示す異常検知信号ABを出力した場合に、作業員にその旨を認識させる(知らせる)ためのものである。この発報装置50としては、例えば、ブザー音を発生させるブザー、音声により異常であることを知らせる音声認識装置、光により知らせるランプ、画面表示により知らせる表示装置など公知の装置を用いることができる。情報伝送部60は、診断部10がベルト駆動伝達部8における駆動力の伝達異常を示す異常検知信号ABを出力した場合に、回転機械と隔れた場所(遠隔地)にある監視センター70に対して、異常検知信号の情報を伝送するためのものである。
 (往復動空気圧縮機の説明)
 次に、この実施例1の回転機械システムの回転機械4である往復動空気圧縮機について図2を用いて説明する。
  図2において、101は空気タンクであり、空気タンク101上には圧縮機本体102と電動機3が設置されている。圧縮機本体102には、空気タンク101に固定されたクランクケース103とシリンダとピストンで構成される2つの圧縮機構104と、圧縮する空気を吸込む吸気口105とが設けられている。
 圧縮機本体102の背側面には電動機側プーリー3Pが設けられ、ベルト5は、電動機3の背側面に接続された圧縮機本体102側のプーリー4Pに掛け回されている。この構成により、電動機3が回転すると、プーリー3P,ベルト5、プーリー4Pによるベルト駆動伝達部により、電動機3の回転駆動力が圧縮機本体102に伝達されて回転し、圧縮機構104が動作する。圧縮機本体102は回転に伴い、空気の吸入、空気の圧縮、圧縮した空気の吐出、空気の膨張、の4つの工程を繰返す。具体的には、圧縮機本体102では、吸気口105から吸い込まれた空気が圧縮機構104で圧縮される。そして、圧縮された空気は、吐出管106を介して空気タンク101に蓄圧される。
 図3に圧縮機本体102を回転させる際の負荷トルク波形の模式図を示す。ピストン空気を圧縮し上死点に達した回転角度でトルクが最大、膨張行程の始まる下死点で負荷トルクが最小となる。またこの周期的な負荷トルクの変動周期は、圧縮機本体102の回転速度に同期する。図2において、107は圧力センサであり、空気タンク101の圧力が所定値を超えた場合に制御装置108に設置された遮断機7を動作させ電動機3への電源供給を停止させる。なお、図1では、この制御は図示していない。制御装置108には、遮断機7に加え電気情報検出手段である電流センサ6と診断部10が備わっている。
 (診断部10の異常診断動作)
 次に、図1における診断部10の動作を説明する。診断部10は、コンピュータで実現することができるが、図1では、コンピュータにおける処理をブロック図として表している。つまり、コンピュータで処理する場合には、内部のメモリに、処理動作を行うプログラムと処理に必要なデータ情報(例えば、プーリーの径、電源周波数、電動機の極対数など)とを記憶し、中央処理部がそのプログラムとデータ情報を利用して一連の処理動作を実行する。図1では、それらの動作に関する理解を容易にするために、この診断部10の各動作処理を機能ブロックとして表現している。また、ここでは、電動機3は三相交流電動機とし、交流電源1から電動機3への配線が、R、S、Tの三本あるものとして説明する。なお、交流電源を単相電源とし、電動機3を単相電動機としてもよい。
 電流センサ6は、電動機3に供給されている電流を検出する。電動機3の回転駆動力は、電動機側プーリー3Pと回転機械側プーリー4Pとベルト5による構成されるベルト駆動伝達部8により回転機械4に伝達される。周期的な負荷トルクの生じる回転機械4では、電動機3の電流周波数fm[Hz]で変化する電流波形が、回転機械4の周期的な負荷トルクにより、その振幅が周波数fc[Hz]で変調されて観測される。ベルト伝達が正常、つまりプーリーとベルト間でスリップが発生していない場合あるいはベルト等が損傷していない場合には、電流周波数fmと回転機の回転周波数fcとの関係は、式(1)のように表すことができる。ここで、P1は電動機側のプーリー3Pの径であり、P2は回転機械4側のプーリー4Pの径である。また、Pmは電動機3の構造により決まる極対数であり、機械的なモータ軸の回転周波数と、電動機の電気的な周波数を変換する係数である。なお、電動機の回転速度に対応する回転周波数fmは、電動機に供給される交流電源の周波数より事前に知ることができる。センサにより回転周波数fmを検知しても良い。
      fc = P2/P1 ×fm/Pm ……… (1)
 図1において、診断部10は、アナログ信号をデジタル信号に変換するAD変換器11と、コントローラ12とで構成する。コントローラ12は、コンピュータにより実現できることは上述したとおりである。このコントローラ12は、電流センサ6の電流から推定される回転周波数fceを演算する推定回転周波数演算部13と、基準となる回転周波数fcを演算する基準回転周波数演算部14と、これら2つの回転周波数に基づいて、異常判断を行う異常判断部15の機能とを有する。基準回転周波数演算部14の演算は、上述した式(1)のとおりである。
 次に、電流センサ6の電流Irから推定される回転周波数fceを演算する推定回転周波数演算部13の機能を実現する構成及びその演算処理について説明する。
 まず、電流センサ6の検出電流Irは、AD変換器11を介してコントローラ12内の推定回転周波数演算部13に入力される。電流センサ6がデジタル信号を出力する場合には、このAD変換器11は不要である。
 推定回転周波数演算部13は、包絡線信号IhLを抽出する包絡線検波部16と、周波数変換部17と、最大周波数抽出部18とで構成される。包絡線検波部16は、検出電流Irを入力し、包絡線検波部16にて電流Irを処理し、包絡線信号IhLを抽出する。包絡線検波部16では、ヘテロダイン検波を行っている。ヘテロダイン検波では式(2)に示すように、検出した電流Irに、電動機の電気周波数fmで変化する正弦波関数を乗算する。正弦波関数発生部163は、電動機の電気周波数fmを用いて正弦波関数を出力する。乗算器161は、電流Irと正弦波関数の乗算を行う。なお、電動機の電気周波数fmは、交流電源の周波数より事前に知ることができる。
     Ih = Ir×sin(2π×fm×t) ……… (2)
  ここで、電流Irが以下の式に従うと仮定して説明を行う。
      Ir = {Io×sin(2π×fc×t)}×sin(2π×fm×t)  ……… (3)
  式(3)において、Ioは電流振幅であり、右辺項は振幅Ioの電流が式(1)の周波数fcで変化することを表す。式(3)から、式(2)は半角の公式を用いて式(4)のように変形することができる。
      Ih = {Io×sin(2π×fc×t)}×(1- cos(2×2π×fm×t)/2 …… (4)
  式(4)を、2fm[Hz]の周波数成分を除去するような、ローパスフィルタ162(LPF)に通過させると式(5)により、回転機械の周波数fcで変化する包絡線信号IhLが得られる。
      IhL = {Io×sin(2π×fc×t)}/2 ……… (5)
 このようにして、包絡線検波部16は包絡線信号IhLを演算する。
 図4に電流波形を示す。ここでは、一相の電流波形を示しているが、すべての相の電流を検出してもよい。図4において、401は検出した電流波形、402は包絡線信号である。また、403は回転機械の負荷トルクの脈動周期(=1/fc[s])、404は電動機の電気周期(=1/fm[s])を示している。
 続いて、包絡線信号IhLは、周波数変換部17にて、各周波数における強度に変換する。そして、最大周波数抽出部18にて最大振幅を持つ周波数を抽出し、回転機械4の推定回転周波数fceを演算する。推定回転周波数演算部13は、演算した回転機械4の推定回転周波数fceを異常判断部15に出力する。
 次に、異常判断部15は、演算する推定回転周波数演算部13の演算出力である推定回転周波数fceと、基準回転周波数演算部14の演算出力である基準回転周波数fcとに基づいて、異常判断を行う。この異常判断は、まず減算部151により、周波数偏差Δf(=|fce-fc|)を求める。そして、その偏差Δfを比較部152に出力し、偏差Δfと判断のための閾値Sと比較することにより異常判断を行う。つまり、比較部152では、偏差Δfが閾値Sよりも大きい(Δf≧S)場合に、ベルト駆動伝達部8においてプーリーとベルト間にスリップ等により回転駆動力の伝達異常が発生しているものと判断する。異常判断部15は、比較部152が伝達異常と判断した場合、符号ABで示す「異常検知信号」を出力する。なお、上述した回転周波数[Hz]は角回転数[rad/s]や回転速度[min-1]等に置換可能である。
 このようにして、診断部10は、異常判断部15の出力として、ベルトによる駆動力伝達の異常(ベルト駆動伝達部8における回転駆動力の伝達異常)を確実に検知することができる。診断部10は、異常を検知した場合、異常検知信号ABを出力する。
 (異常検知時のシステム動作)
 次に、診断部10が回転駆動力の伝達異常を検知して、異常検知信号ABを出力した場合のシステムの対応について説明する。
 図1において、診断部10が異常検知信号ABを出力すると、伝達異常に対応した動作を実行する。
  その対応の一つは、異常検知信号ABの出力に基づいて、遮断機7を動作して、電動機3に電力が供給されるのを遮断することである。なお、図1では、遮断機を動作させるためのリレーやアンプ等は省略している。
 また、他の対応としては、異常検知信号ABを、発報装置50に出力することにより、発報装置50が作動し、作業者に異常を知らせる。発報装置50には、上述したように、ブザー、音声認識装置、ランプ、表示装置など公知の装置を用いることができる。
 また、更に他の対応は、システムの動作状態を監視する監視センター70が、回転駆動システムの設置場所から遠く離れている場合には、監視センター内の作業者に異常を知らせるために、通信装置61、通信回線62などで構成される情報伝送部60を利用して、監視センター70に異常検知信号ABを伝送する。この例では、異常検知信号ABは監視センター70内のサーバー71に伝送され、端末装置72が異常検知信号ABに対応した内容を画面に表示するなどの動作を実行する。また、この場合、作業者は端末装置72を操作して、回転機械駆動システムに対して、適切な対応を指示することも可能である。なお、ここでは、監視センター70をサーバー71と端末装置72とで構成したが、これに限らず、例えばサーバー71を設けず、端末装置72のみでも良い。その場合、異常検知信号ABは、端末装置72に伝送される。
 なお、図1に示す実施例では、これらの対応の全てを実施することができるような構成として記載しているが、全ての対応を実施する必要はなく、状況に応じて必要な対応のみを行うことで良い。例えば、上記対応のいずれか一つを行うことで良い。
 (実施例1の変形例)
 ここで、上述した図1に示す診断部10は、ベルト駆動伝達部8の駆動力伝達が異常かどうかのみの判断を行っている。しかし、単なる異常判断の検知にとどまらず、回転駆動力の伝達異常の程度(異常レベル)の違いをも検知することができる。すなわち、異常判断部15において、複数の異常レベルを検知するために、異常レベルに対応する複数の閾値を用意しておき、周波数偏差Δfとそれらの閾値とを比較することにより、異常の程度に応じた複数レベルの異常検知を行うことができる。
 例えば、レベルに対応する3種類の閾値S1、S2、S3(ここで、S1~S3の大小関係はS1<S2<S3とする。)を用意し、これらの各閾値と周波数偏差Δfとを比較する。そして、S1<Δfであれば「正常」、S1≦Δf<S2の場合は「異常レベル1」、S2≦Δf<S3の場合は「異常レベル2」、S3<Δfの場合は「異常レベル3」のように判断することができる。
 このような複数の伝達異常レベルの判断が行うことにより、その伝達異常レベルに応じた電動機の制御(速度制御や停止制御)を行うことができる。また、作業者に対して、伝達異常レベルに対応した報知を行うこともできる。
 また、図1の実施例では、推定回転周波数fceと基準回転周波数fcとの偏差Δfを用いた例を示しているが、本発明は偏差Δfに代えて、それらの比を用いても同様に実施することができる。その場合、比較部152の閾値は、それらの比に対応する値とすればよい。
 (実施例1の効果)
 以上詳細に説明したように、本発明の実施例1によれば、ベルトを用いて駆動力が伝達される回転機械駆動システムにおいて、運転時に検出した電動機に供給される電気情報(電流又は電圧)に基づき、ベルト駆動伝達部8の伝達異常の発生を検知することができる。この異常検知には、電気情報を検知するだけで良く、回転センサ等の異常検知用の特別の取付けが不要であり、コスト増加がない。また、診断部が異常を検知した場合に、異常検知信号を出力することにより、作業者に対してベルト駆動伝達部8の異常発生を知らせることができる。また、異常検知信号により、異常状態にある回転機械駆動システムの運転を停止することができる。また、離れた場所に異常検知信号を送信することもできる。
 次に、本発明の実施例2について、図5および図6を用いて説明する。図5は、本発明の実施例2における回転機械駆動システムを示す図である。図6は、実施例2の動作説明に用いる電気情報の波形図である。
 本発明の実施例2は、電動機3に供給する電力を電力変換装置21を介して供給するために電動機制御装置20を設けており、診断部10は電動機制御装置20の演算出力の一部を利用して異常診断を行うようにしている。実施例2は、これらの構成において上述した実施例1と異なる。その他の点は、実施例1と同様である。したがって、ここでは、すでに実施例1において説明した事項については説明を省略し、実施例2特有の構成や動作を中心に説明する。
 (回転駆動システムの構成)
 図5において、図1と同様の機器には同一符号を付しており、それらに関する説明を省略する。電動機制御装置20は、電力変換装置21と、電力変換装置21を制御する制御用コントローラ22とで構成されている。電力変換装置21は、交流電源1を直流電源に変換する整流回路23と、コントローラ22からの電圧指令Vgに基づき電動機3へ三相電圧(U,V,W)を印加するスイッチング回路24と、直流電流を検出する電流センサ25と、電動機3に供給する電流の相電流を計測する電流センサ26及び27とを備えている。なお、整流回路23の詳細は図示しないが、よく知られているように、ダイオードブリッジとコンデンサを用いて交流電圧を直流電圧に整流するものである。コントローラ22は、電流センサ25~27にて計測した直流電流Idca、U相電流Iua、W相電流Iwaに基づき、電動機3の回転速度を制御する電圧指令Vgを出力する。また、コントローラ22は、診断部10に電流センサより取得した電流や、電動機の制御に用いる制御情報等の電気情報CSを送信する。
 (電動機制御装置のコントローラの説明)
 次にコントローラ22における処理を説明する。電流センサ25~27の検出信号(アナログ信号)は、AD変換器221~223を経由して、マイクロコントローラ220に入力される。マイクロコントローラ220では、これらの入力信号から電動機3に供給する電源の電圧指令を計算する。
 すなわち、マイクロコントローラ220では、U相電流Iu、W相電流Iwを、回転座標変換によりdq軸上に変換し、トルクに相関したトルク電流Iqと磁束に相関した磁束電流Idにする。この回転座標変換式は、式(6)に従う。
Figure JPOXMLDOC01-appb-M000001
  ここで、IvはV相電流であり三相並行条件より式(7)により求めることができる。
      Iv  = -Iu - Iw ……… (7)
  また、θは電動機の回転子位置であり、図示はしないが回転子位置を推定するオブザーバなどにより計算した値を用いる。また、dq軸とは、回転子位置θに同期した制御軸である。その後、比例積分制御等を用いて所定の速度指令となるようトルク電流Iqを電流制御する。
 (診断部における異常診断処理)
 さて、診断部10は、マイクロコントローラ220より電気情報CSを受取る。
  この電気情報CSには、電流センサ25~27より取得したU相電流Iu、W相電流Iw、直流電流Idcに加え、トルク電流Iqが含まれる。なお、図示しないが、制御情報にはその他に、比例積分制御等を用いて計算されたトルク電流Iqの指令値やdq軸で計算された電圧指令VdやVqを含む。
 図6にマイクロコントローラ220から取得した、U相電流Iu、W相電流Iw、直流電流Idc及び式(7)にて計算したV相電流Iv、式(6)にて計算したトルク電流Iqの波形を示す。図6の(A)は各相電流であり、601は脈動周期を示す。図6の(B)は、直流電流を示しており、この直流電流Idcにおいても、回転機械の負荷トルクの脈動周期611(=1/fc[s])で包絡線612が変化する。また、図6の(C)に示すように、トルク電流Iqは、式(6)にて回転座標変換することで電動機の電気周波数fm成分が除去され、包絡線検波せずとも回転機械の負荷トルクの脈動周期621(=1/fc[s])にて変化する。
 診断部10では、受信した電気情報に基づき、回転機械の推定回転周波数fceと、基準回転周波数fcを算出する。この推定回転周波数fceと、基準回転周波数fcは、図5では図示省略しているが異常判断部15(図1参照)に入力される。この異常判断部15では、これらの偏差Δfを求め、その偏差Δfと閾値Sとを比較判断することにより、ベルト駆動伝達部8における駆動力伝達の異常を判断する。異常であると判断した場合、診断部10は、異常検知信号ABを外部に出力する。
 (異常検知時のシステム動作)
 図5において、診断部10が異常を検知して、異常検知信号ABを出力すると、伝達異常に対応した動作を実行する。
 図5においては、異常検知信号ABは、電動機制御装置20(制御用コントローラ22)に伝達される。制御用コントローラ22は、この異常検知信号ABが入力されると、電力変換装置21を制御し、電動機3の速度を低下させるような制御を実施する。この制御においては、必要であれば診断部10から異常検知信号ABとともに偏差Δfを入力し、この偏差Δfを無くすように、つまりベルト駆動伝達部8の異常を無くす、あるいは異常状態を緩和するように電動機3を減速する制御を行う。また、電動機の減速制御に代えて、異常検知信号ABにより電動機3を停止すべく、遮断機7を制御し電動機3に電力が供給されるのを遮断することもできる。特に、異常検知信号ABを、上述したように、異常状態に対応した複数の異常レベルを示す信号としておけば、その異常レベルに対応した異常検知信号ABにより電動機の制御を容易に実現することができる。
  また、異常検知信号ABを発報装置50に供給することにより、作業者に異常を知らせることができる。あるいは、情報伝送部60を介して監視センター70内のサーバー71に異常検知信号ABを伝送し、作業者に異常を知らせることができる。発報装置50の動作や、監視センター70に異常検知信号を送信する動作は、実施例1(図1)の説明において詳細に述べたとおりである。
 (実施例2の変形例)
 この図5に示す実施例2においては、診断部10は、制御用コントローラ22から電気情報を受取り、その電気情報を利用して異常診断を行っているが、上述した実施例1と同様に、診断部10が電流や電圧を検出するセンサから電気情報を入力し異常診断を行うようにしても良い
 また、上述した実施例2では、電動機制御装置20と、診断部10とを別々に設置しているが、診断部10を設けず、診断部10の機能動作を電動機制御装置20内で実行させるようにしても良い。つまり、電動機制御装置20の制御用コントローラ22内に、診断部10の機能を持たせれば、診断部10を別途設置する必要はなくなる。その場合、構成は非常に簡単となる。
 なお、この実施例2でも、推定回転周波数fceと基準回転周波数fcとの偏差Δfを用いて異常診断を行っているが、本発明は偏差Δfに代えて、それらの比を用いても同様に実施することができる。その場合、比較部152の閾値は、それらの比に対応する値とすればよい。また、伝達異常の程度を複数の異常レベルとして検知するようにしても良い。
 (実施例2の効果)
 以上説明したように、本発明の実施例2においても、実施例1と同様の効果を有する。特に、実施例2では、異常検知信号が出力された場合には、その異常検知信号に基づいて異常を解消するための電動機減速制御を行うことができる。また、実施例2では、この電動機制御装置から電気情報を得ることができるので、新たな電流や電圧を検出する検出センサを設ける必要はない。また、トルク電流Iq等を用いることで、包絡線検波処理をせずに、回転機械の推定回転周波数を算出できる。
 次に、本発明の実施例3について、図7を用いて説明する。図7は、実施例3における回転機械駆動システムを示す図である。
  本発明の実施例3では、ベルトによる駆動力伝達異常を検知する診断部10を、回転機械に隣接して設けず、離れた場所に設置された監視センター70内に診断部10を設置している。その点で、上述した実施例と異なる。その他は、実施例1と同様である。したがって、すでに説明した事項については説明を省略し、実施例3特有の構成や動作を中心に説明する。
 図7において、電動機制御装置20は、情報伝送部60を利用して、ベルトによる駆動力伝達の異常を診断するための電気信号を監視センター70内のサーバー71に伝送する。なお、この例では、電動機制御装置20が異常を診断するための電気信号を伝送しているが、実施例1と同様に、電流又は電圧をサーバー71に送信しても良い。
 サーバー71は、この電気情報を保存し、診断部10に与える。診断部10は、この電気信号を用いて、上記したような異常診断を実行する。この診断の動作内容は、上述したことと重複するので、ここでは説明を省略する。
  診断部10は、診断の結果、ベルトによる駆動力伝達異常を検知すると、異常検知信号ABをサーバー71に出力する。サーバー71はこの異常検知信号ABを保存するとともに、情報伝送部60を介して電動機制御装置20内の制御用コントローラ22に送信する。
 制御用コントローラ22は、この信号を入力したら、電動機の減速制御や停止制御を実行するとともに、発報装置50に異常検知信号を出力する。発報装置50は、この信号により発報動作を実行する。
 (実施例3の効果)
 この実施例3によれば、上記した実施例と同様の効果を有するとともに、遠隔地にて異常診断を行うことができるので、回転機械が設置される環境が悪い場合でも安定して異常診断動作を実行することができる。また、診断部10をサーバー71内の一機能として構成するようにすれば、構成が簡単となる。
 次に、本発明の実施例4について、図8を用いて説明する。図8は、本発明の実施例4における回転機械駆動システムの構成を示す図である。
  上述した各実施例では電動機により回転機械が駆動されるシステムであったが、本発明の実施例4では回転機械が電動機(発電機)を駆動し、電力を発生させる回転機械駆動システムとなっている。その他の点は、上記した実施例と同様である。したがって、すでに説明した事項については説明を省略し、実施例4特有の構成や動作を中心に説明する。
 図8において、回転機械4は、内燃機関エンジンのように、機械的な回転駆動力を発生する。この回転機械4の回転駆動力は、回転機械4のプーリー4Pと、ベルト5、および電動機3のプーリー3Pによるベルト駆動伝達部8により、電動機3に伝達される。電動機3は、この駆動力を受け、交流電力を発生する(発電する)。つまり、電動機は発電機として機能する。この交流電力は、電力変換装置80により直流電力に変換される。蓄電装置90は、この直流電力を蓄電する。このように、図8における回転機械駆動システムは、回転機械が電動機を駆動し、電動機が発電した電力を蓄電装置90に蓄電する構成となっている。
  なお、電動機3は、交流電力ではなく直流電力を発電するものでも良く、その場合は発電した電力は電力変換装置80を介さず、直接、蓄電装置90に蓄電する。また、発電した電力は、蓄電装置90に蓄電せず、電力を必要とする負荷に供給しても良い。
 さて、この実施例における診断部10は、図1の診断部10と同様の構成になっている。すなわち、診断部10は、実施例1におけると同様の手法で、電流センサ6の検出した電流Irを入力し、ベルトによる駆動力伝達が異常状態になっているかどうかを診断する。診断の結果、異常である場合には、異常検知信号ABを出力する。
 異常検知信号ABが出力されると、発報装置50は異常を知らせるための発報動作を実施する。また、遠隔地に監視センター70が存在する場合には、情報伝送部60を経由して異常検知信号ABを送信する。
 なお、図8の場合においても、図5(実施例2)のように電動機制御装置を設置したものとすることができる。また、図7(実施例3)と同様の構成を採用することもできる。
 (実施例4の効果)
 このように、本発明の実施例4においても、実施例1と同様に、ベルトを用いて駆動力が伝達される回転機械駆動システムにおいて、運転時に検出した電動機に供給される電気情報(電流又は電圧)に基づき、ベルト駆動伝達部における駆動力伝達の異常発生を検知することができる。
その他の実施例
 本発明は、以上説明した実施例に限らず、ベルトにより駆動力を伝達する回転機械駆動システムであれば広く実施することができる。
  また、各実施例では、回転機械の推定回転周波数を算出する際に包絡線検波手法と周波数変化を用いて説明したが、それに限らない。例えば、包絡線のピーク間隔の発生時間をカウントし、その間隔から回転機械の推定回転周波数を算出してもよい。
  また、上述した実施例は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
  また、前記した機構や構成は説明上必要と考えられるものを示しており、必ずしも全ての機構や構成を示しているとは限らない。
 1…電源、2…スイッチ、3…電動機、4…回転機械、3P…プーリー、4P…プーリー、5…ベルト、6…電流センサ、7…遮断機、8…ベルト駆動伝達部、10…診断部、11…AD変換器、12…診断用コントローラ、13…推定回転周波数演算部、14…基準回転周波数演算部、15…異常判断部、16…包絡線検波部、17…周波数変換部、18…最大周波数抽出部、20…電動機制御装置、21…電力変換装置、22…制御用コントローラ、23…整流回路、24…スイッチング回路、50…発報装置、60…情報伝送部、61…通信装置、62…通信回線、70…監視センター、71…サーバー、72…端末装置、80…電力変換装置、90…蓄電装置、151…減算部、152…比較部、161…乗算器、162…ローパスフィルタ、220…マイクロコントローラ、221~223…AD変換器

Claims (14)

  1.  電源と、該電源から供給される電力により駆動する電動機と、回転機械と、前記電動機の回転駆動力を出力する電動機側プーリー、前記回転機械を駆動する回転機械側プーリー及び該電動機側プーリーと該回転機械側プーリー間に掛けられるベルトとを有するベルト駆動伝達部と、を備えた回転機械駆動システムであって、
     前記電動機の電気情報を検出する電気情報検出センサと、
     該電気情報に基づいて、前記ベルト駆動伝達部における前記回転駆動力の伝達異常が発生しているかどうかを判断し、前記伝達異常を判断したとき異常検知信号を出力する診断部と、
    を設けた回転機械駆動システム。
  2.  請求項1記載の回転機械駆動システムにおいて、前記電気情報検出センサは電流又は電圧を検出するものであり、前記診断部は、該電流又は該電圧に基づき前記回転機械の推定回転速度情報を演算し、前記電動機の回転速度及び前記電動機側プーリーと前記回転機械側プーリーの径の比から基準回転周波数を演算し、該推定回転速度情報と該基準回転周波数との差又比を用いて前記伝達異常を判断することを特徴とする回転機械駆動システム。
  3. 請求項2記載の回転機械駆動システムにおいて、前記診断部は、前記伝達異常の判断において、異常レベルに対応した複数の閾値と比較することにより複数の伝達異常レベルを検知することを特徴とする回転機械駆動システム。
  4.  請求項1記載の回転機械駆動システムにおいて、前記異常検知信号に基づいて前記電動機に供給する前記電力を遮断する遮断機を設けたことを特徴とする回転機械駆動システム。
  5.  請求項1記載の回転機械駆動システムにおいて、前記異常検知信号に基づいて、前記伝達異常を報知する報知装置を設けたことを特徴とする回転機械駆動システム。
  6.  請求項1記載の回転機械駆動システムにおいて、前記診断部を有する監視センターと、
    前記異常検知信号を前記監視センターに伝送する情報伝送部と、を設けたことを特徴とする回転機械駆動システム。
  7.  請求項1記載の回転機械駆動システムにおいて、前記電気情報検出センサの検出値を利用して前記電動機を制御する電動機制御装置を設け、前記診断部は、前記電動機制御装置にて演算されたトルク電流と前記電気情報を入力し、該入力され該トルク電流と前記電気情報とに基づいて、前記ベルト駆動伝達部の前記伝達異常を判断する回転機械駆動システム。
  8.  請求項7記載の回転機械駆動システムにおいて、前記診断部の診断機能を前記電動機制御装置に持たせることを特徴とする回転機械駆動システム。
  9.  請求項7記載の回転機械駆動システムにおいて、前記電動機制御装置は前記異常検知信号に基づいて前記電動機の速度を制御することを特徴とする回転機械駆動システム。
  10.  請求項1記載の回転機械駆動システムにおいて、前記診断部を有する監視センターと、
    前記電気情報検出センサの検出値を伝送する情報伝送部とを設け、前記診断部は、前記情報伝送部を介して伝送された前記電気情報に基づいて、前記伝達異常を判断することを特徴とする回転機械駆動システム。
  11.  回転駆動力を発生する回転機械と、該回転駆動力により電力を発生する電動機と、前記回転駆動力を出力する回転機械側プーリー、電動機側プーリー及び該回転機械側プーリーと該電動機側プーリー間に掛けられるベルトを有するベルト駆動伝達部と、を備えた回転機械駆動システムであって、
     前記電動機が発生する前記電力の電気情報を検出する電気情報検出センサと、
     該電気情報に基づいて、前記ベルト駆動伝達部における前記回転駆動力の伝達異常が発生しているかどうかを判断し、前記伝達異常を判断したとき異常検知信号を出力する診断部と、
    を設けた回転機械駆動システム。
  12.  電源と、該電源から供給される電力により駆動する電動機と、回転機械と、前記電動機の回転駆動力を出力する電動機側プーリー、前記回転機械を駆動する回転機械側プーリー及び該電動機側プーリーと該回転機械側プーリー間に掛けられるベルトを有するベルト駆動伝達部と、前記電動機の電気情報を検出する電気情報検出センサと、を備えた回転機械駆動システムの制御方法であって、
     該検出した該電気情報に基づいて、前記ベルト駆動伝達部における前記回転駆動力の伝達異常が発生しているかどうかを判断し、前記伝達異常を判断したとき異常検知信号を出力する回転機械駆動システムの制御方法。
  13.  請求項12記載の回転機械駆動システムの制御方法において、前記電気情報は電流又は電圧であり、該電流又は該電圧に基づき前記回転機械の推定回転速度情報を演算し、前記電動機の回転速度および前記電動機側プーリーと前記回転機械側プーリーの径の比から基準回転周波数を演算し、該推定回転速度情報と該基準回転周波数との差又比を用いて前記伝達異常を判断することを特徴とする回転機械駆動システムの制御方法。
  14.  請求項12記載の回転機械駆動システムの制御方法において、前記異常検知信号に基づいて前記前記電動機の速度を制御することを特徴とする回転機械駆動システムの制御方法。
PCT/JP2020/020780 2019-06-25 2020-05-26 回転機械駆動システムおよび回転機械駆動システムの制御方法 WO2020261840A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20831440.1A EP3993258A4 (en) 2019-06-25 2020-05-26 ROTARY MACHINE DRIVE SYSTEM AND CONTROL METHOD FOR ROTARY MACHINE DRIVE SYSTEM
CN202080007247.XA CN113228498B (zh) 2019-06-25 2020-05-26 旋转机械驱动系统和旋转机械驱动系统的控制方法
US17/419,936 US11632073B2 (en) 2019-06-25 2020-05-26 Rotating machine drive system and control method for rotating machine drive system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-117677 2019-06-25
JP2019117677A JP7355534B2 (ja) 2019-06-25 2019-06-25 回転機械駆動システムおよび回転機械駆動システムの制御方法

Publications (1)

Publication Number Publication Date
WO2020261840A1 true WO2020261840A1 (ja) 2020-12-30

Family

ID=74061206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020780 WO2020261840A1 (ja) 2019-06-25 2020-05-26 回転機械駆動システムおよび回転機械駆動システムの制御方法

Country Status (5)

Country Link
US (1) US11632073B2 (ja)
EP (1) EP3993258A4 (ja)
JP (1) JP7355534B2 (ja)
CN (1) CN113228498B (ja)
WO (1) WO2020261840A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145174A1 (ja) * 2022-01-26 2023-08-03 株式会社日立ハイテク 搬送装置、および搬送方法
JP2023128604A (ja) * 2022-03-04 2023-09-14 株式会社日立製作所 ベルトコンベアの異常検知装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100765A (ja) 1994-09-30 1996-04-16 Tokico Ltd 空気圧縮機
JPH10150742A (ja) * 1996-09-18 1998-06-02 Toyota Motor Corp 発電機駆動用ベルトのスリップ検出装置
JP2005246534A (ja) * 2004-03-03 2005-09-15 Nakamura Tome Precision Ind Co Ltd 旋盤及び主軸モータの運転制御方法
JP2010206964A (ja) * 2009-03-04 2010-09-16 Showa Denki Kk 回転機械システム
DE102012002693A1 (de) * 2012-02-10 2013-08-14 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur Prüfung einer mechanischen Antriebsverbindung
WO2018109993A1 (ja) * 2016-12-15 2018-06-21 三菱電機株式会社 動力伝達機構の異常診断装置および動力伝達機構の異常診断方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6029512A (en) 1996-09-18 2000-02-29 Toyota Jidosha Kabushiki Kaisha Slip-detecting device for a driving belt of a generator
JP3699591B2 (ja) * 1998-05-12 2005-09-28 新日本製鐵株式会社 ベルトコンベアの設備診断方法及び診断装置
JP2000014199A (ja) * 1998-06-19 2000-01-14 Hitachi Ltd 回転速度センサの異常判定装置
JP4075612B2 (ja) * 2002-12-26 2008-04-16 日産自動車株式会社 エンジン始動装置
JP4835528B2 (ja) * 2007-07-19 2011-12-14 トヨタ自動車株式会社 異常監視装置および異常監視方法
JP2011245087A (ja) * 2010-05-28 2011-12-08 Panasonic Corp 衣類処理装置
US8903668B2 (en) * 2011-04-11 2014-12-02 GM Global Technology Operations LLC Alternator speed estimation using spectrum analysis
JP2016065679A (ja) * 2014-09-25 2016-04-28 アイシン精機株式会社 空調装置の動力伝達ベルト用異常検知装置及び動力伝達ベルト用異常検知方法
KR101809034B1 (ko) * 2015-08-28 2018-01-18 고려대학교 산학협력단 벨트-풀리 시스템 진단 시스템, 방법, 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 기록 매체

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100765A (ja) 1994-09-30 1996-04-16 Tokico Ltd 空気圧縮機
JPH10150742A (ja) * 1996-09-18 1998-06-02 Toyota Motor Corp 発電機駆動用ベルトのスリップ検出装置
JP2005246534A (ja) * 2004-03-03 2005-09-15 Nakamura Tome Precision Ind Co Ltd 旋盤及び主軸モータの運転制御方法
JP2010206964A (ja) * 2009-03-04 2010-09-16 Showa Denki Kk 回転機械システム
DE102012002693A1 (de) * 2012-02-10 2013-08-14 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur Prüfung einer mechanischen Antriebsverbindung
WO2018109993A1 (ja) * 2016-12-15 2018-06-21 三菱電機株式会社 動力伝達機構の異常診断装置および動力伝達機構の異常診断方法

Also Published As

Publication number Publication date
EP3993258A4 (en) 2023-06-21
JP2021005921A (ja) 2021-01-14
CN113228498A (zh) 2021-08-06
EP3993258A1 (en) 2022-05-04
CN113228498B (zh) 2023-12-22
US20220069759A1 (en) 2022-03-03
US11632073B2 (en) 2023-04-18
JP7355534B2 (ja) 2023-10-03

Similar Documents

Publication Publication Date Title
WO2020261840A1 (ja) 回転機械駆動システムおよび回転機械駆動システムの制御方法
JP4044064B2 (ja) リニア圧縮機及びその制御装置
US11378947B2 (en) System and methods of failure prediction and prevention for rotating electrical machinery
US8239091B2 (en) Method for detecting a “rotating stall” fault in a compressor fed by an inverter
CN1825730A (zh) 用于旋转场机器的失相检测
CN110168923A (zh) 交流电动机的控制装置
KR102158216B1 (ko) 리니어 압축기의 제어 장치 및 리니어 압축기의 제어 방법
CN108267649B (zh) 压缩机相序检测方法和装置及其启动控制方法和设备
WO2008118775A1 (en) Pump, real-time, general and incremental condition diagnosis
CN101142738A (zh) 电动机驱动装置和压缩机驱动装置
JP2017221023A (ja) 空調機の故障徴候検出装置
WO2012005046A1 (ja) 排熱回収装置
KR100632689B1 (ko) 모터의 토크제어장치 및 방법
KR20140102536A (ko) 3상 모터의 제어 장치 및 이를 포함한 왕복동식 압축기
CN110710099B (zh) 数据获取方法、逆变器和旋转电机
US11621629B2 (en) Diagnostic apparatus for electric drive object
WO2021005873A1 (ja) 電力変換装置、圧送装置、電力変換方法、プログラム、診断装置及び診断方法
JP7442742B2 (ja) 電動機付設備の故障徴候検出装置および電動機付設備の故障徴候検出方法
JP2010074876A (ja) 交流直流変換装置、圧縮機駆動装置、空気調和機及び異常検知装置
JP7380176B2 (ja) 電流センサ異常診断装置
WO2023228231A1 (ja) モータ駆動装置、冷凍サイクル装置および冷凍サイクルシステム
JP2012161219A (ja) ブラシレスdcモータの制御装置
CN117309374A (zh) 动力传递机构的伸长检测系统
KR20230149109A (ko) 1차 데드비트 관측기를 이용한 베어링 고장 진단 장치 및 이를 이용한 고장 진단 방법
JP2005180841A (ja) 空気調和機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020831440

Country of ref document: EP

Effective date: 20220125