WO2012005046A1 - 排熱回収装置 - Google Patents

排熱回収装置 Download PDF

Info

Publication number
WO2012005046A1
WO2012005046A1 PCT/JP2011/060066 JP2011060066W WO2012005046A1 WO 2012005046 A1 WO2012005046 A1 WO 2012005046A1 JP 2011060066 W JP2011060066 W JP 2011060066W WO 2012005046 A1 WO2012005046 A1 WO 2012005046A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
rotational speed
compressor
voltage
generator
Prior art date
Application number
PCT/JP2011/060066
Other languages
English (en)
French (fr)
Inventor
素直 新妻
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to EP11803382.8A priority Critical patent/EP2592249B1/en
Priority to US13/807,636 priority patent/US9109503B2/en
Priority to CN201180032647.7A priority patent/CN102959198B/zh
Publication of WO2012005046A1 publication Critical patent/WO2012005046A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/04Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using kinetic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • F02B33/40Engines with pumps other than of reciprocating-piston type with rotary pumps of non-positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust heat recovery device used in a heat engine or a device having a heat cycle.
  • the present invention relates to a failure diagnosis apparatus provided with detection means for each part in order to detect the operation status of the system.
  • JP-A-1-121514 “Turbocharger failure diagnosis device with rotating electric machine”
  • a conventional turbocharger as described in Patent Document 1 generally has a structure in which a turbine and a compressor are mechanically connected by a shaft and rotate integrally.
  • the rotational speed of a turbocharger is usually high (tens of thousands of revolutions or more)
  • heat insulation is often wound around the pipe, but there is a problem that a large amount of heat insulation is required and that the bent pipe is troublesome to wind the heat insulation.
  • the present invention has been made in view of the above-described problems. That is, the object of the present invention is to shorten the length of the pipe that leads the exhaust to the turbine and the pipe that feeds the air to the compressor, and to operate both the turbine and the compressor in accordance with the best fluid performance conditions. An object is to provide an exhaust heat recovery device that can perform the above-mentioned.
  • An exhaust heat recovery device comprising a turbine driven by exhaust and a compressor for compressing gas, A generator for generating electric power by rotation of the turbine; An electric motor for rotationally driving the compressor; A waste heat recovery apparatus is provided, comprising: a control device that drives the electric motor using the electric power as a power source.
  • the control device rectifies the AC output from the generator and converts it into DC, and A smoothing circuit for smoothing a DC voltage immediately after the rectifier;
  • a DC bus for sending the electric power from the turbine side to the compressor side;
  • An inverter for driving the electric motor;
  • a rotational speed detector for detecting rotational speeds of the turbine and the generator;
  • a voltage detector for detecting the voltage of the DC bus;
  • a rotation speed commander that outputs a rotation speed command value of the electric motor and the compressor calculated based on the rotation speed and the voltage to the inverter;
  • the control device rectifies the AC output from the generator and converts it into DC, and A smoothing circuit for smoothing a DC voltage immediately after the rectifier;
  • a DC bus for sending the electric power from the turbine side to the compressor side;
  • An inverter for driving the electric motor;
  • a rotational speed detector for detecting rotational speeds of the turbine and the generator;
  • a DC power supply for supplying current to the DC bus;
  • a diode for supplying the current to the inverter when the generated voltage from the turbine and the generator is less than the operable voltage of the inverter;
  • a rotation speed commander that outputs a rotation speed command value of the electric motor and the compressor calculated based on the rotation speed to the inverter;
  • a plurality of the motors and the compressors are installed for one set of the turbine and the generator.
  • the turbine and the compressor can be arbitrarily arranged by dividing the turbine and the compressor into two, the exhaust and supply air pipes are made short and straight. Can do. Further, since the rotational speeds of the turbine and the compressor may be different, both the turbine and the compressor can be operated under the best conditions in terms of fluid performance.
  • FIG. 1 is a diagram of Embodiment 1 of the present invention.
  • 1 is a turbine
  • 1a is a shaft
  • 2 is a generator
  • 3 is a rectifier
  • 4 is a smoothing circuit
  • 5 is a DC bus
  • 6 is an inverter
  • 7 is an electric motor
  • 8 is a compressor
  • 8a is a shaft
  • 11 is A rotational speed detector
  • 12 is a voltage detector
  • 13 is a rotational speed command device
  • 14 is a rotational speed
  • 15 is a voltage
  • 16 is a rotational speed command value
  • 17 is a control device.
  • the generator 2 is directly connected to a turbine 1 rotated by exhaust from a heat engine (not shown) and a shaft 1a.
  • the generator 2 rotates together with the turbine 1 to generate electric power.
  • a permanent magnet synchronous motor driven by three-phase alternating current can be used as the generator 2.
  • the control device 17 drives the electric motor 7 using the electric power generated by the electric generator 2 as a power source. Further, the control device 17 of this embodiment includes a rectifier 3, a smoothing circuit 4, a DC bus 5, an inverter 6, a rotation speed detector 11, a voltage detector 12, and a rotation speed command device 13.
  • the rectifier 3 rectifies the alternating current output from the generator 2 and converts it into direct current.
  • the rectifier 3 is configured by a diode bridge or the like.
  • the smoothing circuit 4 smoothes the DC voltage immediately after the rectifier 3 because the DC voltage has ripples.
  • the smoothing circuit 4 includes a reactor and a capacitor.
  • the DC bus 5 sends the electric power generated by the generator 2 from the turbine 1 side to the compressor 8 side.
  • the DC bus 5 is formed of a bus bar made of a conductor such as a cable or copper or aluminum.
  • the inverter 6 drives the electric motor 7 at a variable speed according to the rotational speed command value 16 from the rotational speed command device 13.
  • the inverter 6 is preferably configured as a voltage-type or current-type inverter by PWM-modulating a power control element such as an IGBT or a power MOS FET.
  • sensorless vector control may be used, or vector control may be performed by detecting the rotation of the electric motor 7 with an encoder or a resolver.
  • the electric motor 7 is directly connected to a compressor 8 that compresses supply air to a heat engine (not shown) through a shaft 8a, and the compressor 8 rotates together with the rotation of the electric motor 7.
  • the electric motor 7 is configured by an induction motor or a permanent magnet synchronous motor driven by a three-phase AC.
  • the rotational speed detector 11 detects the rotational speed 14 of the turbine 1 and the generator 2.
  • a tachometer or an encoder provided on the shaft 1 a of the turbine 1 and the generator 2 is used as the rotation speed detector 11.
  • the rotational speed detector 11 is an encoder
  • the rotational angle detected by the encoder is time-differentiated and converted to the rotational speed 14.
  • the voltage detector 12 detects a voltage 15 (voltage between plus and minus) on the side close to the inverter 6 of the DC bus 5.
  • the rotation speed commander 13 is based on the rotation speed 14 of the turbine 1 and the generator 2 detected by the rotation speed detector 11 and the voltage 15 of the DC bus 5 detected by the voltage detector 12.
  • the rotational speed command value 16 is output to the inverter 6.
  • the rotation speed command device 13 can be constituted by, for example, a microprocessor, a memory, and an arithmetic program.
  • the rotational speed command device 13 is configured to generate the rotational speed command value 16 as follows. (1) When the voltage 15 detected by the voltage detector 12 is lower than the “minimum voltage at which the inverter 6 can operate”, the rotational speed command value 16 is set to zero. (2) When the “voltage 15 detected by the voltage detector 12” is equal to or higher than the “minimum voltage at which the inverter 6 can operate”, the rotational speed command value 16 is set to “the rotational speed detected by the rotational speed detector 11”. 14 ” ⁇ set to the value obtained by the coefficient. Here, for example, if it is efficient to make the rotational speed of the compressor 8 equal to the rotational speed 14 of the turbine 1 in terms of fluid performance, the coefficient is set to 1.
  • the rotational speed of the compressor 8 is defined in terms of fluid performance. If the efficiency is good when the rotational speed 14 of the turbine 1 is doubled, the coefficient is set to 2. Alternatively, for example, if the efficiency is good when the rotational speed of the compressor 8 is 0.8 times the rotational speed 14 of the turbine 1 in terms of fluid performance, the coefficient is set to 0.8. That is, the ratio of the rotational speed of the compressor 8 and the rotational speed 14 of the turbine 1 that provides the best efficiency in terms of fluid performance is used as a coefficient.
  • the rotational speed command value 16 is proportional to the rotational speed 14 detected by the rotational speed detector 11, if the turbine 1 rotates at a low speed, the compressor 8 also rotates at a low speed, and if the turbine 1 rotates at a high speed. The compressor 8 also rotates at high speed. Therefore, when a heat engine (not shown) is operating, the operation is similar to that of a conventional turbocharger in which a turbine and a compressor are directly connected by a shaft.
  • the rotational speed command value 16 is “the rotational speed 14 detected by the rotational speed detector 11” ⁇ coefficient
  • the ratio of the rotational speed 14 of the turbine 1 and the rotational speed of the compressor 8 in terms of fluid performance is, for example, When it is desirable to make X times larger, by setting the value of the coefficient to X, it is possible to operate so that the rotational speed of the compressor 8 becomes X times the rotational speed 14 of the turbine 1.
  • FIG. 2 is a diagram of a turbocharger according to a second embodiment of the present invention.
  • 13a is a rotation speed command device
  • 16a is a rotation speed command value
  • 21 is a DC power supply
  • 22 is a diode.
  • the same components as those of the first embodiment are denoted by the same reference numerals as those in FIG.
  • the control device 17 drives the electric motor 7 using the electric power generated by the electric generator 2 as a power source. Further, the control device 17 of this embodiment includes a rectifier 3, a smoothing circuit 4, a DC bus 5, an inverter 6, a rotation speed detector 11, a rotation speed command unit 13 a, a DC power supply 21, and a diode 22.
  • the rotation speed command device 13 a outputs a rotation speed command value 16 a of the electric motor 7 and the compressor 8 to the inverter 6 based on the rotation speed 14 of the turbine 1 and the generator 2 detected by the rotation speed detector 11.
  • the DC power supply 21 supplies a voltage higher than “the lowest voltage at which the inverter 6 can operate”.
  • a secondary battery or an electric double layer capacitor may be used, or a commercial AC power supply may be rectified, smoothed, or constant voltage.
  • the diode 22 generates power only when the current generated by the turbine 1 and the generator 2 is low and when the current is supplied from the DC power source 21 to the DC bus 5 and a sufficient generated voltage is obtained by the turbine 1 and the generator 2. It is automatically switched so that a current is supplied from the machine 2 to the DC bus 5.
  • the rotational speed command device 13a is configured to generate the rotational speed command value 16a as follows. (1) When “the rotational speed 14 detected by the rotational speed detector 11” is smaller than the constant R1, the rotational speed command value 16a is set to the constant R2. (2) When “the rotational speed 14 detected by the rotational speed detector 11” is equal to or higher than the constant R1, the rotational speed command value 16a is set to “the rotational speed 14 detected by the rotational speed detector 11” ⁇ the coefficient.
  • the constant R1 is the rotational speed 14 of the turbine 1 corresponding to a state in which a heat engine (not shown) is in an idle state and power generation by the generator 2 coaxial with the turbine 1 is hardly performed.
  • the constant R2 is the number of rotations of the compressor 8 necessary for performing the minimum air supply. The coefficient is obtained in the same manner as in the first embodiment.
  • Example 2 is particularly suitable for the case where it is desired to maintain the supply air at a minimum (the compressor 8 does not want to be stopped) even when the heat engine is idling or stopped frequently.
  • FIG. 3 is a diagram of a turbocharger according to a third embodiment of the present invention.
  • 33 is a rotation speed command device
  • 36 is an inverter
  • 37 is an electric motor
  • 38 is a compressor
  • 38a is a shaft.
  • the same components as those of the first embodiment are denoted by the same reference numerals as those in FIG.
  • the control device 17 drives the motors 7 and 37 using the power generated by the generator 2 as a power source. Further, the control device 17 of this embodiment includes a rectifier 3, a smoothing circuit 4, a DC bus 5, inverters 6 and 36, a rotation speed detector 11, a voltage detector 12, and a rotation speed command device 33.
  • the rotational speed command unit 33 Based on the rotational speed 14 of the turbine 1 and the generator 2 detected by the rotational speed detector 11 and the voltage of the DC bus 5 detected by the voltage detector 12, the rotational speed command unit 33 includes a plurality of motors, compressors, and inverters.
  • the command value of the rotation speed of the electric motor and the compressor is output to the inverter for each of the sets. That is, the rotation speed command value 16 of the motor 7 and the compressor 8 is output to the inverter 6, and the rotation speed command value 46 of the motor 37 and the compressor 38 is output to the inverter 36.
  • the rotation speed command device 33 can be constituted by, for example, a microprocessor, a memory, and an arithmetic program.
  • the inverter 36, the electric motor 37, the compressor 38, and the shaft 38a have the same mechanism as the inverter 6, the electric motor 7, the compressor 8, and the shaft 8a in the first or second embodiment.
  • the dimensions, shape, and rotational speed may be different.
  • 38 and electric motors 7 and 37 are prepared, and the electric power generated by the electric generator 2 is electrically connected to a plurality of electric motors 7 and 37.
  • the rotational speed command device 33 is configured to generate the rotational speed command value 16 as follows. (1) When the “voltage 15 detected by the voltage detector 12” is lower than the “minimum voltage at which the inverter 6 can operate”, the rotational speed command value 16 is set to zero. (2) When the “voltage 15 detected by the voltage detector 12” is equal to or higher than the “minimum voltage at which the inverter 6 can operate”, the rotational speed command value 16 is set to “the rotational speed detected by the rotational speed detector 11”. 14 ” ⁇ coefficient A is set to the value obtained.
  • the coefficient A is set to 1, for example, the rotational speed of the compressor 8 in terms of fluid performance. If the efficiency is good when the rotational speed of the turbine 1 is made twice the rotational speed 14, the coefficient A is set to 2. Alternatively, for example, in terms of fluid performance, if the number of revolutions of the compressor 8 is set to 0.8 times the number of revolutions 14 of the turbine 1, the coefficient A is set to 0.8. That is, the ratio A is the ratio between the rotational speed of the compressor 8 and the rotational speed 14 of the turbine 1 that provides the best efficiency in terms of fluid performance.
  • the rotational speed command device 33 is configured to generate the rotational speed command value 46 as follows. (1) When the “voltage 15 detected by the voltage detector 12” is lower than the “minimum voltage at which the inverter 36 can operate”, the rotational speed command value 46 is set to zero. (2) When the “voltage 15 detected by the voltage detector 12” is equal to or higher than the “minimum voltage at which the inverter 36 can operate”, the rotational speed command value 46 is set to “the rotational speed detected by the rotational speed detector 11”. 14 ” ⁇ coefficient B is set to the value obtained.
  • the coefficient B is set to 1, for example, the rotational speed of the compressor 38 in terms of fluid performance. If the efficiency is good when the rotational speed of the turbine 1 is made twice the rotational speed 14, the coefficient B is set to 2. Alternatively, for example, in terms of fluid performance, if the rotation speed of the compressor 38 is set to 0.8 times the rotation speed 14 of the turbine 1, the coefficient B is set to 0.8. That is, the ratio B between the rotational speed of the compressor 38 and the rotational speed 14 of the turbine 1 that provides the best efficiency in terms of fluid performance is defined as a coefficient B.
  • FIG. 4 is a diagram of a turbocharger according to the fourth embodiment of the present invention.
  • 33a is a rotation speed command device.
  • the same components as those in the second to third embodiments are denoted by the same reference numerals as those in FIGS. 2 to 3 and the description thereof is omitted.
  • the control device 17 drives the motors 7 and 37 using the power generated by the generator 2 as a power source.
  • the control device 17 of this embodiment includes a rectifier 3, a smoothing circuit 4, a DC bus 5, inverters 6 and 36, a rotation speed detector 11, a rotation speed commander 33 a, a DC power supply 21, and a diode 22.
  • the rotational speed command unit 33 a Based on the rotational speed 14 of the turbine 1 and the generator 2 detected by the rotational speed detector 11, the rotational speed command unit 33 a performs the rotational speeds of the motor and the compressor for each of a plurality of sets of an electric motor, a compressor, and an inverter. Is output to the inverter. That is, the rotation speed command value 16 a of the motor 7 and the compressor 8 is output to the inverter 6, and the rotation speed command value 46 a of the motor 37 and the compressor 38 is output to the inverter 36.
  • the rotational speed command device 33a is configured to generate the rotational speed command value 16a as follows. (1) When “the rotational speed 14 detected by the rotational speed detector 11” is smaller than the constant R1, the rotational speed command value 16a is set to the constant R2A. (2) When “the rotational speed 14 detected by the rotational speed detector 11” is equal to or higher than the constant R1, the rotational speed command value 16a is set to “the rotational speed 14 detected by the rotational speed detector 11” ⁇ the coefficient A. Set to.
  • the constant R2A is the number of rotations of the compressor 8 necessary for performing the minimum air supply.
  • the rotational speed command device 33a is configured to generate the rotational speed command value 46a as follows. (1) When “the rotational speed 14 detected by the rotational speed detector 11” is smaller than the constant R1, the rotational speed command value 46a is set to the constant R2B. (2) When “the rotational speed 14 detected by the rotational speed detector 11” is equal to or higher than the constant R1, the rotational speed command value 46a is set to “the rotational speed 14 detected by the rotational speed detector 11” ⁇ the coefficient B. Set to.
  • the constant R2B is the number of rotations of the compressor 38 necessary for performing the minimum air supply.
  • the constant R1 is obtained in the same manner as in the second embodiment, and the coefficients A and B are obtained in the same manner as in the third embodiment.
  • Example 3 and Example 4 above the exhaust combined with the exhaust from the heat engine or the heat cycle that is divided into a plurality of units or a plurality of parts always drives the turbine 1 and is used as a measure against exhaust imbalance.
  • the communication pipe is no longer required.
  • a common exhaust gas treatment device is provided for a heat engine or a heat cycle divided into a plurality of units or a plurality of parts, high-pressure exhaust before passing through the turbine passes through the piping. As a result, the effect that the piping is fine is obtained.
  • a step-up DC-DC converter may be added immediately after the smoothing circuit 4 to increase the voltage in order to reduce the potential drop in the electric wire.
  • a regenerative resistor is added between the plus and minus of the DC bus 5 via a contactor, and when the voltage of the DC bus 5 exceeds the input allowable voltage of the inverter 6, the contactor is closed. Also good.
  • Rotational speed detection of the turbine 1 and the generator 2 may be performed by counting the zero cross point of the AC output of the generator 2. In this case, an external tachometer or encoder is not necessary.

Abstract

 排気により駆動されるタービン1と、気体を圧縮するコンプレッサ8とを備える排熱回収装置であって、タービン1の回転によって電力を発電する発電機2と、コンプレッサ8を回転駆動する電動機7と、発電機2で発電した電力を動力源として電動機7を駆動する制御装置17とを備える。

Description

排熱回収装置
 本発明は、熱機関や熱サイクルを有する装置で用いられる排熱回収装置に関する。
 熱機関や熱サイクルにおいて廃熱を有効に活用するため、排気に含まれる熱エネルギーをタービンで運動エネルギーに変換し、その運動エネルギーでコンプレッサを駆動して給気圧を高めることが行われている。そのための代表的な装置としてターボチャージャがあり、例えば、特許文献1に記載のものが既に知られている。
 特許文献1に記載の発明は、エンジン負荷信号に相当するアクセル踏込量や、エンジンに供給する燃料レバーの位置等、各部分が正しく操作しているかどうか、またはタービンの回転数が正常に得られているか等、システムの動作状況を検出するために、各部分に対する検出手段を設けた故障診断装置についての発明である。
特開平1-121514号公報、「回転電機付ターボチャージャの故障診断装置」
 特許文献1に記載されているような従来のターボチャージャは、タービンとコンプレッサが機械的に軸で連結されて一体となって回転する構造であるものが一般的である。
 しかし、通常ターボチャージャの回転数は高い(数万回転ないしそれ以上)ため、軸の振動を防止するために軸をできるだけ短くする必要がある。そのため、タービンへ排気を導くための配管、およびコンプレッサへ給気を導くための配管が長く、かつ曲がりくねったものになっている。そのため、配管における圧力損失が大きくなり、配管そのものも大きな場所を占めている。
 また、配管には断熱材を巻くことが多いが、断熱材の必要量が多く、かつ曲がった配管では断熱材を巻く手間も大きいという問題点があった。
 さらに、タービンとコンプレッサが同じ回転数で回転するため、タービンもしくはコンプレッサの一方が流体性能的に最良ではない条件で運転され、効率低下する可能性があるといった問題点が存在した。
 本発明は、上述した問題点に鑑みて創案されたものである。すなわち、本発明の目的は、タービンへ排気を導く配管及びコンプレッサへ給気を導く配管の長さを短くし、かつ、タービンとコンプレッサの双方を流体性能的に最良な条件に合わせて運転することができる排熱回収装置を提供することにある。
 排気により駆動されるタービンと、気体を圧縮するコンプレッサとを備える排熱回収装置であって、
 前記タービンの回転によって電力を発電する発電機と、
 前記コンプレッサを回転駆動する電動機と、
 前記電力を動力源として前記電動機を駆動する制御装置とを備える、ことを特徴とする排熱回収装置が提供される。
 また、本発明によれば、前記制御装置は、前記発電機からの交流出力を整流して直流に変換する整流器と、
 該整流器直後の直流電圧を平滑化する平滑化回路と、
 前記電力を前記タービン側から前記コンプレッサ側へ送る直流バスと、
 前記電動機を駆動するインバータと、
 前記タービン及び前記発電機の回転数を検出する回転数検出器と、
 前記直流バスの電圧を検出する電圧検出器と、
 前記回転数及び前記電圧に基づいて算出された前記電動機及び前記コンプレッサの回転数指令値を前記インバータに出力する回転数指令器とを備える。
 また、別の実施例によれば、前記制御装置は、前記発電機からの交流出力を整流して直流に変換する整流器と、
 該整流器直後の直流電圧を平滑化する平滑化回路と、
 前記電力を前記タービン側から前記コンプレッサ側へ送る直流バスと、
 前記電動機を駆動するインバータと、
 前記タービン及び前記発電機の回転数を検出する回転数検出器と、
 前記直流バスに電流を供給する直流電源と、
 前記タービン及び前記発電機からの発電電圧が前記インバータの動作可能な電圧に満たない場合に、前記電流を該インバータに供給するダイオードと、
 前記回転数に基づいて算出された前記電動機及び前記コンプレッサの回転数指令値を前記インバータに出力する回転数指令器とを備える。
 また、本発明によれば、1組の前記タービン及び前記発電機に対して、前記電動機及び前記コンプレッサを複数台設置している。
 上記本発明によれば、タービンとコンプレッサを機構的に二つに分けることによって、タービン及びコンプレッサを任意に配置することができるため、排気及び給気の配管を短く、かつ、直線的にすることができる。また、タービンとコンプレッサの回転数が異なってもよいので、タービンとコンプレッサの双方を流体性能的に最良な条件で運転することができる。
 
本発明における実施例1のターボチャージャの図である。 本発明における実施例2のターボチャージャの図である。 本発明における実施例3のターボチャージャの図である。 本発明における実施例4のターボチャージャの図である。
 以下、本発明の好ましい実施例を、図面を参照して説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
 図1は本願発明における実施例1の図である。
 この図において、1はタービン、1aは軸、2は発電機、3は整流器、4は平滑化回路、5は直流バス、6はインバータ、7は電動機、8はコンプレッサ、8aは軸、11は回転数検出器、12は電圧検出器、13は回転数指令器、14は回転数、15は電圧、16は回転数指令値、17は制御装置である。
 発電機2は、熱機関(図示しない)からの排気によって回転されるタービン1と軸1aで直結されている。そして、発電機2はタービン1と一体となって回転し、電力を発電する。
 例えば、三相交流で駆動される永久磁石同期モータを発電機2として使用することが可能である。
 制御装置17は、発電機2で発電した電力を動力源として、電動機7を駆動する。また、本実施例の制御装置17は、整流器3、平滑化回路4、直流バス5、インバータ6、回転数検出器11、電圧検出器12、回転数指令器13を備える。
 整流器3は、発電機2からの交流出力を整流して直流に変換する。
 例えば、整流器3はダイオードブリッジなどで構成されている。
 平滑化回路4は、整流器3直後の直流電圧には脈動(ripple)があるので平滑化する。
 例えば、平滑化回路4は、リアクトルとコンデンサで構成されている。
 直流バス5は、発電機2で発電した電力を、タービン1側からコンプレッサ8側へ送るものである。
 例えば、直流バス5は、ケーブルや、銅、アルミなどの導体のバスバーで構成されている。
 インバータ6は、回転数指令器13からの回転数指令値16に応じて電動機7を可変速で駆動する。
 例えば、インバータ6は、IGBTやパワーMOS FETなどの電力制御素子をPWM変調し、電圧型ないし電流型インバータとする構成が好ましい。
 或いは、電動機7を可変速で駆動する方法としては、センサレスベクトル制御でもよいし、電動機7の回転をエンコーダやレゾルバで検出してベクトル制御を行ってもよい。
 電動機7は、熱機関(図示せず)への給気を圧縮するコンプレッサ8に軸8aで直結されており、電動機7が回転するとコンプレッサ8も一緒に回転する構成になっている。
 例えば、電動機7は、三相交流で駆動される誘導モータや永久磁石同期モータで構成されている。
 回転数検出器11は、タービン1及び発電機2の回転数14を検出する。
 例えば、回転数検出器11として、タービン1及び発電機2の軸1aに設けたタコジェネやエンコーダが用いられる。
 回転数検出器11がエンコーダの場合には、エンコーダで検出した回転角度を時間微分して回転数14に変換する。
 電圧検出器12は、直流バス5のインバータ6に近い側の電圧15(プラスマイナス間の電圧)を検出する。
 回転数指令器13は、回転数検出器11で検出したタービン1及び発電機2の回転数14と、電圧検出器12で検出した直流バス5の電圧15に基づいて、電動機7及びコンプレッサ8の回転数指令値16をインバータ6へ出力する。
 回転数指令器13は、例えば、マイクロプロセッサとメモリと演算プログラムで構成することが可能である。
 回転数指令器13は、以下のように回転数指令値16を生成するように構成する。
(1)「電圧検出器12で検出した電圧15が「インバータ6が動作可能な最低電圧」より低い場合には、回転数指令値16を0にする。
(2)「電圧検出器12で検出した電圧15」が「インバータ6が動作可能な最低電圧」と同じか高い場合には、回転数指令値16を「回転数検出器11で検出した回転数14」×係数によって求めた値に設定する。
 ここで、例えば、流体性能的に、コンプレッサ8の回転数とタービン1の回転数14を等しくすると効率が良いのであれば、係数を1とし、例えば、流体性能的に、コンプレッサ8の回転数をタービン1の回転数14の2倍にすると効率が良いのであれば、係数を2とする。もしくは、例えば、流体性能的に、コンプレッサ8の回転数をタービン1の回転数14の0.8倍にすると効率が良いのであれば、係数を0.8とする。
 すなわち、流体性能的に効率が最も良くなるコンプレッサ8の回転数とタービン1の回転数14の比を係数とする。
 上記構成によって、熱機関(図示しない)が動作していないときは、排気が無いのでタービン1は回転しない。そのため、タービン1と同軸の発電機2も回転せず、直流バス5の電圧は0である。そこで、「電圧検出器12で検出した電圧15」は「インバータ6が動作可能な最低電圧」より低いので、回転数指令値16は0となり、電動機7は回転せず、電動機7と同軸のコンプレッサ8も回転しない。
 一方、熱機関(図示しない)が動作しているときは、排気が生じてタービン1が回転する。それにより、タービン1と同軸の発電機2も回転し、直流バス5の電圧が上昇する。「電圧検出器12で検出した電圧15」が「インバータ6が動作可能な最低電圧」を上回るようになると、回転数指令値16はゼロでなくなり、インバータ6におけるベクトル制御により、電動機7が回転数指令値16に応じた回転数で回転する。そして、電動機7と同軸のコンプレッサ8も回転し、熱機関への給気が圧縮される。
 回転数指令値16は回転数検出器11で検出した回転数14と比例しているので、タービン1が低速回転していればコンプレッサ8も低速で回転し、タービン1が高速回転していればコンプレッサ8も高速で回転する。そのため、熱機関(図示しない)が動作しているときには、タービンとコンプレッサが軸で直結された従来のターボチャージャと同様の動作となる。
 さらに、回転数指令値16を「回転数検出器11で検出した回転数14」×係数としているので、流体性能的に、タービン1の回転数14とコンプレッサ8の回転数の比を、例えば、X倍にすることが望ましい場合、係数の値をXとしておくことにより、コンプレッサ8の回転数がタービン1の回転数14のX倍となるよう運転することができる。
 図2は、本発明における実施例2のターボチャージャの図である。
 この図において、13aは回転数指令器、16aは回転数指令値、21は直流電源、22はダイオードである。実施例1と同一の構成要素に対しては、図1と同じ番号を付し説明を省略する。
 制御装置17は、発電機2で発電した電力を動力源として、電動機7を駆動する。また、本実施例の制御装置17は、整流器3、平滑化回路4、直流バス5、インバータ6、回転数検出器11、回転数指令器13a、直流電源21、ダイオード22を備える。
 回転数指令器13aは、回転数検出器11で検出したタービン1及び発電機2の回転数14に基づいて、電動機7及びコンプレッサ8の回転数の指令値16aをインバータ6へ出力する。
 直流電源21は、「インバータ6が動作可能な最低電圧」より大きい電圧を供給する。
 例えば、二次電池や電気二重層キャパシタを使用してもよいし、商用交流電源を整流・平滑化・定電圧化する構成でもよい。
 ダイオード22は、タービン1及び発電機2による発電電圧が低い場合のみ、直流電源21から直流バス5に電流が供給され、タービン1及び発電機2により十分な発電電圧が得られる場合には、発電機2から直流バス5に電流が供給されるように自動的に切り換えられる。
 直流電源21とダイオード22を図2に示すように接続するので、直流バス5には常に「インバータ6が動作可能な最低電圧」以上の電圧が加わっており、インバータ6は常に動作可能となる。
 回転数指令器13aは以下のように回転数指令値16aを生成するように構成する。
(1)「回転数検出器11で検出した回転数14」が、定数R1より小さい場合には、回転数指令値16aを定数R2にする。
(2)「回転数検出器11で検出した回転数14」が、定数R1と同じか高い場合には、回転数指令値16aを「回転数検出器11で検出した回転数14」×係数に設定する。
 ここで、定数R1は、熱機関(図示しない)がアイドル状態で、タービン1と同軸の発電機2による発電がほとんど行われない状態に相当するタービン1の回転数14である。定数R2は、最低限の給気を行うために必要なコンプレッサ8の回転数である。
 なお、上記係数は実施例1と同様にして求められる。
 上記構成によって、熱機関が動作していないとき、もしくは熱機関が動作しているがアイドル状態のときは、排気が少なくタービン1の回転数14が低いので、「「回転数検出器11で検出した回転数14」が、定数R1より小さい場合」に該当し、回転数指令値16aは定数R2となり、コンプレッサ8は最低限の給気のみを行う。タービン1と同軸の発電機2からの発電はほとんど行われないので、電流が直流電源21からダイオード22を介して直流バス5に流入し、インバータ6が駆動される。
 一方、熱機関が動作して負荷運転しているときは、排気が多くタービン1の回転数14が高いので、「「回転数検出器11で検出した回転数14」が、定数R1と同じか高い場合」に該当するため、実施例1における「熱機関が動作しているとき」の場合と同じ動作となる。
 実施例2は、熱機関がアイドル運転もしくは停止される頻度が高い場合でも、給気を最低限維持したい(コンプレッサ8を停止したくない)場合に特に適するものである。
 図3は、本発明における実施例3のターボチャージャの図である。
 この図において、33は回転数指令器、36はインバータ、37は電動機、38はコンプレッサ、38aは軸である。実施例1と同一の構成要素に対しては、図1と同じ番号を付し説明を省略する。
 制御装置17は、発電機2で発電した電力を動力源として、電動機7,37を駆動する。また、本実施例の制御装置17は、整流器3、平滑化回路4、直流バス5、インバータ6,36、回転数検出器11、電圧検出器12、回転数指令器33を備える。
 回転数指令器33は、回転数検出器11で検出したタービン1及び発電機2の回転数14と、電圧検出器12で検出した直流バス5の電圧に基づいて、電動機とコンプレッサとインバータの複数の組のそれぞれに対して、電動機及びコンプレッサの回転数の指令値をインバータへ出力する。すなわち、電動機7及びコンプレッサ8の回転数の指令値16をインバータ6へ出力し、電動機37及びコンプレッサ38の回転数の指令値46をインバータ36へ出力する。
 回転数指令器33は、例えば、マイクロプロセッサとメモリと演算プログラムで構成することが可能である。
 インバータ36、電動機37、コンプレッサ38、及び軸38aは、実施例1又は実施例2における、インバータ6、電動機7、コンプレッサ8、及び軸8aと同一機構のものである。寸法や形状や回転数は、異なっていてもよい。
 この実施例においては、1組のタービン1及び発電機2に対して、複数台又は複数の部分に分かれている熱機関や熱サイクル(図示しない)への吸気を圧縮する、複数台のコンプレッサ8、38及び電動機7、37を用意し、発電機2で発電した電力を、複数台の電動機7、37へ電気接続を行う構成になっている。
 回転数指令器33は、以下のように回転数指令値16を生成するように構成する。
(1)「電圧検出器12で検出した電圧15」が「インバータ6が動作可能な最低電圧」より低い場合には、回転数指令値16を0にする。
(2)「電圧検出器12で検出した電圧15」が「インバータ6が動作可能な最低電圧」と同じか高い場合には、回転数指令値16を「回転数検出器11で検出した回転数14」×係数Aによって求めた値に設定する。
 ここで、例えば、流体性能的に、コンプレッサ8の回転数とタービン1の回転数14を等しくすると効率が良いのであれば、係数Aを1とし、例えば、流体性能的に、コンプレッサ8の回転数をタービン1の回転数14の2倍にすると効率が良いのであれば、係数Aを2とする。もしくは、例えば、流体性能的に、コンプレッサ8の回転数をタービン1の回転数14の0.8倍にすると効率が良いのであれば、係数Aを0.8とする。
 すなわち、流体性能的に効率が最も良くなるコンプレッサ8の回転数とタービン1の回転数14の比を係数Aとする。
 さらに、回転数指令器33は、以下のように回転数指令値46を生成するように構成する。
(1)「電圧検出器12で検出した電圧15」が「インバータ36が動作可能な最低電圧」より低い場合には、回転数指令値46を0にする。
(2)「電圧検出器12で検出した電圧15」が「インバータ36が動作可能な最低電圧」と同じか高い場合には、回転数指令値46を「回転数検出器11で検出した回転数14」×係数Bによって求めた値に設定する。
 ここで、例えば、流体性能的に、コンプレッサ38の回転数とタービン1の回転数14を等しくすると効率が良いのであれば、係数Bを1とし、例えば、流体性能的に、コンプレッサ38の回転数をタービン1の回転数14の2倍にすると効率が良いのであれば、係数Bを2とする。もしくは、例えば、流体性能的に、コンプレッサ38の回転数をタービン1の回転数14の0.8倍にすると効率が良いのであれば、係数Bを0.8とする。
 すなわち、流体性能的に効率が最も良くなるコンプレッサ38の回転数とタービン1の回転数14の比を係数Bとする。
 一方、図4は、本発明における実施例4のターボチャージャの図である。
 この図において、33aは回転数指令器である。実施例2ないし実施例3と同一の構成要素に対しては、図2ないし図3と同じ番号を付し説明を省略する。
 制御装置17は、発電機2で発電した電力を動力源として、電動機7,37を駆動する。また、本実施例の制御装置17は、整流器3、平滑化回路4、直流バス5、インバータ6,36、回転数検出器11、回転数指令器33a、直流電源21、ダイオード22を備える。
 回転数指令器33aは、回転数検出器11で検出したタービン1及び発電機2の回転数14に基づいて、電動機とコンプレッサとインバータの複数の組のそれぞれに対して、電動機及びコンプレッサの回転数の指令値をインバータへ出力する。すなわち、電動機7及びコンプレッサ8の回転数の指令値16aをインバータ6へ出力し、電動機37及びコンプレッサ38の回転数の指令値46aをインバータ36へ出力する。
 回転数指令器33aは以下のように回転数指令値16aを生成するように構成する。
(1)「回転数検出器11で検出した回転数14」が、定数R1より小さい場合には、回転数指令値16aを定数R2Aにする。
(2)「回転数検出器11で検出した回転数14」が、定数R1と同じか高い場合には、回転数指令値16aを「回転数検出器11で検出した回転数14」×係数Aに設定する。
 ここで、定数R2Aは、最低限の給気を行うために必要なコンプレッサ8の回転数である。
 さらに、回転数指令器33aは以下のように回転数指令値46aを生成するように構成する。
(1)「回転数検出器11で検出した回転数14」が、定数R1より小さい場合には、回転数指令値46aを定数R2Bにする。
(2)「回転数検出器11で検出した回転数14」が、定数R1と同じか高い場合には、回転数指令値46aを「回転数検出器11で検出した回転数14」×係数Bに設定する。
 ここで、定数R2Bは、最低限の給気を行うために必要なコンプレッサ38の回転数である。
 なお、上記定数R1は実施例2と同様にして、係数A、係数Bは実施例3と同様にして求められる。
 上記実施例3及び実施例4において、常時、複数台又は複数の部分に分かれている熱機関や熱サイクルからの排気を合わせた排気がタービン1を駆動しており、排気のアンバランス対策のための連通管が不要になる。
 また、例えば、環境規制に対応するために、複数台又は複数の部分に分かれている熱機関や熱サイクルに対し、共通の排ガス処理装置を設ける場合、タービン通過前の高圧の排気が配管を通過するので、配管が細くて済むという効果が得られる。
 なお、本発明において、タービン1とコンプレッサ8間の距離が長い場合、電線における電位降下を小さくするため、平滑化回路4の直後に昇圧型DC-DCコンバータを追加し、電圧を昇圧してもよい。
 また、過電圧防止のため、直流バス5のプラスマイナス間にコンタクタを介して回生抵抗を追加し、直流バス5の電圧がインバータ6の入力許容電圧を越える場合にはコンタクタを閉じるように構成してもよい。
 タービン1及び発電機2の回転数検出を、発電機2の交流出力のゼロクロス点をカウントして行ってもよい。なお、この場合においては、外付けのタコジェネもしくはエンコーダは不要である。
 また、実施例3および実施例4においては、電動機とコンプレッサとインバータの組が2組ある例を示したが3組以上の場合にも同様の構成が可能である。
 なお、本発明は上述した実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々の変更を加え得ることは勿論である。
1 タービン、1a 軸、2 発電機、3 整流器、4 平滑化回路、5 直流バス、6 インバータ、7 電動機、8 コンプレッサ、8a 軸、11 回転数検出器、12 電圧検出器、13 回転数指令器、13a 回転数指令器、14 タービンと発電機の回転数、15 電圧、16 回転数指令値、16a 回転数指令値、17 制御装置、21 直流電源、22 ダイオード、33 回転数指令器、33a 回転数指令器、36 インバータ、37 電動機、38 コンプレッサ、38a 軸、46 回転数指令値、46a 回転数指令値

Claims (4)

  1.  排気により駆動されるタービンと、気体を圧縮するコンプレッサとを備える排熱回収装置であって、
     前記タービンの回転によって電力を発電する発電機と、
     前記コンプレッサを回転駆動する電動機と、
     前記電力を動力源として前記電動機を駆動する制御装置とを備える、ことを特徴とする排熱回収装置。
  2.  前記制御装置は、前記発電機からの交流出力を整流して直流に変換する整流器と、
     該整流器直後の直流電圧を平滑化する平滑化回路と、
     前記電力を前記タービン側から前記コンプレッサ側へ送る直流バスと、
     前記電動機を駆動するインバータと、
     前記タービン及び前記発電機の回転数を検出する回転数検出器と、
     前記直流バスの電圧を検出する電圧検出器と、
     前記回転数及び前記電圧に基づいて算出された前記電動機及び前記コンプレッサの回転数指令値を前記インバータに出力する回転数指令器とを備える、ことを特徴とする請求項1に記載の排熱回収装置。
  3.  前記制御装置は、前記発電機からの交流出力を整流して直流に変換する整流器と、
     該整流器直後の直流電圧を平滑化する平滑化回路と、
     前記電力を前記タービン側から前記コンプレッサ側へ送る直流バスと、
     前記電動機を駆動するインバータと、
     前記タービン及び前記発電機の回転数を検出する回転数検出器と、
     前記直流バスに電流を供給する直流電源と、
     前記タービン及び前記発電機からの発電電圧が前記インバータの動作可能な電圧に満たない場合に、前記電流を該インバータに供給するダイオードと、
     前記回転数に基づいて算出された前記電動機及び前記コンプレッサの回転数指令値を前記インバータに出力する回転数指令器とを備える、ことを特徴とする請求項1に記載の排熱回収装置。
  4.  1組の前記タービン及び前記発電機に対して、前記電動機及び前記コンプレッサを複数台設置している、ことを特徴とする請求項2乃至請求項3のいずれかに記載の排熱回収装置。
     
PCT/JP2011/060066 2010-07-08 2011-04-25 排熱回収装置 WO2012005046A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11803382.8A EP2592249B1 (en) 2010-07-08 2011-04-25 Waste heat recovery device
US13/807,636 US9109503B2 (en) 2010-07-08 2011-04-25 Waste heat recovery device
CN201180032647.7A CN102959198B (zh) 2010-07-08 2011-04-25 废热回收装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010155456A JP5700237B2 (ja) 2010-07-08 2010-07-08 排熱回収装置
JP2010-155456 2010-07-08

Publications (1)

Publication Number Publication Date
WO2012005046A1 true WO2012005046A1 (ja) 2012-01-12

Family

ID=45441032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060066 WO2012005046A1 (ja) 2010-07-08 2011-04-25 排熱回収装置

Country Status (5)

Country Link
US (1) US9109503B2 (ja)
EP (1) EP2592249B1 (ja)
JP (1) JP5700237B2 (ja)
CN (1) CN102959198B (ja)
WO (1) WO2012005046A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129643A1 (ja) * 2014-02-25 2015-09-03 三菱重工業株式会社 過給機及び船舶

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102739016B (zh) * 2012-06-29 2015-11-18 刘犇 一种利用测试系统剩余能源发电的方法
JP6272077B2 (ja) * 2014-02-25 2018-01-31 三菱重工業株式会社 過給機及び船舶
US20160138463A1 (en) * 2014-11-17 2016-05-19 Arnold Magnetic Technologies System and method for providing multiple voltage buses on a single vehicle
JP6287979B2 (ja) * 2015-07-01 2018-03-07 トヨタ自動車株式会社 内燃機関の制御装置
US10865687B2 (en) * 2016-11-07 2020-12-15 Ihi Corporation Exhaust gas energy recovery device
JP7179492B2 (ja) 2018-05-25 2022-11-29 三菱重工業株式会社 過給システム
TR201819786A2 (tr) * 2018-12-19 2020-07-21 Supsan Motor Supaplari Sanayii Ve Ticaret A S Kompresör ve türbi̇ni̇n ayri şaftlar üzeri̇nde olmasiyla veri̇mi̇ arttirilan bi̇r mi̇kro gaz türbi̇ni̇ne sahi̇p menzi̇l uzatici si̇stem ve buna i̇li̇şki̇n çalişma yöntemi̇
US20230407470A1 (en) * 2022-06-20 2023-12-21 Rasirc, Inc. Gas recovery systems and methods

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01121514A (ja) 1987-10-31 1989-05-15 Isuzu Motors Ltd 回転電機付ターボチャージャの故障診断装置
JPH04159422A (ja) * 1990-10-22 1992-06-02 Isuzu Motors Ltd エンジンの過給装置
JPH07102990A (ja) * 1993-10-04 1995-04-18 Isuzu Motors Ltd 排気エネルギー回収装置
JPH0932567A (ja) * 1995-07-24 1997-02-04 Isuzu Motors Ltd 排気エネルギー回収装置
JPH0974611A (ja) * 1995-09-01 1997-03-18 Mitsubishi Motors Corp 充電制御装置
JP2000500544A (ja) * 1995-11-15 2000-01-18 ターボダイン システムズ インコーポレイテッド 4サイクル内燃エンジンのための過給エアシステム
JP2004316558A (ja) * 2003-04-16 2004-11-11 Toyota Motor Corp 電動機付過給機の制御装置
JP2006029236A (ja) * 2004-07-16 2006-02-02 Fujitsu Ten Ltd 過給圧制御装置
JP2006322425A (ja) * 2005-05-20 2006-11-30 Denso Corp 内燃機関の過給圧制御装置
JP2007211634A (ja) * 2006-02-08 2007-08-23 Mitsubishi Heavy Ind Ltd 排気ターボ過給機

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4211932A (en) * 1978-05-08 1980-07-08 Carrier Corporation Power recovery system
JPS6251729A (ja) * 1985-08-30 1987-03-06 Isuzu Motors Ltd 内燃機関のタ−ボチヤ−ジヤの制御装置
JPS63302119A (ja) * 1987-05-30 1988-12-09 Isuzu Motors Ltd 排気エネルギ−回収エンジン
JP2526100B2 (ja) * 1988-07-18 1996-08-21 株式会社 いすゞセラミックス研究所 過給機の制御装置
JPH066898B2 (ja) * 1989-05-10 1994-01-26 いすゞ自動車株式会社 ターボチャージャ駆動用電源装置
US6029452A (en) 1995-11-15 2000-02-29 Turbodyne Systems, Inc. Charge air systems for four-cycle internal combustion engines
US5903116A (en) * 1997-09-08 1999-05-11 Capstone Turbine Corporation Turbogenerator/motor controller
US6958550B2 (en) * 1998-04-02 2005-10-25 Capstone Turbine Corporation Method and system for control of turbogenerator power and temperature
US6023135A (en) * 1998-05-18 2000-02-08 Capstone Turbine Corporation Turbogenerator/motor control system
JP4408560B2 (ja) * 2000-12-21 2010-02-03 大阪瓦斯株式会社 動力回収システム
US20040080165A1 (en) * 2001-12-31 2004-04-29 Capstone Turbine Corporation Turbogenerator/motor controller with ancillary energy storage/discharge
US6647724B1 (en) * 2002-07-30 2003-11-18 Honeywell International Inc. Electric boost and/or generator
KR101070906B1 (ko) * 2004-10-01 2011-10-06 설승기 분산 발전 시스템 및 그 제어 방법
US7958727B2 (en) * 2005-12-29 2011-06-14 Honeywell International Inc. Electric boost compressor and turbine generator system
US7471008B2 (en) * 2006-03-10 2008-12-30 Deere & Company Method and system for controlling a rotational speed of a rotor of a turbogenerator
US7541687B2 (en) * 2006-03-10 2009-06-02 Deere & Company Method and system for managing an electrical output of a turbogenerator
US7336000B2 (en) * 2006-04-20 2008-02-26 Deere & Company Electrical power regulation for a turbogenerator and generator associated with an internal combustion engine
GB0624599D0 (en) * 2006-12-09 2007-01-17 Aeristech Ltd Engine induction system
JP4959375B2 (ja) * 2007-02-28 2012-06-20 三菱重工業株式会社 自動車用電動過給機及びその制御方法
US7921944B2 (en) * 2007-10-29 2011-04-12 Ford Global Technologies, Llc Compression system for internal combustion engine including a rotationally uncoupled exhaust gas turbine
US20100146968A1 (en) * 2008-12-12 2010-06-17 Alexander Simpson Emission system, apparatus, and method
US20110094224A1 (en) * 2009-10-28 2011-04-28 Sheidler Alan D Metering exhaust gas recirculation system for a turbocharged engine having a turbogenerator system
US8522757B2 (en) * 2009-10-28 2013-09-03 Deere & Company Metering exhaust gas recirculation system for a dual turbocharged engine having a turbogenerator system
US8522756B2 (en) * 2009-10-28 2013-09-03 Deere & Company Interstage exhaust gas recirculation system for a dual turbocharged engine having a turbogenerator system
WO2012135258A2 (en) * 2011-03-29 2012-10-04 Glacier Bay, Inc. Generator
DE102013201947B4 (de) * 2012-02-29 2023-01-12 Ford Global Technologies, Llc Verfahren und Vorrichtung zur Innenraumaufwärmung in einem Kraftfahrzeug

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01121514A (ja) 1987-10-31 1989-05-15 Isuzu Motors Ltd 回転電機付ターボチャージャの故障診断装置
JPH04159422A (ja) * 1990-10-22 1992-06-02 Isuzu Motors Ltd エンジンの過給装置
JPH07102990A (ja) * 1993-10-04 1995-04-18 Isuzu Motors Ltd 排気エネルギー回収装置
JPH0932567A (ja) * 1995-07-24 1997-02-04 Isuzu Motors Ltd 排気エネルギー回収装置
JPH0974611A (ja) * 1995-09-01 1997-03-18 Mitsubishi Motors Corp 充電制御装置
JP2000500544A (ja) * 1995-11-15 2000-01-18 ターボダイン システムズ インコーポレイテッド 4サイクル内燃エンジンのための過給エアシステム
JP2004316558A (ja) * 2003-04-16 2004-11-11 Toyota Motor Corp 電動機付過給機の制御装置
JP2006029236A (ja) * 2004-07-16 2006-02-02 Fujitsu Ten Ltd 過給圧制御装置
JP2006322425A (ja) * 2005-05-20 2006-11-30 Denso Corp 内燃機関の過給圧制御装置
JP2007211634A (ja) * 2006-02-08 2007-08-23 Mitsubishi Heavy Ind Ltd 排気ターボ過給機

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129643A1 (ja) * 2014-02-25 2015-09-03 三菱重工業株式会社 過給機及び船舶
JP2015158188A (ja) * 2014-02-25 2015-09-03 三菱重工業株式会社 過給機及び船舶
US10066539B2 (en) 2014-02-25 2018-09-04 Mitsubishi Heavy Industries, Ltd. Turbocharger and ship

Also Published As

Publication number Publication date
EP2592249A1 (en) 2013-05-15
US20130098034A1 (en) 2013-04-25
EP2592249B1 (en) 2020-11-25
JP2012017685A (ja) 2012-01-26
CN102959198A (zh) 2013-03-06
CN102959198B (zh) 2015-12-16
US9109503B2 (en) 2015-08-18
JP5700237B2 (ja) 2015-04-15
EP2592249A4 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
JP5700237B2 (ja) 排熱回収装置
US10236805B2 (en) Methods and systems for controlling an electric motor
JP5454596B2 (ja) 電源制御装置
JP2012249397A (ja) モータ制御装置およびこれを備えた空気調和機
JP4561838B2 (ja) インバータ装置
JP6358144B2 (ja) 制御装置及び車載用電動圧縮機
JP2015128355A (ja) モータ制御装置
EP2660971B1 (en) Turbocharger electric generating device
JP6217667B2 (ja) 電動圧縮機
JP2007085337A (ja) 真空ポンプ装置
JP2014513511A (ja) 航空機用電源
JP5822697B2 (ja) 発電システム及びその運転制御方法
CN104993580A (zh) 油电混合直流供电装置
CN105339671A (zh) 换气装置
JP5858222B2 (ja) 排熱回収装置
KR101258247B1 (ko) 회전형 발전기의 운전 제어장치
JP5274376B2 (ja) 冷凍サイクル装置
JP2007303417A (ja) ターボチャージャ発電装置
CN113258844B (zh) 变换器控制装置及车载用流体机械
JP4725841B2 (ja) 発電機制御装置と発電機システム。
KR20160059658A (ko) 마이크로터빈 발전기 시스템의 통합 제어기
JP6257895B2 (ja) 洋上発電施設及びその運転方法
JP7380176B2 (ja) 電流センサ異常診断装置
JP2013046450A (ja) 分散電源用発電装置の過回転防止装置
JPH0650160A (ja) ターボチャージャの過回転防止装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180032647.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803382

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13807636

Country of ref document: US

Ref document number: 2011803382

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE