WO2020261759A1 - マイクロヒーター、ガスセンサー、およびマイクロヒーターの製造方法 - Google Patents

マイクロヒーター、ガスセンサー、およびマイクロヒーターの製造方法 Download PDF

Info

Publication number
WO2020261759A1
WO2020261759A1 PCT/JP2020/018143 JP2020018143W WO2020261759A1 WO 2020261759 A1 WO2020261759 A1 WO 2020261759A1 JP 2020018143 W JP2020018143 W JP 2020018143W WO 2020261759 A1 WO2020261759 A1 WO 2020261759A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
oxygen
metal oxide
insulating layer
microheater
Prior art date
Application number
PCT/JP2020/018143
Other languages
English (en)
French (fr)
Inventor
俊輔 赤坂
淵暢 朴
洋行 湯地
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2021527430A priority Critical patent/JP7492958B2/ja
Publication of WO2020261759A1 publication Critical patent/WO2020261759A1/ja
Priority to US17/561,912 priority patent/US20220117044A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/186Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer using microstructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/41Oxygen pumping cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters

Definitions

  • the present embodiment relates to a microheater, a gas sensor, and a method for manufacturing the microheater.
  • Micro heaters are used in various devices such as gas sensors and humidity sensors.
  • the gas sensor includes a microheater, a temperature sensor, and the like. Some of such microheaters use platinum to generate heat, and for example, a platinum film formed in a zigzag shape is provided. Things are disclosed.
  • the wiring part of the microheater made of platinum is usually designed to be used at about 300 to 400 ° C., and is generally covered with a refractory metal which is a material of an adhesion layer or a nitride thereof. There is.
  • the nitride when used in a high temperature region (for example, about 500 ° C.) above the above range, the nitride reacts with platinum due to heating, and voids are generated in the wiring portion. The voids gradually expand as the heating continues, and eventually the wiring portion may be disconnected, resulting in malfunction of the microheater.
  • the present embodiment provides a microheater provided with an adhesion layer that suppresses voids generated in the wiring portion and secures adhesion to the wiring portion.
  • another embodiment provides a gas sensor including the microheater.
  • Yet another embodiment provides a method of manufacturing the microheater.
  • One embodiment of the present embodiment includes a first insulating layer, a first adhesive layer on the first insulating layer, a wiring layer on the first adhesive layer, a second adhesive layer covering the wiring layer, and the like.
  • a second insulating layer on the first insulating layer and the second adhesive layer is provided, the wiring layer contains platinum, and the first adhesive layer and the second adhesive layer each contain a metal oxide.
  • the metal oxide is a microheater containing an oxygen-deficient region in which oxygen is deficient in the chemical quantity theory ratio of metal and oxygen.
  • another aspect of the present embodiment is a gas sensor provided with the above-mentioned microheater.
  • a first insulating layer is formed, a first adhesive layer is formed on the first insulating layer, a wiring layer is formed on the first adhesive layer, and the wiring is performed.
  • a second adhesive layer covering the side surface of the wiring layer is formed on the layer, a second insulating layer is formed on the first insulating layer and the second adhesive layer, and the first adhesive layer and the second adhesive layer are formed.
  • a microheater provided with an adhesion layer that suppresses voids generated in the wiring portion and secures adhesion to the wiring portion.
  • another embodiment can provide a gas sensor including the microheater.
  • other embodiments can provide a method of manufacturing the microheater.
  • FIG. 1 is a schematic plan view showing the structure of a microheater according to an embodiment of the present embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the structure of the microheater according to one aspect of the present embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating a method for manufacturing a microheater according to an embodiment of the present embodiment, and is a process diagram in which an insulating layer 12, a nitride layer 14, and an insulating layer 16 are sequentially formed on a substrate 10. is there.
  • FIG. 1 is a schematic plan view showing the structure of a microheater according to an embodiment of the present embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the structure of the microheater according to one aspect of the present embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating a method for manufacturing a microheater according to an embodiment of the present embodiment, and is a process diagram in which an insulating layer 12, a n
  • FIG. 4 is a schematic cross-sectional view illustrating a method for manufacturing a microheater according to an embodiment of the present embodiment, and is a process diagram for forming an adhesion layer 18a, a wiring layer 18b, and an adhesion layer 18c1 in this order.
  • FIG. 5 is a schematic cross-sectional view illustrating a method for manufacturing a microheater according to an embodiment of the present embodiment, and is a process diagram for removing a part of the adhesion layer 18c1.
  • FIG. 6 is a schematic cross-sectional view illustrating a method for manufacturing a microheater according to an embodiment of the present embodiment, and is a process diagram for removing a part of the wiring layer 18b.
  • FIG. 5 is a schematic cross-sectional view illustrating a method for manufacturing a microheater according to an embodiment of the present embodiment, and is a process diagram for removing a part of the wiring layer 18b.
  • FIG. 7 is a schematic cross-sectional view illustrating a method for manufacturing a microheater according to an embodiment of the present embodiment, and is a process diagram for forming the adhesion layer 18c2.
  • FIG. 8 is a schematic cross-sectional view illustrating a method for manufacturing a microheater according to an embodiment of the present embodiment, and is a process diagram for forming the adhesion layer 18c.
  • FIG. 9 is a schematic cross-sectional view illustrating a method for manufacturing a microheater according to an embodiment of the present embodiment, and is a process diagram for forming an insulating layer 20 and a nitride layer 22 in order.
  • FIG. 10 is a schematic cross-sectional view illustrating a method for manufacturing a microheater according to an embodiment of the present embodiment, and is a process diagram for forming the temperature sensor 24.
  • FIG. 11 is a schematic cross-sectional view illustrating a method for manufacturing a microheater according to an embodiment of the present embodiment, and is a process diagram for forming an opening for connecting a pair of electrodes outside the microheater and a wiring layer 18b. is there.
  • FIG. 12 is a schematic cross-sectional view illustrating a method for manufacturing a microheater according to an embodiment of the present embodiment, and is a process diagram for forming an opening reaching the substrate 10.
  • FIG. 13 is a schematic cross-sectional view illustrating a method for manufacturing a microheater according to an embodiment of the present embodiment, and is a process diagram for removing a part of the substrate 10 by etching or the like.
  • FIG. 14 is a schematic plan view of a gas sensor including a microheater according to an embodiment of the present embodiment.
  • FIG. 15 is a schematic cross-sectional view of a gas sensor including the microheater of one aspect of the present embodiment.
  • FIG. 16 is a cross-sectional TEM image of the microheater in the example.
  • FIG. 17 is a cross-sectional TEM image of the microheater in the embodiment, which is a cross-sectional image of (a) the adhesion layer 18a and the adhesion layer 18c included in the heater layer 18 being a titanium oxide layer (TiO 1.1 ).
  • (B) is a cross-sectional image in which the adhesion layer 18a and the adhesion layer 18c are titanium oxide layers (TIO 2 ), and
  • (c) is a cross-sectional image in which the adhesion layer 18a and the adhesion layer 18c are titanium nitride layers (TiN). is there.
  • FIG. 18 is a surface micrograph of the microheater in the example, and is a surface image of (a) the adhesion layer 18a and the adhesion layer 18c contained in the heater layer 18 being a titanium oxide layer (TiO 0.9 ).
  • (B) is a surface image in which the adhesion layer 18a and the adhesion layer 18c are titanium oxide layers (TiO 1.1 ), and
  • (c) is a surface image in which the adhesion layer 18a and the adhesion layer 18c are titanium oxide layers (TiO 1.4 ). It is a surface image that is.
  • FIG. 19 is a surface micrograph of the microheater in the example, which is (a) a surface image in which the adhesion layer 18a and the adhesion layer 18c included in the heater layer 18 are titanium nitride layers (TiN), and (b). Is a surface image in which the adhesion layer 18a and the adhesion layer 18c are titanium oxide layers (TIO 0.5 ), and (c) is a surface image in which the adhesion layer 18a and the adhesion layer 18c are titanium oxide layers (TIO 2 ). is there.
  • FIG. 20 is a diagram showing the evaluation results of the temperature of the membrane of the microheater and the electric power applied to the wiring layer 18b in the examples.
  • FIG. 21 is a diagram showing the evaluation results of the cycle characteristics of the microheater in the examples.
  • One aspect of this embodiment is as follows.
  • a second insulating layer on the second adhesive layer, the wiring layer contains platinum, and the first adhesive layer and the second adhesive layer each contain a metal oxide, and the metal oxide. Is a microheater containing an oxygen-deficient region in which oxygen is deficient in the chemical quantity theory ratio of metal and oxygen.
  • the oxygen in the oxygen-deficient region is 30 to 80% of the oxygen having a chemical composition of the metal oxide, and the metal consists of a group consisting of titanium, chromium, tungsten, molybdenum, and tantalum.
  • the metal is titanium, and the metal oxide has a stoichiometric ratio of metal to oxygen greater than 1: 0.5 and 1: 1.5 or less [1] or [2]. Described microheater.
  • the oxygen-deficient region includes a region in which the amount of oxygen gradually increases from the interface side between the wiring portion and the first adhesion layer toward the first insulating layer side, and the wiring portion and the said.
  • a temperature sensor is further provided on the second insulating layer, the wiring layer contains platinum, and the second insulating layer includes an oxide insulating layer and a nitride layer on the oxide insulating layer.
  • the wiring layer has a first bellows structure connected to each of the pair of electrodes, and the temperature sensor has a second bellows structure, and a linear portion of the first bellows structure and the second bellows structure.
  • the angle formed between the straight portions of the metal oxide layer is 45 ° to 135 °, and the temperature sensor includes a metal oxide layer and a metal layer on the metal oxide layer [1] to [4].
  • the metal oxide in the metal oxide layer contains an oxygen-deficient region in which the oxygen is deficient in the chemical ratio of metal and oxygen.
  • the gas sensor including the microheater according to [5], wherein the metal oxide in the metal oxide layer contains the same material as the metal oxide of the first adhesion layer and the second adhesion layer.
  • a first insulating layer is formed, a first adhesive layer is formed on the first insulating layer, a wiring layer is formed on the first adhesive layer, and a side surface of the wiring layer is formed on the wiring layer.
  • a second adhesive layer is formed to cover the first insulating layer and a second insulating layer is formed on the first insulating layer and the second adhesive layer, and the first adhesive layer and the second adhesive layer each contain a metal oxide.
  • the metal oxide is a method for producing a microheater including an oxygen-deficient region in which oxygen is deficient in the chemical quantity theory ratio of metal and oxygen.
  • the oxygen in the oxygen-deficient region is 30 to 80% of the oxygen in the stoichiometric composition of the metal oxide.
  • the metal is titanium, and the metal oxide has a chemical ratio of metal to oxygen of more than 1: 0.5 and 1: 1.5 or less [7] or [8].
  • the oxygen-deficient region includes a region in which the amount of oxygen gradually increases from the interface side between the wiring portion and the first adhesion layer toward the first insulating layer side, and the wiring portion and the said.
  • a temperature sensor is further formed on the second insulating layer, and the temperature sensor has a step of forming a metal oxide layer on the second insulating layer and a metal layer on the metal oxide layer.
  • the second insulating layer comprises a step of forming an oxide insulating layer on the first insulating layer and the second adhesive layer, and a nitride layer is formed on the oxide insulating layer.
  • the wiring layer contains platinum, the wiring layer is formed to have a first bellows structure, and the temperature sensor is formed to have a second bellows structure.
  • FIG. 1 is a schematic plan view showing the structure of the microheater according to the present embodiment
  • FIG. 2 is a schematic cross-sectional view showing the structure of the microheater according to the present embodiment
  • FIGS. 3 to 13 are manufacturing of the microheater according to the present embodiment. It is sectional drawing which explains the method.
  • the microheater includes a substrate 10, an insulating layer 12 on the substrate 10, a nitride layer 14, an insulating layer 16, and a heater layer 18 on the insulating layer 16.
  • An insulating layer 20, a nitride layer 22, and a temperature sensor 24 on the heater layer 18 are provided.
  • the heater layer 18 includes an adhesion layer 18a, a wiring layer 18b, and an adhesion layer 18c.
  • the temperature sensor 24 includes a metal oxide layer 24a and a metal layer 24b.
  • the substrate 10, the insulating layer 12, the temperature sensor 24 and the like are described as a part of the microheater, but the present invention is not limited to this, and the substrate 10, the insulating layer 12, the temperature sensor 24 and the like are described. The interpretation may not include it as part of the microheater.
  • the heater layer 18 of the microheater includes an adhesion layer 18a, a wiring layer 18b, and an adhesion layer 18c, and an insulating layer 16 and an insulating layer 20 are arranged above and below the heater layer 18.
  • the close contact layer 18a and the close contact layer 18c function as a barrier layer provided between the wiring layer 18b and the insulating layer 16 and the insulating layer 20. That is, the wiring layer 18b is completely covered with the adhesion layer 18a and the adhesion layer 18c that function as a barrier layer.
  • a heat source can be generated by passing an electric current through the wiring layer 18b.
  • a conductive material can be used, and for example, a metal material such as platinum can be used.
  • the wiring part of a general microheater is usually used at about 300 to 400 ° C. When used in a high temperature region (about 500 ° C.) above the above range, deterioration of the microheater is accelerated and the operation of the microheater is performed. Although there is a risk of causing defects, the present inventors have solved the above problems by adjusting the materials of the adhesion layer 18a, the wiring layer 18b, and the adhesion layer 18c in the heater layer 18 of the microheater. It was. In order for the microheater to operate normally for a long period of time in a usage environment of about 500 ° C., it is necessary to secure heat resistance of about 800 ° C.
  • the adhesion layer of the microheater is covered with a nitride layer, but when used in a high temperature region, the nitride layer reacts with platinum due to heat, and voids are generated in the wiring portion. The void gradually expands as it continues to be heated, and eventually the wiring portion is disconnected.
  • the adhesion layer 18a and the adhesion layer 18c in the microheater according to the present embodiment each contain a metal oxide.
  • the metal oxide contains an oxygen-deficient region in which oxygen is deficient in the chemical ratio of metal to oxygen.
  • the electronegativity of the metal is higher than before it was bound.
  • platinum has a lower electronegativity than the metal after bonding.
  • the metal after bonding becomes more difficult to bond with platinum than before bonding, but by making the amount of oxygen bonded to the metal smaller than the chemical quantity theory ratio as in the present embodiment, after bonding.
  • the increase in electronegativity of the metal can be further suppressed as compared with the case of the chemical quantitative composition, and the metal is more likely to bind to platinum. Therefore, when the metal oxide contains an oxygen-deficient region, the metal is bonded to platinum, so that the adhesion is improved.
  • the oxygen deficient region exists in the vicinity of the interface between the wiring portion and the adhesion layer, for example, 10 to 100 nm from the interface, preferably 20 to 80 nm, and more preferably 20 to 50 nm.
  • the metal oxide may contain a region having a stoichiometric composition.
  • the region having a stoichiometric composition exists adjacent to the end of the oxygen-deficient region on the side away from the interface between the wiring portion and the adhesion layer.
  • the oxygen-deficient region is a region in which the amount of oxygen gradually increases from the interface side between the wiring portion and the adhesion layer toward the insulating layer side, that is, from the interface side between the wiring portion and the adhesion layer to the insulating layer side. It may have a region that approaches the stoichiometric composition towards.
  • the adhesion layer 18a and the adhesion layer 18c contain a metal oxide, and the metal in the metal oxide can include, for example, one selected from the group consisting of titanium, chromium, tungsten, molybdenum, and tantalum.
  • the oxygen in the oxygen-deficient region in the metal oxide is preferably 30 to 80%, more preferably 40 to 75%, and 45 to 45% of the oxygen having the stoichiometric composition of the metal oxide. It is more preferably 70%.
  • the stoichiometric ratio of metal to oxygen is more than 1: 0.5 and 1: 1.5 or less, and preferably 1: 0.6 or more and 1: 1.5 or less. , 1: 0.9 or more and 1: 1.4 or less is more preferable.
  • the material of the wiring layer and the metal oxide is not limited to the above, and the metal oxide contains an oxygen-deficient region, and the metal of the metal oxide is formed at the interface between the material of the wiring layer and the material of the metal oxide. Anything that suppresses the increase in electronegativity of
  • the wiring layer 18b is connected to a pair of electrodes outside the microheater, which will be described later, and has a first bellows structure as shown in FIG.
  • the first bellows structure has a straight portion and a folded portion.
  • the substrate 10 has a thickness of, for example, about 10 ⁇ m, and silicon, epoxy resin, ceramics, or the like can be used.
  • the insulating layer 12 has a thickness of, for example, about 0.1 ⁇ m, and silicon oxide or the like can be used.
  • the insulating layer 12 functions as an etch stop film when processing the substrate 10.
  • the material of the insulating layer 12 is not limited to the above, and may be any material having the above functions.
  • silicon nitride or the like can be used for example.
  • silicon oxide or the like can be used for the insulating layer 16 and the insulating layer 20 for example. Silicon nitride and silicon oxide are used to adjust the stress inside the membrane composed of the nitride layer and the insulating layer.
  • the temperature sensor 24 includes a metal oxide layer 24a and a metal layer 24b on the metal oxide layer 24a, and the metal oxide in the metal oxide layer 24a has a chemical quantity ratio of metal and oxygen. It may contain an oxygen-deficient region in which oxygen is deficient, and the same materials as the adhesion layer 18a and the adhesion layer 18c can be used. Further, as the metal layer 24b, the same material as the wiring layer 18b can be used. Although not shown, a metal oxide layer containing an oxygen-deficient region may be further provided on the metal layer 24b.
  • the temperature sensor 24 has a second bellows structure as shown in FIG.
  • the second bellows structure has a straight portion and a folded portion.
  • the linear portion of the first bellows structure of the wiring layer 18b and the linear portion of the second bellows structure of the temperature sensor 24 are orthogonal to each other, but the present invention is not limited to this.
  • the angle formed between the straight portion of the first bellows structure of the wiring layer 18b and the straight portion of the second bellows structure of the temperature sensor 24 is preferably 45 ° to 135 °.
  • the region where the wiring layer 18b and the temperature sensor 24 overlap each other becomes wide, and the temperature sensor 24 can sense the temperature of the wiring layer 18b with high sensitivity.
  • the insulating layer 12, the nitride layer 14, and the insulating layer 16 are formed on the substrate 10 in this order.
  • a silicon substrate is used as the substrate 10
  • silicon oxide formed by a CVD (Chemical Vapor Deposition) method is used as a material for the insulating layer 12 and the insulating layer 16, and the nitride layer 14 is formed by a CVD method.
  • Silicon nitride is used.
  • the adhesion layer 18a to be the heater layer 18, the wiring layer 18b, and the adhesion layer 18c1 which is a part of the adhesion layer 18c are sequentially formed on the nitride layer 14.
  • titanium oxide having an oxygen-deficient region formed by a sputtering method as a material for the adhesion layer 18a and the adhesion layer 18c1 specifically, the stoichiometric ratio of titanium and oxygen is about 1: 1.1.
  • Titanium oxide is used, and platinum formed by the sputtering method is used as the material of the wiring layer 18b.
  • the heater layer 18 uses a metal oxide having an oxygen-deficient region as the material of the adhesion layer, so that the metal of the metal oxide is electronegative at the interface between the material of the wiring layer and the material of the metal oxide. Since the increase in degree can be suppressed, it is possible to suppress the film peeling while suppressing the voids generated in the wiring portion, and to secure the adhesion between the adhesion layer and the wiring portion.
  • the adhesion layer 18c1 is formed.
  • a resist is patterned on the adhesion layer 18c1 by photolithography.
  • the adhesion layer 18c1 shown in FIG. 5 is formed by removing a part of the adhesion layer 18c1 using the patterned resist.
  • a part of the wiring layer 18b is removed using the patterned resist and the adhesion layer 18c1, and the resist is removed to form the wiring layer 18b shown in FIG.
  • the timing of removing the resist is not limited to this.
  • the resist may be removed after removing a part of the adhesion layer 18c1.
  • the adhesion layer 18c2 which is a part of the adhesion layer 18c, is formed on the adhesion layer 18a and the adhesion layer 18c1.
  • the combination of the adhesion layer 18c1 and the adhesion layer 18c2 corresponds to the adhesion layer 18c.
  • the material of the adhesion layer 18c2 the same material as that of the adhesion layer 18c1 described above can be used.
  • the adhesion layer 18c is formed.
  • the wiring layer 18b is completely covered with the adhesion layer 18a and the adhesion layer 18c.
  • a resist is patterned on the adhesion layer 18c by photolithography.
  • the adhesion layer 18a and the adhesion layer 18c shown in FIG. 8 are formed by removing a part of the adhesion layer 18a and a part of the adhesion layer 18c using a patterned resist.
  • the adhesion layer 18c has a two-layer structure of the adhesion layer 18c1 and the adhesion layer 18c2, but is not limited to this, and the adhesion layer 18c1 may not be provided and only the adhesion layer 18c2 may be configured.
  • the insulating layer 20 and the nitride layer 22 are sequentially formed on the insulating layer 16 and the heater layer 18.
  • silicon oxide formed by the CVD method is used as the material of the insulating layer 20
  • silicon nitride formed by the CVD method is used as the material of the nitride layer 22.
  • a temperature sensor 24 including the metal oxide layer 24a and the metal layer 24b is formed on the nitride layer 22.
  • titanium oxide having an oxygen-deficient region formed by a sputtering method as a material of the metal oxide layer 24a specifically, the chemical quantity theory ratio of titanium and oxygen is about 1: 1.1.
  • Titanium oxide is used, and platinum formed by the sputtering method is used as the material of the metal layer 24b.
  • an opening for connecting the pair of electrodes outside the microheater and the wiring layer 18b is formed.
  • a resist is patterned on the nitride layer 22 and the temperature sensor 24 by photolithography.
  • the opening shown in FIG. 11 is formed by removing a part of the nitride layer 22, a part of the insulating layer 20, and a part of the adhesion layer 18c using the patterned resist.
  • an opening reaching the substrate 10 is formed.
  • the resist is patterned by photolithography in the same manner as described above, and the opening is formed by using the patterned resist.
  • the microheater according to the present embodiment can be manufactured by removing a part of the substrate 10 by etching or the like.
  • the present embodiment it is possible to provide a microheater provided with an adhesion layer that suppresses voids generated in the wiring portion even in a high temperature region and secures adhesion to the wiring portion. As a result, malfunction of the microheater can be suppressed, and reliability can be ensured.
  • FIG. 14 is a schematic plan view of a gas sensor provided with a microheater
  • FIG. 15 is a schematic cross-sectional view of the gas sensor along the IA-IA line of FIG.
  • the gas sensor includes a microheater having a temperature sensor, a heater connection portion 31, a heater connection portion 32, a terminal electrode connection portion 33, and a terminal electrode connection portion provided on the substrate 10. 34 and the like are provided.
  • the microheater the microheater described in the first embodiment can be used.
  • the sensor portion SP including the temperature sensor includes a porous oxide film (porous film) 51 arranged via the nitride layer 22, a lower electrode 38D arranged on the porous oxide film 51, a porous oxide film 51, and a lower portion. It includes a solid electrolyte layer 40 arranged so as to cover the electrode 38D, and an upper electrode 38U arranged on the solid electrolyte layer 40 facing the lower electrode 38D.
  • the porous oxide film 51 functions as a gas introduction path and has a gas intake port 51G.
  • the temperature sensor described in the first embodiment can be used.
  • the solid electrolyte layer 40 can be formed of a YSZ film having a thickness of about 1 ⁇ m. This is because if it is thin, the lower electrode 38D and the upper electrode 38U will be electrically connected.
  • the solid electrolyte layer 40 is arranged so as to cover the periphery of the lower electrode 38D, and can prevent conduction between the lower electrode 38D and the upper electrode 38U.
  • the porous oxide film 51 of the sensor portion SP, the lower electrode 38D, the solid electrolyte layer 40, and the upper electrode 38U may all have a rectangular shape, or may have other shapes. May be good. Further, the porous oxide film 51, the lower electrode 38D, the solid electrolyte layer 40, and the upper electrode 38U constituting the sensor portion SP are preferably arranged in the center of the sensor surface without eccentricity, but may be on the microheater. For example, it may be arranged in an eccentric state.
  • the heater connection portion 31 and the heater connection portion 32 are arranged so as to face each other in the left-right direction (in-plane direction along the cross section of FIG. 15) centered on the sensor portion SP.
  • the heater connection portion 31 has a connection pad 311, a wiring portion 312, and a terminal portion 313, and the heater connection portion 32 has a connection pad 321, a wiring portion 322, and a terminal portion 323.
  • the terminal electrode connecting portion 33 and the terminal electrode connecting portion 34 are arranged so as to face each other in the vertical direction shown in the drawing, centered on the sensor portion SP and orthogonal to the heater connecting portion 31 and the heater connecting portion 32.
  • the terminal electrode connection portion 33 has a connection pad (detection terminal) 331 and a wiring portion 332, and the terminal electrode connection portion 34 has a connection pad (detection terminal) 341 and a wiring portion 342.
  • the configuration of the adhesion layer and the wiring layer described in the first embodiment can be used.
  • the heater connection portion 31, the heater connection portion 32, the terminal electrode connection portion 33, and the terminal electrode connection portion 34 are provided on the nitride layer 22.
  • the terminal portion 313 and the terminal portion 323 of the heater connection portion 31 and the heater connection portion 32 are connected to the micro heater, and the wiring portion 332 of the terminal electrode connection portion 33 is connected to the lower electrode 38D extending in the direction of the sensor portion SP.
  • the wiring portion 342 of the terminal electrode connecting portion 34 is connected to the upper electrode 38U extending in the direction of the sensor portion SP.
  • the terminal portion 313 and the terminal portion 323 of the heater connection portion 31 and the heater connection portion 32 are covered with a silicon nitride layer 36 arranged so as to surround the outer peripheral portion of the sensor portion SP in a plan view.
  • a silicon oxide layer 35 is embedded between the silicon nitride layer 36 and the terminal portion 313 and the terminal portion 323.
  • a detection circuit for detecting a predetermined gas concentration in the gas to be measured is connected to the connection pad 331 and the connection pad 341 of the terminal electrode connection portion 33 and the terminal electrode connection portion 34.
  • the detection circuit can detect the oxygen concentration based on the critical current.
  • the detection circuit can detect the water vapor concentration based on the critical current.
  • the gas to be measured (for example, O 2 gas) is transferred to the solid electrolyte layer 40 of the sensor portion SP through the gas intake port 51G of the porous oxide film 51 as the microheater is heated. It is configured to be introduced inward. That is, the gas to be measured is taken into the porous oxide film 51 from the gas intake port 51G, introduced into the solid electrolyte layer 40 via the lower electrode 38D, and then diffused into the solid electrolyte layer 40 by heating. To. The introduction of the gas to be measured into the solid electrolyte layer 40 may be accompanied by a suction operation.
  • the gas sensor according to the present embodiment includes the microheater according to the first embodiment, suppresses voids generated in the wiring portion of the microheater even in a high temperature region, and the adhesion layer of the microheater is the wiring portion. Since the adhesion is good, it is possible to suppress the malfunction of the microheater. Along with this, the gas sensor according to the present embodiment can suppress malfunctions and ensure reliability.
  • Example 1 In this example, the cross-sectional TEM observation of the above-mentioned microheater was performed.
  • the microheater of this embodiment includes a silicon substrate which is a substrate 10, an insulating layer 12, a nitride layer 14, an insulating layer 16, a heater layer 18, and an insulating layer 20. And a nitride layer 22. Further, an insulating layer 25 is provided on the nitride layer 22.
  • the insulating layer 12 is a silicon oxide layer
  • the nitride layer 14 is a silicon nitride layer
  • the insulating layer 16 is a silicon oxide layer
  • the insulating layer 20 is a silicon oxide layer
  • the nitride layer 22 is a silicon nitride layer.
  • the insulating layer 25 is a silicon oxide layer.
  • the heater layer 18 is composed of an adhesion layer 18a, a wiring layer 18b, and an adhesion layer 18c, and the adhesion layer 18a is titanium oxide having a stoichiometric ratio of titanium and oxygen of 1: 1.1. It is a layer, the wiring layer 18b is a platinum layer, and the adhesion layer 18c is a titanium oxide layer having a stoichiometric ratio of titanium and oxygen of 1: 1.1.
  • the adhesion layer 18a, the wiring layer 18b, and the adhesion layer 18c were formed by a sputtering method.
  • FIG. 16 An auxiliary line is added to indicate the boundary between the layers.
  • the wiring layer 18b has an upper end portion 28 and a lower end portion 29, and the lower end portion 29 protrudes from the upper end portion 28.
  • Such a configuration is formed when the wiring layer 18b is etched by using a resist pattern that serves as a mask etched so that the side surface of the wiring layer 18b is inclined, and is formed on the wiring layer 18b depending on the shape of the wiring layer 18b.
  • the coverage of the adhesion layer 18c is improved. Further, the distance between the lower surface 28a and the upper surface 28b of the adhesion layer 18c at the upper end 28 (the thickness of the adhesion layer 18c at the upper end 28) and the distance between the lower surface 29a and the upper surface 29b of the adhesion layer 18c at the lower end 29 (at the lower end 29).
  • the thickness of the adhesion layer 18c is determined by the distance between the lower surface 23a1 and the upper surface 23a2 of the adhesion layer 18c other than the upper end 28 and the lower end 29, the lower surface 23b1 and It is smaller than the distance of the upper surface 23b2 and the distance between the lower surface 23c1 and the upper surface 23c2 (the thickness of the adhesion layer 18c other than the upper end 28 and the lower end 29, respectively). Further, an enlarged view of the periphery of the heater layer 18 in FIG. 16 is shown in FIG. 17 (a).
  • the occurrence of voids in the wiring layer 18b could not be confirmed, and the occurrence of film peeling could not be confirmed at the interface between the wiring layer 18b and the adhesion layer 18a or the adhesion layer 18c.
  • Example 2 In this example, the presence or absence of voids and film peeling due to the difference in the material of the adhesion layer in the microheater of Example 1 was evaluated by cross-section TEM observation and surface microscope observation.
  • the proportion of oxygen in the titanium oxide layer (TiO 1.1 ) is 55% of the oxygen in the stoichiometric composition of titanium oxide.
  • the ratio of oxygen of TiO x to TiO 2 is also referred to as the oxygen ratio.
  • the titanium nitride layer (TiN) was used as a sample although it did not contain oxygen.
  • the prepared sample was heat-treated at 700 ° C.
  • the adhesion layer 18a and the adhesion layer 18c are a titanium oxide layer (TiO 0.5 : oxygen ratio 25%), a titanium oxide layer (TiO 0.9 : oxygen ratio 45%), and titanium oxide.
  • FIG. 17A is a cross section in which the adhesion layer 18a and the adhesion layer 18c are titanium oxide layers (TiO 1.1 ), and FIG. 17B shows the adhesion layer 18a and the adhesion layer 18c being a titanium oxide layer (TiO 2 ).
  • FIG. 17C is a cross section in which the adhesion layer 18a and the adhesion layer 18c are titanium nitride layers (TiN).
  • FIG. 17A when the adhesion layer 18a and the adhesion layer 18c are titanium oxide layers (TiO 1.1 ), no voids can be confirmed in the wiring layer 18b, and the adhesion layer 18b is in close contact with the wiring layer 18b. No film peeling could be confirmed at the interface with the layer 18a or the adhesion layer 18c.
  • FIG. 17B when the adhesion layer 18a and the adhesion layer 18c are titanium oxide layers (TiO 2 ), it was confirmed that the film peeling occurred in the region 26.
  • FIG. 17C when the adhesion layer 18a and the adhesion layer 18c are titanium nitride layers (TiN), it was confirmed that voids were generated in the region 27.
  • FIGS. 18 and 19 The obtained surface micrographs are shown in FIGS. 18 and 19.
  • FIG. 18A is a surface in which the adhesion layer 18a and the adhesion layer 18c are titanium oxide layers (TiO 0.9 )
  • FIG. 18B is a surface in which the adhesion layer 18a and the adhesion layer 18c are titanium oxide layers (TiO 1. 1 )
  • FIG. 18 (c) is a surface in which the adhesion layer 18a and the adhesion layer 18c are titanium oxide layers (TiO 1.4 ).
  • FIG. 19A shows a surface in which the adhesion layer 18a and the adhesion layer 18c are titanium nitride layers (TiN), and FIG.
  • FIG. 19B shows the adhesion layer 18a and the adhesion layer 18c being a titanium oxide layer (TIO 0.5 ). There is a certain surface, and FIG. 19 (c) shows a surface in which the adhesion layer 18a and the adhesion layer 18c are titanium oxide layers (TiO 2 ).
  • the materials of the adhesion layer 18a and the adhesion layer 18c are a titanium oxide layer (TiO 0.9 ), a titanium oxide layer (TIM 1.1 ), and a titanium oxide layer.
  • TiO 1.4 the occurrence of voids could not be confirmed, and the occurrence of film peeling could not be confirmed at the interface between the wiring layer 18b and the adhesion layer 18a or the adhesion layer 18c.
  • the materials of the adhesion layer 18a and the adhesion layer 18c are the titanium nitride layer (TiN), the titanium oxide layer (TIO 0.5 ), and the titanium oxide layer ( It was confirmed that TiO 2 ) had voids or film peeling (black spots and white spots in the figure).
  • Example 3 the performance of the microheater in which the adhesion layer 18a and the adhesion layer 18c used in Example 1 are titanium oxide layers (TiO 1.1 ) was evaluated.
  • the temperature of the membrane composed of the nitride layer and the insulating layer and the electric power applied to the wiring layer 18b were evaluated.
  • Figure 20 shows the evaluation results. As shown in FIG. 20, it was found that when 120 mW of electric power was applied to the wiring layer 18b, the temperature of the membrane reached 800 ° C., and before and after the temperature of the membrane reached 800 ° C., there was no change in resistance and no hysteresis. Therefore, it was found that the microheater was not deteriorated.
  • the cycle characteristics (current change) of the microheater were evaluated by repeating 550 ° C. and room temperature (25 ° C.) at a cycle of 0.2 seconds and a duty ratio of 50% using a microheater.
  • the microheater was connected in parallel with three elements, and the voltage was fixed at 8V.
  • FIG. 21 shows the evaluation results. As shown in FIG. 21, a current change in the micro-heater be repeated 107 times is not observed, the micro-heater resistance is not changed, that is, it was found that the micro-heater is not degraded.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Molecular Biology (AREA)
  • Ceramic Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

第1絶縁層(16)と、前記第1絶縁層上の第1密着層(18a)と、前記第1密着層上の配線層(18)と、前記配線層を覆う第2密着層(18c)と、前記第1絶縁層上及び前記第2密着層上の第2絶縁層(20)と、を備え、前記配線層は、白金を含み、前記第1密着層及び前記第2密着層は、それぞれ金属酸化物を含み、前記金属酸化物は、金属と酸素との化学量論比において前記酸素が欠乏している酸素欠乏領域を含むマイクロヒーター。

Description

マイクロヒーター、ガスセンサー、およびマイクロヒーターの製造方法
 本実施形態は、マイクロヒーター、ガスセンサー、およびマイクロヒーターの製造方法に関する。
 マイクロヒーターは、例えば、ガスセンサー、湿度センサー等の様々なデバイスに用いられている。ガスセンサーは、マイクロヒーター及び温度センサー等を備えているが、このようなマイクロヒーターは、熱を発生させるために白金を用いるものがあり、例えば、ジグザグ形状に形成された白金膜が設けられたものが開示されている。
 また、白金からなるマイクロヒーターの配線部は、通常300~400℃程度で使用されるように設計されており、一般的に密着層の材料である高融点金属もしくはその窒化物などで覆われている。
特開2007-64865号公報
J.F.Creemer et al.、"Microhotplates with TiN heaters"、Sensors and Actuators A: Physical、p416-421、2008 Carole Rossi et al.、"Realization and performance of thin SiO2/SiNx membrane for microheater applications"、Sensors and Actuators A: Physical、p241-245、1998 Harish C. Barshilia et al.、"Structure, hardness and thermal stability of nanolayered TiN/CrN multilayer coatings"、VACUUM、Vacuum 72、p416-421、2004
 しかしながら、上記範囲の温度以上の高温領域(例えば、500℃程度)で使用する場合、加熱によって窒化物と白金が反応してしまい、空隙が配線部に生じる。当該空隙は、加熱し続けられることで徐々に広がり、やがて配線部を断線させ、マイクロヒーターの動作不良を招くおそれがある。
 上記断線を抑制するため、窒化物層のかわりに高温領域において白金と反応しない酸化物絶縁層を用いることも検討されてきたが、白金と酸化物との密着性が不十分であり、膜剥がれが生じやすく、酸化物絶縁層を密着層として機能させることは困難であった。
 本実施形態は、配線部に生じる空隙を抑制し、かつ配線部との密着性を確保した密着層を備えるマイクロヒーターを提供する。また、他の実施形態は、当該マイクロヒーターを備えるガスセンサーを提供する。さらに、他の実施形態は、当該マイクロヒーターの製造方法を提供する。
 本実施形態の一態様は、第1絶縁層と、前記第1絶縁層上の第1密着層と、前記第1密着層上の配線層と、前記配線層を覆う第2密着層と、前記第1絶縁層上及び前記第2密着層上の第2絶縁層と、を備え、前記配線層は、白金を含み、前記第1密着層及び前記第2密着層は、それぞれ金属酸化物を含み、前記金属酸化物は、金属と酸素との化学量論比において前記酸素が欠乏している酸素欠乏領域を含むマイクロヒーターである。
 また、本実施形態の他の一態様は、上記のマイクロヒーターを備えるガスセンサーである。
 また、本実施形態の他の一態様は、第1絶縁層を形成し、前記第1絶縁層上に第1密着層を形成し、前記第1密着層上に配線層を形成し、前記配線層上に前記配線層の側面を覆う第2密着層を形成し、前記第1絶縁層及び前記第2密着層上に第2絶縁層を形成し、前記第1密着層及び前記第2密着層は、それぞれ金属酸化物を含み、前記金属酸化物は、金属と酸素との化学量論比において前記酸素が欠乏している酸素欠乏領域を含むマイクロヒーターの製造方法である。
 本実施形態によれば、配線部に生じる空隙を抑制し、かつ配線部との密着性を確保した密着層を備えるマイクロヒーターを提供することができる。また、他の実施形態は、当該マイクロヒーターを備えるガスセンサーを提供することができる。さらに、他の実施形態は、当該マイクロヒーターの製造方法を提供することができる。
図1は、本実施形態の一態様のマイクロヒーターの構造を示す平面模式図である。 図2は、本実施形態の一態様のマイクロヒーターの構造を示す断面模式図である。 図3は、本実施形態の一態様のマイクロヒーターの製造方法を説明する断面模式図であって、基板10上に絶縁層12、窒化物層14、及び絶縁層16を順に形成する工程図である。 図4は、本実施形態の一態様のマイクロヒーターの製造方法を説明する断面模式図であって、密着層18a、配線層18b、及び密着層18c1を順に形成する工程図である。 図5は、本実施形態の一態様のマイクロヒーターの製造方法を説明する断面模式図であって、密着層18c1の一部を除去する工程図である。 図6は、本実施形態の一態様のマイクロヒーターの製造方法を説明する断面模式図であって、配線層18bの一部を除去する工程図である。 図7は、本実施形態の一態様のマイクロヒーターの製造方法を説明する断面模式図であって、密着層18c2を形成する工程図である。 図8は、本実施形態の一態様のマイクロヒーターの製造方法を説明する断面模式図であって、密着層18cを形成する工程図である。 図9は、本実施形態の一態様のマイクロヒーターの製造方法を説明する断面模式図であって、絶縁層20及び窒化物層22を順に形成する工程図である。 図10は、本実施形態の一態様のマイクロヒーターの製造方法を説明する断面模式図であって、温度センサー24を形成する工程図である。 図11は、本実施形態の一態様のマイクロヒーターの製造方法を説明する断面模式図であって、マイクロヒーター外部の一対の電極と配線層18bとを接続するための開口を形成する工程図である。 図12は、本実施形態の一態様のマイクロヒーターの製造方法を説明する断面模式図であって、基板10にまで達する開口を形成する工程図である。 図13は、本実施形態の一態様のマイクロヒーターの製造方法を説明する断面模式図であって、基板10の一部をエッチング等により除去する工程図である。 図14は、本実施形態の一態様のマイクロヒーターを備えるガスセンサーの平面模式図である。 図15は、本実施形態の一態様のマイクロヒーターを備えるガスセンサーの断面模式図である。 図16は、実施例におけるマイクロヒーターの断面TEM画像である。 図17は、実施例におけるマイクロヒーターの断面TEM画像であって、(a)ヒーター層18に含まれる密着層18a及び密着層18cが酸化チタン層(TiO1.1)である断面画像であり、(b)は密着層18a及び密着層18cが酸化チタン層(TiO)である断面画像であり、及び(c)は密着層18a及び密着層18cが窒化チタン層(TiN)である断面画像である。 図18は、実施例におけるマイクロヒーターの表面顕微鏡写真であって、(a)ヒーター層18に含まれる密着層18a及び密着層18cが酸化チタン層(TiO0.9)である表面画像であり、(b)は密着層18a及び密着層18cが酸化チタン層(TiO1.1)である表面画像であり、及び(c)は密着層18a及び密着層18cが酸化チタン層(TiO1.4)である表面画像である。 図19は、実施例におけるマイクロヒーターの表面顕微鏡写真であって、(a)ヒーター層18に含まれる密着層18a及び密着層18cが窒化チタン層(TiN)である表面画像であり、(b)は密着層18a及び密着層18cが酸化チタン層(TiO0.5)である表面画像であり、及び(c)は密着層18a及び密着層18cが酸化チタン層(TiO)である表面画像である。 図20は、実施例におけるマイクロヒーターのメンブレンの温度と配線層18bにかける電力についての評価結果を示す図である。 図21は、実施例におけるマイクロヒーターのサイクル特性についての評価結果を示す図である。
 次に、図面を参照して、本実施の形態について説明する。以下に説明する図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、各構成部品の厚みと平面寸法との関係等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。また、図面の相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 また、以下に示す実施の形態は、技術的思想を具体化するための装置や方法を例示するものであって、各構成部品の材質、形状、構造、配置等を特定するものではない。本実施の形態は、特許請求の範囲において、種々の変更を加えることができる。
 本実施形態の一態様は、以下の通りである。
 [1]第1絶縁層と、前記第1絶縁層上の第1密着層と、前記第1密着層上の配線層と、前記配線層を覆う第2密着層と、前記第1絶縁層上及び前記第2密着層上の第2絶縁層と、を備え、前記配線層は、白金を含み、前記第1密着層及び前記第2密着層は、それぞれ金属酸化物を含み、前記金属酸化物は、金属と酸素との化学量論比において前記酸素が欠乏している酸素欠乏領域を含むマイクロヒーター。
 [2]前記酸素欠乏領域の前記酸素は、前記金属酸化物の化学量論的組成の酸素の30~80%であり、前記金属は、チタン、クロム、タングステン、モリブデン、及びタンタルからなる群から選択される1種を含む[1]に記載のマイクロヒーター。
 [3]前記金属は、チタンであり、前記金属酸化物は、金属と酸素との化学量論比が1:0.5より大きく1:1.5以下である[1]又は[2]に記載のマイクロヒーター。
 [4]前記酸素欠乏領域は、前記配線部と前記第1密着層との界面側から前記第1絶縁層側に向かうに連れて徐々に酸素の量が大きくなる領域と、前記配線部と前記第2密着層との界面側から前記第2絶縁層側に向かうに連れて徐々に酸素の量が大きくなる領域と、を有する[1]~[3]のいずれか1項に記載のマイクロヒーター。
 [5]前記第2絶縁層上に、さらに温度センサーを備え、前記配線層は、白金を含み、前記第2絶縁層は、酸化物絶縁層と、前記酸化物絶縁層上の窒化物層を備え、前記配線層は、一対の電極のそれぞれと接続する第1蛇腹構造を有し、前記温度センサーは、第2蛇腹構造を有し、前記第1蛇腹構造の直線部分と前記第2蛇腹構造の直線部分との間でなす角度は、45°~135°であり、前記温度センサーは、金属酸化物層と、前記金属酸化物層上の金属層と、を備える[1]~[4]のいずれか1項記載のマイクロヒーター。
 [6]前記金属酸化物層中の金属酸化物は、金属と酸素との化学量論比において前記酸素が欠乏している酸素欠乏領域を含み、
 前記金属酸化物層中の金属酸化物は、前記第1密着層及び前記第2密着層の金属酸化物と同一材料を含む[5]に記載のマイクロヒーターを備えるガスセンサー。
 [7]第1絶縁層を形成し、前記第1絶縁層上に第1密着層を形成し、前記第1密着層上に配線層を形成し、前記配線層上に前記配線層の側面を覆う第2密着層を形成し、前記第1絶縁層及び前記第2密着層上に第2絶縁層を形成し、前記第1密着層及び前記第2密着層は、それぞれ金属酸化物を含み、前記金属酸化物は、金属と酸素との化学量論比において前記酸素が欠乏している酸素欠乏領域を含むマイクロヒーターの製造方法。
 [8]前記酸素欠乏領域の前記酸素は、前記金属酸化物の化学量論的組成の酸素の30~80%であり、
 前記金属は、チタン、クロム、タングステン、モリブデン、及びタンタルからなる群から選択される1種を含む[7]に記載のマイクロヒーターの製造方法。
 [9]前記金属は、チタンであり、前記金属酸化物は、金属と酸素との化学量論比が1:0.5より大きく1:1.5以下である[7]又は[8]に記載のマイクロヒーターの製造方法。
 [10]前記酸素欠乏領域は、前記配線部と前記第1密着層との界面側から前記第1絶縁層側に向かうに連れて徐々に酸素の量が大きくなる領域と、前記配線部と前記第2密着層との界面側から前記第2絶縁層側に向かうに連れて徐々に酸素の量が大きくなる領域と、を有する[7]~[9]のいずれか1項に記載のマイクロヒーターの製造方法。
 [11]前記第2絶縁層上に、さらに温度センサーを形成し、前記温度センサーは、前記第2絶縁層上に金属酸化物層を形成する工程と、前記金属酸化物層上に金属層を形成する工程と、を備え、前記第2絶縁層は、前記第1絶縁層及び前記第2密着層上に酸化物絶縁層を形成する工程と、前記酸化物絶縁層上に窒化物層を形成する工程と、備え、前記配線層は、白金を含み、前記配線層は、第1蛇腹構造を有するように形成され、前記温度センサーは、第2蛇腹構造を有するように形成され、前記第1蛇腹構造の直線部分と前記第2蛇腹構造の直線部分との間でなす角度は、45°~135°である[7]~[10]のいずれか1項に記載のマイクロヒーターの製造方法。
 [12]前記金属酸化物層中の金属酸化物は、金属と酸素との化学量論比において前記酸素が欠乏している酸素欠乏領域を含む[11]に記載のマイクロヒーターの製造方法。
 [13]前記金属酸化物層中の金属酸化物は、前記第1密着層及び前記第2密着層の金属酸化物と同一材料を含む[11]に記載のマイクロヒーターの製造方法。
 [第1実施形態]
 本実施形態に係るマイクロヒーター及びその製造方法について図1~13を用いて説明する。
 図1は本実施形態に係るマイクロヒーターの構造を示す平面模式図、図2は本実施形態に係るマイクロヒーターの構造を示す断面模式図、図3~13は本実施形態に係るマイクロヒーターの製造方法を説明する断面模式図である。
 まず、本実施形態に係るマイクロヒーターの構造について図1及び図2を用いて説明する。
 マイクロヒーターは、図1及び図2(a)に示すように、基板10と、基板10上の、絶縁層12と、窒化物層14と、絶縁層16と、絶縁層16上のヒーター層18と、ヒーター層18上の、絶縁層20と、窒化物層22と、温度センサー24と、を備える。また、図2(b)に示すように、ヒーター層18は、密着層18aと、配線層18bと、密着層18cと、を備える。さらに、図2(c)に示すように、温度センサー24は、金属酸化物層24aと、金属層24bと、を備える。なお、本明細書等では、基板10、絶縁層12、及び温度センサー24等をマイクロヒーターの一部として記載しているがこれに限られず、基板10、絶縁層12、及び温度センサー24等をマイクロヒーターの一部として含めない解釈をしてもよい。
 本実施形態に係るマイクロヒーターのヒーター層18は、密着層18a、配線層18b、及び密着層18cを含んでおり、ヒーター層18の上下に絶縁層16及び絶縁層20が配置されている。密着層18a及び密着層18cは、配線層18bと絶縁層16及び絶縁層20との間に設けられるバリア層として機能する。つまり、配線層18bは、バリア層として機能する密着層18a及び密着層18cで完全に覆われている。
 配線層18bに電流を流すことで熱源を発生させることができる。配線層18bとしては、導電性材料を用いることができ、例えば、白金などの金属材料を用いることができる。一般的なマイクロヒーターの配線部は、通常300~400℃程度で使用されており、上記範囲の温度以上の高温領域(500℃程度)で使用するとマイクロヒーターの劣化が促進され、マイクロヒーターの動作不良を招くおそれがあったが、本発明者らは、マイクロヒーターのヒーター層18中の、密着層18a、配線層18b、及び密着層18cの材料を調整することで上記課題を解決するに至った。なお、500℃程度の使用環境においてマイクロヒーターを長期間正常に動作させるためには、800℃程度の耐熱性を確保する必要がある。
 前述のように、一般的に、マイクロヒーターの密着層は窒化物層で覆われているが高温領域で使用すると熱によって窒化物層と白金が反応してしまい、空隙が配線部に生じ、当該空隙は、加熱し続けられることで徐々に広がり、やがて配線部を断線させてしまう。白金と反応しない材料として、酸化物があるが、白金と酸化物との密着性が不十分であり、膜剥がれが生じやすく、酸化物絶縁層を密着層として機能させることは困難である。
 配線部に生じる空隙を抑制し、かつ配線部との密着性を確保した密着層を得るために、本実施形態に係るマイクロヒーターにおける密着層18a及び密着層18cは、それぞれ金属酸化物を含み、当該金属酸化物は、金属と酸素との化学量論比において酸素が欠乏している酸素欠乏領域を含む。
 金属が酸素と結合するとき、金属の電気陰性度は結合する前と比べて大きくなる。また、白金は、結合後の当該金属より電気陰性度が小さい。このため、結合後の当該金属は、結合前に比べて白金と結合しにくくなってしまうが本実施形態のように金属と結合する酸素の量を化学量論比より小さくすることで結合後の当該金属の電気陰性度の上昇を化学量論的組成の場合と比較してより抑制することができ、当該金属は、白金と結合しやすくなる。したがって、金属酸化物が酸素欠乏領域を含んでいると、金属は白金と結合しているため、密着性が向上する。
 酸素欠乏領域は、配線部と密着層との界面近傍に存在し、例えば、界面から10~100nm存在し、好ましくは、20~80nm存在し、さらに好ましくは、20~50nm存在する。また、金属酸化物は、化学量論的組成である領域を含んでいてもよい。化学量論的組成である領域は、配線部と密着層との界面から離れた側の酸素欠乏領域端に隣接して存在する。さらに、酸素欠乏領域は、配線部と密着層との界面側から絶縁層側に向かうに連れて徐々に酸素の量が大きくなる領域、つまり、配線部と密着層との界面側から絶縁層側に向かうに連れて化学量論的組成に近づく領域を有していてもよい。
 密着層18a及び密着層18cは、金属酸化物を含み、金属酸化物中の金属として、例えば、チタン、クロム、タングステン、モリブデン、及びタンタルからなる群から選択される1種を含むことができる。また、金属酸化物中の酸素欠乏領域における酸素は、当該金属酸化物の化学量論的組成の酸素の30~80%であることが好ましく、40~75%であることがより好ましく、45~70%であることがさらに好ましい。
 さらに、金属酸化物は、金属と酸素との化学量論比が1:0.5より大きく1:1.5以下であり、1:0.6以上1:1.5以下であることが好ましく、1:0.9以上1:1.4以下であることがより好ましい。
 なお、配線層及び金属酸化物の材料は、上記したものに限定されず、金属酸化物が酸素欠乏領域を含み、配線層の材料と金属酸化物の材料との界面において、金属酸化物の金属の電気陰性度の上昇を抑制するものであればよい。
 また、配線層18bは、後述するマイクロヒーター外部の一対の電極と接続し、図1に示すように、第1蛇腹構造を有する。第1蛇腹構造は、直線部分と折り返し部分を有している。
 基板10は、例えば、10μm程度の厚さを有し、シリコン、エポキシ樹脂、セラミックスなどを用いることができる。
 絶縁層12は、例えば、0.1μm程度の厚さを有し、酸化シリコンなどを用いることができる。当該絶縁層12は、基板10を加工する際のエッチストップ膜として機能する。絶縁層12の材料は、上記したものに限定されず、上記機能を有するものであればよい。
 窒化物層14及び窒化物層22は、例えば、窒化シリコンなどを用いることができる。絶縁層16及び絶縁層20は、例えば、酸化シリコンなどを用いることができる。窒化シリコン及び酸化シリコンを用いて、窒化物層及び絶縁層からなるメンブレン内部の応力を調整している。
 温度センサー24は、金属酸化物層24aと、当該金属酸化物層24a上の金属層24bを備えており、金属酸化物層24a中の金属酸化物は、金属と酸素との化学量論比において酸素が欠乏している酸素欠乏領域を含んでいてもよく、密着層18a及び密着層18cと同様の材料を用いることができる。また、金属層24bは、配線層18bと同様の材料を用いることができる。なお、図示していないが、金属層24b上にさらに酸素欠乏領域を含む金属酸化物層を設けてもよい。
 また、温度センサー24は、図1に示すように、第2蛇腹構造を有する。第2蛇腹構造は、直線部分と折り返し部分を有している。なお、本実施形態において、配線層18bの第1蛇腹構造の直線部分と温度センサー24の第2蛇腹構造の直線部分は、直交する構成となっているがこれに限られない。配線層18bの第1蛇腹構造の直線部分と温度センサー24の第2蛇腹構造の直線部分との間でなす角度は、45°~135°であることが好ましい。上記範囲にすることにより、配線層18bと温度センサー24とが互いに重畳する領域が広くなり、配線層18bの温度を温度センサー24が感度よくセンシングすることができる。また、マイクロヒーターの占有面積の観点から、配線層18b及び温度センサー24と接続するマイクロヒーターの外部の電極の配置を考慮して上記角度を80°~100°にすることがより好ましい。
 ここで、本実施形態に係るマイクロヒーターの製造方法について、図3~図13を用いて説明する。
 まず、図3に示すように、基板10上に絶縁層12、窒化物層14、及び絶縁層16を順に形成する。本実施形態において、基板10としてシリコン基板を用い、絶縁層12及び絶縁層16の材料としてCVD(Chemical Vapor Deposition)法により形成される酸化シリコンを用い、窒化物層14の材料としてCVD法により形成される窒化シリコンを用いる。
 次に、図4に示すように、窒化物層14上にヒーター層18となる密着層18a、配線層18b、及び密着層18cの一部である密着層18c1を順に形成する。本実施形態において、密着層18a及び密着層18c1の材料としてスパッタリング法により形成される酸素欠乏領域を有する酸化チタン、具体的には、チタンと酸素との化学量論比が1:1.1程度である酸化チタンを用い、配線層18bの材料としてスパッタリング法により形成される白金を用いる。
 本実施形態において、ヒーター層18は酸素欠乏領域を有する金属酸化物を密着層の材料として用いることで、配線層の材料と金属酸化物の材料との界面において、金属酸化物の金属の電気陰性度の上昇を抑制することができるため、配線部に生じる空隙を抑制しつつ、膜剥がれを抑制して密着層と配線部との密着性を確保することができる。
 次に、図5に示すように、密着層18c1を形成する。密着層18c1を形成する工程においては、まず、密着層18c1上にレジストをフォトリソグラフィによりパターン形成する。パターン形成したレジストを用いて密着層18c1の一部を除去することで図5に示す密着層18c1を形成する。
 次に、図6に示すように、パターン形成したレジスト及び密着層18c1を用いて配線層18bの一部を除去し、レジストを除去することで図6に示す配線層18bを形成する。なお、レジストの除去のタイミングはこれに限られず、例えば、密着層18c1のみで配線層18bのパターン形成ができる場合は密着層18c1の一部を除去した後にレジストを除去してもよい。
 次に、図7に示すように、密着層18a上及び密着層18c1上に密着層18cの一部である密着層18c2を形成する。密着層18c1及び密着層18c2を合わせたものが密着層18cに相当する。密着層18c2の材料は、前述した密着層18c1と同様のものを用いることができる。
 次に、図8に示すように、密着層18cを形成する。配線層18bは密着層18a及び密着層18cに完全に覆われる構成となる。密着層18c1を形成する工程においては、まず、密着層18c上にレジストをフォトリソグラフィによりパターン形成する。パターン形成したレジストを用いて密着層18aの一部及び密着層18cの一部を除去することで図8に示す密着層18a及び密着層18cを形成する。なお、本実施形態において、密着層18cは、密着層18c1及び密着層18c2の2層構造であるがこれに限られず、密着層18c1を設けず、密着層18c2のみの構成であってもよい。
 次に、図9に示すように、絶縁層16上及びヒーター層18上に絶縁層20及び窒化物層22を順に形成する。本実施形態において、絶縁層20の材料としてCVD法により形成される酸化シリコンを用い、窒化物層22の材料としてCVD法により形成される窒化シリコンを用いる。
 次に、図10に示すように、窒化物層22上に金属酸化物層24a及び金属層24bを含む温度センサー24を形成する。本実施形態において、金属酸化物層24aの材料としてスパッタリング法により形成される酸素欠乏領域を有する酸化チタン、具体的には、チタンと酸素との化学量論比が1:1.1程度である酸化チタンを用い、金属層24bの材料としてスパッタリング法により形成される白金を用いる。
 次に、図11に示すように、マイクロヒーター外部の一対の電極と配線層18bとを接続するための開口を形成する。当該開口を形成する工程においては、まず、窒化物層22上及び温度センサー24上にレジストをフォトリソグラフィによりパターン形成する。パターン形成したレジストを用いて窒化物層22の一部、絶縁層20の一部、及び密着層18cの一部を除去することで図11に示す開口を形成する。
 次に、図12に示すように、基板10にまで達する開口を形成する。当該開口を形成する工程においては、前述と同様にレジストをフォトリソグラフィによりパターン形成し、パターン形成したレジストを用いることにより開口を形成する。
 最後に、図13に示すように、基板10の一部をエッチング等により除去することで本実施形態に係るマイクロヒーターを製造することができる。
 本実施形態によれば、高温領域においても配線部に生じる空隙を抑制し、かつ配線部との密着性を確保した密着層を備えるマイクロヒーターを提供することができる。これにより、マイクロヒーターの動作不良を抑制することができ、また、信頼性を確保することができる。
 [第2実施形態]
 第1実施形態に係るマイクロヒーターを備えるガスセンサーについて図14及び図15を用いて説明する。
 図14は、マイクロヒーターを備えるガスセンサーの平面模式図であり、図15は、図14のIA-IA線に沿う当該ガスセンサーの断面模式図である。
 ガスセンサーは、図14及び図15に示すように、基板10上に設けられた、温度センサーを備えるマイクロヒーター、ヒーター接続部31、ヒーター接続部32、端子電極接続部33、及び端子電極接続部34などを備える。なお、当該マイクロヒーターは、第1実施形態で説明したマイクロヒーターを用いることができる。
 温度センサーを含むセンサー部分SPは、窒化物層22を介して配置されたポーラス酸化膜(多孔質膜)51と、ポーラス酸化膜51上に配置された下部電極38Dと、ポーラス酸化膜51および下部電極38Dを覆うように配置された固体電解質層40と、下部電極38Dに対向する固体電解質層40上に配置された上部電極38Uとを備える。ポーラス酸化膜51は、ガス導入路として機能するものであって、ガス取込口51Gを有する。
 下部電極38D及び上部電極38Uは、第1実施形態で説明した温度センサーを用いることができる。
 固体電解質層40は、約1μmの厚さのYSZ膜で形成することができる。薄いと、下部電極38Dと上部電極38Uとの間が導通してしまうためである。例えば、固体電解質層40は、下部電極38Dの周囲を覆うようにして配置され、下部電極38Dと上部電極38Uとの間の導通を防ぐことができる。
 なお、平面視において、センサー部分SPのポーラス酸化膜51、下部電極38D、固体電解質層40、および上部電極38Uは、いずれも方形状を有していてもよいし、それ以外の形状であってもよい。また、センサー部分SPを構成するポーラス酸化膜51、下部電極38D、固体電解質層40、および上部電極38Uは、偏心がない状態でセンサー表面の中心に配置するのが望ましいが、マイクロヒーター上であれば、偏心した状態で配置されていてもよい。
 平面視において、ヒーター接続部31及びヒーター接続部32は、センサー部分SPを中心とした図示左右方向(図15の断面に沿う面内方向)に対向するようにして配置されている。ヒーター接続部31は、接続用パット311、配線部312、および端子部313を有し、ヒーター接続部32は、接続用パット321、配線部322、および端子部323を有する。端子電極接続部33及び端子電極接続部34は、センサー部分SPを中心とし、ヒーター接続部31及びヒーター接続部32と直交する、図示上下方向に対向するようにして配置されている。端子電極接続部33は、接続用パット(検出端子)331および配線部332を有し、端子電極接続部34は、接続用パット(検出端子)341および配線部342を有する。なお、前述のヒーター接続部及び端子電極接続部は、第1実施形態で説明した、密着層及び配線層の構成を用いることができる。
 ヒーター接続部31、ヒーター接続部32、端子電極接続部33、及び端子電極接続部34は、窒化物層22上に設けられる。
 ヒーター接続部31及びヒーター接続部32の端子部313及び端子部323は、マイクロヒーターと接続され、端子電極接続部33の配線部332は、センサー部分SPの方向に延出される下部電極38Dと接続され、端子電極接続部34の配線部342は、センサー部分SPの方向に延出される上部電極38Uと接続される。
 ヒーター接続部31及びヒーター接続部32の端子部313及び端子部323は、平面視において、センサー部分SPの外周部を取り囲むように配置された窒化シリコン層36によって覆われている。窒化シリコン層36と端子部313及び端子部323との間には、酸化シリコン層35が埋め込まれている。
 端子電極接続部33及び端子電極接続部34の接続用パット331及び接続用パット341には、被測定ガス内における所定のガス濃度を検出する検出回路が接続される。固体電解質層40の上部電極38Uと多孔質電極(ポーラス電極)51とに検出用の電圧Vを供給することにより、検出回路は、限界電流に基づいて酸素濃度を検出することができる。また、検出回路は、限界電流に基づいて水蒸気濃度を検出することができる。
 本実施形態に係るガスセンサーは、マイクロヒーターの加熱に伴って、ポーラス酸化膜51のガス取込口51Gを介して、被測定ガス(例えば、O2ガス)をセンサー部分SPの固体電解質層40内へと導入するように構成されている。すなわち、被測定ガスは、ガス取込口51Gよりポーラス酸化膜51中に取り込まれ、下部電極38Dを介して固体電解質層40内へと導入された後、加熱により固体電解質層40内に拡散される。被測定ガスの固体電解質層40内への導入は、吸引動作を伴うものであってもよい。
 さらに、本実施形態に係るガスセンサーは、第1実施形態に係るマイクロヒーターを備えており、高温領域においてもマイクロヒーターの配線部に生じる空隙を抑制し、かつマイクロヒーターの密着層が配線部との密着性が良好であるためマイクロヒーターの動作不良を抑制することができる。これに伴って、本実施形態に係るガスセンサーは、動作不良を抑制することができ、また、信頼性を確保することができる。
 [その他の実施形態]
 上記のように、いくつかの実施形態について記載したが、開示の一部をなす論述及び図面は例示的なものであり、限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。例えば、本実施形態に係る構成をフローセンサーや二酸化炭素検出センサー等のセンサーに応用することができる。このように、本実施形態は、ここでは記載していない、各実施形態や実施例のそれぞれを組み合わせた構成等様々な実施形態等を含む。
 以下に、実施例により上記実施形態をさらに具体的に説明するが、上記実施形態は以下の実施例に限定されるものではない。
 (実施例1)
 本実施例では、前述のマイクロヒーターにおける断面TEM観察を行った。
 本実施例のマイクロヒーターは、第1実施形態で示したように、基板10であるシリコン基板と、絶縁層12と、窒化物層14と、絶縁層16と、ヒーター層18と、絶縁層20と、窒化物層22と、を備える。さらに、窒化物層22上に絶縁層25を備える。
 絶縁層12は酸化シリコン層であり、窒化物層14は窒化シリコン層であり、絶縁層16は酸化シリコン層であり、絶縁層20は酸化シリコン層であり、窒化物層22は窒化シリコン層であり、絶縁層25は酸化シリコン層である。これらの絶縁層はCVD法により形成した。
 また、ヒーター層18は、密着層18aと、配線層18bと、密着層18cとからなる構成であり、密着層18aはチタンと酸素との化学量論比が1:1.1である酸化チタン層であり、配線層18bは白金層であり、密着層18cはチタンと酸素との化学量論比が1:1.1である酸化チタン層である。密着層18a、配線層18b、及び密着層18cはスパッタリング法により形成した。
 上記マイクロヒーターにおいて、700℃の熱処理を行った後、断面TEM観察を行った。断面TEM観察には、日立ハイテク製電界放射型透過電子顕微鏡JEM-2800を用いた。得られた断面TEM画像を図16に示す。なお、図16において、層同士の境界を示すための補助線を加えている。図16に示すように、配線層18bは、上端部28及び下端部29を有しており、下端部29は上端部28に比べて突出している。このような構成は、配線層18bの側面が傾斜するようにエッチングされたマスクとなるレジストパターンを用いて、配線層18bをエッチングする際に形成され、当該配線層18bの形状により配線層18b上の密着層18cの被覆性が向上する。さらに、上端部28における密着層18cの下面28a及び上面28bの距離(上端部28における密着層18cの厚さ)及び下端部29における密着層18cの下面29a及び上面29bの距離(下端部29における密着層18cの厚さ)は、密着層18cの上面部と側面部との被覆性の違いから、上端部28及び下端部29以外における密着層18cの下面23a1及び上面23a2の距離、下面23b1及び上面23b2の距離、及び下面23c1及び上面23c2の距離(それぞれ、上端部28及び下端部29以外における密着層18cの厚さ)よりも小さい。また、図16におけるヒーター層18周辺の拡大図を図17(a)に示す。
 図17(a)に示すように、配線層18bに空隙の発生は確認できず、また、配線層18bと密着層18a又は密着層18cとの界面において膜剥がれの発生は確認できなかった。
 (実施例2)
 本実施例では、実施例1のマイクロヒーターにおける密着層の材料の違いによる空隙及び膜剥がれの発生の有無を断面TEM観察及び表面顕微鏡観察にて評価した。
 断面TEM観察の評価サンプルとして、密着層18a及び密着層18cがチタンと酸素との化学量論比が1:1.1である酸化チタン層(TiO1.1)、チタンと酸素との化学量論比が1:2である(化学量論的組成である)酸化チタン層(TiO)、及びチタンと窒素との化学量論比が1:1である窒化チタン層(TiN)の3種を用意した。なお、酸化チタン層(TiO1.1)の酸素の割合は、酸化チタンの化学量論的組成であるときの酸素の55%である。(以降、TiOに対するTiOの酸素の割合を酸素割合ともいう)なお、窒化チタン層(TiN)は、酸素が含まれていないもののサンプルとして用いた。用意したサンプルに700℃の熱処理を行った。
 また、表面顕微鏡写真の評価サンプルとして、密着層18a及び密着層18cが酸化チタン層(TiO0.5:酸素割合25%)、酸化チタン層(TiO0.9:酸素割合45%)、酸化チタン層(TiO1.1:酸素割合55%)、酸化チタン層(TiO1.4:酸素割合70%)、酸化チタン層(TiO:酸素割合100%)、及び窒化チタン層(TiN:酸素割合0%)の6種を用意した。用意したサンプルに800℃の熱処理を行った。
 実施例1と同様にして得られた断面TEM画像を図17に示す。図17(a)は密着層18a及び密着層18cが酸化チタン層(TiO1.1)である断面であり、図17(b)は密着層18a及び密着層18cが酸化チタン層(TiO)である断面であり、図17(c)は密着層18a及び密着層18cが窒化チタン層(TiN)である断面である。
 図17(a)に示すように、密着層18a及び密着層18cが酸化チタン層(TiO1.1)である場合は配線層18bに空隙の発生は確認できず、また、配線層18bと密着層18a又は密着層18cとの界面において膜剥がれの発生は確認できなかった。一方、図17(b)に示すように、密着層18a及び密着層18cが酸化チタン層(TiO)である場合は、領域26に膜剥がれが発生していることが確認できた。また、図17(c)に示すように、密着層18a及び密着層18cが窒化チタン層(TiN)である場合は、領域27に空隙が発生していることが確認できた。
 また、得られた表面顕微鏡写真を図18及び図19に示す。図18(a)は密着層18a及び密着層18cが酸化チタン層(TiO0.9)である表面であり、図18(b)は密着層18a及び密着層18cが酸化チタン層(TiO1.1)である表面であり、図18(c)は密着層18a及び密着層18cが酸化チタン層(TiO1.4)である表面である。図19(a)は密着層18a及び密着層18cが窒化チタン層(TiN)である表面であり、図19(b)は密着層18a及び密着層18cが酸化チタン層(TiO0.5)である表面であり、図19(c)は密着層18a及び密着層18cが酸化チタン層(TiO)である表面である。
 図18(a)~図18(c)に示すように、密着層18a及び密着層18cの材料が酸化チタン層(TiO0.9)、酸化チタン層(TiO1.1)、及び酸化チタン層(TiO1.4)であるものは、空隙の発生は確認できず、また、配線層18bと密着層18a又は密着層18cとの界面において膜剥がれの発生は確認できなかった。一方、図19(a)~図19(c)に示すように、密着層18a及び密着層18cの材料が窒化チタン層(TiN)、酸化チタン層(TiO0.5)、及び酸化チタン層(TiO)であるものは、空隙又は膜剥がれ(図中の黒点や白点)が発生していることが確認できた。
 上記の評価結果より、チタンと酸素との化学量論比が1:0.9~1.4である酸化チタン層の使用が好ましいことが分かった。
 (実施例3)
 本実施例では、実施例1で用いた密着層18a及び密着層18cが酸化チタン層(TiO1.1)であるマイクロヒーターの性能評価を行った。
 まず、窒化物層及び絶縁層からなるメンブレンの温度と配線層18bにかける電力について評価した。
 図20に評価結果を示す。図20に示すように、配線層18bに電力を120mWかけるとメンブレンの温度が800℃に達することが分かり、メンブレンの温度が800℃に達する前後において、抵抗の変化がなく、ヒステリシスになっていないため、マイクロヒーターが劣化していないことが分かった。
 次に、マイクロヒーターを用いて550℃と室温(25℃)を周期0.2秒、デューティー比50%で繰り返してマイクロヒーターのサイクル特性(電流変化)を評価した。なお、マイクロヒーターを3素子並列に接続し、電圧は8Vに固定した。
 図21に評価結果を示す。図21に示すように、10回繰り返してもマイクロヒーターの電流変化はみられず、マイクロヒーターの抵抗が変化していない、つまり、マイクロヒーターが劣化していないことが分かった。
10…基板、12…絶縁層、14…窒化物層、16…絶縁層、18…ヒーター層、18a…密着層、18b…配線層、18c…密着層、18c1…密着層、18c2…密着層、20…絶縁層、22…窒化物層、23a1…下面、23a2…上面、23b1…下面、23b2…上面、23c1…下面、23c2…上面、24…温度センサー、24a…金属酸化物層、24b…金属層、25…絶縁層、26…領域、27…領域、28…上端部、28a…下面、28b…上面、29…下端部、29a…下面、29b…上面、31…ヒーター接続部、32…ヒーター接続部、33…端子電極接続部、34…端子電極接続部、35…酸化シリコン層、36…窒化シリコン層、38D…下部電極、38U…上部電極、40…固体電解質層、51…ポーラス酸化膜、51G…ガス取込口、311…接続用パット、312…配線部、313…端子部、321…接続用パット、322…配線部、323…端子部、331…接続用パット、332…配線部、341…接続用パット、342…配線部

Claims (13)

  1.  第1絶縁層と、
     前記第1絶縁層上の第1密着層と、
     前記第1密着層上の配線層と、
     前記配線層を覆う第2密着層と、
     前記第1絶縁層上及び前記第2密着層上の第2絶縁層と、を備え、
     前記配線層は、白金を含み、
     前記第1密着層及び前記第2密着層は、それぞれ金属酸化物を含み、
     前記金属酸化物は、金属と酸素との化学量論比において前記酸素が欠乏している酸素欠乏領域を含むマイクロヒーター。
  2.  前記酸素欠乏領域の前記酸素は、前記金属酸化物の化学量論的組成の酸素の30~80%であり、
     前記金属は、チタン、クロム、タングステン、モリブデン、及びタンタルからなる群から選択される1種を含む請求項1に記載のマイクロヒーター。
  3.  前記金属は、チタンであり、
     前記金属酸化物は、金属と酸素との化学量論比が1:0.5より大きく1:1.5以下である請求項1又は2に記載のマイクロヒーター。
  4.  前記酸素欠乏領域は、前記配線部と前記第1密着層との界面側から前記第1絶縁層側に向かうに連れて徐々に酸素の量が大きくなる領域と、前記配線部と前記第2密着層との界面側から前記第2絶縁層側に向かうに連れて徐々に酸素の量が大きくなる領域と、を有する請求項1~3のいずれか1項に記載のマイクロヒーター。
  5.  前記第2絶縁層上に、さらに温度センサーを備え、
     前記配線層は、白金を含み、
     前記第2絶縁層は、酸化物絶縁層と、前記酸化物絶縁層上の窒化物層を備え、
     前記配線層は、一対の電極のそれぞれと接続する第1蛇腹構造を有し、
     前記温度センサーは、第2蛇腹構造を有し、
     前記第1蛇腹構造の直線部分と前記第2蛇腹構造の直線部分との間でなす角度は、45°~135°であり、
     前記温度センサーは、金属酸化物層と、前記金属酸化物層上の金属層と、を備える請求項1~4のいずれか1項記載のマイクロヒーター。
  6.  前記金属酸化物層中の金属酸化物は、金属と酸素との化学量論比において前記酸素が欠乏している酸素欠乏領域を含み、
     前記金属酸化物層中の金属酸化物は、前記第1密着層及び前記第2密着層の金属酸化物と同一材料を含む請求項5に記載のマイクロヒーターを備えるガスセンサー。
  7.  第1絶縁層を形成し、
     前記第1絶縁層上に第1密着層を形成し、
     前記第1密着層上に配線層を形成し、
     前記配線層上に前記配線層の側面を覆う第2密着層を形成し、
     前記第1絶縁層及び前記第2密着層上に第2絶縁層を形成し、
     前記第1密着層及び前記第2密着層は、それぞれ金属酸化物を含み、
     前記金属酸化物は、金属と酸素との化学量論比において前記酸素が欠乏している酸素欠乏領域を含むマイクロヒーターの製造方法。
  8.  前記酸素欠乏領域の前記酸素は、前記金属酸化物の化学量論的組成の酸素の30~80%であり、
     前記金属は、チタン、クロム、タングステン、モリブデン、及びタンタルからなる群から選択される1種を含む請求項7に記載のマイクロヒーターの製造方法。
  9.  前記金属は、チタンであり、
     前記金属酸化物は、金属と酸素との化学量論比が1:0.5より大きく1:1.5以下である請求項7又は8に記載のマイクロヒーターの製造方法。
  10.  前記酸素欠乏領域は、前記配線部と前記第1密着層との界面側から前記第1絶縁層側に向かうに連れて徐々に酸素の量が大きくなる領域と、前記配線部と前記第2密着層との界面側から前記第2絶縁層側に向かうに連れて徐々に酸素の量が大きくなる領域と、を有する請求項7~9のいずれか1項に記載のマイクロヒーターの製造方法。
  11.  前記第2絶縁層上に、さらに温度センサーを形成し、
     前記温度センサーは、
     前記第2絶縁層上に金属酸化物層を形成する工程と、
     前記金属酸化物層上に金属層を形成する工程と、を備え、
     前記第2絶縁層は、
     前記第1絶縁層及び前記第2密着層上に酸化物絶縁層を形成する工程と、
     前記酸化物絶縁層上に窒化物層を形成する工程と、備え、
     前記配線層は、白金を含み、
     前記配線層は、第1蛇腹構造を有するように形成され、
     前記温度センサーは、第2蛇腹構造を有するように形成され、
     前記第1蛇腹構造の直線部分と前記第2蛇腹構造の直線部分との間でなす角度は、45°~135°である請求項7~10のいずれか1項に記載のマイクロヒーターの製造方法。
  12.  前記金属酸化物層中の金属酸化物は、金属と酸素との化学量論比において前記酸素が欠乏している酸素欠乏領域を含む請求項11に記載のマイクロヒーターの製造方法。
  13.  前記金属酸化物層中の金属酸化物は、前記第1密着層及び前記第2密着層の金属酸化物と同一材料を含む請求項11に記載のマイクロヒーターの製造方法。
PCT/JP2020/018143 2019-06-27 2020-04-28 マイクロヒーター、ガスセンサー、およびマイクロヒーターの製造方法 WO2020261759A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021527430A JP7492958B2 (ja) 2019-06-27 2020-04-28 マイクロヒーター、ガスセンサー、およびマイクロヒーターの製造方法
US17/561,912 US20220117044A1 (en) 2019-06-27 2021-12-24 Microheater, gas sensor, and method for manufacturing microheater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-119994 2019-06-27
JP2019119994 2019-06-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/561,912 Continuation US20220117044A1 (en) 2019-06-27 2021-12-24 Microheater, gas sensor, and method for manufacturing microheater

Publications (1)

Publication Number Publication Date
WO2020261759A1 true WO2020261759A1 (ja) 2020-12-30

Family

ID=74060531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018143 WO2020261759A1 (ja) 2019-06-27 2020-04-28 マイクロヒーター、ガスセンサー、およびマイクロヒーターの製造方法

Country Status (3)

Country Link
US (1) US20220117044A1 (ja)
JP (1) JP7492958B2 (ja)
WO (1) WO2020261759A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01221654A (ja) * 1988-03-01 1989-09-05 Japan Electron Control Syst Co Ltd 内燃機関用酸素センサ
JP2013242271A (ja) * 2012-05-22 2013-12-05 Hitachi Ltd 半導体ガスセンサおよびその製造方法
US20160370336A1 (en) * 2015-06-18 2016-12-22 Point Engineering Co., Ltd. Micro Heater and Micro Sensor
JP2017191021A (ja) * 2016-04-14 2017-10-19 ローム株式会社 窒素酸化物系ガスセンサ、酸素ポンプ、ガスセンサ装置、ガスセンサ装置の製造方法、およびセンサネットワークシステム
JP2018125407A (ja) * 2017-01-31 2018-08-09 株式会社リコー 積層構造体、積層構造体の製造方法、電気機械変換素子、液体吐出ヘッド、液体吐出ユニット、液体を吐出する装置及び電気機械変換素子の製造方法
JP2018205440A (ja) * 2017-05-31 2018-12-27 大日本印刷株式会社 赤外線反射フィルム、剥離フィルム付赤外線反射フィルム、窓ガラスおよび赤外線反射フィルムの製造方法
US20190128830A1 (en) * 2017-10-27 2019-05-02 Stmicroelectronics S.R.L. Mox-based gas sensor and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10200558A1 (de) * 2002-01-09 2003-07-24 Bosch Gmbh Robert Temperatursensor
JP2011175397A (ja) * 2010-02-24 2011-09-08 Sony Corp 電極フィルム、電極フィルムの製造方法及び座標入力装置
JP5932097B2 (ja) * 2014-04-17 2016-06-08 日東電工株式会社 透明導電性フィルム
JP6403985B2 (ja) * 2014-05-02 2018-10-10 ローム株式会社 限界電流式ガスセンサおよびその製造方法、およびセンサネットワークシステム
US9810653B2 (en) * 2014-07-17 2017-11-07 Stmicroelectronics Pte Ltd Integrated SMO gas sensor module
KR101686123B1 (ko) * 2015-06-30 2016-12-13 (주)포인트엔지니어링 마이크로 히터 및 마이크로 센서
JP6207679B2 (ja) * 2016-06-20 2017-10-04 デクセリアルズ株式会社 積層薄膜の製造方法、及び積層薄膜
JP6746410B2 (ja) * 2016-07-13 2020-08-26 大日本印刷株式会社 光学積層体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01221654A (ja) * 1988-03-01 1989-09-05 Japan Electron Control Syst Co Ltd 内燃機関用酸素センサ
JP2013242271A (ja) * 2012-05-22 2013-12-05 Hitachi Ltd 半導体ガスセンサおよびその製造方法
US20160370336A1 (en) * 2015-06-18 2016-12-22 Point Engineering Co., Ltd. Micro Heater and Micro Sensor
JP2017191021A (ja) * 2016-04-14 2017-10-19 ローム株式会社 窒素酸化物系ガスセンサ、酸素ポンプ、ガスセンサ装置、ガスセンサ装置の製造方法、およびセンサネットワークシステム
JP2018125407A (ja) * 2017-01-31 2018-08-09 株式会社リコー 積層構造体、積層構造体の製造方法、電気機械変換素子、液体吐出ヘッド、液体吐出ユニット、液体を吐出する装置及び電気機械変換素子の製造方法
JP2018205440A (ja) * 2017-05-31 2018-12-27 大日本印刷株式会社 赤外線反射フィルム、剥離フィルム付赤外線反射フィルム、窓ガラスおよび赤外線反射フィルムの製造方法
US20190128830A1 (en) * 2017-10-27 2019-05-02 Stmicroelectronics S.R.L. Mox-based gas sensor and manufacturing method thereof

Also Published As

Publication number Publication date
JP7492958B2 (ja) 2024-05-30
US20220117044A1 (en) 2022-04-14
JPWO2020261759A1 (ja) 2020-12-30

Similar Documents

Publication Publication Date Title
JP2008153497A (ja) 誘電体薄膜キャパシタの製造方法
JP5161210B2 (ja) ガスセンサ
US20070062812A1 (en) Gas sensor and method for the production thereof
JP2016046454A (ja) 薄膜電子部品
JP5098422B2 (ja) 薄膜電子部品
WO1992004720A1 (fr) Thermistor a caracteristique positive et procede de production
JP2008198941A (ja) 半導体装置および半導体装置の製造方法
WO2020261759A1 (ja) マイクロヒーター、ガスセンサー、およびマイクロヒーターの製造方法
JP2013172075A (ja) 薄膜素子
JP2009010114A (ja) 誘電体薄膜キャパシタ
EP1953539A1 (en) Gas sensor
JPS6190445A (ja) 半導体装置
CN103975226A (zh) 热式空气流量传感器
JP2005292120A (ja) 白金抵抗体式温度センサ
JP5021377B2 (ja) ガスセンサ
JP2008209390A5 (ja)
JP5134490B2 (ja) ガスセンサ
JPS61191953A (ja) ガス検出装置
US20220381724A1 (en) Gas sensor
JPH0312960A (ja) 半導体装置及びその製造方法
WO2020079966A1 (ja) Memsガスセンサ及びmemsガスセンサの製造方法
JP2010204029A (ja) 中空構造素子
JP2022065302A (ja) センサ及びその製造方法
JP2007139669A (ja) ガスセンサ
JP2501856B2 (ja) 電気化学式センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832159

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527430

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20832159

Country of ref document: EP

Kind code of ref document: A1