WO2020258897A1 - 显示面板、显示装置及显示面板的制备方法 - Google Patents

显示面板、显示装置及显示面板的制备方法 Download PDF

Info

Publication number
WO2020258897A1
WO2020258897A1 PCT/CN2020/076544 CN2020076544W WO2020258897A1 WO 2020258897 A1 WO2020258897 A1 WO 2020258897A1 CN 2020076544 W CN2020076544 W CN 2020076544W WO 2020258897 A1 WO2020258897 A1 WO 2020258897A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display panel
light emitting
layer
light conversion
Prior art date
Application number
PCT/CN2020/076544
Other languages
English (en)
French (fr)
Inventor
田文亚
郭恩卿
Original Assignee
成都辰显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都辰显光电有限公司 filed Critical 成都辰显光电有限公司
Priority to KR1020217039025A priority Critical patent/KR102626353B1/ko
Publication of WO2020258897A1 publication Critical patent/WO2020258897A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/644Heat extraction or cooling elements in intimate contact or integrated with parts of the device other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • This application relates to the field of display technology, and in particular to a display panel, a display device, and a manufacturing method of the display panel.
  • Micro-Light Emitting Diode (Micro-LED) display technology uses a high-density integrated micro-light-emitting diode array as pixels on the backplane to realize light-emitting display.
  • Micro-LED technology has gradually become a research hot spot, and the industry is looking forward to high-quality Micro-LED products entering the market.
  • High-quality Micro-LED display products are expected to become very promising display solutions following the existing market such as Liquid Crystal Display (LCD) and Organic Light-Emitting Diode (OLED) displays.
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • Micro-LEDs currently use light conversion materials to achieve colorization, and there is still a problem that high temperature causes a short life of the light conversion materials, which in turn affects the display effect of the display panel.
  • a first aspect of the present application provides a display panel, including: a driving backplane; a light emitting component layer disposed on the driving backplane, the light emitting component layer includes a plurality of light emitting units and barriers distributed in an array, adjacent light emitting units By separating the barriers from each other, the light emitting unit includes at least a first primary color light emitting unit, a second primary color light emitting unit, and a third primary color light emitting unit; wherein, at least the first primary color light emitting unit and the second primary color light emitting unit are provided with a light conversion unit,
  • the light conversion unit includes two or more light conversion layers stacked in the thickness direction of the display panel, and a first transparent heat-conducting layer is provided between two adjacent light conversion layers.
  • the display panel according to the present application can improve the heat dissipation performance of the light conversion material, avoid the short life of the light conversion material caused by high temperature, and thus avoid affecting the display effect of the display panel.
  • an embodiment of the present application provides a display device, including the display panel of any one of the foregoing embodiments in the first aspect of the present application.
  • an embodiment of the present application provides a method for manufacturing a display panel, including:
  • a plurality of light-emitting diodes and first barriers are formed on the driving backplane in an array, and adjacent light-emitting diodes are separated from each other by the first barriers;
  • At least one first light conversion layer is formed on the side of some light emitting diodes away from the driving backplane;
  • the driving backplane and the light-transmitting substrate are aligned and bonded, and the first light conversion layer and the second light conversion layer are formed with a first transparent heat-conducting layer.
  • the number of light conversion layers includes at least two layers, and a first transparent heat-conducting layer is arranged between adjacent light conversion layers, which is more conducive to the heat dissipation of the light conversion layer and can improve light conversion.
  • the heat dissipation performance of the material prevents the high temperature from causing the short life of the light conversion material, thereby improving the display effect of the display panel.
  • FIG. 1 is a schematic structural diagram of an embodiment of a display panel of the present application
  • FIGS. 2a to 2b are structural schematic diagrams of a light-emitting diode with grooves according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of another embodiment in which the shape of the first light conversion layer of the display panel shown in FIG. 1 of the present application is changed;
  • FIG. 4 is a schematic structural diagram of another embodiment of the present application in which the first light conversion layer of the display panel shown in FIG. 1 changes shape;
  • FIG. 5 is a schematic flowchart of an embodiment of a method for manufacturing a display panel of the present application
  • 6a to 6c are schematic flowcharts of another embodiment of a method for manufacturing a display panel of the present application.
  • FIG. 7a to 7c are schematic flowcharts of still another embodiment of the method for manufacturing a display panel of the present application.
  • FIG. 1 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • the display panel provided by the embodiment of the present application includes: a driving backplane 10; a light-emitting component layer 20 disposed on the driving backplane 10, and the light-emitting component layer 20 includes a plurality of light-emitting units 21 and barriers distributed in an array.
  • the light-emitting unit 21 includes at least a first primary color light-emitting unit 211, a second primary color light-emitting unit 212 and a third primary color light-emitting unit 213; wherein, at least the first primary color light-emitting unit 211 and the second primary color light-emitting unit 212 are provided with a light conversion unit, the light conversion unit includes a first light conversion layer 231 and a second light conversion layer 232 stacked in the thickness direction of the display panel, the first light conversion layer 231 and the second light conversion layer 231 A first transparent thermal conductive layer 24 is provided between the two light conversion layers 232.
  • the number of light conversion layers includes two layers, and a first transparent heat-conducting layer is arranged between adjacent light conversion layers, which is more conducive to the heat dissipation of the light conversion layer and can improve the light conversion material.
  • the heat dissipation performance of the high temperature avoids the short life of the light conversion material, thereby improving the display effect of the display panel.
  • FIG. 1 only shows a schematic structure of a display panel including two light conversion layers.
  • the number of light conversion layers in the present application can also be two or more, which is not limited in the present application.
  • the driving backplane 10 includes a driving circuit, and the driving circuit is used to drive the corresponding light emitting diode to emit light.
  • the light emitting diode may be a Micro-LED, which has the advantages of low power consumption, high brightness, long life, fast response time, etc., so that the display panel with the Micro-LED has good display performance.
  • the driving circuit includes at least a thin film transistor, and the Micro-LED is electrically connected to the thin film transistor.
  • the light emitting devices provided in each light emitting unit 21 are light emitting diodes.
  • the light emitting diode is Micro-LED.
  • the light-emitting diodes arranged in at least the first primary color light-emitting unit 211 and the second primary color light-emitting unit 212 have a recessed portion or groove away from the semiconductor layer of the driving backplane 10, and the recessed portion or groove is from the surface of the semiconductor layer facing away from the driving backplane A recess is formed inside the semiconductor layer, and at least one of the two or more light conversion layers is located in the recess or groove.
  • the first primary color light-emitting unit 211 is a red light-emitting unit
  • the second primary color light-emitting unit 212 is a green light-emitting unit
  • the third primary color light-emitting unit 213 is a blue light-emitting unit
  • the third primary color light-emitting unit 213 emits light.
  • the diode is a blue light emitting diode.
  • the third primary color light-emitting unit 213 does not need to be provided with a light conversion layer, and the light-emitting diodes therein may not be provided with recesses or grooves.
  • the light-emitting diodes in the third primary color light-emitting unit 213 are ultraviolet light-emitting diodes.
  • a light conversion layer needs to be provided in the third primary color light-emitting unit 213, and the light-emitting diodes therein can be provided with recesses or grooves. At least one of the two or more light conversion layers in the light emitting unit 213 is located in the recess or groove of the ultraviolet light emitting diode.
  • the shape of the concave portion or groove may be cylindrical, quadrangular prism, hexagonal prism, elliptic column, etc., which are not limited herein.
  • the light emitting diode includes a P-type semiconductor layer, an active layer, and an N-type semiconductor layer stacked in a direction away from the driving backplane, and a first electrode layer electrically connected to the P-type semiconductor layer and electrically connected to the N-type semiconductor layer
  • the second electrode layer is provided with recesses or grooves in the N-type semiconductor layer.
  • the P-type semiconductor layer is a P-type gallium nitride layer
  • the N-type semiconductor layer is an N-type gallium nitride layer
  • the active layer is a gallium nitride quantum well layer.
  • the semiconductor layer of the light emitting diode away from the driving backplane has a relatively thick thickness, for example, the thickness is 3 ⁇ m-10 ⁇ m, the depth of the concave portion or groove is 50% of the thickness, and the thickness and the depth of the concave portion or groove are also It can be set to other values according to actual needs, which is not limited in this application.
  • a recessed portion or groove is provided in the semiconductor layer of the light emitting diode, and at least one of the two or more light conversion layers is provided in the recessed portion or groove, which will not affect the light emitting effect of the light emitting diode and can reduce the display The overall thickness of the panel.
  • FIG. 3 is a schematic structural diagram of another display panel provided by an embodiment of the present application.
  • the light conversion layer is composed of two layers, including a first light conversion layer 231 and a second light conversion layer 232.
  • the first light conversion layer 231 is located in the recess or groove, and the second light conversion layer 232 Located outside the LED, the second light conversion layer 232 has a hemispherical shape.
  • the top of the second light conversion layer 232 is not completely surrounded by the barrier 22, and the light emitted by the light emitting diode can be emitted from the top of the second light conversion layer 232 after being converted into the target color light.
  • the shape of the light conversion layer arranged on the outside of the light-emitting diode is arranged in a hemispherical shape, which can change the exit angle and rate of light emitted by the light-emitting unit, thereby reducing color shift.
  • the light conversion layer provided outside the light emitting diode may also be an inverted bowl structure, a cube structure, a cylindrical structure, etc., which is not limited herein.
  • the first transparent heat-conducting layer 24 may be formed by mixing and curing a transparent adhesive and a transparent heat-conducting material.
  • the transparent thermal conductive material can be selected from any one or more of aluminum oxide, magnesium oxide, zinc oxide, aluminum nitride, boron nitride, silicon carbide, and the like.
  • the transparent thermally conductive material can be micron-sized or nano-sized material particles.
  • the light conversion layer includes a thermally conductive material.
  • the thermally conductive material is a thermally conductive material with a higher thermal conductivity.
  • the thermally conductive material can be selected from one or more of aluminum oxide, magnesium oxide, zinc oxide, aluminum nitride, boron nitride, silicon carbide, and the like.
  • the thermally conductive material can be micron-sized or nano-sized material particles.
  • Disposing a thermally conductive material in the light conversion layer further enhances the heat dissipation effect of the light conversion material in the light conversion layer, further avoids the short life of the light conversion material caused by high temperature, and thus avoids affecting the display effect of the display panel.
  • the first primary color light emitting unit 211 is a red light emitting unit
  • the second primary color light emitting unit 212 is a green light emitting unit
  • the third primary color light emitting unit 213 is a blue light emitting unit.
  • the light emitting diodes in the first primary color light emitting unit 211 and the second primary color light emitting unit 212 are ultraviolet light emitting diodes
  • the light emitting diodes in the third primary color light emitting unit 213 are blue light emitting diodes.
  • the use of an ultraviolet light source to excite the light conversion material has higher efficiency and can increase the yield of the light conversion unit.
  • the first primary color light emitting unit 211 is a red light emitting unit
  • the second primary color light emitting unit 212 is a green light emitting unit
  • the third primary color light emitting unit 213 is a blue light emitting unit.
  • the light emitting diodes in each light emitting unit 21 are blue light emitting diodes, or the light emitting diodes in each light emitting unit 21 are ultraviolet light emitting diodes.
  • each light emitting unit 21 is all ultraviolet light emitting diodes, a light conversion layer needs to be provided in the third primary color light emitting unit 213 to convert the light emitted by the ultraviolet light emitting diode into blue light for emission.
  • the light-emitting diodes in each light-emitting unit 21 are all the same type of light-emitting diodes, which can simplify the process steps of mass transfer of the light-emitting diodes.
  • the light conversion material of the light conversion layer may be a quantum dot material.
  • the quantum dot material component can be inorganic nanoparticles such as ZnS, ZnO, CdS.
  • the light conversion layer may also include scattering particles. Such as titanium dioxide, silicon dioxide and so on. Scattering particles can change the original path of light, thereby increasing the path of light in the light conversion layer and improving the utilization rate of light.
  • the barrier 22 is a black matrix, and the sidewall of the barrier 22 is formed with a reflective layer 27 at least on the surface facing the light-emitting unit 21.
  • the barrier 22 can prevent light crosstalk, and the reflective layer 27 on its sidewall can reflect the light reaching it back to the light-emitting unit, further improving the light utilization rate.
  • the light-emitting component layer 20 further includes a second transparent heat-conducting layer 25 disposed on the side of the light conversion layer facing away from the driving backplane 10, and disposed on the side of the second transparent heat-conducting layer 25 facing away from the driving backplane 10.
  • Bragg reflection layer 26 disposed on the side of the light conversion layer facing away from the driving backplane 10.
  • the light conversion layer includes a first light conversion layer 231 and a second light conversion layer 232, wherein the first light conversion layer 231 is located in the recess or groove of the light emitting diode, and the second light conversion layer 232 is disposed on the light emitting diode. Outside the diode, the second light conversion layer 232 has a hemispherical shape.
  • the second transparent thermal conductive layer 25 is located between the barrier 22 and the second light conversion layer 232, and the Bragg reflective layer 26 is located between the barrier 22 and the second transparent thermal conductive layer 25. The light emitted by the light emitting diode can be emitted from the top of the second light conversion layer 232 after being converted into the target color light by the second light conversion layer 232.
  • the second transparent thermal conductive layer 25 may be a diamond-like carbon film. Further enhance the heat dissipation function of the light conversion layer.
  • the Bragg reflective layer 26 can reflect the unused ultraviolet light or blue light back to the light conversion layer, so that it can be reused for light conversion, thereby improving the utilization rate of light and ensuring the uniformity of the emitted light.
  • the display panel further includes a light-transmitting substrate 30 on the light-emitting component layer 20 and a circular polarizer 40 on the light-transmitting substrate 30.
  • the transparent substrate 30 is used to carry at least part of the light conversion layer and the barrier 22.
  • the circular polarizer 40 can change the vibration direction of the light, thereby preventing interference from external light on the display panel, and at the same time can increase the contrast of the display and improve the display quality.
  • the embodiment of the present application also provides a display device, including the above-mentioned display panel.
  • the display device can be applied to virtual reality equipment, mobile phones, tablet computers, televisions, displays, notebook computers, digital photo frames, navigators, wearable watches, Any product or component with display function such as IoT node. Since the principle of solving the problems of the display device is similar to that of the above-mentioned display panel, the implementation of the display device can refer to the implementation of the above-mentioned display panel, and the repetition will not be repeated.
  • FIG. 5 is a schematic flowchart of a method for manufacturing a display panel provided by an embodiment of the present application. As shown in FIG. 5, the manufacturing method of the display panel of the embodiment of the present application includes the following steps:
  • the drive backplane is aligned and bonded to the light-transmitting substrate, and the first light conversion layer and the second light conversion layer are formed with a first transparent thermal conductivity Floor.
  • the number of light conversion layers includes at least two layers, and a first transparent heat-conducting layer is arranged between adjacent light conversion layers, which is more conducive to the heat dissipation of the light conversion layer and can Improve the heat dissipation performance of the light conversion material, avoid high temperature leading to a short life of the light conversion material, and avoid affecting the display effect of the display panel.
  • step S10 includes:
  • the black matrix adhesive layer is sequentially applied after the cleaning process on the drive backplane, and after curing, the pattern is exposed and developed to form the first barrier 221 shown in FIG. 6a, and a layer of reflection is formed on the sidewall of the first barrier 221
  • the layer 27 is then dry etched to remove the metal layer on the driving backplane between the adjacent first barriers 221 and cleaned to expose the welding electrode of the LED.
  • the material of the reflective layer 27 may be aluminum, silver, etc., to prevent light from being absorbed by the first barrier 221.
  • the receiving portion formed by the first barrier 221 is an area corresponding to each primary color light-emitting unit.
  • the mass transfer technology is used to transfer the ultraviolet light UV-LED to the red light emitting unit and the green light emitting unit area, and the blue B-LED to the blue light emitting unit area.
  • the LED is connected to the drive backplane by using a bonding process.
  • the UV-LED has a concave portion or groove on the side away from the driving backplane.
  • step S20 includes:
  • the red and green quantum dots are printed by inkjet printing in the red light-emitting unit and the green light-emitting unit respectively, and the film thickness is controlled to meet the technical requirements.
  • the printing sequence of different color quantum dots can be adjusted, and two color quantum dots can be printed at the same time.
  • FIG. 6c shows that the side of the light emitting diode away from the driving backplane 10 has a first light conversion layer 231
  • step S40 includes:
  • the black matrix adhesive layer is sequentially applied on the transparent substrate 30 after cleaning, and after curing, it is exposed and developed to form a second barrier 222.
  • a light reflective layer is formed on the sidewall of the second barrier 222 to reflect The material of the layer can be aluminum, silver, etc., to prevent light from being absorbed by the second barrier.
  • the receiving portion formed by the second barrier 222 is an area corresponding to each primary color light-emitting unit.
  • a band-pass filter layer with alternating high and low refractive indexes is deposited, which has high reflection of ultraviolet light, which can also be called the Bragg reflector layer 26, to increase the light conversion rate of the light source.
  • a layer of diamond-like carbon film is formed on the surface of the Bragg reflective layer, that is, the second transparent thermal conductive layer 25, to increase the heat dissipation function of the quantum dots.
  • step S50 includes:
  • the red quantum dots are printed by inkjet printing, and the thickness of the red quantum dots is controlled.
  • the green quantum dots are printed by inkjet printing, and the thickness of the green quantum dots is controlled
  • step S70 further includes:
  • a circular polarizer layer 40 is attached to the back of the light-transmitting substrate 30 to prevent external light from interfering with the display panel, and at the same time, it can increase the contrast of the display and improve the display quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请公开了一种显示面板、显示装置及显示面板的制备方法。该显示面板包括:驱动背板;发光组件层,设置于驱动背板上,发光组件层包括呈阵列分布的多个发光单元及阻隔物,相邻发光单元通过阻隔物相互分离设置,发光单元至少包括第一基色发光单元、第二基色发光单元和第三基色发光单元;其中,至少第一基色发光单元及第二基色发光单元内设置有光转换单元,光转换单元包括在显示面板厚度方向上层叠设置的两层以上的光转换层,相邻两层光转换层之间设有第一透明导热层。本申请实施例提供的显示面板,能够提高光转换材料的散热性能,避免高温导致光转换材料寿命短,进而避免影响显示面板的显示效果。

Description

显示面板、显示装置及显示面板的制备方法
相关申请的交叉引用
本申请要求享有于2019年06月25日提交的名称为“显示面板、显示装置及显示面板的制备方法”的中国专利申请第201910557311.0号的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板、显示装置及显示面板的制备方法。
背景技术
微发光二极管(Micro-Light Emitting Diode,Micro-LED)显示技术在背板上以高密度集成的微小发光二极管阵列为像素实现发光显示。目前,Micro-LED技术逐渐成为研究热门,工业界期待有高品质的Micro-LED产品进入市场。高品质Micro-LED显示产品可望成为继市场上已有的诸如液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)显示器等之后非常有希望的显示解决方案。
但是,Micro-LED目前采用光转换材料以实现彩色化,仍然存在高温导致光转换材料寿命短、进而影响显示面板的显示效果的问题。
发明内容
本申请的第一方面提供了一种显示面板,包括:驱动背板;发光组件层,设置于驱动背板上,发光组件层包括呈阵列分布的多个发光单元及阻隔物,相邻发光单元通过阻隔物相互分离设置,发光单元至少包括第一基色发光单元、第二基色发光单元和第三基色发光单元;其中,至少第一基色发光单元及第二基色发光单元内设置有光转换单元,光转换单元包括在显示面板厚度方向上层叠设置的两层以上的光转换层,相邻两层光转换层之间设有第一透明导热层。
根据本申请的显示面板能够提高光转换材料的散热性能,避免高温导致光转换材料寿命短、进而避免影响显示面板的显示效果。
第二方面,本申请实施例提供了一种显示装置,包括本申请第一方面前述任一实施方式的显示面板。
第三方面,本申请实施例提供了一种显示面板的制备方法,包括:
在驱动背板上形成呈阵列分布的多个发光二极管及第一阻隔物,相邻发光二极管通过第一阻隔物相互分离设置;
在部分发光二极管远离驱动背板的一侧形成至少一层第一光转换层;
在相邻的第一光转换层之间形成第一透明导热层;
在透光基底上形成呈阵列分布的多个第二阻隔物,相邻的第二阻隔物形成多个容纳部;
在部分容纳部内形成至少一层第二光转换层;
在相邻的第二光转换层之间形成第一透明导热层;
按照第一光转换层与第二光转换层对应的方式,将驱动背板与透光基底进行对位贴合,且第一光转换层与第二光转换层形成有第一透明导热层。
根据本申请实施例提供的显示面板,光转换层的层数包括至少两层,相邻的光转换层之间设置有第一透明导热层,更有利于光转换层的散热,能够提高光转换材料的散热性能,避免高温导致光转换材料寿命短,进而提高显示面板的显示效果。
附图说明
图1是本申请的显示面板的实施例的结构示意图;
图2a至图2b是本申请实施例的具有凹槽的发光二极管的结构示意图;
图3是本申请的图1所示显示面板的第一光转换层改变形状的另一实施例的结构示意图;
图4是本申请的图1所示显示面板的第一光转换层改变形状的再一实施例的结构示意图;
图5是本申请的显示面板制备方法的实施例的流程示意图;
图6a至图6c是本申请的显示面板制备方法的另一实施例的流程示意 图;
图7a至图7c是本申请的显示面板制备方法的再一实施例的流程示意图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅意在解释本申请,而不是限定本申请。对于本领域技术人员来说,本申请可在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
下面将详细描述本申请的各个方面的特征和示例性实施例。此外,下文中所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。
图1是本申请实施例提供的一种显示面板的结构示意图。如图1所示,本申请实施例提供的显示面板包括:驱动背板10;发光组件层20,设置于驱动背板10上,发光组件层20包括呈阵列分布的多个发光单元21及阻隔物22,相邻发光单元21通过阻隔物22相互分离设置,发光单元21至少包括第一基色发光单元211、第二基色发光单元212和第三基色发光单元213;其中,至少第一基色发光单元211及第二基色发光单元212内设置有光转换单元,光转换单元包括在显示面板厚度方向上层叠设置的第一光转换层231及第二光转换层232,第一光转换层231及第二光转换层232之间设有第一透明导热层24。
根据本申请实施例提供的显示面板,光转换层的层数包括两层,相邻的光转换层之间设置有第一透明导热层,更有利于光转换层的散热,能够提高光转换材料的散热性能,避免高温导致光转换材料寿命短,进而提高显示面板的显示效果。
图1仅仅示出了包含两层光转换层的显示面板的示意结构,本申请的光转换层的数量也可以为两层以上,本申请对此不作限制。
可选地,驱动背板10包括驱动电路,驱动电路用于驱动对应的发光二极管发光。发光二极管可以是Micro-LED,Micro-LED具有低功耗、高亮度、寿命长、响应时间快等优点,使得具有Micro-LED的显示面板具有良好的显示性能。对于Micro-LED,驱动电路至少包括薄膜晶体管,Micro-LED与薄膜晶体管电连接。
可选地,每个发光单元21内设置的发光器件均为发光二极管。发光二极管为Micro-LED。至少第一基色发光单元211及第二基色发光单元212内设置的发光二极管远离驱动背板10的半导体层具有凹入部或凹槽,凹入部或凹槽由半导体层的背向驱动背板的表面向半导体层内部凹陷形成,两层以上的光转换层中至少一层位于所述凹入部或凹槽内。
在具体的实施例中,第一基色发光单元211为红色发光单元,第二基色发光单元212为绿色发光单元,第三基色发光单元213为蓝色发光单元,第三基色发光单元213内的发光二极管为蓝光发光二极管。此时,第三基色发光单元213内不需要设置光转换层,其内的发光二极管可不设置凹入部或凹槽。或者,第三基色发光单元213内的发光二极管为紫外光发光二极管,此时,第三基色发光单元213内需要设置光转换层,其内的发光二极管可设置凹入部或凹槽,第三基色发光单元213内的两层以上的光转换层中至少一层位于紫外光发光二极管的凹入部或凹槽内。
如图2a至图2b所示,凹入部或凹槽的形状可以是圆柱形,四棱柱、六棱柱、椭圆柱等,在此不做限定。
示例性的,发光二极管包括远离驱动背板的方向堆叠的P型半导体层、有源层和N型半导体层,以及与P型半导体层电连接的第一电极层和与N型半导体层电连接的第二电极层,在N型半导体层设置凹入部或凹槽。可选的,P型半导体层为P型氮化镓层,N型半导体层为N型氮化镓层,有源层为氮化镓量子阱层。
发光二极管的远离驱动背板的半导体层具有较厚的厚度,例如,该厚度为3μm-10μm,凹入部或凹槽的深度为该厚度的50%,该厚度及凹入部或凹槽的深度也可以根据实际需要设置为其他数值,本申请对此不作限定。在发光二极管的半导体层设置凹入部或凹槽,将两层以上的光转换层中至 少一层设置在凹入部或凹槽内,不会对发光二极管的发光效果造成影响,且能够减小显示面板的整体厚度。
图3是本申请实施例提供的另一种显示面板的结构示意图。如图3所示,光转换层为两层,包括第一光转换层231及第二光转换层232,其中,第一光转换层231位于凹入部或凹槽内,第二光转换层232位于设置于发光二极管外侧,第二光转换层232呈半球形。
第二光转换层232的顶部并未被阻隔物22完全包围,发光二极管出射的光在第二光转换层232被转换成目标颜色光后能够从第二光转换层232的顶部出射出去。
将光转换单元的两层以上光转换层中,设置于发光二极管外侧的光转换层的形状设置呈半球形,能够改变发光单元出射光线的出射视角和出射率,从而减小色偏。
光转换单元的两层以上所述光转换层中设置于所述发光二极管外侧的所述光转换层也可以是倒置碗状结构、方体结构、圆柱结构等,在此不做限定。
可选地,第一透明导热层24可以是透明胶黏剂与透明导热材料混合固化而成。透明导热材料可选自氧化铝、氧化镁、氧化锌、氮化铝、氮化硼、碳化硅等中的任意一种或多种。透明导热材料可以为微米级或纳米级的材料颗粒。
可选地,光转换层包括导热材料。优选地,导热材料为导热系数较高的导热材料。导热材料可选自氧化铝、氧化镁、氧化锌、氮化铝、氮化硼、碳化硅等其中的一种或多种。导热材料可以为微米级或纳米级的材料颗粒。
在光转换层中设置导热材料,进一步增强了光转换层中的光转热材料的散热效果,进一步避免高温导致光转换材料寿命短,进而避免影响显示面板的显示效果。
可选地,第一基色发光单元211为红色发光单元,第二基色发光单元212为绿色发光单元,第三基色发光单元213为蓝色发光单元。第一基色发光单元211及第二基色发光单元212内的发光二极管为紫外光发光二极管,第三基色发光单元213内的发光二极管为蓝光发光二极管。第三基色 发光单元213内无光转换单元,第三基色发光单元213内的发光二极管出射的蓝光直接出射出去。
利用紫外光源激发光转换材料具有更高的效率,能够提高光转换单元的产率。
可选地,第一基色发光单元211为红色发光单元,第二基色发光单元212为绿色发光单元,第三基色发光单元213为蓝色发光单元。各个发光单元21内的发光二极管均为蓝光发光二极管,或者,各个发光单元21内的发光二极管均为紫外光发光二极管。
若各个发光单元21内的发光二极管均为紫外光发光二极管,第三基色发光单元213内需要设置光转换层,将紫外光发光二极管出射的光转换为蓝光以出射。
各个发光单元21内的发光二极管均为同一种发光二极管,可以简化发光二极管的巨量转移工艺步骤。
可选地,光转换层的光转换材料可以为量子点材料。量子点材料成分可以为ZnS、ZnO、CdS等无机纳米颗粒。光转换层还可以包括散射粒子。如二氧化钛、二氧化硅等。散射粒子能够改变光的原始路径,从而增加光在光转换层中的路径,提高光的利用率。
可选地,阻隔物22为黑矩阵,阻隔物22侧壁至少在朝向发光单元21的表面上形成有反射层27。阻隔物22能够防止光串扰,其侧壁上的反射层27能够将到达其上的光反射回发光单元,进一步提高光的利用率。
如图4所示,发光组件层20还包括设置于光转换层背离驱动背板10的一侧的第二透明导热层25,设置于第二透明导热层25背离驱动背板10的一侧的布拉格反射层26。
可选地,光转换层包括第一光转换层231及第二光转换层232,其中,第一光转换层231位于发光二极管的凹入部或凹槽内,第二光转换层232设置于发光二极管外侧,第二光转换层232呈半球形。第二透明导热层25位于阻隔物22和第二光转换层232之间,布拉格反射层26位于阻隔物22和第二透明导热层25之间。发光二极管出射的光在第二光转换层232被转换成目标颜色光后能够从第二光转换层232的顶部出射出去。
第二透明导热层25可以为类金刚石膜。进一步的增强光转换层的散热功能。布拉格反射层26能够使未被利用的紫外光或蓝光反射回光转换层,从而被再次利用进行光转换,提高光的利用率,同时保证出射光的均一性。
继续参考图4,显示面板还包括位于发光组件层20上的透光基底30,位于透光基底30上的圆偏光片40。透光基底30用来承载至少部分光转换层以及阻隔物22。圆偏光片40能够改变光的震动方向,从而防止外界光对显示面板的干扰,同时可以增加显示的对比度,提高显示质量。
本申请实施例还提供了一种显示装置,包括上述显示面板,该显示装置可以应用于虚拟现实设备、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪、可穿戴手表、物联网节点等任何具有显示功能的产品或部件。由于该显示装置解决问题的原理与上述显示面板相似,因此该显示装置的实施可以参见上述显示面板的实施,重复之处不再赘述。
参阅图5,本申请实施例还提供一种显示面板的制备方法。图5是本申请实施例提供的一种显示面板的制备方法的流程示意图。如图5所示,本申请实施例的显示面板的制备方法包括以下步骤:
S10,在驱动背板上形成呈阵列分布的多个发光二极管及第一阻隔物,相邻发光二极管通过第一阻隔物相互分离设置;
S20,在部分发光二极管远离驱动背板的一侧形成至少一层第一光转换层;
S30,在相邻的第一光转换层之间形成第一透明导热层;
S40,在透光基底上形成呈阵列分布的多个第二阻隔物,相邻的第二阻隔物形成多个容纳部;
S50,在部分容纳部内形成至少一层第二光转换层;
S60,在相邻的第二光转换层之间形成第一透明导热层;
S70,按照第一光转换层与第二光转换层对应的方式,将驱动背板与透光基底进行对位贴合,且第一光转换层与第二光转换层形成有第一透明导热层。
根据本申请实施例提供的显示面板的制备方法,光转换层的层数包括 至少两层,相邻的光转换层之间设置有第一透明导热层,更有利于光转换层的散热,能够提高光转换材料的散热性能,避免高温导致光转换材料寿命短,进而避免影响显示面板的显示效果。
请参阅图6a至图6c,可选地,步骤S10包括:
在驱动背板上清洗处理后顺次涂敷黑矩阵胶层,固化之后曝光显影图形化,形成图6a所示的第一阻隔物221,在第一阻隔物221的侧壁上制作一层反射层27,之后干法刻蚀去除相邻第一阻隔物221之间的驱动背板上的金属层,并清洗,露出LED的焊接电极。反射层27的材料可以为铝、银等,防止光被第一阻隔物221吸收。第一阻隔物221形成的容纳部为各个基色发光单元对应的区域。
采用巨量转移技术将紫外光UV-LED转移到红色发光单元和绿色发光单元区域内,将蓝光B-LED转移到蓝色发光单元区域内。采用绑定(Bonding)工艺将LED与驱动背板连接。如图6b所示,UV-LED远离驱动背板的一面具有凹入部或凹槽。
可选地,步骤S20包括:
分别在红色发光单元和绿色发光单元内用喷墨打印的方法打印红色和绿色量子点,控制膜厚满足技术要求。不同颜色量子点的打印顺序均可调整,也可以同时打印两种颜色量子点。图6c示出了发光二极管远离驱动背板10的一侧具有一层第一光转换层231
请参阅图7a至图7c,可选地,步骤S40包括:
在透光基底30上清洗处理后顺次涂敷黑矩阵胶层,固化之后曝光显影图形化,形成第二阻隔物222,在第二阻隔物222的侧壁上制作一层光反射层,反射层的材料可以为铝、银等,防止光被第二阻隔物吸收。第二阻隔物222形成的容纳部为各个基色发光单元对应的区域。
在红色发光单元和绿色发光单元内沉积高低折射率相间的带通滤色层,具有高反射紫外光,也可称为布拉格反射层26,增加光源的光转化率。
在布拉格反射层表面制作一层类金刚石膜,即第二透明导热层25,增加量子点的散热功能。
可选地,步骤S50包括:
在红色发光单元211内用喷墨打印的方法打印红色量子点,并控制红色量子点的厚度。
在绿色发光单元内212用喷墨打印的方法打印绿色量子点,并控制绿色量子点的厚度
在一些可选的实施例中,步骤S70还包括:
在透光基底30的背面贴附圆偏光片层40,防止外界光对显示面板的干扰,同时可以增加显示的对比度,提高显示质量。
应理解,术语“第一”、“第二”、等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。需要理解,如此使用的术语在适当的情况下是可以互换的,以使本文所描述的申请中的实施例,例如,能够按照除了本文说明的或其他方式描述的那些顺次而工作或排列。
本申请可以以其他的具体形式实现,而不脱离其精神和本质特征。因此,当前的实施例在所有方面都被看作是示例性的而非限定性的,本申请的范围由所附权利要求而非上述描述定义,并且,落入权利要求的含义和等同物的范围内的全部改变从而都被包括在本申请的范围之中。并且,在不同实施例中出现的不同技术特征可以进行组合,以取得有益效果。本领域技术人员在研究附图、说明书及权利要求书的基础上,应能理解并实现所揭示的实施例的其他变化的实施例。

Claims (17)

  1. 一种显示面板,包括:
    驱动背板;
    发光组件层,设置于所述驱动背板上,所述发光组件层包括呈阵列分布的多个发光单元及阻隔物,相邻所述发光单元通过所述阻隔物相互分离设置,所述发光单元至少包括第一基色发光单元、第二基色发光单元和第三基色发光单元;
    其中,至少所述第一基色发光单元及第二基色发光单元内设置有光转换单元,所述光转换单元包括在所述显示面板厚度方向上层叠设置的两层以上的光转换层,相邻两层所述光转换层之间设有第一透明导热层。
  2. 根据权利要求1所述的显示面板,其中,各所述发光单元内设置的发光器件为发光二极管;或
    至少所述第一基色发光单元及第二基色发光单元内设置的所述发光二极管具有远离所述驱动背板的半导体层,所述半导体层具有凹入部,所述凹入部由所述半导体层背向所述驱动背板的表面向所述半导体层内部凹陷,两层以上的所述光转换层中至少一层位于所述凹入部内。
  3. 根据权利要求2所述的显示面板,其中,所述发光二极管为微发光二极管。
  4. 根据权利要求2所述的显示面板,其中,所述光转换单元的两层以上所述光转换层中设置于所述发光二极管外侧的所述光转换层呈半球形。
  5. 根据权利要求1所述的显示面板,其中,所述第一透明导热层包括透明胶粘剂与透明导热材料。
  6. 根据权利要求5所述的显示面板,其中,所述透明导热材料包括微米级或纳米级的材料颗粒;
    所述透明导热材料包括氧化铝、氧化镁、氧化锌、氮化铝、氮化硼、碳化硅其中的任意一种或多种。
  7. 根据权利要求1所述的显示面板,其中,所述光转换层包括导热材料。
  8. 根据权利要求7所述的显示面板,其中,所述导热材料包括微米级或纳米级的材料颗粒;
    所述导热材料包括氧化铝、氧化镁、氧化锌、氮化铝、氮化硼、碳化硅其中的任意一种或多种。
  9. 根据权利要求1所述的显示面板,其中,
    所述第一基色发光单元及第二基色发光单元对应的发光器件为紫外光发光二极管,所述第三基色发光单元对应的发光器件为蓝光发光二极管。
  10. 根据权利要求1所述的显示面板,其中,各所述发光单元内设置的发光器件均为蓝光发光二极管。
  11. 根据权利要求1所述的显示面板,其中,所述第三基色发光单元内设置有光转换单元;
    各所述发光单元内的发光器件为紫外光发光二极管。
  12. 根据权利要求1所述的显示面板,其中,所述光转换层包括量子点和散射粒子;
    所述阻隔物侧壁至少在朝向所述发光单元的表面上形成有反射层。
  13. 根据权利要求1所述的显示面板,其中,所述发光组件层还包括:
    第二透明导热层,设置于所述光转换层背离所述驱动背板的一侧;
    布拉格反射层,设置于所述第二透明导热层背离所述驱动背板的一侧。
  14. 根据权利要求13所述的显示面板,其中,所述第二透明导热层包括类金刚石膜。
  15. 根据权利要求1至14任一项所述的显示面板,其中,所述显示面板还包括:
    透光基底,位于所述发光组件层上;
    圆偏光片,位于所述透光基底上。
  16. 一种显示装置,其中,包括如权利要求1至15任一项所述的显示面板。
  17. 一种显示面板的制备方法,包括:
    在所述驱动背板上形成呈阵列分布的多个发光二极管及第一阻隔物,相邻所述发光二极管通过所述第一阻隔物相互分离设置;
    在部分所述发光二极管远离所述驱动背板的一侧形成至少一层第一光转换层;
    在相邻的所述第一光转换层之间形成第一透明导热层;
    在透光基底上形成呈阵列分布的多个第二阻隔物,相邻的所述第二阻隔物形成多个容纳部;
    在部分所述容纳部内形成至少一层第二光转换层;
    在相邻的所述第二光转换层之间形成所述第一透明导热层;
    按照所述第一光转换层与所述第二光转换层对应的方式,将所述驱动背板与所述透光基底进行对位贴合,且所述第一光转换层与所述第二光转换层形成有所述第一透明导热层。
PCT/CN2020/076544 2019-06-25 2020-02-25 显示面板、显示装置及显示面板的制备方法 WO2020258897A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020217039025A KR102626353B1 (ko) 2019-06-25 2020-02-25 표시 패널, 표시 장치 및 표시 패널의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910557311.0 2019-06-25
CN201910557311.0A CN112133718B (zh) 2019-06-25 2019-06-25 显示面板、显示装置及显示面板的制备方法

Publications (1)

Publication Number Publication Date
WO2020258897A1 true WO2020258897A1 (zh) 2020-12-30

Family

ID=73849790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076544 WO2020258897A1 (zh) 2019-06-25 2020-02-25 显示面板、显示装置及显示面板的制备方法

Country Status (3)

Country Link
KR (1) KR102626353B1 (zh)
CN (1) CN112133718B (zh)
WO (1) WO2020258897A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112786810A (zh) * 2021-01-12 2021-05-11 纳晶科技股份有限公司 显示面板
CN113192942A (zh) * 2021-04-21 2021-07-30 Tcl华星光电技术有限公司 显示面板
CN113224016A (zh) * 2021-03-25 2021-08-06 深圳市华星光电半导体显示技术有限公司 一种显示面板及显示装置
CN113471239A (zh) * 2021-06-30 2021-10-01 上海天马微电子有限公司 一种显示面板和显示装置
CN114300586A (zh) * 2021-12-29 2022-04-08 深圳市思坦科技有限公司 一种发光器件制备方法、发光器件及显示装置
CN114628563A (zh) * 2022-05-12 2022-06-14 镭昱光电科技(苏州)有限公司 Micro LED显示芯片及其制备方法
CN114784047A (zh) * 2022-05-24 2022-07-22 厦门大学 一种主动驱动式Micro-LED基板及显示装置及封装方法
WO2023039670A1 (en) * 2021-09-15 2023-03-23 Vuereal Inc. Hybrid-display

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212625583U (zh) * 2020-07-30 2021-02-26 重庆康佳光电技术研究院有限公司 一种显示面板和显示器
CN112885823B (zh) * 2021-01-18 2024-04-16 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法、显示装置
CN112885247B (zh) * 2021-01-20 2022-07-12 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法、显示模组
CN112786764B (zh) * 2021-02-26 2022-02-22 维沃移动通信有限公司 发光器件、显示组件和发光器件的制造方法
CN113675230B (zh) * 2021-08-19 2024-05-07 京东方科技集团股份有限公司 显示基板、显示面板及其制备方法
CN113659058B (zh) * 2021-08-20 2023-10-20 京东方科技集团股份有限公司 一种发光器件及其制备方法、显示装置
CN114242876B (zh) * 2021-12-20 2023-11-21 厦门天马微电子有限公司 显示面板和显示装置
CN114447188B (zh) * 2022-01-18 2024-03-08 Tcl华星光电技术有限公司 显示面板及显示装置
KR20230136788A (ko) * 2022-03-17 2023-09-27 삼성디스플레이 주식회사 표시 장치
CN114628566B (zh) * 2022-03-28 2023-06-09 东莞市中麒光电技术有限公司 光色转换结构、发光单元及发光单元制作方法
CN114899291B (zh) * 2022-07-12 2022-10-25 诺视科技(苏州)有限公司 用于半导体器件的像素单元及其制作方法、微显示屏

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107887403A (zh) * 2016-09-29 2018-04-06 昆山国显光电有限公司 有机发光二极管显示器及其制作方法
CN109494289A (zh) * 2017-09-11 2019-03-19 行家光电股份有限公司 应用量子点色彩转换的发光装置及其制造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4193471B2 (ja) * 2001-12-14 2008-12-10 日亜化学工業株式会社 発光装置およびその製造方法
US8080828B2 (en) * 2006-06-09 2011-12-20 Philips Lumileds Lighting Company, Llc Low profile side emitting LED with window layer and phosphor layer
US8210698B2 (en) * 2010-07-28 2012-07-03 Bridgelux, Inc. Phosphor layer having enhanced thermal conduction and light sources utilizing the phosphor layer
JP2015099633A (ja) * 2012-03-07 2015-05-28 シャープ株式会社 波長変換基板およびそれを用いた表示装置、電子機器、並びに、波長変換基板の製造方法
JP2014086566A (ja) * 2012-10-24 2014-05-12 Stanley Electric Co Ltd 光波長変換装置
JP6388595B2 (ja) * 2012-12-05 2018-09-12 フィリップス ライティング ホールディング ビー ヴィ 色変換装置、照明ユニット、固体発光体パッケージ、及び照明器具
TW201427893A (zh) * 2013-01-07 2014-07-16 群康科技(深圳)有限公司 圖案化色轉換膜及應用其之顯示裝置
US10304813B2 (en) * 2015-11-05 2019-05-28 Innolux Corporation Display device having a plurality of bank structures
US10312228B2 (en) * 2017-01-25 2019-06-04 Innolux Corporation Display device
JP2018151610A (ja) * 2017-03-10 2018-09-27 日本電気硝子株式会社 波長変換部材及び発光デバイス
US10879434B2 (en) * 2017-09-08 2020-12-29 Maven Optronics Co., Ltd. Quantum dot-based color-converted light emitting device and method for manufacturing the same
TWI658610B (zh) * 2017-09-08 2019-05-01 Maven Optronics Co., Ltd. 應用量子點色彩轉換之發光裝置及其製造方法
CN108257949B (zh) * 2018-01-24 2020-02-07 福州大学 可实现光效提取和色彩转换微米级led显示装置及制造方法
US10290790B1 (en) * 2018-01-31 2019-05-14 Huizhou China Star Optoelectronics Technology Co., Ltd. High thermal conductivity quantum dot light emitting diode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107887403A (zh) * 2016-09-29 2018-04-06 昆山国显光电有限公司 有机发光二极管显示器及其制作方法
CN109494289A (zh) * 2017-09-11 2019-03-19 行家光电股份有限公司 应用量子点色彩转换的发光装置及其制造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112786810A (zh) * 2021-01-12 2021-05-11 纳晶科技股份有限公司 显示面板
CN113224016A (zh) * 2021-03-25 2021-08-06 深圳市华星光电半导体显示技术有限公司 一种显示面板及显示装置
CN113224016B (zh) * 2021-03-25 2023-01-24 深圳市华星光电半导体显示技术有限公司 一种显示面板及显示装置
CN113192942A (zh) * 2021-04-21 2021-07-30 Tcl华星光电技术有限公司 显示面板
CN113192942B (zh) * 2021-04-21 2023-10-17 Tcl华星光电技术有限公司 显示面板
CN113471239A (zh) * 2021-06-30 2021-10-01 上海天马微电子有限公司 一种显示面板和显示装置
CN113471239B (zh) * 2021-06-30 2024-04-26 上海天马微电子有限公司 一种显示面板和显示装置
WO2023039670A1 (en) * 2021-09-15 2023-03-23 Vuereal Inc. Hybrid-display
CN114300586A (zh) * 2021-12-29 2022-04-08 深圳市思坦科技有限公司 一种发光器件制备方法、发光器件及显示装置
CN114300586B (zh) * 2021-12-29 2024-03-29 深圳市思坦科技有限公司 一种发光器件制备方法、发光器件及显示装置
CN114628563A (zh) * 2022-05-12 2022-06-14 镭昱光电科技(苏州)有限公司 Micro LED显示芯片及其制备方法
CN114784047A (zh) * 2022-05-24 2022-07-22 厦门大学 一种主动驱动式Micro-LED基板及显示装置及封装方法

Also Published As

Publication number Publication date
CN112133718B (zh) 2024-02-20
KR20210153135A (ko) 2021-12-16
KR102626353B1 (ko) 2024-01-18
CN112133718A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
WO2020258897A1 (zh) 显示面板、显示装置及显示面板的制备方法
WO2020258878A1 (zh) 显示面板、显示装置及显示面板的制备方法
WO2020258864A1 (zh) 色彩转化组件及其制作方法、显示面板
WO2020258979A1 (zh) 显示面板、其制作方法及母板
US11217625B2 (en) Display module including micro light-emitting diodes and reflective layer, display apparatus including the same and method of manufacturing display module
CN110858599B (zh) 像素阵列封装结构及显示面板
WO2020258898A1 (zh) 显示面板、显示装置及显示面板的制备方法
CN112234070B (zh) 显示面板、显示装置及显示面板的制造方法
WO2021097941A1 (zh) 显示装置及显示装置的制作方法
JP2017538275A (ja) 量子ドットバックライトモジュール及び表示装置
TWI725691B (zh) 微型發光元件顯示裝置
WO2021184914A1 (zh) 阵列基板、其制作方法、显示面板及显示装置
WO2020153191A1 (ja) 発光デバイスおよび画像表示装置
CN217280834U (zh) 一种显示装置
CN113539136A (zh) 一种Mini LED显示模组及显示面板
CN110568654A (zh) 量子点彩膜及显示装置
WO2022095129A1 (zh) 微型发光二极管及显示面板
WO2021004090A1 (zh) 色彩转换组件、显示面板及制作方法
WO2020258765A1 (zh) 色彩转化组件及其制作方法、显示面板
CN217426779U (zh) 一种显示装置
CN111128985A (zh) 显示面板及其制备方法
WO2020199255A1 (zh) Led器件及显示装置
CN215495829U (zh) 一种Mini LED显示模组及显示面板
TWI784681B (zh) 微型發光二極體顯示裝置
WO2023216744A1 (zh) 一种显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831572

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217039025

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831572

Country of ref document: EP

Kind code of ref document: A1