WO2023216744A1 - 一种显示装置 - Google Patents

一种显示装置 Download PDF

Info

Publication number
WO2023216744A1
WO2023216744A1 PCT/CN2023/084092 CN2023084092W WO2023216744A1 WO 2023216744 A1 WO2023216744 A1 WO 2023216744A1 CN 2023084092 W CN2023084092 W CN 2023084092W WO 2023216744 A1 WO2023216744 A1 WO 2023216744A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
color conversion
conversion layer
emitting chip
Prior art date
Application number
PCT/CN2023/084092
Other languages
English (en)
French (fr)
Inventor
李潇
李阳
Original Assignee
海信视像科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202221176254.5U external-priority patent/CN217426779U/zh
Priority claimed from CN202221104053.4U external-priority patent/CN217280834U/zh
Application filed by 海信视像科技股份有限公司 filed Critical 海信视像科技股份有限公司
Publication of WO2023216744A1 publication Critical patent/WO2023216744A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present application relates to the field of display technology, and in particular, to a display device.
  • LED Light Emitting Diode
  • Mini LED Mini Light Emitting Diode, referred to as Mini LED
  • Micro LED Micro Light Emitting Diode
  • the current way for Micro LED display devices to achieve full color is to use blue Micro LED to excite the color conversion layer.
  • This method can avoid the problem of low yield rate of three-color transfer and the problem of inconsistent efficiency of red, green and blue colors.
  • the color conversion layer is mainly prepared by photolithography or inkjet printing.
  • the color conversion units prepared by these two methods are flat, and the luminous intensity distribution of Micro LED is not uniform. Due to the uneven light intensity distribution, some colors are caused. Insufficient translation of the transfer layer causes halo issues.
  • a display device includes: a driving substrate for providing driving signals; a light-emitting chip located on the driving substrate and electrically connected to the driving substrate; a color conversion substrate arranged opposite to the driving substrate; the color conversion substrate includes : The base material is arranged opposite to the driving substrate; the imprinting layer is located on the side of the base material facing the driving substrate; the imprinting layer includes a plurality of accommodation units recessed toward the side of the base material; a light emitting chip is provided with a corresponding accommodation unit on the light emitting side Unit; color conversion layer, located in part of the accommodation unit; the color conversion layer is used to emit light of other colors under the excitation of the emitted light of the light-emitting chip; the thickness of the color conversion layer is not completely equal at each position.
  • Figure 1A is a schematic structural diagram of a display device in the related art
  • Figure 1B is a schematic structural diagram of another display device in the related art
  • Figure 2A is one of the structural schematic diagrams of a display device according to an embodiment of the present application.
  • Figure 2B is one of the structural schematic diagrams of another display device according to an embodiment of the present application.
  • 3A is a schematic cross-sectional structural diagram of an imprint layer of a display device according to an embodiment of the present application.
  • 3B is a schematic cross-sectional structural diagram of an imprinting layer of another display device according to an embodiment of the present application.
  • 4A is a schematic plan view of the imprinting layer of a display device according to an embodiment of the present application.
  • 4B is a schematic plan view of the imprinting layer of another display device according to an embodiment of the present application.
  • 5a-5b are schematic structural diagrams of the manufacturing process of the imprint layer of a display device according to an embodiment of the present application.
  • Figure 5c is a schematic structural diagram of the production process of the imprint layer of another display device according to an embodiment of the present application.
  • Figure 6 is a schematic plan view of a drive substrate according to an embodiment of the present application.
  • Figure 7 is a schematic cross-sectional structural diagram of a light-emitting chip according to an embodiment of the present application.
  • Figure 8A is a second structural schematic diagram of a display device according to an embodiment of the present application.
  • Figure 8B is a second structural schematic diagram of another display device according to an embodiment of the present application.
  • Figures 9a-9n are schematic structural diagrams of the manufacturing process of the color conversion layer and the scattering layer of a display device according to embodiments of the present application;
  • Figure 10 is one of the structural schematic diagrams of a receiving unit of a display device according to an embodiment of the present application.
  • Figure 11 is a second structural schematic diagram of a receiving unit of a display device according to an embodiment of the present application.
  • Figure 12 is a third structural schematic diagram of a receiving unit of a display device according to an embodiment of the present application.
  • Figure 13 is a third structural schematic diagram of a display device according to an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a Bragg reflective layer according to an embodiment of the present application.
  • Figure 15 is a schematic structural diagram of a resonant cavity according to an embodiment of the present application.
  • Figures 16a-16n are schematic structural diagrams of the production process of the color conversion layer and the scattering layer of another display device according to an embodiment of the present application.
  • Figure 17 is a partially enlarged schematic diagram of a color conversion layer of another display device according to an embodiment of the present application.
  • Figure 18 is a third structural schematic diagram of another display device according to an embodiment of the present application.
  • FIG. 19 is a fourth structural schematic diagram of another display device according to an embodiment of the present application.
  • LED display technology refers to a display technology that uses light-emitting diodes as display devices.
  • the LED chip can be miniaturized and Mini LED (Mini Light Emitting Diode, referred to as Mini LED) or Micro LED (Micro Light Emitting Diode, referred to as Micro LED) as the light-emitting device.
  • Mini LED Mini Light Emitting Diode
  • Micro LED Micro Light Emitting Diode
  • the size of Mini LED is larger than Micro LED.
  • the size of Mini LED is less than 500 ⁇ m
  • the size of Micro LED is less than 100 ⁇ m.
  • light-emitting chips of corresponding sizes can be used according to the pixel resolution requirements, which are not limited here.
  • Micro LED inherits the high efficiency, high brightness, high reliability and fast response time of traditional light-emitting diodes, It is self-luminous and does not require a backlight. It has the advantages of energy saving, simple mechanism, small size, and thin profile.
  • the use of Micro LED direct display technology has been vigorously developed. Therefore, Micro LED has broad application prospects in public displays, TVs, vehicles, commercial displays, mobile phones, etc., and is an important display technology in the future.
  • the full-color display solution of Micro LED display devices can be realized through color conversion method, three-primary color method, optical prism synthesis method, and by controlling the structure and size of the light-emitting chip to emit light of different wavelengths.
  • color conversion using color conversion materials is considered to be one of the most promising methods.
  • the method of color conversion using color conversion materials can avoid the problem of low yield of three-color transfer and the problem of inconsistent efficiency of red, green and blue colors.
  • the color conversion layer is mainly prepared by photolithography or inkjet printing.
  • the color conversion units prepared by these two methods are flat. From the analysis of LED luminescence characteristics, since the light intensity distribution of LED light is Lambertian distribution, the light intensity Uneven distribution leads to insufficient conversion of some color conversion layers, causing halo problems.
  • FIG. 1A is a schematic structural diagram of a display device in the related art.
  • FIG. 1B is a schematic structural diagram of another display device in the related art.
  • the display device includes a driving substrate 1 , a light emitting chip 2 and a color conversion substrate 3 .
  • the color conversion substrate includes a base material 31 and a color conversion layer 32 located on the surface of the base material.
  • a light-shielding wall d is provided between the color conversion substrate 3 and the drive substrate 1 to reduce crosstalk between sub-pixels caused by a certain distance between the color conversion substrate 3 and the drive substrate 1. Improve the contrast and color rendering capabilities of the display device.
  • the color conversion layer 32 is usually set as a plane, and the thickness at each position is uniform and equal.
  • the LED chip is a Lambertian light source, and the luminous intensity at each position is related to the light exit angle.
  • the exit angle is the angle between the light exit direction and the normal.
  • the luminous intensity is maximum when the exit angle is 0 degrees, and decreases as the exit angle increases.
  • the color conversion layer 32 is flat, the small-angle light emitted by the light-emitting chip 2 can fully excite the color conversion layer 32 due to its high luminous intensity; while the large-angle light emitted by the light-emitting chip 2 cannot fully excite the color conversion layer 32, resulting in The excitation efficiency of the color conversion layer 32 is different at the center position and at the edge position, causing halo problems due to insufficient edge position conversion.
  • a display device can improve the halo problem caused by insufficient conversion of the color conversion layer.
  • FIG. 2A is a schematic structural diagram of a display device according to an embodiment of the present application.
  • FIG. 2B is a schematic structural diagram of another display device according to an embodiment of the present application. It should be noted that the structure of a display device shown in FIG. 2A corresponds to that of FIG. 1A , and the structure of another display device shown in FIG. 2A corresponds to that of FIG. 1B .
  • the display device includes: a driving substrate 1 , a light emitting chip 2 and a color conversion substrate 3 .
  • the driving substrate 1 is located at the bottom of the display device. Generally, its size is adapted to the overall size of the display device. The size of the driving substrate 1 is slightly smaller than the size of the display device.
  • the display device may also include multiple drive substrates 1 , and the drive substrates 1 jointly provide drive signals through splicing.
  • the splicing seams between adjacent drive substrates 1 should be kept as small as possible, and even seamless splicing can be achieved.
  • the shape of the driving substrate 1 is the same as the overall shape of the display device, and usually can be set in a rectangular or square shape.
  • the shape of the driving substrate can be adaptively set to other shapes, which is not limited here.
  • the driving substrate 1 is used to provide driving signals. Normally, the driving substrate 1 can be a circuit board or an array substrate.
  • the circuit board can be a Printed Circuit Board (PCB for short).
  • PCB Printed Circuit Board
  • FPC Flexible Printed Circuit
  • the array substrate can use thin film technology to produce a thin film transistor (TFT) array on the substrate to drive the light-emitting chip.
  • TFT thin film transistor
  • multiple TFT structures can be fabricated on the substrate through deposition, etching, etc., thereby enabling active driving of the light-emitting chip.
  • the light-emitting chip 2 is located on the driving substrate 1 and is electrically connected to the driving substrate 1 .
  • the light-emitting chip 2 is used to emit monochromatic light, and cooperates with the color conversion substrate 3 to achieve full-color display.
  • the light-emitting chip 2 may be a micro-LED chip, and the micro-LED chip may be a Mini LED chip or a Micro LED chip.
  • the size of Mini LED chips and Micro LED chips can both reach micron or sub-millimeter levels, and the size of Mini LED chips is larger than the size of Micro LED chips.
  • Mini LED chips or Micro LED chips can be used as sub-pixels according to the implementation situation.
  • the light-emitting chip 2 uses a Mini LED chip or a Micro LED chip
  • the light-emitting chip 2 and the driving substrate 1 are usually produced separately. If the light-emitting chip 2 uses a Mini LED chip, after the Mini LED chip and the drive substrate 1 are produced, the Mini LED chip and the drive substrate 1 are bonded using die-solid technology. If the light-emitting chip 2 uses a Micro LED chip, after the Micro LED chip and the driving substrate 1 are produced, the Micro LED chip is transferred to the driving substrate 1 through mass transfer technology and bonded to the driving substrate 1.
  • the light-emitting chip 2 may also be other types of light-emitting chips, and the light intensity distribution of the emitted light may be different from that of the LED chip, which is not limited here.
  • the color conversion substrate 3 is arranged opposite to the driving substrate 1 , and the color conversion substrate 3 is located on the light emitting side of the light emitting chip 2 .
  • the size of the color conversion substrate 3 is adapted to the overall size of the display device, and the size of the color conversion substrate 3 is slightly smaller than the size of the display device.
  • the size of the color conversion substrate 3 is equivalent to the size of the driving substrate 1 .
  • the shape of the color conversion substrate 3 is the same as the overall shape of the display device, and usually can be set in a rectangular or square shape.
  • the shape of the driving substrate can be adaptively set to other shapes, which is not limited here.
  • the color conversion substrate 3 includes: a base material 31 , an imprint layer 33 and a color conversion layer 32 . It should be noted that the shapes of the color conversion layer 32 shown in FIG. 2A and FIG. 2B are different.
  • the base material 31 is opposed to the drive substrate 1 .
  • the size of the base material 31 is adapted to the overall size of the display device, and the size of the base material 31 is slightly smaller than the size of the display device.
  • the shape of the base material 31 is the same as the overall shape of the display device. Generally, it can be set in a rectangular or square shape, which is not limited here.
  • the base material 31 has the function of supporting and carrying, and can usually be made of glass or organic materials, which is not limited here.
  • FIG. 3A is a schematic cross-sectional structural diagram of an imprinting layer of a display device according to an embodiment of the present application
  • FIG. 4A is a schematic plan view of the imprinting layer of a display device according to an embodiment of the present application
  • FIG. 3B is a schematic diagram of the imprinting layer of a display device according to an embodiment of the present application.
  • FIG. 4B is a schematic plan view of the imprinting layer of another display device according to an embodiment of the present application.
  • the imprinting layer 33 is located on the side of the base material 31 facing the driving substrate 1.
  • the imprinting layer 33 includes a plurality of accommodation units S that are recessed toward the base material 31 side.
  • FIG. 5a-5b are schematic structural diagrams of the manufacturing process of the imprint layer of a display device according to an embodiment of the present application.
  • a layer of embossing glue 33' can be evenly coated on the surface of the base material 31; then, As shown in FIG. 5 b , the first embossing mold M is used to emboss the embossing rubber 33 ′, thereby embossing the accommodation unit S as shown in FIG. 3A .
  • FIG. 5c is a schematic structural diagram of the manufacturing process of the suppression layer of another display device according to an embodiment of the present application.
  • a layer of embossing glue 33' can be evenly coated on the surface of the base material 31; then, as shown in Figure 5c, the second embossing mold M' is used to emboss the Imprinting is performed on the glue 33', thereby imprinting the accommodation unit S as shown in Figure 3B.
  • the embossing glue can be light-curing glue or heat-curing glue.
  • the embossing glue is cured by ultraviolet light irradiation to form the embossing layer 33;
  • heat-curing glue is used, After the imprinting is completed, the imprinting glue is solidified by heating to form the imprinting layer 33, which is not limited here.
  • FIG. 6 is a schematic plan view of a driving substrate according to an embodiment of the present application.
  • the light-emitting chips 2 on the driving substrate 1 are arranged in an array.
  • the accommodation units S on the imprinting layer 33 are arranged in an array.
  • the light emitting chips of one light-emitting chip 2 A receiving unit S is provided correspondingly on each side.
  • the light-emitting chip 2 is used to emit blue light.
  • the light-emitting chip 2 may be a blue Mini LED chip or a blue Micro LED chip.
  • Figure 7 is a schematic cross-sectional structural diagram of a light-emitting chip according to an embodiment of the present application.
  • the light-emitting chip when it uses a Mini LED chip or a blue Micro LED chip, it may specifically include: n-type doped layer 21, light-emitting layer 22, p-type doped layer 23, insulating layer 24 and electrode 25.
  • the n-type doped layer 21, the light-emitting layer 22 and the p-type doped layer 23 are stacked and grown on a suitable substrate using LED epitaxial technology.
  • the n-type doping layer 21 and the p-type doping layer 23 can be obtained by using GaN material for n-type doping and p-type doping respectively.
  • the light-emitting layer 22 and the p-type doped layer 23 expose part of the n-type doped layer 21 for forming electrodes.
  • an insulating layer 24 is formed on the exposed surfaces of the n-type doped layer 21 and the p-type doped layer 23.
  • the insulating layer 24 is used to protect the non-electrode area from being affected by the external environment and to avoid short circuit between electrodes.
  • the insulating layer 24 can be made of one or more materials selected from SiO 2 , AlN, Al 2 O 3 , and AlON through atomic layer deposition or plasma chemical vapor deposition.
  • the insulating layer 24 includes two through holes that expose part of the n-type doped layer 21 and part of the p-type doped layer 23 respectively; the two electrodes 25 are connected to the exposed n-type doped layer 21 and p-type layer through the two through holes respectively.
  • the electrode connected to the n-type doped layer 21 is an n electrode
  • the electrode connected to the p-type doped layer 23 is a p electrode.
  • the n electrode can be made of Ti/Al/Ni/Au metal
  • the p electrode can be made of Ni/Au metal.
  • the materials may include, but are not limited to, Cr, Ti, Ni, Au, Sn, Sn, Al, Au, Pt and other metals or combinations.
  • the two electrodes of the light-emitting chip 2 are welded to the corresponding pads on the driving substrate 1 to realize the electrical connection between the driving substrate 1 and the light-emitting chip 2 .
  • the embodiment of the present application provides a color conversion layer 32 in part of the accommodation unit S.
  • the color conversion layer 32 is used to emit light of other colors under excitation by the emitted light of the light-emitting chip 2 .
  • the color conversion layer 32 includes: a red conversion layer 32r and a green conversion layer 32g.
  • the red conversion layer 32r emits red light when excited by blue light
  • the green conversion layer 32g emits green light when excited by blue light
  • some light-emitting chips 2 directly emit blue light, thus forming three primary colors of light that form a color image.
  • the color conversion layer 32 can use quantum dot materials.
  • Quantum dot materials have a higher color gamut.
  • the wavelength of light stimulated by the quantum dot material is determined by the composition and particle size of the quantum dots.
  • quantum dots Materials can be selected from zinc sulfide, zinc oxide, gallium nitride, zinc selenide, cadmium sulfide, gallium selenide, cadmium selenide, zinc telluride, cadmium telluride, gallium arsenide, indium phosphide, lead telluride, calcium titanium At least one type of mineral quantum dots is not limited here.
  • the color conversion layer can also use fluorescent materials and other materials with similar functions, which are not limited here.
  • the light-emitting chip 2 mostly uses a Mini LED chip or a Micro LED chip, its luminous intensity satisfies the Lambertian distribution. Therefore, in the embodiment of the present application, the thickness of the color conversion layer 32 at each position is not completely equal, which can adapt to the light-emitting chip. 2. The luminous intensity of the emerging light, thereby avoiding halo problems. Specifically, as shown in FIG.
  • the thickness of the color conversion layer 32 is relatively small at the position where the intensity of the light emitted by the light-emitting chip 2 is high, and at the position where the intensity of the light emitted by the light-emitting chip 2 is low, the color conversion layer 32
  • the thickness of the color conversion layer 32 is relatively large, so that the color conversion layer 32 can have high light conversion efficiency at each position, thereby making the emitted light uniform.
  • the light-emitting chip 2 since the light-emitting chip 2 adopts a Mini LED chip or a Micro LED chip, its luminous intensity satisfies the Lambertian distribution. Therefore, in the embodiment of the present application, as shown in Figure 2A and Figure 2B, the color conversion layer 32 is The thickness at the center is smaller than at the edges.
  • the color conversion layer 32 can be fully excited; and the luminous intensity of the large-angle light emitted by the light-emitting chip 2 is Smaller, corresponding to the thicker edge area in the color conversion layer 32, thus the excitation efficiency of the color conversion layer 32 in the edge area can be further improved, so that the excitation efficiency of the color conversion layer at each position is equal, avoiding the problem of edge location Insufficient conversion causes halo issues.
  • FIG. 8A is a second structural schematic diagram of a display device according to an embodiment of the present application.
  • FIG. 8B is a second structural schematic diagram of another display device according to an embodiment of the present application.
  • the color conversion substrate 3 further includes a scattering layer 34 .
  • the scattering layer 34 is located in the accommodation unit S where the color conversion layer 32 is not provided.
  • the function of the scattering layer 34 is to scatter the blue light emitted from the light-emitting chip, thereby forming the same light emission pattern as the excitation light after passing through the color conversion layer 32 .
  • the scattering layer 34 is usually composed of a transparent matrix and diffusion particles dispersed in the transparent matrix.
  • the diffusion particles can scatter the incident blue light in all directions to form uniform outgoing light.
  • the transparent matrix can be made of PMMA, PC, PS, PP and other materials, and the diffusion particles can be made of particles with scattering effect such as TiO2 , which are not limited here.
  • the red conversion layer 32r, the green conversion layer 32g and the scattering layer 34 are repeatedly arranged in the storage unit S in the set order.
  • the light-emitting chip 2 excites the red conversion layer 32r to emit red light as a red sub-pixel
  • the light-emitting chip 2 excites the green conversion layer 32g to emit green light as a green sub-pixel
  • the light-emitting chip 2 emits blue light as a blue sub-pixel through the scattering layer 34.
  • An adjacent red conversion layer 32r and the corresponding light-emitting chip 2, a green conversion layer 32g and the corresponding light-emitting chip 2, and a scattering layer 34 and the corresponding light-emitting chip 2 form a pixel unit.
  • Full-color display can be achieved by controlling the ratio of different colors of light in each pixel unit.
  • the depth of the embossed accommodation unit S is equal at each position, the shape of the accommodation unit S is generally the same as the shape of the first embossing mold, and the color conversion layer is formed on the accommodation unit In S, the surface in contact with the accommodation unit S generally has the same shape as the accommodation unit S.
  • the accommodating unit S is generally rectangular or square, and is imprinted with a simple pattern, which is beneficial to improving the yield of the formed accommodating unit S.
  • the light intensity distribution satisfies the Lambertian distribution, so the thickness of the color conversion layer 32 at the center is smaller than the thickness of the color conversion layer at the edge.
  • the surface of the accommodation unit S facing the light-emitting chip 2 is rectangular, so that the surface of the color conversion layer 32 in contact with the accommodation unit S, that is, the surface of the color conversion layer 32 away from the light-emitting chip 2 The surface is also rectangular.
  • the thickness of the color conversion layer 32 at the center position smaller than the thickness at the edge position, as shown in FIG. 2A and FIG.
  • the surface of the color conversion layer 32 facing the light-emitting chip 2 can be set in an arc shape.
  • the arc-shaped color conversion layer 32 can wrap the light-emitting chip 2 so that the light-emitting chip 2
  • the large-angle light emitted can also stimulate the color conversion layer 32 to perform color conversion, thereby improving the conversion efficiency of the color conversion layer.
  • the scattering layer 34 is usually set in the same shape as the color conversion layer 32. As shown in FIG. 8A, the surface of the scattering layer 34 on the side facing away from the light-emitting chip 2 is rectangular, and the surface of the scattering layer 34 facing the light-emitting chip 2 is arc-shaped. .
  • the shape of the color conversion layer 32 and the scattering layer 34 can be produced by using an imprinting method.
  • the light-emitting chip 2 adopts a blue Mini LED or a blue Micro LED
  • the color conversion layer 32 and the scattering layer 34 adopt the structure shown in Figure 8A as an example to specifically explain the manufacturing method of the color conversion layer 32 and the scattering layer 34.
  • 9a-9n are schematic structural diagrams of the manufacturing process of the color conversion layer and the scattering layer of a display device according to embodiments of the present application.
  • a layer of imprinting glue 33' is formed on the surface of the base material 31, and the first mold Mr is used to imprint to form a plurality of first accommodation units Sr as shown in Figure 9b.
  • a red conversion material 32r' is formed on the surface of the embossing glue 33', so that the red conversion material 32r' is filled into the first containing unit Sr.
  • the first containing unit Sr is Scrape off excess red conversion material 32r'.
  • the second mold Mg is then used to imprint the embossing glue 33' to form a plurality of second accommodation units Sg as shown in Figure 9f.
  • a green conversion material 32g' is formed on the surface of the embossing glue 33', and the green conversion material 32g' is filled into the second accommodation unit Sg.
  • the second accommodation unit Sg is Scrape off 32g of excess green conversion material.
  • the third mold Mb is then used to imprint the embossing glue 33' to form a plurality of third accommodation units Sb as shown in Figure 9j.
  • a scattering material 34' is formed on the surface of the embossing glue 33', so that the scattering material 34' is filled into the third containing unit Sb.
  • any excess material other than the third containing unit Sb is removed. The scattering material 34' is scraped off.
  • the mold M1 is then used to imprint the red conversion material 32r', the green conversion material 32g' and the scattering material 34' formed in the accommodation unit, thereby forming the color conversion layer 32 and scattering material as shown in Figure 9n.
  • the thickness at the center of the color conversion layer 32 and the scattering layer 34 is smaller than the thickness at the edge.
  • the light intensity distribution of the light-emitting chip 2 may be such that the intensity of small-angle light is smaller and the intensity of large-angle light is larger.
  • Using such a light-emitting chip 2 is beneficial to enhancing the light intensity at the edge of the sub-pixel, so that the emitted light is relatively uniform throughout the entire sub-pixel range. In specific implementation, this can be achieved through optical design of the light-emitting side of the LED chip. For example, coating can be performed on the light-emitting side of the light-emitting chip 2 to function as a lens, thereby changing the light intensity distribution of the light-emitting chip 2 .
  • FIG. 10 is a schematic structural diagram of a receiving unit of a display device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a receiving unit of a display device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a receiving unit of a display device according to an embodiment of the present application.
  • the depth of the accommodation unit S at the center position is greater than the depth of the accommodation unit S at the edge position, so that the color conversion material or scattering material is filled in the accommodation unit S
  • the thickness at the center position can be formed to be greater than the thickness at the edge position, thereby adapting to the light intensity distribution of the above-mentioned light-emitting chip 2 .
  • the surface of the accommodation unit S facing the light-emitting chip 2 can be set in an arc shape; as shown in Figure 11, the surface of the accommodation unit S facing the light-emitting chip 2 can be set in a conical shape; Figure 12 As shown, the surface of the accommodation unit S facing the light-emitting chip 2 may be arranged in a truncated cone shape. In addition, the surface of the accommodation unit S facing the light-emitting chip 2 can also be arranged in a pyramid shape, a pyramid shape, etc., which is not limited here.
  • the color conversion layer 32 or the scattering layer 34 is filled in the corresponding accommodation unit S, so that the color conversion layer 32 or the scattering layer
  • the surface of the layer 34 on the side facing away from the light-emitting chip 2 has the same shape as the corresponding accommodation unit, and the surface of the color conversion layer 32 or the scattering layer 34 facing the light-emitting chip 2 can be flat, and the color conversion layer or the scattering layer 34 faces the light-emitting chip.
  • the surface on one side of the chip 2 is flush with the surface of the imprinting layer 33 on the side facing the light-emitting chip 2 except for the accommodation unit S.
  • an imprinting method similar to that shown in Figures 9a-9l can be used to form the accommodation units S, the color conversion layer 32, and the scattering layer 34 in different shapes.
  • the difference from the above method is that each time the color conversion material and the scattering material are filled, the area outside the accommodation unit only needs to be scraped off to keep the surface of the color conversion layer and the scattering layer flat.
  • the next step is to emboss a small color conversion layer and a scattering layer.
  • FIG. 13 is a third structural schematic diagram of a display device according to an embodiment of the present application.
  • the color conversion substrate 3 further includes: a filter layer 4 .
  • the filter layer 4 is located between the base material 31 and the imprinting layer 33; the filter layer 4 includes a plurality of openings for exposing the accommodation unit S that is not provided with the color conversion layer 32; the filter layer 4 is used to filter blue light and transmit red light light and green light.
  • the filter layer 4 is formed on the surface of the base material 31 before the imprint layer 33 is formed. It is worth noting that the filter layer 4 is only formed at a position corresponding to the accommodation unit S where the color conversion layer 32 is provided. , the opening of the filter layer 4 of the accommodation unit S where the scattering layer 34 is provided is exposed.
  • the filter layer 4 can filter blue light and transmit red light and green light, so that the red light or green light stimulated and emitted by the color conversion layer 32 can be emitted, while the blue light that has not been completely converted is filtered to avoid optical crosstalk. .
  • the above-mentioned filter layer 4 may use a Bragg reflective layer, a Fabry-Perot resonant cavity or a chemical film.
  • FIG. 14 is a schematic structural diagram of a Bragg reflection layer according to an embodiment of the present application
  • FIG. 15 is a schematic structural diagram of a resonant cavity according to an embodiment of the present application.
  • the Bragg reflective layer when the filter layer adopts a Bragg reflective layer, the Bragg reflective layer includes first dielectric layers 41 and second dielectric layers 42 that are alternately stacked, wherein the first dielectric layer 41 and the second dielectric layer 42 are The thickness and refractive index satisfy the conditions for reflecting blue light and transmitting red and green light.
  • the Bragg reflective layer utilizes the principle of thin film interference. Usually, two materials of high refractive index and low refractive index are alternately distributed. The optical thickness of each dielectric layer is ⁇ /4. By repeatedly setting multiple groups of dielectric layers, the desired setting can be achieved. Reflectivity higher than 95% at a given wavelength.
  • the filter layer 4 uses a Bragg reflective layer to reflect the unconverted blue light and further stimulate the color conversion layer 32 to perform color conversion, thereby improving the light extraction efficiency.
  • the resonant cavity when the filter layer adopts a resonant cavity, the resonant cavity includes two dielectric layers 43 arranged oppositely.
  • the spacing between the two dielectric layers 43 and the refractive index of the medium between the two dielectric layers 43 satisfy Conditions for filtering blue light and transmitting red and green light.
  • the Fabry-Perot resonant cavity uses light to continuously reflect and oscillate between two dielectric layers, so that light with wavelengths that meet frequency selection conditions can overflow. Therefore, by setting the spacing between the two dielectric layers 43 and the refractive index of the medium between the two dielectric layers 43, frequency selection of light with a set wavelength can be achieved.
  • the filter layer 4 can also use a chemical film.
  • the chemical film can absorb blue light and transmit red light and green light, thereby filtering blue light.
  • the filter layer 4 can use yellow dye, etc., which is not limited here.
  • the display device further includes: an isolation layer 5 .
  • the isolation layer 5 is located between the driving substrate 1 and the imprinting layer 33.
  • the thickness of the isolation layer 5 is greater than the height of the light-emitting chip 2, so that the color conversion substrate 3 and the driving substrate 1 are spaced apart. a certain distance.
  • the isolation layer 5 includes a plurality of openings for exposing the light-emitting chip 2; the isolation layer 5 has a grid-like structure in the orthographic projection of the driving substrate 1; the isolation layer 5 is used to block the emitted light of the light-emitting chip 2, so that the light-emitting chip 2 The emitted light will not be incident into the adjacent color conversion layer to avoid optical crosstalk.
  • the display device includes: a driving substrate, a light-emitting chip located on the driving substrate, and a color conversion substrate disposed opposite to the driving substrate;
  • the color conversion substrate includes: a base material and an imprint layer;
  • the imprint layer includes a plurality of A holding unit that is recessed toward the base material side;
  • a light-emitting chip is provided with a holding unit corresponding to the light-emitting side;
  • a color conversion layer is located in part of the holding unit; the color conversion layer is used to emit other colors under the excitation of the emitted light of the light-emitting chip Light;
  • the thickness of the color conversion layer at each position is not exactly equal, so that it can adapt to the luminous intensity of the light emitted by the light-emitting chip, thereby avoiding halo problems.
  • the thickness of the color conversion layer is relatively small at locations where the intensity of the light emitted by the light-emitting chip is high, and the thickness of the color conversion layer is relatively large at locations where the intensity of the light emitted by the light-emitting chip is low. This allows the color conversion layer to be Each position has high light conversion efficiency, making the emitted light uniform.
  • the color conversion substrate further includes: a scattering layer.
  • the scattering layer is located in the accommodation unit where the color conversion layer is not provided.
  • the function of the scattering layer is to scatter the light emitted from the light-emitting chip, thereby forming the same light emission pattern as the excitation light after passing through the color conversion layer.
  • the light-emitting chip uses a blue Mini LED chip or a blue Micro LED chip
  • the color conversion layer includes: a red conversion layer and a green conversion layer.
  • the red conversion layer emits red light when excited by blue light
  • the green conversion layer emits green light when excited by blue light
  • some light-emitting chips directly emit blue light, thus forming the three primary colors of light that form color images.
  • the depth of the embossed holding unit is equal at each position, the color conversion layer is formed in the holding unit, and the surface in contact with the holding unit generally has the same shape as the holding unit.
  • the accommodating unit is generally rectangular or square, and is embossed with simple graphics, which is beneficial to improving the yield of the formed accommodating unit.
  • the light intensity distribution satisfies the Lambertian distribution, so the thickness of the color conversion layer at the center is smaller than the thickness of the color conversion layer at the edge.
  • the surface of the side of the accommodation unit facing the light-emitting chip is rectangular, so that the surface of the color conversion layer in contact with the accommodation unit, that is, the surface of the color conversion layer away from the light-emitting chip is also rectangular.
  • the surface of the color conversion layer facing the light-emitting chip is set in an arc shape.
  • the arc-shaped color conversion layer can wrap the light-emitting chip, so that the large-angle light emitted from the light-emitting chip can also stimulate the color conversion layer to perform color conversion, thereby improving the conversion efficiency of the color conversion layer.
  • the scattering layer is usually arranged in the same shape as the color conversion layer.
  • the surface of the scattering layer on the side facing away from the light-emitting chip is rectangular, and the surface of the scattering layer facing the light-emitting chip is arc-shaped.
  • the light intensity distribution of the light-emitting chip may be such that the intensity of small-angle light is smaller and the intensity of large-angle light is larger.
  • the use of such a light-emitting chip is beneficial to enhancing the light intensity at the edge of the sub-pixel, so that the emitted light is relatively uniform throughout the entire sub-pixel range.
  • the depth of the accommodating unit formed by imprinting at the central position is greater than the depth of the accommodating unit at the edge position, thereby forming a receiving cavity that can accommodate the light-emitting chip.
  • the color conversion layer or the scattering layer is filled in the corresponding accommodation unit, so that the surface of the color conversion layer or the scattering layer facing away from the light-emitting chip has the same shape as the corresponding accommodation unit, and the color conversion layer or the scattering layer faces the side of the light-emitting chip.
  • the surface may be a plane, and the surface of the color conversion layer or the scattering layer facing the light-emitting chip is flush with the surface of the imprinting layer facing the light-emitting chip at other locations except the accommodation unit.
  • the surface of the accommodation unit facing the light-emitting chip is arc-shaped, conical, pyramid-shaped, truncated cone-shaped or prism-shaped.
  • the color conversion substrate further includes: a filter layer.
  • the filter layer is located between the base material and the imprinting layer; the filter layer includes a plurality of openings for exposing the accommodation unit without a color conversion layer; the filter layer is used to filter blue light and transmit red light and green light.
  • the red light or green light stimulated emission from the color conversion layer can be emitted without being completely The fully converted blue light is filtered to avoid optical crosstalk.
  • the filter layer may use a Bragg reflective layer, a Fabry-Perot resonant cavity or a chemical film.
  • the display device further includes: an isolation layer.
  • the isolation layer is located between the driving substrate and the imprinting layer, and the thickness of the isolation layer is greater than the height of the light-emitting chip, so that the color conversion substrate and the driving substrate are separated by a certain distance.
  • the isolation layer includes a plurality of openings for exposing the light-emitting chip; the orthogonal projection of the isolation layer on the drive substrate is a grid-like structure; the isolation layer is used to block the emitted light of the light-emitting chip so that the emitted light of the light-emitting chip will not be incident on adjacent color conversion layers to avoid optical crosstalk.
  • the depth of the embossed accommodation unit S at the central position is greater than the depth of the accommodation unit at the edge position, thereby forming an accommodation cavity that can accommodate the light-emitting chip.
  • the shape of the accommodation unit S is generally the same as that of the second imprinting mold, and the color conversion layer is formed in the accommodation unit S, and the surface in contact with the accommodation unit S generally has the same shape as the accommodation unit S.
  • the depth of the middle position of the accommodation unit S is greater than the depth of the edge position, which is more consistent with the light emission pattern of the LED chip.
  • the surface of the side of the accommodation unit S facing the light-emitting chip 2 is arc-shaped, so that the surface of the color conversion layer 32 in contact with the accommodation unit S, that is, the color conversion layer 32
  • the surface on the side away from the light-emitting chip 2 is also arc-shaped.
  • the arc-shaped surface can satisfy the cosine equation to be more suitable for the Lambertian distribution of the light emitted from the LED chip.
  • the surface of the color conversion layer 32 facing the light-emitting chip 2 can also be set in an arc shape.
  • the arc-shaped color conversion layer 32 can wrap the light-emitting chip 2 so that the large-angle light emitted from the light-emitting chip 2 can also stimulate the color conversion layer 32 to perform color conversion, thereby improving the conversion efficiency of the color conversion layer.
  • the scattering layer 34 is usually arranged in the same shape as the color conversion layer 32. As shown in FIG. 8B, the surface of the scattering layer 34 facing the light-emitting chip 2 and the surface of the scattering layer 34 facing away from the light-emitting chip 2 are both arc-shaped.
  • the thickness of the color conversion layer 32 can be appropriately increased. Since the color conversion layer 32 is set in an arc shape, it can wrap the light-emitting chip, so that the blue light emitted by the light-emitting chip can be completely converted by the color conversion layer 32. This avoids crosstalk to adjacent locations and eliminates the need for additional filter structures.
  • an imprinting method can also be used to produce the shapes of the color conversion layer 32 and the scattering layer 34 shown in FIG. 8B .
  • 16a-16n are schematic structural diagrams of the manufacturing process of the color conversion layer and the scattering layer of another display device according to an embodiment of the present application.
  • a layer of embossing glue 33' is formed on the surface of the base material 31, and a fourth mold Mr' is used for embossing to form a plurality of first accommodation units Sr as shown in Fig. 16b.
  • a red conversion material 32r' is formed on the surface of the embossing glue 33', so that the red conversion material 32r' is filled into the fourth containing unit Sr'.
  • the fourth containing unit is Excess red conversion material 32r' other than Sr' is scraped off.
  • the fifth mold Mg' is then used to imprint the embossing glue 33' to form a plurality of fifth accommodation units Sg' as shown in Figure 16f.
  • a green conversion material 32g' is formed on the surface of the embossing glue 33', so that the green conversion material 32g' is filled into the fifth accommodation unit Sg'.
  • the fifth accommodation unit is 32g' of excess green conversion material other than Sg' is scraped off.
  • the sixth mold Mb' is then used to imprint the embossing glue 33' to form a plurality of sixth accommodation units Sb' as shown in Figure 16j.
  • a scattering material 34' is formed on the surface of the embossing glue 33', so that the scattering material 34' is filled into the sixth containing unit Sb'.
  • the sixth containing unit Sb' is Excess scattering material 34' is scraped off.
  • the mold M1 is then used to imprint the red conversion material 32r', the green conversion material 32g' and the scattering material 34' formed in the accommodation unit, thereby forming the color conversion layer 32 and scattering material as shown in Figure 16n.
  • the shape of layer 34 is smaller than the curvature of the arc surface on the side away from the imprint layer 33. This can make the center positions of the color conversion layer 32 and the scattering layer 34 The thickness is smaller than the thickness at the edge.
  • FIG. 17 is a partially enlarged schematic diagram of a color conversion layer of another display device according to an embodiment of the present application.
  • a plurality of microstructures h are distributed in the color conversion layer 32 .
  • the refractive index of quantum dot materials is significantly different from that of air and substrate materials, the light generated by the light-emitting chip is prone to total reflection at the interface between high-refractive-index materials and low-refractive-index materials, limiting the light extraction efficiency of the display device.
  • multiple microstructures h are distributed in the color conversion layer 32. After the light emitted from the light-emitting chip 2 is incident on the microstructures h, the propagation direction changes randomly, thereby reducing the total reflection effect.
  • distributing the microstructure h in the color conversion layer 32 is equivalent to reducing the refractive index of the color conversion layer 32, thereby reducing the refractive index difference between the color conversion layer 32 and adjacent film layers, reducing total reflection, and improving Light exit efficiency.
  • the microstructures h in the color conversion layer 32 may be uniformly or randomly arranged, and the size of the microstructures h ranges from the nanoscale to the micron scale.
  • the above-mentioned microstructure h can also be produced by imprinting. Specifically, a mold with a protruding structure can be used to imprint the color conversion layer 32 to form a microstructure with the same shape as the mold.
  • the microstructure h can adopt a through hole, a blind hole or a hollow structure. When a hollow structure is used, it needs to be formed by injecting air into the color conversion layer, which is not limited here.
  • the color conversion substrate 3 and the driving substrate 1 of the display device are separated by a certain distance, which will cause crosstalk between sub-pixels, resulting in a decrease in contrast and color rendering capabilities.
  • the current method is to set up a light-shielding barrier d between the two substrates, which increases the process steps. Due to the light absorption effect of the light-shielding barrier d, the light incident on the light-shielding barrier d is lost and cannot be turned into a forward direction. light output.
  • FIG. 18 is a third schematic structural diagram of another display device according to an embodiment of the present application.
  • the color conversion substrate 3 further includes: a filter layer 4 .
  • the filter layer 4 is located between the accommodation unit S and the color conversion layer 32; the filter layer 4 is used to filter blue light and transmit red light and green light.
  • the color conversion layer 32 has an arc-shaped structure.
  • the filter layer 4 is first formed on the surface of the accommodation unit S. It is worth noting that the filter layer 4 It is formed only in the accommodation unit S where the color conversion layer 32 is provided. As shown in FIG. 18 , the filter layer 4 is not formed in the accommodation unit S where the scattering layer 34 is provided.
  • the filter layer 4 can filter blue light and transmit red light and green light, so that the red light or green light stimulated and emitted by the color conversion layer 32 can be emitted, while the blue light that has not been completely converted is filtered to avoid optical crosstalk. .
  • the blue light emitted from the light-emitting chip 2 cannot be incident into the adjacent accommodation unit S due to the presence of the filter layer 4, thereby avoiding light crosstalk.
  • the color conversion substrate 3 and the driving substrate 1 can be completely adhered to each other without the need to separate them by a certain distance, thus reducing the overall thickness of the display device, thereby reducing the overall thickness of the display device. It is beneficial to realize the light and thin design of the display device.
  • the above-mentioned filter layer 4 can also use a Bragg reflection layer (as shown in Figure 14), a Fabry-Perot resonant cavity (as shown in Figure 15) or a chemical film.
  • FIG. 19 is a fourth structural schematic diagram of another display device according to an embodiment of the present application.
  • the display device further includes: a reflective layer 5 .
  • the reflective layer 5 is located on the side of the driving substrate 1 close to the light-emitting chip 2 .
  • the reflective layer 5 includes a plurality of openings for exposing the light-emitting chip 2 . Due to the provision of the filter layer 4, the imprinting layer 3 of the color conversion substrate in the embodiment of the present application can directly contact the reflective layer 5 to reduce the thickness of the display device.
  • the reflective layer 5 can be made of a metal reflective layer, or can be made by coating a substrate with a reflective material, which is not limited here.
  • the display device includes: a driving substrate, a light-emitting chip located on the driving substrate, and a color conversion substrate disposed opposite to the driving substrate;
  • the color conversion substrate includes: a base material and an imprint layer;
  • the imprint layer includes a plurality of A holding unit that is recessed toward the base material side;
  • a light-emitting chip is provided with a holding unit corresponding to the light-emitting side;
  • a color conversion layer is located in part of the holding unit; the color conversion layer is used to emit other colors under the excitation of the emitted light of the light-emitting chip Light;
  • the thickness of the color conversion layer at the center is smaller than the thickness of the color conversion layer at the edges.
  • the color conversion layer can be fully excited; while the luminous intensity of the large-angle light emitted by the light-emitting chip is small, corresponding to In the edge area with a larger thickness in the color conversion layer, the excitation efficiency of the color conversion layer in the edge area can be further improved, so that the excitation efficiency of the color conversion layer is equal at each position, avoiding halo caused by insufficient edge position conversion. question.
  • the color conversion substrate further includes: a scattering layer.
  • the scattering layer is located in the accommodation unit where the color conversion layer is not provided.
  • the function of the scattering layer is to scatter the light emitted from the light-emitting chip, thereby forming the same light emission pattern as the excitation light after passing through the color conversion layer.
  • the light-emitting chip uses a blue Mini LED chip or a blue Micro LED chip
  • the color conversion layer includes: a red conversion layer and a green conversion layer.
  • the red conversion layer emits red light when excited by blue light
  • the green conversion layer emits green light when excited by blue light
  • some light-emitting chips directly emit blue light, thus forming the three primary colors of light that form color images.
  • the depth of the embossed accommodation unit at the central position is greater than the depth of the accommodation unit at the edge position, thereby forming an accommodation cavity that can accommodate the light-emitting chip.
  • the color conversion layer is formed in the accommodation unit, and a surface in contact with the accommodation unit generally has the same shape as the accommodation unit.
  • the depth of the middle position of the accommodating unit is greater than that of the edge position, which is more in line with the light emission pattern of the LED chip.
  • the surface of the side of the accommodation unit facing the light-emitting chip is arc-shaped, so that the surface of the color conversion layer in contact with the accommodation unit, that is, the surface of the color conversion layer away from the light-emitting chip is also arc-shaped.
  • This arc-shaped surface can satisfy the cosine equation and is more suitable for the Lambertian distribution of the light emitted from the LED chip.
  • the arc-shaped color conversion layer can wrap the light-emitting chip, so that the large-angle light emitted from the light-emitting chip can also stimulate the color conversion layer to perform color conversion, thereby improving the conversion efficiency of the color conversion layer.
  • the thickness of the color conversion layer can be appropriately increased. Since the color conversion layer is set in an arc shape, it can wrap the light-emitting chip so that the blue light emitted by the light-emitting chip can be completely converted by the color conversion layer, thereby avoiding crosstalk. to the adjacent position, and no additional filter structure is required.
  • the scattering layer is generally configured to have the same shape as the color conversion layer, and the surface of the scattering layer facing the light-emitting chip and the surface of the scattering layer facing away from the light-emitting chip are both arc-shaped.
  • multiple microstructures are distributed in the color conversion layer, and the emitted light from the light-emitting chip is incident on the microstructures. After the structure, the propagation direction changes randomly, thereby reducing the total reflection effect.
  • distributing microstructures in the color conversion layer is equivalent to reducing the refractive index of the color conversion layer, thereby reducing the refractive index difference between the color conversion layer and adjacent film layers, reducing total reflection, and improving light exit efficiency.
  • the microstructure adopts through hole, blind hole or hollow structure.
  • the color conversion substrate further includes: a filter layer.
  • the filter layer is located between the accommodation unit and the color conversion layer; the filter layer is used to filter blue light and transmit red light and green light, so that the red light or green light stimulated by the color conversion layer can be emitted without being emitted.
  • the fully converted blue light is filtered to avoid optical crosstalk.
  • the blue light emitted from the light-emitting chip cannot be incident into adjacent accommodation units due to the presence of the filter layer, thereby avoiding light crosstalk.
  • the color conversion substrate and the driving substrate can be completely bonded, without the need to separate them by a certain distance, thereby reducing the overall thickness of the display device, which is conducive to the realization of the display device Thin and lightweight design.
  • the filter layer after the filter layer is disposed in the color conversion substrate, there are no excessive restrictions on the thickness of the color conversion layer.
  • the thickness of the color conversion layer can be appropriately reduced because the unconverted blue light can be filtered.
  • Optical layer filtering eliminates the problem of optical crosstalk.
  • the filter layer may use a Bragg reflective layer or a Fabry-Perot resonant cavity.
  • the display device further includes: a reflective layer.
  • the reflective layer is located on a side of the driving substrate close to the light-emitting chip, and the reflective layer includes a plurality of openings for exposing the light-emitting chip. Due to the arrangement of the filter layer, the imprinting layer of the color conversion substrate can be in direct contact with the reflective layer to reduce the thickness of the display device. There is an overlapping area between the orthographic projection of the accommodating unit of the imprinting layer on the drive substrate and the orthographic projection of the reflective layer on the drive substrate, whereby the light emitted or reflected towards the drive substrate side is reflected by the reflective layer towards the light emitting side of the display device. Thereby improving the utilization efficiency of light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

本申请公开了一种显示装置,包括:驱动基板,位于驱动基板上的发光芯片,与驱动基板相对设置的色彩转换基板;色彩转换基板包括:基材和压印层;压印层包括多个向基材一侧凹陷的容纳单元;一个发光芯片的出光侧对应设置一个容纳单元;色彩转换层,位于部分容纳单元内。色彩转换层在各位置的厚度不完全相等,这样可以适应于发光芯片出射光的发光强度,从而避免产生光晕问题。在发光芯片出射光的强度较大的位置,色彩转换层的厚度相对较小,而在发光芯片出射光的强度较小的位置,色彩转换层的厚度较大,由此可以使色彩转换层在各位置均具有较高的光转换效率,从而使得出射光线均匀。

Description

一种显示装置
相关申请的交叉引用
本申请要求在2022年05月09日提交、申请号为202221176254.5;在2022年05月09日提交、申请号为202221104053.4的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种显示装置。
背景技术
发光二极管(Light Emitting Diode,简称LED)因其亮度高、响应快、高稳定性等特点被认为是未来显示技术的理想形式。为了达到像素级显示,可以将LED芯片微缩化,采用Mini LED(Mini Light Emitting Diode,简称Mini LED)或Micro LED(Micro Light Emitting Diode,简称Micro LED)作为发光器件。
目前Micro LED显示装置实现全彩化的方式是蓝光Micro LED激发色彩转换层,这种方式可以规避三色转移良率低问题以及红绿蓝三色效率不一致的问题。目前色彩转换层的制备方式主要是光刻或喷墨打印,这两种方式制备的量色彩转换单元都为平面,而Micro LED的发光强度分布并不均匀,由于光强分布不均匀导致部分色彩转换层转换不充分造成光晕问题。
发明内容
根据本申请实施例的一种显示装置,包括:驱动基板,用于提供驱动信号;发光芯片,位于驱动基板上,与驱动基板电连接;色彩转换基板,与驱动基板相对设置;色彩转换基板包括:基材,与驱动基板相对设置;压印层,位于基材面向驱动基板的一侧;压印层包括多个向基材一侧凹陷的容纳单元;一个发光芯片的出光侧对应设置一个容纳单元;色彩转换层,位于部分容纳单元内;色彩转换层用于在发光芯片的出射光的激发下出射其它颜色的光;色彩转换层在各位置的厚度不完全相等。
附图说明
图1A为相关技术中一种显示装置的结构示意图;
图1B为相关技术中另一种显示装置的结构示意图;
图2A为根据本申请实施例的一种显示装置的结构示意图之一;
图2B为根据本申请实施例的另一种显示装置的结构示意图之一;
图3A为根据本申请实施例的一种显示装置的压印层的截面结构示意图;
图3B为根据本申请实施例的另一种显示装置的压印层的截面结构示意图;
图4A为根据本申请实施例的一种显示装置的压印层的平面结构示意图;
图4B为根据本申请实施例的另一种显示装置的压印层的平面结构示意图;
图5a-5b为根据本申请实施例的一种显示装置的压印层的制作过程中的结构示意图;
图5c为根据本申请实施例的另一种显示装置的压印层的制作过程中的结构示意图;
图6为根据本申请实施例的驱动基板的平面结构示意图;
图7为根据本申请实施例的发光芯片的截面结构示意图;
图8A为根据本申请实施例的一种显示装置的结构示意图之二;
图8B为根据本申请实施例的另一种显示装置的结构示意图之二;
图9a-9n为根据本申请实施例的一种显示装置的色彩转换层和散射层的制作过程中的结构示意图;
图10为根据本申请实施例的一种显示装置的容纳单元的结构示意图之一;
图11为根据本申请实施例的一种显示装置的容纳单元的结构示意图之二;
图12为根据本申请实施例的一种显示装置的容纳单元的结构示意图之三;
图13为根据本申请实施例的一种显示装置的结构示意图之三;
图14为根据本申请实施例的布拉格反射层的结构示意图;
图15为根据本申请实施例的谐振腔的结构示意图;
图16a-16n为根据本申请实施例的另一种显示装置的色彩转换层和散射层的制作过程中的结构示意图;
图17为根据本申请实施例的另一种显示装置的色彩转换层的局部放大示意图;
图18为根据本申请实施例的另一种显示装置的结构示意图之三;
图19为根据本申请实施例的另一种显示装置的结构示意图之四。
其中,1-驱动基板,2-发光芯片,3-色彩转换基板,4-滤光层,5-隔离层,21-n型掺杂层、22-发光层、23-p型掺杂层、24-绝缘层,25-电极,31-基材,32-色彩转换层,32r-红色转换层,32g-绿色转换层,33-压印层,34-散射层,32r’-红色转换材料,32g’-绿色转换材料,33’-压印胶,34’-散射材料,41-第一介质层,42-第二介质层,43-介质层,M-压印模具,Mr-第一模具,Mg-第二模具,Mb-第三模具,Mr’-第四模具,Mg’-第五模具,Mb’-第六模具,M1-模具,S-容纳单元,Sr-第一容纳单元,Sg-第二容纳单元,Sb-第三容纳单元,Sr’-第四容纳单元,Sg’-第五容纳单元,Sb’-第六容纳单元,h-微结构,d-遮光性挡墙。
具体实施方式
为使本申请的上述目的、特征和优点能够更为明显易懂,下面将结合附图和实施例对本申请做进一步说明。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本申请更全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。本申请中所描述的表达位置与方向的词,均是以附图为例进行的说明,但根据需要也可以做出改变,所做改变均包含在本申请保护范围内。本申请的附图仅用于示意相对位置关系不代表真实比例。
发光二极管(Light Emitting Diode,简称LED)显示技术是指以发光二极管作为显示器件的显示技术。为了达到像素级显示,可以将LED芯片微缩化,采用Mini LED(Mini Light Emitting Diode,简称Mini LED)或Micro LED(Micro Light Emitting Diode,简称Micro LED)作为发光器件。其中,Mini LED的尺寸大于Micro LED,通常情况下,Mini LED的尺寸小于500μm,Micro LED的尺寸小于100μm。在具体实施时,可以根据像素分辨率需求,采用相应尺寸的发光芯片,在此不做限定。
由于Micro LED继承了传统发光二极管的高效率、高亮度、高可靠度及反应时间快等 特点,并且具有自发光无需背光源的特性,更具节能、机构简易、体积小、薄型等优势,采用Micro LED直显技术得到大力发展。因此,Micro LED未来在公共显示、TV、车载,商显、手机等方面有广阔的应用前景,是未来重要显示技术。
Micro LED显示装置的全彩显示方案中可以通过色彩转换法、三基色法、光学棱镜合成法以及通过控制发光芯片结构和尺寸发射不同波长光等方法实现。其中,利用色彩转换材料进行色彩转换被认为是最具潜力的方法之一。
利用色彩转换材料进行色彩转换的方式可以规避三色转移良率低问题以及红绿蓝三色效率不一致的问题。目前色彩转换层的制备方式主要是光刻或喷墨打印,这两种方式制备的量色彩转换单元都为平面,从LED发光特性分析,由于LED发光的光强分布为朗伯分布,光强分布不均匀导致部分色彩转换层转换不充分造成光晕问题。
图1A为相关技术中一种显示装置的结构示意图。图1B为相关技术中另一种显示装置的结构示意图。
如图1A-图1B所示,显示装置包括驱动基板1、发光芯片2和色彩转换基板3。其中,色彩转换基板包括基材31和位于基材表面的色彩转换层32。图1B中,在色彩转换基板3与驱动基板1之间设置了遮光性挡墙d,以降低在色彩转换基板3与驱动基板1之间隔开一定的距离造成的子像素之间的串扰,可提高显示装置的对比度、显色能力。
由图1A-图1B可以看出色彩转换层32通常设置为平面,各位置的厚度均匀相等。然而发光芯片采用LED芯片时,LED芯片为朗伯体光源,其各位置的发光强度与光线出射角度相关,该出射角度为光线出射方向与法线的夹角。出射角度为0度时发光强度最大,而随着出射角度的增大发光强度减小。由于色彩转换层32为平面,发光芯片2的出射的小角度光线由于发光强度较大,可以充分激发色彩转换层32;而发光芯片2出射的大角度光线则无法充分激发色彩转换层32,导致色彩转换层32在中心位置和边缘位置的激发效率不同,由于边缘位置转换不充分造成光晕问题。
有鉴于此,根据本申请实施例的一种显示装置,可以改善由于色彩转换层转换不充分而造成的光晕问题。
图2A为根据本申请实施例的一种显示装置的结构示意图之一。图2B为根据本申请实施例的另一种显示装置的结构示意图之一。需要说明的是,图2A示出的一种显示装置的结构与图1A对应,图2A示出的另一种显示装置的结构与图1B对应。
如图2A-图2B所示,本申请实施例的显示装置包括:驱动基板1、发光芯片2和色彩转换基板3。
驱动基板1位于显示装置的底部,通常情况下其尺寸与显示装置的整体尺寸相适应,驱动基板1的尺寸略小于显示装置的尺寸。
在一些实施例中,显示装置也可以包括多个驱动基板1,驱动基板1之间通过拼接方式共同提供驱动信号。为了避免驱动基板1拼接带来的光学问题,相邻驱动基板1之间的拼缝尽量做到较小,甚至实现无缝拼接。
驱动基板1的形状与显示装置的整体形状相同,通常情况下,可以设置为矩形或方形。当显示装置为异形显示装置时,驱动基板的形状可以适应性设置为其它形状,在此不做限定。
驱动基板1用于提供驱动信号。通常情况下,驱动基板1可以采用电路板或阵列基板。
电路板可以为印刷电路板(Printed Circuit Board,简称PCB),当应用于柔性显示时, 可以采用柔性电路板(Flexible Printed Circuit,简称FPC),在此不做限定。
阵列基板可以采用薄膜工艺在基板上制作薄膜晶体管(Thin Film Transistor,简称TFT)阵列,用于驱动发光芯片。在具体实施时,可以通过沉积和刻蚀等方式在基材上制作多个TFT结构,由此可以实现对发光芯片的有源驱动。
发光芯片2位于驱动基板1上,且与驱动基板1电连接。在本申请实施例中,发光芯片2用于出射单色光,再配合色彩转换基板3来实现全彩显示。
在一些实施例中,发光芯片2可以采用微型发光二极管芯片,微型发光二极管芯片可以为Mini LED芯片或Micro LED芯片。其中,Mini LED芯片和Micro LED芯片的尺寸均可以达到微米或次毫米量级,Mini LED芯片的尺寸大于Micro LED芯片的尺寸。在应用于不同的应用场景,对像素级别的要求不同时,可以根据实现情况采用Mini LED芯片或Micro LED芯片作为子像素。
发光芯片2采用Mini LED芯片或Micro LED芯片时,发光芯片2和驱动基板1通常单独制作。如果发光芯片2采用Mini LED芯片,则在制作好Mini LED芯片和驱动基板1之后,采用固晶技术将Mini LED芯片与驱动基板1进行键合。如果发光芯片2采用Micro LED芯片,则在制作好Micro LED芯片和驱动基板1之后,再通过巨量转移技术将Micro LED芯片转移至驱动基板1之上,与驱动基板1进行键合。
在一些实施例中,发光芯片2还可以采用其它类型的发光芯片,其出射光的光强分布可能与LED芯片不同,在此不做限定。
色彩转换基板3与驱动基板1相对设置,且色彩转换基板3位于发光芯片2的出光侧。
色彩转换基板3的尺寸与显示装置的整体尺寸相适应,色彩转换基板3的尺寸略小于显示装置的尺寸。色彩转换基板3的尺寸与驱动基板1的尺寸相当。
色彩转换基板3的形状与显示装置的整体形状相同,通常情况下,可以设置为矩形或方形。当显示装置为异形显示装置时,驱动基板的形状可以适应性设置为其它形状,在此不做限定。
如图2A-图2B所示,色彩转换基板3包括:基材31、压印层33和色彩转换层32。需要说明的是,图2A和图2B示出的色彩转换层32的形状不同。
基材31与驱动基板1相对设置。基材31尺寸与显示装置的整体尺寸相适应,基材31的尺寸略小于显示装置的尺寸。
基材31的形状与显示装置的整体形状相同,通常情况下,可以设置为矩形或方形,在此不做限定。
基材31具有支撑和承载的作用,通常情况下可以采用玻璃或有机材料进行制作,在此不做限定。
图3A为根据本申请实施例的一种显示装置的压印层的截面结构示意图,图4A为根据本申请实施例的一种显示装置的压印层的平面结构示意图;图3B为根据本申请实施例的另一种显示装置的压印层的截面结构示意图,图4B为根据本申请实施例的另一种显示装置的压印层的平面结构示意图。
如图3A、图3B、图4A和图4B所示,压印层33位于基材31面向驱动基板1的一侧,压印层33包括多个向基材31一侧凹陷的容纳单元S。
图5a-5b为根据本申请实施例的一种显示装置的压印层的制作过程中的结构示意图。在具体实施时,如图5a所示,可以在基材31的表面上均匀地涂布一层压印胶33’;然后, 如图5b所示,通过第一压印模具M在压印胶33’上进行压印,从而压印出如图3A所示的容纳单元S。
图5c为根据本申请实施例的另一种显示装置的压抑层的制作过程中的结构示意图。在具体实施时,如图5a所示,可以在基材31的表面上均匀地涂布一层压印胶33’;然后,如图5c所示,通过第二压印模具M’在压印胶33’上进行压印,从而压印出如图3B所示的容纳单元S。
其中,压印胶可以采用光固化胶或者热固化胶,当采用光固化胶时,压印完成后通过紫外光照射对压印胶进行固化,形成压印层33;当采用热固化胶时,压印完成后采用加热的方式对压印胶进行固化,形成压印层33,在此不做限定。
图6为根据本申请实施例的驱动基板的平面结构示意图。
如图4A、图4B和图6所示,驱动基板1上的各发光芯片2呈阵列排布,相应地,压印层33上的各容纳单元S呈阵列排布,一个发光芯片2的出光侧对应设置一个容纳单元S,将驱动基板1和色彩转换基板3相对设置之后,可以得到如图2A和图2B所示的结构。
在本申请实施例中,发光芯片2用于出射蓝色光。在一些实施例中,发光芯片2可以采用蓝光Mini LED芯片或蓝光Micro LED芯片。
图7为根据本申请实施例的发光芯片的截面结构示意图。
如图7所示,当发光芯片采用Mini LED芯片或蓝光Micro LED芯片时,具体可以包括:n型掺杂层21、发光层22、p型掺杂层23、绝缘层24和电极25。
n型掺杂层21、发光层22和p型掺杂层23叠层设置,利用LED外延技术在合适的衬底上生长。其中,n型掺杂层21和p型掺杂层23可以采用GaN材料分别进行n型掺杂和p型掺杂得到。
发光层22和p型掺杂层23暴露出部分n型掺杂层21,用于形成电极。在形成电极之前在暴露出的n型掺杂层21和p型掺杂层23的表面形成一层绝缘层24。绝缘层24用于保护非电极区域被外界环境影响以及避免电极之间发生短路。绝缘层24可以采用SiO2、AlN、Al2O3、AlON中的一种或多种材料,通过原子层沉积或者等离子体化学气相沉积等方式制作。
绝缘层24包括两个分别暴露出部分n型掺杂层21和部分p型掺杂层23的通孔;两个电极25分别通过两个通孔与暴露出的n型掺杂层21和p型掺杂层23接触。连接n型掺杂层21的电极为n电极,连接p型掺杂层23的电极为p电极,n电极可以采用Ti/Al/Ni/Au金属,p电极可以采用Ni/Au金属,制作电极的材料可以包括但不限于Cr、Ti、Ni、Au、Sn、Sn、Al、Au、Pt等金属或者组合。
发光芯片2的两个电极与驱动基板1上对应的焊盘焊接,实现驱动基板1与发光芯片2之间的电连接。
为了实现全彩显示,如图2A和图2B所示,本申请实施例在部分容纳单元S内设置色彩转换层32。色彩转换层32用于在发光芯片2的出射光的激发下出射其它颜色的光。
具体地,发光芯片2出射蓝色光时,色彩转换层32包括:红色转换层32r和绿色转换层32g。红色转换层32r在蓝色光的激发下出射红色光,绿色转换层32g在蓝色光的激发下出射绿色光,还有一些发光芯片2直接出射蓝色光,由此构成形成彩色图像的三基色光。
在本申请实施例中,色彩转换层32可以采用量子点材料,量子点材料具有较高色域,量子点材料受激发射的光线的波长由量子点的组成和粒径所决定。在具体实施时,量子点 材料可以选择硫化锌、氧化锌、氮化镓、硒化锌、硫化镉、硒化镓、硒化镉、碲化锌、碲化镉、砷化镓、磷化铟、碲化铅,钙钛矿性量子点中的至少一种,在此不做限定。除此之外,色彩转换层也可以采用荧光材料等其他具有相似功能的材料,在此不做限定。
由于发光芯片2多采用Mini LED芯片或Micro LED芯片,其发光强度满足朗伯分布,因此,在本申请实施例中,色彩转换层32在各位置的厚度不完全相等,这样可以适应于发光芯片2出射光的发光强度,从而避免产生光晕问题。具体地,参阅图2A所示,在发光芯片2出射光的强度较大的位置,色彩转换层32的厚度相对较小,而在发光芯片2出射光的强度较小的位置,色彩转换层32的厚度较大,由此可以使色彩转换层32在各位置均具有较高的光转换效率,从而使得出射光线均匀。
在一些实施例中,由于发光芯片2采用Mini LED芯片或Micro LED芯片,其发光强度满足朗伯分布,因此,在本申请实施例中,如图2A和图2B所示,色彩转换层32在中心位置的厚度小于在边缘位置的厚度。由于发光芯片2的出射的小角度光线的发光强度较大,对应于色彩转换层32中厚度较小的中心区域,可以充分激发色彩转换层32;而发光芯片2出射的大角度光线的发光强度较小,对应于色彩转换层32中厚度较大的边缘区域,由此可以进一步提高色彩转换层32在边缘区域的激发效率,从而使得色彩转换层在各位置的激发效率相当,避免由于边缘位置转换不充分造成光晕问题。
图8A为根据本申请实施例的一种显示装置的结构示意图之二。图8B为根据本申请实施例的另一种显示装置的结构示意图之二。
如图8A和图8B所示,色彩转换基板3还包括:散射层34。散射层34位于未设置色彩转换层32的容纳单元S中。散射层34的作用是将发光芯片出射的蓝色光进行散射,从而形成与经过色彩转换层32之后激发光线相同的出光规律。
散射层34通常由透明基质和分散在透明基质中的扩散粒子组成,扩散粒子可以使入射的蓝色光各方向的散射,形成均匀的出射光线。其中,透明基质可以采用PMMA、PC、PS、PP等材料,扩散粒子可以采用TiO2等具有散射作用的颗粒制作,在此不做限制。
由此,红色转换层32r、绿色转换层32g和散射层34按照设定的顺序在容纳单元S中重复排列。其中,发光芯片2激发红色转换层32r出射红色光作为红色子像素,发光芯片2激发绿色转换层32g出射绿色光作为绿色子像素,发光芯片2经过散射层34出射蓝色光作为蓝色子像素。相邻的一个红色转换层32r及对应的发光芯片2,一个绿色转换层32g及对应的发光芯片2,和一个散射层34及对应的发光芯片2构成一个像素单元。通过控制各像素单元中不同颜色光线的配比可以实现全彩显示。
在一些实施例中,如图3A所示,压印形成的容纳单元S在各位置的深度相等,容纳单元S的形状通常与第一压印模具的形状相同,而色彩转换层形成在容纳单元S中,与容纳单元S接触的表面通常具有容纳单元S相同的形状。容纳单元S整体呈矩形或方形,采用简单的图形进行压印,有利于提高形成的容纳单元S的良率。
当发光芯片2采用LED芯片时,出光强度分布满足朗伯分布,因此色彩转换层32在中心位置的厚度小于色彩转换层在边缘位置的厚度。如图2A和图8A所示,容纳单元S面向发光芯片2一侧的表面为矩形,由此使得色彩转换层32与容纳单元S接触的表面,即色彩转换层32离发光芯片2一侧的表面也为矩形。为了使色彩转换层32在中心位置的厚度小于边缘位置的厚度,如图2A和图8A所示,可以将色彩转换层32面向发光芯片2一侧的表面设置为弧形。弧形的色彩转换层32可以包裹住发光芯片2,使得发光芯片2出 射的大角度光也可以激发色彩转换层32进行色彩转换,从而提高色彩转换层的转换效率。
而散射层34通常设置为与色彩转换层32相同的形状,如图8A所示,散射层34背离发光芯片2一侧的表面为矩形,散射层34面向发光芯片2一侧的表面为弧形。
在具体实施时,可以采用压印的方法制作出色彩转换层32和散射层34的形状。本申请实施例以发光芯片2采用蓝光Mini LED或蓝光Micro LED,色彩转换层32和散射层34均采用图8A所示结构为例对色彩转换层32和散射层34的制作方法进行具体说明。
图9a-9n为根据本申请实施例的一种显示装置的色彩转换层和散射层的制作过程中的结构示意图。
如图9a所示,在基材31的表面形成一层压印胶33’,并采用第一模具Mr进行压印形成如图9b所示的多个第一容纳单元Sr。接着,如图9c所示,在压印胶33’的表面形成红色转换材料32r’,使红色转换材料32r’填充到第一容纳单元Sr中,如图9d所示,将第一容纳单元Sr以外多余的红色转换材料32r’刮除。
如图9e所示,再采用第二模具Mg对压印胶33’进行压印,形成如图9f所示的多个第二容纳单元Sg。接着,如图9g所示,在压印胶33’的表面形成绿色转换材料32g’,使绿色转换材料32g’填充到第二容纳单元Sg中,如图9h所示,将第二容纳单元Sg以外多余的绿色转换材料32g’刮除。
如图9i所示,再采用第三模具Mb对压印胶33’进行压印,形成如图9j所示的多个第三容纳单元Sb。接着,如图9k所示,在压印胶33’的表面形成散射材料34’,使散射材料34’填充到第三容纳单元Sb中,如图9l所示,将第三容纳单元Sb以外多余的散射材料34’刮除。
如图9m所示,再采用模具M1对容纳单元内形成的红色转换材料32r’、绿色转换材料32g’和散射材料34’进行压印,从而形成如图9n所示的色彩转换层32和散射层34的形状。其中,色彩转换层32以及散射层34中心位置的厚度小于边缘位置的厚度。
在一些实施例中,发光芯片2的光强分布可能为小角度光线的强度较小而大角度光线的强度较大。采用这样的发光芯片2有利于增强子像素边缘位置的光强,使出射光线在整个子像素范围内相对均匀。在具体实施时可以通过对LED芯片出光侧进行光学设计实现,例如可以在发光芯片2的出光侧进行镀膜以实现透镜的作用,从而使得发光芯片2的光强分布得以改变。
图10为根据本申请实施例的一种显示装置的容纳单元的结构示意图之一,图11为根据本申请实施例的一种显示装置的容纳单元的结构示意图之二,图12为根据本申请实施例的一种显示装置的容纳单元的结构示意图之三。
针对上述性质的发光芯片2,如图10-图12所示,容纳单元S在中心位置的深度大于容纳单元S在边缘位置的深度,从而使得色彩转换材料或散射材料在填充在容纳单元S中时,可以形成中心位置的厚度大于边缘位置的厚度的形态,从而适应上述发光芯片2的光强分布。
在具体实施时,如图10所示,容纳单元S面向发光芯片2的表面可以设置为弧形;如图11所示,容纳单元S面向发光芯片2的表面可以设置为圆锥形;如图12所示,容纳单元S面向发光芯片2的表面可以设置为圆台形。除此之外,容纳单元S面向发光芯片2的表面还可以设置为棱锥形、棱台形等,在此不做限定。
色彩转换层32或散射层34填充在对应的容纳单元S中,使得色彩转换层32或散射 层34背离发光芯片2一侧的表面与对应的容纳单元的形状相同,而色彩转换层32或散射层34面向发光芯片2一侧的表面可为平面,且色彩转换层或散射层34面向发光芯片2一侧的表面与压印层33除容纳单元S以外其它位置面向发光芯片2一侧的表面齐平。
在具体实施时可以采用如图9a-9l类似的压印方法形成不同形状的容纳单元S以及色彩转换层32、散射层34。与上述方法的不同之处在于,在每次填充色彩转换材料以及散射材料时只需要将容纳单元以外的区域刮除,以保持色彩转换层和散射层的表面为平面即可,而不再需要后续进一小压印色彩转换层以及散射层的步骤。当然,如果需要对色彩转换层以及散射层面向发光芯片2一侧的表面进行设计时,也可以进一步压印,在此不做限定。
图13为根据本申请实施例的一种显示装置的结构示意图之三。
如图13所示,色彩转换基板3还包括:滤光层4。滤光层4位于基材31与压印层33之间;滤光层4包括多个开口,用于暴露未设置色彩转换层32的容纳单元S;滤光层4用于过滤蓝色光透射红色光和绿色光。
在本申请实施例中,在形成压印层33之前在基材31的表面形成滤光层4,值得注意的是,滤光层4仅形成在设置色彩转换层32的容纳单元S对应的位置,对于设置散射层34的容纳单元S滤光层4开口进行暴露。
滤光层4可以过滤蓝色光透射红色光和绿色光,由此可以使色彩转换层32受激发射的红色光或绿色光得以出射,而未被完全转化的蓝色光被过滤,避免产生光串扰。
在具体实施时,上述滤光层4可以采用布拉格反射层、法布里-珀罗谐振腔或化学薄膜。图14为根据本申请实施例的布拉格反射层的结构示意图,图15为根据本申请实施例的谐振腔的结构示意图。
如图14所示,当滤光层采用布拉格反射层时,布拉格反射层包括交替堆叠设置的第一介质层41和第二介质层42,其中,第一介质层41和第二介质层42的厚度和折射率满足反射蓝色光透射红色光和绿色光的条件。
布拉格反射层利用了薄膜干涉原理,通常情况下采用高折射率和低折射率两种材料交替分布,每层介质层的光学厚度均为λ/4,通过多组介质层重复设置,可以达到设定波长高于95%的反射率。
滤光层4采用布拉格反射层可以将未被转化的蓝色光反回,进一步激发色彩转换层32进行色彩转换,由此提高出光效率。
如图15所示,当滤光层采用谐振腔时,谐振腔包括相对设置的两个介质层43,两个介质层43之间的间距以及两个介质层43之间的介质的折射率满足过滤蓝色光透射红色光和绿色光的条件。
法布里-珀罗谐振腔是利用光在两个介质层之间不断反射振荡,使得满足选频条件波长的光线可以溢出。因此通过设置两个介质层43之间的间距以及两个介质层43之间的介质的折射率可以实现对设定波长光线的选频。
除此之外,滤光层4还可以采用化学薄膜,化学薄膜可以吸收蓝色光透射红色光和绿色光,由此起到过滤蓝色光的作用。在具体实施时,滤光层4可以采用黄色染料等,在此不做限定。
如图13所示,显示装置还包括:隔离层5。隔离层5位于驱动基板1与压印层33之间,隔离层5的厚度大于发光芯片2的高度,以使色彩转换基板3与驱动基板1之间相距 一定的距离。隔离层5包括多个用于暴露出发光芯片2的开口;隔离层5在驱动基板1的正投影为网格状结构;隔离层5用于阻挡发光芯片2的出射光,以使发光芯片2的出射光不会入射到相邻的色彩转换层中,以避免产生光串扰。
在一些实施例中,显示装置,包括:驱动基板,位于驱动基板上的发光芯片,与驱动基板相对设置的色彩转换基板;色彩转换基板包括:基材和压印层;压印层包括多个向基材一侧凹陷的容纳单元;一个发光芯片的出光侧对应设置一个容纳单元;色彩转换层,位于部分容纳单元内;色彩转换层用于在发光芯片的出射光的激发下出射其它颜色的光;色彩转换层在各位置的厚度不完全相等,这样可以适应于发光芯片出射光的发光强度,从而避免产生光晕问题。在发光芯片出射光的强度较大的位置,色彩转换层的厚度相对较小,而在发光芯片出射光的强度较小的位置,色彩转换层的厚度较大,由此可以使色彩转换层在各位置均具有较高的光转换效率,从而使得出射光线均匀。
在一些实施例中,色彩转换基板还包括:散射层。散射层位于未设置色彩转换层的容纳单元中。散射层的作用是将发光芯片出射光线进行散射,从而形成与经过色彩转换层之后激发光线相同的出光规律。
在一些实施例中,发光芯片采用蓝光Mini LED芯片或蓝光Micro LED芯片,色彩转换层包括:红色转换层和绿色转换层。红色转换层在蓝色光的激发下出射红色光,绿色转换层在蓝色光的激发下出射绿色光,还有一些发光芯片直接出射蓝色光,由此构成形成彩色图像的三基色光。
在一些实施例中,压印形成的容纳单元在各位置的深度相等,色彩转换层形成在容纳单元中,与容纳单元接触的表面通常具有容纳单元相同的形状。容纳单元整体呈矩形或方形,采用简单的图形进行压印,有利于提高形成的容纳单元的良率。
在一些实施例中,当发光芯片采用LED芯片时,出光强度分布满足朗伯分布,因此色彩转换层在中心位置的厚度小于色彩转换层在边缘位置的厚度。容纳单元面向发光芯片一侧的表面为矩形,由此使得色彩转换层与容纳单元接触的表面,即色彩转换层离发光芯片一侧的表面也为矩形。色彩转换层面向发光芯片一侧的表面设置为弧形。弧形的色彩转换层可以包裹住发光芯片,使得发光芯片出射的大角度光也可以激发色彩转换层进行色彩转换,从而提高色彩转换层的转换效率。散射层通常设置为与色彩转换层相同的形状,散射层背离发光芯片一侧的表面为矩形,散射层面向发光芯片一侧的表面为弧形。
在一些实施例中,发光芯片的光强分布可能为小角度光线的强度较小而大角度光线的强度较大。采用这样的发光芯片有利于增强子像素边缘位置的光强,使出射光线在整个子像素范围内相对均匀。压印形成的容纳单元在中间位置的深度大于容纳单元在边缘位置的深度,从而使得形成可以容纳发光芯片的容纳腔体。色彩转换层或散射层填充在对应的容纳单元中,使得色彩转换层或散射层背离发光芯片一侧的表面与对应的容纳单元的形状相同,而色彩转换层或散射层面向发光芯片一侧的表面可为平面,且色彩转换层或散射层面向发光芯片一侧的表面与压印层除容纳单元以外其它位置面向发光芯片一侧的表面齐平。
在一些实施例中,容纳单元面向所述发光芯片的表面为弧形、圆锥形、棱锥形、圆台形或棱台形。
在一些实施例中,色彩转换基板还包括:滤光层。滤光层位于基材与压印层之间;滤光层包括多个开口,用于暴露未设置色彩转换层的容纳单元;滤光层用于过滤蓝色光透射红色光和绿色光。由此可以使色彩转换层受激发射的红色光或绿色光得以出射,而未被完 全转化的蓝色光被过滤,避免发生光串扰。
在一些实施例中,滤光层可以采用布拉格反射层、法布里-珀罗谐振腔或化学薄膜。
在一些实施例中,显示装置还包括:隔离层。隔离层位于驱动基板与压印层之间,隔离层的厚度大于发光芯片的高度,以使色彩转换基板与驱动基板之间相距一定的距离。隔离层包括多个用于暴露出发光芯片的开口;隔离层在驱动基板的正投影为网格状结构;隔离层用于阻挡发光芯片的出射光,以使发光芯片的出射光不会入射到相邻的色彩转换层中,以避免产生光串扰。
如图3B所示,在本申请实施例中,压印形成的容纳单元S在中间位置的深度大于容纳单元在边缘位置的深度,从而使得形成可以容纳发光芯片的容纳腔体。容纳单元S的形状通常与第二压印模具的形状相同,而色彩转换层形成在容纳单元S中,与容纳单元S接触的表面通常具有容纳单元S相同的形状。容纳单元S的中间位置深度大于边缘位置深度更加符合LED芯片的出光光型。
在一些实施例中,如图2B和图8B所示,容纳单元S面向发光芯片2一侧的表面为弧形,由此使得色彩转换层32与容纳单元S接触的表面,即色彩转换层32离发光芯片2一侧的表面也为弧形。在具体实施时,该弧形表面可以满足余弦方程,以更加适应于LED芯片出射光的朗伯分布。
为了使色彩转换层32在中心位置的厚度小于边缘位置的厚度,如图2B和图8B所示,可以将色彩转换层32面向发光芯片2一侧的表面也设置为弧形。弧形的色彩转换层32可以包裹住发光芯片2,使得发光芯片2出射的大角度光也可以激发色彩转换层32进行色彩转换,从而提高色彩转换层的转换效率。
而散射层34通常设置为与色彩转换层32相同的形状,如图8B所示,散射层34面向发光芯片2一侧的表面以及散射层34背离发光芯片2一侧的表面均为弧形。
在一些实施例中,可以适当增加色彩转换层32的厚度,由于色彩转换层32设置为弧形,可以将发光芯片包裹住,使得发光芯片出射的蓝色光能被色彩转换层32完全转化,由此避免串扰到相邻位置,同时不需要再额外设置滤光结构。
在具体实施时,同样可以采用压印的方法制作出图8B示出的色彩转换层32和散射层34的形状。图16a-16n为根据本申请实施例的另一种显示装置的色彩转换层和散射层的制作过程中的结构示意图。
如图16a所示,在基材31的表面形成一层压印胶33’,并采用第四模具Mr’进行压印形成如图16b所示的多个第一容纳单元Sr。接着,如图9c所示,在压印胶33’的表面形成红色转换材料32r’,使红色转换材料32r’填充到第四容纳单元Sr’中,如图16d所示,将第四容纳单元Sr’以外多余的红色转换材料32r’刮除。
如图16e所示,再采用第五模具Mg’对压印胶33’进行压印,形成如图16f所示的多个第五容纳单元Sg’。接着,如图16g所示,在压印胶33’的表面形成绿色转换材料32g’,使绿色转换材料32g’填充到第五容纳单元Sg’中,如图16h所示,将第五容纳单元Sg’以外多余的绿色转换材料32g’刮除。
如图16i所示,再采用第六模具Mb’对压印胶33’进行压印,形成如图16j所示的多个第六容纳单元Sb’。接着,如图16k所示,在压印胶33’的表面形成散射材料34’,使散射材料34’填充到第六容纳单元Sb’中,如图16l所示,将第六容纳单元Sb’以外多余的散射材料34’刮除。
如图16m所示,再采用模具M1对容纳单元内形成的红色转换材料32r’、绿色转换材料32g’和散射材料34’进行压印,从而形成如图16n所示的色彩转换层32和散射层34的形状。其中,色彩转换层32以及散射层34靠近压印层33一侧的弧面的曲率小于远离压印层33一侧的弧面的曲率,这样可以使色彩转换层32以及散射层34中心位置的厚度小于边缘位置的厚度。
图17为根据本申请实施例的另一种显示装置的色彩转换层的局部放大示意图。
如图17所示,在本申请实施例中,色彩转换层32中分布有多个微结构h。
由于量子点材料的折射率与空气及衬底材料的折射率相差较大,因而发光芯片产生的光在高折射率材料与低折射率材料界面处容易发生全反射,限制显示装置的出光效率。本申请实施例在色彩转换层32中分布多个微结构h,发光芯片2的出射光在入射到微结构h之后,传播方向产生随机性改变,从而降低全反射作用。另外,在色彩转换层32中分布微结构h,相当于减小了色彩转换层32的折射率,从而减小色彩转换层32与相邻膜层之间的折射率差异,降低全反射,提高光出射效率。
在具体实施时,色彩转换层32中的微结构h可以均匀排布或无规则排布,微结构h的尺寸在纳米量级到微米量级。上述微结构h同样可以采用压印的方式进行制作,具体地,可以采用具有突出性结构的模具压印色彩转换层32,从而形成与模具相同形状的微结构。微结构h可以采用通孔、盲孔或中空结构,当采用中空结构时需要采用在色彩转换层中注入空气等方法形成,在此不做限定。
如图1A所示,相关技术中显示装置的色彩转换基板3与驱动基板1之间隔开一定的距离,会造成子像素之间的串扰,导致对比度、显色能力下降。目前的方法是在两个基板之间设置遮光性挡墙d,增加了工艺制程步骤,由于遮光性挡墙d的吸光作用,使得入射到遮光性挡墙d的光线损失,无法变为正向光输出。
有鉴于此,根据本申请实施例的另一种显示装置还在容纳单元S内设置滤光层,避免光串扰,提高发光效率。图18为根据本申请实施例的另一种显示装置的结构示意图之三。
如图18所示,色彩转换基板3还包括:滤光层4。滤光层4位于容纳单元S和色彩转换层32之间;滤光层4用于过滤蓝色光透射红色光和绿色光。
在本申请实施例中,色彩转换层32为弧形结构,在容纳单元S中形成色彩转换层32之前,先在容纳单元S的表面形成滤光层4,值得注意的是,滤光层4仅形成在设置色彩转换层32的容纳单元S中,如图18所示,设置散射层34的容纳单元S中不形成滤光层4。
滤光层4可以过滤蓝色光透射红色光和绿色光,由此可以使色彩转换层32受激发射的红色光或绿色光得以出射,而未被完全转化的蓝色光被过滤,避免产生光串扰。而发光芯片2出射的蓝色光由于滤光层4的存在无法入射到相邻的容纳单元S中,从而可以避免光线串扰。采用上述滤光层4的结构,可以使色彩转换基板3与驱动基板1之间完全贴合,而不再需要将两者之间相距一定的距离,由此减小显示装置的整体厚度,有利于实现显示装置的轻薄化设计。
在具体实施时,上述滤光层4同样可以采用布拉格反射层(如图14所示)、法布里-珀罗谐振腔(如图15所示)或化学薄膜。
需要说明的是,当在色彩转换基板中设置滤光层之后,对色彩转换层的厚度并没有过多限制,可以适当减薄色彩转换层的厚度,因未被转化的蓝色光可以被滤光层4过滤,不会发生光串扰的问题。
图19为根据本申请实施例的另一种显示装置的结构示意图之四。
如图19所示,显示装置还包括:反射层5。反射层5位于驱动基板1靠近发光芯片2的一侧,反射层5包括多个用于暴露出发光芯片2的开口。由于设置了滤光层4,本申请实施例中色彩转换基板的压印层3可以直接与反射层5接触,以减小显示装置厚度。
压印层3的容纳单元S在驱动基板1的正投影与反射层5在驱动基板的正投影存在交叠区域,由此可以向驱动基板1一侧出射或反射的光线被反射层5向显示装置的出光侧反射,从而提高光线的利用效率。
在具体实施时,反射层5可以采用金属反射层,也可以采用基材涂覆反射材料的方式进行制作,在此不做限定。
在一些实施例中,显示装置,包括:驱动基板,位于驱动基板上的发光芯片,与驱动基板相对设置的色彩转换基板;色彩转换基板包括:基材和压印层;压印层包括多个向基材一侧凹陷的容纳单元;一个发光芯片的出光侧对应设置一个容纳单元;色彩转换层,位于部分容纳单元内;色彩转换层用于在发光芯片的出射光的激发下出射其它颜色的光;色彩转换层在中心位置的厚度小于色彩转换层在边缘位置的厚度。由于发光芯片的出射的小角度光线的发光强度较大,对应于色彩转换层中厚度较小的中心区域,可以充分激发色彩转换层;而发光芯片出射的大角度光线的发光强度较小,对应于色彩转换层中厚度较大的边缘区域,由此可以进一步提高色彩转换层在边缘区域的激发效率,从而使得色彩转换层在各位置的激发效率相当,避免由于边缘位置转换不充分造成光晕问题。
在一些实施例中,色彩转换基板还包括:散射层。散射层位于未设置色彩转换层的容纳单元中。散射层的作用是将发光芯片出射光线进行散射,从而形成与经过色彩转换层之后激发光线相同的出光规律。
在一些实施例中,发光芯片采用蓝光Mini LED芯片或蓝光Micro LED芯片,色彩转换层包括:红色转换层和绿色转换层。红色转换层在蓝色光的激发下出射红色光,绿色转换层在蓝色光的激发下出射绿色光,还有一些发光芯片直接出射蓝色光,由此构成形成彩色图像的三基色光。
在一些实施例中,压印形成的容纳单元在中间位置的深度大于容纳单元在边缘位置的深度,从而使得形成可以容纳发光芯片的容纳腔体。色彩转换层形成在容纳单元中,与容纳单元接触的表面通常具有容纳单元相同的形状。容纳单元的中间位置深度大于边缘位置深度更加符合LED芯片的出光光型。
在一些实施例中,容纳单元面向发光芯片一侧的表面为弧形,由此使得色彩转换层与容纳单元接触的表面,即色彩转换层离发光芯片一侧的表面也为弧形。该弧形表面可以满足余弦方程,以更加适应于LED芯片出射光的朗伯分布。弧形的色彩转换层可以包裹住发光芯片,使得发光芯片出射的大角度光也可以激发色彩转换层进行色彩转换,从而提高色彩转换层的转换效率。
在一些实施例中,可以适当增加色彩转换层的厚度,由于色彩转换层设置为弧形,可以将发光芯片包裹住,使得发光芯片出射的蓝色光能被色彩转换层完全转化,由此避免串扰到相邻位置,同时不需要再额外设置滤光结构。
在一些实施例中,散射层通常设置为与色彩转换层相同的形状,散射层面向发光芯片一侧的表面以及散射层背离发光芯片一侧的表面均为弧形。
在一些实施例中,在色彩转换层中分布多个微结构,发光芯片的出射光在入射到微结 构之后,传播方向产生随机性改变,从而降低全反射作用。另外,在色彩转换层中分布微结构,相当于减小了色彩转换层的折射率,从而减小色彩转换层与相邻膜层之间的折射率差异,降低全反射,提高光出射效率。微结构采用通孔、盲孔或中空结构。
在一些实施例中,色彩转换基板还包括:滤光层。滤光层位于容纳单元和色彩转换层之间;滤光层用于过滤蓝色光透射红色光和绿色光,由此可以使色彩转换层受激发射的红色光或绿色光得以出射,而未被完全转化的蓝色光被过滤,避免产生光串扰。而发光芯片出射的蓝色光由于滤光层的存在无法入射到相邻的容纳单元中,从而可以避免光线串扰。采用滤光层的结构,可以使色彩转换基板与驱动基板之间完全贴合,而不再需要将两者之间相距一定的距离,由此减小显示装置的整体厚度,有利于实现显示装置的轻薄化设计。
在一些实施例中,当在色彩转换基板中设置滤光层之后,对色彩转换层的厚度并没有过多限制,可以适当减薄色彩转换层的厚度,因未被转化的蓝色光可以被滤光层过滤,不会发生光串扰的问题。
在一些实施例中,滤光层可以采用布拉格反射层或法布里-珀罗谐振腔。
在一些实施例中,显示装置还包括:反射层。反射层位于驱动基板靠近发光芯片的一侧,反射层包括多个用于暴露出发光芯片的开口。由于设置了滤光层,色彩转换基板的压印层可以直接与反射层接触,以减小显示装置厚度。压印层的容纳单元在驱动基板的正投影与反射层在驱动基板的正投影存在交叠区域,由此可以向驱动基板一侧出射或反射的光线被反射层向显示装置的出光侧反射,从而提高光线的利用效率。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (19)

  1. 一种显示装置,包括:
    驱动基板,用于提供驱动信号;
    发光芯片,位于所述驱动基板上,与所述驱动基板电连接;
    色彩转换基板,与所述驱动基板相对设置;所述色彩转换基板包括:
    基材,与所述驱动基板相对设置;
    压印层,位于所述基材面向所述驱动基板的一侧;所述压印层包括多个向所述基材一侧凹陷的容纳单元;一个所述发光芯片的出光侧对应设置一个所述容纳单元;
    色彩转换层,位于部分所述容纳单元内;所述色彩转换层用于在所述发光芯片的出射光的激发下出射其它颜色的光;所述色彩转换层在各位置的厚度不完全相等。
  2. 如权利要求1所述的显示装置,所述容纳单元在各位置的深度相等;
    所述色彩转换层在中心位置的厚度小于所述色彩转换层在边缘位置的厚度。
  3. 如权利要求2所述的显示装置,所述容纳单元面向所述发光芯片的表面为矩形;
    所述色彩转换层背离所述发光芯片一侧的表面为矩形,所述色彩转换层面向所述发光芯片一侧的表面为弧形。
  4. 如权利要求1所述的显示装置,所述容纳单元在中心位置的深度大于所述容纳单元在边缘位置的深度。
  5. 如权利要求4所述的显示装置,所述容纳单元面向所述发光芯片的表面为弧形、圆锥形、棱锥形、圆台形或棱台形;
    所述色彩转换层填充在对应的所述容纳单元中,所述色彩转换层面向所述发光芯片一侧的表面为平面,所述色彩转换层面向所述发光芯片一侧的表面与所述压印层除所述容纳单元以外其它位置面向所述发光芯片一侧的表面齐平。
  6. 如权利要求1~5任一项所述的显示装置,所述发光芯片用于出射蓝色光;所述色彩转换层包括:红色转换层和绿色转换层;
    所述发光芯片为蓝光Micro LED芯片;
    所述色彩转换层为量子点层;所述红色转换层为红色量子点层,所述绿色转换层为绿色量子点层。
  7. 如权利要求6所述的显示装置,所述色彩转换基板还包括:
    散射层,位于未设置所述色彩转换层的所述容纳单元中;所述散射层的形状与所述色彩转换层的形状相同。
  8. 如权利要求6所述的显示装置,所述色彩转换基板还包括:
    滤光层,位于所述基材与所述压印层之间;所述滤光层包括多个开口,所述开口用于暴露未设置所述色彩转换层的所述容纳单元;所述滤光层用于过滤蓝色光透射红色光和绿色光;
    所述滤光层采用布拉格反射层;所述布拉格反射层包括交替堆叠设置的第一介质层和第二介质层,所述第一介质层和所述第二介质层的厚度和折射率满足反射蓝色光透射红色光和绿色光的条件;
    或者,所述滤光层采用谐振腔;所述谐振腔包括:相对设置的两个介质层,两个所述介质层之间的间距满足过滤蓝色光透射红色光和绿色光的条件;
    或者,所述滤光层采用化学薄膜;所述化学薄膜用于吸收蓝色光透射红色光和绿色光。
  9. 如权利要求8所述的显示装置,所述发光芯片呈阵列排布;所述压印层的容纳单元呈阵列排布;
    所述红色转换层、所述绿色转换层和所述散射层按照设定的顺序在所述容纳单元中重复排列;相邻的一个所述红色转换层及对应的所述发光芯片,一个所述绿色转换层及对应的所述发光芯片,和一个所述散射层及对应的所述发光芯片构成一个像素单元。
  10. 如权利要求1~5任一项所述的显示装置,所述显示装置还包括:
    隔离层,位于所述驱动基板与压印层之间,所述隔离层包括多个用于暴露出所述发光芯片的开口;所述隔离层在所述驱动基板的正投影为网格状结构;所述隔离层用于阻挡所述发光芯片的出射光;
    所述隔离层的厚度大于所述发光芯片的高度;所述色彩转换基板的压印层与所述隔离层接触。
  11. 如权利要求1所述的显示装置,所述色彩转换层在中心位置的厚度小于所述色彩转换层在边缘位置的厚度;所述容纳单元在中间位置的深度大于所述容纳单元在边缘位置的深度。
  12. 如权利要求11所述的显示装置,所述容纳单元面向所述发光芯片一侧的表面为弧形;
    所述色彩转换层面向所述发光芯片一侧的表面以及所述色彩转换层背离所述发光芯片一侧的表面均为弧形。
  13. 如权利要求12所述的显示装置,所述色彩转换层中分布有多个微结构。
  14. 如权利要求11~13任一项所述的显示装置,所述发光芯片用于出射蓝色光;所述色彩转换层包括:红色转换层和绿色转换层;
    所述发光芯片为蓝光Micro LED芯片;
    所述色彩转换层为量子点层;所述红色转换层为红色量子点层,所述绿色转换层为绿色量子点层。
  15. 如权利要求14所述的显示装置,所述色彩转换基板还包括:
    滤光层,位于所述容纳单元和所述色彩转换层之间;所述滤光层用于过滤蓝色光透射红色光和绿色光;
    散射层,位于未设置所述色彩转换层的所述容纳单元中;所述散射层面向所述发光芯片一侧的表面以及所述散射层背离所述发光芯片一侧的表面均为弧形。
  16. 如权利要求15所述的显示装置,所述发光芯片呈阵列排布;所述压印层的容纳单元呈阵列排布;
    所述红色转换层、所述绿色转换层和所述散射层按照设定的顺序在所述容纳单元中重复排列;相邻的一个所述红色转换层及对应的所述发光芯片,一个所述绿色转换层及对应的所述发光芯片,和一个所述散射层及对应的所述发光芯片构成一个像素单元。
  17. 如权利要求15所述的显示装置,所述滤光层采用布拉格反射层;所述布拉格反射层包括交替堆叠设置的第一介质层和第二介质层,所述第一介质层和所述第二介质层的厚度和折射率满足反射蓝色光透射红色光和绿色光的条件;
    或者,所述滤光层采用谐振腔;所述谐振腔包括:相对设置的两个介质层,两个所述介质层之间的间距满足过滤蓝色光透射红色光和绿色光的条件;
    或者,所述滤光层采用化学薄膜;所述化学薄膜用于吸收蓝色光透射红色和绿色光。
  18. 如权利要求15所述的显示装置,所述显示装置还包括:
    反射层,位于所述驱动基板靠近所述发光芯片的一侧;所述反射层包括多个用于暴露出所述发光芯片的开口;
    所述压印层与所述反射层直接接触。
  19. 如权利要求18所述的显示装置,所述压印层的容纳单元在所述驱动基板的正投影与所述反射层在所述驱动基板的正投影存在交叠区域。
PCT/CN2023/084092 2022-05-09 2023-03-27 一种显示装置 WO2023216744A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202221176254.5 2022-05-09
CN202221104053.4 2022-05-09
CN202221176254.5U CN217426779U (zh) 2022-05-09 2022-05-09 一种显示装置
CN202221104053.4U CN217280834U (zh) 2022-05-09 2022-05-09 一种显示装置

Publications (1)

Publication Number Publication Date
WO2023216744A1 true WO2023216744A1 (zh) 2023-11-16

Family

ID=88729610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084092 WO2023216744A1 (zh) 2022-05-09 2023-03-27 一种显示装置

Country Status (1)

Country Link
WO (1) WO2023216744A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090321758A1 (en) * 2008-06-25 2009-12-31 Wen-Huang Liu Led with improved external light extraction efficiency
US20140339495A1 (en) * 2013-05-14 2014-11-20 LuxVue Technology Corporation Micro led with wavelength conversion layer
CN109979960A (zh) * 2019-04-26 2019-07-05 中国科学院长春光学精密机械与物理研究所 基于量子点光转换层的全彩Micro-LED显示器件的制作方法
CN113437052A (zh) * 2021-05-06 2021-09-24 福州大学 改善微小型led背光或显示均匀性的色转换层及其制备方法
CN113451483A (zh) * 2020-05-28 2021-09-28 重庆康佳光电技术研究院有限公司 一种颜色转换装置及其制备方法、显示背板
CN217280834U (zh) * 2022-05-09 2022-08-23 海信视像科技股份有限公司 一种显示装置
CN217426779U (zh) * 2022-05-09 2022-09-13 海信视像科技股份有限公司 一种显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090321758A1 (en) * 2008-06-25 2009-12-31 Wen-Huang Liu Led with improved external light extraction efficiency
US20140339495A1 (en) * 2013-05-14 2014-11-20 LuxVue Technology Corporation Micro led with wavelength conversion layer
CN109979960A (zh) * 2019-04-26 2019-07-05 中国科学院长春光学精密机械与物理研究所 基于量子点光转换层的全彩Micro-LED显示器件的制作方法
CN113451483A (zh) * 2020-05-28 2021-09-28 重庆康佳光电技术研究院有限公司 一种颜色转换装置及其制备方法、显示背板
CN113437052A (zh) * 2021-05-06 2021-09-24 福州大学 改善微小型led背光或显示均匀性的色转换层及其制备方法
CN217280834U (zh) * 2022-05-09 2022-08-23 海信视像科技股份有限公司 一种显示装置
CN217426779U (zh) * 2022-05-09 2022-09-13 海信视像科技股份有限公司 一种显示装置

Similar Documents

Publication Publication Date Title
JP7387821B2 (ja) 発光積層構造体およびそれを備えたディスプレイ素子
JP7240398B2 (ja) 発光積層構造とこれを備えたディスプレイデバイス
US20220392879A1 (en) Light emitting diode for display and display apparatus having the same
CN112133718B (zh) 显示面板、显示装置及显示面板的制备方法
EP3076442B1 (en) Display device using semiconductor light emitting device
EP3228157B1 (en) Display device using semiconductor light emitting device and method for manufacturing thereof
US9837389B2 (en) Display device using semiconductor light emitting device and method for manufacturing the same
EP3332404B1 (en) Display device and fabricating method
CN110224012B (zh) 显示面板及显示装置
KR102617563B1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
US10833229B2 (en) Display device using semiconductor light emitting element and method for manufacturing same
CN110718619A (zh) 发光元件、发光二极管封装件、背光单元以及液晶显示器
CN112133811B (zh) 显示面板、显示装置及显示面板的制备方法
CN217280834U (zh) 一种显示装置
CN217426779U (zh) 一种显示装置
WO2021004090A1 (zh) 色彩转换组件、显示面板及制作方法
WO2023216744A1 (zh) 一种显示装置
CN110364611B (zh) 一种基于量子点的封装结构及显示器
CN111128985A (zh) 显示面板及其制备方法
WO2019223378A1 (zh) 显示基板及其制作方法以及显示器件
TWI790827B (zh) 微型發光二極體顯示裝置
CN116387339B (zh) Micro LED混合出光结构及其制备方法
TWI791245B (zh) 顯示裝置
US20230155079A1 (en) Light emitting devices including a color conversion material and light extracting structures and method of making thereof
US20230378404A1 (en) Light emitting device with improved radiation distribution and method of making thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802520

Country of ref document: EP

Kind code of ref document: A1