WO2020256142A1 - ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法 - Google Patents

ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法 Download PDF

Info

Publication number
WO2020256142A1
WO2020256142A1 PCT/JP2020/024255 JP2020024255W WO2020256142A1 WO 2020256142 A1 WO2020256142 A1 WO 2020256142A1 JP 2020024255 W JP2020024255 W JP 2020024255W WO 2020256142 A1 WO2020256142 A1 WO 2020256142A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass composition
sio
composition according
weight
Prior art date
Application number
PCT/JP2020/024255
Other languages
English (en)
French (fr)
Inventor
文 中村
福地 英俊
倉知 淳史
陸 澤井
崇治 宮崎
慶東 名和
服部 剛士
Original Assignee
日本板硝子株式会社
ユニチカ株式会社
ユニチカグラスファイバー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN202410143648.8A priority Critical patent/CN117964231A/zh
Priority to EP20825463.1A priority patent/EP3988510A4/en
Priority to CN202080043638.7A priority patent/CN113993825A/zh
Priority to KR1020227000951A priority patent/KR102669498B1/ko
Priority to JP2021526950A priority patent/JP7292634B2/ja
Priority to CN202410144026.7A priority patent/CN117945650A/zh
Application filed by 日本板硝子株式会社, ユニチカ株式会社, ユニチカグラスファイバー株式会社 filed Critical 日本板硝子株式会社
Priority to US17/596,887 priority patent/US20220324751A1/en
Publication of WO2020256142A1 publication Critical patent/WO2020256142A1/ja
Priority to US17/880,199 priority patent/US11840477B2/en
Priority to US17/880,202 priority patent/US11773009B2/en
Priority to JP2023016095A priority patent/JP7370551B2/ja
Priority to JP2023132578A priority patent/JP7542813B2/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/16Compositions for glass with special properties for dielectric glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/242Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads inorganic, e.g. basalt
    • D03D15/267Glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/038Textiles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2213/00Glass fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/029Woven fibrous reinforcement or textile

Definitions

  • the present invention relates to a glass composition, a glass fiber composed of the composition, and a glass cloth.
  • the present invention also relates to a method for producing glass fibers.
  • a type of printed circuit board in electronic devices includes a substrate made of resin, glass fiber, and inorganic filler, and, if necessary, additional materials such as hardeners and modifiers. is there.
  • some printed wiring boards (printed wiring boards) before electronic components are mounted have the same configuration as the above-mentioned boards.
  • both the printed circuit board and the printed wiring board are collectively referred to as a “printed board”.
  • the glass fiber functions as an insulator, a heat-resistant body, and a reinforcing material of the substrate.
  • the glass fiber is included in the printed circuit board as, for example, a glass cloth in which a glass thread (glass yarn) in which a plurality of glass fibers are aligned is woven.
  • glass cloth is usually used as a prepreg impregnated with a resin in a printed circuit board.
  • the thickness of printed circuit boards has been reduced.
  • glass fibers having a smaller fiber diameter are required.
  • the glass fiber used for the printed circuit board is required to have a low dielectric constant.
  • Glass may also be used as the inorganic filler used for printed circuit boards.
  • a typical example is flaky glass.
  • the molded product is required to have characteristics similar to those of glass fibers used for a printed circuit board, for example, a low dielectric constant.
  • Patent Documents 1 to 5 Glass fibers composed of a glass composition having a low dielectric constant are disclosed in Patent Documents 1 to 5.
  • the glass composition is also required to have a characteristic temperature suitable for mass production as well as having a low dielectric constant.
  • the characteristic temperature of the critical glass composition mass production of glass fiber the temperature T3 which is a measure of the spinning temperature, i.e. the viscosity is the temperature to be 10 3 dPas, and the like.
  • the temperatures T2 and T2.5, as well as the devitrification temperature TL, are also indicators for determining whether the glass composition is suitable for mass production of glass fibers. However, it is not easy to adjust the characteristic temperature of a glass composition having a low dielectric constant.
  • an object of the present invention is to provide a novel glass composition having a low dielectric constant and suitable for mass production.
  • the present invention Display by weight%, 40 ⁇ SiO 2 ⁇ 60 25 ⁇ B 2 O 3 ⁇ 45 5 ⁇ Al 2 O 3 ⁇ 15 0 ⁇ R 2 O ⁇ 5 0 ⁇ RO ⁇ 15 Including SiO 2 + B 2 O 3 ⁇ 80 and / or SiO 2 + B 2 O 3 ⁇ 78 and 0 ⁇ RO ⁇ 10 Provided is a glass composition, which holds the above.
  • R 2 O is at least one oxide selected from Li 2 O, Na 2 O and K 2 O
  • RO is at least one oxide selected from Mg O, Ca O and Sr O. Is.
  • the present invention is described from another aspect. Display by weight%, 40 ⁇ SiO 2 ⁇ 60 25 ⁇ B 2 O 3 ⁇ 45 0 ⁇ Al 2 O 3 ⁇ 18 0 ⁇ R 2 O ⁇ 5 0 ⁇ RO ⁇ 12 Including i) SiO 2 + B 2 O 3 ⁇ 80, and SiO 2 + B 2 O 3 + Al 2 O 3 ⁇ 99.9, and ii) SiO 2 + B 2 O 3 ⁇ 78, SiO 2 + B 2 O 3 + Al 2 O 3 ⁇ 99.9 and 0 ⁇ RO ⁇ 10 Provided is a glass composition, in which at least one of the above is satisfied.
  • the present invention is described from another aspect. Display by weight%, 40 ⁇ SiO 2 ⁇ 60 25 ⁇ B 2 O 3 ⁇ 45 0 ⁇ Al 2 O 3 ⁇ 18 0 ⁇ R 2 O ⁇ 5 3 ⁇ RO ⁇ 8 Including SiO 2 + B 2 O 3 ⁇ 75, and SiO 2 + B 2 O 3 + Al 2 O 3 ⁇ 97 Provided is a glass composition, which holds the above.
  • SiO 2 + B 2 O 3 ⁇ 77 is established by displaying in% by weight from another side.
  • the permittivity at a frequency of 1 GHz is 4.4 or less,
  • the dielectric loss tangent at a frequency of 1 GHz is 0.007 or less.
  • the temperature T2 at which the viscosity is 10 2 dPas is 1700 ° C or lower,
  • the present invention is expressed in% by weight from another aspect.
  • a glass composition which holds the above.
  • the present invention is expressed in% by weight from another aspect. 40 ⁇ SiO 2 ⁇ 49.95 25 ⁇ B 2 O 3 ⁇ 29.9 10 ⁇ Al 2 O 3 ⁇ 20 0.1 ⁇ R 2 O ⁇ 1 2 ⁇ RO ⁇ 8 Including SiO 2 + B 2 O 3 ⁇ 70, and SiO 2 + B 2 O 3 + Al 2 O 3 ⁇ 97 Provided is a glass composition, which holds the above.
  • the present invention is expressed in% by weight from another aspect.
  • a glass composition which holds the above.
  • the present invention is described from another aspect.
  • a glass fiber composed of a glass composition according to the present invention.
  • the present invention is described from another aspect.
  • a glass cloth made of glass fibers according to the present invention is described from another aspect.
  • a prepreg including a glass cloth according to the present invention is provided.
  • a printed circuit board including a glass cloth according to the present invention is provided.
  • the present invention is described from another aspect.
  • a method for producing a glass fiber which comprises a step of melting the glass composition according to the present invention at a temperature of 1400 ° C. or higher to obtain a glass fiber having an average fiber diameter of 1 to 6 ⁇ m.
  • % indications indicating the content of each component are weight%.
  • substantially free is meant that the content is less than 0.1% by weight, preferably less than 0.07% by weight, more preferably less than 0.05% by weight.
  • substantially in this wording means to allow impurities inevitably mixed from industrial raw materials within the above limits. The content rate, characteristics and other preferable ranges of each component can be grasped by arbitrarily combining the upper limit and the lower limit described individually below.
  • the temperature at which the viscosity becomes 10 n dPas is expressed as Tn (for example, T2.5 means the temperature at which the viscosity of the glass composition becomes 10 2.5 dPas).
  • Tn for example, T2.5 means the temperature at which the viscosity of the glass composition becomes 10 2.5 dPas.
  • the permittivity means the relative permittivity, but in the present specification, it is simply referred to as the permittivity according to the convention.
  • the permittivity and the dielectric loss tangent are values at room temperature (25 ° C.). The following description is not intended to limit the present invention, but is presented to indicate a preferred embodiment thereof.
  • SiO 2 is a component that forms a network structure of glass.
  • SiO 2 has an effect of lowering the dielectric constant of the glass composition. If the content of SiO 2 is too low, the dielectric constant of the glass composition cannot be sufficiently lowered. If the content of SiO 2 is too high, the viscosity at the time of melting becomes too high, and it becomes difficult to obtain a homogeneous glass composition. When the homogeneity of the glass composition is lowered, yarn breakage is induced when spinning glass fibers, particularly glass fibers having a small fiber diameter.
  • the content of SiO 2 is preferably 40% or more, 45% or more, 46% or more, further 48% or more, particularly 49% or more, and in some cases 50% or more, further 50.5% or more, 51% or more. It may be 52% or more and 53% or more.
  • the content of SiO 2 is preferably 60% or less, less than 58%, 56% or less, further less than 55%, particularly 54.5% or less, and in some cases 54% or less, 53% or less, 52% or less, 51. It may be less than or equal to%.
  • An example of a preferable range of the content of SiO 2 is 40% or more and less than 58%, and further 40% or more and less than 55%. Further, the content of SiO 2 can be 40% or more and 49.95% or less.
  • B 2 O 3 is a component that forms the network structure of glass.
  • B 2 O 3 lowers the dielectric constant of the glass composition, lowers the viscosity of the glass composition at the time of melting, improves the defoaming property (foaming property), and suppresses the mixing of bubbles in the formed glass fiber. Has an action.
  • B 2 O 3 easily volatilizes when the glass composition is melted, and if the content thereof is excessive, it becomes difficult to obtain sufficient homogeneity as the glass composition, or bubbles are mixed in the formed glass fibers.
  • B 2 O 3 volatilized from the glass may adhere to the tip of the bushing used for spinning and cause so-called thread breakage.
  • the content of B 2 O 3 is preferably 25% or more, 27% or more, 29% or more, 30% or more, more preferably 30% or more, and in some cases 30.5% or more, further 31% or more. It may be 32% or more, 33% or more, 34% or more.
  • the content of B 2 O 3 is preferably 45% or less, 43% or less, 41% or less, further 39% or less, and in some cases 38% or less, further 36% or less, 35% or less, 34% or less, It may be 32% or less.
  • An example of a preferable range of the content of B 2 O 3 is more than 30% and 45% or less.
  • the content of B 2 O 3 can be 25% or more and 40% or less, 25% or more and 29.9% or less, or 31% or more and 40% or less.
  • (SiO 2 + B 2 O 3 ) can be 70% or more.
  • the sum of the content of SiO 2, the content of B 2 O 3 and the content of Al 2 O 3 (SiO 2 + B 2 O 3 + Al 2 O 3 ) is 99.9 to allow other components. % Or less is preferable.
  • (SiO 2 + B 2 O 3 + Al 2 O 3 ) may be 98% or less, 97% or less, less than 97%, and further 96% or less.
  • a preferable example of the combination of (SiO 2 + B 2 O 3 ) and (SiO 2 + B 2 O 3 + Al 2 O 3 ) is that (SiO 2 + B 2 O 3 ) is 82% or more and (SiO 2 + B 2 O 3 + Al). 2 O 3 ) is 98% or less. Further, (SiO 2 + B 2 O 3 + Al 2 O 3 ) can be 90% or more and 98% or less, or 90% or more and 97% or less.
  • the ratio of the (SiO 2 + B 2 O 3 ) (SiO 2 + B 2 O 3 + Al 2 O 3), namely (SiO 2 + B 2 O 3 + Al 2 O 3) / (SiO 2 + B 2 O 3) is 1. It is preferably 05 or more, and may be 1.12 or more, 1.13 or more, 1.15 or more, and further 1.20 or more. As this ratio increases, defects such as fluffing of glass fibers are suppressed. This effect becomes remarkable in the fifth combination of the contents of SiO 2 and B 2 O 3 , which will be described later.
  • Preferable combination of SiO 2 and B 2 O 3 In order to obtain a glass composition having a lower dielectric constant and being easily melted, there is a preferable range of combinations of SiO 2 and B 2 O 3 contents.
  • the content of SiO 2 is 48 to 51%, preferably 49 to 51%, more preferably 50 to 51%, and the content of B 2 O 3 is 33 to 35%, preferably 34. It is a combination of ⁇ 35%.
  • the second combination has a SiO 2 content of 50 to 53%, preferably 51 to 52%, and a B 2 O 3 content of 32 to 35%, preferably 32 to 34%.
  • the third combination has a SiO 2 content of 52 to 54%, preferably 52.5 to 54%, and a B 2 O 3 content of 31 to 34%, preferably 32 to 34%. is there.
  • the fourth combination is a combination in which the content of SiO 2 is 52 to 55%, preferably 53 to 55%, and the content of B 2 O 3 is 30 to 32%.
  • the content of SiO 2 is 47 to 52%, preferably 48 to 51%, more preferably 48.5 to 50.5%, and particularly preferably 48.95 to 49.95%.
  • the content of B 2 O 3 is 25 to 30%, preferably 26 to 29.5%, and more preferably 26 to 29%.
  • the total (MgO + CaO) of the MgO content and the CaO content is preferably 3.5% or more, further 4% or more, and 8% or less is suitable.
  • the sixth combination has a SiO 2 content of 48-53%, preferably 49-52%, more preferably 49-51.5%, and in some cases 49-51% or 48.95-.
  • (MgO + CaO) is 1% or more and less than 3.5%, preferably 1 to 3%, more preferably 1 to 2.5%, and in some cases 1.5 to 2.5%. ..
  • Al 2 O 3 is a component that forms a network structure of glass.
  • Al 2 O 3 has the effect of increasing the chemical durability of the glass composition.
  • Al 2 O 3 facilitates devitrification of the glass composition during spinning.
  • the content of Al 2 O 3 is preferably 5% or more, 7.5% or more, 8% or more, 9% or more, more preferably 10% or more, and in some cases 10.5% or more, 12% or more, 13%. It may be the above.
  • the content of Al 2 O 3 is preferably 20% or less, 18% or less, 17% or less, more preferably 15% or less, and in some cases 14% or less, further 13% or less, 12.5% or less. May be good.
  • Al 2 O 3 is generally understood as a component that increases the viscosity of the glass composition during melting. However, in a glass composition having a high value of SiO 2 + B 2 O 3 , Al 2 O 3 can specifically reduce the viscosity at the time of melting.
  • An example of a preferable range of Al 2 O 3 content is 8 to 12.5%, particularly 10 to 12.5%.
  • these ranges are particularly suitable.
  • Another example of a preferred range of Al 2 O 3 content is 13-17%.
  • the content of Al 2 O 3 is particularly suitable to be 13 to 17%.
  • Yet another example of the preferred range of Al 2 O 3 content is 12-15%.
  • the content of Al 2 O 3 is particularly suitable to be 12 to 15%.
  • Alkali metal oxides are well known as components that reduce the viscosity at the time of melting, but when the content of the alkali metal oxides is increased, the dielectric constant increases at the same time.
  • Al 2 O 3 has an action of specifically lowering the viscosity at the time of melting, but has a slight side effect of increasing the dielectric constant.
  • MgO is an optional component that lowers the viscosity of the glass composition at the time of melting, suppresses the mixing of bubbles into the glass fiber, and improves the homogeneity of the glass composition. Even if the content of MgO is 0.1% or more, 0.2% or more, further 0.5% or more, 0.6% or more, and in some cases 0.8% or more, or even 1% or more. Good. The content of MgO is preferably less than 10%, 8% or less, 7% or less, 5% or less, and in some cases, 3% or less, and further 2% or less, particularly 1.6% or less.
  • the MgO content may be preferably 1.7% or less, 1.5% or less, and further 1.2% or less and 1% or less in order to make the ratio with the CaO content an appropriate range. ..
  • the optimum MgO content may be 2% or more, for example, 2 to 8%, further 2 to 5%, or 3 to 5%.
  • MgO has a large effect of lowering the liquidus temperature, since it is enough to alkali metal oxide R 2 O while not raising the dielectric constant is not, in preference to R 2 O, in other words containing more R 2 O It is preferable to add it so that the rate is high.
  • An example of a preferable range of MgO content is 0.5 to 2%.
  • the content of MgO is 0.5 to 2%, more preferably 0.5 to 1.6%. ..
  • the content of MgO is 0.5 to 2%, more preferably 1 to 2%.
  • Another example of the preferred range of MgO content is 0.1-1%.
  • the content of MgO is 0.1 to 1%, more preferably 0.1% or more and less than 1%.
  • CaO CaO is an optional component that improves the solubility of the glass raw material and lowers the viscosity of the glass composition during melting.
  • the action of CaO is greater than that of MgO.
  • the CaO content may be 0.1% or more, 0.5% or more, further 1% or more, and in some cases 1.5% or more, further 2% or more.
  • the CaO content is preferably less than 10%, 7% or less, 5% or less, and in some cases, 4% or less, 3.5% or less, 3% or less, and even 2.5% or less. It should be noted that CaO has a greater effect of increasing the dielectric constant of the glass composition than MgO and ZnO.
  • CaO also alkali metal oxides R 2 O in preference to, so that high other words R 2 O than content, it is preferably added.
  • An example of a preferable range of the CaO content is 2 to 5%, and further 2 to 3.5%.
  • the content of CaO is particularly suitable to be 2 to 5%, and the first to fourth combinations are 2 to 3.5. %, 2.5-5% is more suitable for the fifth combination.
  • Another example of a preferred range of CaO content is 0.5-2%.
  • the sixth combination of the contents of SiO 2 and B 2 O 3 is adopted, the content of Ca O of 0.5 to 2% is particularly suitable.
  • Examples of a particularly preferable combination of the MgO content and the CaO content include 1 to 2% for MgO and 2 to 5% for CaO. This combination is particularly suitable when adopting a fifth combination of SiO 2 and B 2 O 3 content.
  • SrO is also an optional component that improves the solubility of the glass raw material and lowers the viscosity of the glass composition at the time of melting. However, since SrO increases the dielectric constant of the glass composition as compared with MgO and CaO, it is desirable to limit the content.
  • the content of SrO is preferably 1% or less, 0.5% or less, and more preferably 0.1% or less. SrO does not have to be substantially contained.
  • the SrO content of 0.1% or less is particularly suitable. In this case, SrO may not be substantially contained. However, SrO may be added so that its content is 0.1 to 5% and further 1 to 3.5%.
  • the content of SrO is 0.1 to 5%, more preferably 1 to 3.5%.
  • the ratio SrO / CaO to the content of SrO to the content of CaO may exceed 1. In this case, the ratio of CaO / MgO to the CaO content to the MgO content may also exceed 1.
  • RO The total content of RO, that is, the content of MgO, CaO and SrO, is less than 15%, 12% or less, 10% or less, less than 10%, 9.5% or less, 8% or less, and even less than 7%. In particular, 6% or less is preferable, and in some cases, 5% or less, and further 4% or less may be used. If the RO content is too high, the dielectric constant may not drop sufficiently.
  • Each component constituting RO is an optional component individually, but it is preferable that at least one of them is contained, that is, the total content exceeds 0%.
  • the RO content is preferably 1% or more, 1.5% or more, 2% or more, more preferably 2.5% or more, and in some cases, 3% or more, further 3.5% or more.
  • a preferable example of the RO content range is 2 to 7%, particularly 2 to 4%.
  • MgO / RO The ratio of MgO / RO, that is, the content of MgO to the content of RO is preferably less than 0.8, more preferably less than 0.7, and may be 0.5 or less or 0.4 or less in some cases.
  • MgO / RO becomes large, the tendency of the glass composition to undergo phase separation becomes remarkable, so that the homogeneity of the glass composition may be impaired. In addition, spinning may be difficult due to the mixture of phases having different physical properties.
  • MgO / RO is preferably 0.1 or more, more preferably 0.14 or more, and in some cases, 0.19 or more.
  • MgO / RO is preferably 0.1 to 0.5.
  • MgO / (MgO + CaO) The ratio of MgO / (MgO + CaO), that is, the ratio of the content of MgO to the total content of MgO and CaO may also be in a range in which the above-mentioned upper limit and lower limit of MgO / RO are arbitrarily combined.
  • MgO / (MgO + CaO) is preferably 0.1 to 0.5, and particularly 0.1 to 0.4.
  • Li 2 O is an optional component that has the effect of lowering the viscosity of the glass composition at the time of melting to suppress the mixing of bubbles into the glass fiber even when added in a small amount, and further has the effect of suppressing devitrification. Is.
  • the addition of an appropriate amount of Li 2 O remarkably suppresses the tendency of the glass composition to undergo phase separation.
  • the content of Li 2 O is preferably 1.5% or less, 1% or less, 0.5% or less, and in some cases 0.4% or less, 0.3% or less, and further 0.2% or less. You may.
  • the content of Li 2 O is preferably 0.01% or more, 0.03% or more, and more preferably 0.05% or more. Examples of the preferable range of the content of Li 2 O are 0.01 to 0.5%, and further 0.05 to 0.4%.
  • Na 2 O Na 2 O is also an optional component that has the effect of reducing the viscosity of the glass composition at the time of melting even when added in a small amount and suppressing the mixing of bubbles into the glass fiber, and further has the effect of suppressing devitrification.
  • the Na 2 O content may be 0.01% or more, 0.05% or more, and further 0.1% or more.
  • the addition of Na 2 O needs to be limited to a limited range so as not to increase the dielectric constant of the glass composition.
  • the Na 2 O content is preferably 1.5% or less, 1% or less, 0.5% or less, more preferably 0.4% or less, and in some cases 0.2% or less, further 0.15% or less. In particular, it may be 0.1% or less, 0.05% or less, and 0.01% or less.
  • An example of a preferable range of the Na 2 O content is 0.01 to 0.4%.
  • K 2 O K 2 O is also an optional component that has the effect of reducing the viscosity of the glass composition at the time of melting even when added in a small amount and suppressing the mixing of bubbles into the glass fiber, and further has the effect of suppressing devitrification. Is.
  • K 2 O has a large effect of increasing the dielectric constant of the glass composition.
  • the content of K 2 O is preferably 1% or less, 0.5% or less, 0.2% or less, and in some cases, even if it is 0.1% or less, 0.05% or less, 0.01% or less. Good. K 2 O may not be substantially contained.
  • R 2 O The total content of R 2 O and Li 2 O, Na 2 O and K 2 O is preferably 5% or less, 4% or less, 3% or less, 2% or less, and further preferably 1.5% or less. In some cases, it may be 1% or less, further 0.6% or less, 0.5% or less.
  • Each component constituting R 2 O is an optional component individually, but it is preferable that at least one of them is contained, that is, the total content exceeds 0%.
  • the content of R 2 O is preferably 0.03% or more, 0.05% or more, more preferably 0.1% or more, particularly 0.15% or more, 0.2% or more.
  • the characteristic temperature may be adjusted to a more preferable range.
  • Li 2 O should be added so that the content is 0.25% or more, and further 0.3% or more. Is preferable.
  • Na 2 O may be added so that the content of Na 2 O is 0.05% or more and less than the content of Li 2 O.
  • T-Fe 2 O 3 is an optional component that improves the solubility of the glass raw material by its heat ray absorbing action and also improves the homogeneity of the glass composition at the time of melting. Due to the effect of improving homogeneity by T-Fe 2 O 3 , even when the fiber diameter of the glass fiber to be formed is small, the occurrence of yarn breakage of the glass fiber at the time of spinning is suppressed, and the spinning operability is improved.
  • the content of T-Fe 2 O 3 is preferably 0.01% or more, 0.02% or more, 0.05% or more, and more preferably 0.10% or more.
  • T-Fe 2 O 3 The effect of improving solubility is remarkable when the content of T-Fe 2 O 3 is 0.01% or more, but the effect of improving homogeneity is particularly remarkable when the content of T-Fe 2 O 3 is 0.02% or more.
  • content of T-Fe 2 O 3 is 0.5% or less, 0.3% or less, further 0.25% or less Preferably, it may be 0.20% or less in some cases.
  • the amount of total iron oxide in the glass composition is converted into Fe 2 O 3 by converting iron oxide other than Fe 2 O 3 such as Fe O into Fe 2 O 3 , that is, the content of T-Fe 2 O 3 . , Is displayed. Therefore, at least a part of T-Fe 2 O 3 can be contained as FeO.
  • An example of a preferable range of the content of T-Fe 2 O 3 is 0.01 to 0.5%, and further 0.1 to 0.3%.
  • ZnO ZnO is an optional component that improves the solubility of the glass raw material and lowers the viscosity of the glass composition at the time of melting. However, ZnO increases the dielectric constant of the glass composition.
  • the ZnO content is preferably 3.5% or less, 2% or less, 1% or less, and more preferably 0.5% or less. ZnO may not be substantially contained.
  • Ingredients other than the above that can be contained in the glass composition include P 2 O 5 , BaO, PbO, TiO 2 , ZrO 2 , La 2 O 3 , Y 2 O 3 , MoO 3 , WO 3 , Nb 2 O 5 , Cr. Examples thereof include 2 O 3 , SnO 2 , CeO 2 , As 2 O 3 , Sb 2 O 3 , and SO 3 .
  • Another component that the glass composition may contain is a noble metal element such as Pt, Rh, Os, and a halogen element such as F, Cl.
  • the acceptable content of these components is preferably less than 2%, even less than 1%, particularly less than 0.5% for each, preferably less than 5% in total, more than 3%, especially 2%. Less than, especially less than 1%.
  • the glass composition may not substantially contain each of the above other components. TiO 2 may be added in a small amount for the reason described later, but it may not be substantially contained. The same applies to ZrO 2 .
  • the glass composition may contain components effective in promoting clarification at the time of melting, preferably SO 3 , F, and Cl in a range of less than 2%.
  • TiO 2 may reduce the dielectric constant and the dielectric loss tangent of the glass composition, contrary to the common general knowledge of those skilled in the art. From this point of view, the content of TiO 2 may exceed 0% and may be 1% or less. In particular, when the sixth combination of the contents of SiO 2 and B 2 O 3 is adopted, TiO 2 exceeding 0% and not more than 1% may be added.
  • the glass composition of the present invention in a preferred embodiment contains the following components. 40 ⁇ SiO 2 ⁇ 58 25 ⁇ B 2 O 3 ⁇ 40 7.5 ⁇ Al 2 O 3 ⁇ 18 0 ⁇ R 2 O ⁇ 4 0 ⁇ Li 2 O ⁇ 1.5 0 ⁇ Na 2 O ⁇ 1.5 0 ⁇ K 2 O ⁇ 1 1 ⁇ RO ⁇ 10 0 ⁇ MgO ⁇ 10 0 ⁇ CaO ⁇ 10 0 ⁇ SrO ⁇ 5 0 ⁇ T-Fe 2 O 3 ⁇ 0.5
  • 7.5 ⁇ Al 2 O 3 ⁇ 15 and 0 ⁇ SrO ⁇ 1 may be established.
  • the glass compositions of these forms preferably further satisfy 40 ⁇ SiO 2 ⁇ 55. Further, SiO 2 + B 2 O 3 ⁇ 80 may be satisfied, and preferably SiO 2 + B 2 O 3 + Al 2 O 3 ⁇ 99.9 may be further satisfied. MgO / RO ⁇ 0.8 is also another condition that the glass composition of the above form may satisfy.
  • the permittivity of the glass composition according to the present invention at a measurement frequency of 1 GHz is 4.65 or less, 4.4 or less, 4.35 or less, 4.30 or less, 4.25 or less, and even 4.20. It is less than or equal to, and in some cases less than or equal to 4.18.
  • the permittivity of the measurement frequency of 5 GHz is 4.63 or less, 4.4 or less, 4.31 or less, 4.27 or less, 4.22 or less, and further 4.17 or less, and in some cases, 4.15 or less. is there.
  • the permittivity at a measurement frequency of 10 GHz is 4.55 or less, 4.4 or less, 4.22 or less, 4.18 or less, 4.14 or less, and even 4.08 or less, and in some cases 4.06 or less. is there.
  • the dielectric loss tangent of the glass composition according to the invention at a measurement frequency of 1 GHz is 0.007 or less, 0.005 or less, 0.004 or less, and even 0.003 or less, and in some cases 0.002 or less. is there.
  • the dielectric loss tangent at the measurement frequency of 1 GHz may be 0.001 or less, less than 0.001, 0.0009 or less, 0.0008 or less, and further 0.0007 or less.
  • the dielectric loss tangent at the measurement frequency of 5 GHz is 0.007 or less, 0.005 or less, 0.004 or less, further 0.003 or less, and in some cases 0.002 or less.
  • the dielectric loss tangent at a measurement frequency of 10 GHz is 0.007 or less, 0.006 or less, 0.005 or less, 0.004 or less, further 0.003 or less, and in some cases 0.002 or less.
  • the T2 of the glass composition according to the invention is 1700 ° C. or lower, 1650 ° C. or lower, 1640 ° C. or lower, 1620 ° C. or lower, further 1610 ° C. or lower, and in some cases less than 1600 ° C., 1550 ° C. or lower. Further, it is 1520 ° C. or lower, particularly 1510 ° C. or lower.
  • T2 is a temperature that serves as a guideline for the melting temperature of the glass melt. Since T2, which is excessively high, requires an extremely high temperature for melting the glass melt, the energy cost and the cost of the device that can withstand the high temperature are high.
  • T2 is preferably 1590 ° C. or lower, 1550 ° C. or lower, further 1500 ° C. or lower, and in some cases 1450 ° C. or lower, further 1400 ° C. or lower.
  • T3 is preferably 1450 ° C. or lower, 1420 ° C. or lower, 1400 ° C. or lower, further 1365 ° C. or lower, particularly 1360 ° C.
  • T3 is a temperature that serves as a guideline for the spinning temperature of glass fibers. Excessively high T3 has a large amount of B 2 O 3 volatilized from the glass in the bushing tip, which may adhere to the tip and increase the risk of so-called thread breakage.
  • the T3 of the glass composition according to the invention is higher than the devitrification temperature TL.
  • T3 is 10 ° C. or higher, further 50 ° C. or higher, and in some cases 100 ° C. or higher than TL.
  • the T2.5 of the glass composition according to the invention is 50 ° C. or higher above the devitrification temperature TL.
  • T2.5 is more than 100 ° C. higher than TL.
  • the fifth combination of SiO 2 and B 2 O 3 content is suitable for achieving particularly favorable characteristic temperatures.
  • Preferred characteristic temperatures are, for example, T2 at 1520 ° C. or lower, particularly 1510 ° C. or lower, and T3 at 1300 ° C. or lower, which is higher than TL.
  • a glass composition having a Li 2 O content of 0.25% or more is also suitable for achieving the above-mentioned preferable characteristic temperature.
  • the use of the glass composition according to the present invention is not limited. Examples of applications are glass fibers and glass moldings.
  • An example of a glass molded body is flake-shaped glass. That is, the glass composition of the present invention may be a glass composition for glass fibers, a glass composition for a glass molded body, or a glass composition for flake-shaped glass.
  • the glass composition according to the present invention is a glass composition capable of further suppressing the occurrence of devitrification and the mixing of bubbles in the glass fibers even when the fiber diameter of the glass fibers to be formed is small.
  • the “glass fiber having a small fiber diameter” means, for example, a glass fiber having an average fiber diameter of 1 to 6 ⁇ m. That is, the glass composition according to the present invention may be a glass composition for glass fibers having a small fiber diameter, or more specifically, a glass composition for glass fibers having an average fiber diameter of 1 to 6 ⁇ m.
  • the glass composition according to the present invention may be a glass composition for glass fibers used for a printed circuit board (printed wiring board, printed circuit board).
  • the glass composition according to the present invention is a glass composition capable of further suppressing the occurrence of devitrification and the mixing of bubbles in the glass molded body to be formed, for example, even when the thickness of the flake-shaped glass is small.
  • the thickness is small means, for example, 0.1 to 2.0 ⁇ m.
  • the glass composition according to the present invention may be a glass composition for a glass molded product used for a printed circuit board.
  • the glass composition according to the present invention can be a glass composition for a printed circuit board.
  • the glass fiber according to the present invention is composed of the glass composition according to the present invention.
  • the specific composition of the glass fiber is not particularly limited, and as long as it is composed of the glass composition according to the present invention, it can have the same composition as the conventional glass fiber.
  • the glass fiber according to the present invention can be a glass fiber having a small fiber diameter. Further, such a glass fiber having a small fiber diameter and a low dielectric constant is a form of the glass fiber according to the present invention.
  • the average fiber diameter of the glass fiber may be, for example, 1 to 10 ⁇ m, further 6 to 10 ⁇ m, or 1 to 6 ⁇ m.
  • the average fiber diameter may be 3 ⁇ m or more, 10 ⁇ m or less, 5.1 ⁇ m or less, 4.6 ⁇ m or less, and further 4.3 ⁇ m or less.
  • a glass composition having a characteristic temperature suitable for mass production is suitable for stable production as fine glass fibers.
  • the average fiber diameter is finer, eg, 3.9 ⁇ m or less, further 3.5 ⁇ m or less.
  • the glass fiber is, for example, a long glass fiber (filament).
  • a preferred use of the glass fiber according to the present invention is a printed circuit board. Glass fibers with a low dielectric constant and a small fiber diameter are suitable for use in printed circuit boards. However, the application is not limited to the printed circuit board.
  • Glass fiber can be glass yarn.
  • the glass yarn may contain glass fibers other than the glass fibers according to the present invention, but may be composed of only the glass fibers according to the present invention, specifically, long glass fibers. This glass yarn has high productivity by suppressing the occurrence of defects such as yarn breakage and fluffing of glass fibers.
  • the number of long glass fibers (number of filaments) contained in the glass yarn is, for example, 30 to 400.
  • the number of filaments may be, for example, 30 to 120, 30 to 70, and further 30 to 60.
  • An appropriate number is advantageous in forming the glass cloth more easily and surely and reducing the thickness of the printed circuit board.
  • the composition and use of the glass yarn is not limited to these examples.
  • the count of the glass yarn containing glass fiber may be, for example, 0.7 to 6 tex, 0.9 to 5 tex, further 1 to 4 tex, further 1 to 3 tex, or 10 to 70 tex.
  • An appropriate count is advantageous in forming a thin glass cloth more easily and surely and reducing the thickness of the printed circuit board.
  • the strength of the glass yarn may be 0.4 N / tex or more, further 0.6 N / tex or more, particularly 0.7 N / tex or more.
  • the glass fiber according to the present invention can be produced by applying a known method. For example, when producing a glass fiber having an average fiber diameter of about 1 to 6 ⁇ m, an example of the following method can be adopted. That is, the glass composition according to the present invention is put into a glass melting kiln and melted to form molten glass, and then the molten glass is pulled out from a large number of spinning nozzles provided at the bottom of a heat-resistant bushing in a spinning furnace to form a thread. How to do it. Thereby, the glass fiber composed of the glass composition according to the present invention can be produced.
  • the glass fiber can be a long glass fiber (filament).
  • the melting temperature in the melting kiln is, for example, 1300 to 1700 ° C., preferably 1400 to 1700 ° C., more preferably 1500 to 1700 ° C. In these cases, even when the fiber diameter of the glass fiber to be formed is small, the occurrence of minute devitrification and the mixing of bubbles in the glass fiber can be further suppressed, and the spinning tension can be prevented from becoming excessively high. The characteristics (for example, strength) and quality of the obtained glass fiber can be reliably ensured.
  • a take-up rotating body device called a collet is used to wind the glass fiber, but when the spinning tension is excessively increased, a thread habit due to a dent between the fingers occurs in the wound glass fiber, and this occurs. It leads to deterioration of the quality of glass fiber.
  • the collet is a device provided on the outer periphery of the collet body with a plurality of fingers that move toward the outside of the diameter when the collet rotates and sink to the collet body side when the collet is stopped. Deterioration of the quality of glass fibers may lead to poor appearance and / or poor opening of the glass cloth, for example.
  • the above problems can be alleviated.
  • the appearance and / or the openness of the glass cloth using the glass fiber is also improved.
  • a glass strand can be formed by applying a sizing agent to the surface of a glass fiber formed by spinning and bundling a plurality of glass fibers, for example, 10 to 120 glass fibers.
  • This strand contains glass fibers according to the present invention.
  • the strands are wound into a tube (for example, a paper tube) on a collet that rotates at high speed to make a cake, then the strands are unwound from the outer layer of the cake, air-dried while twisting, and then rewound into a bobbin or the like.
  • a glass yarn can be formed by twisting.
  • the glass cloth according to the present invention is composed of the glass fibers according to the present invention.
  • the glass cloth according to the present invention may also have the above-mentioned characteristics such as a low dielectric constant of the glass composition according to the present invention.
  • the woven structure of the glass cloth according to the present invention is, for example, plain weave, satin weave, twill weave, diagonal weave, and ridge weave, and is preferably plain weave. However, the woven structure is not limited to these examples.
  • the glass yarn may contain glass fibers other than the glass fibers according to the present invention, but may be composed of only the glass fibers according to the present invention, specifically, long glass fibers.
  • the glass cloth according to the present invention suppresses the occurrence of defects such as thread breakage and fluffing of glass fibers, and has high productivity.
  • the thickness of the glass cloth is preferably 200 ⁇ m or less, more preferably 7 to 150 ⁇ m, further preferably 7 to 150 ⁇ m, expressed by the thickness measured in accordance with the provisions of item 7.10.1 of JIS R3420: 2013. Is 7 to 30 ⁇ m, particularly preferably 8 to 15 ⁇ m.
  • This preferred form of glass cloth is suitable for reducing the thickness of the printed circuit board.
  • the mass of the glass cloth is preferably 250 g / m 2 or less, more preferably 150 g / m 2 or less, expressed by the cloth mass measured in accordance with JIS R3420: 2013 item 7.2. It is more preferably 50 g / m 2 , and particularly preferably 15 g / m 2 or less. This preferred form of glass cloth is suitable for use on thin printed circuit boards.
  • the number of glass fibers (weaving density) per unit length (25 mm) of the glass cloth is preferably 40 to 130, more preferably 60 to 120 per 25 mm of length for both warp and weft.
  • the number of books more preferably 90 to 120.
  • This preferable form of the glass cloth has a thin thickness, increases the number of entangled points of the warp and the weft, makes it difficult for the glass cloth to bend, and suppresses the occurrence of pinholes when impregnated with the resin. Suitable for.
  • air permeability of the glass cloth for example, 400cm 3 / (cm 2 ⁇ sec) or less, preferably 300cm 3 / (cm 2 ⁇ sec) or less, more preferably 250cm 3 / (cm 2 ⁇ sec)
  • This preferred form of glass cloth is suitable for reducing its thickness and suppressing the occurrence of the above-mentioned pinholes.
  • the above-mentioned melting temperature is applied to the glass composition according to the present invention or the glass raw material prepared so as to obtain the glass composition according to the present invention. That is, it is preferable to apply 1400 ° C. or higher, preferably 1400 to 1650 ° C. to obtain glass fibers.
  • the glass cloth according to the present invention can be produced by a known method using the glass fiber according to the present invention.
  • An example of the manufacturing method is a method in which a warping step and a gluing step are performed on a glass yarn, and then the weft of the glass yarn is driven using this as a warp.
  • Various looms such as jet looms, sulzer looms, and rapier looms can be used for driving the weft.
  • Specific examples of the jet loom include an air jet loom and a water jet loom.
  • the loom for producing glass cloth is not limited to these.
  • the glass cloth according to the present invention may be spread.
  • the opening treatment is advantageous for reducing the thickness of the glass cloth.
  • the specific method of the fiber-spreading treatment is not particularly limited, and for example, fiber-spreading by the pressure of a water stream, fiber-spreading by high-frequency vibration using water or the like as a medium, and fiber-spreading by pressurization using a roll or the like can be applied.
  • As the water used as the medium for opening the fibers degassed water, ion-exchanged water, deionized water, electrolytic cation water, electrolytic anion water and the like can be used.
  • the fiber opening treatment may be carried out at the same time as the weaving of the glass cloth, or may be carried out after the weaving. Further, the fiber opening treatment may be carried out at the same time as various treatments such as heat cleaning and surface treatment, or may be carried out after various treatments.
  • a removal treatment of the substance represented by a heat cleaning treatment may be further carried out.
  • the glass cloth that has undergone the removal treatment is used for a printed circuit board, it is excellent in impregnation property of the matrix resin and adhesion to the resin.
  • the woven glass cloth may be surface-treated with a silane coupling agent or the like.
  • the surface treatment can be carried out by a known means, and specifically, it can be carried out by a method of impregnating a glass cloth with a silane coupling agent, a method of coating, a method of spraying, or the like.
  • the glass cloth according to the present invention is suitable for a printed circuit board. When used for a printed circuit board, it can effectively utilize the characteristics that it has a low dielectric constant and can be composed of glass fibers having a small fiber diameter. However, the application is not limited to the printed circuit board.
  • the prepreg according to the present invention may be composed of the glass cloth according to the present invention.
  • the prepreg according to the present invention may also have the above-mentioned properties such as a low dielectric constant of the glass composition according to the present invention.
  • the method for producing the prepreg of the present invention is not particularly limited, and any conventionally known production method may be adopted.
  • the resin impregnated in the prepreg according to the present invention is not particularly limited as long as it is a synthetic resin that can be composited with the glass cloth of the present invention, and examples thereof include thermosetting resins, thermoplastic resins, and composite resins thereof. .. It is desirable to use a resin having a low dielectric constant that matches the glass cloth according to the present invention.
  • the printed circuit board according to the present invention may be composed of the glass cloth according to the present invention.
  • the printed circuit board according to the present invention may also have the above-mentioned characteristics such as the low dielectric constant of the glass composition according to the present invention.
  • the method for producing the substrate of the present invention is not particularly limited, and any conventionally known production method may be adopted. For example, a method of curing after producing a prepreg containing a resin impregnated in a glass cloth can be mentioned.
  • the glass raw materials were weighed so as to have each composition shown in Tables 1 to 6 (the unit of the content of the components was% by weight) and mixed so as to be in a homogeneous state to prepare a glass raw material mixed batch.
  • the prepared mixed batch was put into a platinum rhodium crucible and heated in an indirect heating electric furnace set at 1600 ° C. for 3 hours or more in an air atmosphere to obtain molten glass.
  • the obtained molten glass was poured into a refractory mold and cast-molded, and then the obtained molded product was slowly cooled to room temperature in a slow-cooling furnace to prepare a glass composition sample to be used for evaluation.
  • the glass samples prepared in this manner were evaluated for their dielectric constants and dielectric loss tangents at characteristic temperatures T2, T2.5 and T3, devitrification temperature TL, frequencies 1 GHz, 5 GHz and 10 GHz.
  • the evaluation method is as follows.
  • the viscosity was measured by the platinum ball pulling method, and the temperatures at which the viscosities were 10 2 dPa ⁇ s, 10 2.5 dPa ⁇ s, and 10 3 dPa ⁇ s were T2, T2.5, and T3, respectively.
  • the sample glass was pulverized, passed through a sieve having a mesh size of 2.83 mm, and the particles remaining on the sieve having a mesh size of 1.00 mm were sieved. The particles were washed to remove fine particles adhering to the particles, and dried to prepare a sample for measuring devitrification temperature.
  • 25 g of the devitrification temperature measurement sample is placed in a platinum boat (rectangular, lidless platinum vessel) so that the thickness is substantially uniform, held in a temperature tilting furnace for 2 hours, removed from the furnace, and placed inside the glass. The maximum temperature at which devitrification was observed was defined as the devitrification temperature.
  • the permittivity and the dielectric loss tangent at each frequency were measured using a permittivity measuring device by the cavity resonator perturbation method.
  • the measurement temperature was 25 ° C., and the dimensions of the measurement sample were a rectangular parallelepiped with a bottom surface of 1.5 cm on a side and a length of 10 cm.
  • the glass compositions of Examples 1 to 44 and Examples 48 to 99 had a dielectric constant of 4.65 or less at a measurement frequency of 1 GHz, T2 of 1700 ° C. or less, and T3 of 1450 ° C. or less. Some of these glass compositions have a dielectric constant of 4.4 or less at a measurement frequency of 1 GHz, and are the glass compositions of Examples 1 to 43, Examples 48 to 81, Examples 83 to 84, and Examples 93 to 99.
  • the dielectric constant at a measurement frequency of 1 GHz was 4.36 or less.
  • the glass compositions of Examples 1 to 41, Examples 48 to 81, Examples 83 to 84, and Examples 94 to 99 had a permittivity of 4.35 or less at a measurement frequency of 1 GHz.
  • T2 was 1520 ° C. or lower
  • T3 was 1300 ° C. or lower, which was higher than TL.
  • the glass compositions of Examples 66-67 and 83-92 have a B 2 O 3 content of 35% or less, in some cases 30% or less, T2 of 1520 ° C or less, and T3 of 1300 ° C or less. It became higher than TL.
  • the glass compositions of Examples 2 and 93-99 had a dielectric loss tangent of less than 0.001 at a frequency of 1 GHz.
  • the glass compositions of Examples 93-99 had a dielectric loss tangent of less than 0.001 at a frequency of 1 GHz and a T2 of less than 1600 ° C.
  • the glass compositions of Examples 45 to 47 are comparative examples. In Example 45, T2 exceeded 1700 ° C., and in Examples 46 to 47, the permittivity at a measurement frequency of 1 GHz exceeded 4.7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Glass Compositions (AREA)

Abstract

本開示は、誘電率が低く、量産に適した新規なガラス組成物を提供する。提供されるガラス組成物は、重量%で表示して、例えば、40≦SiO2≦60、25≦B2O3≦45、0<Al2O3≦18、0<R2O≦5、0≦RO≦12を含み、i)SiO2+B2O3≧80、SiO2+B2O3+Al2O3≦99.9、ii)SiO2+B2O3≧78、SiO2+B2O3+Al2O3≦99.9、0<RO<10の少なくとも1つが成立する。提供される別のガラス組成物は、含有率が上記と同じ範囲のSiO2、B2O3、Al2O3、R2Oと3<RO<8とを含み、SiO2+B2O3≧75、SiO2+B2O3+Al2O3<97が成立する。ただし、R2O=Li2O+Na2O+K2O、RO=MgO+CaO+SrOである。

Description

ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法
 本発明は、ガラス組成物と、当該組成物により構成されるガラス繊維、及びガラスクロスとに関する。また、本発明は、ガラス繊維の製造方法に関する。
 電子機器が備えるプリント回路板(printed circuit board)の一種に、樹脂、ガラス繊維、及び無機充填材、並びに、必要に応じて、硬化剤及び改質剤等の更なる材料から構成される基板がある。また、電子部品が実装される前のプリント配線板(printed wiring board)にも、上記基板と同様の構成を有するものがある。以下、本明細書では、プリント回路板及びプリント配線板の双方を合わせて、「プリント基板(printed board)」と記載する。プリント基板においてガラス繊維は、絶縁体、耐熱体、及び基板の補強材として機能する。ガラス繊維は、例えば、複数のガラス繊維を引き揃えたガラス糸(ガラスヤーン)を製織したガラスクロスとして、プリント基板に含まれる。また、通常ガラスクロスは、プリント基板には、樹脂が含浸されたプリプレグとして用いられる。近年、電子機器の小型化の要求と、高機能化を目的としたプリント基板の高実装化の要求とに応えるために、プリント基板の薄型化が進んでいる。プリント基板の薄型化のためには、繊維径のより小さなガラス繊維が必要とされる。また、大容量のデータを高速で伝送処理する要求が急激に高まっている等の理由から、プリント基板に使用するガラス繊維には低誘電率化が求められている状況にある。
 プリント基板に使用される無機充填剤にもガラスが用いられることがある。典型的な例は、フレーク状ガラスである。フレーク状ガラス等のガラス成形体をプリント基板の無機充填剤に使用する場合、当該成形体には、プリント基板に用いられるガラス繊維と同様の特性、例えば低い誘電率、が要求される。
 低誘電率のガラス組成物から構成されるガラス繊維が、特許文献1~5に開示されている。
特開昭62-226839号公報 特表2010-508226号公報 特開2009-286686号公報 国際公開第2017/187471号 国際公開第2018/216637号
 ガラス組成物には、誘電率が低いことと共に量産に適した特性温度を有することも求められている。ガラス繊維の量産に重要なガラス組成物の特性温度としては、紡糸温度の目安となる温度T3、すなわち粘度が103dPasとなる温度、が挙げられる。温度T2、T2.5、さらには失透温度TLも、そのガラス組成物がガラス繊維の量産に適しているかを判断する指標となる。しかし、誘電率が低いガラス組成は特性温度の調整が容易ではない。
 以上に鑑み、本発明は、誘電率が低く、量産に適した新規なガラス組成物の提供を目的とする。
 本発明は、
 重量%で表示して、
 40≦SiO2≦60
 25≦B23≦45
  5≦Al23≦15
  0<R2O≦5
  0<RO<15
を含み、
 SiO2+B23≧80、及び/又は、SiO2+B23≧78かつ0<RO<10
が成立する、ガラス組成物、を提供する。
 本明細書において、R2Oは、Li2O、Na2O及びK2Oから選ばれる少なくとも1種の酸化物であり、ROは、MgO、CaO及びSrOから選ばれる少なくとも1種の酸化物である。
 本発明は、別の側面から、
 重量%で表示して、
 40≦SiO2≦60
 25≦B23≦45
  0<Al23≦18
  0<R2O≦5
  0≦RO≦12
を含み、
 i)SiO2+B23≧80、及びSiO2+B23+Al23≦99.9、並びに
 ii)SiO2+B23≧78、SiO2+B23+Al23≦99.9、及び0<RO<10
 の少なくとも一方が成立する、ガラス組成物、を提供する。
 本発明は、別の側面から、
 重量%で表示して、
 40≦SiO2≦60
 25≦B23≦45
  0<Al23≦18
  0<R2O≦5
  3<RO<8
を含み、
 SiO2+B23≧75、及びSiO2+B23+Al23<97
が成立する、ガラス組成物、を提供する。
 本発明は、別の側面から
 重量%で表示してSiO2+B23≧77が成立し、
 周波数1GHzにおける誘電率が4.4以下であり、
 周波数1GHzにおける誘電正接が0.007以下であり、
 粘度102dPasになる温度T2が1700℃以下、
である、ガラス組成物、を提供する。
 本発明は、別の側面から
 重量%で表示して、
 40≦SiO2≦49.95
 25≦B23≦40
 10≦Al23≦20
 0.1≦R2O≦2
 1≦RO≦10
を含み、
 SiO2+B23≧70、及びSiO2+B23+Al23≦97
が成立する、ガラス組成物、を提供する。
 本発明は、別の側面から
 重量%で表示して、
 40≦SiO2≦49.95
 25≦B23≦29.9
 10≦Al23≦20
 0.1≦R2O≦1
 2≦RO≦8
を含み、
 SiO2+B23≧70、及びSiO2+B23+Al23≦97
が成立する、ガラス組成物、を提供する。
 本発明は、別の側面から
 重量%で表示して、
 40≦SiO2≦49.95
 31≦B23≦40
 8≦Al23≦18
 0.1≦R2O≦1
 1≦RO≦10
を含み、
 SiO2+B23≧77、及びSiO2+B23+Al23≦97
が成立する、ガラス組成物、を提供する。
 本発明は、また別の側面から、
 本発明によるガラス組成物から構成されるガラス繊維、を提供する。
 本発明は、また別の側面から、
 本発明によるガラス繊維から構成されるガラスクロス、を提供する。
 本発明は、また別の側面から、
 本発明によるガラスクロスを含むプリプレグ、を提供する。
 本発明は、また別の側面から、
 本発明によるガラスクロスを含むプリント基板、を提供する。
 本発明は、また別の側面から、
 本発明によるガラス組成物を1400℃以上の温度で溶融する工程を含み、平均繊維径が1~6μmのガラス繊維を得る、ガラス繊維の製造方法、を提供する。
 本発明によれば、誘電率がより低く、量産に適した特性温度を有するガラス組成物を提供することができる。
 以下において各成分の含有率を示す「%」表示は全て重量%である。「実質的に含まれない」とは、含有率が0.1重量%未満、好ましくは0.07重量%未満、さらに好ましくは0.05重量%未満を意味する。この文言における「実質的に」は、上記を限度として工業原料から不可避的に混入する不純物を許容する趣旨である。各成分の含有率、特性その他の好ましい範囲は、以下において個別に記載する上限及び下限を任意に組み合わせて把握できる。
 以下においても、ガラス組成物の特性温度は、粘度が10ndPasとなる温度をTnと表記する(例えばT2.5は、そのガラス組成物の粘度が102.5dPasとなる温度を意味する)。誘電率は、厳密には比誘電率を意味するが、本明細書では慣用に従って単に誘電率と表記する。誘電率及び誘電正接は室温(25℃)での値である。以下の説明は、本発明を限定する趣旨ではなく、その好適な形態を示す意味で提示されている。
[組成物の成分]
(SiO2
 SiO2は、ガラスの網目構造を形成する成分である。SiO2は、ガラス組成物の誘電率を下げる作用を有する。SiO2の含有率が低過ぎると、ガラス組成物の誘電率を十分に低くすることができない。SiO2の含有率が高過ぎると、溶融時の粘性が高くなり過ぎて均質なガラス組成物を得ることが難しくなる。ガラス組成物の均質性が低下すると、ガラス繊維、なかでも繊維径の小さいガラス繊維、の紡糸時に糸切れが誘発される。SiO2の含有率は、40%以上、45%以上、46%以上、さらには48%以上、特に49%以上が好ましく、場合によっては50%以上、さらに50.5%以上、51%以上、52%以上、53%以上であってもよい。SiO2の含有率は、60%以下、58%未満、56%以下、さらには55%未満、特に54.5%以下が好ましく、場合によっては54%以下、53%以下、52%以下、51%以下であってもよい。SiO2の含有率の好ましい範囲の一例は、40%以上58%未満であり、さらには40%以上55%未満である。また、SiO2の含有率は、40%以上49.95%以下とすることもできる。
(B23
 B23は、ガラスの網目構造を形成する成分である。B23は、ガラス組成物の誘電率を下げると共に、溶融時のガラス組成物の粘性を下げ、脱泡性(泡抜け性)を向上させ、形成したガラス繊維における泡の混入を抑制する作用を有する。一方で、B23は、ガラス組成物の溶融時に揮発しやすく、その含有率が過大となると、ガラス組成物として十分な均質性が得られ難くなったり、形成したガラス繊維における泡の混入の抑制が不十分となったり、ガラスから揮発したB23が紡糸に用いるブッシングのチップに付着していわゆる糸切れの要因になったりすることがある。B23の含有率は、25%以上、27%以上、29%以上、30%以上、さらには30%を超えることが好ましく、場合によっては30.5%以上、さらには31%以上、32%以上、33%以上、34%以上であってもよい。B23の含有率は、45%以下、43%以下、41%以下、さらには39%以下が好ましく、場合によっては38%以下、さらには36%以下、35%以下、34%以下、32%以下であってもよい。B23の含有率の好ましい範囲の一例は、30%を超え45%以下である。また、B23の含有率は、25%以上40%以下、25%以上29.9%以下、または31%以上40%以下とすることができる。
 (SiO2+B23)、(SiO2+B23+Al23
 誘電率が十分に低いガラス組成物を得るためには、SiO2の含有率とB23の含有率の合計(SiO2+B23)を77%以上、78%以上、さらに80%以上に調整するとよい。(SiO2+B23)は、81%以上、82%以上、さらには83%以上が好ましく、場合によっては84%以上、さらには85%以上であってもよい。(SiO2+B23)は、90%以下、さらには87.5%以下であってもよい。(SiO2+B23)の値が高過ぎると、ガラス組成物が分相する傾向が助長されるからである。また、(SiO2+B23)は70%以上とすることができる。SiO2の含有率、B23の含有率、及びAl23の含有率の合計(SiO2+B23+Al23)は、その他の成分を許容するために、99.9%以下が好適である。(SiO2+B23+Al23)は、98%以下、97%以下、97%未満、さらには96%以下であってもよい。(SiO2+B23)と(SiO2+B23+Al23)との組み合わせの好ましい一例は、(SiO2+B23)が82%以上、(SiO2+B23+Al23)が98%以下である。また、(SiO2+B23+Al23)は、90%以上98%以下、または90%以上97%以下とすることができる。
 (SiO2+B23)に対する(SiO2+B23+Al23)の比、すなわち(SiO2+B23+Al23)/(SiO2+B23)は、1.05以上が好ましく、1.12以上、1.13以上、1.15以上、さらに1.20以上であってもよい。この比が大きくなるにつれ、ガラス繊維の毛羽立ち等の欠点が抑制される。この効果は、後述するSiO2とB23の含有率についての第5の組み合わせにおいて顕著になる。
(SiO2とB23の好ましい組み合わせ)
 誘電率がより低く、溶融しやすいガラス組成物を得るためには、SiO2とB23の含有率には好ましい範囲の組み合わせがある。第1の組み合わせは、SiO2の含有率が48~51%、好ましくは49~51%、より好ましくは50~51%であり、B23の含有率が33~35%、好ましくは34~35%の組み合わせである。第2の組み合わせは、SiO2の含有率が50~53%、好ましくは51~52%であり、B23の含有率が32~35%、好ましくは32~34%の組み合わせである。第3の組み合わせは、SiO2の含有率が52~54%、好ましくは52.5~54%であり、B23の含有率が31~34%、好ましくは32~34%の組み合わせである。第4の組み合わせは、SiO2の含有率が52~55%、好ましくは53~55%であり、B23の含有率が30~32%の組み合わせである。
 第5の組み合わせは、SiO2の含有率が47~52%、好ましくは48~51%、より好ましくは48.5~50.5%、特に好ましくは48.95~49.95%であり、B23の含有率が25~30%、好ましくは26~29.5%、より好ましくは26~29%の組み合わせである。第5の組み合わせにおいて、MgOの含有率とCaOの含有率との合計(MgO+CaO)は、3.5%以上、さらに4%以上が適しており、8%以下が適している。第6の組み合わせは、SiO2の含有率が48~53%、好ましくは49~52%であり、より好ましくは49~51.5%であり、場合によっては49~51%又は48.95~49.95%であり、B23の含有率が28~35%、好ましくは30~33%、場合によっては30.5~32.5%の組み合わせである。第6の組み合わせにおいて、(MgO+CaO)は、1%以上3.5%未満、好ましくは1~3%、より好ましくは1~2.5%、場合によっては1.5~2.5%である。
(Al23
 Al23は、ガラスの網目構造を形成する成分である。Al23は、ガラス組成物の化学的耐久性を高める作用を有する。一方で、Al23は、紡糸時におけるガラス組成物の失透を起こりやすくする。Al23の含有率は、5%以上、7.5%以上、8%以上、9%以上、さらには10%以上が好ましく、場合によっては10.5%以上、12%以上、13%以上であってもよい。Al23の含有率は、20%以下、18%以下、17%以下、さらには15%以下が好ましく、場合によっては14%以下、さらには13%以下、12.5%以下であってもよい。失透温度TLを温度T3よりも低い範囲に確実に制御したい場合に適したAl23の含有率の一例は12.3%以下である。Al23は、一般には溶融時のガラス組成物の粘性を高める成分と理解されている。しかし、SiO2+B23の値が高いガラス組成物では、Al23は特異的に溶融時の粘性を低下させる作用を奏しうる。
 Al23の含有率の好ましい範囲の例は、8~12.5%、特に10~12.5%である。上述したSiO2とB23の含有率の第1~4の組み合わせを採用する場合には、これらの範囲が特に適している。
 Al23の含有率の好ましい範囲の別の例は13~17%である。上述したSiO2とB23の含有率の第5の組み合わせを採用する場合には、Al23の含有率は13~17%が特に適している。Al23の含有率の好ましい範囲のさらに別の例は12~15%である。SiO2とB23の含有率の第6の組み合わせを採用する場合には、Al23の含有率は12~15%が特に適している。
 溶融時の粘性を低下させる作用を奏する成分としてはアルカリ金属酸化物が周知であるが、アルカリ金属酸化物の含有率を増加させると、同時に誘電率が増大する。これに対し、本発明による好ましいガラス組成物においては、Al23は特異的に溶融時の粘性を低下させる作用を有するが、誘電率を増大させる副作用がわずかである。
(MgO)
 MgOは、溶融時におけるガラス組成物の粘性を下げてガラス繊維への泡の混入を抑制し、ガラス組成物としての均質性を向上させる任意成分である。MgOの含有率は、0.1%以上、0.2%以上、さらには0.5%以上、0.6%以上、場合によっては0.8%以上、さらには1%以上であってもよい。MgOの含有率は、10%未満、8%以下、7%以下、5%以下が好ましく、場合によっては3%以下、さらには2%以下、特に1.6%以下であってもよい。MgOの含有率は、CaOの含有率との比を適切な範囲とするために、1.7%以下、1.5%以下、さらには1.2%以下、1%以下が好ましいこともある。ただし、その他の成分の含有率によっては、最適なMgOの含有率が2%以上、例えば2~8%、さらには2~5%、或いは3~5%になることもある。なお、MgOは、失透温度を下げる効果が大きく、そうでありながらアルカリ金属酸化物R2Oほどには誘電率を引き上げないため、R2Oより優先的に、言い換えるとR2Oより含有率が高くなるように、添加することが好ましい。
 MgOの含有率の好ましい範囲の例は、0.5~2%である。SiO2とB23の含有率の第1~4の組み合わせを採用する場合には、MgOの含有率は0.5~2%、さらに0.5~1.6%が特に適している。SiO2とB23の含有率の第5の組み合わせを採用する場合には、MgOの含有率は0.5~2%、さらに1~2%が特に適している。MgOの含有率の好ましい範囲の別の例は0.1~1%である。SiO2とB23の含有率の第6の組み合わせを採用する場合には、MgOの含有率は0.1~1%、さらには0.1%以上1%未満が特に適している。
(CaO)
 CaOは、ガラス原料の溶解性を向上させ、溶融時におけるガラス組成物の粘性を下げる任意成分である。CaOの作用はMgOに比べて大きい。CaOの含有率は、0.1%以上、0.5%以上、さらには1%以上、場合によっては1.5%以上、さらには2%以上であってもよい。CaOの含有率は、10%未満、7%以下、5%以下が好ましく、場合によっては4%以下、3.5%以下、3%以下、さらには2.5%以下であってもよい。なお、CaOは、MgO及びZnOに比べて、ガラス組成物の誘電率を増加させてしまう効果が大きい。MgOと同様の理由により、CaOも、アルカリ金属酸化物R2Oより優先的に、言い換えるとR2Oより含有率が高くなるように、添加することが好ましい。
 CaOの含有率の好ましい範囲の例は2~5%、さらに2~3.5%である。SiO2とB23の含有率の第1~5の組み合わせを採用する場合には、CaOの含有率は2~5%が特に適し、第1~4の組み合わせについては2~3.5%、第5の組み合わせについては2.5~5%がより適している。CaOの含有率の好ましい範囲の別の例は0.5~2%である。SiO2とB23の含有率の第6の組み合わせを採用する場合には、CaOの含有率は0.5~2%が特に適している。
 MgOの含有率とCaOの含有率との特に好ましい組み合わせの例としては、MgOが1~2%、CaOが2~5%を挙げることができる。この組み合わせは、SiO2とB23の含有率の第5の組み合わせを採用する場合に特に適している。
(SrO)
 SrOも、ガラス原料の溶解性を向上させ、溶融時におけるガラス組成物の粘性を下げる任意成分である。しかし、SrOは、MgO及びCaOと比較してガラス組成物の誘電率を高くするため、その含有率は制限することが望ましい。SrOの含有率は、1%以下、0.5%以下、さらには0.1%以下が好ましい。SrOは、実質的に含まれていなくてもよい。
 SiO2とB23の含有率の第1~5の組み合わせを採用する場合には、SrOの含有率は0.1%以下が特に適している。この場合、SrOは実質的に含まれていなくてもよい。ただし、SrOは、その含有率が0.1~5%、さらに1~3.5%となるように添加してもよいことがある。SiO2とB23の含有率の第6の組み合わせを採用する場合には、SrOの含有率は0.1~5%、さらに1~3.5%が特に適している。特に第6の組み合わせにおいて、SrOは、当業者の技術常識に反し、誘電損失の低下、言い換えると誘電正接の低下に有効に作用しうることが見い出された。第6の組み合わせにおいて、CaOの含有率に対するSrOの含有率に対する比SrO/CaOは1を超えていてもよい。この場合、MgOの含有率に対するCaOの含有率に対する比CaO/MgOも1を超えていてもよい。
(RO)
 ROの含有率、すなわちMgO、CaO及びSrOの含有率の合計は、15%未満、12%以下、10%以下、10%未満、9.5%以下、8%以下、さらには7%未満、特に6%以下が好ましく、場合によっては5%以下、さらには4%以下であってもよい。ROの含有率が高過ぎると誘電率が十分に下がらないことがある。ROを構成する各成分は、個別には任意成分であるが、その少なくとも1つが含まれていること、すなわち含有率の合計が0%を超えていることが好ましい。ROの含有率は、1%以上、1.5%以上、2%以上、さらには2.5%以上が好ましく、場合によっては3%以上、さらには3.5%以上であってもよい。
 ROの含有率の範囲の好ましい例は、2~7%、特に2~4%である。
(MgO/RO)
 MgO/RO、すなわちROの含有率に対するMgOの含有率の比は、0.8未満、さらには0.7未満が好ましく、場合によっては0.5以下、0.4以下であってもよい。MgO/ROが大きくなると、ガラス組成物が分相する傾向が顕著になるため、ガラス組成物の均質性が損なわれることがある。また、物性が互いに異なる相が混在することにより、紡糸が困難になる場合もある。一方で、ガラス組成物の誘電率を抑えるべく、MgO/ROは、0.1以上、さらには0.14以上が好ましく、場合によっては0.19以上であってもよい。MgO/ROは、好ましくは0.1~0.5である。
(MgO/(MgO+CaO))
 MgO/(MgO+CaO)、すなわちMgOとCaOの含有率の合計に対するMgOの含有率の比も、MgO/ROについての上述した上限及び下限を任意に組み合わせた範囲にあってよい。MgO/(MgO+CaO)は、好ましくは0.1~0.5であり、特に0.1~0.4である。
(Li2O)
 Li2Oは、少量の添加であっても溶融時におけるガラス組成物の粘性を下げてガラス繊維への泡の混入を抑制する作用を有し、さらには失透を抑制する作用も有する任意成分である。また、適量のLi2Oの添加はガラス組成物が分相する傾向を顕著に抑制する。しかし、Li2Oは、他のR2Oよりもその作用は相対的に弱いものの、ガラス組成物の誘電率を上昇させる。Li2Oの含有率は、1.5%以下、1%以下、0.5%以下が好ましく、場合によっては0.4%以下、0.3%以下、さらには0.2%以下であってもよい。Li2Oの含有率は、0.01%以上、0.03%以上、さらには0.05%以上が好ましい。Li2Oの含有率の好ましい範囲の例は、0.01~0.5%、さらに0.05~0.4%である。
(Na2O)
 Na2Oも、少量の添加であっても溶融時におけるガラス組成物の粘性が下げてガラス繊維への泡の混入を抑制する作用を有し、さらには失透を抑制する作用も有する任意成分である。この観点からはNa2Oの含有率は、0.01%以上、0.05%以上、さらには0.1%以上であってもよい。しかし、Na2Oの添加は、ガラス組成物の誘電率を上昇させないように、限られた範囲に止める必要がある。Na2Oの含有率は、1.5%以下、1%以下、0.5%以下、さらには0.4%以下が好ましく、場合によっては0.2%以下、さらには0.15%以下、特に0.1%以下、0.05%以下、0.01%以下であってもよい。Na2Oの含有率の好ましい範囲の例は、0.01~0.4%である。
(K2O)
 K2Oも、少量の添加であっても溶融時におけるガラス組成物の粘性が下げてガラス繊維への泡の混入を抑制する作用を有し、さらには失透を抑制する作用も有する任意成分である。しかし、K2Oは、ガラス組成物の誘電率を上昇させる作用が大きい。K2Oの含有率は、1%以下、0.5%以下、0.2%以下が好ましく、場合によっては0.1%以下、0.05%以下、0.01%以下であってもよい。K2Oは、実質的に含まれていなくてもよい。
(R2O)
 R2Oの含有率、Li2O、Na2O及びK2Oの含有率の合計は、5%以下、4%以下、3%以下、2%以下、さらには1.5%以下が好ましく、場合によっては1%以下、さらには0.6%以下、0.5%以下であってもよい。R2Oを構成する各成分は、個別には任意成分であるが、その少なくとも1つが含まれていること、すなわち含有率の合計が0%を超えていることが好ましい。R2Oの含有率は、0.03%以上、0.05%以上、さらには0.1%以上、特に0.15%以上、0.2%以上が好ましい。
 さらに、Li2Oの含有率がNa2Oの含有率より大きい場合には、ガラス組成物が分相する傾向がより効果的に抑制されることがある。
 Li2Oの含有率を0.25%以上、さらには0.3%以上とすると、特性温度をより好ましい範囲に調整できることがある。特にSiO2とB23の含有率の第1の組み合わせを採用する場合には、Li2Oを含有率が0.25%以上、さらには0.3%以上となるように添加することが好ましい。この場合は、Na2Oを含有率が0.05%以上でLi2Oの含有率未満となるように添加してもよい。
(T-Fe23
 T-Fe23は、その熱線吸収作用によってガラス原料の溶解性を向上させると共に、溶融時におけるガラス組成物の均質性を向上させる任意成分である。T-Fe23による均質性向上の効果により、形成するガラス繊維の繊維径が小さい場合においても、紡糸時におけるガラス繊維の糸切れの発生が抑制され、紡糸操業性が向上する。T-Fe23の含有率は、0.01%以上、0.02%以上、0.05%以上、さらには0.10%以上が好ましい。なお溶解性向上の効果はT-Fe23の含有率が0.01%以上で顕著に表れるが、均質性向上の効果は0.02%以上で特に顕著に表れる。T-Fe23による過度の熱線吸収作用を抑制する等の目的から、T-Fe23の含有率は、0.5%以下、0.3%以下、さらに0.25%以下が好ましく、場合によっては0.20%以下であってもよい。本明細書では、慣用に従い、ガラス組成物の全酸化鉄の量を、FeO等のFe23以外の酸化鉄をFe23に換算した値、すなわちT-Fe23の含有率、として表示している。したがって、T-Fe23の少なくとも一部はFeOとして含まれうる。T-Fe23の含有率の好ましい範囲の例は0.01~0.5%、さらに0.1~0.3%である。
(ZnO)
 ZnOは、ガラス原料の溶解性を向上させ、溶融時におけるガラス組成物の粘性を下げる任意成分である。しかし、ZnOは、ガラス組成物の誘電率を上昇させる。ZnOの含有率は、3.5%以下、2%以下、1%以下、さらには0.5%以下が好ましい。ZnOは、実質的に含まれていなくてもよい。
(その他の成分)
 ガラス組成物が含みうる上記以外の成分としては、P25、BaO、PbO、TiO2、ZrO2、La23、Y23、MoO3、WO3、Nb25、Cr23、SnO2、CeO2、As23、Sb23、SO3を例示できる。ガラス組成物が含みうる別の成分は、例えばPt、Rh、Os等の貴金属元素であり、また例えばF、Cl等のハロゲン元素である。これらの成分の許容される含有率は、それぞれについて好ましくは2%未満、さらには1%未満、特に0.5%未満であり、合計で好ましくは5%未満、さらに3%未満、特に2%未満、とりわけ1%未満である。ただし、ガラス組成物には、上記その他の成分がそれぞれ実質的に含まれていなくてもよい。TiO2は、後述する理由により微量を添加してもよいが、実質的に含まれていなくてもよい。ZrO2も同様である。また、BaO及びPbOは実質的に含まれていないことが好ましい。P25も実質的に含まれていないことが好ましい。BaO及びPbOはガラス組成物の誘電率を引き上げる効果が大きく、P25は分相を誘発するためである。上記に列挙したSiO2からZnOまでの成分以外の成分は実質的に含まれていなくてもよい。ただしこの場合でも、ガラス組成物は、溶融時の清澄促進に有効な成分、好ましくはSO3、F、Clをそれぞれ2%未満の範囲で含有していてもよい。
 微量のTiO2の添加により、当業者の技術常識に反し、ガラス組成物の誘電率及び誘電正接は低下する場合があることが見い出された。この観点から、TiO2の含有率は、0%を超え1%以下であってもよい。特にSiO2とB23の含有率の第6の組み合わせを採用する場合には、0%を超え1%以下のTiO2を添加してもよい。
(好ましい組成の例示)
 好ましい一形態における本発明のガラス組成物は、以下の成分を含む。
 40≦SiO2<58
 25≦B23≦40
7.5≦Al23≦18
  0<R2O≦4
  0≦Li2O≦1.5
  0≦Na2O≦1.5
  0≦K2O≦1
  1≦RO<10
  0≦MgO<10
  0≦CaO<10
  0≦SrO≦5
  0≦T-Fe23≦0.5
 上記成分を含む一形態では、7.5≦Al23≦15、及び0≦SrO≦1が成立してもよい。
 上記の末尾に
  0≦ZnO≦3.5
を加えたガラス組成物も好ましい別の一形態である。
 これらの形態のガラス組成物は、好ましくは40≦SiO2<55をさらに満たす。また、SiO2+B23≧80を満たしていてもよく、好ましくはSiO2+B23+Al23≦99.9をさらに満たしていてもよい。MgO/RO<0.8も、上記形態のガラス組成物が満たしていてよい別の条件である。
[特性]
(誘電率)
 好ましい一形態において、本発明によるガラス組成物の測定周波数1GHzの誘電率は、4.65以下、4.4以下、4.35以下、4.30以下、4.25以下、さらには4.20以下であり、場合によっては4.18以下である。測定周波数5GHzの誘電率は、4.63以下、4.4以下、4.31以下、4.27以下、4.22以下、さらには4.17以下であり、場合によっては4.15以下である。測定周波数10GHzの誘電率は、4.55以下、4.4以下、4.22以下、4.18以下、4.14以下、さらには4.08以下であり、場合によっては4.06以下である。
(誘電正接:tanδ)
 好ましい一形態において、本発明によるガラス組成物の測定周波数1GHzの誘電正接は、0.007以下、0.005以下、0.004以下、さらには0.003以下、場合によっては0.002以下である。測定周波数1GHzの誘電正接は、0.001以下、0.001未満、0.0009以下、0.0008以下、さらには0.0007以下であってもよい。測定周波数5GHzの誘電正接は、0.007以下、0.005以下、0.004以下、さらには0.003以下、場合によっては0.002以下である。測定周波数10GHzの誘電正接は、0.007以下、0.006以下、0.005以下、0.004以下、さらには0.003以下であり、場合によっては0.002以下である。
(特性温度)
 好ましい一形態において、本発明によるガラス組成物のT2は、1700℃以下、1650℃以下、1640℃以下、1620℃以下、さらには1610℃以下であり、場合によっては1600℃未満、1550℃以下、さらに1520℃以下、特に1510℃以下である。T2はガラス融液の溶融温度の目安となる温度である。過度に高いT2は、ガラス融液の溶融に極めて高温を要するためエネルギーコストや高温に耐える装置のコストが高い。同じ温度であれば、T2の低いガラスの方が融液の粘度が低いのでガラス融液の清澄や均質化に効果があり、一方、同じ粘度で溶融する場合はT2が低いガラスの方が低温で溶融でき、量産に適している。T2.5は、好ましくは、1590℃以下、1550℃以下、さらには1500℃以下であり、場合によっては1450℃以下、さらに1400℃以下である。T3は、好ましくは、1450℃以下、1420℃以下、1400℃以下、さらには1365℃以下、特に1360℃以下であり、場合によっては1330℃以下、さらに1300℃以下である。T3は、ガラス繊維の紡糸温度の目安となる温度である。過度に高いT3はブッシングのチップにおいてガラスから揮発するB23が多く、チップに付着していわゆる糸切れのリスクを高めることがある。
 好ましい一形態において、本発明によるガラス組成物のT3は、失透温度TLよりも高い。また、より好ましい一形態において、T3は、TLより10℃以上、さらには50℃以上、場合によっては100℃以上高い。好ましい一形態において、本発明によるガラス組成物のT2.5は、失透温度TLよりも50℃以上高い。また、より好ましい一形態において、T2.5は、TLより100℃以上高い。TLよりも十分に高いT3及びT2.5は、ガラス繊維の安定した製造への寄与が大きい。
 SiO2とB23の含有率の第5の組み合わせは、特に好ましい特性温度の達成に適している。好ましい特性温度は、例えば、1520℃以下、特に1510℃以下のT2であり、また例えば、1300℃以下でTLより高いT3である。SiO2とB23の含有率の第1の組み合わせにおいて、Li2Oの含有率が0.25%以上であるガラス組成物も、上記程度に好ましい特性温度の達成に適している。
[用途]
 本発明によるガラス組成物の用途は限定されない。用途の例は、ガラス繊維及びガラス成形体である。ガラス成形体の例はフレーク状ガラスである。すなわち、本発明のガラス組成物は、ガラス繊維用ガラス組成物、ガラス成形体用ガラス組成物、又はフレーク状ガラス用ガラス組成物でありうる。
 本発明によるガラス組成物は、形成するガラス繊維の繊維径が小さい場合においても当該ガラス繊維における失透の発生及び泡の混入をより抑制できるガラス組成物である。ここで、「繊維径が小さいガラス繊維」とは、例えば、平均繊維径が1~6μmのガラス繊維を意味する。すなわち、本発明によるガラス組成物は、小繊維径ガラス繊維用ガラス組成物でありうるし、より具体的には、平均繊維径が1~6μmのガラス繊維用ガラス組成物でありうる。また、上述のように、本発明によるガラス組成物から製造したガラス繊維をプリント基板に使用する際に、本発明の効果はより顕著となる。この観点から本発明によるガラス組成物は、プリント基板(プリント配線板、プリント回路板)に使用するガラス繊維用ガラス組成物でありうる。
 同様に、本発明によるガラス組成物は、形成するガラス成形体、例えばフレーク状ガラスの厚さが小さい場合においても、当該ガラス成形体における失透の発生及び泡の混入をより抑制できるガラス組成物である。ここで、「厚さが小さい」とは、例えば、0.1~2.0μmを意味する。また、上述のように、本発明のガラス組成物から製造したガラス成形体(本発明によるガラス組成物から構成されるガラス成形体)をプリント基板に使用する際に、本発明の効果はより顕著となる。この観点から本発明によるガラス組成物は、プリント基板に使用するガラス成形体用ガラス組成物でありうる。
 プリント基板に使用することに着目すると、本発明によるガラス組成物はプリント基板用ガラス組成物でありうる。
[ガラス繊維]
 本発明によるガラス繊維は、本発明によるガラス組成物により構成される。ガラス繊維の具体的な構成は特に限定されず、本発明によるガラス組成物により構成される限り、従来のガラス繊維と同様の構成をとりうる。ただし、上述のように、本発明によるガラス組成物が低誘電率のガラス組成物であって、形成するガラス繊維の繊維径が小さい場合においても当該ガラス繊維における失透の発生及び泡の混入をより抑制できる組成物であることから、本発明によるガラス繊維は繊維径の小さいガラス繊維でありうる。また、このような繊維径の小さい低誘電率のガラス繊維は、本発明によるガラス繊維の一形態である。
 ガラス繊維の平均繊維径は、例えば1~10μm、さらには6~10μmであってもよいし、1~6μmであってもよい。平均繊維径は3μm以上であってもよく、10μm以下、5.1μm以下、4.6μm以下、さらに4.3μm以下であってもよい。量産に適した特性温度を有するガラス組成物は、細いガラス繊維として安定して製造することに適している。好ましい一形態において、平均繊維径は、さらに細く、例えば3.9μm以下、さらに3.5μm以下である。ガラス繊維は、例えばガラス長繊維(フィラメント)である。
 本発明によるガラス繊維の好ましい用途としては、プリント基板が挙げられる。低誘電率で繊維径の小さいガラス繊維は、プリント基板への使用に適している。ただし、用途がプリント基板に限定されるわけではない。 
 ガラス繊維はガラスヤーンとすることができる。ガラスヤーンは、本発明によるガラス繊維以外のガラス繊維を含むこともできるが、本発明によるガラス繊維、具体的にはガラス長繊維のみから構成されていてもよい。このガラスヤーンは、ガラス繊維の糸切れ、毛羽立ち等の欠点の発生が抑制され、生産性が高い。
 ガラスヤーンに含まれるガラス長繊維の本数(フィラメント本数)は、例えば30~400である。プリント基板に使用する場合、フィラメント本数は、例えば30~120、30~70、さらには30~60とするとよい。適切な本数は、ガラスクロスをより容易かつ確実に形成し、プリント基板の薄型化を図る上で有利である。ただし、ガラスヤーンの構成及び用途は、これらの例に限定されない。 
 ガラス繊維を含むガラスヤーンはその番手が、例えば0.7~6tex、0.9~5tex、さらには1~4tex、さらに1~3texであってもよく、10~70texであってもよい。適切な番手は、薄いガラスクロスをより容易かつ確実に形成し、プリント基板の薄型化を図る上で有利である。
 ガラスヤーンは、その強度が0.4N/tex以上、さらには0.6N/tex以上、特に0.7N/tex以上であってもよい。
 本発明によるガラス繊維は、公知の方法を適用して製造できる。例えば、平均繊維径1~6μm程度のガラス繊維を製造する場合、以下の方法の例を採用できる。すなわち、本発明によるガラス組成物をガラス溶融窯に投入し、溶融して溶融ガラスとした後、紡糸炉における耐熱性ブッシングの底部に設けられた多数の紡糸ノズルから溶融ガラスを引き出し、糸状に成形する方法である。これにより、本発明によるガラス組成物により構成されるガラス繊維を製造できる。ガラス繊維は、ガラス長繊維(フィラメント)でありうる。溶融窯における溶融温度は、例えば1300~1700℃であり、1400~1700℃が好ましく、1500~1700℃がより好ましい。これらの場合、形成するガラス繊維の繊維径が小さい場合においても当該ガラス繊維における微小な失透の発生及び泡の混入をさらに抑制できるとともに、過度に紡糸張力が高くなることが防がれ、得られたガラス繊維の特性(例えば強度)及び品質を確実に確保できる。
 繊維径が小さいガラス繊維を製造するためには、紡糸炉からの溶融ガラスの引出速度を高めたり、紡糸ノズルの温度を低下させたりする手法も考えられる。しかし、前者の手法では、溶融ガラスの脱泡を紡糸炉内で促進させるための時間を十分に確保できないことがある。このため、泡の混入に起因する紡糸時の糸切れ、繊維の強度低下等が生じることがある。また、紡糸時に繊維に生じる張力(紡糸張力)が紡糸速度の上昇に伴って大きくなり、この点も、紡糸時の糸切れ、繊維の強度低下、繊維の品質低下等の要因になることがある。通常、ガラス繊維の巻き取りにはコレットと呼ばれる巻き取り回転体装置が使用されるところ、紡糸張力が過度に増大すると、フィンガー間の窪みに起因する糸癖が巻き取ったガラス繊維に生じ、これがガラス繊維の品質低下につながる。なお、コレットは、その回転時にその径外方に向かって移動すると共に、その停止時にはコレット本体側に沈み込む複数のフィンガーをコレット本体の外周に備えた装置である。ガラス繊維の品質低下は、例えば、ガラスクロスにおける外観不良及び/又は開繊不良につながることがある。一方、後者の手法では、溶融窯内の溶融温度も低下させる必要が生じ、これによりガラス組成物の失透温度に溶融温度が近づくことになり、溶融ガラスの粘度が上昇して十分な脱泡を実施できなくなることがある。粘度上昇に伴って紡糸張力も大きくなって上述の問題も生じ得る。
 本発明によるガラス組成物を用い、上述の温度域で溶融すれば、上述の問題を緩和することが可能になる。ガラス繊維の品質向上により、当該ガラス繊維を用いたガラスクロスにおける外観及び/又は開繊性も良好となる。 
 紡糸により形成されたガラス繊維の表面に集束剤を塗布し、複数のガラス繊維、例えば10~120本のガラス繊維を束ねることにより、ガラスストランドを形成できる。このストランドは、本発明によるガラス繊維を含む。ストランドを高速で回転するコレット上のチューブ(例えば、紙管チューブ)に巻き取ってケーキとし、続いてケーキの外層からストランドを解舒して、撚りを掛けながら風乾した後、ボビン等に巻き返して撚糸することにより、ガラスヤーンを形成できる。 
 [ガラスクロス]
 本発明によるガラスクロスは、本発明によるガラス繊維により構成される。本発明によるガラスクロスは、本発明によるガラス組成物が有する低い誘電率等の上述の特性も有し得る。本発明によるガラスクロスの織組織は、例えば、平織、朱子織、綾織、斜子織、畦織であり、好ましくは平織である。ただし、織組織はこれらの例に限定されない。ガラスヤーンは、本発明によるガラス繊維以外のガラス繊維を含むこともできるが、本発明によるガラス繊維、具体的にはガラス長繊維のみから構成されていてもよい。本発明によるガラスクロスは、ガラス繊維の糸切れ、毛羽立ち等の欠点の発生が抑制されたものとなり、生産性も高い。
 好ましい一形態において、ガラスクロスの厚さは、JIS R3420:2013の項目7.10.1の規定に従って測定される厚さにより表示して、好ましくは200μm以下、より好ましくは7~150μm、さらに好ましくは7~30μm、特に好ましくは8~15μmである。この好ましい形態のガラスクロスは、プリント基板の薄型化に適している。
 好ましい一形態において、ガラスクロスの質量は、JIS R3420:2013の項目7.2の規定に従って測定されるクロス質量により表示して、好ましくは250g/m2以下、より好ましくは150g/m2以下、さらに好ましくは50g/m2、特に好ましくは15g/m2以下である。この好ましい形態のガラスクロスは、薄型化されたプリント基板への使用に適している。
 好ましい一形態において、ガラスクロスの単位長さ(25mm)あたりのガラス繊維の本数(織密度)は、経糸及び緯糸ともに、例えば、長さ25mmあたり好ましくは40~130本、より好ましくは60~120本、さらに好ましくは90~120本である。この好ましい形態のガラスクロスは、その厚さを薄くし、経糸及び緯糸の交絡点を多くしてガラスクロスの目曲がりを生じ難くし、樹脂を含浸させたときのピンホールの発生を抑制することに適している。
 好ましい一形態において、ガラスクロスの通気度は、例えば、400cm3/(cm2・秒)以下、好ましくは300cm3/(cm2・秒)以下、より好ましくは250cm3/(cm2・秒)以下である。この好ましい形態のガラスクロスは、その厚さを薄くし、上述のピンホールの発生を抑制することに適している。なお、上記程度の通気度をガラスクロスが有するように開繊させるためには、本発明によるガラス組成物、又は本発明によるガラス組成物が得られるように調製したガラス原料に上述の溶融温度、すなわち1400℃以上、好ましくは1400~1650℃を適用してガラス繊維を得るとよい。
 本発明によるガラスクロスは、本発明によるガラス繊維を用いて公知の方法により製造できる。製造方法の一例は、ガラスヤーンに対して整経工程及び糊付工程を実施した後、これを経糸として、ガラスヤーンの緯糸を打ち込む方法である。緯糸の打ち込みには、各種の織機、例えばジェット織機、スルザー織機、レピア織機を使用できる。ジェット織機の具体的な例としては、エアージェット織機、ウォータージェット織機が挙げられる。ただし、ガラスクロスを製造する織機はこれらに限定されない。
 本発明によるガラスクロスは開繊処理されていてもよい。開繊処理はガラスクロスの薄型化に有利である。開繊処理の具体的な方法は特に限定されず、例えば、水流の圧力による開繊、水等を媒体とした高周波振動による開繊、ロール等を用いた加圧による開繊を適用できる。なお、開繊の媒体とする水は、脱気水、イオン交換水、脱イオン水、電解陽イオン水、電解陰イオン水等を使用できる。開繊処理は、ガラスクロスの織成と同時に実施しても、織成後に実施してもよい。また、開繊処理は、ヒートクリーニング、表面処理といった各種処理と同時に実施してもよく、各種処理の後に実施してもよい。
 織成したガラスクロスに集束剤等の物質が付着している場合は、ヒートクリーニング処理に代表される当該物質の除去処理をさらに実施してもよい。除去処理を経たガラスクロスは、それをプリント基板に使用する際に、マトリクス樹脂の含浸性及び当該樹脂との密着性において優れたものとなる。除去処理の後に、又は除去処理とは別に、織成したガラスクロスをシランカップリング剤等により表面処理してもよい。表面処理は公知の手段により実施することが可能であり、具体的には、シランカップリング剤をガラスクロスに含浸する方法、塗布する方法、スプレーする方法等により実施できる。
 本発明によるガラスクロスは、プリント基板に適している。プリント基板に使用する場合には、低誘電率であり、繊維径の小さいガラス繊維から構成されうるといった特徴を有効に活用できる。ただし、用途がプリント基板に限定されるわけではない。
 [プリプレグ]
 本発明によるプリプレグは、本発明によるガラスクロスにより構成され得る。本発明によるプリプレグは、本発明によるガラス組成物が有する低い誘電率等の上述の特性も有し得る。本発明のプリプレグの製造方法は、特に限定されず、従来公知の任意の製造方法が採用されればよい。本発明によるプリプレグに含浸される樹脂としては、本発明のガラスクロスと複合し得る合成樹脂であれば特に限定されず、例えば、熱硬化性樹脂、熱可塑性樹脂、これらの複合樹脂等が挙げられる。低誘電率を有する本発明によるガラスクロスに合わせた低誘電率を有する樹脂を使用することが望ましい。
 [プリント基板]
本発明によるプリント基板は、本発明によるガラスクロスにより構成され得る。本発明によるプリント基板は、本発明によるガラス組成物が有する低い誘電率等の上述の特性も有し得る。本発明の基板の製造方法は、特に限定されず、従来公知の任意の製造方法が採用されればよい。例えば、ガラスクロスに含浸された樹脂を含むプリプレグを製造したあとに硬化する方法等が挙げられる。
 以下、実施例により、本発明をより詳細に説明する。本発明は、以下の実施例に限定されない。
 表1~6に示す各組成(成分の含有率の単位は重量%)となるようにガラス原料を秤量し、均質な状態となるように混合して、ガラス原料混合バッチを作製した。次に、作製した混合バッチを白金ロジウム製るつぼに投入し、1600℃に設定した間接加熱電気炉内で、大気雰囲気中にて3時間以上加熱して溶融ガラスとした。次に、得られた溶融ガラスを耐火性鋳型に流し出して鋳込み成形した後、得られた成形体を徐冷炉により室温まで徐冷処理して、評価に使用するガラス組成物試料とした。
 このようにして作製したガラス試料について、特性温度T2、T2.5及びT3、失透温度TL、周波数1GHz、5GHz及び10GHzにおける誘電率及び誘電正接を評価した。評価方法は下記のとおりである。
(特性温度)
 白金球引き上げ法により粘度を測定し、その粘度が102dPa・s、102.5dPa・s、103dPa・sとなる温度を、それぞれT2、T2.5、T3とした。
(失透温度)
 試料ガラスを粉砕し、目開き2.83mmの篩を通り、目開き1.00mmの篩に残る粒子をふるい分けた。この粒子を洗浄して粒子に付着した微粉を除去し、乾燥して失透温度測定用サンプルを調製した。失透温度測定用サンプルの25gを白金ボート(長方形でフタのない白金製の器)に厚みが略均一になるようにいれ、温度傾斜炉中で2時間保持した後に炉から取り出し、ガラス内部に失透が観察された最高温度を失透温度とした。
(誘電率及び誘電正接)
 各周波数における誘電率及び誘電正接は、空洞共振器摂動法による誘電率測定装置を用いて測定した。測定温度は25℃、測定用サンプルの寸法は、底面が1辺1.5cmの正方形で長さ10cmの直方体とした。
 例1~44及び例48~99のガラス組成物は、測定周波数1GHzの誘電率が4.65以下、T2が1700℃以下、T3が1450℃以下であった。これらのガラス組成物には、測定周波数1GHzの誘電率が4.4以下となったものもあり、例1~43、例48~81、例83~84、及び例93~99のガラス組成物は、測定周波数1GHzの誘電率が4.36以下となった。例1~41、例48~81、例83~84、及び例94~99のガラス組成物は、測定周波数1GHzの誘電率が4.35以下となった。また、例5~6、例66~67、及び例83~92のガラス組成物は、T2が1520℃以下であり、T3が1300℃以下でTLよりも高くなった。例66~67及び例83~92のガラス組成物は、B23の含有率が35%以下、場合によっては30%以下であって、T2が1520℃以下であり、T3が1300℃以下でTLよりも高くなった。例2及び例93~99のガラス組成物は、周波数1GHzの誘電正接が0.001未満であった。例93~99のガラス組成物は、周波数1GHzの誘電正接が0.001未満であり、T2が1600℃未満であった。例45~47のガラス組成物は比較例であり、例45はT2が1700℃を超え、例46~47は測定周波数1GHzの誘電率が4.7を超えていた。
 
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006

Claims (65)

  1.  重量%で表示して、
     40≦SiO2≦60
     25≦B23≦45
      5≦Al23≦15
      0<R2O≦5
      0<RO<15
    を含み、
     SiO2+B23≧80、及び/又は、SiO2+B23≧78かつ0<RO<10
    が成立する、ガラス組成物。
     ただし、R2Oは、Li2O、Na2O及びK2Oから選ばれる少なくとも1種の酸化物であり、ROは、MgO、CaO及びSrOから選ばれる少なくとも1種の酸化物である。
  2.  重量%で表示して、
     40≦SiO2≦60
     25≦B23≦45
      0<Al23≦18
      0<R2O≦5
      0≦RO≦12
    を含み、
     i)SiO2+B23≧80、及びSiO2+B23+Al23≦99.9、並びに
     ii)SiO2+B23≧78、SiO2+B23+Al23≦99.9、及び0<RO<10
     の少なくとも一方が成立する、ガラス組成物。
     ただし、R2Oは、Li2O、Na2O及びK2Oから選ばれる少なくとも1種の酸化物であり、ROは、MgO、CaO及びSrOから選ばれる少なくとも1種の酸化物である。
  3.  重量%で表示して、
     40≦SiO2≦60
     25≦B23≦45
      0<Al23≦18
      0<R2O≦5
      3<RO<8
    を含み、      
     SiO2+B23≧75、及びSiO2+B23+Al23<97
    が成立する、ガラス組成物。
     ただし、R2Oは、Li2O、Na2O及びK2Oから選ばれる少なくとも1種の酸化物であり、ROは、MgO、CaO及びSrOから選ばれる少なくとも1種の酸化物である。
  4.  重量%で表示してSiO2+B23≧77が成立し、
     周波数1GHzにおける誘電率が4.4以下であり、
     周波数1GHzにおける誘電正接が0.007以下であり、
     粘度102dPasになる温度T2が1700℃以下、
    である、ガラス組成物。
  5.  重量%で表示して、
     30<B23≦45
    を含む、請求項1~4のいずれか1項に記載のガラス組成物。
  6.  重量%で表示して、
     40≦SiO2<58
    を含む、請求項1~5のいずれか1項に記載のガラス組成物。
  7.  重量%で表示して、
     40≦SiO2<55
    を含む、請求項6に記載のガラス組成物。
  8.  重量%で表示して、
     SiO2+B23≧82
     SiO2+B23+Al23≦98
    が成立する、請求項1~7のいずれか1項に記載のガラス組成物。
  9.  重量%で表示して、
     (SiO2+B23+Al23)/(SiO2+B23)≧1.05
    が成立する、請求項1~8のいずれか1項に記載のガラス組成物。
  10.  重量%で表示して、
     40≦SiO2<58
     25≦B23≦40
    7.5≦Al23≦18
      0<R2O≦4
      0≦Li2O≦1.5
      0≦Na2O≦1.5
      0≦K2O≦1
      1≦RO<10
      0≦MgO<10
      0≦CaO<10
      0≦SrO≦5
      0≦T-Fe23≦0.5
    を含む、請求項1~9のいずれか1項に記載のガラス組成物。
     ただし、R2Oは、Li2O、Na2O及びK2Oから選ばれる少なくとも1種の酸化物であり、ROは、MgO、CaO及びSrOから選ばれる少なくとも1種の酸化物であり、T-Fe23はFe23に換算したガラス組成物中の全酸化鉄である。
  11.  重量%で表示して、
     40≦SiO2<58
     25≦B23≦40
    7.5≦Al23≦15
      0<R2O≦4
      0≦Li2O≦1.5
      0≦Na2O≦1.5
      0≦K2O≦1
      1≦RO<10
      0≦MgO<10
      0≦CaO<10
      0≦SrO≦1
      0≦T-Fe23≦0.5
    を含む、請求項10に記載のガラス組成物。
  12.  重量%で表示して、
     48≦SiO2≦51
     33≦B23≦35
    を含む、請求項1~11のいずれか1項に記載のガラス組成物。
  13.  重量%で表示して、
     50≦SiO2≦53
     32≦B23≦35
    を含む、請求項1~11のいずれか1項に記載のガラス組成物。
  14.  重量%で表示して、
     52≦SiO2≦54
     31≦B23≦34
    を含む、請求項1~11のいずれか1項に記載のガラス組成物。
  15.  重量%で表示して、
     52≦SiO2≦55
     30≦B23≦32
    を含む、請求項1~11のいずれか1項に記載のガラス組成物。
  16.  重量%で表示して、
     47≦SiO2≦52
     25≦B23≦30
    を含む、請求項1~4のいずれか1項に記載のガラス組成物。
  17.  重量%で表示して、
     48≦SiO2≦53
     28≦B23≦35
     1≦MgO+CaO<3.5
    を含む、請求項1~11のいずれか1項に記載のガラス組成物。
  18.  重量%で表示して、
     8≦Al23≦12.5
    を含む、請求項1~17のいずれか1項に記載のガラス組成物。
  19.  重量%で表示して、
     10≦Al23≦12.5
    を含む、請求項18に記載のガラス組成物。
  20.  重量%で表示して、
     13≦Al23≦17
    を含む、請求項1~17のいずれか1項に記載のガラス組成物。
  21.  重量%で表示して、
     12≦Al23≦15
    を含む、請求項1~17のいずれか1項に記載のガラス組成物。
  22.  重量%で表示して、
     0.01≦Li23≦0.5
    を含む、請求項1~21のいずれか1項に記載のガラス組成物。
  23.  重量%で表示して、
     0.05≦Li2O≦0.4
    を含む、請求項22に記載のガラス組成物。
  24.  重量%で表示して、
     0.01≦Na2O≦0.4
    を含む、請求項1~23のいずれか1項に記載のガラス組成物。
  25.  重量%で表示して、
     Li2O>Na2
    が成立する、請求項1~24のいずれか1項に記載のガラス組成物。
  26.  重量%で表示して、
     0.5≦MgO≦1.6
    を含む、請求項1~25のいずれか1項に記載のガラス組成物。
  27.  重量%で表示して、
     2≦CaO≦3.5
    を含む、請求項1~26のいずれか1項に記載のガラス組成物。
  28.  重量%で表示して、
     0.1≦SrO≦5
    を含む、請求項1~27のいずれか1項に記載のガラス組成物。
  29.  重量%で表示して、
     0.1≦MgO≦1
    を含む、請求項1~28のいずれか1項に記載のガラス組成物。
  30.  重量%で表示して、
     0.5≦CaO≦2
    を含む、請求項29に記載のガラス組成物。
  31.  重量%で表示して、
     2≦MgO+CaO+SrO≦7
    を含む、請求項29又は30に記載のガラス組成物。
  32.  重量%で表示して、
     2≦MgO+CaO+SrO≦4
    を含む、請求項1~31のいずれか1項に記載のガラス組成物。
  33.  重量%で表示して、
     1≦MgO≦2
     2≦CaO≦5
    を含む、請求項1~28のいずれか1項に記載のガラス組成物。
  34.  重量%で表示して、
     0.01≦T-Fe23≦0.5
    を含む、請求項1~33に記載のガラス組成物。
  35.  重量%で表示して、
     0.1≦T-Fe23≦0.3
    を含む、請求項34に記載のガラス組成物。
  36.  重量%で表示して、
     MgO/RO<0.8
    が成立する、請求項1~35のいずれか1項に記載のガラス組成物。
  37.  重量%で表示して、
     0.1≦MgO/RO≦0.5
    が成立する、請求項36に記載のガラス組成物。
  38.  重量%で表示して、
     0.1≦MgO/(MgO+CaO)≦0.5
    が成立する、請求項1~37のいずれか1項に記載のガラス組成物。
  39.  BaO及びPbOが実質的に含まれていない、請求項1~38のいずれか1項に記載のガラス組成物。
  40.  TiO2が実質的に含まれていない、請求項1~39のいずれか1項に記載のガラス組成物。
  41.  重量%で表示して、
     0<TiO2≦1
    を含む、請求項1~39のいずれか1項に記載のガラス組成物。
  42.  重量%で表示して、
     40≦SiO2≦49.95
     25≦B23≦40
     10≦Al23≦20
     0.1≦R2O≦2
     1≦RO≦10
    を含み、
     SiO2+B23≧70、及びSiO2+B23+Al23≦97
    が成立する、ガラス組成物。
     ただし、R2Oは、Li2O、Na2O及びK2Oから選ばれる少なくとも1種の酸化物であり、ROは、MgO、CaO及びSrOから選ばれる少なくとも1種の酸化物である。
  43.  重量%で表示して、
     40≦SiO2≦49.95
     25≦B23≦29.9
     10≦Al23≦20
     0.1≦R2O≦1
     2≦RO≦8
    を含み、
     SiO2+B23≧70、及びSiO2+B23+Al23≦97
    が成立する、ガラス組成物。
     ただし、R2Oは、Li2O、Na2O及びK2Oから選ばれる少なくとも1種の酸化物であり、ROは、MgO、CaO及びSrOから選ばれる少なくとも1種の酸化物である。
  44.  重量%で表示して、
     40≦SiO2≦49.95
     31≦B23≦40
     8≦Al23≦18
     0.1≦R2O≦1
     1≦RO≦10
    を含み、
     SiO2+B23≧77、及びSiO2+B23+Al23≦97
    が成立する、ガラス組成物。
     ただし、R2Oは、Li2O、Na2O及びK2Oから選ばれる少なくとも1種の酸化物であり、ROは、MgO、CaO及びSrOから選ばれる少なくとも1種の酸化物である。
  45.  周波数1GHzにおける誘電率が4.35以下であり、
     周波数1GHzにおける誘電正接が0.005以下である、請求項1~44のいずれか1項に記載のガラス組成物。
  46.  粘度102dPasになる温度T2が1650℃以下、
    である、請求項1~45のいずれか1項に記載のガラス組成物。
  47.  粘度102dPasになる温度T2が1610℃以下、
    である、請求項46に記載のガラス組成物。
  48.  粘度103dPasになる温度T3が1360℃以下、
    である、請求項1~47のいずれか1項に記載のガラス組成物。
  49.  粘度103dPasになる温度T3が失透温度TLよりも高い、
    請求項1~48のいずれか1項に記載のガラス組成物。
  50.  ガラス繊維用である請求項1~49のいずれか1項に記載のガラス組成物。
  51.  平均繊維径が10μm以下のガラス繊維用である請求項50に記載のガラス組成物。
  52.  平均繊維径が6~10μmのガラス繊維用である請求項50に記載のガラス組成物。
  53.  平均繊維径が1~6μmのガラス繊維用である請求項50に記載のガラス組成物。
  54.  請求項1~53のいずれか1項に記載のガラス組成物から構成されるガラス繊維。
  55.  平均繊維径が10μm以下である請求項54に記載のガラス繊維。
  56.  平均繊維径が6~10μmである請求項54に記載のガラス繊維。
  57.  平均繊維径が1~6μmである請求項54に記載のガラス繊維。
  58.  平均繊維径が3~5μmである請求項54に記載のガラス繊維。
  59.  強度が0.4N/tex以上である請求項54~58のいずれか1項に記載のガラス繊維。
  60.  請求項54~59のいずれか1項に記載のガラス繊維から構成されるガラスクロス。
  61.  厚さが200μm以下である請求項60に記載のガラスクロス。
  62.  厚さが7~30μmである請求項61に記載のガラスクロス。
  63.  請求項60~62のいずれか1項に記載のガラスクロスを含む、プリプレグ。
  64.  請求項60~62のいずれか1項に記載のガラスクロスを含む、プリント基板。
  65.  請求項1~53のいずれか1項に記載のガラス組成物を1400℃以上の温度で溶融する工程を含み、平均繊維径が1~6μmのガラス繊維を得る、ガラス繊維の製造方法。
PCT/JP2020/024255 2019-06-21 2020-06-19 ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法 WO2020256142A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP20825463.1A EP3988510A4 (en) 2019-06-21 2020-06-19 GLASS COMPOSITION, GLASS FIBERS AS WELL AS METHOD FOR MANUFACTURING SAME, AND GLASS FABRIC
CN202080043638.7A CN113993825A (zh) 2019-06-21 2020-06-19 玻璃组合物、玻璃纤维、玻璃布以及玻璃纤维的制造方法
KR1020227000951A KR102669498B1 (ko) 2019-06-21 2020-06-19 유리 조성물, 유리 섬유, 유리 클로스, 및 유리 섬유의 제조 방법
JP2021526950A JP7292634B2 (ja) 2019-06-21 2020-06-19 ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法
CN202410144026.7A CN117945650A (zh) 2019-06-21 2020-06-19 玻璃组合物、玻璃纤维、玻璃布以及玻璃纤维的制造方法
CN202410143648.8A CN117964231A (zh) 2019-06-21 2020-06-19 玻璃组合物、玻璃纤维、玻璃布以及玻璃纤维的制造方法
US17/596,887 US20220324751A1 (en) 2019-06-21 2020-06-19 Glass composition, glass fiber, glass cloth, and method for producing glass fiber
US17/880,199 US11840477B2 (en) 2019-06-21 2022-08-03 Glass composition, glass fiber, glass cloth, and method for producing glass fiber
US17/880,202 US11773009B2 (en) 2019-06-21 2022-08-03 Glass composition, glass fiber, glass cloth, and method for producing glass fiber
JP2023016095A JP7370551B2 (ja) 2019-06-21 2023-02-06 ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法
JP2023132578A JP7542813B2 (ja) 2019-06-21 2023-08-16 ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/024791 WO2020255396A1 (ja) 2019-06-21 2019-06-21 ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法
JPPCT/JP2019/024791 2019-06-21

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US17/596,887 A-371-Of-International US20220324751A1 (en) 2019-06-21 2020-06-19 Glass composition, glass fiber, glass cloth, and method for producing glass fiber
US17/880,202 Continuation US11773009B2 (en) 2019-06-21 2022-08-03 Glass composition, glass fiber, glass cloth, and method for producing glass fiber
US17/880,199 Continuation US11840477B2 (en) 2019-06-21 2022-08-03 Glass composition, glass fiber, glass cloth, and method for producing glass fiber

Publications (1)

Publication Number Publication Date
WO2020256142A1 true WO2020256142A1 (ja) 2020-12-24

Family

ID=74040435

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/024791 WO2020255396A1 (ja) 2019-06-21 2019-06-21 ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法
PCT/JP2020/024255 WO2020256142A1 (ja) 2019-06-21 2020-06-19 ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024791 WO2020255396A1 (ja) 2019-06-21 2019-06-21 ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法

Country Status (7)

Country Link
US (3) US20220324751A1 (ja)
EP (1) EP3988510A4 (ja)
JP (3) JP7292634B2 (ja)
KR (1) KR102669498B1 (ja)
CN (3) CN117945650A (ja)
TW (1) TWI845709B (ja)
WO (2) WO2020255396A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239747A1 (ja) * 2021-05-13 2022-11-17 日本電気硝子株式会社 ガラス繊維及びその製造方法
WO2023171228A1 (ja) 2022-03-09 2023-09-14 日本板硝子株式会社 フレーク状基材及び樹脂組成物

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215287A1 (ja) * 2021-04-09 2022-10-13 旭化成株式会社 ガラスクロス、プリプレグ、及びプリント配線板
KR102639162B1 (ko) * 2021-11-25 2024-02-21 광주과학기술원 유전율이 낮은 산화물계 유리 조성물
WO2023176689A1 (ja) * 2022-03-16 2023-09-21 日本電気硝子株式会社 ガラス繊維
CN114933418A (zh) * 2022-05-10 2022-08-23 河北光兴半导体技术有限公司 低介电常数且低介电损耗玻璃纤维组合物、玻璃纤维及其应用
JP7235915B1 (ja) * 2022-05-31 2023-03-08 日本板硝子株式会社 ガラス繊維およびガラス繊維用組成物

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151345A (ja) * 1982-02-26 1983-09-08 Asahi Glass Co Ltd 低誘電率ガラス組成物
JPS62100454A (ja) * 1985-10-29 1987-05-09 Asahi Glass Co Ltd 多層回路基板用組成物
JPS62226839A (ja) 1986-03-27 1987-10-05 Nippon Sheet Glass Co Ltd 低誘電率ガラス繊維
JPH08333137A (ja) * 1995-06-05 1996-12-17 Nitto Boseki Co Ltd 低誘電率ガラス繊維
JPH1095633A (ja) * 1996-09-20 1998-04-14 Toshiba Glass Co Ltd 乳白ガラスおよびそれを用いた温度計
JP2003137590A (ja) * 2001-05-09 2003-05-14 Nippon Electric Glass Co Ltd 低誘電率低誘電正接ガラス、それを用いたガラス繊維及びガラス繊維織物
JP2004505002A (ja) * 2000-07-31 2004-02-19 コーニング インコーポレイテッド Uv感光性溶融ゲルマノシリケートガラス
JP2009286686A (ja) 2008-04-28 2009-12-10 Nippon Electric Glass Co Ltd ガラス繊維用ガラス組成物、ガラス繊維及びガラス繊維シート状物
JP2010006690A (ja) * 2008-06-26 2010-01-14 Korea Inst Of Science & Technology 低温焼成用低誘電率誘電体セラミック組成物
JP2010508226A (ja) 2006-10-26 2010-03-18 エイジーワイ ホールディングス コーポレイション 低誘電性グラスファイバー
WO2017187471A1 (ja) 2016-04-28 2017-11-02 日本板硝子株式会社 ガラス組成物、ガラス繊維、ガラスクロスおよびガラス繊維の製造方法
JP2018127750A (ja) * 2017-02-10 2018-08-16 旭化成株式会社 ガラスクロス、プリプレグ、及びプリント配線板
WO2018216637A1 (ja) 2017-05-26 2018-11-29 日本板硝子株式会社 ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839700Y2 (ja) * 1978-11-28 1983-09-07 勇 福島 腰部保護腹帯
JPS6451345A (en) * 1987-08-18 1989-02-27 Nippon Sheet Glass Co Ltd Glass fiber composition having low dielectric constant
CA2060709C (en) * 1991-02-08 1996-06-04 Kiyotaka Komori Glass fiber forming composition, glass fibers obtained from the composition and substrate for circuit board including the glass fibers as reinforcing material
JP3240271B2 (ja) * 1996-02-29 2001-12-17 ティーディーケイ株式会社 セラミック基板
JP3087656B2 (ja) 1996-07-24 2000-09-11 株式会社村田製作所 低温焼結無機組成物
DE102004033652B4 (de) * 2004-07-12 2011-11-10 Schott Ag Verwendung eines Borsilikatglases zur Herstellung von Gasentladungslampen
US20100045164A1 (en) 2005-01-04 2010-02-25 Joerg Fechner Glass for an illuminating means with external electrodes
US7829490B2 (en) * 2006-12-14 2010-11-09 Ppg Industries Ohio, Inc. Low dielectric glass and fiber glass for electronic applications
CN101012105B (zh) * 2006-12-21 2010-05-19 泰山玻璃纤维股份有限公司 一种低介电常数玻璃纤维
WO2010109721A1 (ja) * 2009-03-25 2010-09-30 日本電気硝子株式会社 ガラス繊維用ガラス組成物、ガラス繊維及びガラス繊維シート状物
JP5578322B2 (ja) * 2009-08-25 2014-08-27 日本電気硝子株式会社 ガラス繊維、ガラス繊維の製造方法及びガラス繊維シート状物
CN116282904A (zh) 2016-09-13 2023-06-23 Agc株式会社 高频器件用玻璃基板和高频器件用电路基板
CN113235204B (zh) * 2017-02-10 2023-03-07 旭化成株式会社 玻璃布、预浸料、及印刷电路板
JP7410450B2 (ja) 2018-12-14 2024-01-10 日本電気硝子株式会社 ガラス繊維及びその製造方法
JP3240271U (ja) * 2022-10-12 2022-12-20 天野漆器株式会社 青貝蛍光装飾漆器製品

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151345A (ja) * 1982-02-26 1983-09-08 Asahi Glass Co Ltd 低誘電率ガラス組成物
JPS62100454A (ja) * 1985-10-29 1987-05-09 Asahi Glass Co Ltd 多層回路基板用組成物
JPS62226839A (ja) 1986-03-27 1987-10-05 Nippon Sheet Glass Co Ltd 低誘電率ガラス繊維
JPH08333137A (ja) * 1995-06-05 1996-12-17 Nitto Boseki Co Ltd 低誘電率ガラス繊維
JPH1095633A (ja) * 1996-09-20 1998-04-14 Toshiba Glass Co Ltd 乳白ガラスおよびそれを用いた温度計
JP2004505002A (ja) * 2000-07-31 2004-02-19 コーニング インコーポレイテッド Uv感光性溶融ゲルマノシリケートガラス
JP2003137590A (ja) * 2001-05-09 2003-05-14 Nippon Electric Glass Co Ltd 低誘電率低誘電正接ガラス、それを用いたガラス繊維及びガラス繊維織物
JP2010508226A (ja) 2006-10-26 2010-03-18 エイジーワイ ホールディングス コーポレイション 低誘電性グラスファイバー
JP2009286686A (ja) 2008-04-28 2009-12-10 Nippon Electric Glass Co Ltd ガラス繊維用ガラス組成物、ガラス繊維及びガラス繊維シート状物
JP2010006690A (ja) * 2008-06-26 2010-01-14 Korea Inst Of Science & Technology 低温焼成用低誘電率誘電体セラミック組成物
WO2017187471A1 (ja) 2016-04-28 2017-11-02 日本板硝子株式会社 ガラス組成物、ガラス繊維、ガラスクロスおよびガラス繊維の製造方法
JP2018127750A (ja) * 2017-02-10 2018-08-16 旭化成株式会社 ガラスクロス、プリプレグ、及びプリント配線板
WO2018216637A1 (ja) 2017-05-26 2018-11-29 日本板硝子株式会社 ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3988510A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239747A1 (ja) * 2021-05-13 2022-11-17 日本電気硝子株式会社 ガラス繊維及びその製造方法
WO2023171228A1 (ja) 2022-03-09 2023-09-14 日本板硝子株式会社 フレーク状基材及び樹脂組成物

Also Published As

Publication number Publication date
JP7542813B2 (ja) 2024-09-02
KR102669498B1 (ko) 2024-05-29
JP7292634B2 (ja) 2023-06-19
US20220402811A1 (en) 2022-12-22
EP3988510A1 (en) 2022-04-27
WO2020255396A1 (ja) 2020-12-24
TW202102455A (zh) 2021-01-16
US20220324751A1 (en) 2022-10-13
TWI845709B (zh) 2024-06-21
CN113993825A (zh) 2022-01-28
JP7370551B2 (ja) 2023-10-30
US11773009B2 (en) 2023-10-03
US11840477B2 (en) 2023-12-12
EP3988510A4 (en) 2023-09-13
JP2023155290A (ja) 2023-10-20
KR20220024493A (ko) 2022-03-03
JP2023052922A (ja) 2023-04-12
CN117945650A (zh) 2024-04-30
JPWO2020256142A1 (ja) 2020-12-24
US20220371945A1 (en) 2022-11-24
CN117964231A (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
WO2020256142A1 (ja) ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法
JP6775159B2 (ja) ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法
JP6945205B2 (ja) ガラス組成物、ガラス繊維、ガラスクロスおよびガラス繊維の製造方法
JP5655293B2 (ja) ガラス繊維用ガラス組成物、ガラス繊維及びガラス製シート状物
JP5545590B2 (ja) ガラス繊維用ガラス組成物、ガラス繊維及びガラス繊維シート状物
JP5578322B2 (ja) ガラス繊維、ガラス繊維の製造方法及びガラス繊維シート状物
WO2010109721A1 (ja) ガラス繊維用ガラス組成物、ガラス繊維及びガラス繊維シート状物
JP2024149728A (ja) ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法
WO2022168963A1 (ja) ガラス組成物ならびにガラス繊維およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20825463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021526950

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227000951

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020825463

Country of ref document: EP