WO2020248766A1 - 一种半纤维素基聚氨酯板材制备方法 - Google Patents

一种半纤维素基聚氨酯板材制备方法 Download PDF

Info

Publication number
WO2020248766A1
WO2020248766A1 PCT/CN2020/090672 CN2020090672W WO2020248766A1 WO 2020248766 A1 WO2020248766 A1 WO 2020248766A1 CN 2020090672 W CN2020090672 W CN 2020090672W WO 2020248766 A1 WO2020248766 A1 WO 2020248766A1
Authority
WO
WIPO (PCT)
Prior art keywords
hemicellulose
polyether
polyether polyol
based polyurethane
preparing
Prior art date
Application number
PCT/CN2020/090672
Other languages
English (en)
French (fr)
Inventor
周乐群
王金祥
黄东平
Original Assignee
红宝丽集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 红宝丽集团股份有限公司 filed Critical 红宝丽集团股份有限公司
Publication of WO2020248766A1 publication Critical patent/WO2020248766A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • C08J2203/142Halogenated saturated hydrocarbons, e.g. H3C-CF3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers

Definitions

  • the invention belongs to the technical field of new materials, and specifically relates to a method for preparing a hemicellulose-based polyurethane board.
  • Polyurethane rigid foam consists of rigid foam polyether polyol (hard foam combined polyether, also known as white material), and polymethylene polyphenyl polyisocyanate (PAPI) or diphenylmethane diisocyanate (MDI) (also known as Black material) prepared by reaction.
  • PAPI polymethylene polyphenyl polyisocyanate
  • MDI diphenylmethane diisocyanate
  • FPI fluorine system rigid foam polyether polyol
  • cyclopentane system rigid foam polyether polyol cyclopentane system rigid foam polyether polyol
  • water system rigid foam polyether polyol According to the field of use, it is divided into wood-like polyether polyol, household appliance polyether polyol, pipeline polyether polyol, sheet polyether polyol, etc.
  • wood-like polyether polyols are mainly used for wood-like products
  • household appliances polyether polyols are mainly used for insulation of household appliances such as refrigerators and freezers
  • pipeline polyether polyols are mainly used for heat preservation of petroleum and heating pipes
  • sheet polyether polyols Alcohol is mainly used to prepare products such as cold storage and external wall insulation boards.
  • Polyether polyol is one of the main raw materials of polyurethane foam. It is prepared by addition polymerization reaction of initiator (compound with active hydrogen group) and epoxy compound (ethylene oxide, propylene oxide) .
  • initiator compound with active hydrogen group
  • epoxy compound ethylene oxide, propylene oxide
  • the most commonly used initiators include sucrose, glycerol, mannitol, sorbitol, monoethanolamine, diethanolamine and so on.
  • the functionalities of polyether polyols obtained by adding initiators with different numbers of active hydrogen groups are very different; in the actual application of polyurethane products, several polyether polyols with different functionalities are usually added in combination.
  • the existing commonly used polyether 4110 has a higher price, and the cost is higher if all it is used as a polyether polyol.
  • hemicellulose is also the most complex component in the cell wall of biomass resources, its chemical structure varies greatly with plant species, which severely restricts the efficient conversion and utilization of this type of substance.
  • the viscose fiber is a cellulose fiber obtained by extracting and reshaping fiber molecules from natural wood cellulose using wood pulp as the raw material.
  • the hemicellulose recovered from the viscose fiber wastewater is mainly composed of xylose, accounting for about 70%, and a small amount of xylitol, glucose, galactose, arabinose, etc., which are polyhydroxy compounds with an average hydroxyl value of About 500mgKOH/g; although its chemical structure varies greatly depending on the source of raw materials, but the hydroxyl group can be modified by etherification to obtain hemicellulose polyether polyol, which has good solubility, low viscosity, and heat Stability has also been improved, so its application range is wider.
  • the purpose of the present invention is to provide a method for preparing hemicellulose-based boards, in order to realize the resource utilization of viscose fiber waste hemicellulose and improve the hardness of PU boards. Reduce the production cost of PU board.
  • a method for preparing hemicellulose-based polyurethane board using a mixture of polyether polyol, catalyst, foam stabilizer, foaming agent, and flame retardant as white material, and using polymethylene polyphenyl polyisocyanate or diphenyl
  • the methane diisocyanate is mixed with black material, stirred and reacted until the foam is matured; wherein, the polyether polyol contains hemicellulose-based polyether polyol, and the hemicellulose polyether is hemicellulose recovered from viscose fiber
  • glycerin is a composite initiator, which is prepared by block or random copolymerization with propylene oxide or a mixture of propylene oxide and ethylene oxide under the action of solvent, amine or alkali metal catalyst. For example, it reacts with PO under the catalysis of KOH to prepare hemicellulose-based polyether polyol.
  • the commonly used rigid foam polyether polyols have a functionality of 3 or more.
  • Hemicellulose is a polyhydroxy compound with a functionality between 5 and 6, which is an ideal initiator for rigid foam polyether polyols. .
  • hemicellulose is a natural polymer carbohydrate with a wide range of sources and is non-toxic.
  • the polyether polyol synthesized from this as a raw material provides a sustainable raw material for the production of polyurethane rigid foam.
  • the main raw materials for polyurethane foaming include isocyanates, polyol compounds, and additives.
  • Polyols mainly include polyester and polyether.
  • the "one-step” process is more commonly used in the foaming process, where various materials are added at once and stirred evenly to make them foam.
  • the reaction equation is as follows:
  • Reaction (1) is an addition reaction.
  • the active hydrogen on the polyol first attacks the nitrogen atom on the isocyanate, and other atoms connected to the active hydrogen are added to the carbonyl group of the isocyanate.
  • Reaction (2) is one of the key reactions of polyurethane foaming, which can make the prepolymer of isocyanate undergo chain extension or crosslinking reaction to form a polymer.
  • the CO2 gas produced by the reaction can be used as a source of bubbles for foaming.
  • a part of the 4110 polyether is replaced by a hemicellulose-based polyether polyol, and the replacement amount is 20-70% of the 4110 mass. That is, the polyether polyol is composed of polyether 4110 and hemicellulose polyether polyol, and the mass ratio of polyether 4110 and hemicellulose polyether polyol is 10:(2-7).
  • the catalyst is an amine catalyst, and the weight amount is 0.5 to 5% of the polyether, that is, 0.5 to 5 parts are added to 100 parts of the polyether.
  • the catalyst is dimethylcyclohexylamine, bis(2-dimethylaminoethyl) ether, triethylenediamine, N,N,N',N'-tetramethylalkylene diamine, N,N, N',N"-pentamethyldiethylenetriamine, triethylamine, N,N-dimethylbenzylamine, N,N-dimethylhexadecylamine, N,N-dimethylbutylamine , N-ethylmorpholine, N-methylmorpholine, N,N'-diethylpiperazine, N,N'-diethyl-2-methylpiperazine, N,N'-bis-( ⁇ -Hydroxypropyl)-2-methylpiperazine, N,N'-bis-( ⁇ -Hyd
  • the foam stabilizer is a rigid foam silicone oil, and the amount is 1.9-2.4 parts in 100 parts of polyether.
  • the blowing agent is a mixture of HCFC-141b and H2O
  • the amount of HCFC-141b is 22-35 parts in 100 parts of polyether
  • the amount of H2O is added to 100 parts of polyether. 0.6 to 1.5 copies.
  • the flame retardant is DMMP, TCEP, TCPP or their mixture, and the amount is 17-28 parts in 100 parts of polyether.
  • the foaming process is room temperature 20-25°C
  • the black material is PAPI or MDI
  • the mass ratio of the black material to the white material is (1 to 1.5):1.
  • the black material is PAPI or MDI, grade PM200 or MDI-100.
  • the hydroxyl value of the hemicellulose polyether polyol is 244.80-288.40 mgKOH/g.
  • the present invention uses hemicellulose-based polyether polyol to replace part of 4110, which can reduce the cost of PU board, improve the quality of PU board, and realize the efficient utilization of hemicellulose waste, greatly reducing
  • the environmental pollution of hemicellulose waste produced by viscose fiber is in line with the concept of green chemistry.
  • the raw material polyether polyol 4110 used in the present invention is industrial grade, produced by Hongbaoli New Material Co., Ltd.; rigid foam silicone oil and flame retardant are industrial grade, produced by Yangzhou Chenhua New Material Co., Ltd.; PC8 is industrial grade , Produced by Gas Chemical Products (China) Co., Ltd.; HCFC-141b is industrial grade; produced by Zhejiang Sanmei Chemical Co., Ltd.; crude MDI (brand PM200) is industrial grade, Yantai Wanhua Chemical Co., Ltd.; hemicellulose-based Polyether polyol, homemade.
  • hydroxyl value of hemicellulose polyether polyol is 286.60 mgKOH/g. Foam according to table 1 white material formula.
  • Hemicellulose polyether polyol has a hydroxyl value of 280.30mgKOH/g; foamed according to the white material formula in Table 1, and the results are shown in Table 3.
  • Hemicellulose polyether polyol has a hydroxyl value of 247.40mgKOH/g, foamed according to the white material formula in Table 1, and the results are shown in Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明公开了一种半纤维素聚氨酯板材制备方法,具体涉及新材料技术领域,本发明制备的半纤维素聚氨酯板材的原料中含有半纤维素基聚醚多元醇。本发明采用半纤维素基聚醚多元醇替代部分聚醚4110,可降低PU板材成本,提高PU板材品质,并实现了半纤维素废弃物的高效利用,大大降低了粘胶纤维生产的半纤维素废弃物对环境的污染,符合绿色化学的理念。

Description

一种半纤维素基聚氨酯板材制备方法 技术领域
本发明属新材料技术领域,具体涉及一种半纤维素基聚氨酯板材制备方法。
背景技术
聚氨酯硬质泡沫由硬泡聚醚多元醇(硬泡组合聚醚,又称白料),与多亚甲基多苯基多异氰酸酯(PAPI)或二苯基甲烷二异氰酸酯(MDI)(又称黑料)反应制得。按组合聚醚种类分为氟体系硬泡聚醚多元醇、环戊烷体系硬泡聚醚多元醇、全水体系硬泡聚醚多元醇。按照使用领域分为仿木聚醚多元醇、家电聚醚多元醇、管道聚醚多元醇、板材聚醚多元醇等。其中仿木聚醚多元醇主要用于仿木材产品,家电聚醚多元醇主要用于冰箱、冷柜等家用电器保温,管道聚醚多元醇主要用于石油、供热管道的保温,板材聚醚多元醇主要用于制备冷库、外墙保温板等产品。
聚醚多元醇(PPG)是聚氨酯泡沫的主要原料之一,由起始剂(具有活泼氢基团的化合物)与环氧化合物(环氧乙烷、环氧丙烷)经过加成聚合反应制得。目前使用较多的起始剂包括蔗糖、甘油、甘露醇、山梨醇、一乙醇胺、二乙醇胺等。通过加入活泼氢基团数目不同的起始剂得到聚醚多元醇的官能度有很大不同;在聚氨酯制品的实际应用中,通常会加入几种不同官能度的聚醚多元醇混合使用,而现有的常用的聚醚4110价格较高,如果全部使用其作为聚醚多元醇成本较高。
目前半纤维素主要用途有:水解发酵生产乙醇、饲料酵母、糠醛、木糖、木糖醇、山梨糖醇(己六醇)等精细化学品,半纤维素酯化、醚化、接枝共聚、氧化以及交联等化学改性制备半纤维素化学品。由于半纤维素也是生物质资源的细胞壁里最复杂的组分,其化学结构随植物种类不同而呈现较大差异,严重制约了该类物质高效转化利用。而粘胶纤维是以木浆为原材料,从天然木纤维素中提取并重塑纤维分子而得到的纤维素纤维,作为天然可再生纤维素纤维是我国纺织行业的重要基础原料。据统计2016年,中国粘胶纤维年产量达380万t;但粘胶纤维在生产过程中要产生大量的压榨废液,其中半纤维素含量约48g/L,全年共计约54.7万t半纤维素。目前我国主要采用膜分离工艺对高浓度废碱液中的半纤维素和碱液进行有效分离,高效经济地实现碱液的回收处理,在工业化生产中得到了快速推 广应用;但是膜分离仅回收了碱液,剩下的高浓度半纤维素废水或排放或浓缩收集后焚烧,不仅造成资源浪费,使产品成本增加,还导致严重的环境污染,成为制约粘胶纤维进一步发展的重要因素。
粘胶纤维废水中回收的半纤维素,主要单糖组成是木糖,约占70%,还有少量的木糖醇、葡萄糖、半乳糖、阿拉伯糖等,为多羟基化合物,平均羟值在500mgKOH/g左右;虽然其化学结构随原料来源不同而呈现较大差异,但其中的羟基可通过醚化改性得到的半纤维素聚醚多元醇,具有良好的溶解性,同时粘度低,热稳定性也得到提高,因此其应用的范围更加广泛。
发明内容
发明目的:针对现有PU硬泡技术中存在的不足,本发明的目的是提供一种半纤维素基板材制备方法,以期实现粘胶纤维废弃半纤维素的资源化利用,提高PU板材硬度,降低PU板材生产成本。
技术方案:为了实现上述发明目的,本发明采用的技术方案为:
一种半纤维素基聚氨酯板材制备方法,以聚醚多元醇、催化剂、泡沫稳定剂、发泡剂、阻燃剂的混合物为白料,以多亚甲基多苯基多异氰酸酯或二苯基甲烷二异氰酸酯为黑料混合,搅拌反应直至泡沫熟化;其中,在聚醚多元醇中含有半纤维素基聚醚多元醇,所述的半纤维素聚醚,以粘胶纤维回收的半纤维素和甘油为复合起始剂,在溶剂、胺类或碱金属类催化剂作用下,与环氧丙烷或环氧丙烷与环氧乙烷混合物进行嵌段或无规共聚而制得。例如,在KOH催化作用下与PO反应制得半纤维素基聚醚多元醇。
通常使用的硬泡聚醚多元醇的官能度在3以上,半纤维素是一种多羟基化合物,官能度在5~6之间,是一种理想的硬泡聚醚多元醇的起始剂。同时半纤维素是天然高分子碳水化合物,来源广泛,本身无毒性,以此为原料合成的聚醚多元醇,为聚氨酯硬质泡沫生产提供了一种可持续性的原料。
聚氨酯发泡的主要原料包括异氰酸酯、多元醇化合物、助剂。多元醇主要包括聚酯和聚醚两大类。目前,发泡工艺较为普遍的采用“一步法”工艺,将各种物料一次性加入后,搅拌均匀,使之发泡。反应方程式如下:
R-NCO+R /-OH→RNHCOOR /   (1)
2 R-NCO+H 2O→RNHCONHR+CO 2↑  (2)
反应(1)是一个加成反应,多元醇上的活泼氢首先进攻异氰酸酯上的氮原子,和活泼氢相连的其他原子则加成到异氰酸酯的羰基上。
反应(2)是聚氨酯发泡的关键反应之一,能使异氰酸酯的预聚体进行链增长或交联反应,形成聚合物。同时反应产生的CO2气体可以作为发泡用的气泡来源。
优选的,本发明聚氨酯硬质泡沫制备配方中,用半纤维素基聚醚多元醇替代部分4110聚醚,替代量为4110质量的20-70%。也就是聚醚多元醇由聚醚4110和半纤维素聚醚多元醇组成,其中聚醚4110和半纤维素聚醚多元醇的质量比为10:(2~7)。
优选的,本发明聚氨酯硬质泡沫制备配方中,所述的催化剂为胺类催化剂,重量用量为聚醚的0.5~5%也就是用量为100份聚醚中加入0.5~5份,所述的催化剂为二甲基环己胺、双(2-二甲氨基乙基)醚、三亚乙基二胺、N,N,N',N'-四甲基亚烷基二胺、N,N,N',N”-五甲基二亚乙基三胺、三乙胺、N,N-二甲基苄胺、N,N-二甲基十六胺、N,N-二甲基丁胺、N-乙基吗啉、N-甲基吗啉、N,N'-二乙基哌嗪、N,N’-二乙基-2-甲基哌嗪、N,N'-双-(α-羟丙基)-2-甲基哌嗪、N-2-羟基丙基二甲基吗啉等,1,3,5-三(二甲氨丙基)-六氢化三嗪、三乙醇胺、N,N-二甲基乙醇胺中的一种或多种。
优选的,本发明聚氨酯板材制备配方中,泡沫稳定剂为硬泡硅油,用量为100份聚醚中加入1.9~2.4份。
优选的,本发明聚氨酯板材制备配方中,发泡剂为HCFC-141b和H2O的混合物,HCFC-141b的用量为100份聚醚中加入22~35份,H2O的用量为100份聚醚中加入0.6~1.5份。
优选的,本发明聚氨酯板材制备配方中,阻燃剂为DMMP、TCEP、TCPP或者它们的混合物,用量为100份聚醚中加入17~28份。
优选的,本发明聚氨酯板材制备配方中,发泡工艺为室温20-25℃,黑料为PAPI或者MDI,黑料与白料的质量配比为(1~1.5):1。其中,黑料为PAPI或者MDI,牌号PM200或MDI-100。
优选的,半纤维素聚醚多元醇的羟值为244.80-288.40mgKOH/g。
有益效果:与现有技术相比,本发明采用半纤维素基聚醚多元醇替代部分4110,可降低PU板材成本,提高PU板材品质,并实现了半纤维素废弃物的高效利用,大大降低了粘胶纤维生产的半纤维素废弃物对环境的污染,符合绿色化学的理念。
具体实施方式
下面通过实施例进一步描述本发明,但未限于所举的实施例。
本发明使用的原料聚醚多元醇4110为工业级,红宝丽新材料股份有限公司生产;硬泡硅油、阻燃剂均为工业级,扬州晨化新材料股份有限公司生产;PC8为工业级,美国气体化工产品(中国)有限公司生产;HCFC-141b为工业级;浙江三美化工股份有限公司生产;粗MDI(牌号PM200)为工业级,烟台万华化学股份有限公司;半纤维素基聚醚多元醇,自制。
检测:在室温20-25℃条件下,将25g黑料(PAPI)与25g白料(聚醚)以1:1混合倒入200mL塑料杯中,搅拌10s,记录下乳白上升时间、拉丝时间,泡沫熟化0.5h后,测泡沫密度,观察泡孔。
根据国标GB/T12008.3-2009聚醚多醇中羟值测定方法检测半纤维素聚醚多元醇的羟值,根据国标GB/T6343-95检测泡沫的密度,根据国标GB/T8813-2008检测泡沫的压缩强度,根据国标GB/T3399-82测泡沫的导热系数。
实施例1
半纤维素聚醚多元醇羟值286.60mgKOH/g。按表1白料配方发泡。
表1半纤维素聚醚部分替代4110发泡配方
组份配方 1 2 3 4
聚醚4110 100份 80份 65份 50份
半纤维素基聚醚多元醇 0份 20份 35份 50份
硬泡硅油 2份 2份 2份 2份
PC8 2份 2份 2份 2份
HCFC-141b 28份 28份 28份 28份
TCEP 20份 20份 20份 20份
1.5份 1.5份 1.5份 1.5份
结果见表2。
表2半纤维素聚醚部分替代4110发泡结果
性能指标 1 2 3 4
乳白时间/秒 23 22 18 15
纤维时间/秒 71 68 63 55
泡沫密度kg/m 3 25.0 26.7 27.3 31.4
泡孔结构 细腻均匀 一般 稍粗 较粗
10%压缩强度/MPa 0.14 0.19 0.22 0.25
泡沫表皮形状 光滑 一般 较粗 较粗有空洞
导热系数W/(m·k) 0.026 0.029 0.040 0.065
由表2可知,随着半纤维素聚醚多元醇替代量增加,发泡时乳白时间和纤维时间逐步缩短,当用量达到50%时,下降尤其明显,该半纤维素聚醚多元醇具有良好的反应活性;导热系数明显变大,泡孔也变粗,该半纤维素聚醚多元醇具有较好的开孔作用;半纤维素聚醚多元醇替代量增加,制得的泡沫压缩强度会增加,用量从0提高到50%时,强度从0.14MPa提高到0.25MPa。
实施例2
半纤维素聚醚多元醇羟值280.30mgKOH/g;按表1白料配方发泡,结果见表3。
表3半纤维素聚醚部分替代4110发泡结果
性能指标 1 2 3 4
乳白时间/s 22 20 19 15
纤维时间/s 71 66 60 44
泡沫密度/kg/m 3 24.9 25.5 26.0 29.7
泡孔结构 细腻均匀 正常 正常 较粗
10%压缩强度/MPa 0.14 0.17 0.18 0.22
泡沫表皮形状 光滑 光滑 一般 较粗糙
导热系数/W/(m·k) 0.026 0.027 0.029 0.035
由表3可知,随着半纤维素聚醚多元醇的替代4110量的增加,发泡时的乳白时间和纤维时间逐步缩短;制得的泡沫强度在替代量为50%时达到最大0.22MPa,替代量的增加对泡孔有一定的副作用。替代量在20%时制得的泡沫乳白和纤维的时间与标准泡沫相近,泡沫表皮光滑,泡孔正常,泡沫密度和导热系数均与标准泡沫相近,且压缩强度略大。
实施例3
半纤维素聚醚多元醇羟值247.40mgKOH/g,按表1白料配方发泡,结果见表4。
表4半纤维素聚醚部分替代4110发泡结果
性能指标 1 2 3 4
乳白时间/s 22 19 17 12
纤维时间/s 71 61 50 44
泡沫密度/kg/m 3 24.6 27.8 28.8 30.5
泡孔结构 细腻均匀 正常 较粗 较粗
10%压缩强度/MPa 0.15 0.14 0.13 0.09
泡沫表皮形状 光滑 较粗 较粗有空洞 较粗有空洞
导热系数/W/(m·k) 0.026 0.037 0.043 0.052
由表4可知,随着半纤维素聚醚多元醇的替代4110量的增加,发泡时的乳白时间和纤维时间逐步缩短;随着半纤维素聚醚多元醇含量的增加,泡沫的压缩强度逐步降低,替代量的增加对泡孔有一定的副作用。随着替代量的增加,导热系数也逐渐变大。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (8)

  1. 一种半纤维素基聚氨酯板材制备方法,其特征在于,以聚醚多元醇、催化剂、泡沫稳定剂、发泡剂、阻燃剂的混合物为白料,以多亚甲基多苯基多异氰酸酯或二苯基甲烷二异氰酸酯为黑料混合,搅拌反应直至泡沫熟化;其中,在聚醚多元醇中含有半纤维素聚醚多元醇,所述的半纤维素聚醚,以粘胶纤维回收的半纤维素和甘油为复合起始剂,在溶剂、胺类或碱金属类催化剂作用下,与环氧丙烷或环氧丙烷与环氧乙烷的混合物进行嵌段或无规共聚而制得。
  2. 根据权利要求1所述的半纤维素基聚氨酯板材制备方法,其特征在于,所述的催化剂为胺类催化剂,重量用量为聚醚的0.5~5%,所述的催化剂为二甲基环己胺、双(2-二甲氨基乙基)醚、三亚乙基二胺、N,N,N',N'-四甲基亚烷基二胺、N,N,N',N”-五甲基二亚乙基三胺、三乙胺、N,N-二甲基苄胺、N,N-二甲基十六胺、N,N-二甲基丁胺、N-乙基吗啉、N-甲基吗啉、N,N'-二乙基哌嗪、N,N’-二乙基-2-甲基哌嗪、N,N'-双-(α-羟丙基)-2-甲基哌嗪、N-2-羟基丙基二甲基吗啉等,1,3,5-三(二甲氨丙基)-六氢化三嗪、三乙醇胺、N,N-二甲基乙醇胺中的一种或多种。
  3. 根据权利要求1所述的半纤维素基聚氨酯板材制备方法,其特征在于,所述的泡沫稳定剂为硬泡硅油,重量用量为聚醚的1.9~2.4%。
  4. 根据权利要求1所述的半纤维素基聚氨酯板材制备方法,其特征在于,所述的发泡剂为HCFC-141b和H2O的混合物;HCFC-141b的重量用量为聚醚多元醇的22~35%,H2O的重量用量为聚醚的0.6~1.5%。
  5. 根据权利要求1所述的半纤维素基聚氨酯板材制备方法,其特征在于,所述的阻燃剂为DMMP、TCEP、TCPP或者它们的混合物,重量用量为聚醚多元醇的17~28%。
  6. 根据权利要求1所述的半纤维素基聚氨酯板材制备方法,其特征在于,聚醚多元醇由聚醚4110和半纤维素聚醚多元醇组成,其中聚醚4110和半纤维素聚醚多元醇的质量比为10:(2~7)。
  7. 根据权利要求1所述的半纤维素基聚氨酯板材制备方法,其特征在于,发泡工艺为室温20-25℃,将黑料与白料以质量比(1~1.5):1混合。
  8. 根据权利要求1所述的半纤维素基聚氨酯板材制备方法,其特征在于,半纤维素聚醚多元醇的羟值为244.80-288.40mgKOH/g。
PCT/CN2020/090672 2019-06-14 2020-05-15 一种半纤维素基聚氨酯板材制备方法 WO2020248766A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910516187.3 2019-06-14
CN201910516187.3A CN110204677A (zh) 2019-06-14 2019-06-14 一种半纤维素基聚氨酯板材制备方法

Publications (1)

Publication Number Publication Date
WO2020248766A1 true WO2020248766A1 (zh) 2020-12-17

Family

ID=67792758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090672 WO2020248766A1 (zh) 2019-06-14 2020-05-15 一种半纤维素基聚氨酯板材制备方法

Country Status (2)

Country Link
CN (1) CN110204677A (zh)
WO (1) WO2020248766A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110204677A (zh) * 2019-06-14 2019-09-06 红宝丽集团股份有限公司 一种半纤维素基聚氨酯板材制备方法
CN116082622A (zh) * 2022-12-12 2023-05-09 山东一诺威新材料有限公司 耐老化可降解的改性双生物基聚醚多元醇及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987213A (en) * 1988-05-16 1991-01-22 Director-General Of Agency Of Industrial Science And Technology Polyurethane and process for preparing same
DE102007037643A1 (de) * 2006-08-22 2008-03-13 Basf Ag Verfahren zur Herstellung von Polyurethanen
CN106700060A (zh) * 2016-12-02 2017-05-24 南京林业大学 一种半纤维素基聚醚多元醇的制备方法
CN106947045A (zh) * 2017-02-16 2017-07-14 华南理工大学 一种改性半纤维素基纸张增强剂及其制备方法
CN108329449A (zh) * 2018-02-13 2018-07-27 南京林业大学 一种半纤维素基聚氨酯硬泡及其制备方法
CN110204677A (zh) * 2019-06-14 2019-09-06 红宝丽集团股份有限公司 一种半纤维素基聚氨酯板材制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987213A (en) * 1988-05-16 1991-01-22 Director-General Of Agency Of Industrial Science And Technology Polyurethane and process for preparing same
DE102007037643A1 (de) * 2006-08-22 2008-03-13 Basf Ag Verfahren zur Herstellung von Polyurethanen
CN106700060A (zh) * 2016-12-02 2017-05-24 南京林业大学 一种半纤维素基聚醚多元醇的制备方法
CN106947045A (zh) * 2017-02-16 2017-07-14 华南理工大学 一种改性半纤维素基纸张增强剂及其制备方法
CN108329449A (zh) * 2018-02-13 2018-07-27 南京林业大学 一种半纤维素基聚氨酯硬泡及其制备方法
CN110204677A (zh) * 2019-06-14 2019-09-06 红宝丽集团股份有限公司 一种半纤维素基聚氨酯板材制备方法

Also Published As

Publication number Publication date
CN110204677A (zh) 2019-09-06

Similar Documents

Publication Publication Date Title
CN108329449B (zh) 一种半纤维素基聚氨酯硬泡及其制备方法
Kurimoto et al. Network structures and thermal properties of polyurethane films prepared from liquefied wood
WO2020248766A1 (zh) 一种半纤维素基聚氨酯板材制备方法
CN109851835B (zh) 硬质聚氨酯泡沫用有机硅表面活性剂及其制备方法
CN107129570B (zh) 一种淀粉基聚醚多元醇的制备方法
CN109485824A (zh) 一种可循环加工的热固性木质素基聚氨酯弹性体及其制备方法
DE60319689T2 (de) Mit teilfluorierten fluorkohlenwasserstoffen und kohlendioixd getriebene polyurethan- oder polyisocyanatschaumstoffe
WO2021243850A1 (zh) 强支撑高弹性聚氨酯软泡材料及其制备方法
Guo et al. Successive organic solvent fractionation and homogenization of technical lignin for polyurethane foam with high mechanical performance
CN102850507A (zh) 一种增强的木质素基聚氨酯硬泡及其制备方法
CN106700060A (zh) 一种半纤维素基聚醚多元醇的制备方法
CN111217977B (zh) 一种栲胶基聚氨酯硬质泡沫及其制备方法和应用
CN105086423A (zh) 含有增塑剂的低硬度浇注型聚氨酯弹性体及其制备方法
CN104004175B (zh) 阻燃聚醚多元醇、组合聚醚、聚氨酯泡沫及其制备方法
CN109575351B (zh) 一种木质素基聚氨酯泡沫及其制备方法
CN111454427B (zh) 全水发泡生物质基硬质聚氨酯泡沫及其制备方法
Paberza et al. Polyols from recycled poly (ethylene terephthalate) flakes and rapeseed oil for polyurethane foams
Li et al. Preparation of polyurethane foams based on liquefied corn stalk enzymatic hydrolysis lignin
CN103275332A (zh) 一种玉米芯木质素及应用
WO2020248765A1 (zh) 一种纤维素基聚氨酯硬泡制备方法
CN112194784A (zh) 一种淀粉基阻燃聚醚多元醇的制备方法
CN113278190A (zh) 一种石墨烯/废旧聚氨酯复合材料的制备方法
CN111471173A (zh) 一种秸秆催化溶剂热液化制备聚醚多元醇的方法
CN109293870A (zh) 一种纤维素基聚氨酯硬泡及其制备方法
CN114031763B (zh) 一种纤维素聚醚多元醇及其制备方法和应用、纤维素聚醚多元醇聚氨酯泡沫的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20822024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20822024

Country of ref document: EP

Kind code of ref document: A1