WO2020246155A1 - アンテナモジュールおよびそれを搭載した通信装置、ならびに回路基板 - Google Patents

アンテナモジュールおよびそれを搭載した通信装置、ならびに回路基板 Download PDF

Info

Publication number
WO2020246155A1
WO2020246155A1 PCT/JP2020/017024 JP2020017024W WO2020246155A1 WO 2020246155 A1 WO2020246155 A1 WO 2020246155A1 JP 2020017024 W JP2020017024 W JP 2020017024W WO 2020246155 A1 WO2020246155 A1 WO 2020246155A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
radiating element
feeding
antenna module
antenna
Prior art date
Application number
PCT/JP2020/017024
Other languages
English (en)
French (fr)
Inventor
弘嗣 森
直志 菅原
尾仲 健吾
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2020246155A1 publication Critical patent/WO2020246155A1/ja
Priority to US17/543,758 priority Critical patent/US20220094074A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/385Two or more parasitic elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/0057Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises

Definitions

  • the present disclosure relates to an antenna module, a communication device on which the antenna module is mounted, and a circuit board, and more specifically, to a filter arrangement in an array antenna in which a filter is formed on the same board.
  • Patent Document 1 discloses an array antenna in which a plurality of antenna elements are two-dimensionally arranged.
  • the antenna element is divided into a plurality of array groups, and a common feeding point is set for each division. Then, the antenna element of each array group is supplied with a high frequency signal distributed from the corresponding feeding point. With such a configuration, the directivity of the radiated radio wave can be adjusted by individually controlling each array group.
  • each antenna element radiating element
  • each radiating element may be arranged at an interval of approximately ⁇ / 2.
  • an object of the present invention is to provide an antenna module in an array antenna formed by including an antenna module in which a plurality of filters are formed on the same substrate. It is to arrange the filter appropriately in the area of the antenna module while suppressing the increase in size.
  • An antenna module includes a first radiation element and a second radiation element having a planar shape arranged adjacent to each other, a first filter connected to the first radiation element, and a second radiation element. It includes a second filter connected. Each of the first filter and the second filter is configured to include a plurality of resonant lines that are not connected to each other. Each of the first filter and the second filter is equidistant from the first radiating element and the second radiating element between the first radiating element and the second radiating element when the antenna module is viewed in a plan view from the normal direction. It is arranged so as to straddle the virtual line of.
  • An antenna module includes a first sub-antenna and a second sub-antenna arranged adjacent to each other.
  • Each of the first sub-antenna and the second sub-antenna includes a plurality of planar radiating elements arranged in a second direction different from the first direction from the first sub-antenna to the second sub-antenna.
  • the antenna module further includes a first filter connected to the radiating element included in the first sub-antenna and a second filter connected to the radiating element included in the second sub-antenna.
  • Each of the first filter and the second filter is configured to include a plurality of resonant lines that are not connected to each other.
  • Each of the first filter and the second filter is equidistant from the first sub-antenna and the second sub-antenna between the first sub-antenna and the second sub-antenna when the antenna module is viewed in a plan view from the normal direction. It is arranged so as to straddle the virtual line of.
  • the first filter and the second filter are arranged side by side in the second direction.
  • a circuit board is a circuit board provided with a first terminal and a second terminal connected to a first radiation element and a second radiation element having a planar shape, which are arranged adjacent to each other.
  • the circuit board includes a first filter connected to the first terminal and a second filter connected to the second terminal.
  • Each of the first filter and the second filter is configured to include a plurality of resonant lines that are not connected to each other.
  • Each of the first filter and the second filter provides a virtual line equidistant from the first terminal and the second terminal between the first terminal and the second terminal when the circuit board is viewed in a plan view from the normal direction. It is arranged so as to straddle.
  • the filter corresponding to each radiating element (sub-antenna) is provided between the two radiating elements (sub-antennas) arranged adjacent to each other. It is arranged so as to straddle a virtual line at an equal distance from the radiating element (sub-antenna), and is arranged in a direction orthogonal to the adjacent direction of the two radiating elements (sub-antenna).
  • the filter can be appropriately arranged in the area of the antenna module, and the increase in size of the antenna module can be suppressed.
  • FIG. 1 is an example of a block diagram of a communication device 10 to which the antenna module 100 according to the first embodiment is applied.
  • the communication device 10 is, for example, a mobile terminal such as a mobile phone, a smartphone or a tablet, a personal computer having a communication function, or the like.
  • An example of the frequency band of the radio wave used for the antenna module 100 according to the present embodiment is a radio wave in the millimeter wave band having a central frequency of 28 GHz, 39 GHz, 60 GHz, etc., but radio waves in frequency bands other than the above are also available. Applicable.
  • the communication device 10 includes an antenna module 100 and a BBIC 200 constituting a baseband signal processing circuit.
  • the antenna module 100 includes an RFIC 110, which is an example of a power feeding circuit, an antenna device 120, and a filter device 105.
  • the communication device 10 up-converts the signal transmitted from the BBIC 200 to the antenna module 100 into a high-frequency signal by the RFIC 110, and radiates it from the antenna device 120 via the filter device 105. Further, the communication device 10 transmits the high frequency signal received by the antenna device 120 to the RFIC 110 via the filter device 105, down-converts the signal, and processes the signal by the BBIC 200.
  • FIG. 1 shows an example in which the antenna device 120 is formed by a plurality of feeding elements 121 arranged in a two-dimensional array, but the one-dimensional array in which the plurality of feeding elements 121 are arranged in a row. It may be.
  • the feeding element 121 is a patch antenna having a substantially square flat plate shape.
  • the RFIC 110 includes switches 111A to 111D, 113A to 113D, 117, power amplifiers 112AT to 112DT, low noise amplifiers 112AR to 112DR, attenuators 114A to 114D, phase shifters 115A to 115D, and signal synthesizer / demultiplexer. It includes 116, a mixer 118, and an amplifier circuit 119.
  • the switches 111A to 111D and 113A to 113D are switched to the power amplifiers 112AT to 112DT side, and the switch 117 is connected to the transmitting side amplifier of the amplifier circuit 119.
  • the switches 111A to 111D and 113A to 113D are switched to the low noise amplifiers 112AR to 112DR side, and the switch 117 is connected to the receiving side amplifier of the amplifier circuit 119.
  • the signal transmitted from the BBIC 200 is amplified by the amplifier circuit 119 and up-converted by the mixer 118.
  • the transmitted signal which is an up-converted high-frequency signal, is demultiplexed by the signal synthesizer / demultiplexer 116, passes through four signal paths, and is fed to different feeding elements 121.
  • the directivity of the antenna device 120 can be adjusted by individually adjusting the degree of phase shift of the phase shifters 115A to 115D arranged in each signal path.
  • the received signal which is a high-frequency signal received by each feeding element 121, passes through four different signal paths and is combined by the signal synthesizer / demultiplexer 116.
  • the combined received signal is down-converted by the mixer 118, amplified by the amplifier circuit 119, and transmitted to the BBIC 200.
  • the filter device 105 includes filters 105A to 105D.
  • the filters 105A to 105D are connected to switches 111A to 111D in the RFIC 110, respectively.
  • the filters 105A to 105D have a function of attenuating a signal in a specific frequency band.
  • the filters 105A to 105D may be a bandpass filter, a highpass filter, a lowpass filter, or a combination thereof.
  • the high frequency signal from the RFIC 110 passes through the filters 105A to 105D and is supplied to the corresponding power feeding element 121.
  • the filter device 105 and the antenna device 120 are shown separately, but in the present disclosure, the filter device 105 is formed inside the antenna device 120, as will be described later.
  • the RFIC 110 is formed as, for example, a one-chip integrated circuit component including the above circuit configuration.
  • the devices switch, power amplifier, low noise amplifier, attenuator, phase shifter
  • corresponding to each feeding element 121 in the RFIC 110 may be formed as an integrated circuit component of one chip for each corresponding feeding element 121. ..
  • FIG. 2 is a plan perspective view of the antenna module 100
  • FIG. 3 is a side perspective view of the antenna module.
  • the antenna module 100 is an array antenna having two feeding elements 1211, 1212 as radiation elements will be described as an example, but the feeding elements may be 3 or more, and further feeding.
  • the elements may be arranged two-dimensionally.
  • the antenna module includes a dielectric substrate 130, feeding wiring 141, 142, filters 151, 152, connecting wirings 161, 162, and a ground electrode GND.
  • the normal direction (radio wave radiation direction) of the dielectric substrate 130 is defined as the Z-axis direction
  • the plane perpendicular to the Z-axis direction is defined by the X-axis and the Y-axis.
  • the positive direction of the Z axis in each figure may be referred to as an upper side
  • the negative direction may be referred to as a lower side.
  • the dielectric substrate 130 is, for example, a low temperature co-fired ceramics (LCC) multilayer substrate, a multilayer resin substrate formed by laminating a plurality of resin layers composed of resins such as epoxy or polyimide.
  • the dielectric substrate 130 does not necessarily have to have a multi-layer structure, and may be a single-layer substrate.
  • the dielectric substrate 130 has a substantially rectangular shape, and the feeding elements 1211 and 1212 are arranged on the upper surface 131 (the surface in the positive direction of the Z axis) or the inner layer thereof.
  • the feeding elements 121 and 1212 are patch antennas having a substantially square planar shape.
  • the feeding elements 121 and 1212 are arranged adjacent to each other along the X-axis direction of the dielectric substrate 130.
  • the power feeding element 1211 and the feeding element 1212 are arranged at intervals of approximately ⁇ / 2 at the center of the surface (intersection of diagonal lines).
  • a flat plate-shaped ground electrode GND is arranged on the lower surface 132 (the surface in the negative direction of the Z axis) side of the feeding elements 1211, 1212, facing the feeding elements 1211, 1212.
  • the RFIC 110 is mounted on the lower surface 132 of the dielectric substrate 130 via the solder bumps 170.
  • the RFIC 110 may be connected to the dielectric substrate 130 by using a multi-pole connector instead of the solder connection.
  • a high frequency signal is supplied from the RFIC 110 to the feeding point SP1 of the feeding element 1211 via the connecting wiring 161 and the filter 151 and the feeding wiring 141. Further, a high frequency signal is supplied from the RFIC 110 to the feeding point SP2 of the feeding element 1212 via the connecting wiring 162, the filter 152, and the feeding wiring 142.
  • the feeding point of each feeding element is arranged at a position offset in the negative direction of the Y axis from the center of the feeding element. By setting the feeding point at such a position, radio waves having the Y-axis direction as the polarization direction are radiated from each feeding element.
  • Each power supply wiring and connection wiring are formed by a wiring pattern formed between layers of the dielectric substrate 130 and vias penetrating the layers.
  • the conductors constituting the radiation element, wiring pattern, electrodes, vias, etc. are made of aluminum (Al), copper (Cu), gold (Au), silver (Ag), and alloys thereof. It is made of metal as the main component.
  • the filters 151 and 152 correspond to the filter device 105 shown in FIG.
  • the filters 151 and 152 are arranged between the lower surface 132 of the dielectric substrate 130 and the ground electrode GND, but as in the example of FIG. 4, the feeding elements 121 and 1212 and the ground electrode GND are used.
  • Filters 151 and 152 may be placed in the layers between.
  • each filter represents the area that the filter can occupy in a rectangular shape, but it may be a substantially square shape or a more elongated rectangular shape depending on the filter configuration. In some cases.
  • the "region that can be occupied by the filter” does not mean a region occupied by the shape of the resonance line, but a region in which the region including all the resonance lines is represented by a rectangular shape.
  • the distance between the radiation element and the ground electrode GND can be made larger than that of the antenna module 100 of FIG.
  • advantages such as widening the frequency bandwidth of.
  • the antenna module 100A since a part of the filter may have a portion facing the radiating element, the directivity and the like may be affected by the electromagnetic coupling between the radiating element and the filter.
  • each of the filters 151 and 152 is arranged so as to straddle the virtual line CL1 equidistant from the feeding element 1211 and the feeding element 1212.
  • the second direction negative direction of the Y axis
  • the filter 151 and the filter 152 are arranged side by side in the second direction.
  • the filter 151 is arranged further on the second direction side from the feeding point SP1
  • the filter 152 is arranged on the opposite side (positive direction of the Y axis) from the feeding point SP1 in the second direction.
  • the filter 151 and the filter 152 do not overlap when the antenna module 100 is viewed in a plan view. Further, the filter 151 does not overlap with the feeding element 1212, and the filter 152 does not overlap with the feeding element 1211.
  • the filters 151 and 152 are so-called resonance line type filters.
  • the resonance line type filter has a configuration in which a plurality of lines having a length of ⁇ / 4 or ⁇ / 2 are adjacent to each other in a non-connected state, and functions as a filter by electromagnetic field coupling between the resonance lines. Since the resonance line type filter can be formed by a wiring pattern or a combination of the wiring pattern and vias, there is an advantage that it can be relatively easily formed inside the dielectric substrate of the antenna array.
  • FIG. 5 is a diagram showing some examples of the structure of the resonance line type filter corresponding to the filters 151 and 152. Each of the filters illustrated in FIGS. 5 (a) to 5 (c) is formed in the dielectric substrate 130.
  • the filter 150 of FIG. 5A includes two lines 1503, 1506 having a length of ⁇ / 4 and a line 1505 having a length of ⁇ / 2.
  • the lines 1503, 1505, 1506 are formed in the same layer.
  • the line 1503 is connected to the input terminal 1501, and the line 1506 is connected to the output terminal 1502.
  • the line 1503 and the line 1506 have a substantially L-shape, and one end of the L-shape is connected to the ground potential by vias 1504 and 1507, respectively.
  • the ends of the line 1503 and the line 1506 to which the vias are connected are opposed to each other and separated from each other, and the other ends are arranged so as to extend in opposite directions to each other.
  • a line 1505 formed of a straight line is arranged between the line 1503 and the line 1506.
  • the filter 150A of FIG. 5B includes two lines 1503A and 1506A having a length of ⁇ / 4 and a line 1505A having a length of ⁇ / 2.
  • the line 1503A and the line 1506A have a substantially L-shape, and one end of the L-shape is connected to an input terminal 1501A and an output terminal 1502A, respectively.
  • the line 1505A is formed in a layer different from the lines 1503A and 1506A.
  • Line 1505A has a crank shape, one end is capacitively coupled to the other end of line 1503A, and the other end of line 1505A is capacitively coupled to the other end of line 1506A. There is.
  • An additional line is connected to the end connected to the input terminal 1501A of the line 1503A and the end connected to the output terminal 1502A of the line 1506A. In this way, the characteristics of the filter 150A can be adjusted by providing an additional line between the input terminal 1501A and the output terminal 1502A.
  • the filter 150B of FIG. 5C includes two lines 1503B and 1506B having a length of ⁇ / 4, a line 1505B having a length of ⁇ / 2, and a line 1508B.
  • the line 1505B is formed in a layer different from the lines 1503B and 1506B.
  • the line 1503B and the line 1506B have a substantially C-shape, and are connected to an input terminal 1501B and an output terminal 1502B, respectively, at a substantially central portion of the C-shape.
  • One end of line 1503B and line 1506B is connected to the ground potential by vias 1504B and 1507B, respectively.
  • the other end of line 1503B is capacitively coupled to one end of linear line 1505B and the other end of line 1506B is capacitively coupled to the other end of line 1505B.
  • the line 1508B is a straight line arranged parallel to the line 1505B, and both ends thereof are connected to the ground potential by vias. By providing the line 1508B, the characteristics of the filter 150B can be adjusted.
  • the resonance line type filter can be easily formed inside the dielectric substrate, and is therefore suitable for forming the filter in the immediate vicinity of the radiating element.
  • the resonance line type filter is an LC filter realized by a coil-shaped inductor formed in a multilayer substrate and a capacitor formed by two flat plate electrodes, or a chip type filter mounted on the substrate. A larger area is required than when using a filter.
  • FIG. 6 is a perspective perspective view of the antenna module 100 # of the comparative example.
  • the filters 151 # and 152 # are arranged so that the positions of the filters with respect to the feeding element are the same, and a part of the filter is in the region of ⁇ / 4 from the corresponding feeding element. It is in a state of protruding from. In this case, it is necessary to enlarge the dielectric substrate 130 so that the protruding portion is included in the dielectric substrate 130, and the size of the antenna module and the entire antenna array becomes large.
  • the two filters are arranged so as to straddle a virtual line equidistant from each feeding element between the feeding elements and to arrange the feeding elements. They are arranged side by side in a direction orthogonal to the direction. With such an arrangement, the filter can be formed in the region of the distance of ⁇ / 4 from the two feeding elements, so that it is possible to suppress an increase in the size of the antenna module in the array antenna.
  • FIG. 7 is a perspective perspective view of the antenna module 100B of the modified example.
  • the antenna module 100B has a configuration in which a plurality of feeding points for radiating radio waves in the same polarization direction are provided for each feeding element.
  • the feeding point SP1A and the feeding point SP1B are provided for the feeding element 1211, and the feeding point SP2A and the feeding point SP2B are provided for the feeding element 1212.
  • the feeding point SP1A is arranged at a position offset in the negative direction of the Y axis from the center of the feeding element 1211, and the feeding point SP1B is arranged at a position offset in the positive direction of the Y axis from the center point of the feeding element 1211. ing.
  • the feeding point SP2A is arranged at a position offset in the negative direction of the Y axis from the center of the feeding element 1212, and the feeding point SP2B is located at a position offset in the positive direction of the Y axis from the center of the feeding element 1212.
  • the feeding points SP1B and SP2B are arranged at positions offset from the center point (plane center) of the feeding element in a direction opposite to the offset direction of the feeding points SP1A and SP2A.
  • each feeding element Since all of the feeding points SP1A, SP1B, SP2A, and SP2B are offset in the Y-axis direction from the center point of the feeding element, when a high frequency signal is supplied to these feeding points, each feeding element sends the Y-axis direction. Radio waves with the polarization direction of are emitted.
  • the feeding point SP1A is connected to the feeding point SP1B by the line 191. Further, the feeding point SP2A is connected to the feeding point SP2B by a line 192.
  • the wavelength of the radio wave radiated from each radiating element is ⁇
  • the lengths of the lines 191 and 192 are set to be ⁇ / 2.
  • the phase of the high frequency signal supplied to the feeding point SP1B is inverted with respect to the phase of the high frequency signal supplied to the feeding point SP1A, and similarly, the phase of the high frequency signal supplied to the feeding point SP2A is fed.
  • the phase of the high frequency signal supplied to the point SP2B is inverted.
  • XPD Cross Polarization Discrimination
  • the high frequency signal from the filter 151 corresponding to the feeding element 1211 is supplied to the feeding point SP1A via the feeding wiring 141.
  • the high frequency signal from the filter 152 corresponding to the feeding element 1212 is supplied to the feeding point SP2B via the feeding wiring 142.
  • the filter 151 and the filter 152 are arranged in the second direction (Y-axis direction) orthogonal to the first direction (positive direction of the X-axis) from the feeding element 1211 toward the feeding element 1212. They are arranged side by side.
  • a filter can be formed in a region of a distance of ⁇ / 4 from the two feeding elements, and an increase in the size of the antenna module in the array antenna can be suppressed.
  • the "feeding element 1211" and the “feeding element 1212” correspond to the “first radiating element” and the “second radiating element” of the present disclosure, respectively, and correspond to the "filter 151" and the “filter 151".
  • the “filter 152” corresponds to the "first filter” and the “second filter” of the present disclosure, respectively.
  • FIG. 8 is a block diagram of a communication device to which the antenna module according to the second embodiment is applied.
  • the communication device 10A includes an antenna module 100C and a BBIC 200.
  • the antenna module 100C includes an RFIC 110A, an antenna device 120A, and a filter device 106.
  • the antenna device 120A is a dual polarization type antenna device, and each feeding element 121 is supplied with a high frequency signal for the first polarization and a high frequency signal for the second polarization from the RFIC 110A.
  • the RFIC 110 includes switches 111A to 111H, 113A to 113H, 117A, 117B, power amplifiers 112AT to 112HT, low noise amplifiers 112AR to 112HR, attenuators 114A to 114H, phase shifters 115A to 115H, and signal synthesis / minute. It includes wave devices 116A and 116B, mixers 118A and 118B, and amplifier circuits 119A and 119B.
  • the configuration of the amplifier circuit 119A is a circuit for a high frequency signal for the first polarization.
  • the configuration of the amplifier circuit 119B is a circuit for a high frequency signal for the second polarization.
  • the switches 111A to 111H and 113A to 113H are switched to the power amplifiers 112AT to 112HT side, and the switches 117A and 117B are connected to the transmitting side amplifiers of the amplifier circuits 119A and 119B.
  • the switches 111A to 111H and 113A to 113H are switched to the low noise amplifiers 112AR to 112HR, and the switches 117A and 117B are connected to the receiving side amplifiers of the amplifier circuits 119A and 119B.
  • the filter device 106 includes filters 106A to 106H.
  • the filters 106A to 106H are connected to the switches 111A to 111H in the RFIC 110A, respectively.
  • Each of the filters 106A to 106H has a function of attenuating a high frequency signal in a specific frequency band.
  • the signal transmitted from the BBIC 200 is amplified by the amplifier circuits 119A and 119B, and up-converted by the mixers 118A and 118B.
  • the transmitted signal which is an up-converted high-frequency signal, is demultiplexed by the signal synthesizer / demultiplexer 116A and 116B, passes through the corresponding signal path, and is fed to different power feeding elements 121.
  • the high frequency signals from the switches 111A and 111E are supplied to the power feeding element 121A via the filters 106A and 106E, respectively.
  • the high frequency signals from the switches 111B and 111F are supplied to the feeding element 121B via the filters 106B and 106F, respectively.
  • the high frequency signals from the switches 111C and 111G are supplied to the feeding element 121C via the filters 106C and 106G, respectively.
  • the high frequency signals from the switches 111D and 111H are supplied to the power feeding element 121D via the filters 106D and 106H, respectively.
  • the directivity of the antenna device 120 can be adjusted by individually adjusting the degree of phase shift of the phase shifters 115A to 115H arranged in each signal path.
  • the received signal which is a high-frequency signal received by each feeding element 121, is transmitted to the RFIC 110 via the filter device 106, and is combined in the signal synthesizers / demultiplexers 116A and 116B via four different signal paths.
  • the combined received signal is down-converted by the mixers 118A and 118B, amplified by the amplifier circuits 119A and 119B, and transmitted to the BBIC 200.
  • FIG. 9 is an example of a perspective perspective view of the antenna module 100C of FIG.
  • filters 1512 and 1522 filters for radio waves whose polarization direction is the X-axis direction are used. X) is added to the configuration.
  • the filters 1511, 1521 (filter Y) whose polarization direction is the Y-axis direction in FIG. 9 correspond to the filters 151 and 152 in FIG.
  • Each of the filters 1511, 1512, 1521, 1522 is a resonance line type filter.
  • the high frequency signal that has passed through the filter 1511 is supplied to the feeding point SP11 via the feeding wiring 1411, and the high frequency signal that has passed through the filter 1512 is supplied to the feeding point SP12 via the feeding wiring 1412. Further, in the feeding element 1212, the high frequency signal that has passed through the filter 1512 is supplied to the feeding point SP21 via the feeding wiring 1421, and the high frequency signal that has passed through the filter 1522 is supplied to the feeding point SP22 via the feeding wiring 1422.
  • the feeding points SP11 and SP21 are arranged at positions offset in the negative direction of the Y-axis from the center of the feeding element, and the high-frequency signal is supplied to the feeding points SP11 and SP21 so that the feeding elements can move in the Y-axis direction. Radio waves in the polarization direction are emitted. Further, the feeding points SP12 and SP22 are arranged at positions offset in the positive direction of the X-axis from the center of the feeding element, and the X-axis is supplied from each feeding element by supplying a high frequency signal to the feeding points SP12 and SP22. Radio waves with the direction of polarization as the polarization direction are emitted.
  • Each of the filters 1511, 1512, 1521, and 1522 is a layer between the lower surface 132 of the dielectric substrate 130 and the ground electrode GND as shown in FIG. 3 of the first embodiment, or the feeding element 1211 as shown in FIG. It is arranged in a layer between 1212 and the ground electrode GND.
  • the filters 1511, 1521 straddle the virtual line CL1 equidistant from the feeding element 1211 and the feeding element 1212 when the antenna module 100C is viewed in a plan view from the normal direction. Is located in.
  • the filter 1511 and the filter 1521 are arranged side by side in a second direction (negative direction of the Y axis) orthogonal to the first direction (positive direction of the X axis) from the power feeding element 1211 toward the feeding element 1212.
  • the filter 1511 is further arranged on the second direction side from the feeding point SP11, and the filter 152 is arranged from the feeding point SP1 in the direction opposite to the second direction (the positive direction of the Y axis).
  • the filter 1512 for polarization in the X-axis direction of the feeding element 1211 is opposite to the first direction of the feeding point SP12 in a region opposite to the second direction (positive direction of the Y axis) from the center of the feeding element 1211. It is arranged in the direction (negative direction of the X axis).
  • the filter 1522 for polarization in the X-axis direction of the feeding element 1212 is arranged in a region in the first direction (positive direction of the X-axis) from the center of the feeding element 1212.
  • all of the filters 1511, 1512, 1521, 1522 can be arranged within the region of the distance of ⁇ / 4 from the feeding elements 1211, 1212, and thus the size of the antenna module in the array antenna. It is possible to suppress the increase in size.
  • the "filter 1511” and the “filter 1521” correspond to the “first filter” and the “second filter” in the present disclosure, respectively, and the “filter 1512” and the “filter 1522” in the present disclosure. Corresponds to the “third filter” and the “fourth filter”, respectively.
  • the filter arranged in the region between the feeding elements 121 and 1212 does not have to be a filter having the same polarization.
  • the filter 1511 for polarization in the Y-axis direction for the feeding element 1211 and the filter 1522 for polarization in the X-axis direction for the feeding element 1212 are fed. It may be arranged in the region between the elements 1211, 1212.
  • the filter 1512 for polarization in the X-axis direction for the feeding element 1211 and the filter 1521 for polarization in the Y-axis direction for the feeding element 1212 are the feeding elements 1211, 1212. It may be placed in the area between them.
  • filter 1511 and “filter 1522” correspond to “first filter” and “second filter” in the present disclosure, respectively, and “filter 1512” and “filter 1521” in the present disclosure. Corresponds to the “third filter” and the “fourth filter”, respectively.
  • one of the filters for one radiating element and one of the filters for the other radiating element are arranged side by side in a direction orthogonal to the arrangement direction of the feeding elements. By doing so, it becomes possible to form all the filters in the region of the distance of ⁇ / 4 from the two feeding elements, so that it is possible to suppress an increase in the size of the antenna module in the array antenna.
  • FIG. 11 is a block diagram of a communication device 10B to which the antenna module 100D according to the third embodiment is applied.
  • 12 and 13 are a plan perspective view and a side perspective view of the antenna module when there are two radiating elements, respectively.
  • the communication device 10B includes an antenna module 100D and a BBIC 200.
  • the antenna module 100D includes an RFIC 110B, an antenna device 120B, and a filter device 107.
  • the antenna device 120B includes a plurality of feeding elements 121 as radiation elements and a non-feeding element 122 provided corresponding to each feeding element 121.
  • the antenna device 120B is a so-called dual band type antenna device capable of radiating radio waves of two different frequency bands.
  • the antenna module 100D includes feeding elements 1211, 1212 and non-feeding elements 1221, 1222 as radiation elements.
  • the non-feeding element 1221 is arranged in a layer between the feeding element 1211 and the ground electrode GND on the dielectric substrate 130.
  • the feeding wiring 141A penetrates the non-feeding element 1221 and is connected to the feeding point SP1 of the feeding element 1211.
  • the non-feeding element 1222 is arranged in the layer between the feeding element 1212 and the ground electrode GND in the dielectric substrate 130.
  • the power feeding wiring 142A penetrates the non-feeding element 1222 and is connected to the feeding point SP2 of the feeding element 1212.
  • the size of the non-feeding element 1221,1222 is larger than the size of the feeding element 1211,1212. Therefore, the resonance frequency of the non-feeding elements 1221, 1222 is lower than the resonance frequency of the feeding elements 1211, 1212.
  • the non-feeding elements 1221, 1222 can emit radio waves having a frequency lower than that of the feeding elements 1211, 1212. it can.
  • the RFIC110B is configured to be able to supply high frequency signals in two frequency bands. Since the configuration of the RFIC 110B is basically the same as that of the RFIC 110A described in the second embodiment, the detailed description thereof will not be repeated.
  • the configuration of the device 116A, the mixer 118A, and the amplifier circuit 119A is a circuit for a high frequency signal in a low frequency band.
  • the 118B and the amplifier circuit 119B are circuits for high-frequency signals in a high frequency band.
  • the filter device 107 includes diplexers 107A to 107D.
  • Each diplexer has a low-pass filter (filters 107A1, 107B1, 107C1, 107D1) that passes a high-frequency signal in a low frequency band, and a high-pass filter (filters 107A2, 107B2, 107C2, 107D2) that passes a high-frequency signal in a high frequency band.
  • the filters 107A1, 107B1, 107C1, 107D1 are connected to switches 111A to 111D in the RFIC 110B, respectively. Further, the filters 107A2, 107B2, 107C2, 107D2 are connected to the switches 111E to 111H in the RFIC110B, respectively.
  • Each of the diplexers 107A to 107D is connected to the corresponding power feeding element 121.
  • the transmission signal from the switches 111A to 111D of the RFIC 110B is radiated from the corresponding non-feeding element 122 via the filters 107A1 to 107D1, respectively.
  • the transmission signals from the switches 111E to 111H of the RFIC 100X are radiated from the corresponding power feeding elements 121 via the filters 107A2 to 107D2, respectively.
  • the filters 151A and 152A correspond to the diplexer high-pass filter
  • the filters 151B and 152B correspond to the diplexer low-pass filter.
  • the high frequency signal in the high frequency band from the RFIC 110B is supplied to the feeding point SP1 of the feeding element 1211 via the filter 151A and the feeding wiring 141A, and is supplied to the feeding point SP2 of the feeding element 1212 via the filter 152A and the feeding wiring 142A. Will be supplied.
  • the high frequency signal in the low frequency band from the RFIC 110B is supplied to the feeding point SP1 of the feeding element 1211 via the filter 151B and the feeding wiring 141B, and the feeding point of the feeding element 1212 via the filter 152B and the feeding wiring 142B. It is supplied to SP2.
  • Each of the filters 151A, 151B, 152A, and 152B is arranged in the layer between the lower surface 132 of the dielectric substrate 130 and the ground electrode GND, or in the layer between the non-feeding elements 1221, 1222 and the ground electrode GND. ..
  • one of the filters 151A and 151B for the feeding element 1211 and one of the filters 152A and 152B for the feeding element 1212 are used.
  • Y second direction orthogonal to the first direction (positive direction of the X axis) from the feeding element 1211 toward the feeding element 1212.
  • the “feeding element 1211” and the “non-feeding element 1221” correspond to the “first radiation element” of the present disclosure, and the “feeding element 1212” and the “non-feeding element 1222” of the present disclosure.
  • the “second radiation element” corresponds to the "filter 151A” and the “filter 152A”
  • the "filter 151B” and the “filter 152B” correspond to the "filter 152B” in the present disclosure.
  • the “third filter” and the "fourth filter” corresponds to the "third filter” and the "fourth filter", respectively.
  • FIG. 14 is a block diagram of the communication device 10C to which the antenna module 100E according to the fourth embodiment is applied.
  • the communication device 10C includes an antenna module 100E and a BBIC200.
  • the antenna module 100E includes RFIC 110C1 to 110C4, an antenna device 120C, and a filter device 108.
  • the antenna device 120C includes a plurality of feeding elements 121 as radiation elements and a non-feeding element 122 provided corresponding to each feeding element 121. Further, a high frequency signal for the first polarization and a high frequency signal for the second polarization are supplied to each feeding element 121.
  • the antenna device 120C is an antenna device capable of radiating radio waves of two different frequency bands in two different polarization directions.
  • each of the non-feeding elements 122 is arranged in a layer between the corresponding feeding element 121 and the ground electrode GND.
  • the high frequency signal from each RFIC is transmitted to the corresponding feeding element through the feeding wiring that penetrates the non-feeding element 122 and reaches each feeding element.
  • the antenna module 100E includes RFIC110C1 and 110C3 for supplying a high frequency signal for a low frequency band and RFIC110C2 and 110C4 for supplying a high frequency signal for a high frequency band.
  • RFIC110C1 and RFIC110C2 are circuits for high frequency signals for the first polarization
  • RFIC110C3 and RFIC110C4 are circuits for the high frequency signals for the second polarization. Since the configurations of the RFICs are the same, in FIG. 14, the circuit configurations are described only for the RFIC110C1, and the circuit configurations of the RFICs 110C2 to 110C4 are omitted. Further, since the configuration of each RFIC is the same as that of the RFIC 110 in FIG. 1, the detailed description thereof will not be repeated.
  • the filter device 108 includes diplexers 108A to 108H.
  • Each diplexer includes a low-pass filter (filters 108A1 to 108H1) that passes a high frequency signal in a low frequency band and a high-pass filter (filters 108A2 to 108H2) that passes a high frequency signal in a high frequency band.
  • Each of the filters 108A1 to 108H1 is connected to a corresponding switch in the RFIC, respectively.
  • Each output of the diplexers 108A to 108H is connected to the corresponding power feeding element 121.
  • Each of the filters included in the diplexers 108A to 108H is a resonance line type filter.
  • FIG. 15 is a perspective perspective view of the antenna module 100E when there are two radiating elements.
  • the antenna module 100E includes feeding elements 1211, 1212 and non-feeding elements 1221, 1222 as radiation elements. Similar to FIG. 13 of the third embodiment, in the dielectric substrate 130, the non-feeding element 1221 is arranged in a layer between the feeding element 1211 and the ground electrode GND, and the non-feeding element 1222 is grounded with the feeding element 1212. It is arranged in a layer between it and the electrode GND.
  • the high frequency signal from the diplexer 155A is supplied to the feeding point SP11 of the feeding element 1211, and the high frequency signal from the diplexer 155B is supplied to the feeding point SP12.
  • the high frequency signal from the diplexer 156A is supplied to the feeding point SP21 of the feeding element 1212, and the high frequency signal from the diplexer 156B is supplied to the feeding point SP22.
  • the diplexers 155A, 155B, 156A, and 156B in FIG. 15 correspond to the diplexers included in the filter device 108 in FIG. Each diplexer is arranged in a layer between the lower surface 132 of the dielectric substrate 130 and the ground electrode GND, or a layer between the non-feeding elements 1221, 1222 and the ground electrode GND.
  • the diplexer 155A and the diplexer 156A are arranged so as to straddle the virtual line CL1 equidistant from the feeding element 1211 and the feeding element 1212, and are arranged in the first direction (positive direction of the X-axis) from the feeding element 1211 toward the feeding element 1212. They are arranged side by side in the second orthogonal direction (negative direction of the Y axis).
  • the diplexer 155B for polarization in the X-axis direction of the feeding element 1211 is opposite to the first direction of the feeding point SP12 in a region opposite to the second direction (positive direction of the Y-axis) from the center of the feeding element 1211. It is arranged in the direction (negative direction of the X axis).
  • the diplexer 156B for polarization in the X-axis direction of the feeding element 1212 is arranged in a region in the first direction (positive direction of the X-axis) from the center of the feeding element 1212.
  • all of the diplexers 155A, 155B, 156A, and 156B can be arranged in the region of the distance of ⁇ / 4 from the feeding elements 1211, 1212, so that the antenna module can be arranged in the array antenna. It is possible to suppress the increase in size.
  • the diplexers arranged between the feeding element 1211 and the feeding element 1212 may be the diplexers 155B and 156B, or may be diplexers for different polarizations.
  • the dual band type antenna module may be configured by replacing the non-feeding elements 1221 and 1222 with the feeding elements and using a radiating element in which two feeding elements are stacked.
  • the “feeding element 1211” and the “non-feeding element 1221” correspond to the “first radiation element” of the present disclosure, and the “feeding element 1212” and the “non-feeding element 1222” of the present disclosure.
  • the “second radiation element” corresponds to the "diplexer 155A” and the “diplexer 156A”
  • the "diplexer 155B” and the “diplexer 156B” correspond to the "diplexer 156B” of the present disclosure.
  • the “third filter” and the "fourth filter” respectively.
  • FIG. 16 is a block diagram of a communication device 10D to which the antenna module 100F according to the fifth embodiment is applied.
  • the communication device 10D includes an antenna module 100F and a BBIC200.
  • the antenna module 100F includes an RFIC 110D, an antenna device 120D, and a filter device 109.
  • the antenna device 120D includes a plurality of feeding elements 121 as radiation elements.
  • the antenna device 120D is a dual polarization type antenna device as in the second embodiment, and each feeding element 121 receives a high frequency signal for the first polarization and a high frequency signal for the second polarization from the RFIC 110C. Be supplied.
  • the RFIC110D includes switches 181A to 181D, 183A to 183D, 187A, 187B, power amplifiers 182AT to 182DT, low noise amplifiers 182AR to 182DR, attenuators 184A to 184D, phase shifters 185A to 185D, and signal synthesis / minute. It includes a wave device 186A, 186B, a mixer 188A, 188B, and an amplifier circuit 189A, 189B.
  • the configuration of the amplifier circuit 189A is a circuit for a high frequency signal for the first polarization.
  • switches 181C, 181D, 183C, 183D, 187B switches 181C, 181D, 183C, 183D, 187B, power amplifier 182CT, 182DT, low noise amplifier 182CR, 182DR, attenuator 184C, 184D, phase shifter 185C, 185D, signal synthesis / demultiplexer 186B, mixer 188B, and
  • the configuration of the amplifier circuit 189B is a circuit for a high frequency signal for the second polarization.
  • switches 181A to 151D and 183A to 183D are switched to the power amplifiers 182AT to 182DT side, and switches 187A and 187B are connected to the transmitting side amplifiers of the amplifier circuits 189A and 189B.
  • switches 181A to 151D and 183A to 183D are switched to the low noise amplifiers 182AR to 182DR, and switches 187A and 187B are connected to the receiving side amplifiers of the amplifier circuits 189A and 189B.
  • the filter device 109 includes filters 109A to 109D.
  • the filters 109A to 109D are connected to switches 181A to 181D in the RFIC110D, respectively.
  • Each of the filters 109A to 109D has a function of attenuating a high frequency signal in a specific frequency band.
  • the signal transmitted from the BBIC 200 is amplified by the amplifier circuits 189A and 189B, and up-converted by the mixers 188A and 188B.
  • the transmitted signal which is an up-converted high-frequency signal, is demultiplexed by the signal synthesizer / demultiplexer 186A and 186B, passes through the corresponding signal path, and is fed to the feeding element 121.
  • the high-frequency signal from the switch 181A passes through the filter 109A, is branched into two systems by the branch circuit 210A, and is supplied to the feeding element 121A and the feeding element 121B.
  • the high-frequency signal from the switch 181B passes through the filter 109B, is branched into two systems by the branch circuit 210B, and is supplied to the feeding element 121C and the feeding element 121D.
  • the high-frequency signal from the switch 181C passes through the filter 109C, is branched into two systems by the branch circuit 210C, and is supplied to the feeding element 121A and the feeding element 121B.
  • the high-frequency signal from the switch 181D passes through the filter 109D, is branched into two systems by the branch circuit 210D, and is supplied to the feeding element 121C and the feeding element 121D.
  • the directivity of the antenna device 120D can be adjusted by individually adjusting the degree of phase shift of the phase shifters 185A to 185D arranged in each signal path.
  • one filter is provided for each of the two feeding elements for each polarization.
  • FIG. 17 is a perspective perspective view of the antenna module 100F.
  • the antenna module 100F includes feeding elements 1211-1214 as radiation elements.
  • the antenna module 100F also includes filters 1571, 1572, 1581, 1582.
  • Each of the filters 1571, 1572, 1581, and 1582 is a resonance line type filter, and corresponds to the filter included in the filter device 109 in FIG.
  • the power feeding elements 1211-1214 are arranged in a 2 ⁇ 2 two-dimensional manner.
  • the feeding element 1211 and the feeding element 1212 form a sub-antenna SA1 arranged in 1 ⁇ 2.
  • the feeding element 1213 and the feeding element 1214 form a sub-antenna SA2 arranged in 1 ⁇ 2. That is, the array antenna has a configuration in which the sub-antennas SA1 and SA2 are arranged adjacent to each other.
  • the feeding element included in each sub-antenna is in the second direction (X-axis direction) orthogonal to the direction of the first direction. It is arranged in.
  • Each of the filter 1571 and the filter 1581 is connected to the feeding elements 1211 and 1212 included in the sub-antenna SA1.
  • the high-frequency signal that has passed through the filter 1571 is supplied to the feeding point SP11 of the feeding element 1211 and the feeding point SP21 of the feeding element 1212.
  • the high-frequency signal that has passed through the filter 1581 is supplied to the feeding point SP12 of the feeding element 1211 and the feeding point SP22 of the feeding element 1212.
  • each of the filter 1572 and the filter 1582 is connected to the feeding elements 1213 and 1214 included in the sub-antenna SA2.
  • the high-frequency signal that has passed through the filter 1572 is supplied to the feeding point SP31 of the feeding element 1213 and the feeding point SP41 of the feeding element 1214.
  • the high frequency signal that has passed through the filter 1582 is supplied to the feeding point SP32 of the feeding element 1213 and the feeding point SP42 of the feeding element 1214.
  • the feeding points SP11, SP21, SP31, and SP41 are arranged at positions offset in the negative direction of the Y axis from the center of the feeding element, and each of them is supplied by supplying a high frequency signal to the feeding points SP11, SP21, SP31, and SP41. Radio waves with the Y-axis direction as the polarization direction are emitted from the power feeding element. Further, the feeding points SP12, SP22, SP32, and SP42 are arranged at positions offset in the positive direction of the X axis from the center of the feeding element, and high frequency signals are supplied to the feeding points SP12, SP22, SP32, and SP42. As a result, radio waves with the polarization direction in the X-axis direction are emitted from each feeding element.
  • the filters 1571 and 1572 are arranged so as to straddle the virtual line CL2 equidistant from the feeding element of the sub-antenna SA1 and the feeding element of the sub-antenna SA2 when the antenna module 100F is viewed in a plan view from the normal direction. Further, the filter 1571 and the filter 1572 are arranged side by side in the second direction (X-axis direction) orthogonal to the first direction (negative direction of the Y-axis) from the sub-antenna SA1 to the sub-antenna SA2.
  • the filter 1581 for polarization in the X-axis direction of the feeding elements 1211 and 1212 is arranged between the feeding element 1211 and the feeding element 1212.
  • the filter 1582 for polarization in the X-axis direction of the feeding elements 1213 and 1214 is arranged between the feeding element 1213 and the feeding element 1214.
  • the "sub-antenna SA1” and “sub-antenna SA2” correspond to the “first sub-antenna” and “second sub-antenna” in the present disclosure, respectively. Further, the “filter 1571” and the “filter 1572” correspond to the “first filter” and the “second filter” in the present disclosure.
  • Modification example 1 In the antenna module in each of the above-described embodiments, the configuration in which the feeding element and the ground electrode are formed on a dielectric substrate formed of a dielectric having a single dielectric constant has been described. In the first modification, a configuration in which the dielectric substrate is formed of dielectric layers having different dielectric constants will be described.
  • FIG. 18 is a side perspective view of the antenna module 100G of the first modification.
  • the antenna module 100G has a configuration in which the dielectric substrate 130 in the antenna module 100 shown in FIG. 3 is replaced with the dielectric substrate 130A.
  • the description of the elements overlapping with FIG. 3 is not repeated.
  • the dielectric substrate 130A of the antenna module 100G is formed of a first dielectric 1301 and a second dielectric 1302 having different dielectric constants. More specifically, the second dielectric 1302 is made of a material having a dielectric constant higher than that of the first dielectric 1301. The first dielectric 1301 is arranged on the second dielectric 1302. The RFIC 110 is mounted on the lower surface of the second dielectric 1302 (that is, the lower surface 132A of the dielectric substrate 130A) via the solder bump 170.
  • the feeding elements 121 and 1212 are formed on the first dielectric 1301, and the ground electrode GND is formed on the second dielectric 1302. Further, the filters 151 and 152 are also formed in the second dielectric 1302. In the example of FIG. 18, the ground electrode GND is arranged at the boundary between the first dielectric 1301 and the second dielectric 1302, but the ground electrode GND is arranged in the inner layer of the second dielectric 1302. You may.
  • the dielectric constant in order to widen the frequency bandwidth of radio waves radiated from the feeding element, it is preferable to lower the dielectric constant between the feeding element and the ground electrode.
  • the dielectric constant of the dielectric in which the filter is formed in order to increase the Q value in the filter, it is preferable to increase the dielectric constant of the dielectric in which the filter is formed. In this way, the antenna characteristics and the filter characteristics can be in a trade-off relationship with the dielectric constant. Therefore, when a dielectric substrate is formed of a single dielectric constant, there are necessarily two characteristics. It may not be a suitable dielectric constant.
  • the dielectric (first dielectric 1301) between the feeding element 1211, 1212 and the ground electrode GND is formed of a dielectric having a relatively low dielectric constant.
  • the dielectric below the ground electrode GND (second dielectric 1302) on which the filters 151 and 152 are formed is formed of a dielectric having a higher dielectric constant than the first dielectric 1301.
  • the dielectric substrate is formed by using two dielectric layers having different dielectric constants, and the dielectric constant of the dielectric on which the filter is formed is set to the dielectric constant formed between the feeding element and the ground electrode.
  • Modification 2 In the antenna module in each of the above-described embodiments, the configuration in which the feeding element and the ground electrode are formed on the same dielectric substrate has been described. In the second modification, a configuration in which the feeding element and the ground electrode are formed on different dielectric substrates separated from each other will be described.
  • FIG. 19 is a side perspective view of the antenna module 100H of the modified example 2.
  • the antenna module 100H has a configuration in which the dielectric substrate 130 in the antenna module 100 shown in FIG. 3 is replaced with two dielectric substrates 130B and 130C separated from each other. In FIG. 19, the description of the elements overlapping with FIG. 3 is not repeated.
  • the feeding element 1211 and the feeding element 1212 are formed on the dielectric substrate 130B.
  • the ground electrode GND and the filters 151 and 152 are formed on the dielectric substrate 130C separated from the dielectric substrate 130B.
  • the RFIC 110 is mounted on the lower surface 132C of the dielectric substrate 130C via the solder bump 170.
  • the dielectric substrate 130B and the dielectric substrate 130C are connected by a connecting member.
  • a connecting member In the example of FIG. 19, the case where the solder bumps 171 and 172 are used as the connecting member is shown, but the connecting member may be a flexible cable or a connector.
  • the power supply wiring 141 electrically connects the filter 151 and the power supply element 1211 via the solder bumps 171.
  • the power feeding wiring 142 electrically connects the filter 152 and the power feeding element 1212 via the solder bumps 172. Then, when the dielectric substrate 130C is viewed in a plan view from the normal direction, each of the filters 151 and 152 provides a virtual line CL1 equidistant from the solder bumps 171 and 172 between the solder bumps 171 and the solder bumps 172. It is arranged so as to straddle.
  • the feeding element can be flexibly arranged in the communication device.
  • the dielectric constant of the dielectric substrate on which the feeding element is formed is relatively low, and the dielectric constant of the dielectric substrate on which the ground electrode and the filter are formed is relatively high. Thereby, both the antenna characteristics and the filter characteristics can be improved.
  • the “dielectric substrate 130C" in the second modification corresponds to the "circuit board” in the present disclosure.
  • the "solder bump 171" and “solder bump 172" in the second modification correspond to the "first terminal” and the “second terminal” of the present disclosure, respectively.
  • FIG. 20 is a block diagram of the communication device 10E to which the antenna module 100I according to the sixth embodiment is applied.
  • the communication device 10E includes an antenna module 100I and a BBIC 200.
  • the antenna module 100I includes an RFIC 110E, an antenna device 120A, and filters 105X and 105Y.
  • the antenna device 120A is a dual polarization type antenna device similar to the antenna module 100C shown in FIG. 8, and each of the feeding elements 1211 and 1212 has a high frequency signal for the first polarization and a first polarization from the RFIC110I. A high frequency signal for bipolarization is supplied.
  • the high frequency signal from the RFIC 110A was transmitted to the antenna device 120A via the filter device 106.
  • the RFIC 110E and the antenna device 120A are directly connected by the feeding wiring, and each of the filters 105X and 105Y is connected between the signal synthesizer / demultiplexer and the switch in the RFIC 110E.
  • the filter 105X is a filter for the first polarization, and is connected between the signal synthesizer / demultiplexer 116A and the switch 117A.
  • the filter 105Y is a filter for the second polarization, and is connected between the signal synthesizer / demultiplexer 116B and the switch 117B.
  • the filters 105X and 105Y are arranged outside the RFIC 110E, and specifically, are formed inside the antenna device 120A as described later in FIGS. 21 and 22.
  • the other elements constituting the RFIC 110E are the same as those of the RFIC 110A in FIG. 8, and the description of the overlapping elements will not be repeated.
  • FIG. 21 and 22 show the detailed configuration of the antenna module 100I of FIG. 20.
  • FIG. 21 is a perspective perspective view of the antenna module 100I.
  • FIG. 22 shows a side perspective view of the antenna module 100I.
  • the dielectric of the dielectric substrate 130 and the ground electrode GND are omitted for ease of explanation.
  • the antenna module 100I is an array antenna in which two feeding elements 1211 and 1212 are arranged in the X-axis direction, similarly to the antenna module 100C shown in FIG.
  • the feeding elements 121 and 1212 are arranged on the upper surface 131 or the inner layer of the dielectric substrate 130.
  • a flat plate-shaped ground electrode GND is arranged on the layer on the lower surface 132 side of the feeding elements 121 and 1212 so as to face the feeding elements 121 and 1212.
  • the RFIC 110 is mounted on the lower surface 132 of the dielectric substrate 130 via the solder bumps 170.
  • the filters 105X and 105Y are arranged on the lower surface 132 side of the ground electrode GND.
  • the filter 105X is connected to the RFIC 110 by the connection wires 1611 and 1612.
  • the filter 105Y is connected to the RFIC 110 by the connection wirings 1621 and 1622.
  • each of the filters 105X and 105Y is arranged so as to straddle the virtual line CL1 equidistant from the feeding element 1211 and the feeding element 1212.
  • the filters 105X and 105Y are arranged side by side in the Y-axis direction.
  • the feeding points SP11 and SP12 of the feeding element 1211 are directly connected to the RFIC 110E by the feeding wirings 141Y and 141X, respectively.
  • the high frequency signal to the feeding point SP12 radio waves having the polarization direction in the X-axis direction are radiated from the feeding element 1211.
  • a radio wave having the Y-axis direction as the polarization direction is radiated from the feeding element 1211.
  • the feeding points SP21 and SP22 of the feeding element 1212 are directly connected to the RFIC110E by the feeding wires 142Y and 142X, respectively.
  • the feeding point SP22 By supplying a high-frequency signal to the feeding point SP22, radio waves having the polarization direction in the X-axis direction are radiated from the feeding element 1212.
  • a radio wave having the Y-axis direction as the polarization direction is radiated from the feeding element 1212.
  • the filter 105X is a filter device for radio waves whose polarization direction is the X-axis direction in the feeding elements 1211 and 1212.
  • the high-frequency signal that has passed through the filter 105X is connected to the feeding point SP12 of the feeding element 1211 and the feeding point SP22 of the feeding element 1212.
  • the filter 105Y is a filter device for radio waves whose polarization direction is the Y-axis direction in the feeding elements 1211 and 1212.
  • the high-frequency signal that has passed through the filter 105Y is connected to the feeding point SP11 of the feeding element 1211 and the feeding point SP21 of the feeding element 1212.
  • the number of filters formed in the antenna module can be reduced by providing a common filter for the circuits in each polarization direction as in the antenna module 100I, the number of filters formed in the antenna module can be further reduced. It is possible to realize miniaturization. Then, by arranging the filter so as to straddle the virtual lines equidistant from the two adjacent feeding elements, it is possible to suppress an increase in the size of the antenna module.
  • the "feeding element 1211" and the “feeding element 1212” correspond to the “first radiation element” and the “second radiation element” of the present disclosure, respectively, and correspond to the “filter 105X” and the “filter 105Y”, respectively. Corresponds to the “first filter” and the “second filter” of the present disclosure, respectively.
  • the "X-axis direction” and the “Y-axis direction” in the sixth embodiment correspond to the "first direction” and the "second direction” of the present disclosure, respectively.
  • the "feeding point SP11" and the “feeding point SP21” correspond to the "first feeding point” of the present disclosure
  • the "feeding point SP12” and the “feeding point SP22” correspond to the "second feeding point” of the present disclosure. Corresponds to "point”.
  • 10,10A-10E communication device SP1, SP1A, SP1B, SP2, SP2A, SP2B, SP11, SP12, SP21, SP22, SP31, SP32, SP41, SP42 feeding point, 100, 100A-100I antenna module, 105, 106, 107, 108, 109 Filter device, 105A to 105D, 105X, 105Y, 106A to 106H, 107A1 to 107D1, 107A2 to 107D2, 108A1, 108A2, 108H1, 108H2, 109A to 109D, 150, 150A, 150B, 151, 151A, 151B, 152,152A, 152B, 156B, 1511, 1512, 1521,1522,1571,1572,1581,1582 Filter, 107A-107D, 108A-108H, 155,156 Diplexer, 111,113,117,181,183, 187 switch, 110, 110A to 110E RFIC, 112AR to

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

アンテナモジュール(100)は、互いに隣接配置された給電素子(1211,1212)と、各給電素子にそれぞれ接続されたフィルタ(151,152)とを備える。フィルタ(151,152)の各々は、互いに非接続の複数の共振線路を含んで構成される。フィルタ(151,152)は、アンテナモジュール(100)を法線方向から平面視した場合に、給電素子(1211,1212)との間において、給電素子(1211,1212)から等距離の仮想線をまたぐように配置されている。

Description

アンテナモジュールおよびそれを搭載した通信装置、ならびに回路基板
 本開示は、アンテナモジュールおよびそれを搭載した通信装置、ならびに回路基板に関し、より特定的には、同一基板内にフィルタが形成されたアレイアンテナにおけるフィルタの配置に関する。
 特開2000-114847号公報(特許文献1)には、複数のアンテナ素子が二次元配列されたアレイアンテナが開示されている。特開2000-114847号公報(特許文献1)のアレイアンテナにおいては、当該アンテナ素子を複数のアレイ群に区分し、区分ごとに共通の給電ポイントが設定されている。そして、各アレイ群のアンテナ素子には、対応する給電ポイントから分配された高周波信号が供給されている。このような構成とすることによって、各アレイ群を個別に制御することで、放射される電波の指向特性を調整することができる。
特開2000-114847号公報
 上述のようなアレイアンテナにおいては、共通の給電ポイントから個別の給電線を用いて各アンテナ素子(放射素子)に高周波信号が供給される。一般的に、アレイアンテナにおいては、放射される電波の波長をλとすると、略λ/2の間隔で各放射素子が配置される場合がある。この場合、隣接する放射素子同士における給電線の干渉を防止するためには、各アンテナ素子からλ/4の距離の領域内に対応する給電線を配置することが必要となる。
 また、アレイアンテナの基板内に各放射素子に対してフィルタ等の回路が配置される場合に、単一の回路が対応のアンテナ素子からλ/4の距離の領域内に配置できないときには、適切に回路をレイアウトしないと、アレイアンテナ全体の領域に収まらない状態となり得る。
 本開示は、このような課題を解決するためになされたものであって、その目的は、同一基板内に複数のフィルタが形成されるアンテナモジュールを含んで形成されるアレイアンテナにおいて、アンテナモジュールの大型化を抑制しつつ、アンテナモジュールの領域内に適切にフィルタを配置することである。
 本開示に係るある局面に従うアンテナモジュールは、互いに隣接して配置された平面形状の第1放射素子および第2放射素子と、第1放射素子に接続された第1フィルタと、第2放射素子に接続された第2フィルタとを備える。第1フィルタおよび第2フィルタの各々は、互いに非接続の複数の共振線路を含んで構成される。第1フィルタおよび第2フィルタの各々は、アンテナモジュールを法線方向から平面視した場合に、第1放射素子と第2放射素子との間において、第1放射素子および第2放射素子から等距離の仮想線をまたぐように配置されている。
 本開示に係る他の局面に従うアンテナモジュールは、互いに隣接して配置された第1サブアンテナおよび第2サブアンテナを備えている。第1サブアンテナおよび第2サブアンテナの各々は、第1サブアンテナから第2サブアンテナに向かう第1方向とは異なる第2方向に配列された、平面形状の複数の放射素子を含む。アンテナモジュールは、第1サブアンテナに含まれる放射素子に接続された第1フィルタと、第2サブアンテナに含まれる放射素子に接続された第2フィルタとをさらに備える。第1フィルタおよび第2フィルタの各々は、互いに非接続の複数の共振線路を含んで構成される。第1フィルタおよび第2フィルタの各々は、アンテナモジュールを法線方向から平面視した場合に、第1サブアンテナと第2サブアンテナとの間において、第1サブアンテナおよび第2サブアンテナから等距離の仮想線をまたぐように配置されている。第1フィルタおよび第2フィルタは、第2方向に並んで配置されている。
 本開示に係るさらに他の局面に従う回路基板は、互いに隣接して配置された、平面形状の第1放射素子および第2放射素子にそれぞれ接続される第1端子および第2端子を備えた回路基板に関する。回路基板は、第1端子に接続された第1フィルタと、第2端子に接続された第2フィルタとを備える。第1フィルタおよび第2フィルタの各々は、互いに非接続の複数の共振線路を含んで構成される。第1フィルタおよび第2フィルタの各々は、回路基板を法線方向から平面視した場合に、第1端子と第2端子との間において、第1端子および第2端子から等距離の仮想線をまたぐように配置されている。
 本開示に従うアンテナモジュールによれば、アンテナモジュールを平面視した場合に、隣接配置された2つの放射素子(サブアンテナ)の間において、各放射素子(サブアンテナ)に対応するフィルタが、当該2つの放射素子(サブアンテナ)から等距離の仮想線をまたぐように配置されるとともに、2つの放射素子(サブアンテナ)の隣接方向に直交する方向に配置される。これにより、アンテナモジュールの領域内に適切にフィルタを配置することができ、アンテナモジュールの大型化を抑制することができる。
実施の形態1に従うアンテナモジュールが適用される通信装置のブロック図である。 図1のアンテナモジュールの平面透視図である。 図1のアンテナモジュールの第1例の側面透視図である。 図1のアンテナモジュールの第2例の側面透視図である。 共振線路型フィルタの構造の例を説明するための図である。 比較例のアンテナモジュールの平面透視図である。 変形例のアンテナモジュールの平面透視図である。 実施の形態2に従うアンテナモジュールが適用される通信装置のブロック図である。 図8のアンテナモジュールの第1例の平面透視図である。 図8のアンテナモジュールの第2例の平面透視図である。 実施の形態3に従うアンテナモジュールが適用される通信装置のブロック図である。 図11のアンテナモジュールの平面透視図である。 図11のアンテナモジュールの側面透視図である。 実施の形態4に従うアンテナモジュールが適用される通信装置のブロック図である。 図14のアンテナモジュールの平面透視図である。 実施の形態5に従うアンテナモジュールが適用される通信装置のブロック図である。 図16のアンテナモジュールの平面透視図である。 変形例1のアンテナモジュールの側面透視図である。 変形例2のアンテナモジュールの側面透視図である。 実施の形態6に従うアンテナモジュールが適用される通信装置のブロック図である。 図20のアンテナモジュールの平面透視図である。 図20のアンテナモジュールの側面透視図である。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 [実施の形態1]
 (通信装置の基本構成)
 図1は、本実施の形態1に係るアンテナモジュール100が適用される通信装置10のブロック図の一例である。通信装置10は、たとえば、携帯電話、スマートフォンあるいはタブレットなどの携帯端末や、通信機能を備えたパーソナルコンピュータなどである。本実施の形態に係るアンテナモジュール100に用いられる電波の周波数帯域の一例は、たとえば28GHz、39GHzおよび60GHzなどを中心周波数とするミリ波帯の電波であるが、上記以外の周波数帯域の電波についても適用可能である。
 図1を参照して、通信装置10は、アンテナモジュール100と、ベースバンド信号処理回路を構成するBBIC200とを備える。アンテナモジュール100は、給電回路の一例であるRFIC110と、アンテナ装置120と、フィルタ装置105とを備える。通信装置10は、BBIC200からアンテナモジュール100へ伝達された信号を、RFIC110にて高周波信号にアップコンバートし、フィルタ装置105を介してアンテナ装置120から放射する。また、通信装置10は、アンテナ装置120で受信した高周波信号をフィルタ装置105を介してRFIC110へ送信し、ダウンコンバートしてBBIC200にて信号を処理する。
 図1では、説明を容易にするために、アンテナ装置120を構成する複数の給電素子121(放射素子)のうち、4つの給電素子121に対応する構成のみ示され、同様の構成を有する他の給電素子121に対応する構成については省略されている。なお、図1においては、アンテナ装置120が二次元のアレイ状に配置された複数の給電素子121で形成される例を示しているが、複数の給電素子121が一列に配置された一次元アレイであってもよい。本実施の形態においては、給電素子121は、略正方形の平板状を有するパッチアンテナである。
 RFIC110は、スイッチ111A~111D,113A~113D,117と、パワーアンプ112AT~112DTと、ローノイズアンプ112AR~112DRと、減衰器114A~114Dと、移相器115A~115Dと、信号合成/分波器116と、ミキサ118と、増幅回路119とを備える。
 高周波信号を送信する場合には、スイッチ111A~111D,113A~113Dがパワーアンプ112AT~112DT側へ切換えられるとともに、スイッチ117が増幅回路119の送信側アンプに接続される。高周波信号を受信する場合には、スイッチ111A~111D,113A~113Dがローノイズアンプ112AR~112DR側へ切換えられるとともに、スイッチ117が増幅回路119の受信側アンプに接続される。
 BBIC200から伝達された信号は、増幅回路119で増幅され、ミキサ118でアップコンバートされる。アップコンバートされた高周波信号である送信信号は、信号合成/分波器116で4分波され、4つの信号経路を通過して、それぞれ異なる給電素子121に給電される。このとき、各信号経路に配置された移相器115A~115Dの移相度が個別に調整されることにより、アンテナ装置120の指向性を調整することができる。
 各給電素子121で受信された高周波信号である受信信号は、それぞれ、異なる4つの信号経路を経由し、信号合成/分波器116で合波される。合波された受信信号は、ミキサ118でダウンコンバートされ、増幅回路119で増幅されてBBIC200へ伝達される。
 フィルタ装置105は、フィルタ105A~105Dを含む。フィルタ105A~105Dは、RFIC110におけるスイッチ111A~111Dにそれぞれ接続される。フィルタ105A~105Dは、特定の周波数帯域の信号を減衰させる機能を有する。フィルタ105A~105Dは、バンドパスフィルタ、ハイパスフィルタ、ローパスフィルタ、あるいは、これらの組み合わせであってもよい。RFIC110からの高周波信号は、フィルタ105A~105Dを通過して、対応する給電素子121に供給される。
 ミリ波帯の高周波信号の場合、伝送線路が長くなると、ノイズ成分が混入しやすくなる傾向にある。そのため、フィルタ装置105と給電素子121との距離をできるだけ短くすることが好ましい。すなわち、給電素子121から高周波信号を放射する直前にフィルタ装置105を通過させることによって、給電素子から不要波が放射されることを抑制することができる。また、給電素子121における受信直後にフィルタ装置105を通過させることによって、受信信号に含まれる不要波を除去することができる。
 なお、図1においては、フィルタ装置105とアンテナ装置120が個別に記されているが、本開示においては、後述するように、フィルタ装置105はアンテナ装置120の内部に形成される。
 RFIC110は、例えば、上記回路構成を含む1チップの集積回路部品として形成される。あるいは、RFIC110における各給電素子121に対応する機器(スイッチ、パワーアンプ、ローノイズアンプ、減衰器、移相器)については、対応する給電素子121毎に1チップの集積回路部品として形成されてもよい。
 (アンテナモジュールの構成)
 次に、図2および図3を用いて、本実施の形態1におけるアンテナモジュール100の構成の詳細を説明する。図2はアンテナモジュール100の平面透視図であり、図3はアンテナモジュールの側面透視図である。
 図2および図3においては、アンテナモジュール100が、放射素子として2つの給電素子1211,1212を有するアレイアンテナの場合を例として説明するが、給電素子は3以上であってもよいし、さらに給電素子が二次元配列されていてもよい。アンテナモジュールは、給電素子1211,1212およびRFIC110に加えて、誘電体基板130と、給電配線141,142と、フィルタ151,152と、接続配線161,162と、接地電極GNDとを含む。なお、以降の説明において、誘電体基板130の法線方向(電波の放射方向)をZ軸方向とし、Z軸方向に垂直な面をX軸およびY軸で規定する。また、各図におけるZ軸の正方向を上方側、負方向を下方側と称する場合がある。
 誘電体基板130は、たとえば、低温同時焼成セラミックス(LTCC:Low Temperature Co-fired Ceramics)多層基板、エポキシまたはポリイミドなどの樹脂から構成される樹脂層を複数積層して形成された多層樹脂基板、より低い誘電率を有する液晶ポリマー(Liquid Crystal Polymer:LCP)から構成される樹脂層を複数積層して形成された多層樹脂基板、フッ素系樹脂から構成される樹脂層を複数積層して形成された多層樹脂基板、あるいは、LTCC以外のセラミックス多層基板である。なお、誘電体基板130は必ずしも多層構造でなくてもよく、単層の基板であってもよい。
 誘電体基板130は略矩形状を有しており、その上面131(Z軸の正方向の面)あるいは内部の層に給電素子1211,1212が配置されている。給電素子1211,1212は、略正方形の平面形状を有するパッチアンテナである。給電素子1211,1212は、誘電体基板130のX軸方向に沿って隣接して配置される。給電素子1211と給電素子1212とは、アンテナモジュールから放射される電波の波長をλとした場合に、その面中心(対角線の交点)が略λ/2の間隔で配置される。
 誘電体基板130において給電素子1211,1212よりも下面132(Z軸の負方向の面)側の層に、給電素子1211,1212に対向して、平板形状の接地電極GNDが配置される。誘電体基板130の下面132には、はんだバンプ170を介してRFIC110が実装されている。なお、RFIC110は、はんだ接続に代えて、多極コネクタを用いて誘電体基板130に接続されてもよい。
 RFIC110から、接続配線161、フィルタ151および給電配線141を介して、給電素子1211の給電点SP1に高周波信号が供給される。また、RFIC110から、接続配線162、フィルタ152および給電配線142を介して、給電素子1212の給電点SP2に高周波信号が供給される。図2の例においては、各給電素子の給電点は、給電素子の中心からY軸の負方向にオフセットした位置に配置されている。給電点をこのような位置とすることによって、各給電素子からはY軸方向を偏波方向とする電波が放射される。
 各給電配線および接続配線は、誘電体基板130の層間に形成された配線パターン、および層を貫通するビアによって形成されている。なお、アンテナモジュール100において、放射素子、配線パターン、電極、およびビア等を構成する導体は、アルミニウム(Al)、銅(Cu)、金(Au)、銀(Ag)、および、これらの合金を主成分とする金属で形成されている。
 フィルタ151,152は、図1で示したフィルタ装置105に対応している。図3の例では、フィルタ151,152は誘電体基板130の下面132と接地電極GNDとの間に配置されているが、図4の例のように、給電素子1211,1212と接地電極GNDとの間の層にフィルタ151,152が配置されてもよい。なお、図2および以降の平面透視図において、各フィルタは、当該フィルタが占め得る領域を矩形形状で表わしているが、フィルタの構成によっては略正方形であったり、より細長い矩形形状であったりする場合もあり得る。なお、ここで、「フィルタが占め得る領域」とは、共振線路の形状が占める領域ではなく、すべての共振線路が含まれる領域を矩形形状で表現した領域を示す。
 図4のアンテナモジュール100Aの構成においては、誘電体基板130の厚みが同じである場合に、放射素子と接地電極GNDとの間の距離を図3のアンテナモジュール100よりも大きくできるので、アンテナモジュールの周波数帯域幅の広域化等の利点がある。一方で、アンテナモジュール100Aにおいては、フィルタの一部が放射素子と対向する部分が生じ得るため、放射素子とフィルタとの電磁結合により指向性等に影響が及ぶ可能性がある。図3のアンテナモジュール100においては、接地電極GNDによって、フィルタと放射素子との結合は抑制されるが、接地電極GNDと下面132との距離を確保する必要があるため、放射素子と接地電極GNDとの間の距離が確保できず、周波数帯域等に影響が及ぶ可能性がある。図3および図4のいずれの構成するかについては、所望のアンテナ特性、装置サイズ、および製造コストなどの観点を考慮して決定される。
 図2を再び参照し、アンテナモジュール100を法線方向から平面視した場合に、フィルタ151,152の各々は、給電素子1211および給電素子1212から等距離の仮想線CL1をまたぐように配置されている。ここで、仮想線CL1は、2つの給電素子から等距離であるため、給電素子1211から給電素子1212へ向かう第1方向(X軸の正方向)に直交する第2方向(Y軸の負方向)に延伸している。すなわち、フィルタ151およびフィルタ152は、第2方向に並んで配置されている。フィルタ151は、給電点SP1からさらに第2方向側に配置されており、フィルタ152は、給電点SP1から第2方向とは反対側(Y軸の正方向)に配置されている。
 なお、アンテナモジュール100を平面視した場合に、フィルタ151とフィルタ152とは重なっていない。また、フィルタ151は給電素子1212とは重なっておらず、フィルタ152は給電素子1211とは重なっていない。
 フィルタ151,152は、いわゆる共振線路型フィルタである。共振線路型フィルタは、λ/4あるいはλ/2の長さの複数の線路が互いに非接続の状態で隣接した構成を有しており、各共振線路間の電磁界結合によってフィルタとして機能する。共振線路型フィルタは、配線パターン、あるいは、配線パターンとビアとの組み合わせで形成できるため、アンテナアレイの誘電体基板内部に比較的容易に形成することができるという利点がある。
 図5は、フィルタ151,152に対応する共振線路型フィルタの構造のいくつかの例を示す図である。なお、図5(a)~図5(c)に例示する各フィルタは誘電体基板130内に形成される。
 図5(a)のフィルタ150は、λ/4の長さの2つの線路1503,1506と、λ/2の長さの線路1505とを含む。線路1503,1505,1506は、同じ層に形成されている。線路1503は入力端子1501に接続されており、線路1506は出力端子1502に接続されている。線路1503および線路1506は、略L字形状を有しており、当該L字形状の一方の端部がビア1504,1507によってそれぞれ接地電位に接続されている。線路1503および線路1506のビアが接続される端部は互いに対向して離間しており、他方の端部が互いに逆方向に延在するように配置される。そして、直線状の線路で形成された線路1505が、線路1503と線路1506との間に配置されている。
 図5(b)のフィルタ150Aは、λ/4の長さの2つの線路1503A,1506Aと、λ/2の長さの線路1505Aとを含む。線路1503Aおよび線路1506Aは略L字形状を有しており、当該L字形状の一方の端部が入力端子1501Aおよび出力端子1502Aにそれぞれ接続されている。線路1505Aは、線路1503A,1506Aとは異なる層に形成されている。線路1505Aはクランク形状を有しており、一方の端部が線路1503Aの他方の端部と容量結合しており、線路1505Aの他方の端部が線路1506Aの他方の端部と容量結合している。なお、線路1503Aの入力端子1501Aに接続される端部、および、線路1506Aの出力端子1502Aに接続される端部には、追加的な線路が接続されている。このように、入力端子1501Aと出力端子1502Aとの間に追加的な線路が設けられることによって、フィルタ150Aの特性を調整することができる。
 図5(c)のフィルタ150Bは、λ/4の長さの2つの線路1503B,1506Bと、λ/2の長さの線路1505Bと、線路1508Bとを含む。線路1505Bは、線路1503B,1506Bとは異なる層に形成されている。線路1503Bおよび線路1506Bは略C字形状を有しており、当該C字形状の略中央部において入力端子1501Bおよび出力端子1502Bにそれぞれ接続されている。線路1503Bおよび線路1506Bの一方の端部は、それぞれビア1504B,1507Bによって接地電位に接続されている。線路1503Bの他方の端部は直線状の線路1505Bの一方の端部と容量結合しており、線路1506Bの他方の端部は線路1505Bの他方の端部と容量結合している。線路1508Bは、線路1505Bに平行に配置された直線状の線路であり、その両端はビアにより接地電位に接続されている。線路1508Bを設けることによって、フィルタ150Bの特性を調整することができる。
 なお、本実施の形態1においては、共振線路型フィルタであれば、上記の図5に例示したフィルタ以外の構造を適用してもよい。
 上述のように、共振線路型フィルタは、誘電体基板内部に容易に形成することができるため、放射素子の直近にフィルタを形成する場合に適している。一方で、共振線路型フィルタは、多層基板内に形成されたコイル状のインダクタと2枚の平板電極とで形成されたキャパシタによって実現されるLCフィルタ、あるいは、基板上に実装されたチップ型のフィルタを使用する場合に比べると広い領域が必要となる。複数の放射素子を配列したアレイアンテナの場合、隣接する放射素子の間隔に制約があるため、フィルタを適切に配置しないと、アレイアンテナ全体のサイズが大きくなってしまう可能性がある。
 図6は、比較例のアンテナモジュール100#の平面透視図である。アンテナモジュール100#の例においては、フィルタ151#,152#は、給電素子に対するフィルタの位置が同じになるように配置されており、フィルタの一部が、対応する給電素子からλ/4の領域からはみ出した状態となっている。この場合、はみ出した部分が誘電体基板130に含まれるように、誘電体基板130を拡大することが必要となり、アンテナモジュールおよびアンテナアレイ全体のサイズが大きくなってしまう。
 これに対して、図2に示した実施の形態1のアンテナモジュール100においては、2つのフィルタは、給電素子間において各給電素子から等距離の仮想線をまたぐように、かつ、給電素子の配列方向に直交する方向に並んで配置されている。このような配置とすることによって、2つの給電素子からλ/4の距離の領域内にフィルタを形成することができるため、アレイアンテナにおいてアンテナモジュールのサイズの大型化を抑制することができる。
 (変形例)
 図7は、変形例のアンテナモジュール100Bの平面透視図である。アンテナモジュール100Bは、各給電素子に対して、同じ偏波方向の電波を放射させるための給電点が複数設けられる構成を有している。
 具体的には、図7を参照して、給電素子1211について給電点SP1Aと給電点SP1Bが設けられており、給電素子1212について給電点SP2Aと給電点SP2Bが設けられている。
 給電点SP1Aは、給電素子1211の中心からY軸の負方向にオフセットした位置に配置されており、給電点SP1Bは、給電素子1211の中心点からY軸の正方向にオフセットした位置に配置されている。同様に、給電点SP2Aは、給電素子1212の中心からY軸の負方向にオフセットした位置に配置されており、給電点SP2Bは、給電素子1212の中心からY軸の正方向にオフセットした位置に配置されている。すなわち、給電点SP1B,SP2Bは、給電素子の中心点(面中心)に対し、給電点SP1A,SP2Aのオフセット方向と反対方向にオフセットした位置に配置されている。
 給電点SP1A,SP1B,SP2A,SP2Bのいずれも、給電素子の中心点からY軸方向にオフセットしているため、これらの給電点に高周波信号が供給されると、各給電素子からはY軸方向を偏波方向とする電波が放射される。
 給電点SP1Aは、線路191によって給電点SP1Bと接続されている。また、給電点SP2Aは、線路192によって給電点SP2Bと接続されている。各放射素子から放射される電波の波長をλとした場合に、線路191,192の長さはλ/2となるように設定される。これによって、給電点SP1Aに供給される高周波信号の位相に対して給電点SP1Bに供給される高周波信号の位相が反転し、同様に、給電点SP2Aに供給される高周波信号の位相に対して給電点SP2Bに供給される高周波信号の位相が反転する。これによって、各給電素子において、主偏波と交差偏波との分離度合いを示す交差偏波識別度(XPD:Cross Polarization Discrimination)の向上を図ることができる。
 そして、アンテナモジュール100Bにおいては、給電素子1211に対応するフィルタ151からの高周波信号は、給電配線141を介して給電点SP1Aに供給される。一方、給電素子1212に対応するフィルタ152からの高周波信号は、給電配線142を介して給電点SP2Bに供給される。
 そして、フィルタ151およびフィルタ152は、アンテナモジュール100Bを平面視した場合に、給電素子1211から給電素子1212へ向かう第1方向(X軸の正方向)に直交する第2方向(Y軸方向)に並んで配置されている。このような配置とすることによって、2つの給電素子からλ/4の距離の領域内にフィルタを形成することができ、アレイアンテナにおいてアンテナモジュールのサイズの大型化を抑制することができる。
 なお、実施の形態1および変形例において、「給電素子1211」および「給電素子1212」は、それぞれ本開示の「第1放射素子」および「第2放射素子」に対応し、「フィルタ151」および「フィルタ152」は、それぞれ本開示の「第1フィルタ」および「第2フィルタ」に対応する。
 [実施の形態2]
 実施の形態1においては、各放射素子から1つの偏波方向の電波が放射される構成について説明した。実施の形態2では、各放射素子から互いに異なる偏波方向を有する2つの電波を放射可能な、いわゆるデュアル偏波タイプの場合のフィルタ配置について説明する。
 (通信装置の基本構成)
 図8は、実施の形態2に従うアンテナモジュールが適用される通信装置のブロック図である。図8を参照して、通信装置10Aは、アンテナモジュール100Cと、BBIC200とを備える。アンテナモジュール100Cは、RFIC110Aと、アンテナ装置120Aと、フィルタ装置106とを含む。
 アンテナ装置120Aは、デュアル偏波タイプのアンテナ装置であり、各給電素子121には、RFIC110Aから、第1偏波用の高周波信号および第2偏波用の高周波信号が供給される。
 RFIC110は、スイッチ111A~111H,113A~113H,117A,117Bと、パワーアンプ112AT~112HTと、ローノイズアンプ112AR~112HRと、減衰器114A~114Hと、移相器115A~115Hと、信号合成/分波器116A,116Bと、ミキサ118A,118Bと、増幅回路119A、119Bとを備える。このうち、スイッチ111A~111D,113A~113D,117A、パワーアンプ112AT~112DT、ローノイズアンプ112AR~112DR、減衰器114A~114D、移相器115A~115D、信号合成/分波器116A、ミキサ118A、および増幅回路119Aの構成が、第1偏波用の高周波信号のための回路である。また、スイッチ111E~111H,113E~113H,117B、パワーアンプ112ET~112HT、ローノイズアンプ112ER~112HR、減衰器114E~114H、移相器115E~115H、信号合成/分波器116B、ミキサ118B、および増幅回路119Bの構成が、第2偏波用の高周波信号のための回路である。
 高周波信号を送信する場合には、スイッチ111A~111H,113A~113Hがパワーアンプ112AT~112HT側へ切換えられるとともに、スイッチ117A,117Bが増幅回路119A,119Bの送信側アンプに接続される。高周波信号を受信する場合には、スイッチ111A~111H,113A~113Hがローノイズアンプ112AR~112HR側へ切換えられるとともに、スイッチ117A,117Bが増幅回路119A,119Bの受信側アンプに接続される。
 フィルタ装置106は、フィルタ106A~106Hを含む。フィルタ106A~106Hは、RFIC110Aにおけるスイッチ111A~111Hにそれぞれ接続される。フィルタ106A~106Hの各々は、特定の周波数帯域の高周波信号を減衰させる機能を有する。
 BBIC200から伝達された信号は、増幅回路119A,119Bで増幅され、ミキサ118A,118Bでアップコンバートされる。アップコンバートされた高周波信号である送信信号は、信号合成/分波器116A,116Bで4分波され、対応する信号経路を通過して、それぞれ異なる給電素子121に給電される。
 スイッチ111A,111Eからの高周波信号は、フィルタ106A,106Eをそれぞれ経由して給電素子121Aに供給される。同様に、スイッチ111B,111Fからの高周波信号は、フィルタ106B,106Fをそれぞれ経由して給電素子121Bに供給される。スイッチ111C,111Gからの高周波信号は、フィルタ106C,106Gをそれぞれ経由して給電素子121Cに供給される。スイッチ111D,111Hからの高周波信号は、フィルタ106D,106Hをそれぞれ経由して給電素子121Dに供給される。
 各信号経路に配置された移相器115A~115Hの移相度が個別に調整されることにより、アンテナ装置120の指向性を調整することができる。
 各給電素子121で受信された高周波信号である受信信号は、フィルタ装置106を介してRFIC110に伝達され、それぞれ異なる4つの信号経路を経由して信号合成/分波器116A,116Bにおいて合波される。合波された受信信号は、ミキサ118A,118Bでダウンコンバートされ、増幅回路119A,119Bで増幅されてBBIC200へ伝達される。
 (アンテナモジュールの構成)
 図9は、図8のアンテナモジュール100Cの平面透視図の一例である。図9を参照して、アンテナモジュール100Cにおいては、図2で説明した実施の形態1のアンテナモジュール100の構成に加えて、X軸方向を偏波方向とする電波用のフィルタ1512,1522(フィルタX)が追加された構成となっている。なお、図9におけるY軸方向を偏波方向とするフィルタ1511,1521(フィルタY)は、図2におけるフィルタ151,152に対応する。フィルタ1511,1512,1521,1522の各々は、いずれも共振線路型フィルタである。
 給電素子1211において、フィルタ1511を通過した高周波信号が給電配線1411を介して給電点SP11に供給され、フィルタ1512を通過した高周波信号が給電配線1412を介して給電点SP12に供給される。また、給電素子1212において、フィルタ1512を通過した高周波信号が給電配線1421を介して給電点SP21に供給され、フィルタ1522を通過した高周波信号が給電配線1422を介して給電点SP22に供給される。
 給電点SP11,SP21は、給電素子の中心からY軸の負方向にオフセットした位置に配置されており、給電点SP11,SP21に高周波信号が供給されることにより各給電素子からはY軸方向を偏波方向とする電波が放射される。また、給電点SP12,SP22は、給電素子の中心からX軸の正方向にオフセットした位置に配置されており、給電点SP12,SP22に高周波信号が供給されることにより各給電素子からはX軸方向を偏波方向とする電波が放射される。
 フィルタ1511,1512,1521,1522の各々は、実施の形態1の図3のように誘電体基板130の下面132と接地電極GNDとの間の層、あるいは、図4のように給電素子1211,1212と接地電極GNDとの間の層に配置される。
 フィルタ1511,1521は、実施の形態1のフィルタ151,152と同様に、アンテナモジュール100Cを法線方向から平面視した場合に、給電素子1211および給電素子1212から等距離の仮想線CL1をまたぐように配置されている。そして、フィルタ1511およびフィルタ1521は、給電素子1211から給電素子1212へ向かう第1方向(X軸の正方向)に直交する第2方向(Y軸の負方向)に並んで配置されている。フィルタ1511は、給電点SP11からさらに第2方向側に配置されており、フィルタ152は、給電点SP1から第2方向とは反対方向(Y軸の正方向)に配置されている。
 給電素子1211のX軸方向の偏波用のフィルタ1512は、給電素子1211の中心よりも第2方向と反対方向(Y軸の正方向)の領域において、給電点SP12よりも第1方向と反対方向(X軸の負方向)に配置されている。一方、給電素子1212のX軸方向の偏波用のフィルタ1522は、給電素子1212の中心よりも第1方向(X軸の正方向)の領域に配置されている。
 このような配置とすることにより、フィルタ1511,1512,1521,1522のすべてを、給電素子1211,1212からλ/4の距離の領域内に配置することができるので、アレイアンテナにおいてアンテナモジュールのサイズの大型化を抑制することができる。
 図9のアンテナモジュール100Cにおいて、「フィルタ1511」および「フィルタ1521」が本開示における「第1フィルタ」および「第2フィルタ」それぞれに対応し、「フィルタ1512」および「フィルタ1522」が本開示における「第3フィルタ」および「第4フィルタ」にそれぞれ対応する。
 なお、給電素子1211,1212の間の領域に配置されるフィルタは、同じ偏波同士のフィルタでなくてもよい。たとえば、図10に示されるアンテナモジュール100C1のように、給電素子1211についてのY軸方向の偏波用のフィルタ1511と、給電素子1212についてのX軸方向の偏波用のフィルタ1522とが、給電素子1211,1212の間の領域に配置されてもよい。また、図には示さないが、給電素子1211についてのX軸方向の偏波用のフィルタ1512と、給電素子1212についてのY軸方向の偏波用のフィルタ1521とが、給電素子1211,1212の間の領域に配置されてもよい。
 図10のアンテナモジュール100C1において、「フィルタ1511」および「フィルタ1522」が本開示における「第1フィルタ」および「第2フィルタ」にそれぞれ対応し、「フィルタ1512」および「フィルタ1521」が本開示における「第3フィルタ」および「第4フィルタ」にそれぞれ対応する。
 以上のように、デュアル偏波タイプのアンテナモジュールにおいても、一方の放射素子に対するいずれかのフィルタと、他方の放射素子に対するいずれかのフィルタとを、給電素子の配列方向と直交する方向に並べて配置することによって、2つの給電素子からλ/4の距離の領域内にすべてのフィルタを形成することが可能となるので、アレイアンテナにおけるアンテナモジュールのサイズの大型化を抑制することができる。
 [実施の形態3]
 実施の形態1においては、各放射素子から1つの周波数帯域の電波が放射される構成について説明した。実施の形態3においては、各放射素子から互いに異なる周波数帯域を有する2つの電波を放射可能な、いわゆるデュアルバンドタイプの場合のフィルタ配置について、図11~図13を用いて説明する。
 図11は、実施の形態3に従うアンテナモジュール100Dが適用される通信装置10Bのブロック図である。図12および図13は、それぞれ、放射素子が2つの場合のアンテナモジュールの平面透視図および側面透視図である。
 図11を参照して、通信装置10Bは、アンテナモジュール100Dと、BBIC200とを備える。アンテナモジュール100Dは、RFIC110Bと、アンテナ装置120Bと、フィルタ装置107とを含む。
 アンテナ装置120Bは、放射素子として複数の給電素子121と、各給電素子121に対応して設けられる無給電素子122を含む。アンテナ装置120Bは、2つの異なる周波数帯域の電波を放射することが可能な、いわゆるデュアルバンドタイプのアンテナ装置である。
 図12および図13に示されるように、アンテナモジュール100Dは、放射素子として給電素子1211,1212および無給電素子1221,1222を含む。無給電素子1221は、誘電体基板130において、給電素子1211と接地電極GNDとの間の層に配置されている。給電配線141Aは、無給電素子1221を貫通して給電素子1211の給電点SP1に接続されている。同様に、無給電素子1222は、誘電体基板130において、給電素子1212と接地電極GNDとの間の層に配置されている。給電配線142Aは、無給電素子1222を貫通して給電素子1212の給電点SP2に接続されている。
 無給電素子1221,1222のサイズは、給電素子1211,1212のサイズよりも大きい。そのため、無給電素子1221,1222の共振周波数は、給電素子1211,1212の共振周波数よりも低い。無給電素子1221,1222の共振周波数に対応した高周波信号を給電配線141A,142Aにそれぞれ供給することにより、無給電素子1221,1222から給電素子1211,1212よりも低い周波数の電波を放射することができる。
 RFIC110Bは、2つの周波数帯域の高周波信号を供給することが可能に構成されている。RFIC110Bの構成は、基本的には実施の形態2で説明したRFIC110Aと同様であるため、その詳細な説明は繰り返さない。なお、RFIC110Bにおいては、図11におけるスイッチ111A~111D,113A~113D,117A、パワーアンプ112AT~112DT、ローノイズアンプ112AR~112DR、減衰器114A~114D、移相器115A~115D、信号合成/分波器116A、ミキサ118A、および増幅回路119Aの構成が、低い周波数帯域の高周波信号のための回路である。また、図11におけるスイッチ111E~111H,113E~113H,117B、パワーアンプ112ET~112HT、ローノイズアンプ112ER~112HR、減衰器114E~114H、移相器115E~115H、信号合成/分波器116B、ミキサ118B、および増幅回路119Bの構成が高い周波数帯域の高周波信号のための回路である。
 フィルタ装置107は、ダイプレクサ107A~107Dを含む。各ダイプレクサは、低い周波数帯域の高周波信号を通過させるローパスフィルタ(フィルタ107A1,107B1,107C1,107D1)、および、高い周波数帯域の高周波信号を通過させるハイパスフィルタ(フィルタ107A2,107B2,107C2,107D2)を含む。フィルタ107A1,107B1,107C1,107D1は、RFIC110Bにおけるスイッチ111A~111Dにそれぞれ接続される。また、フィルタ107A2,107B2,107C2,107D2は、RFIC110Bにおけるスイッチ111E~111Hにそれぞれ接続される。ダイプレクサ107A~107Dの各々は、対応する給電素子121に接続される。
 RFIC110Bのスイッチ111A~111Dからの送信信号は、フィルタ107A1~107D1をそれぞれ経由して対応する無給電素子122から放射される。RFIC100Xのスイッチ111E~111Hからの送信信号は、フィルタ107A2~107D2をそれぞれ経由して対応する給電素子121から放射される。
 図12および図13においては、たとえば、フィルタ151A,152Aがダイプレクサのハイパスフィルタに対応し、フィルタ151B,152Bがダイプレクサのローパスフィルタに対応する。RFIC110Bからの高い周波数帯域の高周波信号は、フィルタ151Aおよび給電配線141Aを介して給電素子1211の給電点SP1に供給されるとともに、フィルタ152Aおよび給電配線142Aを介して給電素子1212の給電点SP2に供給される。また、RFIC110Bからの低い周波数帯域の高周波信号は、フィルタ151Bおよび給電配線141Bを介して給電素子1211の給電点SP1に供給されるとともに、フィルタ152Bおよび給電配線142Bを介して給電素子1212の給電点SP2に供給される。
 フィルタ151A,151B,152A,152Bの各々は、誘電体基板130の下面132と接地電極GNDとの間の層、あるいは、無給電素子1221,1222と接地電極GNDとの間の層に配置される。
 このようなデュアルバンドタイプのアンテナモジュールにおいても、図12に示されるように、給電素子1211用のフィルタ151A,151Bのいずれか一方と、給電素子1212用のフィルタ152A,152Bのいずれか一方とを、給電素子1211および給電素子1212から等距離の仮想線CL1をまたぐように配置するとともに、給電素子1211から給電素子1212へ向かう第1方向(X軸の正方向)に直交する第2方向(Y軸の負方向)に並んで配置することによって、2つの給電素子からλ/4の距離の領域内にすべてのフィルタを形成することが可能となる。これにより、アレイアンテナにおけるアンテナモジュールのサイズの大型化を抑制することができる。
 図12のアンテナモジュール100Dにおいて、「給電素子1211」および「無給電素子1221」が本開示の「第1放射素子」に対応し、「給電素子1212」および「無給電素子1222」が本開示の「第2放射素子」に対応する。また、アンテナモジュール100Dにおいて、「フィルタ151A」および「フィルタ152A」が本開示における「第1フィルタ」および「第2フィルタ」にそれぞれ対応し、「フィルタ151B」および「フィルタ152B」が本開示における「第3フィルタ」および「第4フィルタ」にそれぞれ対応する。
 [実施の形態4]
 実施の形態4においては、実施の形態2および実施の形態3を組み合わせたデュアル偏波/デュアルバンドタイプのアンテナモジュールの場合について、図14および図15を用いて説明する。
 図14は、実施の形態4に従うアンテナモジュール100Eが適用される通信装置10Cのブロック図である。
 図14を参照して、通信装置10Cは、アンテナモジュール100Eと、BBIC200とを備える。アンテナモジュール100Eは、RFIC110C1~110C4と、アンテナ装置120Cと、フィルタ装置108とを含む。
 アンテナ装置120Cは、放射素子として、複数の給電素子121と、各給電素子121に対応して設けられる無給電素子122を含む。また、各給電素子121には、第1偏波用の高周波信号および第2偏波用の高周波信号が供給される。アンテナ装置120Cは、2つの異なる周波数帯域の電波を2つの異なる偏波方向に放射することが可能なアンテナ装置である。
 図13と同様に、無給電素子122の各々は、対応する給電素子121と接地電極GNDとの間の層に配置される。各RFICからの高周波信号は、無給電素子122を貫通して各給電素子に至る給電配線を通って、対応する給電素子へと伝達される。
 アンテナモジュール100Eにおいては、低周波数帯域用の高周波信号を供給するRFIC110C1,110C3と、高周波数帯域用の高周波信号を供給するRFIC110C2,110C4とを含む。RFIC110C1,RFIC110C2は第1偏波用の高周波信号のための回路であり、RFIC110C3,RFIC110C4は第2偏波用の高周波信号のための回路である。なお、各RFICの構成は同様であるため、図14においては、RFIC110C1についてのみ回路構成が記載されており、RFIC110C2~110C4の回路構成は記載を省略している。また、各RFICの構成は、図1におけるRFIC110と同様であるため、その詳細な説明は繰り返さない。
 フィルタ装置108は、ダイプレクサ108A~108Hを含む。各ダイプレクサは、低い周波数帯域の高周波信号を通過させるローパスフィルタ(フィルタ108A1~108H1)、および、高い周波数帯域の高周波信号を通過させるハイパスフィルタ(フィルタ108A2~108H2)を含む。フィルタ108A1~108H1の各々は、RFICにおける対応するスイッチにそれぞれ接続される。ダイプレクサ108A~108Hの各々の出力は、対応する給電素子121に接続される。ダイプレクサ108A~108Hに含まれる各フィルタは、いずれも共振線路型フィルタである。
 図15は、放射素子が2つの場合のアンテナモジュール100Eの平面透視図である。図15を参照して、アンテナモジュール100Eは、放射素子として給電素子1211,1212および無給電素子1221,1222を含む。実施の形態3の図13と同様に、誘電体基板130において、無給電素子1221は給電素子1211と接地電極GNDとの間の層に配置されており、無給電素子1222は給電素子1212と接地電極GNDとの間の層に配置されている。
 給電素子1211の給電点SP11には、ダイプレクサ155Aからの高周波信号が供給され、給電点SP12には、ダイプレクサ155Bからの高周波信号が供給される。同様に、給電素子1212の給電点SP21には、ダイプレクサ156Aからの高周波信号が供給され、給電点SP22には、ダイプレクサ156Bからの高周波信号が供給される。
 図15におけるダイプレクサ155A,155B,156A,156Bは、図15におけるフィルタ装置108に含まれるダイプレクサに対応する。各ダイプレクサは、誘電体基板130の下面132と接地電極GNDとの間の層、あるいは、無給電素子1221,1222と接地電極GNDとの間の層に配置される。
 ダイプレクサ155Aおよびダイプレクサ156Aは、給電素子1211および給電素子1212から等距離の仮想線CL1をまたぐように配置されるとともに、給電素子1211から給電素子1212へ向かう第1方向(X軸の正方向)に直交する第2方向(Y軸の負方向)に並んで配置される。
 給電素子1211のX軸方向の偏波用のダイプレクサ155Bは、給電素子1211の中心よりも第2方向と反対方向(Y軸の正方向)の領域において、給電点SP12よりも第1方向と反対方向(X軸の負方向)に配置されている。一方、給電素子1212のX軸方向の偏波用のダイプレクサ156Bは、給電素子1212の中心よりも第1方向(X軸の正方向)の領域に配置されている。
 ダイプレクサをこのように配置することにより、ダイプレクサ155A,155B,156A,156Bのすべてが、給電素子1211,1212からλ/4の距離の領域内に配置することができるので、アレイアンテナにおいてアンテナモジュールのサイズの大型化を抑制することができる。
 なお、実施の形態4においても、給電素子1211と給電素子1212との間に配置されるダイプレクサは、ダイプレクサ155B,156Bであってもよいし、互いに異なる偏波用のダイプレクサであってもよい。
 また、実施の形態4のアンテナモジュール100Eにおいては、給電素子1211,1212および無給電素子1221,1222がそれぞれスタックされたデュアルバンドタイプのアンテナモジュールの場合について説明した。しかしながら、無給電素子1221,1222を給電素子に代えて、2つの給電素子がスタックされた放射素子を用いてデュアルバンドタイプのアンテナモジュールを構成してもよい。
 図15のアンテナモジュール100Eにおいて、「給電素子1211」および「無給電素子1221」が本開示の「第1放射素子」に対応し、「給電素子1212」および「無給電素子1222」が本開示の「第2放射素子」に対応する。また、アンテナモジュール100Eにおいて、「ダイプレクサ155A」および「ダイプレクサ156A」が本開示の「第1フィルタ」および「第2フィルタ」にそれぞれ対応し、「ダイプレクサ155B」および「ダイプレクサ156B」が本開示の「第3フィルタ」および「第4フィルタ」にそれぞれ対応する。
 [実施の形態5]
 上述の実施の形態においては、各フィルタを通った高周波信号が対応した1つの給電素子に供給される構成について説明した。実施の形態5においては、各フィルタからの高周波信号が複数の給電素子に対して供給される場合について説明する。
 図16は、実施の形態5に従うアンテナモジュール100Fが適用される通信装置10Dのブロック図である。
 図16を参照して、通信装置10Dは、アンテナモジュール100Fと、BBIC200とを備える。アンテナモジュール100Fは、RFIC110Dと、アンテナ装置120Dと、フィルタ装置109とを含む。
 アンテナ装置120Dは、放射素子として複数の給電素子121を含む。アンテナ装置120Dは、実施の形態2と同様にデュアル偏波タイプのアンテナ装置であり、各給電素子121には、RFIC110Cから、第1偏波用の高周波信号および第2偏波用の高周波信号が供給される。
 RFIC110Dは、スイッチ181A~181D,183A~183D,187A,187Bと、パワーアンプ182AT~182DTと、ローノイズアンプ182AR~182DRと、減衰器184A~184Dと、移相器185A~185Dと、信号合成/分波器186A,186Bと、ミキサ188A,188Bと、増幅回路189A、189Bとを備える。このうち、スイッチ181A,181B,183A,113B,187A、パワーアンプ182AT,182BT、ローノイズアンプ182AR,182BR、減衰器184A,184B、移相器185A,185B、信号合成/分波器186A、ミキサ188A、および増幅回路189Aの構成が、第1偏波用の高周波信号のための回路である。また、スイッチ181C,181D,183C,183D,187B、パワーアンプ182CT,182DT、ローノイズアンプ182CR,182DR、減衰器184C,184D、移相器185C,185D、信号合成/分波器186B、ミキサ188B、および増幅回路189Bの構成が、第2偏波用の高周波信号のための回路である。
 高周波信号を送信する場合には、スイッチ181A~151D,183A~183Dがパワーアンプ182AT~182DT側へ切換えられるとともに、スイッチ187A,187Bが増幅回路189A,189Bの送信側アンプに接続される。高周波信号を受信する場合には、スイッチ181A~151D,183A~183Dがローノイズアンプ182AR~182DR側へ切換えられるとともに、スイッチ187A,187Bが増幅回路189A,189Bの受信側アンプに接続される。
 フィルタ装置109は、フィルタ109A~109Dを含む。フィルタ109A~109Dは、RFIC110Dにおけるスイッチ181A~181Dにそれぞれ接続される。フィルタ109A~109Dの各々は、特定の周波数帯域の高周波信号を減衰させる機能を有する。
 BBIC200から伝達された信号は、増幅回路189A,189Bで増幅され、ミキサ188A,188Bでアップコンバートされる。アップコンバートされた高周波信号である送信信号は、信号合成/分波器186A,186Bで2分波され、対応する信号経路を通過して、給電素子121に給電される。
 スイッチ181Aからの高周波信号は、フィルタ109Aを通過し、分岐回路210Aにより2系統分岐されて、給電素子121Aおよび給電素子121Bに供給される。スイッチ181Bからの高周波信号は、フィルタ109Bを通過し、分岐回路210Bにより2系統分岐されて、給電素子121Cおよび給電素子121Dに供給される。スイッチ181Cからの高周波信号は、フィルタ109Cを通過し、分岐回路210Cにより2系統分岐されて、給電素子121Aおよび給電素子121Bに供給される。スイッチ181Dからの高周波信号は、フィルタ109Dを通過し、分岐回路210Dにより2系統分岐されて、給電素子121Cおよび給電素子121Dに供給される。
 各信号経路に配置された移相器185A~185Dの移相度が個別に調整されることにより、アンテナ装置120Dの指向性を調整することができる。
 このようなアンテナモジュールにおいては、各偏波について、2つの給電素子に対して1つのフィルタが設けられる。
 図17は、アンテナモジュール100Fの平面透視図である。図7を参照して、アンテナモジュール100Fは、放射素子として給電素子1211~1214を含む。また、アンテナモジュール100Fは、フィルタ1571,1572,1581,1582を含む。フィルタ1571,1572,1581,1582の各々は、いずれも共振線路型フィルタであり、図16におけるフィルタ装置109に含まれるフィルタに対応する。
 給電素子1211~1214は、2×2の二次元に配列される。給電素子1211および給電素子1212は、1×2に配列されたサブアンテナSA1を形成する。また、給電素子1213および給電素子1214は、1×2に配列されたサブアンテナSA2を形成する。すなわち、アレイアンテナは、サブアンテナSA1,SA2が隣接して配置された構成を有している。サブアンテナSA1からサブアンテナSA2に向かう方向(Y軸の負方向)を第1方向とすると、各サブアンテナに含まれる給電素子は、第1方向の方向に直交する第2方向(X軸方向)に配列されている。
 フィルタ1571およびフィルタ1581の各々は、サブアンテナSA1に含まれる給電素子1211,1212に接続される。フィルタ1571を通過した高周波信号は、給電素子1211の給電点SP11および給電素子1212の給電点SP21に供給される。フィルタ1581を通過した高周波信号は、給電素子1211の給電点SP12および給電素子1212の給電点SP22に供給される。
 また、フィルタ1572およびフィルタ1582の各々は、サブアンテナSA2に含まれる給電素子1213,1214に接続される。フィルタ1572を通過した高周波信号は、給電素子1213の給電点SP31および給電素子1214の給電点SP41に供給される。フィルタ1582を通過した高周波信号は、給電素子1213の給電点SP32および給電素子1214の給電点SP42に供給される。
 給電点SP11,SP21,SP31,SP41は、給電素子の中心からY軸の負方向にオフセットした位置に配置されており、給電点SP11,SP21,SP31,SP41に高周波信号が供給されることにより各給電素子からはY軸方向を偏波方向とする電波が放射される。また、給電点SP12,SP22,SP32,SP42は、給電素子の中心からX軸の正方向にオフセットした位置に配置されており、給電点SP12,SP22,SP32,SP42に高周波信号が供給されることにより各給電素子からはX軸方向を偏波方向とする電波が放射される。
 フィルタ1571,1572は、アンテナモジュール100Fを法線方向から平面視した場合に、サブアンテナSA1の給電素子およびサブアンテナSA2の給電素子から等距離の仮想線CL2をまたぐように配置されている。さらに、フィルタ1571およびフィルタ1572は、サブアンテナSA1からサブアンテナSA2へ向かう第1方向(Y軸の負方向)に直交する第2方向(X軸方向)に並べて配置されている。
 給電素子1211,1212のX軸方向の偏波用のフィルタ1581は、給電素子1211と給電素子1212との間に配置されている。一方、給電素子1213,1214のX軸方向の偏波用のフィルタ1582は、給電素子1213と給電素子1214との間に配置されている。
 このように、隣接するサブアンテナの各々に対応するフィルタを、サブアンテナの配列方向と直交する方向に並べて配置することによって、2つのサブアンテナに含まれる給電素子からλ/4の距離の領域内にすべてのフィルタを形成することが可能となるので、アレイアンテナにおけるアンテナモジュールのサイズの大型化を抑制することができる。
 図17のアンテナモジュール100Fにおいて、「サブアンテナSA1」および「サブアンテナSA2」は、本開示における「第1サブアンテナ」および「第2サブアンテナ」にそれぞれ対応する。また、「フィルタ1571」および「フィルタ1572」は、本開示における「第1フィルタ」および「第2フィルタ」に対応する。
 (変形例1)
 上述の各実施の形態におけるアンテナモジュールにおいては、給電素子および接地電極が単一の誘電率の誘電体で形成された誘電体基板に形成される構成について説明した。変形例1においては、誘電体基板が異なる誘電率を有する誘電体層で形成される構成について説明する。
 図18は、変形例1のアンテナモジュール100Gの側面透視図である。アンテナモジュール100Gにおいては、図3で示したアンテナモジュール100における誘電体基板130が、誘電体基板130Aに置き換えられた構成となっている。図18において、図3と重複する要素の説明は繰り返さない。
 図18を参照して、アンテナモジュール100Gの誘電体基板130Aは、互いに異なる誘電率を有する第1誘電体1301および第2誘電体1302によって形成されている。より具体的には、第2誘電体1302は、第1誘電体1301の誘電率よりも高い誘電率を有する材料で形成されている。第1誘電体1301は、第2誘電体1302上に配置されている。第2誘電体1302の下面(すなわち、誘電体基板130Aの下面132A)には、はんだバンプ170を介してRFIC110が実装されている。
 アンテナモジュール100Gにおいては、給電素子1211,1212は第1誘電体1301に形成されており、接地電極GNDは第2誘電体1302に形成されている。また、フィルタ151,152についても、第2誘電体1302内に形成されている。なお、図18の例においては、第1誘電体1301と第2誘電体1302との境界に接地電極GNDが配置されているが、接地電極GNDは、第2誘電体1302の内層に配置されていてもよい。
 一般的に、給電素子から放射される電波の周波数帯域幅を広くするためには、給電素子と接地電極との間の誘電率を低くすることが好ましい。一方で、フィルタにおけるQ値を大きくするためには、フィルタが形成される誘電体の誘電率を高くすることが好ましい。このように、誘電率に対して、アンテナ特性とフィルタ特性とがトレードオフの関係になり得るため、単一の誘電率の誘電体で誘電体基板を形成する場合には、必ずしも2つの特性に適した誘電率とはならない場合がある。
 変形例1のアンテナモジュール100Gにおいては、給電素子1211,1212と接地電極GNDとの間の誘電体(第1誘電体1301)は、相対的に低い誘電率を有する誘電体で形成されている。また、フィルタ151,152が形成される、接地電極GNDよりも下方の誘電体(第2誘電体1302)は、第1誘電体1301よりも誘電率が高い誘電体で形成されている。このように、誘電体基板を異なる誘電率を有する2つの誘電体層を用いて形成し、フィルタが形成される誘電体の誘電率を、給電素子と接地電極との間の形成される誘電体の誘電率よりも高くすることによって、アンテナ特性およびフィルタ特性の双方を改善することが可能となる。
 (変形例2)
 上述の各実施の形態におけるアンテナモジュールにおいては、給電素子および接地電極が同じ誘電体基板に形成される構成について説明した。変形例2においては、給電素子および接地電極が、互いに分離された異なる誘電体基板に形成される構成について説明する。
 図19は、変形例2のアンテナモジュール100Hの側面透視図である。アンテナモジュール100Hにおいては、図3で示したアンテナモジュール100における誘電体基板130が、互いに分離された2つの誘電体基板130B,130Cに置き換えられた構成となっている。図19において、図3と重複する要素の説明は繰り返さない。
 図19を参照して、アンテナモジュール100Hにおいては、給電素子1211および給電素子1212は、誘電体基板130Bに形成されている。一方、接地電極GNDおよびフィルタ151,152は、誘電体基板130Bから分離した誘電体基板130Cに形成されている。誘電体基板130Cの下面132Cには、はんだバンプ170を介してRFIC110が実装されている。
 誘電体基板130Bおよび誘電体基板130Cは、接続部材によって接続されている。図19の例においては、接続部材としてはんだバンプ171,172が用いられる場合が示されているが、接続部材は可撓性を有するケーブルあるいはコネクタであってもよい。
 給電配線141は、はんだバンプ171を介してフィルタ151と給電素子1211とを電気的に接続している。同様に、給電配線142は、はんだバンプ172を介してフィルタ152と給電素子1212とを電気的に接続している。そして、誘電体基板130Cを法線方向から平面視した場合に、フィルタ151,152の各々は、はんだバンプ171とはんだバンプ172との間において、はんだバンプ171,172から等距離の仮想線CL1をまたぐように配置されている。
 このように、給電素子が形成される誘電体基板と、接地電極およびフィルタが形成される誘電体基板とを分離することによって、給電素子を通信装置内においてフレキシブルに配置することが可能となる。
 また、上記の変形例1と同様に、給電素子が形成される誘電体基板の誘電率を相対的に低くし、接地電極およびフィルタが形成される誘電体基板の誘電率を相対的に高くすることによって、アンテナ特性およびフィルタ特性の双方を改善することもできる。
 なお、変形例2における「誘電体基板130C」は、本開示における「回路基板」に対応する。変形例2における「はんだバンプ171」および「はんだバンプ172」は、本開示の「第1端子」および「第2端子」にそれぞれ対応する。
 [実施の形態6]
 上述の実施の形態においては、アンテナ装置において、RFICから放射素子に至る給電配線にフィルタが形成される構成について説明した。実施の形態6においては、RFICにおける信号分岐前の経路にフィルタが形成される構成について説明する。
 図20は、実施の形態6に従うアンテナモジュール100Iが適用される通信装置10Eのブロック図である。図20を参照して、通信装置10Eは、アンテナモジュール100Iと、BBIC200とを備える。アンテナモジュール100Iは、RFIC110Eと、アンテナ装置120Aと、フィルタ105X,105Yとを含む。
 アンテナ装置120Aは、図8で示したアンテナモジュール100Cと同様に、デュアル偏波タイプのアンテナ装置であり、給電素子1211,1212の各々には、RFIC110Iから、第1偏波用の高周波信号および第2偏波用の高周波信号が供給される。
 実施の形態2のアンテナモジュール100C(図8)においては、RFIC110Aからの高周波信号は、フィルタ装置106を介してアンテナ装置120Aに伝達されていた。実施の形態6のアンテナモジュール100Iにおいては、RFIC110Eとアンテナ装置120Aは給電配線により直接接続されており、フィルタ105X,105Yの各々は、RFIC110Eにおける信号合成/分波器とスイッチとの間に接続されている。より具体的には、フィルタ105Xは第1偏波用のフィルタであり、信号合成/分波器116Aとスイッチ117Aとの間に接続されている。フィルタ105Yは第2偏波用のフィルタであり、信号合成/分波器116Bとスイッチ117Bとの間に接続されている。フィルタ105X,105Yは、RFIC110Eの外部に配置されており、具体的には、図21,図22で後述するようにアンテナ装置120Aの内部に形成される。なお、RFIC110Eを構成するその他の要素は、図8におけるRFIC110Aと同様であり、重複する要素の説明は繰り返さない。
 図21および図22は、図20のアンテナモジュール100Iの詳細構成を示すである。図21は、アンテナモジュール100Iの平面透視図である。また、図22は、アンテナモジュール100Iの側面透視図が示されている。なお、図21の平面図においては、説明を容易にするために、誘電体基板130の誘電体および接地電極GNDが省略されている。
 図21および図22を参照して、アンテナモジュール100Iは、図9で示したアンテナモジュール100Cと同様に、X軸方向に2つの給電素子1211,1212が配列されたアレイアンテナである。給電素子1211,1212は、誘電体基板130の上面131あるいは内部の層に配置されている。誘電体基板130において給電素子1211,1212よりも下面132側の層に、給電素子1211,1212に対向して、平板形状の接地電極GNDが配置される。誘電体基板130の下面132には、はんだバンプ170を介してRFIC110が実装されている。
 誘電体基板130において、接地電極GNDの下面132側にフィルタ105X,105Yが配置されている。フィルタ105Xは、接続配線1611,1612によってRFIC110に接続されている。また、フィルタ105Yは、接続配線1621,1622によってRFIC110に接続されている。アンテナモジュール100Iを法線方向から平面視した場合に、フィルタ105X,105Yの各々は、給電素子1211および給電素子1212から等距離の仮想線CL1をまたぐように配置されている。そして、フィルタ105X,105Yは、Y軸方向に並んで配置されている。
 給電素子1211の給電点SP11,SP12は、給電配線141Y,141Xによって、それぞれRFIC110Eと直接接続されている。給電点SP12に高周波信号が供給されることによって、給電素子1211からX軸方向を偏波方向とする電波が放射される。また、給電点SP11に高周波信号が供給されることによって、給電素子1211からY軸方向を偏波方向とする電波が放射される。
 同様に、給電素子1212の給電点SP21,SP22は、給電配線142Y,142Xによって、それぞれRFIC110Eと直接接続されている。給電点SP22に高周波信号が供給されることによって、給電素子1212からX軸方向を偏波方向とする電波が放射される。また、給電点SP21に高周波信号が供給されることによって、給電素子1212からY軸方向を偏波方向とする電波が放射される。
 フィルタ105Xは、給電素子1211,1212において、X軸方向を偏波方向とする電波用のフィルタ装置である。フィルタ105Xを経由した高周波信号は、給電素子1211の給電点SP12、および、給電素子1212の給電点SP22に接続される。また、フィルタ105Yは、給電素子1211,1212において、Y軸方向を偏波方向とする電波用のフィルタ装置である。フィルタ105Yを経由した高周波信号は、給電素子1211の給電点SP11、および、給電素子1212の給電点SP21に接続される。
 アンテナモジュール100Iのように、各偏波方向の回路に対して共通のフィルタを設ける構成とすることによって、アンテナモジュール内に形成されるフィルタの個数を低減することができるので、アンテナモジュール全体のさらなる小型化を実現することができる。そして、隣接する2つの給電素子から等距離の仮想線をまたぐようにフィルタを配置することによって、アンテナモジュールのサイズの大型化を抑制することができる。
 なお、実施の形態6において、「給電素子1211」および「給電素子1212」は、それぞれ本開示の「第1放射素子」および「第2放射素子」に対応し、「フィルタ105X」および「フィルタ105Y」は、それぞれ本開示の「第1フィルタ」および「第2フィルタ」に対応する。実施の形態6における「X軸方向」および「Y軸方向」は、それぞれ本開示の「第1方向」および「第2方向」に対応する。実施の形態6において、「給電点SP11」および「給電点SP21」は本開示の「第1給電点」に対応し、「給電点SP12」および「給電点SP22」は本開示の「第2給電点」に対応する。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10,10A~10E 通信装置、SP1,SP1A,SP1B,SP2,SP2A,SP2B,SP11,SP12,SP21,SP22,SP31,SP32,SP41,SP42 給電点、100,100A~100I アンテナモジュール、105,106,107,108,109 フィルタ装置、105A~105D,105X,105Y,106A~106H,107A1~107D1,107A2~107D2,108A1,108A2,108H1,108H2,109A~109D,150,150A,150B,151,151A,151B,152,152A,152B,156B,1511,1512,1521,1522,1571,1572,1581,1582 フィルタ、107A~107D,108A~108H,155,156 ダイプレクサ、111,113,117,181,183,187 スイッチ、110,110A~110E RFIC、112AR~112HR,182AR~182DR ローノイズアンプ、112AT~112HT,182AT~182DT パワーアンプ、114,184 減衰器、115,185 移相器、116,186 信号合成/分波器、118,188 ミキサ、119,189 増幅回路、120 アンテナ装置、121 給電素子、122 無給電素子、130,130A~130C 誘電体基板、1301,1302 誘電体、141,142 給電配線、161,162,1611,1612,1621,1622 接続配線、170~172 はんだバンプ、191,192,1503,1505,1506,1508 線路、210 分岐回路、1501 入力端子、1502 出力端子、1504,1507 ビア、200 BBIC、GND 接地電極、SA1,SA2 サブアンテナ。

Claims (17)

  1.  互いに隣接して配置された、平面形状の第1放射素子および第2放射素子を備えたアンテナモジュールであって、
     前記第1放射素子に接続された第1フィルタと、
     前記第2放射素子に接続された第2フィルタとを備え、
     前記第1フィルタおよび前記第2フィルタの各々は、
      互いに非接続の複数の共振線路を含んで構成され、
      前記アンテナモジュールを法線方向から平面視した場合に、前記第1放射素子と前記第2放射素子との間において、前記第1放射素子および前記第2放射素子から等距離の仮想線をまたぐように配置されている、アンテナモジュール。
  2.  前記第1放射素子から前記第2放射素子へ向かう方向を第1方向とすると、前記第1フィルタおよび前記第2フィルタは、前記第1方向とは異なる第2方向に並んで配置されており、
     前記第1放射素子および前記第2放射素子の各々には、対応する放射素子の中心点から前記第2方向にオフセットした位置に第1給電点が設けられており、
     前記第1フィルタは、前記第1放射素子の第1給電点からさらに前記第2方向側に配置されており、
     前記第2フィルタは、前記第2放射素子の第1給電点から前記第2方向とは反対の方向に配置されている、請求項1に記載のアンテナモジュール。
  3.  前記第1放射素子および前記第2放射素子に対向して配置される接地電極をさらに備え、
     前記接地電極は、前記第1フィルタおよび前記第2フィルタと、前記第1放射素子および前記第2放射素子との間の層に配置される、請求項1または2に記載のアンテナモジュール。
  4.  前記第1放射素子および前記第2放射素子に対向して配置される接地電極をさらに備え、
     前記第1フィルタおよび前記第2フィルタは、前記第1放射素子および前記第2放射素子と、前記接地電極との間の層に配置される、請求項1または2に記載のアンテナモジュール。
  5.  前記アンテナモジュールを法線方向から平面視した場合に、前記第1フィルタと前記第2フィルタとは重なっていない、請求項1~4のいずれか1項に記載のアンテナモジュール。
  6.  前記アンテナモジュールを法線方向から平面視した場合に、
      前記第1フィルタは、前記第2放射素子と重なっておらず、
      前記第2フィルタは、前記第1放射素子と重なっていない、請求項1~5のいずれか1項に記載のアンテナモジュール。
  7.  前記第1放射素子および前記第2放射素子の各々には、対応する放射素子の中心点から前記第1方向にオフセットした位置に第2給電点が設けられており、
     前記アンテナモジュールは、
      前記第1放射素子の第2給電点に接続された第3フィルタと、
      前記第2放射素子の第2給電点に接続された第4フィルタとをさらに備える、請求項2に記載のアンテナモジュール。
  8.  前記第1放射素子から前記第2放射素子へ向かう方向を第1方向とすると、前記第1フィルタおよび前記第2フィルタは、前記第1方向とは異なる第2方向に並んで配置されており、
     前記第1放射素子および前記第2放射素子の各々には、対応する放射素子の中心点から前記第2方向にオフセットした位置に第1給電点が設けられるとともに、対応する放射素子の中心点から前記第1方向にオフセットした位置に第2給電点が設けられており、
     前記第1フィルタは、前記第1放射素子の第1給電点に接続されており、
     前記第2フィルタは、前記第2放射素子の第2給電点に接続されており、
     前記アンテナモジュールは、
      前記第1放射素子の第2給電点に接続された第3フィルタと、
      前記第2放射素子の第1給電点に接続された第4フィルタとをさらに備える、請求項1に記載のアンテナモジュール。
  9.  前記第1放射素子から前記第2放射素子へ向かう方向を第1方向とすると、前記第1フィルタおよび前記第2フィルタは、前記第1方向とは異なる第2方向に並んで配置されており、
     前記第1放射素子および前記第2放射素子の各々には、対応する放射素子の中心点から前記第2方向にオフセットした位置に第1給電点が設けられるとともに、対応する放射素子の中心点から前記第2方向と反対方向にオフセットした位置に第2給電点が設けられており、
     各放射素子について、放射される電波の波長をλとした場合に、第1給電点は、λ/2の長さの線路によって第2給電点と接続されており、
     前記第1フィルタは、前記第1放射素子の第1給電点に接続されており、
     前記第2フィルタは、前記第2放射素子の第2給電点に接続されている、請求項1に記載のアンテナモジュール。
  10.  前記第1放射素子に接続された第3フィルタと、
     前記第2放射素子に接続された第4フィルタと、
     前記第1放射素子および前記第2放射素子に対向して配置される接地電極とをさらに備え、
     前記第1放射素子および前記第2放射素子の各々は、
      給電素子と、
      前記給電素子と前記接地電極との間に、前記給電素子と対向して配置された無給電素子とを含み、
     前記第1フィルタおよび前記第3フィルタのうち、一方は前記第1放射素子の給電素子に対応するフィルタであり、他方は前記第1放射素子の無給電素子に対応するフィルタであり、
     前記第2フィルタおよび前記第4フィルタのうち、一方は前記第2放射素子の給電素子に対応するフィルタであり、他方は前記第2放射素子の無給電素子に対応するフィルタである、請求項1に記載のアンテナモジュール。
  11.  前記第1放射素子に接続された第3フィルタと、
     前記第2放射素子に接続された第4フィルタと、
     前記第1放射素子および前記第2放射素子に対向して配置される接地電極とをさらに備え、
     前記第1放射素子から前記第2放射素子へ向かう方向を第1方向とすると、前記第1フィルタおよび前記第2フィルタは、前記第1方向とは異なる第2方向に並んで配置されており、
     前記第1放射素子および前記第2放射素子の各々は、
      給電素子と、
      前記給電素子と前記接地電極との間に、前記給電素子と対向して配置された無給電素子とを含み、
     前記第1フィルタ~前記第4フィルタの各々は、給電素子に対応するフィルタ要素と、無給電素子に対応するフィルタ要素とを含むダイプレクサであり、
     前記第1放射素子および前記第2放射素子の各々における給電素子には、前記第2方向を偏波方向とする電波を放射するための第1給電点、および、前記第1方向を偏波方向とする電波を放射するための第2給電点が設けられており、
     前記第1フィルタおよび前記第3フィルタのうち、一方は前記第1放射素子の第1給電点に接続され、他方は前記第1放射素子の第2給電点に接続されており、
     前記第2フィルタおよび前記第4フィルタのうち、一方は前記第2放射素子の第1給電点に接続され、他方は前記第2放射素子の第2給電点に接続されている、請求項1に記載のアンテナモジュール。
  12.  前記第1放射素子および前記第2放射素子の各々において、無給電素子のサイズは給電素子のサイズよりも大きく、
     前記アンテナモジュールは、前記第1フィルタ~前記第4フィルタの各々に対して、当該フィルタを通過した高周波信号を、対応する給電素子に伝達するように構成された給電配線をさらに備え、
     当該給電配線は、無給電素子を貫通して給電素子に接続される、請求項10または請求項11に記載のアンテナモジュール。
  13.  互いに隣接して配置された、第1サブアンテナおよび第2サブアンテナを備えたアンテナモジュールであって、
     前記第1サブアンテナおよび前記第2サブアンテナの各々は、前記第1サブアンテナから前記第2サブアンテナに向かう第1方向とは異なる第2方向に配列された、平面形状の複数の放射素子を含み、
     前記アンテナモジュールは、
     前記第1サブアンテナに含まれる放射素子に接続された第1フィルタと、
     前記第2サブアンテナに含まれる放射素子に接続された第2フィルタとをさらに備え、
     前記第1フィルタおよび前記第2フィルタの各々は、
      互いに非接続の複数の共振線路を含んで構成され、
      前記アンテナモジュールを法線方向から平面視した場合に、前記第1サブアンテナと前記第2サブアンテナとの間において、前記第1サブアンテナおよび前記第2サブアンテナから等距離の仮想線をまたぐように配置されており、
     前記第1フィルタおよび前記第2フィルタは、前記第2方向に並んで配置されている、アンテナモジュール。
  14.  互いに隣接して配置された、平面形状の第1放射素子および第2放射素子とを備えたアンテナモジュールであって、
     前記第1放射素子および前記第2放射素子の各々には、対応する放射素子の中心点から第2方向にオフセットした位置に第1給電点が設けられるとともに、対応する放射素子の中心点から第1方向にオフセットした位置に第2給電点が設けられており、
     前記アンテナモジュールは、
      各放射素子の第2給電点に供給される高周波信号をフィルタリングするように構成された第1フィルタと、
      各放射素子の第1給電点に供給される高周波信号をフィルタリングするように構成された第2フィルタとを備え、
     前記第1フィルタおよび前記第2フィルタの各々は、
      互いに非接続の複数の共振線路を含んで構成され、
      前記アンテナモジュールを法線方向から平面視した場合に、前記第1放射素子と前記第2放射素子との間において、前記第1放射素子および前記第2放射素子から等距離の仮想線をまたぐように配置されている、アンテナモジュール。
  15.  各放射素子に高周波信号を供給するように構成された給電回路をさらに備える、請求項1~14のいずれか1項に記載のアンテナモジュール。
  16.  請求項1~15のいずれか1項に記載のアンテナモジュールを搭載した、通信装置。
  17.  互いに隣接して配置された、平面形状の第1放射素子および第2放射素子にそれぞれ接続される第1端子および第2端子を備えた回路基板であって、
     前記第1端子に接続された第1フィルタと、
     前記第2端子に接続された第2フィルタとを備え、
     前記第1フィルタおよび前記第2フィルタの各々は、
      互いに非接続の複数の共振線路を含んで構成され、
      前記回路基板を法線方向から平面視した場合に、前記第1端子と前記第2端子との間において、前記第1端子および前記第2端子から等距離の仮想線をまたぐように配置されている、回路基板。
PCT/JP2020/017024 2019-06-07 2020-04-20 アンテナモジュールおよびそれを搭載した通信装置、ならびに回路基板 WO2020246155A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/543,758 US20220094074A1 (en) 2019-06-07 2021-12-07 Antenna module, communication apparatus including the same, and circuit substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-106776 2019-06-07
JP2019106776 2019-06-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/543,758 Continuation US20220094074A1 (en) 2019-06-07 2021-12-07 Antenna module, communication apparatus including the same, and circuit substrate

Publications (1)

Publication Number Publication Date
WO2020246155A1 true WO2020246155A1 (ja) 2020-12-10

Family

ID=73652779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017024 WO2020246155A1 (ja) 2019-06-07 2020-04-20 アンテナモジュールおよびそれを搭載した通信装置、ならびに回路基板

Country Status (2)

Country Link
US (1) US20220094074A1 (ja)
WO (1) WO2020246155A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220029219A (ko) * 2020-09-01 2022-03-08 삼성전자주식회사 인터-밴드 캐리어 어그리게이션을 수행하는 안테나 모듈 및 안테나 모듈을 포함하는 전자 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069366A1 (ja) * 2005-12-12 2007-06-21 Matsushita Electric Industrial Co., Ltd. アンテナ装置
US20160172757A1 (en) * 2013-07-24 2016-06-16 Kathrein-Werke Kg Wideband antenna array
JP2018056937A (ja) * 2016-09-30 2018-04-05 沖電気工業株式会社 パッチアンテナ組立体およびパッチアンテナ
WO2018074377A1 (ja) * 2016-10-19 2018-04-26 株式会社村田製作所 アンテナ素子、アンテナモジュールおよび通信装置
WO2019054063A1 (ja) * 2017-09-14 2019-03-21 株式会社村田製作所 アンテナモジュールおよび通信装置
JP2019057775A (ja) * 2017-09-20 2019-04-11 Tdk株式会社 アンテナモジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069366A1 (ja) * 2005-12-12 2007-06-21 Matsushita Electric Industrial Co., Ltd. アンテナ装置
US20160172757A1 (en) * 2013-07-24 2016-06-16 Kathrein-Werke Kg Wideband antenna array
JP2018056937A (ja) * 2016-09-30 2018-04-05 沖電気工業株式会社 パッチアンテナ組立体およびパッチアンテナ
WO2018074377A1 (ja) * 2016-10-19 2018-04-26 株式会社村田製作所 アンテナ素子、アンテナモジュールおよび通信装置
WO2019054063A1 (ja) * 2017-09-14 2019-03-21 株式会社村田製作所 アンテナモジュールおよび通信装置
JP2019057775A (ja) * 2017-09-20 2019-04-11 Tdk株式会社 アンテナモジュール

Also Published As

Publication number Publication date
US20220094074A1 (en) 2022-03-24

Similar Documents

Publication Publication Date Title
JP6973607B2 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2020261806A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2019026595A1 (ja) アンテナモジュールおよび通信装置
WO2021038965A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
JP6915745B2 (ja) アンテナモジュールおよびそれを搭載した通信装置
JP6973663B2 (ja) アンテナモジュールおよび通信装置
US20210005955A1 (en) Antenna module and communication apparatus equipped with the same
WO2020241271A1 (ja) サブアレイアンテナ、アレイアンテナ、アンテナモジュール、および通信装置
WO2020145392A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
JP6798657B1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2020246155A1 (ja) アンテナモジュールおよびそれを搭載した通信装置、ならびに回路基板
JP6798656B1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2021039075A1 (ja) アンテナモジュールおよびそれを搭載した通信装置、ならびに回路基板
CN112400255B (zh) 天线模块和搭载有该天线模块的通信装置
CN112840510B (zh) 天线模块和搭载有该天线模块的通信装置
WO2023214473A1 (ja) 伝送線路、ならびに、それを含むアンテナモジュールおよび通信装置
WO2020240998A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2022185874A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2022264902A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2020184205A1 (ja) フィルタ装置、ならびに、それを備えたアンテナモジュールおよび通信装置
WO2022004111A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2023032581A1 (ja) アンテナモジュール、およびそれを搭載した通信装置
US20240178567A1 (en) Antenna module and communication apparatus equipped with the same
WO2021019899A1 (ja) アンテナ装置、アンテナモジュールおよび通信装置
WO2022244540A1 (ja) アンテナモジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20819541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20819541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP