WO2020246143A1 - 感放射線性樹脂組成物、レジストパターン形成方法及び化合物 - Google Patents

感放射線性樹脂組成物、レジストパターン形成方法及び化合物 Download PDF

Info

Publication number
WO2020246143A1
WO2020246143A1 PCT/JP2020/016474 JP2020016474W WO2020246143A1 WO 2020246143 A1 WO2020246143 A1 WO 2020246143A1 JP 2020016474 W JP2020016474 W JP 2020016474W WO 2020246143 A1 WO2020246143 A1 WO 2020246143A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
radiation
preferable
carbon atoms
resin composition
Prior art date
Application number
PCT/JP2020/016474
Other languages
English (en)
French (fr)
Inventor
克聡 錦織
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2021524689A priority Critical patent/JP7400818B2/ja
Priority to KR1020217039158A priority patent/KR20220018966A/ko
Publication of WO2020246143A1 publication Critical patent/WO2020246143A1/ja
Priority to US17/541,422 priority patent/US20220091508A1/en
Priority to JP2023183077A priority patent/JP2024008955A/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/02Preparation of carboxylic acids or their salts, halides or anhydrides from salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C55/00Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
    • C07C55/02Dicarboxylic acids
    • C07C55/10Succinic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C55/00Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
    • C07C55/32Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/322Aqueous alkaline compositions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking

Definitions

  • the present invention relates to a radiation-sensitive resin composition, a resist pattern forming method, and a compound.
  • Such a radiation-sensitive resin composition generates an acid in the exposed portion by irradiating it with exposure light such as far ultraviolet rays such as ArF excimer laser, extreme ultraviolet (EUV), and electron beam, and the catalytic action of this acid causes the exposed portion. And the unexposed portion have a difference in dissolution rate with respect to the developing solution, and a resist pattern is formed on the substrate.
  • exposure light such as far ultraviolet rays such as ArF excimer laser, extreme ultraviolet (EUV), and electron beam
  • the radiation-sensitive resin composition is required to have excellent resolution.
  • various structures of the polymer contained in the radiation-sensitive resin composition have been studied, and by having a lactone structure such as a butyrolactone structure and a norbornane lactone structure, the adhesion of the resist pattern to the substrate It is known that these performances can be improved as well as those of JP-A-11-212265 (see JP-A-11-212265, JP-A-2003-5375 and JP-A-2008-833370).
  • Japanese Unexamined Patent Publication No. 11-21265 Japanese Unexamined Patent Publication No. 2003-5375 Japanese Unexamined Patent Publication No. 2008-833370
  • the present invention has been made based on the above circumstances, and an object of the present invention is to provide a radiation-sensitive resin composition, a resist pattern forming method, and a compound having excellent sensitivity and a wide process window. ..
  • the inventions made to solve the above problems include a polymer having a structural unit containing an acid dissociative group (hereinafter, also referred to as “[A] polymer”) and a radiation-sensitive acid generator (hereinafter, “[].
  • R 1 is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms.
  • X n + is an n-valent radiation-sensitive onium cation.
  • N is 1 to 3. It is an integer.
  • Another invention made to solve the above problems includes a step of directly or indirectly coating the substrate with the radiation-sensitive resin composition, a step of exposing the resist film formed by the coating step, and a step of exposing the resist film formed by the coating step.
  • R 1 is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms.
  • X n + is an n-valent cation.
  • N is an integer of 1 to 3.
  • the "organic group” means a group containing at least one carbon atom.
  • a resist pattern can be formed with excellent sensitivity and a wide process window.
  • the compound of the present invention can be suitably used as a component of the radiation-sensitive resin composition. Therefore, these can be suitably used for processing processes of semiconductor devices, which are expected to be further miniaturized in the future.
  • the radiation-sensitive resin composition contains a [A] polymer, a [B] acid generator, and a [C] compound.
  • the radiation-sensitive resin composition usually contains a solvent (hereinafter, also referred to as "[D] solvent”), and may contain other optional components as long as the effects of the present invention are not impaired. Good.
  • the radiation-sensitive resin composition contains the [A] polymer, the [B] acid generator, and the [C] compound, it has excellent sensitivity and a wide process window. It is not always clear why the radiation-sensitive resin composition has the above-mentioned effect, but it can be inferred as follows, for example. That, [C] compounds, -COO - and a group - -CF 2 CF 2 adjacent to the group. The fluorine atom in this -CF 2 CF 2- group absorbs exposure light such as EUV and promotes the generation of acid from the [B] acid generator by the generation of secondary electrons, etc., and as a result, the radiation sensitivity. It is considered that the sensitivity of the resin composition is improved.
  • the [C] compound has an appropriate hydrophobicity
  • the -COO - group adjacent to the -CF 2 CF 2- group has an appropriate basicity, so that the acid diffusion controllability is effectively exhibited. It is thought that it can be done. As a result, the shape of the resist pattern will be better, and as a result, the process window will be wider.
  • each component will be described.
  • the [A] polymer is a polymer having a structural unit containing an acid dissociative group (hereinafter, also referred to as “structural unit (I)”).
  • the "acid dissociative group” is a group that replaces a hydrogen atom such as a carboxy group or a hydroxy group, and means a group that dissociates by the action of an acid.
  • the polymer [A] preferably has a structural unit containing a phenolic hydroxyl group (hereinafter, also referred to as “structural unit (II)”) in addition to the structural unit (I), and the structural units (I) and (II). It may have other structural units other than. Hereinafter, each structural unit will be described.
  • the structural unit (I) is a structural unit containing an acid dissociative group.
  • the structural unit (I) is, for example, a structural unit represented by the following formula (2-1A), formula (2-1B), formula (2-2A) or formula (2-2B) (hereinafter, "structural unit (hereinafter,” structural unit (2-2B)).
  • structural unit (2-2B) structural unit represented by the following formula (2-1A), formula (2-1B), formula (2-2A) or formula (2-2B)
  • structural unit (2-2B) structural unit represented by the following formula (2-1A), formula (2-1B), formula (2-2A) or formula (2-2B)
  • structural unit (2-2B) structural unit represented by the following formula (2-1A), formula (2-1B), formula (2-2A) or formula (2-2B)
  • structural unit (2-2B) structural unit (I-1A), (I-1B), (I-2A), (I-2B) ")
  • structural units including acetal structures hereinafter, also referred to as” structural units (I-3) "
  • RT is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • RX is a monovalent hydrocarbon group or hydrogen atom having 1 to 20 carbon atoms.
  • RY and R Z are independently monovalent hydrocarbon groups having 1 to 20 carbon atoms, or the number of ring members composed of carbon atoms in which RY and R Z are combined with each other and bonded to each other. It is part of the alicyclic structure of 3-20.
  • RT is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • RX is a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • RY and R Z are independently monovalent hydrocarbon groups having 1 to 20 carbon atoms, or the number of ring members composed of carbon atoms in which RY and R Z are combined with each other and bonded to each other. It is part of the alicyclic structure of 3-20.
  • RT is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • RU is a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R V and R W are each independently a monovalent hydrocarbon radical or where carbon atoms and the carbon atoms R V and R W are combined together, R U, bonded 1 to 20 carbon atoms It is part of an aliphatic heterocyclic structure having 4 to 20 ring members composed of adjacent oxygen atoms.
  • RT is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • RU is a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R V and R W are each independently a monovalent hydrocarbon radical or where carbon atoms and the carbon atoms R V and R W are combined together, R U, bonded 1 to 20 carbon atoms It is part of an aliphatic heterocyclic structure having 4 to 20 ring members composed of adjacent oxygen atoms.
  • a hydrogen atom or a methyl group is preferable from the viewpoint of copolymerizability of the monomer giving the structural unit (I).
  • the "hydrocarbon group” includes a chain hydrocarbon group, an alicyclic hydrocarbon group and an aromatic hydrocarbon group. This “hydrocarbon group” may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • the "chain hydrocarbon group” refers to a hydrocarbon group that does not contain a cyclic structure and is composed of only a chain structure, and includes both a linear hydrocarbon group and a branched hydrocarbon group.
  • the "alicyclic hydrocarbon group” refers to a hydrocarbon group containing only an alicyclic structure and not an aromatic ring structure as a ring structure, and is a monocyclic alicyclic hydrocarbon group and a polycyclic alicyclic group. Contains both hydrocarbon groups.
  • aromatic hydrocarbon group refers to a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it does not have to be composed only of an aromatic ring structure, and a chain structure or an alicyclic structure may be included as a part thereof.
  • ring member number refers to the number of atoms constituting the alicyclic structure, the aromatic ring structure, the aliphatic heterocyclic structure and the aromatic heterocyclic structure, and in the case of a polycycle, the number of atoms constituting the polycycle. To say.
  • R X, R Y, R Z , R U the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R V and R W, for example, a monovalent chain hydrocarbon having 1 to 20 carbon atoms Examples thereof include a group, a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, and a monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms include an alkyl group such as a methyl group, an ethyl group, an n-propyl group and an i-propyl group; Alkenyl groups such as ethenyl group, propenyl group, butenyl group; Examples thereof include an alkynyl group such as an ethynyl group, a propynyl group and a butynyl group.
  • Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include a monocyclic alicyclic saturated hydrocarbon group such as a cyclopentyl group and a cyclohexyl group; Monocyclic alicyclic unsaturated hydrocarbon groups such as cyclopentenyl group and cyclohexenyl group; Polycyclic alicyclic saturated hydrocarbon groups such as norbornyl group, adamantyl group, tricyclodecyl group; Examples thereof include polycyclic alicyclic unsaturated hydrocarbon groups such as norbornenyl group and tricyclodecenyl group.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include an aryl group such as a phenyl group, a tolyl group, a xsilyl group, a naphthyl group and an anthryl group; Examples thereof include an aralkyl group such as a benzyl group, a phenethyl group, a naphthylmethyl group and an anthrylmethyl group.
  • Examples of the alicyclic structure having 3 to 20 carbon atoms in which RY and R Z are composed of carbon atoms include a monocyclic alicyclic structure such as a cyclopropane structure, a cyclobutane structure, a cyclopentane structure, a cyclohexane structure, a cyclopentene structure, and a cyclohexene structure. Construction; Examples include a polycyclic alicyclic structure such as a norbornane structure and an adamantane structure.
  • the aliphatic heterocyclic structure having 4 to 20 carbon atoms R V and R W are configured with a carbon atom and an oxygen atom, for example oxacyclobutane structure, oxacyclopentane structure, oxacyclohexane structure, oxa cyclopentene structure, oxa cyclohexene structure such as Monocyclic aliphatic heterocyclic structure; Examples thereof include a polycyclic aliphatic heterocyclic structure such as an oxanorbornane structure and an oxaadamantane structure.
  • the structural unit (I-1A) is a structural unit represented by the following formulas (2-1A-1) to (2-1A-6) (hereinafter, "structural unit (I-1A-1) to (I-)”. 1A-6) ”) is preferable.
  • R T, R X, R Y and R Z is as defined in the above formula (2-1A).
  • i and j are each independently an integer of 1 to 4.
  • RT is synonymous with the above formula (2-1A).
  • s is an integer from 1 to 4.
  • R S1 and R S2 are independently hydrogen atoms or monovalent hydrocarbon groups having 1 to 10 carbon atoms.
  • the R X preferably an aryl group an alkyl group or having 6 to 10 carbon atoms having 1 to 4 carbon atoms, a methyl group, an ethyl group, i- propyl, t- butyl group or a phenyl group is more preferable.
  • RS1 and RS2 a hydrogen atom or a methyl group is preferable.
  • i and j 1 or 2 is preferable.
  • As s, 2 is preferable.
  • the structural unit (I) As the structural unit (I), the structural unit (I-1A) is preferable, and the structural unit (I-1A-1) or the structural unit (I-1A-6) is more preferable.
  • the structural unit (I-3) is a structural unit including an acetal structure.
  • Examples of the group containing an acetal structure include a group represented by the following formula (3) (hereinafter, also referred to as “group (X)”).
  • -CR J R K (OR L) is an acid-dissociable group in the group (X).
  • RI is a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms
  • R J and RK are independently hydrogen atoms or monovalent groups having 1 to 20 carbon atoms, respectively.
  • a hydrocarbon group R L is either a monovalent hydrocarbon group having 1 to 20 carbon atoms, or R I, R J, they are bonded two or more are combined with each other among the R K and R L It is a part of a ring structure having 3 to 20 ring members, which is composed of a carbon atom or an atomic chain.
  • * Indicates a binding site with a portion of the structural unit (I-3) other than the above group (X).
  • Examples of the divalent hydrocarbon group having 1 to 20 carbon atoms represented by R I, for example, the R X, the monovalent hydrocarbon group R Y and illustrated having 1 to 20 carbon atoms as R Z 1 single Examples include groups excluding hydrogen atoms.
  • the R I preferably a divalent chain hydrocarbon group of a single bond or a 1 to 20 carbon atoms, more preferably a divalent chain hydrocarbon group having 1 to 20 carbon atoms, alkanes having 1 to 10 carbon atoms A diyl group is more preferred, and a methanediyl group is particularly preferred.
  • R J the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R K and R L, for example, monovalent hydrocarbon groups of R X, R Y and R Z 1 to 20 carbon atoms Examples thereof include groups similar to the groups exemplified as.
  • the R J and R K preferably a hydrogen atom or a chain hydrocarbon group, more preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or a methyl group.
  • R Z a chain hydrocarbon group is preferable, an alkyl group is more preferable, and a methyl group is particularly preferable.
  • the R I a single bond or a chain hydrocarbon group, more preferably a chain-like hydrocarbon group, more preferably an alkanediyl group, methylene bridge are particularly preferred.
  • Examples of the ring structure having 3 to 20 ring members in which R J and RK are composed of carbon atoms include a cyclopentane structure and a cycloalkane structure such as a cyclohexane structure.
  • Examples of the group (X) include 2,2-dimethyl-1,3-dioxacyclopentane-4-yl group and the like.
  • the lower limit of the content ratio of the structural unit (I) 20 mol% is preferable, 40 mol% is more preferable, and 50 mol% is further more preferable with respect to all the structural units constituting the polymer [A].
  • the upper limit of the content ratio is preferably 90 mol%, more preferably 80 mol%, still more preferably 70 mol%.
  • the structural unit (II) is a structural unit containing a phenolic hydroxyl group.
  • the "phenolic hydroxyl group” refers not only to the hydroxy group directly connected to the benzene ring but to all the hydroxy groups directly connected to the aromatic ring.
  • the hydrophilicity of the resist film can be enhanced, the solubility in the developing solution can be appropriately adjusted, and as a result, the process window can be further expanded. Can be done. Further, in the case of KrF exposure, EUV exposure or electron beam exposure, the sensitivity can be further improved.
  • Examples of the structural unit (II) include a structural unit represented by the following formula (P).
  • RP is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • RQ is a single bond, -O-, -COO- or -CONH-.
  • Ar is a group obtained by removing (g + h + 1) hydrogen atoms on an aromatic ring from an array having 6 to 20 ring members.
  • g is an integer from 0 to 10. If g is 1, R R is a monovalent organic group or a halogen atom having 1 to 20 carbon atoms.
  • g is 2 or more, plural R R, equal to or different from each other, combined or a monovalent organic group or a halogen atom having 1 to 20 carbon atoms, or two or more of the plurality of R R each other It is a part of a ring structure having 4 to 20 ring members, which is composed of a carbon chain to which these are bonded.
  • h is an integer from 1 to 11. However, g + h is 11 or less.
  • the R P from the viewpoint of copolymerizability of the monomer giving the structural unit (II), preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
  • the R Q, a single bond or -COO- is more preferably a single bond.
  • Examples of the monovalent organic group having 1 to 20 carbon atoms represented by RR include a monovalent hydrocarbon group having 1 to 20 carbon atoms and a divalent heteroatom between carbons of the hydrocarbon group.
  • Examples thereof include a monovalent group ( ⁇ ) in which a hydrogen group, a group ( ⁇ ) or a group ( ⁇ ) and a divalent heteroatom-containing group are combined.
  • the monovalent hydrocarbon groups include monovalent hydrocarbon groups of formula (2-1A) ⁇ (2-2B) of the R X ⁇ R W illustrated having 1 to 20 carbon atoms as 1 to 20 carbon atoms The same group as above can be mentioned.
  • hetero atom constituting the monovalent and divalent hetero atom-containing group
  • examples of the hetero atom constituting the monovalent and divalent hetero atom-containing group include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, a halogen atom and the like.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • divalent heteroatom-containing group examples include -O-, -CO-, -S-, -CS-, -NR'-, a group in which two or more of these are combined, and the like.
  • R' is a hydrogen atom or a monovalent hydrocarbon group. Of these, -CO- is preferable.
  • Examples of the monovalent heteroatom-containing group include a halogen atom, a hydroxy group, a carboxy group, a cyano group, an amino group, a sulfanyl group and the like.
  • Examples of the arene having 6 to 20 ring members that give Ar include benzene, naphthalene, anthracene, phenanthrene, tetracene, pyrene and the like. Among these, benzene or naphthalene is preferable, and benzene is more preferable.
  • the R R preferably a hydrocarbon group, an alkyl group is more preferable.
  • the ring structure of ring members 4-20 that more than two constitute together with the carbon chains of the plurality of R R, such as cyclohexane structure, and the like alicyclic structure such as cyclohexene structure.
  • g 0 to 2, more preferably 0 or 1, and even more preferably 0.
  • 1 to 3 is preferable, 1 or 2 is more preferable, and 1 is further preferable.
  • the structural unit (II) is, for example, a structural unit represented by the following formulas (P-1) to (P-14) (hereinafter, also referred to as “structural unit (II-1) to (II-14)”) and the like. Can be mentioned.
  • RP is synonymous with the above formula (P).
  • the structural unit (II-1) or (II-2) is preferable.
  • the lower limit of the content ratio of the structural unit (II) is preferably 10 mol%, preferably 20 mol%, based on all the structural units constituting the [A] polymer. More preferably mol%, more preferably 25 mol%.
  • the upper limit of the content ratio is preferably 80 mol%, more preferably 60 mol%, still more preferably 50 mol%.
  • the structural unit (II) can be formed, for example, by hydrolyzing a polymer obtained by using a monomer such as acyloxystyrene such as acetoxystyrene in the presence of a base such as triethylamine.
  • Other structural units include, for example, a structural unit containing an alcoholic hydroxyl group, a lactone structure, a cyclic carbonate structure, a sultone structure or a structural unit containing a combination thereof, a carboxy group, a cyano group, a nitro group, a sulfonamide group or a combination thereof. Examples thereof include a structural unit containing a non-acid dissociable hydrocarbon group and a structural unit containing a non-acid dissociable hydrocarbon group.
  • Examples of the structural unit containing an alcoholic hydroxyl group include a structural unit represented by the following formula.
  • RL2 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • the upper limit of the content ratio of the other structural units is preferably 30 mol%, preferably 15 mol%, based on all the structural units constituting the [A] polymer. Is more preferable.
  • the lower limit of the content ratio of the polymer [A] is preferably 50% by mass, more preferably 70% by mass, and 80% by mass with respect to all the components of the radiation-sensitive resin composition other than the [D] solvent. More preferred.
  • the upper limit of the content ratio is preferably 99% by mass, more preferably 95% by mass.
  • the lower limit of the content ratio of the [A] polymer in the radiation-sensitive resin composition is preferably 0.1% by mass, more preferably 0.5% by mass, still more preferably 1% by mass.
  • the upper limit of the content ratio is preferably 50% by mass, more preferably 30% by mass, and even more preferably 10% by mass.
  • the polymer may contain one kind or two or more kinds.
  • the polymer [A] can be synthesized, for example, by polymerizing a monomer giving each structural unit in a solvent using a radical polymerization initiator or the like.
  • Mw polystyrene-equivalent weight average molecular weight of the polymer by gel permeation chromatography (GPC)
  • 1,000 is preferable, 3,000 is more preferable, 4,000 is further preferable, and 5, 000 is particularly preferable.
  • Mw polystyrene-equivalent weight average molecular weight
  • 50,000 is preferable, 30,000 is more preferable, 20,000 is further preferable, and 10,000 is particularly preferable.
  • Mw / Mn the ratio of Mw to the polystyrene-equivalent number average molecular weight (Mn) of the polymer by GPC
  • 5 is preferable, 3 is more preferable, 2 is further preferable, and 1.6 is particularly preferable.
  • the lower limit of the above ratio is usually 1, preferably 1.1.
  • the Mw and Mn of the polymer in the present specification are values measured by gel permeation chromatography (GPC) under the following conditions.
  • GPC column 2 "G2000HXL", 1 "G3000HXL” and 1 "G4000HXL” from Tosoh Corporation
  • Elution solvent Tetrahydrofuran (Fuji Film Wako Pure Chemical Industries, Ltd.)
  • Flow velocity 1.0 mL / min
  • Sample concentration 1.0 mass%
  • Sample injection volume 100 ⁇ L
  • Detector Differential refractometer Standard material: Monodisperse polystyrene
  • the acid generator is a substance that generates an acid upon exposure.
  • the generated acid dissociates the acid dissociative group of the [A] polymer or the like to generate a carboxy group, a hydroxy group, or the like, and the solubility of the [A] polymer in the developing solution changes.
  • a resist pattern can be formed from the sex resin composition.
  • As the content form of the [B] acid generator in the radiation-sensitive resin composition even the form of a low molecular weight compound (hereinafter, also referred to as “[B] acid generator”) is incorporated as a part of the polymer. It may be in a form or both of these forms.
  • Examples of the acid generated from the acid generator include sulfonic acid and imidic acid.
  • Examples of the [B] acid generator include onium salt compounds, N-sulfonyloxyimide compounds, sulfonimide compounds, halogen-containing compounds, diazoketone compounds and the like.
  • onium salt compound examples include sulfonium salt, tetrahydrothiophenium salt, iodonium salt, phosphonium salt, diazonium salt, pyridinium salt and the like.
  • [B] acid generator examples include compounds described in paragraphs [0080] to [0113] of JP-A-2009-134808.
  • Examples of the [B] acid generator include compounds represented by the following formula (4).
  • a ⁇ is a monovalent sulfonic acid anion or a monovalent imidate anion.
  • T + is a monovalent radiation-sensitive onium cation.
  • Examples of the [B] acid generator that generates sulfonic acid by exposure include a compound represented by the following formula (4-1) (hereinafter, also referred to as “compound (4-1)”). It is considered that the acid generator [B] having the following structure causes the diffusion length of the acid generated by exposure in the resist film to be more appropriately shortened due to the interaction with the polymer [A] and the like. The process window can be expanded further.
  • R p1 is a monovalent group containing a ring structure having 5 or more ring members.
  • R p2 is a divalent linking group.
  • R p3 and R p4 are independently hydrogen atoms, fluorine atoms, monovalent hydrocarbon groups having 1 to 20 carbon atoms, or monovalent fluorinated hydrocarbon groups having 1 to 20 carbon atoms.
  • R p5 and R p6 are independently fluorine atoms or monovalent fluorinated hydrocarbon groups having 1 to 20 carbon atoms.
  • n p1 is an integer from 0 to 10.
  • n p2 is an integer from 0 to 10.
  • n p3 is an integer from 0 to 10.
  • n p1 + n p2 + n p3 is 1 or more and 30 or less.
  • n p1 is 2 or more, a plurality of R p2s are the same or different from each other. If n p2 is 2 or more, the plurality of R p3 equal to or different from each other, a plurality of R p4 are the same or different from each other. If n p3 is 2 or more, the plurality of R p5 equal to or different from each other, a plurality of R p6 are the same or different from each other.
  • T + is a monovalent radiation-sensitive onium cation.
  • Examples of the monovalent group including a ring structure having 5 or more ring members represented by R p1 include a monovalent group including an alicyclic structure having 5 or more ring members and an aliphatic heterocyclic structure having 5 or more ring members. Examples thereof include a monovalent group, a monovalent group containing an aromatic ring structure having 5 or more ring members, and a monovalent group containing an aromatic heterocyclic structure having 5 or more ring members.
  • Examples of the alicyclic structure having 5 or more ring members include a monocyclic saturated alicyclic structure such as a cyclopentane structure, a cyclohexane structure, a cycloheptane structure, a cyclooctane structure, a cyclononane structure, a cyclodecane structure, and a cyclododecane structure; Monocyclic unsaturated alicyclic structures such as cyclopentene structure, cyclohexene structure, cycloheptene structure, cyclooctene structure, cyclodecene structure; Polycyclic saturated alicyclic structures such as norbornane structure, adamantane structure, tricyclodecane structure, and tetracyclododecane structure; Examples thereof include a polycyclic unsaturated alicyclic structure such as a norbornene structure and a tricyclodecene structure.
  • Examples of the aliphatic heterocyclic structure having 5 or more ring members include lactone structures such as hexanolactone structure and norbornane lactone structure; Sultone structures such as hexanosultone structure and norbornane sultone structure; Oxygen atom-containing heterocyclic structure such as oxacycloheptane structure and oxanorbornane structure; Nitrogen atom-containing heterocyclic structure such as azacyclohexane structure and diazabicyclooctane structure; Examples thereof include a sulfur atom-containing heterocyclic structure such as a thiacyclohexane structure and a thianorbornane structure.
  • Examples of the aromatic ring structure having 5 or more ring members include a benzene structure, a naphthalene structure, a phenanthrene structure, an anthracene structure and the like.
  • Examples of the aromatic heterocyclic structure having 5 or more ring members include an oxygen atom-containing heterocyclic structure such as a furan structure, a pyran structure, a benzofuran structure, and a benzopyran structure; Examples thereof include a nitrogen atom-containing heterocyclic structure such as a pyridine structure, a pyrimidine structure, and an indole structure.
  • the lower limit of the number of ring members of the ring structure of R p1 , 6 is preferable, 8 is more preferable, 9 is further preferable, and 10 is particularly preferable.
  • the upper limit of the number of ring members 15 is preferable, 14 is more preferable, 13 is further preferable, and 12 is particularly preferable.
  • a part or all of the hydrogen atom of the ring structure of R p1 may be substituted with a substituent.
  • substituents include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, hydroxy group, carboxy group, cyano group, nitro group, alkoxy group, alkoxycarbonyl group, alkoxycarbonyloxy group and acyl group. Examples thereof include an asyloxy group. Of these, a hydroxy group is preferable.
  • R p1 a monovalent group containing an alicyclic structure having 5 or more ring members or a monovalent group containing an aromatic ring structure having 6 or more ring members is preferable.
  • Examples of the divalent linking group represented by R p2 include a carbonyl group, an ether group, a carbonyloxy group, a sulfide group, a thiocarbonyl group, a sulfonyl group, and a divalent hydrocarbon group.
  • a carbonyloxy group, a sulfonyl group, an alkanediyl group or a divalent alicyclic saturated hydrocarbon group is preferable, a carbonyloxy group or a divalent alicyclic saturated hydrocarbon group is more preferable, and a carbonyloxy group.
  • a norbornandyl group is more preferable, and a carbonyloxy group is particularly preferable.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R p3 and R p4 include an alkyl group having 1 to 20 carbon atoms.
  • Examples of the monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms represented by R p3 and R p4 include a fluorinated alkyl group having 1 to 20 carbon atoms.
  • a hydrogen atom, a fluorine atom or a fluorinated alkyl group is preferable, a fluorine atom or a perfluoroalkyl group is more preferable, and a fluorine atom or a trifluoromethyl group is further preferable.
  • Examples of the monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms represented by R p5 and R p6 include a fluorinated alkyl group having 1 to 20 carbon atoms.
  • a fluorine atom or a fluorinated alkyl group is preferable, a fluorine atom or a perfluoroalkyl group is more preferable, a fluorine atom or a trifluoromethyl group is further preferable, and a fluorine atom is particularly preferable.
  • n p1 , 0 to 5 is preferable, 0 to 3 is more preferable, 0 to 2 is further preferable, and 0 or 1 is particularly preferable.
  • n p2 0 to 5 is preferable, 0 to 2 is more preferable, 0 or 1 is further preferable, and 0 is particularly preferable.
  • n p3 As the lower limit of n p3 , 1 is preferable, and 2 is more preferable. By setting n p3 to 1 or more, the strength of the acid generated from the compound (4-1) can be increased, and as a result, the process window can be further expanded. As the upper limit of n p3 , 8 is preferable, 6 is more preferable, and 4 is further preferable.
  • n p1 + n p2 + n p3 2 is preferable, and 4 is more preferable.
  • Examples of the monovalent radiation-sensitive onium cation represented by T + include a cation represented by the following formula (T-1) (hereinafter, also referred to as “cation (T-1)”) and the following formula (T-).
  • the cation represented by 2) hereinafter, also referred to as “cation (T-2)”
  • the cation represented by the following formula (T-3) hereinafter, also referred to as “cation (T-3)”
  • R a1 and R a2 are independently monovalent organic groups having 1 to 20 carbon atoms.
  • k1 is an integer from 0 to 5.
  • Ra3 is a monovalent organic group, a hydroxy group, a nitro group or a halogen atom having 1 to 20 carbon atoms.
  • the plurality of Ra 3s are the same or different from each other and are monovalent organic groups, hydroxy groups, nitro groups or halogen atoms having 1 to 20 carbon atoms, or a plurality of Ra 3s are mutually exclusive. It is a part of a ring structure having 4 to 20 ring members, which is composed of carbon chains to which these are combined and bonded.
  • t1 is an integer of 0 to 3.
  • R a1 and R a2 monovalent unsubstituted hydrocarbon groups having 1 to 20 carbon atoms or hydrocarbon groups in which hydrogen atoms are substituted with substituents are preferable, and monovalent unsubstituted hydrocarbon groups having 6 to 18 carbon atoms are preferred.
  • the aromatic hydrocarbon group or the aromatic hydrocarbon group in which the hydrogen atom is substituted with a substituent is more preferable, the substituted or unsubstituted phenyl group is further preferable, and the unsubstituted phenyl group is particularly preferable.
  • Substituents that may substitute hydrogen atoms of monovalent hydrocarbon groups having 1 to 20 carbon atoms represented by R a1 and R a2 include substituted or unsubstituted monovalent groups having 1 to 20 carbon atoms. Hydrocarbon groups of, -OSO 2- R k , -SO 2- R k , -OR k , -COOR k , -O-CO-R k , -OR kk- COOR k , -R kk -CO- R k or —SR k is preferred.
  • R k is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • R kk is a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • R a3 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, -OSO 2- R k , -SO 2- R k , -OR k , -COOR k , -O-CO-.
  • R k , -OR kk- COOR k , -R kk- CO-R k or -SR k are preferable.
  • R k is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • R kk is a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • k2 is an integer of 0 to 7.
  • Ra4 is a monovalent organic group, a hydroxy group, a nitro group or a halogen atom having 1 to 20 carbon atoms.
  • the plurality of Ra 4s are the same or different from each other and are monovalent organic groups, hydroxy groups, nitro groups or halogen atoms having 1 to 20 carbon atoms, or the plurality of Ra 4s are mutually exclusive. It is a part of a ring structure having 4 to 20 ring members, which is composed of carbon chains to which these are combined and bonded.
  • k3 is an integer from 0 to 6.
  • Ra5 is a monovalent organic group, a hydroxy group, a nitro group or a halogen atom having 1 to 20 carbon atoms.
  • the plurality of Ra 5s are the same or different from each other and are monovalent organic groups, hydroxy groups, nitro groups or halogen atoms having 1 to 20 carbon atoms, or a plurality of Ra 5s are mutually exclusive. It is a part of a ring structure having 3 to 20 ring members, which is composed of carbon atoms or carbon chains to which these are combined.
  • r is an integer from 0 to 3.
  • Ra6 is a single bond or a divalent organic group having 1 to 20 carbon atoms.
  • t2 is an integer of 0 to 2.
  • R a4 and R a5 include substituted or unsubstituted monovalent hydrocarbon groups having 1 to 20 carbon atoms, -OR k , -COOR k , -O-CO-R k , and -OR kk- COOR k.
  • -R kk- CO-R k is preferable.
  • R k is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • R kk is a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • k4 is an integer of 0 to 5.
  • Ra7 is a monovalent organic group, a hydroxy group, a nitro group or a halogen atom having 1 to 20 carbon atoms.
  • the plurality of Ra 7s are the same or different from each other and are monovalent organic groups, hydroxy groups, nitro groups or halogen atoms having 1 to 20 carbon atoms, or a plurality of Ra 7s are mutually exclusive. It is a part of a ring structure having 4 to 20 ring members, which is composed of carbon chains to which these are combined and bonded.
  • k5 is an integer from 0 to 5.
  • Ra8 is a monovalent organic group, a hydroxy group, a nitro group or a halogen atom having 1 to 20 carbon atoms.
  • the plurality of Ra 8s are the same or different from each other and are monovalent organic groups, hydroxy groups, nitro groups or halogen atoms having 1 to 20 carbon atoms, or the plurality of Ra 8s are mutually exclusive. It is a part of a ring structure having 4 to 20 ring members, which is composed of carbon chains to which these are combined and bonded.
  • R a7 and R a8 are substituted or unsubstituted monovalent hydrocarbon groups having 1 to 20 carbon atoms, -OSO 2- R k , -SO 2- R k , -OR k , -COOR k , and -O. -CO-R k, -O-R kk -COOR k, -R kk -CO-R k, -S-R k , or two or more are combined with each other configured ring of these groups are preferred .
  • R k is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • R kk is a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R a3 , R a4 , R a5 , R a7 and R a8 include a methyl group, an ethyl group, an n-propyl group and an n-butyl group.
  • Examples thereof include an aralkyl group such as an aryl group, a benzyl group and a phenethyl group.
  • Examples of the divalent organic group represented by R a6 include a group obtained by removing one hydrogen atom from a monovalent organic group having 1 to 20 carbon atoms exemplified as RR of the above formula (P). Be done.
  • Examples of the substituent which may substitute the hydrogen atom of the hydrocarbon group represented by R a3 , R a4 , R a5 , R a7 and R a8 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • Halogen atoms such as, hydroxy group, carboxy group, cyano group, nitro group, alkoxy group, alkoxycarbonyl group, alkoxycarbonyloxy group, acyl group, acyloxy group and the like can be mentioned. Of these, a halogen atom is preferable, and a fluorine atom is more preferable.
  • R a3 , R a4 , R a5 , R a7 and R a8 include an unsubstituted linear or branched monovalent alkyl group, a monovalent fluorinated alkyl group, and an unsubstituted monovalent aromatic hydrocarbon.
  • Hydrogen groups, -OSO 2- R k , -SO 2- R k or -OR k are preferable, fluorinated alkyl groups, unsubstituted monovalent aromatic hydrocarbon groups or alkoxy groups are more preferable, and fluorinated alkyl groups. Alternatively, an alkoxy group is more preferable.
  • k1 in the formula (T-1) 0 to 2 is preferable, 0 or 1 is more preferable, and 0 is further preferable.
  • t1, 0 or 1 is preferable, and 0 is more preferable.
  • the k2 in the formula (T-2) is preferably 0 to 2, more preferably 0 or 1, and even more preferably 1.
  • the k3 is preferably 0 to 2, more preferably 0 or 1, and even more preferably 0.
  • As r, 2 or 3 is preferable, and 2 is more preferable.
  • t2, 0 or 1 is preferable, and 1 is more preferable.
  • k4 and k5 in the formula (T-3) 0 to 2 is preferable, 0 or 1 is more preferable, and 0 is further preferable.
  • T + a cation (T-1) or a cation (T-2) is preferable, a cation (Z-1) is more preferable, and a triphenylsulfonium cation is further preferable.
  • the acid generator is an acid generator that generates sulfonic acid, and is, for example, a compound represented by the following formulas (4-1-1) to (4-1-19) (hereinafter, "Compound (4-1-1)”. (Also referred to as 1-1) to (4-1-19) ”), compounds represented by the following formulas (4-2-1) to (4-2-3), for example, as an acid generator for generating imic acid. (Hereinafter, also referred to as "compounds (4-2-1) to (4-2-3)”) and the like.
  • T + is a monovalent radiation-sensitive onium cation.
  • compound (4-1) is preferable, and compounds (4-1-1), (4-1-3), (4-1-4), and (4-1-16) are preferable. , (4-1-17) or (4-1-19) are preferred.
  • the lower limit of the content of the [B] acid generator is preferably 0.1 part by mass with respect to 100 parts by mass of the [A] polymer. 1 part by mass is more preferable, 5 parts by mass is further preferable, and 10 parts by mass is particularly preferable.
  • the upper limit of the content is preferably 50 parts by mass, more preferably 40 parts by mass, further preferably 30 parts by mass, and particularly preferably 25 parts by mass.
  • the acid generator can contain one kind or two or more kinds.
  • the compound [C] is a compound represented by the following formula (1).
  • the compound [C] acts as an acid diffusion control agent in the radiation-sensitive resin composition.
  • R 1 is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms.
  • X n + is an n-valent radiation-sensitive onium cation.
  • n is an integer of 1 to 3.
  • the monovalent organic group having 1 to 30 carbon atoms represented by R 1 for example, the equation same groups as the groups exemplified as the monovalent organic group R R having 1 to 20 carbon atoms in the (P) or the like Can be mentioned.
  • organic group of R 1 include, for example, t-butyl group, 1-methylcyclopentane-1-yl group, 1-ethylcyclopentane-1-yl group, 1-phenylcyclohexane-1-yl group, 2 A chain or alicyclic hydrocarbon group having a tertiary carbon atom such as -ethyl adamantan-2-yl group or adamantan-1-yl group as a bonding site (more specifically, the tertiary carbon atom is carbonyloxy).
  • a chain hydrocarbon group having a primary carbon atom such as an ethyl group or a pentyl group as a bonding site (more specifically, a chain hydrocarbon group in which a primary carbon atom is bonded to an oxyoxy atom of a carbonyloxy group).
  • Aromatic hydrocarbon groups such as phenyl group, naphthyl group and benzyl group; 1,1,1,3,3,3-hexafluoropropane-2-yl group, 2,2,2-trifluoroethane-1-yl group, perfluorocyclohexane-1-yl group, 2,4,6 -Examples include a fluorinated hydrocarbon group such as a trifluorophenyl group.
  • the organic group of R 1 preferably has a ring structure.
  • R 1 has a ring structure
  • the diffusion of the [C] compound in the resist membrane is more moderately suppressed, and as a result, the process window can be further widened.
  • the organic group having a ring structure include a substituted or unsubstituted alicyclic hydrocarbon group, a substituted or unsubstituted aromatic hydrocarbon group and the like.
  • an acid dissociative group is preferable.
  • R 1 is an acid dissociative group
  • R 1 is dissociated by the action of an acid generated from the [B] acid generator or the like by exposure to generate a carboxy group, and the solubility in a developing solution is improved.
  • the process window can be expanded further.
  • the organic group as an acid dissociable group include the above-mentioned group exemplified as a chain or alicyclic hydrocarbon group having a tertiary carbon atom as a bonding site (excluding the adamantan-1-yl group). Examples thereof include a cycloalkene-3-yl group such as a cyclohexene-3-yl group.
  • n-valent radiation-sensitive onium cation represented by X n + examples include a sulfonium cation, a tetrahydrothiophenium cation, and an iodonium cation. Of these, sulfonium cations or iodonium cations are preferable.
  • Examples of the sulfonium cation when n is 1 include the cation (T-1) in the [B] acid generator.
  • Examples of the iodonium cation when n is 1 include the cation (T-3) in the [B] acid generator.
  • a monovalent sulfonium cation is preferable, a cation (T-1) is more preferable, and a triphenylsulfonium cation is further preferable.
  • n 1 or 2 is preferable, and 1 is more preferable.
  • Examples of the [C] compound include compounds represented by the following formulas (1-1) to (1-9) (hereinafter, also referred to as "compounds (1-1) to (1-9)"). ..
  • the lower limit of the content of the compound [C] 0.1 parts by mass is preferable, 0.5 parts by mass is more preferable, and 1 part by mass is more preferable, and 2 parts by mass is preferable with respect to 100 parts by mass of the polymer of [A]. Part is particularly preferable.
  • the upper limit of the content 20 parts by mass is preferable, 15 parts by mass is more preferable, 10 parts by mass is further preferable, and 7 parts by mass is particularly preferable.
  • the lower limit of the content of the compound [C] 1 mol% is preferable, 5 mol% is more preferable, 10 mol% is more preferable, and 15 mol% is particularly preferable with respect to 100 mol% of the [B] acid generator.
  • the upper limit of the content is preferably 100 mol%, more preferably 50 mol%, further preferably 30 mol%, and particularly preferably 25 mol%.
  • the solvent [D] is not particularly limited as long as it is a solvent capable of dissolving or dispersing at least the polymer [A], the acid generator [B], the compound [C] and any component contained if desired.
  • Examples of the [D] solvent include alcohol-based solvents, ether-based solvents, ketone-based solvents, amide-based solvents, ester-based solvents, hydrocarbon-based solvents, and the like.
  • the alcohol solvent examples include aliphatic monoalcohol solvents having 1 to 18 carbon atoms such as 4-methyl-2-pentanol and n-hexanol; An alicyclic monoalcohol-based solvent having 3 to 18 carbon atoms such as cyclohexanol; Polyhydric alcohol solvent with 2 to 18 carbon atoms such as 1,2-propylene glycol; Examples thereof include a polyhydric alcohol partial ether solvent having 3 to 19 carbon atoms such as propylene glycol-1-monomethyl ether.
  • ether solvent examples include dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether, and diheptyl ether; Cyclic ether solvent such as tetrahydrofuran and tetrahydropyran; Examples thereof include aromatic ring-containing ether solvents such as diphenyl ether and anisole.
  • dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether, and diheptyl ether
  • Cyclic ether solvent such as tetrahydrofuran and tetrahydropyran
  • aromatic ring-containing ether solvents such as diphenyl ether and anisole.
  • ketone solvent examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, 2-heptanone, ethyl-n-butyl ketone, methyl-n-hexyl ketone, and the like.
  • Chain ketone solvents such as di-iso-butyl ketone and trimethylnonanonone: Cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, and methylcyclohexanone: Examples thereof include 2,4-pentanedione, acetonylacetone and acetophenone.
  • amide solvent examples include cyclic amide solvents such as N, N'-dimethylimidazolidinone and N-methylpyrrolidone; Examples thereof include chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide and N-methylpropionamide.
  • ester solvent examples include monocarboxylic acid ester solvents such as n-butyl acetate and ethyl lactate; Polyhydric alcohol carboxylate solvent such as propylene glycol acetate; Polyhydric alcohol partial ether carboxylate solvent such as propylene glycol monomethyl ether acetate; Polyvalent carboxylic acid diester solvent such as diethyl oxalate; Examples thereof include carbonate solvents such as dimethyl carbonate and diethyl carbonate.
  • monocarboxylic acid ester solvents such as n-butyl acetate and ethyl lactate
  • Polyhydric alcohol carboxylate solvent such as propylene glycol acetate
  • Polyhydric alcohol partial ether carboxylate solvent such as propylene glycol monomethyl ether acetate
  • Polyvalent carboxylic acid diester solvent such as diethyl oxalate
  • carbonate solvents such as dimethyl carbonate and diethyl carbonate.
  • hydrocarbon solvent examples include an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms such as n-pentane and n-hexane; Examples thereof include aromatic hydrocarbon solvents having 6 to 16 carbon atoms such as toluene and xylene.
  • alcohol-based solvents and / or ester-based solvents are preferable, polyhydric alcohol partial ether-based solvents and / or polyhydric alcohol partial ether carboxylate-based solvents are more preferable, and propylene glycol-1-monomethyl ether and / or Propylene glycol monomethyl ether acetate is more preferred.
  • the solvent may contain one kind or two or more kinds.
  • the acid diffusion controller has the effect of controlling the diffusion phenomenon of the acid generated from the [B] acid generator or the like in the resist film by exposure and suppressing an unfavorable chemical reaction in the non-exposed region.
  • As the content form of the acid diffusion control body in the radiation-sensitive resin composition even in the form of a free compound (hereinafter, appropriately referred to as “acid diffusion control agent”), it is incorporated as a part of the [A] polymer or the like. Or both of these forms.
  • Examples of the acid diffusion control agent include nitrogen-containing compounds and photodisintegrating bases (excluding those corresponding to the [C] compound).
  • a photodisintegrating base is a compound that is decomposed by exposure to reduce its basicity.
  • the nitrogen-containing compound examples include a compound having one nitrogen atom such as monoalkylamine, a compound having two nitrogen atoms such as ethylenediamine, a compound having three or more nitrogen atoms such as polyethyleneimine, and N, N. -Amid group-containing compounds such as dimethylacetamide, urea compounds such as 1,1,3,3-tetramethylurea, N- (undecylcarbonyloxyethyl) morpholine, Nt-butoxycarbonyl-4-hydroxypiperidine and the like. Examples thereof include nitrogen-containing heterocyclic compounds.
  • photodegradable base examples include triphenylsulfonium salicylate, triphenylsulfonium 10-phenylsulfonate, triphenylsulfonium adamantan-1-yloxalate, and triphenylsulfonium 2,3,4,5-tetrafluoro-6-.
  • triphenylsulfonium 5,6-di (cyclohexyloxycarbonyl) norbornan-2-sulfonate triphenylsulfonium 1,2-di (norbornan-2,6-lactone-5-yloxycarbonyl) ethane-1-sulfonate
  • triphenylsulfonium 4-cyclohexyloxycarbonyl-2,2,3,3,4,5-hexafluoro Butyrate and the like can be mentioned.
  • the lower limit of the content of the acid diffusion control agent is preferably 0.1 part by mass with respect to 100 parts by mass of the [A] polymer. Parts by mass are more preferred, and parts by mass is even more preferred.
  • the upper limit of the content is preferably 20 parts by mass, more preferably 10 parts by mass, and even more preferably 7 parts by mass.
  • the lower limit of the content of the acid diffusion control agent is preferably 1 mol% and 5 mol with respect to 100 mol% of the [B] acid generator. % Is more preferred, 10 mol% is even more preferred, and 15 mol% is particularly preferred.
  • the upper limit of the content is preferably 100 mol%, more preferably 50 mol%, further preferably 30 mol%, and particularly preferably 25 mol%.
  • the radiation-sensitive resin composition may contain one or more acid diffusion controllers.
  • Surfactants have the effect of improving coatability, striation, developability and the like.
  • examples of the surfactant include nonionic surfactants such as polyoxyethylene lauryl ether and the like.
  • the upper limit of the content of the surfactant is preferably 2 parts by mass with respect to 100 parts by mass of the [A] polymer.
  • the radiation-sensitive resin composition is preferably mixed with, for example, a polymer [A], an acid generator, a compound [C], a solvent [D] and, if necessary, other optional components in a predetermined ratio.
  • a polymer [A] an acid generator
  • a compound [C] a compound [C]
  • a solvent [D] a solvent
  • other optional components in a predetermined ratio.
  • the resist pattern forming method involves directly or indirectly coating a substrate with a radiation-sensitive resin composition (hereinafter, also referred to as a “coating step”) and exposing the resist film formed by the coating step. It includes a step (hereinafter, also referred to as “exposure step”) and a step of developing the exposed resist film (hereinafter, also referred to as “development step”).
  • a radiation-sensitive resin composition hereinafter, also referred to as a “exposure step”
  • development step a step of developing the exposed resist film
  • the above-mentioned radiation-sensitive resin composition is used as the above-mentioned radiation-sensitive resin composition.
  • the resist pattern forming method since the radiation-sensitive resin composition is used, the resist pattern can be formed with high sensitivity and a wide process window. Hereinafter, each step will be described.
  • the radiation-sensitive resin composition is directly or indirectly applied to the substrate.
  • a resist film is formed.
  • the substrate on which the resist film is formed include conventionally known substrates such as silicon wafers, silicon dioxide, and wafers coated with aluminum.
  • the radiation-sensitive resin composition is indirectly applied to the substrate, for example, the radiation-sensitive resin composition is applied onto a lower layer film such as an antireflection film formed on the substrate.
  • an antireflection film include organic or inorganic antireflection films disclosed in Japanese Patent Application Laid-Open No. 6-12452 and JP-A-59-93448.
  • the coating method include rotary coating (spin coating), cast coating, roll coating and the like.
  • prebaking may be performed to volatilize the solvent in the coating film.
  • the lower limit of the PB temperature is preferably 60 ° C, more preferably 80 ° C.
  • the upper limit of the PB temperature is preferably 160 ° C, more preferably 140 ° C.
  • As the lower limit of the PB time 5 seconds is preferable, and 10 seconds is more preferable.
  • the upper limit of the PB time is preferably 600 seconds, more preferably 300 seconds.
  • the lower limit of the average thickness of the resist film formed is preferably 10 nm, more preferably 20 nm.
  • the upper limit of the average thickness is preferably 1,000 nm, more preferably 500 nm.
  • the average thickness of the resist film is a value measured using a spectroscopic ellipsometer (“M2000D” manufactured by JA WOOLLAM).
  • the resist film formed by the above coating step is exposed.
  • This exposure is performed by irradiating the exposure light through a photomask (in some cases, through an immersion medium such as water).
  • the exposure light includes electromagnetic waves such as visible light, ultraviolet rays, far ultraviolet rays, extreme ultraviolet rays (EUV), X-rays, and ⁇ -rays; charged particle beams such as electron beams and ⁇ -rays, depending on the line width of the target pattern. And so on.
  • EUV or electron beams are preferable, ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), EUV or electron beams are more preferable, and EUV or electron beams are even more preferable.
  • post-exposure baking PEB
  • the acid dissociative group contained in the [A] polymer or the like due to the acid generated from the [B] acid generator or the like by the exposure. It is preferable to promote dissociation.
  • the lower limit of the PEB temperature is preferably 50 ° C., more preferably 80 ° C.
  • the upper limit of the PEB temperature is preferably 180 ° C., more preferably 140 ° C.
  • As the lower limit of the PEB time 5 seconds is preferable, and 10 seconds is more preferable.
  • the upper limit of the PEB time is preferably 600 seconds, more preferably 300 seconds.
  • the exposed resist film is developed. As a result, a predetermined resist pattern can be formed. After development, it is generally washed with a rinse solution such as water or alcohol and dried.
  • the developing method in the developing step may be alkaline development or organic solvent development. Of these, alkaline development is preferable.
  • the developing solution used for development includes, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n-propylamine, diethylamine, di-n-.
  • TMAH tetramethylammonium hydroxide
  • pyrrole pyrrole
  • piperidine choline
  • 1,8-diazabicyclo- [5.4.0] -7-undecene 1
  • 5-Diazabicyclo- [4.3.0] -5-None and other alkaline compounds dissolved in at least one alkaline aqueous solution.
  • the TMAH aqueous solution is preferable, and the 2.38 mass% TMAH aqueous solution is more preferable.
  • examples of the developing solution include organic solvents such as hydrocarbon solvents, ether solvents, ester solvents, ketone solvents and alcohol solvents, and solvents containing the above organic solvents.
  • examples of the organic solvent include one or more of the solvents listed as the [D] solvent of the above-mentioned radiation-sensitive resin composition.
  • ester solvents or ketone solvents are preferred.
  • the ester solvent an acetic acid ester solvent is preferable, and n-butyl acetate is more preferable.
  • the ketone solvent a chain ketone is preferable, and 2-heptanone is more preferable.
  • the lower limit of the content of the organic solvent in the developing solution is preferably 80% by mass, more preferably 90% by mass, further preferably 95% by mass, and particularly preferably 99% by mass.
  • the components other than the organic solvent in the developing solution include water, silicone oil and the like.
  • Examples of the developing method include a method of immersing the substrate in a tank filled with a developing solution for a certain period of time (dip method), and a method of developing by raising the developing solution on the surface of the substrate by surface tension and allowing it to stand still for a certain period of time (paddle method). ), A method of spraying the developer on the surface of the substrate (spray method), a method of continuing to apply the developer on the substrate rotating at a constant speed while scanning the developer application nozzle at a constant speed (dynamic discharge method). And so on.
  • the compound is a compound represented by the following formula (1).
  • the compound can be suitably used as an acid diffusion control agent in a radiation-sensitive resin composition.
  • R 1 is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms.
  • X n + is an n-valent cation.
  • n is an integer of 1 to 3.
  • n-valent cation represented by X n + examples include a monovalent onium cation, an alkali metal cation, and the like as a monovalent cation.
  • divalent cations divalent onium cations, alkaline earth metal cations, etc.
  • trivalent cation examples include a trivalent onium cation and a trivalent metal cation.
  • the onium cation may or may not be radiation-sensitive.
  • the radiation-sensitive onium cation include a sulfonium cation, an iodonium cation, and a tetrahydrothiophenium cation exemplified as the T + monovalent radiosensitive onium cation of the formula (4) in the above [B] acid generator. ..
  • Divalent and trivalent cations include both cations containing 2+ or 3+ charged cation sites and cations containing 2 or 3 1+ charged cation sites.
  • an onium cation is preferable.
  • the onium cation is preferably radiation sensitive.
  • the polymerization reaction solution was cooled to room temperature.
  • a cooled polymerization reaction solution was put into hexane (500 parts by mass with respect to 100 parts by mass of the polymerization reaction solution), and the precipitated white powder was filtered off.
  • the filtered white powder was washed twice with hexane (100 parts by mass with respect to 100 parts by mass of the polymerization reaction solution), filtered, and dissolved in propylene glycol-1-monomethyl ether (300 parts by mass).
  • D-1 Propylene glycol monomethyl ether acetate
  • D-2 Propylene glycol-1-monomethyl ether
  • E-1 to E-3 Compounds represented by the following formulas (E-1) to (E-3)
  • [Example 10] [A] 100 parts by mass of (A-1) as a polymer, 20 parts by mass of (B-1) as an acid generator, and (Z-1) as a [C] compound (B-1). 20 mol% with respect to 100 mol%, and (D-1) 4,800 parts by mass and (D-2) 2,000 parts by mass as a solvent were mixed, and the obtained mixed solution had a pore size of 0. A radiation-sensitive resin composition (R-1) was prepared by filtering with a 2 ⁇ m polymer filter.
  • Example 11 to 31 and Comparative Examples 1 to 3 The radiation-sensitive resin compositions (R-2) to (R-22) and (CR-1) were operated in the same manner as in Example 10 except that the components of the types and contents shown in Table 2 below were used. )-(CR-3) was prepared.
  • ⁇ Formation of resist pattern> The above preparation was performed using a spin coater ("CLEAN TRACK ACT12" of Tokyo Electron Limited) on the surface of a 12-inch silicon wafer on which an underlayer film ("AL412" of Brewer Science) having an average thickness of 20 nm was formed.
  • the radiation-sensitive resin composition was applied, PB was performed at 130 ° C. for 60 seconds, and then cooled at 23 ° C. for 30 seconds to form a resist film having an average thickness of 50 nm.
  • the resist film was subjected to PEB at 130 ° C. for 60 seconds. Then, using a 2.38 mass% TMAH aqueous solution, the mixture was developed at 23 ° C. for 30 seconds to form a positive 32 nm line-and-space pattern.
  • the exposure amount for forming the 32 nm line-and-space pattern was defined as the optimum exposure amount, and this optimum exposure amount was defined as the sensitivity (mJ / cm 2 ).
  • the sensitivity can be evaluated as "good” when it is 30 mJ / cm 2 or less, and as “poor” when it exceeds 30 mJ / cm 2 .
  • Patterns from low to high exposures were formed using masks forming 32 nm line and space (1L / 1S). In general, defects such as connections between patterns are observed on the low exposure amount side, and defects such as pattern collapse are observed on the high exposure amount side.
  • the difference between the upper limit value and the lower limit value of the resist dimension in which these defects are not seen was defined as the "CD (Critical Dimensions) margin" and used as an index of the process window. The larger the value of the CD margin (nm), the wider the process window is considered.
  • the CD margin can be evaluated as "good” when it is 30 nm or more, and as "bad” when it is less than 30 nm.
  • a resist pattern can be formed with excellent sensitivity and a wide process window.
  • the compound of the present invention can be suitably used as a component of the radiation-sensitive resin composition. Therefore, these can be suitably used for processing processes of semiconductor devices, which are expected to be further miniaturized in the future.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Materials For Photolithography (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明は、酸解離性基を含む構造単位を有する重合体と、感放射線性酸発生体と、下記式(1)で表される化合物とを含有する感放射線性樹脂組成物である。下記式(1)中、Rは、水素原子又は炭素数1~30の1価の有機基である。Xn+は、n価の感放射線性オニウムカチオンである。nは、1~3の整数である。下記式(1)におけるRが有機基であり、この有機基が環構造を有することが好ましい。下記式(1)におけるRが有機基であり、この有機基が酸解離性基であることが好ましい。下記式(1)におけるXn+がスルホニウムカチオン、ヨードニウムカチオン又はこれらの組み合わせであることが好ましい。

Description

感放射線性樹脂組成物、レジストパターン形成方法及び化合物
 本発明は、感放射線性樹脂組成物、レジストパターン形成方法及び化合物に関する。
 半導体デバイス、液晶デバイス等の各種電子デバイス構造の微細化に伴って、リソグラフィー工程におけるレジストパターンのさらなる微細化が要求されており、そのため、種々の感放射線性樹脂組成物が検討されている。このような感放射線性樹脂組成物は、ArFエキシマレーザー等の遠紫外線、極端紫外線(EUV)、電子線などの露光光の照射により露光部に酸を生成させ、この酸の触媒作用により露光部と未露光部の現像液に対する溶解速度に差を生じさせ、基板上にレジストパターンを形成させる。
 かかる感放射線性樹脂組成物には、解像性に優れることが求められる。この要求に対して、感放射線性樹脂組成物に含有される重合体の構造が種々検討されており、ブチロラクトン構造、ノルボルナンラクトン構造等のラクトン構造を有することで、レジストパターンの基板への密着性を高めると共に、これらの性能を向上できることが知られている(特開平11-212265号公報、特開2003-5375号公報及び特開2008-83370号公報参照)。
特開平11-212265号公報 特開2003-5375号公報 特開2008-83370号公報
 レジストパターンのさらなる微細化に伴い、露光光として極端紫外線(EUV)や電子線が用いられるようになってきており、感放射線性樹脂組成物の感度の向上が課題となっている。また、レジストパターンのさらなる微細化に伴い、露光・現像条件のわずかなブレがレジストパターンの形状や欠陥の発生に及ぼす影響もますます大きくなっている。このようなプロセス条件のわずかなブレを吸収できるようなプロセスウィンドウ(プロセス余裕度)の広い感放射線性樹脂組成物も求められている。しかし、上記従来の感放射線性樹脂組成物ではこれらの要求を満たすことはできていない。
 本発明は、上述のような事情に基づいてなされたものであり、その目的は、感度に優れ、かつプロセスウィンドウが広い感放射線性樹脂組成物、レジストパターン形成方法及び化合物を提供することにある。
 上記課題を解決するためになされた発明は、酸解離性基を含む構造単位を有する重合体(以下、「[A]重合体」ともいう)と、感放射線性酸発生体(以下、「[B]酸発生体」ともいう)と、下記式(1)で表される化合物(以下、「[C]化合物」ともいう)とを含有する感放射線性樹脂組成物である。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、Rは、水素原子又は炭素数1~30の1価の有機基である。Xn+は、n価の感放射線性オニウムカチオンである。nは、1~3の整数である。)
 上記課題を解決するためになされた別の発明は、基板に直接又は間接に当該感放射線性樹脂組成物を塗工する工程と、上記塗工工程により形成されたレジスト膜を露光する工程と、上記露光工程後のレジスト膜を現像する工程とを備えるレジストパターン形成方法である。
 上記課題を解決するためになされたさらに別の発明は、下記式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000005
(式(1)中、Rは、水素原子又は炭素数1~30の1価の有機基である。Xn+は、n価のカチオンである。nは、1~3の整数である。)
 ここで、「有機基」とは、少なくとも1個の炭素原子を含む基をいう。
 本発明の感放射線性樹脂組成物及びレジストパターン形成方法によれば、優れた感度及び広いプロセスウィンドウでレジストパターンを形成することができる。本発明の化合物は、当該感放射線性樹脂組成物の成分として好適に用いることができる。従って、これらは、今後ますます微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。
<感放射線性樹脂組成物>
 当該感放射線性樹脂組成物は、[A]重合体と、[B]酸発生体と、[C]化合物とを含有する。当該感放射線性樹脂組成物は、通常、溶媒(以下、「[D]溶媒」ともいう)を含有し、また、本発明の効果を損なわない範囲において、その他の任意成分を含有していてもよい。
 当該感放射線性樹脂組成物は、[A]重合体と[B]酸発生体と[C]化合物とを含有するため、感度に優れ、プロセスウィンドウが広い。当該感放射線性樹脂組成物が上記構成を備えることで、上記効果を奏する理由については必ずしも明確ではないが、例えば以下のように推察することができる。すなわち、[C]化合物は、-COO基に隣接する-CFCF-基を有している。この-CFCF-基におけるフッ素原子はEUV等の露光光を吸収し、二次電子の発生等により[B]酸発生体からの酸の発生を促進し、その結果、当該感放射線性樹脂組成物の感度が向上すると考えられる。また、[C]化合物は、適度な疎水性を有すると共に、-CFCF-基が隣接する-COO基が適度な塩基性を有することにより、効果的に酸拡散制御性を発揮することができると考えられる。その結果、レジストパターンの形状がより良好なものとなり、結果として、プロセスウィンドウが広くなると考えられる。
 以下、各成分について説明する。
<[A]重合体>
 [A]重合体は、酸解離性基を含む構造単位(以下、「構造単位(I)」ともいう)を有する重合体である。「酸解離性基」とは、カルボキシ基、ヒドロキシ基等の水素原子を置換する基であって、酸の作用により解離する基をいう。
 [A]重合体は、構造単位(I)以外に、フェノール性水酸基を含む構造単位(以下、「構造単位(II)」ともいう)を有することが好ましく、構造単位(I)及び(II)以外のその他の構造単位を有していてもよい。以下、各構造単位について説明する。
[構造単位(I)]
 構造単位(I)は、酸解離性基を含む構造単位である。
 構造単位(I)としては、例えば下記式(2-1A)、式(2-1B)、式(2-2A)又は式(2-2B)で表される構造単位(以下、「構造単位(I-1A)、(I-1B)、(I-2A)、(I-2B)」ともいう)、アセタール構造を含む構造単位(以下、「構造単位(I-3)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 上記式(2-1A)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Rは、炭素数1~20の1価の炭化水素基又は水素原子である。R及びRは、それぞれ独立して、炭素数1~20の1価の炭化水素基であるか、又はR及びRが互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造の一部である。
 上記式(2-1B)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Rは、炭素数1~20の1価の炭化水素基である。R及びRは、それぞれ独立して、炭素数1~20の1価の炭化水素基であるか、又はR及びRが互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造の一部である。
 上記式(2-2A)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Rは、水素原子又は炭素数1~20の1価の炭化水素基である。R及びRは、それぞれ独立して、炭素数1~20の1価の炭化水素基であるか、又はR及びRが互いに合わせられRが結合する炭素原子及びこの炭素原子に隣接する酸素原子と共に構成される環員数4~20の脂肪族複素環構造の一部である。
 上記式(2-2B)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Rは、水素原子又は炭素数1~20の1価の炭化水素基である。R及びRは、それぞれ独立して、炭素数1~20の1価の炭化水素基であるか、又はR及びRが互いに合わせられRが結合する炭素原子及びこの炭素原子に隣接する酸素原子と共に構成される環員数4~20の脂肪族複素環構造の一部である。
 構造単位(I-1A)~(I-2B)において、カルボキシ基若しくはフェノール性水酸基に由来するオキシ酸素原子に結合する-CR又は-CR(OR)が酸解離性基である。
 Rとしては、構造単位(I)を与える単量体の共重合性の観点から、水素原子又はメチル基が好ましい。
 「炭化水素基」には、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基が含まれる。この「炭化水素基」は、飽和炭化水素基でも不飽和炭化水素基でもよい。「鎖状炭化水素基」とは、環状構造を含まず、鎖状構造のみで構成された炭化水素基をいい、直鎖状炭化水素基及び分岐状炭化水素基の両方を含む。「脂環式炭化水素基」とは、環構造としては脂環構造のみを含み、芳香環構造を含まない炭化水素基をいい、単環の脂環式炭化水素基及び多環の脂環式炭化水素基の両方を含む。但し、脂環構造のみで構成されている必要はなく、その一部に鎖状構造を含んでいてもよい。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基をいう。但し、芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環構造を含んでいてもよい。「環員数」とは、脂環構造、芳香環構造、脂肪族複素環構造及び芳香族複素環構造の環を構成する原子数をいい、多環の場合は、この多環を構成する原子数をいう。
 R、R、R、R、R及びRで表される炭素数1~20の1価の炭化水素基としては、例えば炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基等が挙げられる。
 炭素数1~20の1価の鎖状炭化水素基としては、例えば
 メチル基、エチル基、n-プロピル基、i-プロピル基等のアルキル基;
 エテニル基、プロペニル基、ブテニル基等のアルケニル基;
 エチニル基、プロピニル基、ブチニル基等のアルキニル基などが挙げられる。
 炭素数3~20の1価の脂環式炭化水素基としては、例えば
 シクロペンチル基、シクロヘキシル基等の単環の脂環式飽和炭化水素基;
 シクロペンテニル基、シクロヘキセニル基等の単環の脂環式不飽和炭化水素基;
 ノルボルニル基、アダマンチル基、トリシクロデシル基等の多環の脂環式飽和炭化水素基;
 ノルボルネニル基、トリシクロデセニル基等の多環の脂環式不飽和炭化水素基などが挙げられる。
 炭素数6~20の1価の芳香族炭化水素基としては、例えば
 フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基;
 ベンジル基、フェネチル基、ナフチルメチル基、アントリルメチル基等のアラルキル基などが挙げられる。
 R及びRが炭素原子と共に構成する炭素数3~20の脂環構造としては、例えば
 シクロプロパン構造、シクロブタン構造、シクロペンタン構造、シクロヘキサン構造、シクロペンテン構造、シクロヘキセン構造等の単環の脂環構造;
 ノルボルナン構造、アダマンタン構造等の多環の脂環構造などが挙げられる。
 R及びRが炭素原子及び酸素原子と共に構成する炭素数4~20の脂肪族複素環構造としては、例えば
 オキサシクロブタン構造、オキサシクロペンタン構造、オキサシクロヘキサン構造、オキサシクロペンテン構造、オキサシクロヘキセン構造等の単環の脂肪族複素環構造;
 オキサノルボルナン構造、オキサアダマンタン構造等の多環の脂肪族複素環構造などが挙げられる。
 構造単位(I-1A)としては、下記式(2-1A-1)~(2-1A-6)で表される構造単位(以下、「構造単位(I-1A-1)~(I-1A-6)」ともいう)が好ましい。
Figure JPOXMLDOC01-appb-C000007
 上記式(2-1A-1)~(2-1A-5)中、R、R、R及びRは、上記式(2-1A)と同義である。i及びjは、それぞれ独立して、1~4の整数である。
 上記式(2-1A-6)中、Rは、上記式(2-1A)と同義である。sは、1~4の整数である。RS1及びRS2は、それぞれ独立して、水素原子又は炭素数1~10の1価の炭化水素基である。
 Rとしては、炭素数1~4のアルキル基又は炭素数6~10のアリール基が好ましく、メチル基、エチル基、i-プロピル基、t-ブチル基又はフェニル基がより好ましい。
 RS1及びRS2としては、水素原子又はメチル基が好ましい。
 i及びjとしては、1又は2が好ましい。
 sとしては、2が好ましい。
 構造単位(I)としては、構造単位(I-1A)が好ましく、構造単位(I-1A-1)又は構造単位(I-1A-6)がより好ましい。
(構造単位(I-3))
 構造単位(I-3)は、アセタール構造を含む構造単位である。アセタール構造を含む基としては、例えば下記式(3)で表される基(以下、「基(X)」ともいう)等が挙げられる。基(X)は、酸の作用により分解して、*-R-OH、RC=O及びROHを生じる。基(X)において-CR(OR)が酸解離性基である。
Figure JPOXMLDOC01-appb-C000008
 上記式(3)中、Rは単結合若しくは炭素数1~20の2価の炭化水素基であり、R及びRはそれぞれ独立して水素原子若しくは炭素数1~20の1価の炭化水素基であり、Rは炭素数1~20の1価の炭化水素基であるか、又はR、R、R及びRのうちの2つ以上が互いに合わせられこれらが結合する炭素原子又は原子鎖と共に構成される環員数3~20の環構造の一部である。*は、構造単位(I-3)中の上記基(X)以外の部分との結合部位を示す。
 Rで表される炭素数1~20の2価の炭化水素基としては、例えば上記R、R及びRとして例示した炭素数1~20の1価の炭化水素基から1個の水素原子を除いた基等が挙げられる。
 Rとしては、単結合又は炭素数1~20の2価の鎖状炭化水素基が好ましく、炭素数1~20の2価の鎖状炭化水素基がより好ましく、炭素数1~10のアルカンジイル基がさらに好ましく、メタンジイル基が特に好ましい。
 R、R及びRで表される炭素数1~20の1価の炭化水素基としては、例えば上記R、R及びRの炭素数1~20の1価の炭化水素基として例示した基と同様の基等が挙げられる。
 R及びRとしては、水素原子又は鎖状炭化水素基が好ましく、水素原子又はアルキル基がより好ましく、水素原子又はメチル基がさらに好ましい。Rとしては、鎖状炭化水素基が好ましく、アルキル基がさらに好ましく、メチル基が特に好ましい。
 Rとしては、単結合又は鎖状炭化水素基が好ましく、鎖状炭化水素基がより好ましく、アルカンジイル基がさらに好ましく、メタンジイル基が特に好ましい。
 R及びRが原子鎖と共に構成する環員数5~20の環構造としては、例えば1,3-ジオキサシクロペンタン構造等の1,3-ジオキサシクロアルカン構造などが挙げられる。
 R及びRが炭素原子と共に構成する環員数3~20の環構造としては、例えばシクロペンタン構造、シクロヘキサン構造等のシクロアルカン構造などが挙げられる。
 基(X)としては、例えば2,2-ジメチル-1,3-ジオキサシクロペンタン-4-イル基等が挙げられる。
 構造単位(I)の含有割合の下限としては、[A]重合体を構成する全構造単位に対して、20モル%が好ましく、40モル%がより好ましく、50モル%がさらに好ましい。上記含有割合の上限としては、90モル%が好ましく、80モル%がより好ましく、70モル%がさらに好ましい。構造単位(I)の含有割合を上記範囲とすることで、感度及びプロセスウィンドウをより向上させることができる。
[構造単位(II)]
 構造単位(II)は、フェノール性水酸基を含む構造単位である。「フェノール性水酸基」とは、ベンゼン環に直結するヒドロキシ基に限らず、芳香環に直結するヒドロキシ基全般を指す。[A]重合体が構造単位(II)を有することで、レジスト膜の親水性を高めることができ、現像液に対する溶解性を適度に調整することができ、その結果、プロセスウィンドウをより広げることができる。また、KrF露光、EUV露光又は電子線露光の場合、感度をより向上させることができる。
 構造単位(II)としては、例えば下記式(P)で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 上記式(P)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Rは、単結合、-O-、-COO-又は-CONH-である。Arは、環員数6~20のアレーンから(g+h+1)個の芳香環上の水素原子を除いた基である。gは、0~10の整数である。gが1の場合、Rは、炭素数1~20の1価の有機基又はハロゲン原子である。gが2以上の場合、複数のRは、互いに同一又は異なり、炭素数1~20の1価の有機基若しくはハロゲン原子であるか、又は複数のRのうちの2つ以上が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部である。hは、1~11の整数である。但し、g+hは11以下である。
 Rとしては、構造単位(II)を与える単量体の共重合性の観点から、水素原子又はメチル基が好ましく、水素原子がより好ましい。
 Rとしては、単結合又は-COO-が好ましく、単結合がより好ましい。
 Rで表される炭素数1~20の1価の有機基としては、例えば炭素数1~20の1価の炭化水素基、この炭化水素基の炭素-炭素間に2価のヘテロ原子含有基を含む1価の基(α)、上記炭化水素基及び基(α)が有する水素原子の一部又は全部を1価のヘテロ原子含有基で置換した1価の基(β)、上記炭化水素基、基(α)又は基(β)と2価のヘテロ原子含有基とを組み合わせた1価の基(γ)等が挙げられる。
 炭素数1~20の1価の炭化水素基としては、例えば上記式(2-1A)~(2-2B)のR~Rとして例示した炭素数1~20の1価の炭化水素基と同様の基等が挙げられる。
 1価及び2価のヘテロ原子含有基を構成するヘテロ原子としては、例えば酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、ハロゲン原子等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 2価のヘテロ原子含有基としては、例えば-O-、-CO-、-S-、-CS-、-NR’-、これらのうちの2つ以上を組み合わせた基等が挙げられる。R’は、水素原子又は1価の炭化水素基である。これらの中で、-CO-が好ましい。
 1価のヘテロ原子含有基としては、例えばハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、アミノ基、スルファニル基等が挙げられる。
 Arを与える環員数6~20のアレーンとしては、例えばベンゼン、ナフタレン、アントラセン、フェナントレン、テトラセン、ピレン等が挙げられる。これらの中で、ベンゼン又はナフタレンが好ましく、ベンゼンがより好ましい。
 Rとしては、炭化水素基が好ましく、アルキル基がより好ましい。
 複数のRのうちの2つ以上が炭素鎖と共に構成する環員数4~20の環構造としては、例えばシクロヘキサン構造、シクロヘキセン構造等の脂環構造などが挙げられる。
 gとしては、0~2が好ましく、0又は1がより好ましく、0がさらに好ましい。
 hとしては、1~3が好ましく、1又は2がより好ましく、1がさらに好ましい。
 構造単位(II)としては、例えば下記式(P-1)~(P-14)で表される構造単位(以下、「構造単位(II-1)~(II-14)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 上記式(P-1)~(P-14)中、Rは、上記式(P)と同義である。
 これらの中で、構造単位(II-1)又は(II-2)が好ましい。
 [A]重合体が構造単位(II)を有する場合、構造単位(II)の含有割合の下限としては、[A]重合体を構成する全構造単位に対して、10モル%が好ましく、20モル%がより好ましく、25モル%がさらに好ましい。上記含有割合の上限としては、80モル%が好ましく、60モル%がより好ましく、50モル%がさらに好ましい。構造単位(II)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物の感度及びプロセスウィンドウをより向上させることができる。
 構造単位(II)は、例えばアセトキシスチレン等のアシロキシスチレンなどの単量体を用いて得られた重合体を、トリエチルアミン等の塩基存在下で加水分解すること等により形成することができる。
<その他の構造単位>
 その他の構造単位としては、例えばアルコール性水酸基を含む構造単位、ラクトン構造、環状カーボネート構造、スルトン構造又はこれらの組み合わせを含む構造単位、カルボキシ基、シアノ基、ニトロ基、スルホンアミド基又はこれらの組み合わせを含む構造単位、非酸解離性の炭化水素基を含む構造単位等が挙げられる。
 アルコール性水酸基を含む構造単位としては、例えば下記式で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 上記式中、RL2は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
 [A]重合体がその他の構造単位を有する場合、その他の構造単位の含有割合の上限としては、[A]重合体を構成する全構造単位に対して、30モル%が好ましく、15モル%がより好ましい。
 [A]重合体の含有割合の下限としては、当該感放射線性樹脂組成物の[D]溶媒以外の全成分に対して、50質量%が好ましく、70質量%がより好ましく、80質量%がさらに好ましい。上記含有割合の上限としては、99質量%が好ましく、95質量%がより好ましい。
 当該感放射線性樹脂組成物における[A]重合体の含有割合の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましい。上記含有割合の上限としては、50質量%が好ましく、30質量%がより好ましく、10質量%がさらに好ましい。[A]重合体は、1種又は2種以上を含有することができる。
<[A]重合体の合成方法>
 [A]重合体は、例えば各構造単位を与える単量体を、ラジカル重合開始剤等を用い、溶媒中で重合することにより合成できる。
 [A]重合体のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(Mw)の下限としては、1,000が好ましく、3,000がより好ましく、4,000がさらに好ましく、5,000が特に好ましい。上記Mwの上限としては、50,000が好ましく、30,000がより好ましく、20,000がさらに好ましく、10,000が特に好ましい。[A]重合体のMwを上記範囲とすることで、当該感放射線性樹脂組成物の塗工性を向上させることができ、その結果、感度及びプロセスウィンドウをより向上させることができる。
 [A]重合体のGPCによるポリスチレン換算数平均分子量(Mn)に対するMwの比(Mw/Mn)の上限としては、5が好ましく、3がより好ましく、2がさらに好ましく、1.6が特に好ましい。上記比の下限としては、通常1であり、1.1が好ましい。
 本明細書における重合体のMw及びMnは、以下の条件によるゲルパーミエーションクロマトグラフィー(GPC)を用いて測定される値である。
 GPCカラム:東ソー(株)の「G2000HXL」2本、「G3000HXL」1本及び「G4000HXL」1本
 カラム温度 :40℃
 溶出溶媒  :テトラヒドロフラン(富士フィルム和光純薬(株))
 流速    :1.0mL/分
 試料濃度  :1.0質量%
 試料注入量 :100μL
 検出器   :示差屈折計
 標準物質  :単分散ポリスチレン
<[B]酸発生体>
 [B]酸発生体は、露光により酸を発生する物質である。この発生した酸により[A]重合体等が有する酸解離性基が解離してカルボキシ基、ヒドロキシ基等が生じ、[A]重合体の現像液への溶解性が変化するため、当該感放射線性樹脂組成物からレジストパターンを形成することができる。当該感放射線性樹脂組成物における[B]酸発生体の含有形態としては、低分子化合物の形態(以下、「[B]酸発生剤」ともいう)でも、重合体の一部として組み込まれた形態でも、これらの両方の形態でもよい。
 [B]酸発生体から発生する酸としては例えばスルホン酸、イミド酸等が挙げられる。
 [B]酸発生剤としては、例えばオニウム塩化合物、N-スルホニルオキシイミド化合物、スルホンイミド化合物、ハロゲン含有化合物、ジアゾケトン化合物等が挙げられる。
 オニウム塩化合物としては、例えばスルホニウム塩、テトラヒドロチオフェニウム塩、ヨードニウム塩、ホスホニウム塩、ジアゾニウム塩、ピリジニウム塩等が挙げられる。
 [B]酸発生剤の具体例としては、例えば特開2009-134088号公報の段落[0080]~[0113]に記載されている化合物等が挙げられる。
 [B]酸発生剤としては、例えば下記式(4)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 上記式(4)中、Aは、1価のスルホン酸アニオン又は1価のイミド酸アニオンである。Tは、1価の感放射線性オニウムカチオンである。
 露光によりスルホン酸を発生する[B]酸発生剤としては、例えば下記式(4-1)で表される化合物(以下、「化合物(4-1)」ともいう)等が挙げられる。[B]酸発生剤が下記構造を有することで、[A]重合体との相互作用等により、露光により発生する酸のレジスト膜中の拡散長がより適度に短くなると考えられ、その結果、プロセスウィンドウをより広げることができる。
Figure JPOXMLDOC01-appb-C000013
 上記式(4-1)中、Rp1は、環員数5以上の環構造を含む1価の基である。Rp2は、2価の連結基である。Rp3及びRp4は、それぞれ独立して、水素原子、フッ素原子、炭素数1~20の1価の炭化水素基又は炭素数1~20の1価のフッ素化炭化水素基である。Rp5及びRp6は、それぞれ独立して、フッ素原子又は炭素数1~20の1価のフッ素化炭化水素基である。np1は、0~10の整数である。np2は、0~10の整数である。np3は、0~10の整数である。但し、np1+np2+np3は、1以上30以下である。np1が2以上の場合、複数のRp2は互いに同一又は異なる。np2が2以上の場合、複数のRp3は互いに同一又は異なり、複数のRp4は互いに同一又は異なる。np3が2以上の場合、複数のRp5は互いに同一又は異なり、複数のRp6は互いに同一又は異なる。Tは、1価の感放射線性オニウムカチオンである。
 Rp1で表される環員数5以上の環構造を含む1価の基としては、例えば環員数5以上の脂環構造を含む1価の基、環員数5以上の脂肪族複素環構造を含む1価の基、環員数5以上の芳香環構造を含む1価の基、環員数5以上の芳香族複素環構造を含む1価の基等が挙げられる。
 環員数5以上の脂環構造としては、例えば
 シクロペンタン構造、シクロヘキサン構造、シクロヘプタン構造、シクロオクタン構造、シクロノナン構造、シクロデカン構造、シクロドデカン構造等の単環の飽和脂環構造;
 シクロペンテン構造、シクロヘキセン構造、シクロヘプテン構造、シクロオクテン構造、シクロデセン構造等の単環の不飽和脂環構造;
 ノルボルナン構造、アダマンタン構造、トリシクロデカン構造、テトラシクロドデカン構造等の多環の飽和脂環構造;
 ノルボルネン構造、トリシクロデセン構造等の多環の不飽和脂環構造等が挙げられる。
 環員数5以上の脂肪族複素環構造としては、例えば
 ヘキサノラクトン構造、ノルボルナンラクトン構造等のラクトン構造;
 ヘキサノスルトン構造、ノルボルナンスルトン構造等のスルトン構造;
 オキサシクロヘプタン構造、オキサノルボルナン構造等の酸素原子含有複素環構造;
 アザシクロヘキサン構造、ジアザビシクロオクタン構造等の窒素原子含有複素環構造;
 チアシクロヘキサン構造、チアノルボルナン構造等の硫黄原子含有複素環構造などが挙げられる。
 環員数5以上の芳香環構造としては、例えばベンゼン構造、ナフタレン構造、フェナントレン構造、アントラセン構造等が挙げられる。
 環員数5以上の芳香族複素環構造としては、例えば
 フラン構造、ピラン構造、ベンゾフラン構造、ベンゾピラン構造等の酸素原子含有複素環構造;
 ピリジン構造、ピリミジン構造、インドール構造等の窒素原子含有複素環構造などが挙げられる。
 Rp1の環構造の環員数の下限としては、6が好ましく、8がより好ましく、9がさらに好ましく、10が特に好ましい。上記環員数の上限としては、15が好ましく、14がより好ましく、13がさらに好ましく、12が特に好ましい。上記環員数を上記範囲とすることで上述の酸の拡散長をさらに適度に短くすることができ、その結果、プロセスウィンドウをより広げることができる。
 Rp1の環構造が有する水素原子の一部又は全部は、置換基で置換されていてもよい。上記置換基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、ニトロ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、アシル基、アシロキシ基等が挙げられる。これらの中でヒドロキシ基が好ましい。
 Rp1としては、環員数5以上の脂環構造を含む1価の基又は環員数6以上の芳香環構造を含む1価の基が好ましい。
 Rp2で表される2価の連結基としては、例えばカルボニル基、エーテル基、カルボニルオキシ基、スルフィド基、チオカルボニル基、スルホニル基、2価の炭化水素基等が挙げられる。これらの中で、カルボニルオキシ基、スルホニル基、アルカンジイル基又は2価の脂環式飽和炭化水素基が好ましく、カルボニルオキシ基又は2価の脂環式飽和炭化水素基がより好ましく、カルボニルオキシ基又はノルボルナンジイル基がさらに好ましく、カルボニルオキシ基が特に好ましい。
 Rp3及びRp4で表される炭素数1~20の1価の炭化水素基としては、例えば炭素数1~20のアルキル基等が挙げられる。Rp3及びRp4で表される炭素数1~20の1価のフッ素化炭化水素基としては、例えば炭素数1~20のフッ素化アルキル基等が挙げられる。Rp3及びRp4としては、水素原子、フッ素原子又はフッ素化アルキル基が好ましく、フッ素原子又はパーフルオロアルキル基がより好ましく、フッ素原子又はトリフルオロメチル基がさらに好ましい。
 Rp5及びRp6で表される炭素数1~20の1価のフッ素化炭化水素基としては、例えば炭素数1~20のフッ素化アルキル基等が挙げられる。Rp5及びRp6としては、フッ素原子又はフッ素化アルキル基が好ましく、フッ素原子又はパーフルオロアルキル基がより好ましく、フッ素原子又はトリフルオロメチル基がさらに好ましく、フッ素原子が特に好ましい。
 np1としては、0~5が好ましく、0~3がより好ましく、0~2がさらに好ましく、0又は1が特に好ましい。
 np2としては、0~5が好ましく、0~2がより好ましく、0又は1がさらに好ましく、0が特に好ましい。
 np3の下限としては、1が好ましく、2がより好ましい。np3を1以上とすることで、化合物(4-1)から生じる酸の強さを高めることができ、その結果、プロセスウィンドウをより広げることができる。np3の上限としては、8が好ましく、6がより好ましく、4がさらに好ましい。
 np1+np2+np3の下限としては、2が好ましく、4がより好ましい。np1+np2+np3の上限としては、20が好ましく、10がより好ましい。
 Tで表される1価の感放射線性オニウムカチオンとしては、例えば下記式(T-1)で表されるカチオン(以下、「カチオン(T-1)」ともいう)、下記式(T-2)で表されるカチオン(以下、「カチオン(T-2)」ともいう)、下記式(T-3)で表されるカチオン(以下、「カチオン(T-3)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000014
 上記式(T-1)中、Ra1及びRa2は、それぞれ独立して、炭素数1~20の1価の有機基である。k1は、0~5の整数である。k1が1の場合、Ra3は、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基又はハロゲン原子である。k1が2~5の場合、複数のRa3は、互いに同一若しくは異なり、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基若しくはハロゲン原子であるか、又は複数のRa3が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部である。t1は、0~3の整数である。
 Ra1、Ra2及びRa3で表される炭素数1~20の1価の有機基としては、例えば上記式(P)のRとして例示した炭素数1~20の1価の有機基と同様の基等が挙げられる。
 Ra1及びRa2としては、炭素数1~20の1価の非置換の炭化水素基又は水素原子が置換基により置換された炭化水素基が好ましく、炭素数6~18の1価の非置換の芳香族炭化水素基又は水素原子が置換基により置換された芳香族炭化水素基がより好ましく、置換又は非置換のフェニル基がさらに好ましく、非置換のフェニル基が特に好ましい。
 Ra1及びRa2として表される炭素数1~20の1価の炭化水素基が有する水素原子を置換していてもよい置換基としては、置換又は非置換の炭素数1~20の1価の炭化水素基、-OSO-R、-SO-R、-OR、-COOR、-O-CO-R、-O-Rkk-COOR、-Rkk-CO-R又は-S-Rが好ましい。Rは、炭素数1~10の1価の炭化水素基である。Rkkは、単結合又は炭素数1~10の2価の炭化水素基である。
 Ra3としては、置換若しくは非置換の炭素数1~20の1価の炭化水素基、-OSO-R、-SO-R、-OR、-COOR、-O-CO-R、-O-Rkk-COOR、-Rkk-CO-R又は-S-Rが好ましい。Rは、炭素数1~10の1価の炭化水素基である。Rkkは、単結合又は炭素数1~10の2価の炭化水素基である。
 上記式(T-2)中、k2は、0~7の整数である。k2が1の場合、Ra4は、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基又はハロゲン原子である。k2が2~7の場合、複数のRa4は、互いに同一若しくは異なり、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基若しくはハロゲン原子であるか、又は複数のRa4が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部である。k3は、0~6の整数である。k3が1の場合、Ra5は、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基又はハロゲン原子である。k3が2~6の場合、複数のRa5は、互いに同一若しくは異なり、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基若しくはハロゲン原子であるか、又は複数のRa5が互いに合わせられこれらが結合する炭素原子若しくは炭素鎖と共に構成される環員数3~20の環構造の一部である。rは、0~3の整数である。Ra6は、単結合又は炭素数1~20の2価の有機基である。t2は、0~2の整数である。
 Ra4及びRa5としては、置換若しくは非置換の炭素数1~20の1価の炭化水素基、-OR、-COOR、-O-CO-R、-O-Rkk-COOR又は-Rkk-CO-Rが好ましい。Rは、炭素数1~10の1価の炭化水素基である。Rkkは、単結合又は炭素数1~10の2価の炭化水素基である。
 上記式(T-3)中、k4は、0~5の整数である。k4が1の場合、Ra7は、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基又はハロゲン原子である。k4が2~5の場合、複数のRa7は、互いに同一若しくは異なり、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基若しくはハロゲン原子であるか、又は複数のRa7が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部である。k5は、0~5の整数である。k5が1の場合、Ra8は、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基又はハロゲン原子である。k5が2~5の場合、複数のRa8は、互いに同一若しくは異なり、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基若しくはハロゲン原子であるか、又は複数のRa8が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部である。
 Ra7及びRa8としては、置換若しくは非置換の炭素数1~20の1価の炭化水素基、-OSO-R、-SO-R、-OR、-COOR、-O-CO-R、-O-Rkk-COOR、-Rkk-CO-R、-S-R又はこれらの基のうちの2つ以上が互いに合わせられ構成される環構造が好ましい。Rは、炭素数1~10の1価の炭化水素基である。Rkkは、単結合又は炭素数1~10の2価の炭化水素基である。
 Ra3、Ra4、Ra5、Ra7及びRa8で表される炭素数1~20の1価の炭化水素基としては、例えば
 メチル基、エチル基、n-プロピル基、n-ブチル基等の直鎖状のアルキル基、i-プロピル基、i-ブチル基、sec-ブチル基、t-ブチル基等の分岐状のアルキル基、フェニル基、トリル基、キシリル基、メシチル基、ナフチル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基等が挙げられる。
 Ra6で表される2価の有機基としては、例えば上記式(P)のRとして例示した炭素数1~20の1価の有機基から1個の水素原子を除いた基等が挙げられる。
 上記Ra3、Ra4、Ra5、Ra7及びRa8で表される炭化水素基が有する水素原子を置換していてもよい置換基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、ニトロ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、アシル基、アシロキシ基等が挙げられる。これらの中で、ハロゲン原子が好ましく、フッ素原子がより好ましい。
 Ra3、Ra4、Ra5、Ra7及びRa8としては、非置換の直鎖状又は分岐状の1価のアルキル基、1価のフッ素化アルキル基、非置換の1価の芳香族炭化水素基、-OSO-R、-SO-R又は-ORが好ましく、フッ素化アルキル基、非置換の1価の芳香族炭化水素基又はアルコキシ基がより好ましく、フッ素化アルキル基又はアルコキシ基がさらに好ましい。
 式(T-1)におけるk1としては、0~2が好ましく、0又は1がより好ましく、0がさらに好ましい。t1としては、0又は1が好ましく、0がより好ましい。式(T-2)におけるk2としては、0~2が好ましく、0又は1がより好ましく、1がさらに好ましい。k3としては、0~2が好ましく、0又は1がより好ましく、0がさらに好ましい。rとしては、2又は3が好ましく、2がより好ましい。t2としては、0又は1が好ましく、1がより好ましい。式(T-3)におけるk4及びk5としては、0~2が好ましく、0又は1がより好ましく、0がさらに好ましい。
 Tとしては、カチオン(T-1)又はカチオン(T-2)が好ましく、カチオン(Z-1)がより好ましく、トリフェニルスルホニウムカチオンがさらに好ましい。
 [B]酸発生剤としては、スルホン酸を発生する酸発生剤として、例えば下記式(4-1-1)~(4-1-19)で表される化合物(以下、「化合物(4-1-1)~(4-1-19)」ともいう)、イミド酸を発生する酸発生剤として、例えば下記式(4-2-1)~(4-2-3)で表される化合物(以下、「化合物(4-2-1)~(4-2-3)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 上記式(4-1-1)~(4-1-19)及び(4-2-1)~(4-2-3)中、Tは、1価の感放射線性オニウムカチオンである。
 [B]酸発生剤としては、化合物(4-1)が好ましく、化合物(4-1-1)、(4-1-3)、(4-1-4)、(4-1-16)、(4-1-17)又は(4-1-19)が好ましい。
 [B]酸発生体が[B]酸発生剤の場合、[B]酸発生剤の含有量の下限としては、[A]重合体100質量部に対して、0.1質量部が好ましく、1質量部がより好ましく、5質量部がさらに好ましく、10質量部が特に好ましい。上記含有量の上限としては、50質量部が好ましく、40質量部がより好ましく、30質量部がさらに好ましく、25質量部が特に好ましい。[B]酸発生剤の含有量を上記範囲とすることで、感度及びプロセスウィンドウをより向上させることができる。[B]酸発生体は、1種又は2種以上を含有することができる。
<[C]化合物>
 [C]化合物は、下記式(1)で表される化合物である。[C]化合物は、当該感放射線性樹脂組成物において、酸拡散制御剤として作用するものである。
Figure JPOXMLDOC01-appb-C000018
 上記式(1)中、Rは、水素原子又は炭素数1~30の1価の有機基である。Xn+は、n価の感放射線性オニウムカチオンである。nは、1~3の整数である。
 Rで表される炭素数1~30の1価の有機基としては、例えば上記式(P)のRの炭素数1~20の1価の有機基として例示した基と同様の基等が挙げられる。
 Rの有機基の具体例としては、例えば
 t-ブチル基、1-メチルシクロペンタン-1-イル基、1-エチルシクロペンタン-1-イル基、1-フェニルシクロヘキサン-1-イル基、2-エチルアダマンタン-2-イル基、アダマンタン-1-イル基等の第3級炭素原子を結合部位とする鎖状又は脂環式炭化水素基(より詳細には、第3級炭素原子がカルボニルオキシ基のオキシ酸素原子に結合する鎖状又は脂環式炭化水素基);
 シクロヘキシル基、ノルボルニル基、i-プロピル基等の第2級炭素原子を結合部位とする鎖状又は脂環式炭化水素基(より詳細には、第2級炭素原子がカルボニルオキシ基のオキシ酸素原子に結合する鎖状又は脂環式炭化水素基);
 エチル基、ペンチル基等の第1級炭素原子を結合部位とする鎖状炭化水素基(より詳細には、第1級炭素原子がカルボニルオキシ基のオキシ酸素原子に結合する鎖状炭化水素基);
 フェニル基、ナフチル基、ベンジル基等の芳香族炭化水素基;
 1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル基、2,2,2-トリフルオロエタン-1-イル基、パーフルオロシクロヘキサン-1-イル基、2,4,6-トリフルオロフェニル基等のフッ素化炭化水素基などが挙げられる。
 Rの有機基は環構造を有することが好ましい。Rが環構造を有すると、[C]化合物のレジスト膜中での拡散がより適度に抑制され、その結果、プロセスウィンドウをより広げることができる。環構造を有する有機基としては、例えば置換又は非置換の脂環式炭化水素基、置換又は非置換の芳香族炭化水素基等が挙げられる。
 また、Rの有機基としては、酸解離性基が好ましい。Rが酸解離性基であると、露光により[B]酸発生体等から発生する酸の作用によりRが解離してカルボキシ基が生じ、現像液に対する溶解性が向上し、その結果、プロセスウィンドウをより広げることができる。酸解離性基である有機基としては、例えば上述の第3級炭素原子を結合部位とする鎖状又は脂環式炭化水素基として例示した基(但し、アダマンタン-1-イル基を除く)、シクロヘキセン-3-イル基等のシクロアルケン-3-イル基などが挙げられる。
 Xn+で表されるn価の感放射線性オニウムカチオンとしては、スルホニウムカチオン、テトラヒドロチオフェニウムカチオン、ヨードニウムカチオン等が挙げられる。これらの中で、スルホニウムカチオン又はヨードニウムカチオンが好ましい。
 nが1の場合のスルホニウムカチオンとしては、例えば[B]酸発生体におけるカチオン(T-1)等が挙げられる。nが1の場合のヨードニウムカチオンとしては、例えば[B]酸発生体におけるカチオン(T-3)等が挙げられる。
 Xn+としては、1価のスルホニウムカチオンが好ましく、カチオン(T-1)がより好ましく、トリフェニルスルホニウムカチオンがさらに好ましい。
 nとしては、1又は2が好ましく、1がより好ましい。
 [C]化合物としては、例えば下記式(1-1)~(1-9)で表される化合物(以下、「化合物(1-1)~(1-9)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000019
 上記式(1-1)~(1-9)中、(Xn+1/nは、上記式(1)と同義である。
 [C]化合物の含有量の下限としては、[A]重合体100質量部に対して、0.1質量部が好ましく、0.5質量部がより好ましく、1質量部がさらに好ましく、2質量部が特に好ましい。上記含有量の上限としては、20質量部が好ましく、15質量部がより好ましく、10質量部がさらに好ましく、7質量部が特に好ましい。
 [C]化合物の含有量の下限としては、[B]酸発生剤100モル%に対して、1モル%が好ましく、5モル%がより好ましく、10モル%がさらに好ましく、15モル%が特に好ましい。上記含有量の上限としては、100モル%が好ましく、50モル%がより好ましく、30モル%がさらに好ましく、25モル%が特に好ましい。
 [C]化合物の含有量を上記範囲とすることで、感度及びプロセスウィンドウをより向上させることができる。
<[C]化合物の合成方法>
 [C]化合物は、例えばR-OHで表されるアルコールと、テトラフルオロコハク酸無水物とを、トリエチルアミン等の塩基存在下、ジクロロメタン等の溶媒中で反応させた後、反応生成物にトリフェニルスルホニウムクロライド等の塩を加えて、イオン交換することにより合成することができる。
<[D]溶媒>
 [D]溶媒は、少なくとも[A]重合体、[B]酸発生体、[C]化合物及び所望により含有される任意成分を溶解又は分散可能な溶媒であれば特に限定されない。
 [D]溶媒としては、例えばアルコール系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、炭化水素系溶媒等が挙げられる。
 アルコール系溶媒としては、例えば
 4-メチル-2-ペンタノール、n-ヘキサノール等の炭素数1~18の脂肪族モノアルコール系溶媒;
 シクロヘキサノール等の炭素数3~18の脂環式モノアルコール系溶媒;
 1,2-プロピレングリコール等の炭素数2~18の多価アルコール系溶媒;
 プロピレングリコール-1-モノメチルエーテル等の炭素数3~19の多価アルコール部分エーテル系溶媒などが挙げられる。
 エーテル系溶媒としては、例えば
 ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ジペンチルエーテル、ジイソアミルエーテル、ジヘキシルエーテル、ジヘプチルエーテル等のジアルキルエーテル系溶媒;
 テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶媒;
 ジフェニルエーテル、アニソール等の芳香環含有エーテル系溶媒などが挙げられる。
 ケトン系溶媒としては、例えば
 アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-iso-ブチルケトン、2-ヘプタノン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-iso-ブチルケトン、トリメチルノナノン等の鎖状ケトン系溶媒:
 シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等の環状ケトン系溶媒:
 2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン等が挙げられる。
 アミド系溶媒としては、例えば
 N,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶媒;
 N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶媒などが挙げられる。
 エステル系溶媒としては、例えば
 酢酸n-ブチル、乳酸エチル等のモノカルボン酸エステル系溶媒;
 酢酸プロピレングリコール等の多価アルコールカルボキシレート系溶媒;
 酢酸プロピレングリコールモノメチルエーテル等の多価アルコール部分エーテルカルボキシレート系溶媒;
 シュウ酸ジエチル等の多価カルボン酸ジエステル系溶媒;
 ジメチルカーボネート、ジエチルカーボネート等のカーボネート系溶媒などが挙げられる。
 炭化水素系溶媒としては、例えば
 n-ペンタン、n-ヘキサン等の炭素数5~12の脂肪族炭化水素系溶媒;
 トルエン、キシレン等の炭素数6~16の芳香族炭化水素系溶媒等が挙げられる。
 これらの中で、アルコール系溶媒及び/又はエステル系溶媒が好ましく、多価アルコール部分エーテル系溶媒及び/又は多価アルコール部分エーテルカルボキシレート系溶媒がより好ましく、プロピレングリコール-1-モノメチルエーテル及び/又は酢酸プロピレングリコールモノメチルエーテルがさらに好ましい。[D]溶媒は、1種又は2種以上を含有することができる。
<その他の任意成分>
 その他の任意成分としては、例えば酸拡散制御体(但し、[C]化合物に該当するものを除く)、界面活性剤等が挙げられる。これらのその他の任意成分はそれぞれ1種又は2種以上を併用してもよい。
[酸拡散制御体]
 酸拡散制御体は、露光により[B]酸発生剤等から生じる酸のレジスト膜中における拡散現象を制御し、非露光領域における好ましくない化学反応を抑制する効果を奏する。当該感放射線性樹脂組成物における酸拡散制御体の含有形態としては、遊離の化合物(以下、適宜「酸拡散制御剤」と称する)の形態でも、[A]重合体等の一部として組み込まれた形態でも、これらの両方の形態でもよい。
 酸拡散制御剤としては、例えば窒素含有化合物、光崩壊性塩基(但し、[C]化合物に該当するものを除く)等が挙げられる。光崩壊性塩基は、露光により分解して塩基性が低下する化合物である。
 窒素含有化合物としては、例えばモノアルキルアミン等の1個の窒素原子を有する化合物、エチレンジアミン等の2個の窒素原子を有する化合物、ポリエチレンイミン等の3個以上の窒素原子を有する化合物、N,N-ジメチルアセトアミド等のアミド基含有化合物、1,1,3,3-テトラメチルウレア等のウレア化合物、N-(ウンデシルカルボニルオキシエチル)モルホリン、N-t-ブトキシカルボニル-4-ヒドロキシピペリジン等の含窒素複素環化合物などが挙げられる。
 光崩壊性塩基としては、例えばトリフェニルスルホニウムサリチレート、トリフェニルスルホニウム10-カンファースルホネート、トリフェニルスルホニウムアダマンタン-1-イルオキサレート、トリフェニルスルホニウム2,3,4,5-テトラフルオロ-6-ヒドロキシベンゾエート、トリフェニルスルホニウム5,6-ジ(シクロヘキシルオキシカルボニル)ノルボルナン-2-スルホネート、トリフェニルスルホニウム1,2-ジ(ノルボルナン-2,6-ラクトン-5-イルオキシカルボニル)エタン-1-スルホネート、トリフェニルスルホニウム3-(アダマンタン-1-イル)-3-ヒドロキシ-2,2-ジフルオロプロピオネート、トリフェニルスルホニウム4-シクロヘキシルオキシカルボニル-2,2,3,3,4,4-ヘキサフルオロブチレート等が挙げられる。
 当該感放射線性樹脂組成物が酸拡散制御剤を含有する場合、酸拡散制御剤の含有量の下限としては、[A]重合体100質量部に対して、0.1質量部が好ましく、1質量部がより好ましく、2質量部がさらに好ましい。上記含有量の上限としては、20質量部が好ましく、10質量部がより好ましく、7質量部がさらに好ましい。
 当該感放射線性樹脂組成物が酸拡散制御剤を含有する場合、酸拡散制御剤の含有量の下限としては、[B]酸発生剤100モル%に対して、1モル%が好ましく、5モル%がより好ましく、10モル%がさらに好ましく、15モル%が特に好ましい。上記含有量の上限としては、100モル%が好ましく、50モル%がより好ましく、30モル%がさらに好ましく、25モル%が特に好ましい。当該感放射線性樹脂組成物は酸拡散制御体を1種又は2種以上含有していてもよい。
[界面活性剤]
 界面活性剤は、塗工性、ストリエーション、現像性等を改良する効果を奏する。界面活性剤としては、例えばポリオキシエチレンラウリルエーテル等のノニオン系界面活性剤等が挙げられる。当該感放射線性樹脂組成物が界面活性剤を含有する場合、界面活性剤の含有量の上限としては、[A]重合体100質量部に対して、2質量部が好ましい。
<感放射線性樹脂組成物の調製方法>
 当該感放射線性樹脂組成物は、例えば[A]重合体、[B]酸発生体、[C]化合物、[D]溶媒及び必要に応じてその他の任意成分を所定の割合で混合し、好ましくは得られた混合物を、例えば孔径0.2μm程度のフィルター等でろ過することにより調製することができる。
<レジストパターン形成方法>
 当該レジストパターン形成方法は、基板に直接又は間接に感放射線性樹脂組成物を塗工する工程(以下、「塗工工程」ともいう)と、上記塗工工程により形成されたレジスト膜を露光する工程(以下、「露光工程」ともいう)と、上記露光されたレジスト膜を現像する工程(以下、「現像工程」ともいう)とを備える。当該レジストパターン形成方法においては、上記感放射線性樹脂組成物として上述の当該感放射線性樹脂組成物を用いる。
 上記レジストパターン形成方法によれば、当該感放射線性樹脂組成物を用いているので、高い感度及び広いプロセスウィンドウでレジストパターンを形成することができる。
 以下、各工程について説明する。
[塗工工程]
 本工程では、基板に直接又は間接に当該感放射線性樹脂組成物を塗工する。これにより、レジスト膜が形成される。このレジスト膜を形成する基板としては、例えばシリコンウェハ、二酸化シリコン、アルミニウムで被覆されたウェハ等の従来公知のもの等が挙げられる。また、基板に間接に当該感放射線性樹脂組成物を塗工する場合としては、例えば基板上に形成された反射防止膜等の下層膜上に当該感放射線性樹脂組成物を塗工することなどが挙げられる。このような反射防止膜としては、例えば特公平6-12452号公報や特開昭59-93448号公報等に開示されている有機系又は無機系の反射防止膜などが挙げられる。塗工方法としては、例えば回転塗工(スピンコーティング)、流延塗工、ロール塗工等が挙げられる。塗工した後に、必要に応じて、塗膜中の溶媒を揮発させるため、プレベーク(PB)を行ってもよい。PB温度の下限としては、60℃が好ましく、80℃がより好ましい。PB温度の上限としては、160℃が好ましく、140℃がより好ましい。PB時間の下限としては、5秒が好ましく、10秒がより好ましい。PB時間の上限としては、600秒が好ましく、300秒がより好ましい。形成されるレジスト膜の平均厚みの下限としては、10nmが好ましく、20nmがより好ましい。上記平均厚みの上限としては、1,000nmが好ましく、500nmがより好ましい。なお、レジスト膜の平均厚みは、分光エリプソメータ(J.A.WOOLLAM社の「M2000D」)を用いて測定した値である。
[露光工程]
 本工程では、上記塗工工程により形成されたレジスト膜を露光する。この露光は、フォトマスクを介して(場合によっては、水等の液浸媒体を介して)露光光を照射することにより行う。露光光としては、目的とするパターンの線幅に応じて、例えば可視光線、紫外線、遠紫外線、極端紫外線(EUV)、X線、γ線等の電磁波;電子線、α線等の荷電粒子線などが挙げられる。これらの中でも、遠紫外線、EUV又は電子線が好ましく、ArFエキシマレーザー光(波長193nm)、KrFエキシマレーザー光(波長248nm)、EUV又は電子線がより好ましく、EUV又は電子線がさらに好ましい。
 上記露光の後、ポストエクスポージャーベーク(PEB)を行い、レジスト膜の露光された部分において、露光により[B]酸発生体等から発生した酸による[A]重合体等が有する酸解離性基の解離を促進させることが好ましい。このPEBによって、露光部と未露光部とで現像液に対する溶解性の差を増大させることができる。PEB温度の下限としては、50℃が好ましく、80℃がより好ましい。PEB温度の上限としては、180℃が好ましく、140℃がより好ましい。PEB時間の下限としては、5秒が好ましく、10秒がより好ましい。PEB時間の上限としては、600秒が好ましく、300秒がより好ましい。
[現像工程]
 本工程では、上記露光されたレジスト膜を現像する。これにより、所定のレジストパターンを形成することができる。現像後は、水又はアルコール等のリンス液で洗浄し、乾燥することが一般的である。現像工程における現像方法は、アルカリ現像であっても、有機溶媒現像であってもよい。これらの中で、アルカリ現像が好ましい。
 アルカリ現像の場合、現像に用いる現像液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア水、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ水溶液等が挙げられる。これらの中でも、TMAH水溶液が好ましく、2.38質量%TMAH水溶液がより好ましい。
 有機溶媒現像の場合、現像液としては、炭化水素系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、アルコール系溶媒等の有機溶媒、上記有機溶媒を含有する溶媒等が挙げられる。上記有機溶媒としては、例えば上述の感放射線性樹脂組成物の[D]溶媒として列挙した溶媒の1種又は2種以上等が挙げられる。これらの中で、エステル系溶媒又はケトン系溶媒が好ましい。エステル系溶媒としては、酢酸エステル系溶媒が好ましく、酢酸n-ブチルがより好ましい。ケトン系溶媒としては、鎖状ケトンが好ましく、2-ヘプタノンがより好ましい。現像液中の有機溶媒の含有量の下限としては、80質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましく、99質量%が特に好ましい。現像液中の有機溶媒以外の成分としては、例えば水、シリコーンオイル等が挙げられる。
 現像方法としては、例えば現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液塗出ノズルをスキャンしながら現像液を塗出しつづける方法(ダイナミックディスペンス法)等が挙げられる。
<化合物>
 当該化合物は、下記式(1)で表される化合物である。当該化合物は、感放射線性樹脂組成物における酸拡散制御剤として好適に用いることができる。
Figure JPOXMLDOC01-appb-C000020
 上記式(1)中、Rは、水素原子又は炭素数1~30の1価の有機基である。Xn+は、n価のカチオンである。nは、1~3の整数である。
 Xn+で表されるn価のカチオンとしては、例えば
 1価のカチオンとして、1価のオニウムカチオン、アルカリ金属カチオン等が、
 2価のカチオンとして、2価のオニウムカチオン、アルカリ土類金属カチオン等が、
 3価のカチオンとして、3価のオニウムカチオン、3価の金属カチオン等が挙げられる。
 オニウムカチオンは、感放射線性であっても、感放射線性でなくてもよい。感放射線性オニウムカチオンとしては、上記[B]酸発生剤における式(4)のTの1価の感放射線性オニウムカチオンとして例示したスルホニウムカチオン、ヨードニウムカチオン、テトラヒドロチオフェニウムカチオン等が挙げられる。2価及び3価のカチオンには、2+又は3+の電荷を有するカチオン部位を含むカチオン、及び1+の電荷を有するカチオン部位を2個又は3個含むカチオンの両方が含まれる。
 上記式(1)におけるXn+のカチオンとしては、オニウムカチオンが好ましい。このオニウムカチオンは、感放射線性であることが好ましい。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。実施例における物性値は下記のようにして測定した。
[重量平均分子量(Mw)、数平均分子量(Mn)及び分散度(Mw/Mn)]
 東ソー(株)のGPCカラム(G2000HXL:2本、G3000HXL:1本、G4000HXL:1本)を用い、流量:1.0mL/分、溶出溶媒:テトラヒドロフラン、試料濃度:1.0質量%、試料注入量:100μL、カラム温度:40℃、検出器:示差屈折計の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定した。また、分散度(Mw/Mn)は、Mw及びMnの測定結果より算出した。
[重合体の各構造単位の含有割合]
 重合体の各構造単位の含有割合は、核磁気共鳴装置(日本電子(株)の「JNM-Delta400」)を用いた13C-NMR分析により行った。
<[A]重合体の合成>
 [A]重合体の合成に用いた単量体を以下に示す。なお、以下の合成例においては特に断りのない限り、質量部は使用した単量体の合計質量を100質量部とした場合の値を意味し、モル%は使用した単量体の合計モル数を100モル%とした場合の値を意味する。
Figure JPOXMLDOC01-appb-C000021
[合成例1](重合体(A-1)の合成)
 上記単量体(M-3)及び単量体(M-1)をモル比率が60/40となるようプロピレングリコール-1-モノメチルエーテル(200質量部)に溶解した。次に、ラジカル重合開始剤としてのアゾビスイソブチロニトリル(AIBN)(6モル%)を添加し、単量体溶液を調製した。一方、空の反応容器にプロピレングリコール-1-モノメチルエーテル(100質量部)を加え、撹拌しながら85℃に加熱した。次いで、上記調製した単量体溶液を3時間かけて滴下し、その後、さらに3時間85℃で加熱し、重合反応を合計6時間実施した。重合反応終了後、重合反応液を室温に冷却した。
 ヘキサン(重合反応液100質量部に対して500質量部)中に冷却した重合反応液を投入し、析出した白色粉末をろ別した。ろ別した白色粉末をヘキサン(重合反応液100質量部に対して100質量部)で2回洗浄した後、ろ別し、プロピレングリコール-1-モノメチルエーテル(300質量部)に溶解した。次に、メタノール(500質量部)、トリエチルアミン(50質量部)及び超純水(10質量部)を加え、撹拌しながら70℃で6時間加水分解反応を実施した。
 反応終了後、残溶媒を留去し、得られた固体をアセトン(100質量部)に溶解させた。得られた溶液を水(500質量部)中に滴下して重合体を凝固させ、得られた固体をろ別した。50℃で12時間乾燥させて、白色粉末状の重合体(A-1)を合成した。重合体(A-1)のMwは5,700、Mw/Mnは1.61であった。また、13C-NMR分析の結果、(M-3)及び(M-1)に由来する各構造単位の含有割合は、それぞれ59.1モル%及び40.9モル%であった。
[合成例2~9]
 下記表1に示す種類及び使用割合の各単量体を用いた以外は、合成例1と同様にして、重合体(A-2)~(A-9)を合成した。表1中の「-」は該当する単量体を用いなかったことを示す。
Figure JPOXMLDOC01-appb-T000022
<[C]化合物の合成>
[実施例1](化合物(Z-1)の合成)
 下記反応スキームに従って、化合物(Z-1)を合成した。
Figure JPOXMLDOC01-appb-C000023
 反応容器に上記式(ppz-1)で表される化合物(シクロヘキサノール)29mmol、トリエチルアミン(NEt)29mmol及びジクロロメタン100gを加えた。0℃で撹拌後、テトラフルオロこはく酸無水物14.5mmolを滴下した。室温で12時間撹拌後、生成した上記式(pz-1)で表される化合物(トリエチルアンモニウム 2-(シクロヘキシルカルボニル)-1,1,2,2-テトラフルオロ-プロピオネート)に、水100g及びトリフェニルスルホニウムクロライド(TPS-Cl)16mmolを加えた。室温で2時間撹拌後、有機層を分離した。得られた有機層を水で洗浄した。無水硫酸ナトリウムで乾燥後、溶媒を留去し、再結晶することで化合物(Z-1)を得た。
[実施例2~9](化合物(Z-2)~(Z-9)の合成)
 前駆体を適宜選択し、実施例1と同様の処方を選択することで、下記式(Z-2)~(Z-9)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000024
<感放射線性樹脂組成物の調製>
 当該感放射線性樹脂組成物の調製に用いた[B]酸発生剤、[D]溶媒及び比較例の感放射線性樹脂組成物の調製に用いた[E]酸拡散制御剤について以下に示す。
[[B]酸発生剤]
 B-1~B-6:下記式(B-1)~(B-6)で表される化合物
Figure JPOXMLDOC01-appb-C000025
[[D]溶媒]
 D-1:酢酸プロピレングリコールモノメチルエーテル
 D-2:プロピレングリコール-1-モノメチルエーテル
[[E]酸拡散制御剤]
 E-1~E-3:下記式(E-1)~(E-3)で表される化合物
Figure JPOXMLDOC01-appb-C000026
[実施例10]
 [A]重合体としての(A-1)100質量部、[B]酸発生剤としての(B-1)20質量部、[C]化合物としての(Z-1)を(B-1)100モル%に対して20モル%、並びに[D]溶媒としての(D-1)4,800質量部及び(D-2)2,000質量部を混合し、得られた混合液を孔径0.2μmのメンブランフィルターでろ過して感放射線性樹脂組成物(R-1)を調製した。
[実施例11~31及び比較例1~3]
 下記表2に示す種類及び含有量の各成分を用いた以外は、実施例10と同様に操作して、感放射線性樹脂組成物(R-2)~(R-22)及び(CR-1)~(CR-3)を調製した。
Figure JPOXMLDOC01-appb-T000027
<レジストパターンの形成>
 平均厚み20nmの下層膜(Brewer Science社の「AL412」)が形成された12インチのシリコンウェハ表面に、スピンコーター(東京エレクトロン(株)の「CLEAN TRACK ACT12」)を使用して、上記調製した感放射線性樹脂組成物を塗工し、130℃で60秒間PBを行った後、23℃で30秒間冷却し、平均厚み50nmのレジスト膜を形成した。次に、このレジスト膜に、EUV露光機(ASML社の「NXE3300」、NA=0.33、照明条件:Conventional s=0.89、マスクimecDEFECT32FFR02)を用いてEUV光を照射した。照射後、上記レジスト膜に130℃で60秒間PEBを行った。次いで、2.38質量%TMAH水溶液を用い、23℃で30秒間現像し、ポジ型の32nmラインアンドスペースパターンを形成した。
<評価>
 上記形成した各レジストパターンについて、下記方法に従い、各感放射線性樹脂組成物の感度及びプロセスウィンドウを評価した。なお、レジストパターンの測長には、走査型電子顕微鏡((株)日立ハイテクノロジーズの「CG-4100」)を用いた。評価結果を下記表3に示す。
[感度]
 上記レジストパターンの形成において、32nmラインアンドスペースパターンを形成する露光量を最適露光量とし、この最適露光量を感度(mJ/cm)とした。感度は、30mJ/cm以下の場合は「良好」と、30mJ/cmを超える場合は「不良」と評価できる。
[プロセスウィンドウ]
 32nmラインアンドスペース(1L/1S)を形成するマスクを用いて、低露光量から高露光量までのパターンを形成した。一般的に、低露光量側ではパターン間の繋がり等の欠陥が、高露光量側ではパターン倒れ等の欠陥が見られる。これらの欠陥が見られないレジスト寸法の上限値と下限値の差を「CD(Critical Dimension)マージン」とし、プロセスウィンドウの指標とした。CDマージン(nm)の値が大きいほど、プロセスウィンドウが広いと考えられる。CDマージンは、30nm以上の場合は「良好」と、30nm未満の場合は「不良」と評価できる。
Figure JPOXMLDOC01-appb-T000028
 表3の結果から明らかなように、実施例の感放射線性樹脂組成物ではいずれも、感度及びCDマージンが比較例の感放射線性樹脂組成物対比で良好であった。
 本発明の感放射線性樹脂組成物及びレジストパターン形成方法によれば、優れた感度及び広いプロセスウィンドウでレジストパターンを形成することができる。本発明の化合物は、当該感放射線性樹脂組成物の成分として好適に用いることができる。従って、これらは、今後ますます微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。

Claims (9)

  1.  酸解離性基を含む構造単位を有する重合体と、
     感放射線性酸発生体と、
     下記式(1)で表される化合物と
     を含有する感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは、水素原子又は炭素数1~30の1価の有機基である。Xn+は、n価の感放射線性オニウムカチオンである。nは、1~3の整数である。)
  2.  上記式(1)におけるRが有機基であり、この有機基が環構造を有する請求項1に記載の感放射線性樹脂組成物。
  3.  上記式(1)におけるRが有機基であり、この有機基が酸解離性基である請求項1又は請求項2に記載の感放射線性樹脂組成物。
  4.  上記式(1)におけるXn+がスルホニウムカチオン、ヨードニウムカチオン又はこれらの組み合わせである請求項1、請求項2又は請求項3に記載の感放射線性樹脂組成物。
  5.  上記式(1)におけるnが1である請求項1から請求項4のいずれか1項に記載の感放射線性樹脂組成物。
  6.  基板に直接又は間接に感放射線性樹脂組成物を塗工する工程と、
     上記塗工工程により形成されたレジスト膜を露光する工程と、
     上記露光工程後のレジスト膜を現像する工程と
     を備え、
     上記感放射線性樹脂組成物が、
     酸解離性基を含む構造単位を有する重合体と、
     感放射線性酸発生体と、
     下記式(1)で表される化合物と
     を含有するレジストパターン形成方法。
    Figure JPOXMLDOC01-appb-C000002
    (式(1)中、Rは、水素原子又は炭素数1~30の1価の有機基である。Xn+は、n価の感放射線性オニウムカチオンである。nは、1~3の整数である。)
  7.  下記式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000003
    (式(1)中、Rは、水素原子又は炭素数1~30の1価の有機基である。Xn+は、n価のカチオンである。nは、1~3の整数である。)
  8.  上記式(1)におけるXn+のカチオンがオニウムカチオンである請求項7に記載の化合物。
  9.  上記Xn+のオニウムカチオンが感放射線性である請求項8に記載の化合物。
PCT/JP2020/016474 2019-06-06 2020-04-14 感放射線性樹脂組成物、レジストパターン形成方法及び化合物 WO2020246143A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021524689A JP7400818B2 (ja) 2019-06-06 2020-04-14 感放射線性樹脂組成物、レジストパターン形成方法及び化合物
KR1020217039158A KR20220018966A (ko) 2019-06-06 2020-04-14 감방사선성 수지 조성물, 레지스트 패턴 형성 방법 및 화합물
US17/541,422 US20220091508A1 (en) 2019-06-06 2021-12-03 Radiation-sensitive resin composition, method of forming resist pattern, and compound
JP2023183077A JP2024008955A (ja) 2019-06-06 2023-10-25 化合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019106474 2019-06-06
JP2019-106474 2019-06-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/541,422 Continuation US20220091508A1 (en) 2019-06-06 2021-12-03 Radiation-sensitive resin composition, method of forming resist pattern, and compound

Publications (1)

Publication Number Publication Date
WO2020246143A1 true WO2020246143A1 (ja) 2020-12-10

Family

ID=73652089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016474 WO2020246143A1 (ja) 2019-06-06 2020-04-14 感放射線性樹脂組成物、レジストパターン形成方法及び化合物

Country Status (5)

Country Link
US (1) US20220091508A1 (ja)
JP (2) JP7400818B2 (ja)
KR (1) KR20220018966A (ja)
TW (1) TW202045470A (ja)
WO (1) WO2020246143A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210200087A1 (en) * 2019-12-25 2021-07-01 Tokyo Ohka Kogyo Co., Ltd. Resist composition and method of forming resist pattern
WO2024043098A1 (ja) * 2022-08-22 2024-02-29 東京応化工業株式会社 レジスト組成物、レジストパターン形成方法、並びに、化合物及びその中間体
JP7475134B2 (ja) 2019-12-25 2024-04-26 東京応化工業株式会社 レジスト組成物及びレジストパターン形成方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7363742B2 (ja) * 2019-11-20 2023-10-18 信越化学工業株式会社 オニウム塩化合物、化学増幅レジスト組成物及びパターン形成方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062653A (ja) * 2000-08-16 2002-02-28 Fuji Photo Film Co Ltd ポジ型フォトレジスト組成物
JP2002131911A (ja) * 2000-10-25 2002-05-09 Fuji Photo Film Co Ltd ポジ型フォトレジスト組成物
JP2003177539A (ja) * 2001-09-27 2003-06-27 Shin Etsu Chem Co Ltd 化学増幅レジスト材料及びパターン形成方法
JP2013216877A (ja) * 2012-03-16 2013-10-24 Sumitomo Chemical Co Ltd 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法
JP2013231163A (ja) * 2012-04-04 2013-11-14 Sumitomo Chemical Co Ltd 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法
JP2017151474A (ja) * 2012-02-23 2017-08-31 住友化学株式会社 レジスト組成物及び塩

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3972438B2 (ja) 1998-01-26 2007-09-05 住友化学株式会社 化学増幅型のポジ型レジスト組成物
JP2003005375A (ja) 2001-06-21 2003-01-08 Fuji Photo Film Co Ltd ポジ型レジスト組成物
JP4832237B2 (ja) 2006-09-27 2011-12-07 富士フイルム株式会社 ポジ型レジスト組成物およびそれを用いたパターン形成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062653A (ja) * 2000-08-16 2002-02-28 Fuji Photo Film Co Ltd ポジ型フォトレジスト組成物
JP2002131911A (ja) * 2000-10-25 2002-05-09 Fuji Photo Film Co Ltd ポジ型フォトレジスト組成物
JP2003177539A (ja) * 2001-09-27 2003-06-27 Shin Etsu Chem Co Ltd 化学増幅レジスト材料及びパターン形成方法
JP2017151474A (ja) * 2012-02-23 2017-08-31 住友化学株式会社 レジスト組成物及び塩
JP2013216877A (ja) * 2012-03-16 2013-10-24 Sumitomo Chemical Co Ltd 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法
JP2013231163A (ja) * 2012-04-04 2013-11-14 Sumitomo Chemical Co Ltd 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210200087A1 (en) * 2019-12-25 2021-07-01 Tokyo Ohka Kogyo Co., Ltd. Resist composition and method of forming resist pattern
JP7475134B2 (ja) 2019-12-25 2024-04-26 東京応化工業株式会社 レジスト組成物及びレジストパターン形成方法
WO2024043098A1 (ja) * 2022-08-22 2024-02-29 東京応化工業株式会社 レジスト組成物、レジストパターン形成方法、並びに、化合物及びその中間体

Also Published As

Publication number Publication date
JPWO2020246143A1 (ja) 2020-12-10
US20220091508A1 (en) 2022-03-24
JP7400818B2 (ja) 2023-12-19
TW202045470A (zh) 2020-12-16
KR20220018966A (ko) 2022-02-15
JP2024008955A (ja) 2024-01-19

Similar Documents

Publication Publication Date Title
JP7247732B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物
JP7103347B2 (ja) 感放射線性組成物及びレジストパターン形成方法
JP7400818B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び化合物
JP6959538B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP7447725B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP7396360B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び感放射線性酸発生剤
WO2021140761A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び化合物
JP7061268B2 (ja) レジストパターンの形成方法及び感放射線性樹脂組成物
JP7091762B2 (ja) 感放射線性樹脂組成物及びレジストパターンの形成方法
JP2023108593A (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び化合物
WO2022270134A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び化合物
WO2021157354A1 (ja) 感放射線性樹脂組成物及びレジストパターンの形成方法
WO2022065090A1 (ja) 感放射線性樹脂組成物、パターン形成方法及びオニウム塩化合物
WO2021149476A1 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
US20200393761A1 (en) Radiation-sensitive resin composition and resist pattern-forming method
JP2019204065A (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP7342941B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
WO2023058369A1 (ja) 感放射線性樹脂組成物、樹脂、化合物及びパターン形成方法
WO2021153124A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び感放射線性酸発生剤
JP2020204765A (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
WO2022196024A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
WO2023119910A1 (ja) 感放射線性組成物、レジストパターン形成方法、酸発生体及び化合物
WO2023248569A1 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP2024031820A (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
WO2024057701A1 (ja) 感放射線性組成物、レジストパターン形成方法、感放射線性酸発生体及び重合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818036

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524689

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20818036

Country of ref document: EP

Kind code of ref document: A1