WO2023248569A1 - 感放射線性樹脂組成物及びレジストパターン形成方法 - Google Patents

感放射線性樹脂組成物及びレジストパターン形成方法 Download PDF

Info

Publication number
WO2023248569A1
WO2023248569A1 PCT/JP2023/013354 JP2023013354W WO2023248569A1 WO 2023248569 A1 WO2023248569 A1 WO 2023248569A1 JP 2023013354 W JP2023013354 W JP 2023013354W WO 2023248569 A1 WO2023248569 A1 WO 2023248569A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
radiation
ring
resin composition
sensitive resin
Prior art date
Application number
PCT/JP2023/013354
Other languages
English (en)
French (fr)
Inventor
拓也 大宮
克聡 錦織
和也 桐山
裕史 松村
望 寺田
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2023248569A1 publication Critical patent/WO2023248569A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists

Definitions

  • the present invention relates to a radiation-sensitive resin composition and a resist pattern forming method.
  • the radiation-sensitive resin composition used for microfabrication by lithography is capable of radiating far ultraviolet rays such as ArF excimer laser light (wavelength 193 nm) and KrF excimer laser light (wavelength 248 nm), extreme ultraviolet rays (EUV) (wavelength 13.5 nm), etc.
  • Acid is generated in the exposed area by irradiation with radiation such as electromagnetic waves or charged particle beams such as electron beams, and a chemical reaction catalyzed by this acid causes a difference in the rate of dissolution in the developer between the exposed area and the non-exposed area. This forms a resist pattern on the substrate.
  • the radiation-sensitive resin composition In addition to having good sensitivity to exposure light such as extreme ultraviolet rays and electron beams, the radiation-sensitive resin composition is required to have excellent LWR (Line Width Roughness) performance and the like. In addition, as resist patterns become further finer, the influence of slight fluctuations in exposure and development conditions on the shape of resist patterns and the occurrence of defects is becoming increasingly large. There is also a need for a radiation-sensitive resin composition with a wide process window (process latitude) that can absorb such slight fluctuations in process conditions.
  • the present invention has been made based on the above-mentioned circumstances, and its purpose is to provide a radiation-sensitive resin composition that has excellent sensitivity and LWR performance and a wide process window, and a method for forming a resist pattern. .
  • the invention made to solve the above problem is a polymer (hereinafter referred to as "[A ), a radiation-sensitive acid generator (hereinafter also referred to as “[B] acid generator”), a monovalent radiation-sensitive onium cation, and a monovalent organic acid anion.
  • This is a radiation-sensitive resin composition containing a diffusion control agent (hereinafter also referred to as "[C] acid diffusion control agent”).
  • R 1 is a hydrogen atom, a fluorine atom, a methyl group, or a trifluoromethyl group.
  • L 1 is a single bond or a divalent linking group.
  • Ar 1 is substituted or unsubstituted. (This is a group obtained by removing one hydrogen atom from a fused polycyclic aromatic hydrocarbon ring having 13 or more ring members.)
  • Another invention made to solve the above problems includes a step of directly or indirectly applying the above-mentioned radiation-sensitive resin composition to a substrate, and a step of exposing a resist film formed by the above-mentioned coating. and developing the exposed resist film.
  • the radiation-sensitive resin composition of the present invention has excellent sensitivity and LWR performance, and has a wide process window. According to the resist pattern forming method of the present invention, a resist pattern with excellent sensitivity and LWR performance and a wide process window can be formed. Therefore, these can be suitably used in the processing of semiconductor devices, which are expected to be further miniaturized in the future.
  • the radiation-sensitive resin composition contains [A] a polymer, [B] an acid generator, and [C] an acid diffusion control agent.
  • the radiation-sensitive resin composition usually contains an organic solvent (hereinafter also referred to as "[D] organic solvent").
  • the radiation-sensitive resin composition may contain other optional components within a range that does not impair the effects of the present invention.
  • the radiation-sensitive resin composition contains [A] a polymer, [B] an acid generator, and [C] an acid diffusion control agent, so it has excellent sensitivity and LWR performance, and has a wide process window. be effective.
  • the reason why the radiation-sensitive resin composition achieves the above effects by having the above structure is not necessarily clear, it can be inferred as follows, for example. That is, it is thought that because the [A] polymer has the first structural unit represented by the below-mentioned formula (1), the amount of acid generated from the [B] acid generator etc. upon exposure increases. It is thought that as the amount of acid generated from the [B] acid generator and the like increases, the amount of change in solubility in the developing solution increases due to the action of the acid possessed by the [A] polymer. As a result, it is thought that the above-mentioned effects can be achieved.
  • the radiation-sensitive resin composition includes, for example, [A] a polymer, [B] an acid generator, [C] an acid diffusion control agent, and, if necessary, [D] an organic solvent and other optional components. It can be prepared by mixing them in different proportions and preferably filtering the resulting mixture through a membrane filter with a pore size of 0.20 ⁇ m or less.
  • the polymer has a first structural unit (hereinafter also referred to as "structural unit (I)") represented by formula (1) described below.
  • the polymer is a polymer whose solubility in a developer changes under the action of an acid.
  • the radiation-sensitive resin composition can contain one or more kinds of [A] polymers.
  • the polymer further has a second structural unit (hereinafter also referred to as “structural unit (II)”) containing an acid-dissociable group.
  • structural unit (III) a third structural unit containing a phenolic hydroxyl group.
  • the polymer may further have structural units other than structural units (I) to (III) (hereinafter also simply referred to as “other structural units”).
  • the polymer can have one or more types of each structural unit.
  • the structural unit that the [A] polymer has may be considered to overlap with two or more types of structural unit classifications.
  • a structural unit that is considered to correspond not only to structural unit (I) but also to structural units other than structural unit (I) may be included.
  • the structural unit corresponds to the smaller number in parentheses.
  • the lower limit of the content of the [A] polymer in the radiation-sensitive resin composition is preferably 50% by mass based on all components other than the [D] organic solvent contained in the radiation-sensitive resin composition, 70% by mass is more preferred, and even more preferably 80% by mass.
  • the upper limit of the content ratio is preferably 99% by mass, more preferably 95% by mass.
  • the lower limit of the polystyrene equivalent weight average molecular weight (Mw) of the polymer measured by gel permeation chromatography (GPC) is preferably 1,000, more preferably 2,000, even more preferably 3,000, 4, 000 is even more preferred.
  • the upper limit of Mw is preferably 30,000, more preferably 20,000, even more preferably 19,000, and even more preferably 17,000.
  • the Mw of the polymer can be adjusted, for example, by adjusting the type of polymerization initiator used in the synthesis, the amount used, etc.
  • the upper limit of the ratio of Mw to the polystyrene equivalent number average molecular weight (Mn) (hereinafter also referred to as "Mw/Mn" or “polydispersity") determined by GPC of the polymer is preferably 2.5; 0 is more preferred, 1.9 is even more preferred, and 1.7 is even more preferred.
  • the lower limit of the above ratio is usually 1.0, preferably 1.1, more preferably 1.2, even more preferably 1.3, and even more preferably 1.4.
  • Mw and Mn of the [A] polymer in this specification are values measured using gel permeation chromatography (GPC) under the following conditions.
  • GPC columns 2 “G2000HXL”, 1 “G3000HXL” and 1 “G4000HXL” from Tosoh Co., Ltd.
  • Elution solvent Tetrahydrofuran Flow rate: 1.0 mL/min
  • Sample concentration 1.0 mass%
  • Sample injection volume 100 ⁇ L
  • Detector Differential refractometer Standard material: Monodisperse polystyrene
  • the polymer can be synthesized, for example, by polymerizing monomers providing each structural unit by a known method.
  • Structural unit (I) is a structural unit represented by the following formula (1).
  • R 1 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • L 1 is a single bond or a divalent linking group.
  • Ar 1 is a group obtained by removing one hydrogen atom from a substituted or unsubstituted fused polycyclic aromatic hydrocarbon ring having 13 or more ring members.
  • Numberer of ring members refers to the number of atoms constituting the ring structure, and in the case of a polycyclic ring, refers to the number of atoms constituting the polycyclic ring.
  • “Fused polycyclic ring” means a ring structure in which two adjacent rings have two shared atoms.
  • a “fused polycyclic ring” is clearly distinguished from a “ring assembly polycyclic ring” in which two adjacent rings do not have a shared atom and are connected by a single bond.
  • a group in which X hydrogen atoms are removed from a ring structure means a group in which X hydrogen atoms bonded to atoms constituting a ring structure are removed.
  • R 1 is preferably a hydrogen atom or a methyl group, and more preferably a methyl group.
  • Examples of the divalent linking group for L 1 include a carbonyl group, an ether group, a sulfide group, an alkanediyl group having 1 to 10 carbon atoms, or a combination thereof.
  • L 1 is a divalent linking group
  • the shortest number of atomic chains between the oxygen atom to which L 1 is bonded and Ar 1 is preferably 1 to 4.
  • L 1 is preferably a single bond.
  • a divalent linking group is preferable.
  • fused polycyclic aromatic hydrocarbon ring having 13 or more ring members that provide Ar 1 include fused tricyclic rings such as anthracene ring (14 ring members), phenanthrene ring (14 ring members), and phenalene ring (13 ring members). Condensation of aromatic hydrocarbon ring, pyrene ring (16 ring members), chrysene ring (18 ring members), tetraphene ring (18 ring members), tetracene ring (18 ring members), triphenylene ring (18 ring members), etc.
  • fused tricyclic rings such as anthracene ring (14 ring members), phenanthrene ring (14 ring members), and phenalene ring (13 ring members). Condensation of aromatic hydrocarbon ring, pyrene ring (16 ring members), chrysene ring (18 ring members), tetraphene ring (18 ring members), tetracene ring (18 ring members), trip
  • Fused pentacyclic aromatic hydrocarbons such as tetracyclic aromatic hydrocarbon rings, perylene rings (20 ring members), picene rings (22 ring members), pentaphene rings (22 ring members), pentacene rings (22 ring members), etc. Examples include rings.
  • the lower limit of the number of ring members in the fused polycyclic aromatic hydrocarbon ring is 13, preferably 14.
  • the upper limit of the number of ring members is preferably 22, more preferably 20, even more preferably 18, and even more preferably 16.
  • the fused polycyclic aromatic hydrocarbon ring is preferably a fused tricyclic aromatic hydrocarbon ring or a fused tetracyclic aromatic hydrocarbon ring, more preferably an anthracene ring, a phenanthrene ring or a pyrene ring, and an anthracene ring or A pyrene ring is more preferred, and a pyrene ring is even more preferred.
  • An anthracene ring or a pyrene ring is preferable than a phenanthrene ring because the sensitivity, LWR performance, and process window of the radiation-sensitive resin composition are better.
  • the sensitivity and process window of the radiation-sensitive resin composition are even more excellent than when it is an anthracene ring, so it is preferable.
  • substituents that the fused polycyclic aromatic hydrocarbon ring may have include halogen atoms such as fluorine atom, chlorine atom, bromine atom, and iodine atom, hydroxy group, carboxy group, cyano group, nitro group, and alkyl group. group, alkoxy group, alkoxycarbonyl group, alkoxycarbonyloxy group, acyl group, acyloxy group and the like.
  • the fused polycyclic aromatic hydrocarbon ring is preferably a substituted fused polycyclic aromatic hydrocarbon ring.
  • the substituent is preferably a halogen atom, more preferably a bromine atom or an iodine atom, and even more preferably an iodine atom.
  • the fused polycyclic aromatic hydrocarbon ring is preferably an unsubstituted fused polycyclic aromatic hydrocarbon ring.
  • the lower limit of the content of structural unit (I) in the polymer is preferably 5 mol%, more preferably 10 mol%, and 20 mol% based on the total structural units constituting the polymer [A]. is even more preferable.
  • the upper limit of the content ratio is preferably 70 mol%, more preferably 60 mol%, and even more preferably 50 mol%.
  • the upper limit may be “less than” or “less than”, and the lower limit may be “more than” or “greater than”. There may be. Moreover, the upper limit value and the lower limit value can be arbitrarily combined.
  • [A] polymer having structural unit (I) can be synthesized by polymerizing a monomer (hereinafter also referred to as "[X] monomer”) that provides structural unit (I) by a known method.
  • the [X] monomer is obtained by combining a compound that provides Ar 1 in the above formula (1), such as 9-anthrol, and a compound that becomes the skeleton structure of the [X] monomer, such as methacryloyl chloride, by a known method. It can be obtained by reaction.
  • Structural unit (II) is a structural unit containing an acid dissociable group.
  • the term "acid-dissociable group” refers to a group that substitutes a hydrogen atom in a carboxy group, hydroxy group, etc., and is a group that dissociates under the action of an acid to give a carboxy group, hydroxy group, etc.
  • the acid-dissociable group dissociates due to the action of the acid generated from the [B] acid generator, etc., and a difference occurs in the solubility of the [A] polymer in the developer between the exposed area and the non-exposed area. By this, a resist pattern can be formed.
  • the solubility in a developer changes due to the action of an acid.
  • structural unit (II) for example, a structural unit represented by the following formula (II-1) or (II-2) (hereinafter also referred to as “structural unit (II-1) or (II-2)”), etc. can be mentioned. Note that, for example, in the following formula (II- 1 ), -C ( R
  • R T is each independently a hydrogen atom, a fluorine atom, a methyl group, or a trifluoromethyl group.
  • R X is a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R Y and R Z are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a group having 3 to 20 ring members formed by combining these groups together with the carbon atom to which they are bonded. It is part of 20 saturated alicyclic rings.
  • R A is a hydrogen atom.
  • R B and R C each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R D is a divalent hydrocarbon group having 1 to 20 carbon atoms that constitutes an unsaturated alicyclic ring having 4 to 20 ring members together with the carbon atoms to which R A , R B and R C are bonded.
  • “Number of carbon atoms” refers to the number of carbon atoms constituting a group.
  • the "hydrocarbon group” includes a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group. This "hydrocarbon group” may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • the term “chain hydrocarbon group” refers to a hydrocarbon group that does not contain a cyclic structure and is composed only of a chain structure, and includes both linear hydrocarbon groups and branched hydrocarbon groups.
  • Alicyclic hydrocarbon group refers to a hydrocarbon group that contains only an alicyclic ring as a ring structure and does not contain an aromatic ring, and includes a monocyclic alicyclic hydrocarbon group and a polycyclic alicyclic hydrocarbon group. Including both groups. However, it does not need to be composed only of alicyclic rings, and may include a chain structure as a part thereof.
  • “Aromatic hydrocarbon group” refers to a hydrocarbon group containing an aromatic ring as a ring structure. However, it does not need to be composed only of aromatic rings, and may include a chain structure or an alicyclic ring as a part thereof.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R Examples include a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms and a monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • Examples of monovalent chain hydrocarbon groups having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, sec-butyl group, isobutyl group, and tert-butyl group.
  • Examples include alkyl groups such as ethenyl, propenyl, butenyl, and 2-methylprop-1-en-1-yl, and alkynyl groups such as ethynyl, propynyl, and butynyl.
  • Examples of monovalent alicyclic hydrocarbon groups having 3 to 20 carbon atoms include monocyclic saturated alicyclic hydrocarbon groups such as cyclopentyl group and cyclohexyl group, norbornyl group, adamantyl group, tricyclodecyl group, and tetracyclo Polycyclic alicyclic saturated hydrocarbon groups such as dodecyl group, monocyclic alicyclic unsaturated hydrocarbon groups such as cyclopentenyl group, cyclohexenyl group, norbornenyl group, tricyclodecenyl group, tetracyclodode Examples include polycyclic alicyclic unsaturated hydrocarbon groups such as a cenyl group.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group, and anthryl group, benzyl group, phenethyl group, naphthylmethyl group, and anthrylmethyl group.
  • Examples include aralkyl groups such as groups.
  • a saturated alicyclic ring having 3 to 20 ring members formed by combining R Y and R Z together with the carbon atom to which they are bonded is, for example, a monocyclic ring such as a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, or a cyclohexane ring.
  • Examples include polycyclic saturated alicyclic rings such as saturated alicyclic rings, norbornane rings, adamantane rings, tricyclodecane rings, and tetracyclododecane rings.
  • the divalent hydrocarbon group having 1 to 20 carbon atoms represented by R D is, for example, the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R X , R Y , R Z , R B or R C described above.
  • Examples of the hydrocarbon group include groups obtained by removing one hydrogen atom from the exemplified groups.
  • Examples of the unsaturated alicyclic ring having 4 to 20 ring members that R D constitutes with the carbon atoms to which R A , R B and R C are bonded include monocyclic unsaturated alicyclic rings such as a cyclobutene ring, a cyclopentene ring, and a cyclohexene ring. Examples include polycyclic unsaturated alicyclic rings such as rings and norbornene rings.
  • R T is preferably a hydrogen atom or a methyl group from the viewpoint of copolymerizability of the monomer providing the structural unit (II).
  • R X is preferably a chain hydrocarbon group or an aromatic hydrocarbon group, more preferably an alkyl group, an alkenyl group, or an aryl group; More preferred is a phenyl group.
  • R Y and R Z are preferably part of a saturated alicyclic ring having 3 to 20 ring members formed together with the carbon atoms to which they are combined and bonded.
  • the saturated alicyclic ring is preferably a cyclopentane ring, a cyclohexane ring, an adamantane ring or a tetracyclododecane ring.
  • R B a hydrogen atom is preferable.
  • R C is preferably a chain hydrocarbon group, more preferably an alkyl group, and even more preferably a methyl group.
  • the unsaturated alicyclic ring having 4 to 20 ring members that R D constitutes together with the carbon atoms to which R A , R B and R C are bonded is preferably a monocyclic unsaturated alicyclic ring, and more preferably a cyclohexene ring.
  • structural unit (II-1) examples include structural units represented by the following formulas (II-1-1) to (II-1-9) (hereinafter referred to as “structural units (II-1-1) to (II-1-9)"). -1-9)'').
  • structural unit (II-2) for example, structural units represented by the following formulas (II-2-1) to (II-2-2) (hereinafter, “structural units (II-2-1) to (II -2-2)'').
  • R T is It is synonymous with 2).
  • the lower limit of the content of the structural unit (II) in the [A] polymer is preferably 30 mol%, more preferably 40 mol%, based on the total structural units constituting the [A] polymer.
  • the upper limit of the content ratio is preferably 70 mol%, more preferably 60 mol%.
  • the structural unit (III) is a structural unit containing a phenolic hydroxyl group.
  • phenolic hydroxyl group is not limited to a hydroxy group directly connected to a benzene ring, but refers to any hydroxy group directly connected to an aromatic ring.
  • the hydrophilicity of the resist film can be increased, the solubility in the developer can be appropriately adjusted, and in addition, the adhesion of the resist pattern to the substrate can be improved. can improve sex. Furthermore, when extreme ultraviolet (EUV) or electron beams are used as the radiation irradiated in the exposure step in the resist pattern forming method described below, the sensitivity to exposure light can be further improved. Therefore, when the [A] polymer has the structural unit (III), the radiation-sensitive resin composition can be particularly suitably used as a radiation-sensitive resin composition for extreme ultraviolet exposure or electron beam exposure. .
  • structural unit (III) examples include a structural unit represented by the following formula (III-1) (hereinafter also referred to as "structural unit (III-1)").
  • R P is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • L 2 is a single bond, -COO-, -O-, or -CONH-.
  • Ar 2 is a group obtained by removing (n+1) hydrogen atoms from a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 30 ring members. n is an integer from 1 to 3.
  • R P is preferably a hydrogen atom or a methyl group.
  • L 2 is preferably a single bond or -COO-.
  • aromatic hydrocarbon rings having 6 to 30 ring members that provide Ar 2 include benzene rings; fused polycyclic aromatic hydrocarbon rings such as naphthalene rings, anthracene rings, fluorene rings, biphenylene rings, phenanthrene rings, and pyrene rings; ; Examples include ring-aggregated aromatic hydrocarbon rings such as biphenyl ring, terphenyl ring, binaphthalene ring, and phenylnaphthalene ring. Among these, a benzene ring or a naphthalene ring is preferred.
  • substituents that the aromatic hydrocarbon ring may have include halogen atoms such as fluorine atoms, hydroxy groups, carboxy groups, cyano groups, nitro groups, alkyl groups, alkoxy groups, alkoxycarbonyl groups, alkoxycarbonyloxy groups, Examples include acyl group and acyloxy group.
  • n 1 or 2 is preferable.
  • structural unit (III-1) examples include structural units represented by the following formulas (III-1-1) to (III-1-12) (hereinafter referred to as "structural units (III-1-1) to (III-1-1)"). -1-12)'').
  • R P has the same meaning as in the above formula (III-1).
  • the lower limit of the content of the structural unit (III) is preferably 5 mol%, and 10 mol% based on the total structural units in the [A] polymer. is more preferable.
  • the upper limit of the content ratio is preferably 70 mol%, more preferably 60 mol%.
  • Other structural units are structural units other than the above structural units (I) to (III).
  • Other structural units can be selected from structural units derived from known monomers used as polymers of radiation-sensitive resin compositions within a range that does not impair the effects of the present invention.
  • structural units include, for example, a structural unit containing a lactone structure, a cyclic carbonate structure, a sultone structure, or a combination thereof (hereinafter also referred to as “structural unit (IV)”), a structural unit containing an alcoholic hydroxyl group (hereinafter referred to as “ Structural units (also referred to as “structural units (V)”), structural units that generate acid upon exposure (hereinafter also referred to as “structural units (VI)”), and the like.
  • structural unit (IV) structural unit containing a lactone structure, a cyclic carbonate structure, a sultone structure, or a combination thereof
  • Structural units also referred to as “structural units (V)
  • structural units that generate acid upon exposure hereinafter also referred to as “structural units (VI)
  • the content ratio of the other structural units can be determined as appropriate depending on the type and purpose of the other structural units. For example, it can be 1 mol% or more and 20 mol% or less with respect to all the structural units in the [A] polymer.
  • the structural unit (IV) is a structural unit containing a lactone structure, a cyclic carbonate structure, a sultone structure, or a combination thereof. [A] When the polymer has the structural unit (IV), the hydrophilicity of the resist film can be increased, and the solubility in the developer can be appropriately adjusted.
  • Examples of the structural unit (IV) include structural units represented by the following formula.
  • R L1 is a hydrogen atom, a fluorine atom, a methyl group, or a trifluoromethyl group.
  • the structural unit (IV) is preferably a structural unit containing a lactone structure, a cyclic carbonate structure, or a combination thereof.
  • the structural unit (V) is a structural unit containing an alcoholic hydroxyl group.
  • the hydrophilicity of the resist film can be increased, the solubility in the developer can be appropriately adjusted, and in addition, the adhesion of the resist pattern to the substrate can be improved. can improve sex.
  • Examples of the structural unit (V) include structural units represented by the following formula.
  • R L2 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • the structural unit (VI) is a structural unit that generates acid upon exposure.
  • the [A] polymer has the structural unit (VI)
  • the [A] polymer also functions as a radiation-sensitive acid generator.
  • Examples of the structural unit (VI) include structural units represented by the following formula.
  • R L3 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • Y + is a monovalent radiation-sensitive onium cation.
  • Examples of the monovalent radiation-sensitive onium cation represented by Y + include those similar to those exemplified as the monovalent radiation-sensitive onium cation in the [C] acid diffusion control agent described below.
  • the acid generator is a substance that generates acid upon exposure to light. Examples of the exposure light include those similar to those exemplified as exposure light in the exposure step of the resist pattern forming method described later.
  • the acid generated by exposure dissociates the acid-dissociable groups of the polymer [A] to produce carboxy groups, hydroxyl groups, etc., and the solubility of the resist film in the developing solution is reduced between the exposed and unexposed areas.
  • a resist pattern can be formed by creating a difference between the two.
  • Examples of the acid generated from the acid generator include sulfonic acid and imide acid.
  • Examples of the acid generator include onium salt compounds, N-sulfonyloxyimide compounds, sulfonimide compounds, halogen-containing compounds, diazoketone compounds, and the like.
  • onium salt compounds include sulfonium salts, tetrahydrothiophenium salts, iodonium salts, phosphonium salts, diazonium salts, and pyridinium salts.
  • R p1 is a monovalent group containing a ring structure having 5 or more ring members.
  • R p2 is a divalent linking group.
  • R p3 and R p4 are each independently a hydrogen atom, a fluorine atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms.
  • R p5 and R p6 are each independently a fluorine atom or a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms.
  • n p1 is an integer from 0 to 10.
  • n p2 is an integer from 0 to 10.
  • n p3 is an integer from 0 to 10.
  • n p1 is 2 or more
  • a plurality of R p2s are the same or different from each other.
  • n p2 is 2 or more
  • a plurality of R p3s are the same or different from each other
  • a plurality of R p4s are the same or different from each other.
  • n p3 is 2 or more
  • a plurality of R p5s are the same or different from each other
  • a plurality of R p6s are the same or different from each other.
  • Y + is a monovalent radiation-sensitive onium cation.
  • Examples of the ring structure having 5 or more ring members in R p1 include an alicyclic ring having 5 or more ring members, an aliphatic heterocycle having 5 or more ring members, an aromatic hydrocarbon ring having 6 or more ring members, and an aromatic ring having 5 or more ring members.
  • Examples include heterocycles.
  • Examples of alicyclic rings having 5 or more ring members include monocyclic saturated alicyclic rings such as cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, cyclononane ring, cyclodecane ring, and cyclododecane ring, cyclopentene ring, cyclohexene ring, Monocyclic unsaturated alicyclic rings such as cycloheptene rings, cyclooctene rings, and cyclodecene rings, polycyclic saturated alicyclic rings such as norbornane rings, adamantane rings, tricyclodecane rings, and tetracyclododecane rings, norbornene rings, and tricyclodecene rings. Examples include polycyclic unsaturated alicyclic rings such as.
  • Examples of aliphatic heterocycles having 5 or more ring members include hexanolactone rings, lactone rings such as norbornane lactone rings, sultone rings such as hexanosultone rings and norbornane sultone rings, oxacycloheptane rings, oxanorbornane rings, and acetal rings.
  • Examples thereof include oxygen atom-containing heterocycles such as rings, nitrogen atom-containing heterocycles such as azacyclohexane ring and diazabicyclooctane ring, and sulfur atom-containing heterocycles such as thiacyclohexane ring and thianorbornane ring.
  • Examples of the aromatic hydrocarbon ring having 6 or more ring members include a benzene ring, a naphthalene ring, a phenanthrene ring, an anthracene ring, and a 9,10-ethanoanthracene ring.
  • aromatic heterocycle having 5 or more ring members examples include oxygen atom-containing heterocycles such as furan ring, pyran ring, benzofuran ring, and benzopyran ring, and nitrogen atom-containing heterocycles such as pyridine ring, pyrimidine ring, and indole ring. .
  • the lower limit of the number of ring members in the ring structure of R p1 is preferably 6, more preferably 8, even more preferably 9, and particularly preferably 10.
  • the upper limit of the number of ring members is preferably 15, more preferably 14, even more preferably 13, and particularly preferably 12.
  • Some or all of the hydrogen atoms included in the ring structure of R p1 may be substituted with a substituent.
  • substituents include halogen atoms such as fluorine atom, chlorine atom, bromine atom, and iodine atom, hydroxy group, carboxy group, cyano group, nitro group, alkoxy group, alkoxycarbonyl group, alkoxycarbonyloxy group, acyl group, Examples include acyloxy groups. Among these, a hydroxy group, a fluorine atom, or an iodine atom is preferred.
  • R p1 is a monovalent group containing an alicyclic ring having 5 or more ring members, a monovalent group containing an aromatic hydrocarbon ring having 6 or more ring members, or a monovalent group containing an aliphatic heterocycle having 5 or more ring members.
  • the group is preferably a monovalent group containing a polycyclic saturated alicyclic ring, a monovalent group containing an aromatic hydrocarbon ring containing an iodine atom and having six or more ring members, a monovalent group containing an oxygen atom-containing heterocycle, or A monovalent group containing a sulfur atom-containing heterocycle is more preferred.
  • Examples of the divalent linking group represented by R p2 include a carbonyl group, an ether group, a carbonyloxy group, a sulfide group, a thiocarbonyl group, a sulfonyl group, and a divalent hydrocarbon group.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R p3 and R p4 include an alkyl group having 1 to 20 carbon atoms.
  • the monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms represented by R p3 and R p4 includes, for example, a fluorinated alkyl group having 1 to 20 carbon atoms.
  • R p3 and R p4 are preferably a hydrogen atom, a fluorine atom, or a fluorinated alkyl group, more preferably a hydrogen atom, a fluorine atom, or a perfluoroalkyl group, and even more preferably a hydrogen atom, a fluorine atom, or a trifluoromethyl group.
  • the monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms represented by R p5 and R p6 includes, for example, a fluorinated alkyl group having 1 to 20 carbon atoms.
  • a fluorine atom or a fluorinated alkyl group is preferred, a fluorine atom or a perfluoroalkyl group is more preferred, a fluorine atom or a trifluoromethyl group is even more preferred, and a fluorine atom is particularly preferred.
  • n p1 is preferably 0 to 5, more preferably 0 to 2, and even more preferably 0 or 1.
  • n p2 is preferably 0 to 5, more preferably 0 to 2, and even more preferably 0 or 1.
  • the lower limit of n p3 is preferably 1, more preferably 2. By setting n p3 to 1 or more, the strength of the acid can be increased.
  • the upper limit of n p3 is preferably 4, more preferably 3, and even more preferably 2.
  • Examples of the monovalent radiation-sensitive onium cation represented by Y + include those similar to those exemplified as the monovalent radiation-sensitive onium cation in the [C] acid diffusion control agent described below.
  • Examples of the [B] compound include compounds represented by the following formulas (2-1) to (2-11).
  • Y + has the same meaning as in the above formula (2).
  • the lower limit of the content of the [B] acid generator in the radiation-sensitive resin composition is preferably 1 part by mass, more preferably 5 parts by mass, and 10 parts by mass based on 100 parts by mass of the [A] polymer. is even more preferable.
  • the upper limit of the content is preferably 50 parts by mass, more preferably 40 parts by mass, and even more preferably 30 parts by mass.
  • the acid diffusion control agent is a compound having a monovalent radiation-sensitive onium cation and a monovalent organic acid anion.
  • the acid diffusion control agent has the function of controlling the diffusion phenomenon of acid generated from the [B] acid generator and the like in the resist film upon exposure, and controlling undesirable chemical reactions in non-exposed areas.
  • An acid diffusion control agent is a compound that generates an acid upon exposure to light, so it can be said to be an acid generator in a broad sense.
  • the [C] acid diffusion control agent is a compound that generates acid when exposed to light. It is a compound that generates an acid that does not dissociate the acid-dissociable group upon exposure under conditions that dissociate the acid-dissociable group.
  • Examples of monovalent radiation-sensitive onium cations include monovalent cations represented by the following formulas (ra) to (rb) (hereinafter referred to as “cations (ra) to (rb)”). ), etc.
  • b1 is an integer of 0 to 4.
  • R B1 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom.
  • the plurality of R B1s are the same or different and are a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom, or these groups are combined with each other. These are part of a ring structure with 4 to 20 ring members that is formed together with the carbon chains to which they are bonded.
  • b2 is an integer from 0 to 4.
  • R B2 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom.
  • the plurality of R B2s are the same or different and are a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom, or these groups are combined with each other. These are part of a ring structure with 4 to 20 ring members that is formed together with the carbon chains to which they are bonded.
  • R B3 and R B4 are each independently a hydrogen atom, a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom, or they are combined with each other to represent a single bond.
  • b3 is an integer from 0 to 11.
  • R B5 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom.
  • the plurality of R B5s are the same or different and are a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom, or these groups are combined with each other. These are part of a ring structure with 4 to 20 ring members that is formed together with the carbon chains to which they are bonded.
  • n b1 is an integer from 0 to 3.
  • b4 is an integer from 0 to 5.
  • R B6 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom.
  • the plurality of R B6s are the same or different and are a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom, or these groups are combined with each other. These are part of a ring structure with 4 to 20 ring members that is formed together with the carbon chains to which they are bonded.
  • b5 is an integer from 0 to 5.
  • R B7 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom.
  • the plurality of R B7s are the same or different and are a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom, or these groups are combined with each other. These are part of a ring structure with 4 to 20 ring members that is formed together with the carbon chains to which they are bonded.
  • Organic group refers to a group containing at least one carbon atom.
  • Examples of monovalent organic groups having 1 to 20 carbon atoms represented by R B1 , R B2 , R B3 , R B4 , R B5 and R B6 include monovalent hydrocarbon groups having 1 to 20 carbon atoms; A group ( ⁇ ) containing a divalent heteroatom-containing group between carbons of a hydrocarbon group, a monovalent heteroatom-containing group in which some or all of the hydrogen atoms of the above hydrocarbon group or the above group ( ⁇ ) are Examples include a group ( ⁇ ) substituted with ( ⁇ ), the above hydrocarbon group, the above group ( ⁇ ), or a group ( ⁇ ) combining the above group ( ⁇ ) with a divalent hetero atom-containing group.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms include, for example, the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R X , R Y or R Z in the above formula (II-1). Examples include groups similar to the exemplified groups.
  • heteroatom constituting the monovalent or divalent heteroatom-containing group examples include oxygen atom, nitrogen atom, sulfur atom, phosphorus atom, silicon atom, and halogen atom.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • divalent heteroatom-containing groups include -O-, -CO-, -S-, -CS-, -NR'-, and groups combining two or more of these (for example, -COO-, -CONR'-, etc.).
  • R' is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • R B1 , R B2 , R B3 , R B4 , R B5 and R B6 some or all of the hydrogen atoms possessed by a halogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms are replaced by a monovalent halogen atom. Groups substituted with are preferred.
  • the halogen atom in this case is preferably a fluorine atom. In this case, it is possible to achieve a good balance between the sensitivity, LWR performance, and process window of the radiation-sensitive resin composition.
  • R B3 and R B4 are preferably a hydrogen atom or a single bond formed by combining these atoms with each other.
  • b1, b2 and b3 are preferably 0 to 3.
  • n b1 0 or 1 is preferable.
  • cation (ra-a) for example, cations represented by the following formulas (ra-1) to (ra-12) (hereinafter referred to as "cations (ra-1) to (ra-a- (also referred to as ⁇ 12)'').
  • cations (ra-1) to (ra-a- also referred to as ⁇ 12)''
  • cation (r-b) examples include a cation represented by the following formula (r-b-1) (hereinafter also referred to as "cation (r-b-1)").
  • Examples of monovalent organic acid anions include carboxylic acid anions.
  • Examples of the carboxylic acid anion include anions represented by the following formulas (3-1) to (3-9) (hereinafter also referred to as “anions (3-1) to (3-9)").
  • [C] As the acid diffusion control agent, a compound obtained by appropriately combining the above cation and the above anion can be used.
  • the lower limit of the content of the acid diffusion control agent [C] in the radiation-sensitive resin composition is preferably 1 mol%, more preferably 5 mol%, and more preferably 10 mol%, based on 100 mol% of the acid generator [B]. More preferred is mole %.
  • the upper limit of the content is preferably 100 mol%, more preferably 50 mol%, and even more preferably 30 mol%.
  • the radiation-sensitive resin composition usually contains [D] an organic solvent.
  • the organic solvent may be a solvent capable of dissolving or dispersing at least the [A] polymer, [B] acid generator, [C] acid diffusion control agent, and other optional components contained as necessary. There are no particular limitations.
  • organic solvent examples include alcohol-based solvents, ether-based solvents, ketone-based solvents, amide-based solvents, ester-based solvents, hydrocarbon-based solvents, and the like.
  • the organic solvent may contain one type or two or more types.
  • alcoholic solvents include aliphatic monoalcohols having 1 to 18 carbon atoms such as 4-methyl-2-pentanol and n-hexanol, and alicyclic monoalcohols having 3 to 18 carbon atoms such as cyclohexanol.
  • solvents polyhydric alcohol solvents having 2 to 18 carbon atoms such as 1,2-propylene glycol, and partial ether solvents of polyhydric alcohols having 3 to 19 carbon atoms such as propylene glycol monomethyl ether.
  • ether solvents include dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether, and diheptyl ether, cyclic ether solvents such as tetrahydrofuran and tetrahydropyran, diphenyl ether, Examples include aromatic ring-containing ether solvents such as anisole.
  • dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether, and diheptyl ether
  • cyclic ether solvents such as tetrahydrofuran and tetrahydropyran
  • diphenyl ether examples include aromatic ring-containing ether solvents such as anisole.
  • ketone solvents include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, 2-heptanone, ethyl-n-butyl ketone, methyl-n-hexyl ketone, Chain ketone solvents such as di-iso-butyl ketone and trimethylnonanone, cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, and methylcyclohexanone, 2,4-pentanedione, and acetonyl acetone. , acetophenone, etc.
  • amide solvents include cyclic amide solvents such as N,N'-dimethylimidazolidinone and N-methylpyrrolidone, N-methylformamide, N,N-dimethylformamide, N,N-diethylformamide, acetamide, and N-methylformamide.
  • chain amide solvents such as -methylacetamide, N,N-dimethylacetamide, and N-methylpropionamide.
  • ester solvents include monocarboxylic acid ester solvents such as n-butyl acetate and ethyl lactate, lactone solvents such as ⁇ -butyrolactone and valerolactone, polyhydric alcohol carboxylate solvents such as propylene glycol acetate, and propylene glycol.
  • ester solvents include monocarboxylic acid ester solvents such as n-butyl acetate and ethyl lactate, lactone solvents such as ⁇ -butyrolactone and valerolactone, polyhydric alcohol carboxylate solvents such as propylene glycol acetate, and propylene glycol.
  • Examples include polyhydric alcohol partial ether carboxylate solvents such as monomethyl ether acetate, polyhydric carboxylic acid diester solvents such as diethyl oxalate, and carbonate solvents such as dimethyl carbonate and diethyl carbonate.
  • hydrocarbon solvents examples include aliphatic hydrocarbon solvents having 5 to 12 carbon atoms such as n-pentane and n-hexane, and aromatic hydrocarbon solvents having 6 to 16 carbon atoms such as toluene and xylene. It will be done.
  • the organic solvent is preferably an alcohol solvent, an ester solvent, or a combination thereof, and a polyhydric alcohol partial ether solvent having 3 to 19 carbon atoms, a polyhydric alcohol partial ether carboxylate solvent, or a combination thereof. More preferred are propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, or combinations thereof.
  • the lower limit of the content ratio of the [D] organic solvent is 50% by mass with respect to all components contained in the radiation-sensitive resin composition. %, more preferably 60% by weight, even more preferably 70% by weight, particularly preferably 80% by weight.
  • the upper limit of the content ratio is preferably 99.9% by mass, preferably 99.5% by mass, and even more preferably 99.0% by mass.
  • Other optional components include, for example, surfactants.
  • the radiation-sensitive resin composition may contain one or more other optional components.
  • the resist pattern forming method includes a step of directly or indirectly applying a radiation-sensitive resin composition to a substrate (hereinafter also referred to as a “coating step”), and a step of exposing a resist film formed by the above coating to light. (hereinafter also referred to as “exposure step”) and a step of developing the exposed resist film (hereinafter also referred to as “developing step”).
  • the radiation-sensitive resin composition described above is used as the radiation-sensitive resin composition. Therefore, according to the resist pattern forming method, a resist pattern with excellent sensitivity and LWR performance and a wide process window can be formed.
  • the radiation-sensitive resin composition described above is used as the radiation-sensitive resin composition.
  • Examples of the substrate include conventionally known substrates such as silicon wafers, silicon dioxide, and aluminum-coated wafers.
  • PB pre-baking
  • the lower limit of the temperature of PB is preferably 60°C, more preferably 80°C.
  • the upper limit of the above temperature is preferably 150°C, more preferably 140°C.
  • the lower limit of the PB time is preferably 5 seconds, more preferably 10 seconds.
  • the upper limit of the above time is preferably 600 seconds, more preferably 300 seconds.
  • the lower limit of the average thickness of the resist film to be formed is preferably 10 nm, more preferably 20 nm.
  • the upper limit of the average thickness is preferably 1,000 nm, more preferably 500 nm.
  • the resist film formed in the above coating step is exposed.
  • This exposure is performed by irradiating exposure light through a photomask (in some cases, through an immersion medium such as water).
  • a photomask in some cases, through an immersion medium such as water.
  • ArF excimer laser light wavelength 193 nm
  • KrF excimer laser light wavelength 248 nm
  • EUV wavelength 13.5 nm
  • KrF excimer laser light Light EUV or electron beams are more preferred, and EUV or electron beams are particularly preferred.
  • PEB post-exposure bake
  • the lower limit of the temperature of PEB is preferably 50°C, more preferably 80°C.
  • the upper limit of the above temperature is preferably 180°C, more preferably 130°C.
  • the lower limit of the PEB time is preferably 5 seconds, more preferably 10 seconds, and even more preferably 30 seconds.
  • the upper limit of the above time is preferably 600 seconds, more preferably 300 seconds, and even more preferably 100 seconds.
  • the exposed resist film is developed. Thereby, a predetermined resist pattern can be formed.
  • the developing method in the developing step may be alkaline development or organic solvent development.
  • the developer used for development includes, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n-propylamine, diethylamine, di-n- Propylamine, triethylamine, methyldiethylamine, ethyldimethylamine, triethanolamine, tetramethylammonium hydroxide (hereinafter also referred to as "TMAH”), pyrrole, piperidine, choline, 1,8-diazabicyclo-[5.4.0]
  • TMAH tetramethylammonium hydroxide
  • Examples include aqueous alkaline solutions in which at least one alkaline compound such as -7-undecene and 1,5-diazabicyclo-[4.3.0]-5-nonene is dissolved.
  • a TMAH aqueous solution is preferred, and a 2.38% by mass TMAH aque
  • examples of the developer include organic solvents such as hydrocarbon solvents, ether solvents, ester solvents, ketone solvents, and alcohol solvents, and solutions containing the above organic solvents.
  • examples of the organic solvent include the solvents exemplified as the organic solvent [D] in the radiation-sensitive resin composition described above.
  • Mw and Mn of the polymer were measured according to the conditions described in the above section [Method for measuring Mw and Mn].
  • the polydispersity (Mw/Mn) of the polymer was calculated from the measurement results of Mw and Mn.
  • parts by mass means the value when the total mass of the monomers used is 100 parts by mass
  • mol% means the total mass of the monomers used. It means the value when the number of moles is 100 mol%.
  • the monomer solution prepared above was added dropwise over 3 hours, and then heated at 85° C. for an additional 3 hours.
  • the polymerization solution was cooled to room temperature.
  • the cooled polymerization solution was poured into hexane (500 parts by mass based on the polymerization solution), and the precipitated white powder was filtered out.
  • the filtered white powder was washed twice with 100 parts by mass of hexane based on the polymerization solution. Thereafter, it was dissolved again in propylene glycol monomethyl ether (300 parts by mass).
  • the polymerization solution was cooled to room temperature.
  • the cooled polymerization solution was poured into methanol (2,000 parts by mass based on the polymerization solution), and the precipitated white powder was filtered out.
  • the obtained solid was dissolved in acetone (100 parts by mass). This was dropped into 500 parts by mass of water, and the solidified solid was filtered off. It was dried at 50° C. for 12 hours to obtain a white powdery polymer (A-70).
  • the Mw of the polymer (A-70) was 8,400, and the Mw/Mn was 1.7.
  • Table 1 below shows the types and proportions used of monomers providing each structural unit of the [A] polymers obtained in Synthesis Examples 2-1 to 2-76, as well as Mw and Mw/Mn.
  • "-" indicates that the corresponding monomer was not used.
  • Acid generator [B] Compounds represented by the following formulas (B-1) to (B-18) (hereinafter also referred to as “acid generators (B-1) to (B-18)”) are used as acid generators. there was.
  • [C] Acid diffusion control agent] [C] Compounds represented by the following formulas (C-1) to (C-12) and (CC-1) as acid diffusion control agents (hereinafter referred to as "acid diffusion control agents (C-1) to (C-1)") 12) and (CC-1)" were used. Note that the acid diffusion control agent (CC-1) does not fall under the category of "acid diffusion control agent having a monovalent radiation-sensitive onium cation and a monovalent organic acid anion.”
  • the resist film was subjected to post-exposure baking (PEB) at 110° C. for 60 seconds.
  • PEB post-exposure baking
  • development was performed at 23° C. for 30 seconds to form a positive 32 nm line-and-space pattern.
  • the exposure amount for forming a 32 nm line-and-space pattern was defined as the optimum exposure amount, and this optimum exposure amount was defined as Eop (unit: mJ/cm 2 ). The smaller the Eop value, the better the sensitivity.
  • LWR performance The formed resist pattern was observed from above using the scanning electron microscope. The line width was measured at a total of 50 points at arbitrary locations, a 3 sigma value was determined from the distribution of the measured values, and this was defined as LWR (unit: nm). The LWR performance indicates that the smaller the LWR value, the better.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)

Abstract

下記式(1)で表される第1構造単位を有し、酸の作用により現像液への溶解性が変化する重合体と、感放射線性酸発生剤と、1価の感放射線性オニウムカチオンと1価の有機酸アニオンとを有する酸拡散制御剤とを含有する感放射線性樹脂組成物。

Description

感放射線性樹脂組成物及びレジストパターン形成方法
 本発明は、感放射線性樹脂組成物及びレジストパターン形成方法に関する。
 リソグラフィーによる微細加工に用いられる感放射線性樹脂組成物は、ArFエキシマレーザー光(波長193nm)、KrFエキシマレーザー光(波長248nm)等の遠紫外線、極端紫外線(EUV)(波長13.5nm)等の電磁波、電子線等の荷電粒子線などの放射線の照射により露光部に酸を発生させ、この酸を触媒とする化学反応により露光部と非露光部との現像液に対する溶解速度に差異を生じさせることで基板上にレジストパターンを形成する。
 感放射線性樹脂組成物には、極端紫外線、電子線等の露光光に対する感度が良好であることに加え、LWR(Line Width Roughness)性能等に優れることが要求される。また、レジストパターンのさらなる微細化に伴い、露光・現像条件のわずかなブレがレジストパターンの形状や欠陥の発生に及ぼす影響もますます大きくなっている。このようなプロセス条件のわずかなブレを吸収できるようなプロセスウィンドウ(プロセス余裕度)の広い感放射線性樹脂組成物も求められている。
 これらの要求に対しては、感放射線性樹脂組成物に用いられる重合体、酸発生剤及びその他の成分の種類、分子構造などが検討され、さらにその組み合わせについても詳細に検討されている(特開2010-134279号公報、特開2014-224984号公報及び特開2016-047815号公報参照)。
特開2010-134279号公報 特開2014-224984号公報 特開2016-047815号公報
 レジストパターンのさらなる微細化に伴い、上記性能の要求レベルはさらに高まっており、これらの要求を満たす感放射線性樹脂組成物が求められている。
 本発明は、上述のような事情に基づいてなされたものであり、その目的は、感度及びLWR性能に優れ、プロセスウィンドウの広い感放射線性樹脂組成物及びレジストパターン形成方法を提供することにある。
 上記課題を解決するためになされた発明は、下記式(1)で表される第1構造単位を有し、酸の作用により現像液への溶解性が変化する重合体(以下、「[A]重合体」ともいう)と、感放射線性酸発生剤(以下、「[B]酸発生剤」ともいう)と、1価の感放射線性オニウムカチオンと1価の有機酸アニオンとを有する酸拡散制御剤(以下、「[C]酸拡散制御剤」ともいう)とを含有する感放射線性樹脂組成物である。
Figure JPOXMLDOC01-appb-C000002
(式(1)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Lは、単結合又は2価の連結基である。Arは、置換又は非置換の環員数13以上の縮合多環式芳香族炭化水素環から1個の水素原子を除いた基である。)
 上記課題を解決するためになされた別の発明は、基板に直接又は間接に上述の当該感放射線性樹脂組成物を塗工する工程と、上記塗工により形成されたレジスト膜を露光する工程と、上記露光されたレジスト膜を現像する工程とを備えるレジストパターン形成方法である。
 本発明の感放射線性樹脂組成物は、感度及びLWR性能に優れ、プロセスウィンドウが広い。本発明のレジストパターン形成方法によれば、感度及びLWR性能に優れ、プロセスウィンドウの広いレジストパターンを形成することができる。したがって、これらは、今後さらに微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。
 以下、本発明の感放射線性樹脂組成物及びレジストパターン形成方法について詳説する。
<感放射線性樹脂組成物>
 当該感放射線性樹脂組成物は、[A]重合体と、[B]酸発生剤と、[C]酸拡散制御剤とを含有する。当該感放射線性樹脂組成物は、通常、有機溶媒(以下、「[D]有機溶媒」ともいう)を含有する。当該感放射線性樹脂組成物は、本発明の効果を損なわない範囲において、その他の任意成分を含有していてもよい。
 当該感放射線性樹脂組成物は、[A]重合体と、[B]酸発生剤と、[C]酸拡散制御剤とを含有することで、感度及びLWR性能に優れ、プロセスウィンドウが広いという効果を奏する。当該感放射線性樹脂組成物が上記構成を備えることで上記効果を奏する理由は必ずしも明確ではないが、例えば以下のように推察することができる。すなわち、[A]重合体が後述の式(1)で表される第1構造単位を有することにより、露光により[B]酸発生剤等から発生する酸の量が増加すると考えられる。そして、[B]酸発生剤等から発生する酸の量が増加することにより、[A]重合体が有する酸の作用により現像液への溶解性の変化量が増加すると考えられる。その結果、上述の効果を奏すると考えられる。
 当該感放射線性樹脂組成物は、例えば[A]重合体、[B]酸発生剤及び[C]酸拡散制御剤、並びに必要に応じて[D]有機溶媒及びその他の任意成分などを所定の割合で混合し、好ましくは得られた混合物を孔径0.20μm以下のメンブランフィルターでろ過することにより調製することができる。
 以下、当該感放射線性樹脂組成物が含有する各成分について説明する。
<[A]重合体>
 [A]重合体は、後述の式(1)で表される第1構造単位(以下、「構造単位(I)」ともいう)を有する。[A]重合体は、酸の作用により現像液への溶解性が変化する重合体である。当該感放射線性樹脂組成物は、1種又は2種以上の[A]重合体を含有することができる。
 [A]重合体は、酸解離性基を含む第2構造単位(以下、「構造単位(II)」ともいう)をさらに有することが好ましい。[A]重合体は、フェノール性水酸基を含む第3構造単位(以下、「構造単位(III)」ともいう)をさらに有することが好ましい。[A]重合体は、構造単位(I)~(III)以外のその他の構造単位(以下、単に「その他の構造単位」ともいう)をさらに有していてもよい。[A]重合体は、1種又は2種以上の各構造単位を有することができる。
 なお、[A]重合体が有する構造単位は、2種以上の構造単位の分類に重複して該当すると考えられる場合がある。例えば、構造単位(I)だけでなく、構造単位(I)以外の構造単位にも該当すると考えられる構造単位が含まれ得る。このような場合、本明細書では、構造単位の括弧内の番号の若い方に該当すると取り扱うものとする。
 当該感放射線性樹脂組成物における[A]重合体の含有割合の下限としては、当該感放射線性樹脂組成物が含有する[D]有機溶媒以外の全成分に対して、50質量%が好ましく、70質量%がより好ましく、80質量%がさらに好ましい。上記含有割合の上限としては、99質量%が好ましく、95質量%がより好ましい。
 [A]重合体のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(Mw)の下限としては、1,000が好ましく、2,000がより好ましく、3,000がさらに好ましく、4,000がより一層好ましい。上記Mwの上限としては、30,000が好ましく、20,000がより好ましく、19,000がさらに好ましく、17,000がより一層好ましい。[A]重合体のMwを上記範囲とすることで、当該感放射線性樹脂組成物の塗工性を向上させることができる。[A]重合体のMwは、例えば合成に使用する重合開始剤の種類やその使用量等を調整することにより調節することができる。
 [A]重合体のGPCによるポリスチレン換算数平均分子量(Mn)に対するMwの比(以下、「Mw/Mn」又は「多分散度」ともいう)の上限としては、2.5が好ましく、2.0がより好ましく、1.9がさらに好ましく、1.7がより一層好ましい。上記比の下限としては、通常1.0であり、1.1が好ましく、1.2がより好ましく、1.3がさらに好ましく、1.4がより一層好ましい。
[Mw及びMnの測定方法]
 本明細書における[A]重合体のMw及びMnは、以下の条件によるゲルパーミエーションクロマトグラフィー(GPC)を用いて測定される値である。
 GPCカラム:東ソー(株)の「G2000HXL」2本、「G3000HXL」1本及び「G4000HXL」1本
 カラム温度 :40℃
 溶出溶媒  :テトラヒドロフラン
 流速    :1.0mL/分
 試料濃度  :1.0質量%
 試料注入量 :100μL
 検出器   :示差屈折計
 標準物質  :単分散ポリスチレン
 [A]重合体は、例えば各構造単位を与える単量体を公知の方法で重合することにより合成することができる。
 以下、[A]重合体が有する各構造単位について説明する。
[構造単位(I)]
 構造単位(I)は、下記式(1)で表される構造単位である。
Figure JPOXMLDOC01-appb-C000003
 上記式(1)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Lは、単結合又は2価の連結基である。Arは、置換又は非置換の環員数13以上の縮合多環式芳香族炭化水素環から1個の水素原子を除いた基である。
 「環員数」とは、環構造を構成する原子数をいい、多環の場合はこの多環を構成する原子数をいう。「縮合多環」とは、隣接する2つの環が2つの共有原子を有する環構造を意味する。「縮合多環」は、隣接する2つの環が共有原子を持たず、単結合で連結している「環集合式多環」とは明確に区別される。「環構造からX個の水素原子を除いた基」とは、環構造を構成する原子に結合するX個の水素原子を除いた基を意味する。
 Rとしては、構造単位(I)を与える単量体の共重合性の観点から、水素原子又はメチル基が好ましく、メチル基がより好ましい。
 Lにおける2価の連結基としては、例えばカルボニル基、エーテル基、スルフィド基、炭素数1~10のアルカンジイル基又はこれらを組み合わせた基などが挙げられる。Lが2価の連結基である場合、Lが結合する酸素原子とArとの間の最短原子鎖数としては、1~4が好ましい。
 Lとしては、当該感放射線性樹脂組成物のプロセスウィンドウをより広げる観点からは、単結合であることが好ましい。また、当該感放射線性樹脂組成物の感度をより高める観点からは、2価の連結基であることが好ましい。
 Arを与える環員数13以上の縮合多環式芳香族炭化水素環としては、例えばアントラセン環(環員数14)、フェナントレン環(環員数14)、フェナレン環(環員数13)等の縮合三環式芳香族炭化水素環、ピレン環(環員数16)、クリセン環(環員数18)、テトラフェン環(環員数18)、テトラセン環(環員数18)、トリフェニレン環(環員数18)等の縮合四環式芳香族炭化水素環、ペリレン環(環員数20)、ピセン環(環員数22)、ペンタフェン環(環員数22)、ペンタセン環(環員数22)等の縮合五環式芳香族炭化水素環などが挙げられる。
 上記縮合多環式芳香族炭化水素環の環員数の下限としては、13であり、14が好ましい。上記環員数の上限としては、22が好ましく、20がより好ましく、18がさらに好ましく、16がより一層好ましい。
 上記縮合多環式芳香族炭化水素環としては、縮合三環式芳香族炭化水素環又は縮合四環式芳香族炭化水素環が好ましく、アントラセン環、フェナントレン環又はピレン環がより好ましく、アントラセン環又はピレン環がさらに好ましく、ピレン環がより一層好ましい。アントラセン環又はピレン環である場合、フェナントレン環である場合よりも、当該感放射線性樹脂組成物の感度、LWR性能及びプロセスウィンドウがより優れるため好ましい。また、ピレン環である場合、アントラセン環である場合よりも、当該感放射線性樹脂組成物の感度及びプロセスウィンドウがより一層優れるため好ましい。
 上記縮合多環式芳香族炭化水素環が有する場合がある置換基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、ニトロ基、アルキル基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、アシル基、アシロキシ基などが挙げられる。当該感放射線性樹脂組成物のLWR性能をより高める観点からは、上記縮合多環式芳香族炭化水素環は置換の縮合多環式芳香族炭化水素環であることが好ましい。この場合の置換基としては、ハロゲン原子が好ましく、臭素原子又はヨウ素原子がより好ましく、ヨウ素原子がさらに好ましい。一方、当該感放射線性樹脂組成物のプロセスウィンドウをより広げる観点からは、上記縮合多環式芳香族炭化水素環は非置換の縮合多環式芳香族炭化水素環であることが好ましい。
 [A]重合体における構造単位(I)の含有割合の下限としては、[A]重合体を構成する全構造単位に対して、5モル%が好ましく、10モル%がより好ましく、20モル%がさらに好ましい。上記含有割合の上限としては、70モル%が好ましく、60モル%がより好ましく、50モル%がさらに好ましい。構造単位(I)の含有割合を上記範囲とすることで当該感放射線性樹脂組成物の感度、LWR性能及びプロセスウィンドウをより向上させたり、良好なバランスを図ったりすることができる。本明細書における数値範囲の上限及び下限に関する記載は特に断りのない限り、上限は「以下」であっても「未満」であってもよく、下限は「以上」であっても「超」であってもよい。また、上限値及び下限値は任意に組み合わせることができる。
 構造単位(I)を与える単量体(以下、「[X]単量体」ともいう)を公知の方法で重合することにより構造単位(I)を有する[A]重合体を合成することができる。[X]単量体は、例えば9-アントロール等の上記式(1)におけるArを与える化合物と、塩化メタクリロイル等の[X]単量体の骨格構造となる化合物とを公知の方法で反応させることにより得ることができる。
[構造単位(II)]
 構造単位(II)は、酸解離性基を含む構造単位である。「酸解離性基」とは、カルボキシ基、ヒドロキシ基等における水素原子を置換する基であって、酸の作用により解離してカルボキシ基、ヒドロキシ基等を与える基を意味する。露光により[B]酸発生剤等から発生する酸の作用により酸解離性基が解離し、露光部と非露光部との間における[A]重合体の現像液への溶解性に差異が生じることにより、レジストパターンを形成することができる。通常、[A]重合体が構造単位(II)を有することで、酸の作用により現像液への溶解性が変化する性質が発揮される。
 構造単位(II)としては、例えば下記式(II-1)又は(II-2)で表される構造単位(以下、「構造単位(II-1)又は(II-2)」ともいう)等が挙げられる。なお、例えば下記式(II-1)において、カルボキシ基に由来するエーテル性酸素原子に結合する-C(R)(R)(R)が酸解離性基に該当する。
Figure JPOXMLDOC01-appb-C000004
 上記式(II-1)及び(II-2)中、Rは、それぞれ独立して、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
 上記式(II-1)中、Rは、炭素数1~20の1価の炭化水素基である。R及びRは、それぞれ独立して、炭素数1~20の1価の炭化水素基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の飽和脂環の一部である。
 上記式(II-2)中、Rは、水素原子である。R及びRは、それぞれ独立して、水素原子又は炭素数1~20の1価の炭化水素基である。Rは、R、R及びRがそれぞれ結合する炭素原子と共に環員数4~20の不飽和脂環を構成する炭素数1~20の2価の炭化水素基である。
 「炭素数」とは、基を構成する炭素原子数をいう。「炭化水素基」には、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基が含まれる。この「炭化水素基」は、飽和炭化水素基でも不飽和炭化水素基でもよい。「鎖状炭化水素基」とは、環状構造を含まず、鎖状構造のみで構成された炭化水素基をいい、直鎖状炭化水素基及び分岐鎖状炭化水素基の両方を含む。「脂環式炭化水素基」とは、環構造としては脂環のみを含み、芳香環を含まない炭化水素基をいい、単環の脂環式炭化水素基及び多環の脂環式炭化水素基の両方を含む。但し、脂環のみで構成されている必要はなく、その一部に鎖状構造を含んでいてもよい。「芳香族炭化水素基」とは、環構造として芳香環を含む炭化水素基をいう。但し、芳香環のみで構成されている必要はなく、その一部に鎖状構造や脂環を含んでいてもよい。
 R、R、R、R又はRで表される炭素数1~20の1価の炭化水素基としては、例えば炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基等が挙げられる。
 炭素数1~20の1価の鎖状炭化水素基としては、例えばメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基等のアルキル基、エテニル基、プロペニル基、ブテニル基、2-メチルプロパ-1-エン-1-イル基等のアルケニル基、エチニル基、プロピニル基、ブチニル基等のアルキニル基などが挙げられる。
 炭素数3~20の1価の脂環式炭化水素基としては、例えばシクロペンチル基、シクロヘキシル基等の単環の脂環式飽和炭化水素基、ノルボルニル基、アダマンチル基、トリシクロデシル基、テトラシクロドデシル基等の多環の脂環式飽和炭化水素基、シクロペンテニル基、シクロヘキセニル基等の単環の脂環式不飽和炭化水素基、ノルボルネニル基、トリシクロデセニル基、テトラシクロドデセニル基等の多環の脂環式不飽和炭化水素基などが挙げられる。
 炭素数6~20の1価の芳香族炭化水素基としては、例えばフェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基、ベンジル基、フェネチル基、ナフチルメチル基、アントリルメチル基等のアラルキル基などが挙げられる。
 R及びRが互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の飽和脂環としては、例えばシクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環等の単環の飽和脂環、ノルボルナン環、アダマンタン環、トリシクロデカン環、テトラシクロドデカン環等の多環の飽和脂環などが挙げられる。
 Rで表される炭素数1~20の2価の炭化水素基としては、例えば上述のR、R、R、R又はRで表される炭素数1~20の1価の炭化水素基として例示した基から1個の水素原子を除いた基などが挙げられる。
 RがR、R及びRがそれぞれ結合する炭素原子と共に構成する環員数4~20の不飽和脂環としては、例えばシクロブテン環、シクロペンテン環、シクロヘキセン環等の単環の不飽和脂環、ノルボルネン環等の多環の不飽和脂環などが挙げられる。
 Rとしては、構造単位(II)を与える単量体の共重合性の観点から、水素原子又はメチル基が好ましい。
 Rとしては、鎖状炭化水素基又は芳香族炭化水素基が好ましく、アルキル基、アルケニル基又はアリール基がより好ましく、メチル基、エチル基、i-プロピル基、tert-ブチル基、エテニル基又はフェニル基がさらに好ましい。
 R及びRとしては、これらが互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の飽和脂環の一部であることが好ましい。上記飽和脂環としては、シクロペンタン環、シクロヘキサン環、アダマンタン環又はテトラシクロドデカン環が好ましい。
 Rとしては、水素原子が好ましい。
 Rとしては、鎖状炭化水素基が好ましく、アルキル基がより好ましく、メチル基がさらに好ましい。
 RがR、R及びRがそれぞれ結合する炭素原子と共に構成する環員数4~20の不飽和脂環としては、単環の不飽和脂環が好ましく、シクロヘキセン環がより好ましい。
 構造単位(II-1)としては、例えば下記式(II-1-1)~(II-1-9)で表される構造単位(以下、「構造単位(II-1-1)~(II-1-9)」ともいう)などが挙げられる。構造単位(II-2)としては、例えば下記式(II-2-1)~(II-2-2)で表される構造単位(以下、「構造単位(II-2-1)~(II-2-2)」ともいう)などが挙げられる。
Figure JPOXMLDOC01-appb-C000005
 上記式(II-1-1)~(II-1-9)及び(II-2-1)~(II-2-2)中、Rは、上記式(II-1)及び(II-2)と同義である。
 [A]重合体における構造単位(II)の含有割合の下限としては、[A]重合体を構成する全構造単位に対して、30モル%が好ましく、40モル%がより好ましい。上記含有割合の上限としては、70モル%が好ましく、60モル%がより好ましい。
[構造単位(III)]
 構造単位(III)は、フェノール性水酸基を含む構造単位である。「フェノール性水酸基」とは、ベンゼン環に直結するヒドロキシ基に限らず、芳香環に直結するヒドロキシ基全般を意味する。
 [A]重合体が構造単位(III)を有する場合、レジスト膜の親水性を高めることができ、現像液に対する溶解性を適度に調整することができ、加えて、レジストパターンの基板への密着性を向上させることができる。また、後述するレジストパターン形成方法における露光工程で照射する放射線として極端紫外線(EUV)又は電子線を用いる場合には、露光光に対する感度をより向上させることができる。したがって、[A]重合体が構造単位(III)を有する場合、当該感放射線性樹脂組成物は、極端紫外線露光用又は電子線露光用の感放射線性樹脂組成物として特に好適に用いることができる。
 構造単位(III)としては、例えば下記式(III-1)で表される構造単位(以下、「構造単位(III-1)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 上記式(III-1)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Lは、単結合、-COO-、-O-、又は-CONH-である。Arは、置換又は非置換の環員数6~30の芳香族炭化水素環から(n+1)個の水素原子を除いた基である。nは、1~3の整数である。
 Rとしては、構造単位(III-1)を与える単量体の共重合性の観点から、水素原子又はメチル基が好ましい。
 Lとしては、単結合又は-COO-が好ましい。
 Arを与える環員数6~30の芳香族炭化水素環としては、例えばベンゼン環;ナフタレン環、アントラセン環、フルオレン環、ビフェニレン環、フェナントレン環、ピレン環等の縮合多環式芳香族炭化水素環;ビフェニル環、テルフェニル環、ビナフタレン環、フェニルナフタレン環等の環集合式芳香族炭化水素環などが挙げられる。これらの中でも、ベンゼン環又はナフタレン環が好ましい。
 上記芳香族炭化水素環が有する場合がある置換基としては、フッ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、ニトロ基、アルキル基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、アシル基、アシロキシ基等が挙げられる。
 nとしては、1又は2が好ましい。
 構造単位(III-1)としては、例えば下記式(III-1-1)~(III-1-12)で表される構造単位(以下、「構造単位(III-1-1)~(III-1-12)」ともいう)などが挙げられる。
Figure JPOXMLDOC01-appb-C000007
 上記式(III-1-1)~(III-1-12)中、Rは、上記式(III-1)と同義である。
 [A]重合体が構造単位(III)を有する場合、構造単位(III)の含有割合の下限としては、[A]重合体における全構造単位に対して、5モル%が好ましく、10モル%がより好ましい。上記含有割合の上限としては、70モル%が好ましく、60モル%がより好ましい。
[その他の構造単位]
 その他の構造単位は、上記構造単位(I)~(III)以外の構造単位である。その他の構造単位は、本発明の効果を損なわない範囲において、感放射線性樹脂組成物の重合体として用いられる公知の単量体に由来する構造単位の中から選択することができる。その他の構造単位としては、例えばラクトン構造、環状カーボネート構造、スルトン構造又はこれらの組み合わせを含む構造単位(以下、「構造単位(IV)」ともいう)、アルコール性水酸基を含む構造単位(以下、「構造単位(V)」ともいう)、露光により酸を発生する構造単位(以下、「構造単位(VI)」ともいう)などが挙げられる。
 [A]重合体がその他の構造単位を有する場合、その他の構造単位の含有割合は、その他の構造単位の種類や目的等に応じて適宜決定することができる。例えば、[A]重合体における全構造単位に対して、1モル%以上20モル%以下とすることができる。
(構造単位(IV))
 構造単位(IV)は、ラクトン構造、環状カーボネート構造、スルトン構造又はこれらの組み合わせを含む構造単位である。[A]重合体が構造単位(IV)を有する場合、レジスト膜の親水性を高めることができ、現像液に対する溶解性を適度に調整することができる。
 構造単位(IV)としては、例えば下記式で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 上記式中、RL1は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
 構造単位(IV)としては、ラクトン構造、環状カーボネート構造又はこれらの組み合わせを含む構造単位が好ましい。
(構造単位(V))
 構造単位(V)は、アルコール性水酸基を含む構造単位である。[A]重合体が構造単位(V)を有する場合、レジスト膜の親水性を高めることができ、現像液に対する溶解性を適度に調整することができ、加えて、レジストパターンの基板への密着性を向上させることができる。
 構造単位(V)としては、例えば下記式で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 上記式中、RL2は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
(構造単位(VI))
 構造単位(VI)は、露光により酸を発生する構造単位である。[A]重合体が構造単位(VI)を有する場合、[A]重合体は感放射線性酸発生体としても機能する。
 構造単位(VI)としては、例えば下記式で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 上記式中、RL3は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Yは、1価の感放射線性オニウムカチオンである。
 Yで表される1価の感放射線性オニウムカチオンとしては、例えば後述の[C]酸拡散制御剤における1価の感放射線性オニウムカチオンとして例示するものと同様のもの等が挙げられる。
<[B]酸発生剤>
 [B]酸発生剤は、露光により酸を発生する物質である。露光光としては、例えば後述する当該レジストパターン形成方法の露光工程における露光光として例示するものと同様のもの等が挙げられる。露光により発生した酸により[A]重合体等が有する酸解離性基が解離してカルボキシ基、ヒドロキシ基等が生じ、露光部と非露光部との間でレジスト膜の現像液への溶解性に差異が生じることにより、レジストパターンを形成することができる。
 [B]酸発生剤から発生する酸としては、例えばスルホン酸、イミド酸などが挙げられる。
 [B]酸発生剤としては、例えばオニウム塩化合物、N-スルホニルオキシイミド化合物、スルホンイミド化合物、ハロゲン含有化合物、ジアゾケトン化合物等が挙げられる。
 オニウム塩化合物としては、例えばスルホニウム塩、テトラヒドロチオフェニウム塩、ヨードニウム塩、ホスホニウム塩、ジアゾニウム塩、ピリジニウム塩等が挙げられる。
 [B]酸発生剤の具体例としては、例えば特開2009-134088号公報の段落[0080]~[0113]に記載されている化合物等が挙げられる。
 露光によりスルホン酸を発生する[B]酸発生剤としては、例えば下記式(2)で表される化合物(以下、「[B]化合物」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000014
 上記式(2)中、Rp1は、環員数5以上の環構造を含む1価の基である。Rp2は、2価の連結基である。Rp3及びRp4は、それぞれ独立して、水素原子、フッ素原子、炭素数1~20の1価の炭化水素基又は炭素数1~20の1価のフッ素化炭化水素基である。Rp5及びRp6は、それぞれ独立して、フッ素原子又は炭素数1~20の1価のフッ素化炭化水素基である。np1は、0~10の整数である。np2は、0~10の整数である。np3は、0~10の整数である。np1が2以上の場合、複数のRp2は互いに同一又は異なる。np2が2以上の場合、複数のRp3は互いに同一又は異なり、複数のRp4は互いに同一又は異なる。np3が2以上の場合、複数のRp5は互いに同一又は異なり、複数のRp6は互いに同一又は異なる。Yは、1価の感放射線性オニウムカチオンである。
 Rp1における環員数5以上の環構造としては、例えば環員数5以上の脂環、環員数5以上の脂肪族複素環、環員数6以上の芳香族炭化水素環、環員数5以上の芳香族複素環が挙げられる。
 環員数5以上の脂環としては、例えばシクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロノナン環、シクロデカン環、シクロドデカン環等の単環の飽和脂環、シクロペンテン環、シクロヘキセン環、シクロヘプテン環、シクロオクテン環、シクロデセン環等の単環の不飽和脂環、ノルボルナン環、アダマンタン環、トリシクロデカン環、テトラシクロドデカン環等の多環の飽和脂環、ノルボルネン環、トリシクロデセン環等の多環の不飽和脂環が挙げられる。
 環員数5以上の脂肪族複素環としては、例えばヘキサノラクトン環、ノルボルナンラクト環造等のラクトン環、ヘキサノスルトン環、ノルボルナンスルトン環等のスルトン環、オキサシクロヘプタン環、オキサノルボルナン環、アセタール環等の酸素原子含有複素環、アザシクロヘキサン環、ジアザビシクロオクタン環等の窒素原子含有複素環、チアシクロヘキサン環、チアノルボルナン環等の硫黄原子含有複素環が挙げられる。
 環員数6以上の芳香族炭化水素環としては、例えばベンゼン環、ナフタレン環、フェナントレン環、アントラセン環、9,10-エタノアントラセン環が挙げられる。
 環員数5以上の芳香族複素環としては、例えばフラン環、ピラン環、ベンゾフラン環、ベンゾピラン環等の酸素原子含有複素環、ピリジン環、ピリミジン環、インドール環等の窒素原子含有複素環が挙げられる。
 Rp1の環構造の環員数の下限としては、6が好ましく、8がより好ましく、9がさらに好ましく、10が特に好ましい。上記環員数の上限としては、15が好ましく、14がより好ましく、13がさらに好ましく、12が特に好ましい。上記環員数を上記範囲とすることで上述の酸の拡散長をさらに適度に短くすることができ、その結果、当該感放射線性樹脂組成物の感度及びLWR性能をより向上させることができ、プロセスウィンドウをより拡張させることができる。
 Rp1の環構造が有する水素原子の一部又は全部は、置換基で置換されていてもよい。上記置換基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、ニトロ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、アシル基、アシロキシ基等が挙げられる。これらの中でヒドロキシ基、フッ素原子、又はヨウ素原子が好ましい。
 Rp1としては、環員数5以上の脂環を含む1価の基、環員数6以上の芳香族炭化水素環を含む1価の基又は環員数5以上の脂肪族複素環を含む1価の基が好ましく、多環の飽和脂環を含む1価の基、ヨウ素原子を含む環員数6以上の芳香族炭化水素環を含む1価の基、酸素原子含有複素環を含む1価の基又は硫黄原子含有複素環を含む1価の基がより好ましい。
 Rp2で表される2価の連結基としては、例えばカルボニル基、エーテル基、カルボニルオキシ基、スルフィド基、チオカルボニル基、スルホニル基、2価の炭化水素基等が挙げられる。
 Rp3及びRp4で表される炭素数1~20の1価の炭化水素基としては、例えば炭素数1~20のアルキル基等が挙げられる。Rp3及びRp4で表される炭素数1~20の1価のフッ素化炭化水素基としては、例えば炭素数1~20のフッ素化アルキル基等が挙げられる。Rp3及びRp4としては、水素原子、フッ素原子又はフッ素化アルキル基が好ましく、水素原子、フッ素原子又はパーフルオロアルキル基がより好ましく、水素原子、フッ素原子又はトリフルオロメチル基がさらに好ましい。
 Rp5及びRp6で表される炭素数1~20の1価のフッ素化炭化水素基としては、例えば炭素数1~20のフッ素化アルキル基等が挙げられる。Rp5及びRp6としては、フッ素原子又はフッ素化アルキル基が好ましく、フッ素原子又はパーフルオロアルキル基がより好ましく、フッ素原子又はトリフルオロメチル基がさらに好ましく、フッ素原子が特に好ましい。
 np1としては、0~5が好ましく、0~2がより好ましく、0又は1がさらに好ましい。
 np2としては、0~5が好ましく、0~2がより好ましく、0又は1がさらに好ましい。
 np3の下限としては、1が好ましく、2がより好ましい。np3を1以上とすることで、酸の強さを高めることができる。np3の上限としては、4が好ましく、3がより好ましく、2がさらに好ましい。
 Yで表される1価の感放射線性オニウムカチオンとしては、例えば後述の[C]酸拡散制御剤における1価の感放射線性オニウムカチオンとして例示するものと同様のもの等が挙げられる。
 [B]化合物としては、例えば下記式(2-1)~(2-11)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 上記式(2-1)~(2-11)中、Yは、上記式(2)と同義である。
 当該感放射線性樹脂組成物における[B]酸発生剤の含有量の下限としては、[A]重合体100質量部に対して、1質量部が好ましく、5質量部がより好ましく、10質量部がさらに好ましい。上記含有量の上限としては、50質量部が好ましく、40質量部がより好ましく、30質量部がさらに好ましい。
<[C]酸拡散制御剤>
 [C]酸拡散制御剤は、1価の感放射線性オニウムカチオンと1価の有機酸アニオンとを有する化合物である。[C]酸拡散制御剤は、露光により[B]酸発生剤等から生じる酸のレジスト膜中における拡散現象を制御し、非露光領域における好ましくない化学反応を制御する作用を有する。酸拡散制御剤は、露光により酸を発生する化合物であるため広義には酸発生剤ともいえるが、[C]酸拡散制御剤は、露光により[B]酸発生剤から発生する酸が酸解離性基を解離させる条件において、露光により上記酸解離性基を解離させない酸を発生する化合物である。
 1価の感放射線性オニウムカチオンとしては、例えば下記式(r-a)~(r-b)で表される1価のカチオン(以下、「カチオン(r-a)~(r-b)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000016
 上記式(r-a)中、b1は、0~4の整数である。b1が1の場合、RB1は、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基又はハロゲン原子である。b1が2以上の場合、複数のRB1は、互いに同一又は異なり、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基若しくはハロゲン原子であるか、又はこれらの基が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部である。b2は、0~4の整数である。b2が1の場合、RB2は、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基又はハロゲン原子である。b2が2以上の場合、複数のRB2は、互いに同一又は異なり、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基若しくはハロゲン原子であるか、又はこれらの基が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部である。RB3及びRB4は、それぞれ独立して、水素原子、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基若しくはハロゲン原子であるか、又はこれらが互いに合わせられ単結合を表す。b3は、0~11の整数である。b3が1の場合、RB5は、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基又はハロゲン原子である。b3が2以上の場合、複数のRB5は、互いに同一又は異なり、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基若しくはハロゲン原子であるか、又はこれらの基が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部である。nb1は、0~3の整数である。
 上記式(r-b)中、b4は、0~5の整数である。b4が1の場合、RB6は、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基又はハロゲン原子である。b4が2以上の場合、複数のRB6は、互いに同一又は異なり、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基若しくはハロゲン原子であるか、又はこれらの基が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部である。b5は、0~5の整数である。b5が1の場合、RB7は、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基又はハロゲン原子である。b5が2以上の場合、複数のRB7は、互いに同一又は異なり、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基若しくはハロゲン原子であるか、又はこれらの基が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部である。
 「有機基」とは、少なくとも1個の炭素原子を含む基をいう。
 RB1、RB2、RB3、RB4、RB5及びRB6で表される炭素数1~20の1価の有機基としては、例えば炭素数1~20の1価の炭化水素基、この炭化水素基の炭素-炭素間に2価のヘテロ原子含有基を含む基(α)、上記炭化水素基又は上記基(α)が有する水素原子の一部又は全部を1価のヘテロ原子含有基で置換した基(β)、上記炭化水素基、上記基(α)又は上記基(β)と2価のヘテロ原子含有基とを組み合わせた基(γ)等が挙げられる。
 炭素数1~20の1価の炭化水素基としては、例えば上述の式(II-1)におけるR、R又はRで表される炭素数1~20の1価の炭化水素基として例示した基と同様の基等が挙げられる。
 1価又は2価のヘテロ原子含有基を構成するヘテロ原子としては、例えば酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、ハロゲン原子等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 2価のヘテロ原子含有基としては、例えば-O-、-CO-、-S-、-CS-、-NR’-、これらのうちの2つ以上を組み合わせた基(例えば、-COO-、-CONR’-など)等が挙げられる。R’は、水素原子又は炭素数1~10の1価の炭化水素基である。
 RB1、RB2、RB3、RB4、RB5及びRB6としては、ハロゲン原子又は炭素数1~20の1価の炭化水素基が有する水素原子の一部又は全部を1価のハロゲン原子で置換した基が好ましい。この場合のハロゲン原子としてはフッ素原子が好ましい。この場合、当該感放射線性樹脂組成物の感度、LWR性能及びプロセスウィンドウの良好なバランスを図ることができる。
 RB3及びRB4としては、水素原子又はこれらが互いに合わせられた単結合であることが好ましい。
 b1、b2及びb3としては、0~3が好ましい。nb1としては、0又は1が好ましい。
 b4及びb5としては、0又は1が好ましい。
 カチオン(r-a)としては、例えば下記式(r-a-1)~(r-a-12)で表されるカチオン(以下、「カチオン(r-a-1)~(r-a-12)」ともいう)等が挙げられる。カチオン(r-b)としては、例えば下記式(r-b-1)で表されるカチオン(以下、「カチオン(r-b-1)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000017
 1価の有機酸アニオンとしては、例えばカルボン酸アニオン等が挙げられる。カルボン酸アニオンとしては、例えば下記式(3-1)~(3-9)で表されるアニオン(以下、「アニオン(3-1)~(3-9)」ともいう)が挙げられる。
Figure JPOXMLDOC01-appb-C000018
 [C]酸拡散制御剤としては、上記カチオンと、上記アニオンとを適宜組み合わせた化合物を用いることができる。
 当該感放射線性樹脂組成物における[C]酸拡散制御剤の含有量の下限としては、[B]酸発生剤100モル%に対して、1モル%が好ましく、5モル%がより好ましく、10モル%がさらに好ましい。上記含有量の上限としては、100モル%が好ましく、50モル%がより好ましく、30モル%がさらに好ましい。
<[D]有機溶媒>
 当該感放射線性樹脂組成物は、通常、[D]有機溶媒を含有する。[D]有機溶媒は、少なくとも[A]重合体、[B]酸発生剤、及び[C]酸拡散制御剤並びに必要に応じて含有されるその他の任意成分を溶解又は分散可能な溶媒であれば特に限定されない。
 [D]有機溶媒としては、例えばアルコール系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、炭化水素系溶媒等が挙げられる。[D]有機溶媒は、1種又は2種以上を含有することができる。
 アルコール系溶媒としては、例えば4-メチル-2-ペンタノール、n-ヘキサノール等の炭素数1~18の脂肪族モノアルコール系溶媒、シクロヘキサノール等の炭素数3~18の脂環式モノアルコール系溶媒、1,2-プロピレングリコール等の炭素数2~18の多価アルコール系溶媒、プロピレングリコールモノメチルエーテル等の炭素数3~19の多価アルコール部分エーテル系溶媒などが挙げられる。
 エーテル系溶媒としては、例えばジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ジペンチルエーテル、ジイソアミルエーテル、ジヘキシルエーテル、ジヘプチルエーテル等のジアルキルエーテル系溶媒、テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶媒、ジフェニルエーテル、アニソール等の芳香環含有エーテル系溶媒などが挙げられる。
 ケトン系溶媒としては、例えばアセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-iso-ブチルケトン、2-ヘプタノン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-iso-ブチルケトン、トリメチルノナノン等の鎖状ケトン系溶媒、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等の環状ケトン系溶媒、2,4-ペンタンジオン、アセトニルアセトン、アセトフェノンなどが挙げられる。
 アミド系溶媒としては、例えばN,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶媒、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶媒などが挙げられる。
 エステル系溶媒としては、例えば酢酸n-ブチル、乳酸エチル等のモノカルボン酸エステル系溶媒、γ-ブチロラクトン、バレロラクトン等のラクトン系溶媒、プロピレングリコールアセテート等の多価アルコールカルボキシレート系溶媒、プロピレングリコールモノメチルエーテルアセテート等の多価アルコール部分エーテルカルボキシレート系溶媒、シュウ酸ジエチル等の多価カルボン酸ジエステル系溶媒、ジメチルカーボネート、ジエチルカーボネート等のカーボネート系溶媒などが挙げられる。
 炭化水素系溶媒としては、例えばn-ペンタン、n-ヘキサン等の炭素数5~12の脂肪族炭化水素系溶媒、トルエン、キシレン等の炭素数6~16の芳香族炭化水素系溶媒などが挙げられる。
 [D]有機溶媒としては、アルコール系溶媒、エステル系溶媒又はこれらの組み合わせが好ましく、炭素数3~19の多価アルコール部分エーテル系溶媒、多価アルコール部分エーテルカルボキシレート系溶媒又はこれらの組み合わせがより好ましく、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート又はこれらの組み合わせがさらに好ましい。
 当該感放射線性樹脂組成物が[D]有機溶媒を含有する場合、[D]有機溶媒の含有割合の下限としては、当該感放射線性樹脂組成物に含有される全成分に対して、50質量%が好ましく、60質量%がより好ましく、70質量%がさらに好ましく、80質量%が特に好ましい。上記含有割合の上限としては、99.9質量%が好ましく、99.5質量%が好ましく、99.0質量%がさらに好ましい。
<その他の任意成分>
 その他の任意成分としては、例えば界面活性剤などが挙げられる。当該感放射線性樹脂組成物は、その他の任意成分をそれぞれ1種又は2種以上含有していてもよい。
<レジストパターン形成方法>
 当該レジストパターン形成方法は、基板に直接又は間接に感放射線性樹脂組成物を塗工する工程(以下、「塗工工程」ともいう)と、上記塗工により形成されたレジスト膜を露光する工程(以下、「露光工程」ともいう)と、上記露光されたレジスト膜を現像する工程(以下、「現像工程」ともいう)とを備える。
 上記塗工工程では、感放射線性樹脂組成物として上述の当該感放射線性樹脂組成物を用いる。したがって、当該レジストパターン形成方法によれば、感度及びLWR性能に優れ、プロセスウィンドウの広いレジストパターンを形成することができる。
 以下、当該レジストパターン形成方法が備える各工程について説明する。
[塗工工程]
 本工程では、基板に直接又は間接に感放射線性樹脂組成物を塗工する。これにより基板に直接又は間接にレジスト膜が形成される。
 本工程では、感放射線性樹脂組成物として上述の当該感放射線性樹脂組成物を用いる。
 基板としては、例えばシリコンウエハ、二酸化シリコン、アルミニウムで被覆されたウエハ等の従来公知のもの等が挙げられる。
 塗工方法としては、例えば回転塗工(スピンコーティング)、流延塗工、ロール塗工等が挙げられる。塗工した後に、必要に応じて、塗膜中の溶媒を揮発させるためプレベーク(以下、「PB」ともいう。)を行ってもよい。PBの温度の下限としては、60℃が好ましく、80℃がより好ましい。上記温度の上限としては、150℃が好ましく、140℃がより好ましい。PBの時間の下限としては、5秒が好ましく、10秒がより好ましい。上記時間の上限としては、600秒が好ましく、300秒がより好ましい。形成されるレジスト膜の平均厚みの下限としては、10nmが好ましく、20nmがより好ましい。上記平均厚みの上限としては、1,000nmが好ましく、500nmがより好ましい。
[露光工程]
 本工程では、上記塗工工程により形成されたレジスト膜を露光する。この露光は、フォトマスクを介して(場合によっては、水等の液浸媒体を介して)露光光を照射することにより行う。露光光としては、遠紫外線、EUV又は電子線が好ましく、ArFエキシマレーザー光(波長193nm)、KrFエキシマレーザー光(波長248nm)、EUV(波長13.5nm)又は電子線がより好ましく、KrFエキシマレーザー光、EUV又は電子線がさらに好ましく、EUV又は電子線が特に好ましい。
 上記露光の後、ポストエクスポージャーベーク(以下、「PEB」ともいう)を行うことが好ましい。このPEBによって、露光部と非露光部とで現像液に対する溶解性の差異を増大させることができる。PEBの温度の下限としては、50℃が好ましく、80℃がより好ましい。上記温度の上限としては、180℃が好ましく、130℃がより好ましい。PEBの時間の下限としては、5秒が好ましく、10秒がより好ましく、30秒がさらに好ましい。上記時間の上限としては、600秒が好ましく、300秒がより好ましく、100秒がさらに好ましい。
[現像工程]
 本工程では、上記露光されたレジスト膜を現像する。これにより、所定のレジストパターンを形成することができる。現像工程における現像方法は、アルカリ現像であっても、有機溶媒現像であってもよい。
 アルカリ現像の場合、現像に用いる現像液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア水、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(以下、「TMAH」ともいう)、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ水溶液等が挙げられる。これらの中で、TMAH水溶液が好ましく、2.38質量%TMAH水溶液がより好ましい。
 有機溶媒現像の場合、現像液としては、炭化水素系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、アルコール系溶媒等の有機溶媒、上記有機溶媒を含有する溶液等が挙げられる。上記有機溶媒としては、例えば上述の感放射線性樹脂組成物の[D]有機溶媒として例示した溶媒等が挙げられる。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。各物性値の測定方法を以下に示す。
[重量平均分子量(Mw)、数平均分子量(Mn)及び多分散度(Mw/Mn)]
 重合体のMw及びMnは、上記[Mw及びMnの測定方法]の項に記載の条件に従って測定した。重合体の多分散度(Mw/Mn)は、Mw及びMnの測定結果より算出した。
<[X]単量体の合成>
 以下の方法に従って、[X]単量体としての下記式(X-1)~(X-34)で表される化合物(以下、「単量体(X-1)~(X-34)」ともいう)を合成した。
Figure JPOXMLDOC01-appb-C000019
[合成例1-1]単量体(X-1)の合成
 9-アントロール200g及びトリエチルアミン156gをジクロロメタン1,500mLに溶解させた。溶液を0℃に冷却した後、塩化メタクリロイル108gを、溶液の温度が25℃を超えないような速度で滴下した。滴下終了後25℃にて1時間攪拌した。反応終了後、塩化アンモニウム飽和水溶液でクエンチし、塩化メチレンで抽出を行った。減圧濃縮して得られた残渣をカラムクロマトグラフィーにより精製し、単量体(X-1)を148g(収率55%)得た。
 単量体(X-1)の合成スキームを以下に示す。下記合成スキーム中、NEtはトリエチルアミンである。
Figure JPOXMLDOC01-appb-C000020
[合成例1-2~1-16及び1-19~1-32]単量体(X-2)~(X-16)及び(X-19)~(X-32)の合成
 前駆体を適宜選択したこと以外は合成例1-1と同様にして単量体(X-2)~(X-16)及び(X-19)~(X-32)を合成した。
[合成例1-17]単量体(X-17)の合成
 アントラセン-9-カルボニルクロリド185gをジクロロメタン1,500mLに溶解させた。溶液を0℃に冷却した後、2-ヒドロキシエチルメタクリレート100gとトリエチルアミン117gを、溶液の温度が25℃を超えないような速度で滴下した。滴下終了後25℃にて1時間攪拌した。反応終了後、塩化アンモニウム飽和水溶液でクエンチし、塩化メチレンで抽出を行った。減圧濃縮して得られた残渣をカラムクロマトグラフィーにより精製し、単量体(X-17)を135g(収率53%)得た。
 単量体(X-17)の合成スキームを以下に示す。下記合成スキーム中、NEtはトリエチルアミンである。
Figure JPOXMLDOC01-appb-C000021
[合成例1-18]単量体(X-18)の合成
 前駆体を適宜選択したこと以外は合成例1-17と同様にして単量体(X-18)を合成した。
<[A]重合体の合成>
 以下の方法に従って、[A]重合体としての重合体(A-1)~(A-70)及び(CA-1)~(CA-6)を合成した。[A]重合体の合成には、上記単量体(X-1)~(X-32)、並びに下記式(M-1)~(M-29)及び(CX-1)~(CX-3)で表される化合物(以下、「単量体(M-1)~(M-29)及び(CX-1)~(CX-3)」ともいう)を用いた。以下の合成例においては特に断りのない限り、「質量部」は使用した単量体の合計質量を100質量部とした場合の値を意味し、「モル%」は使用した単量体の合計モル数を100モル%とした場合の値を意味する。
Figure JPOXMLDOC01-appb-C000022
[合成例2-1]重合体(A-1)の合成
 単量体(X-1)、単量体(M-1)及び単量体(M-13)をモル比率が10/40/50となるようプロピレングリコールモノメチルエーテル(全モノマー量に対して200質量部)に溶解した。次に、開始剤としてアゾビスイソブチロニトリル(以下、「AIBN」ともいう)を全モノマーに対して6モル%添加し、単量体溶液を調製した。一方、空の反応容器にプロピレングリコールモノメチルエーテル(全モノマー量に対して100質量部)を加え、攪拌しながら85℃に加熱した。次に、上記で調製した単量体溶液を3時間かけて滴下し、その後、さらに3時間85℃で加熱した。重合反応終了後、重合溶液を室温に冷却した。冷却した重合溶液をヘキサン(重合溶液に対して500質量部)中に投入し、析出した白色粉末をろ別した。ろ別した白色粉末を重合溶液に対して100質量部のヘキサンで2回洗浄した。その後、プロピレングリコールモノメチルエーテル(300質量部)に再度溶解した。次に、メタノール(500質量部)、トリエチルアミン(50質量部)及び超純水(10質量部)を加え、攪拌しながら70℃で6時間加水分解反応を実施した。反応終了後、残溶媒を留去した。得られた固体をアセトン(100質量部)に溶解させた。500質量部の水中に滴下して樹脂を凝固させ、得られた固体をろ別した。50℃で12時間乾燥させて白色粉末状の重合体(A-1)を得た。重合体(A-1)のMwは7,900であり、Mw/Mnは1.6であった。
[合成例2-2~2-64及び2-71~76]重合体(A-2)~(A-64)及び(CA-1)~(CA-6)の合成
 下記表1に示す種類及び使用量の単量体を用いたこと以外は合成例2-1と同様にして、重合体(A-2)~(A-64)及び(CA-1)~(CA-6)を合成した。
[合成例2-65~2-69]重合体(A-65)~(A-69)の合成
 開始剤量を適宜変更したこと以外は合成例2-3と同様にして、重合体(A-65)~(A-69)を合成した。
[合成例2-70]重合体(A-70)の合成
 単量体(X-1)、単量体(M-7)、単量体(M-13)及び単量体(M-29)をモル比率が30/10/50/10となるよう2-ブタノン(全モノマー量に対して200質量部)に溶解した。開始剤としてAIBNを全モノマーに対して6モル%添加し、単量体溶液を調製した。一方、空の反応容器に2-ブタノン(100質量部)を入れ、攪拌しながら80℃に加熱した。次に、上記で調製した単量体溶液を3時間かけて滴下した。その後、さらに3時間80℃で加熱した。重合反応終了後、重合溶液を室温に冷却した。冷却した重合溶液をメタノール(重合溶液に対して2,000質量部)中に投入し、析出した白色粉末をろ別した。得られた固体をアセトン(100質量部)に溶解させた。これを500質量部の水中に滴下し、凝固した固体をろ別した。50℃で12時間乾燥させて白色粉末状の重合体(A-70)を得た。重合体(A-70)のMwは8,400であり、Mw/Mnは1.7であった。
 合成例2-1~2-76で得られた[A]重合体の各構造単位を与える単量体の種類及び使用割合、並びにMw及びMw/Mnを下記表1に示す。なお、下記表1中、「-」は該当する単量体を使用しなかったことを示す。
Figure JPOXMLDOC01-appb-T000023
<感放射線性樹脂組成物の調製>
 感放射線性樹脂組成物の調製に用いた[B]酸発生剤、[C]酸拡散制御剤及び[D]有機溶媒を以下に示す。以下の実施例及び比較例においては特に断りのない限り、「質量部」は使用した[A]重合体の質量を100質量部とした場合の値を意味し、「モル%」は使用した[B]酸発生剤のモル数を100モル%とした場合の値を意味する。
[[B]酸発生剤]
 [B]酸発生剤として、下記式(B-1)~(B-18)で表される化合物(以下、「酸発生剤(B-1)~(B-18)」ともいう)を用いた。
Figure JPOXMLDOC01-appb-C000024
[[C]酸拡散制御剤]
 [C]酸拡散制御剤として、下記式(C-1)~(C-12)及び(CC-1)で表される化合物(以下、「酸拡散制御剤(C-1)~(C-12)及び(CC-1)」ともいう)を用いた。なお、酸拡散制御剤(CC-1)は、「1価の感放射線性オニウムカチオンと1価の有機酸アニオンとを有する酸拡散制御剤」には該当しない。
Figure JPOXMLDOC01-appb-C000025
[[D]有機溶媒]
 [D]有機溶媒として、下記の有機溶媒を用いた。
 (D-1):プロピレングリコールモノメチルエーテルアセテート
 (D-2):プロピレングリコールモノメチルエーテル
[実施例1]感放射線性樹脂組成物(R-1)の調製
 [A]重合体としての(A-1)100質量部、[B]酸発生剤としての(B-1)20質量部、[C]酸拡散制御剤としての(C-1)を(B-1)に対して20モル%、並びに[D]有機溶媒としての(D-1)4,800質量部及び(D-2)2,000質量部を混合した。得られた混合液を孔径0.20μmのメンブランフィルターでろ過して、感放射線性樹脂組成物(R-1)を調製した。
[実施例2~98及び比較例1~7]感放射線性樹脂組成物(R-2)~(R-98)及び(CR-1)~(CR-7)の調製
 下記表2及び表3に示す種類及び含有量の各成分を用いたこと以外は実施例1と同様にして、感放射線性樹脂組成物(R-2)~(R-98)及び(CR-1)~(CR-7)を調製した。
<レジストパターンの形成>
 平均厚み20nmの下層膜(Brewer Science社の「AL412」)が形成された12インチのシリコンウエハ表面に、スピンコーター(東京エレクトロン(株)の「CLEAN TRACK ACT12」)を使用して、上記調製した感放射線性樹脂組成物を塗工した。130℃で60秒間プレベーク(PB)を行った後、23℃で30秒間冷却し、平均厚み50nmのレジスト膜を形成した。次に、このレジスト膜に、EUV露光機(ASML社の「NXE3300」、NA=0.33、照明条件:Conventional s=0.89、マスクimecDEFECT32FFR02)を用いてEUV光を照射した。照射後、上記レジスト膜に110℃で60秒間ポストエクスポージャーベーク(PEB)を行った。次いで、アルカリ現像液として2.38質量%のTMAH水溶液を用い、23℃で30秒間現像して、ポジ型の32nmラインアンドスペースパターンを形成した。
<評価>
 上記形成したレジストパターンについて、下記の方法に従い、感度、LWR性能及びプロセスウィンドウを評価した。レジストパターンの測長には、走査型電子顕微鏡((株)日立ハイテクの「CG-4100」)を用いた。評価結果を下記表2及び表3に示す。
[感度]
 上記レジストパターンの形成において、32nmラインアンドスペースパターンを形成する露光量を最適露光量とし、この最適露光量をEop(単位:mJ/cm)とした。感度は、Eopの値が小さいほど良好であることを示す。
[LWR性能]
 上記走査型電子顕微鏡を用いて上記形成されたレジストパターンを上部から観察した。線幅を任意の箇所で計50点測定し、その測定値の分布から3シグマ値を求め、これをLWR(単位:nm)とした。LWR性能は、LWRの値が小さいほど良好であることを示す。
[プロセスウィンドウ]
 32nmラインアンドスペース(1L/1S)を形成するマスクを用いて、低露光量から高露光量までのパターンを形成した。一般的に、低露光量の場合にはパターン間におけるブリッジ形成などの欠陥が見られ、高露光量の場合にはパターン倒壊などの欠陥が見られる。これらの欠陥が見られないレジスト寸法の最大値と最小値との差をCD(Critical Demension)マージン(単位:nm)とした。CDマージンの値が大きいほど、プロセスウィンドウが広く、良好であることを示す。
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027

Claims (7)

  1.  下記式(1)で表される第1構造単位を有し、酸の作用により現像液への溶解性が変化する重合体と、
     感放射線性酸発生剤と、
     1価の感放射線性オニウムカチオンと1価の有機酸アニオンとを有する酸拡散制御剤と
     を含有する感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Lは、単結合又は2価の連結基である。Arは、置換又は非置換の環員数13以上の縮合多環式芳香族炭化水素環から1個の水素原子を除いた基である。)
  2.  上記縮合多環式芳香族炭化水素環の環員数が13以上22以下である請求項1に記載の感放射線性樹脂組成物。
  3.  上記縮合多環式芳香族炭化水素環が縮合三環式芳香族炭化水素環又は縮合四環式芳香族炭化水素環である請求項1に記載の感放射線性樹脂組成物。
  4.  上記縮合多環式芳香族炭化水素環がアントラセン環又はピレン環である請求項1に記載の感放射線性樹脂組成物。
  5.  上記重合体が酸解離性基を含む第2構造単位をさらに有する請求項1に記載の感放射線性樹脂組成物。
  6.  上記重合体がフェノール性水酸基を含む第3構造単位をさらに有する請求項1に記載の感放射線性樹脂組成物。
  7.  基板に直接又は間接に請求項1から請求項6のいずれか1項に記載の感放射線性樹脂組成物を塗工する工程と、
     上記塗工により形成されたレジスト膜を露光する工程と、
     上記露光されたレジスト膜を現像する工程と
     を備えるレジストパターン形成方法。
PCT/JP2023/013354 2022-06-22 2023-03-30 感放射線性樹脂組成物及びレジストパターン形成方法 WO2023248569A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022100218 2022-06-22
JP2022-100218 2022-06-22

Publications (1)

Publication Number Publication Date
WO2023248569A1 true WO2023248569A1 (ja) 2023-12-28

Family

ID=89379496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013354 WO2023248569A1 (ja) 2022-06-22 2023-03-30 感放射線性樹脂組成物及びレジストパターン形成方法

Country Status (2)

Country Link
TW (1) TW202400671A (ja)
WO (1) WO2023248569A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020090A (ja) * 2011-07-11 2013-01-31 Fujifilm Corp パターン形成方法、感活性光線性又は感放射線性樹脂組成物、レジスト膜、電子デバイスの製造方法及び電子デバイス
JP2019109500A (ja) * 2017-12-15 2019-07-04 信越化学工業株式会社 反射防止膜、反射防止膜の製造方法、及び眼鏡型ディスプレイ
JP2019207407A (ja) * 2018-05-28 2019-12-05 東京応化工業株式会社 レジスト組成物及びレジストパターン形成方法
JP2020132749A (ja) * 2019-02-19 2020-08-31 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH ポリマー、ポリマーを含んでなる半導体組成物、および半導体組成物を用いた膜の製造方法
JP2021103235A (ja) * 2019-12-25 2021-07-15 東京応化工業株式会社 レジスト組成物及びレジストパターン形成方法
WO2022158338A1 (ja) * 2021-01-22 2022-07-28 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、電子デバイスの製造方法、化合物、及び樹脂

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020090A (ja) * 2011-07-11 2013-01-31 Fujifilm Corp パターン形成方法、感活性光線性又は感放射線性樹脂組成物、レジスト膜、電子デバイスの製造方法及び電子デバイス
JP2019109500A (ja) * 2017-12-15 2019-07-04 信越化学工業株式会社 反射防止膜、反射防止膜の製造方法、及び眼鏡型ディスプレイ
JP2019207407A (ja) * 2018-05-28 2019-12-05 東京応化工業株式会社 レジスト組成物及びレジストパターン形成方法
JP2020132749A (ja) * 2019-02-19 2020-08-31 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH ポリマー、ポリマーを含んでなる半導体組成物、および半導体組成物を用いた膜の製造方法
JP2021103235A (ja) * 2019-12-25 2021-07-15 東京応化工業株式会社 レジスト組成物及びレジストパターン形成方法
WO2022158338A1 (ja) * 2021-01-22 2022-07-28 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、電子デバイスの製造方法、化合物、及び樹脂

Also Published As

Publication number Publication date
TW202400671A (zh) 2024-01-01

Similar Documents

Publication Publication Date Title
JP2020181064A (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物
JP2020203984A (ja) 感放射線性樹脂組成物、レジストパターン形成方法、酸拡散制御剤及び化合物
JP7400818B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び化合物
JP7447725B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
KR20210050471A (ko) 감방사선성 수지 조성물 및 레지스트 패턴 형성 방법
JP6959538B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP7396360B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び感放射線性酸発生剤
WO2021140761A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び化合物
JP7192589B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び感放射線性酸発生剤
JP2023108593A (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び化合物
WO2022270134A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び化合物
WO2021149476A1 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
WO2023248569A1 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP7342941B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
WO2023195255A1 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP2024031820A (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
WO2022196024A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
WO2021153124A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び感放射線性酸発生剤
JP2020204765A (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP2023116251A (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び重合体
JP2022185563A (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
WO2023058369A1 (ja) 感放射線性樹脂組成物、樹脂、化合物及びパターン形成方法
WO2020250639A1 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
WO2021131280A1 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP2022128400A (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び重合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826758

Country of ref document: EP

Kind code of ref document: A1