WO2021149476A1 - 感放射線性樹脂組成物及びレジストパターン形成方法 - Google Patents

感放射線性樹脂組成物及びレジストパターン形成方法 Download PDF

Info

Publication number
WO2021149476A1
WO2021149476A1 PCT/JP2021/000096 JP2021000096W WO2021149476A1 WO 2021149476 A1 WO2021149476 A1 WO 2021149476A1 JP 2021000096 W JP2021000096 W JP 2021000096W WO 2021149476 A1 WO2021149476 A1 WO 2021149476A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
radiation
carbon atoms
resin composition
sensitive resin
Prior art date
Application number
PCT/JP2021/000096
Other languages
English (en)
French (fr)
Inventor
克聡 錦織
和也 桐山
拓弘 谷口
研 丸山
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2021573045A priority Critical patent/JPWO2021149476A1/ja
Priority to KR1020227024159A priority patent/KR20220131907A/ko
Publication of WO2021149476A1 publication Critical patent/WO2021149476A1/ja
Priority to US17/867,739 priority patent/US20230236506A2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/029Inorganic compounds; Onium compounds; Organic compounds having hetero atoms other than oxygen, nitrogen or sulfur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to a radiation-sensitive resin composition and a resist pattern forming method.
  • Radiation-sensitive resin compositions used for micromachining by lithography include far-ultraviolet rays such as ArF excimer laser light (wavelength 193 nm) and KrF excimer laser light (wavelength 248 nm), and extreme ultraviolet rays (EUV) (wavelength 13.5 nm).
  • An acid is generated in the exposed part by irradiation with radiation such as an electromagnetic wave or a charged particle beam such as an electron beam, and a chemical reaction using this acid as a catalyst causes a difference in the dissolution rate of the exposed part and the non-exposed part in the developing solution. This forms a resist pattern on the substrate.
  • the radiation-sensitive resin composition is required to have good sensitivity to exposure light such as extreme ultraviolet rays and electron beams, and to have excellent LWR (Line Width Rougness) performance showing uniformity of line width.
  • the present invention has been made based on the above circumstances, and an object of the present invention is to have a feeling that the sensitivity to exposure light is good, the LWR performance is excellent, and a resist pattern having a wide process window can be formed. It is an object of the present invention to provide a radioactive resin composition and a method for forming a resist pattern.
  • the invention made to solve the above problems is a first structural unit containing an aromatic carbocycle having two or more hydroxyl groups bonded to it, and a second structural unit containing an acid dissociable group dissociated by the action of an acid to give a carboxy group.
  • [A] polymer and a compound represented by the following formula (1) (hereinafter, also referred to as “[C] compound”).
  • [C] compound It is a radiation-sensitive resin composition in which the weight average molecular weight of the polymer is 10,000 or less.
  • R 1 is a monovalent organic group having 1 to 30 carbon atoms.
  • X + is a monovalent radiation-sensitive onium cation.
  • Another invention made to solve the above problems is a step of directly or indirectly applying the above-mentioned radiation-sensitive resin composition to a substrate, and a step of exposing a resist film formed by the above-mentioned coating step.
  • This is a resist pattern forming method including the above-mentioned step of developing the exposed resist film.
  • the radiation-sensitive resin composition and the resist pattern forming method of the present invention it is possible to form a resist pattern having good sensitivity to exposure light, excellent LWR performance, and a wide process window. Therefore, these can be suitably used for processing processes of semiconductor devices, which are expected to be further miniaturized in the future.
  • the radiation-sensitive resin composition contains a [A] polymer and a [C] compound.
  • the radiation-sensitive resin composition usually contains an organic solvent (hereinafter, also referred to as “[D] organic solvent”).
  • the radiation-sensitive resin composition may contain a radiation-sensitive acid generator (hereinafter, also referred to as “[B] acid generator”) as a suitable component.
  • the radiation-sensitive resin composition may contain other optional components as long as the effects of the present invention are not impaired.
  • the radiation-sensitive resin composition forms a resist pattern having good sensitivity to exposure light, excellent LWR performance, and a wide process window. be able to.
  • the reason why the radiation-sensitive resin composition exerts the above-mentioned effect by having the above-mentioned constitution is not always clear, but it can be inferred as follows, for example. That is, since the [A] polymer contained in the radiation-sensitive resin composition has a first structural unit containing an aromatic carbocycle having two or more hydroxyl groups bonded thereto, the solubility in a developing solution is improved.
  • the sensitivity to the exposure light is good, the LWR performance is excellent, and the resist pattern having a wide process window can be formed.
  • the weight average molecular weight of the [A] polymer contained in the radiation-sensitive resin composition is 10,000 or less, the solubility in a developing solution is improved, and as a result, the sensitivity to exposure light is good. Therefore, it is considered that a resist pattern having excellent LWR performance and a wide process window can be formed.
  • the radiation-sensitive resin composition is used in combination with the [A] polymer and the [C] compound, the amount of acid generated in the exposed portion is increased, and as a result, the sensitivity to the exposure light is good. , It is considered that a resist pattern having excellent LWR performance and a wide process window can be formed.
  • the polymer is a structural unit containing an aromatic carbocycle having two or more hydroxyl groups bonded (hereinafter, also referred to as “structural unit (I)”) and an acid dissociable group that dissociates by the action of an acid to give a carboxy group. It has a structural unit containing (hereinafter, also referred to as “structural unit (II)”).
  • the polymer may have other structural units other than the structural unit (I) and the structural unit (II).
  • the polymer may have one or more structural units.
  • the radiation-sensitive resin composition may contain one or more [A] polymers.
  • the weight average molecular weight of the [A] polymer is 10,000 or less.
  • the weight average molecular weight of the polymer is 10,000 or less, the solubility in a developing solution is improved, and as a result, the sensitivity to exposure light is good, the LWR performance is excellent, and the process window is wide. It is considered that a resist pattern can be formed.
  • the "weight average molecular weight” is a polystyrene-equivalent weight average molecular weight (hereinafter, also referred to as "Mw”) by gel permeation chromatography (GPC).
  • Mw polystyrene-equivalent weight average molecular weight
  • GPC gel permeation chromatography
  • the upper limit of Mw of the polymer is 10,000, preferably 9,800, more preferably 9,600, and even more preferably 9,500.
  • the sensitivity of the radiation-sensitive resin composition to exposure light, the LWR performance, and the process window can be further improved.
  • the polystyrene-equivalent number average molecular weight (hereinafter, also referred to as “Mn”) of the polymer [A] in the present specification by Mw and GPC described later is a value measured by GPC under the following conditions.
  • the structural unit (I) is a structural unit containing an aromatic carbocyclic ring in which two or more hydroxyl groups are bonded. [A] Since the polymer has the structural unit (I), the solubility in a developing solution is improved, and as a result, a resist pattern having good sensitivity to exposure light, excellent LWR performance, and a wide process window can be obtained. It is thought that it can be formed.
  • the number of ring members of the aromatic carbocycle is preferably 6 to 20, more preferably 6 to 14, and even more preferably 6 to 10.
  • the "number of ring members" refers to the number of atoms constituting the ring, and in the case of a polycycle, it means the number of atoms constituting the polycycle.
  • Examples of the aromatic carbocycle include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a tetracene ring, a pyrene ring and the like.
  • a benzene ring or a naphthalene ring is preferable, and a benzene ring is more preferable.
  • the number of hydroxyl groups bonded to the aromatic carbocycle is 2 or more, preferably 2 or more and 11 or less, and more preferably 2.
  • the sensitivity of the radiation-sensitive resin composition to exposure light, the LWR performance, and the process window can be further improved.
  • the number of the hydroxyl groups is 2, it is preferable that the two hydroxyl groups are bonded to adjacent carbon atoms in the aromatic carbon ring. In this case, the sensitivity of the radiation-sensitive resin composition to exposure light, the LWR performance, and the process window can be further improved.
  • structural unit (I) a structural unit represented by the following formula (2) (hereinafter, also referred to as “structural unit (I-1)”) is preferable.
  • R 2 is a hydrogen atom, a halogen atom, or a monovalent organic group having 1 to 10 carbon atoms.
  • L 1 is a single bond, -O-, -COO- or -CONH-.
  • Ar is a group obtained by removing (m + n + 1) hydrogen atoms on an aromatic ring from an array having 6 to 20 ring members.
  • m is an integer from 0 to 9.
  • R 3 is a halogen atom or a monovalent organic group having 1 to 10 carbon atoms.
  • n is an integer of 2 to 11. However, m + n is 11 or less.
  • halogen atom represented by R 2 or R 3 examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • Organic group means a group containing at least one carbon atom.
  • the "carbon number” means the number of carbon atoms constituting the group.
  • Examples of the monovalent organic group having 1 to 10 carbon atoms represented by R 2 or R 3 include a monovalent hydrocarbon group having 1 to 10 carbon atoms and a divalent group between carbons of the hydrocarbon group.
  • the group ( ⁇ ) or a group ( ⁇ ) in which the above group ( ⁇ ) and a divalent heteroatom-containing group are combined can be mentioned.
  • the "hydrocarbon group” includes a chain hydrocarbon group, an alicyclic hydrocarbon group and an aromatic hydrocarbon group. This “hydrocarbon group” may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • the "chain hydrocarbon group” refers to a hydrocarbon group that does not contain a cyclic structure and is composed only of a chain structure, and includes both a linear hydrocarbon group and a branched hydrocarbon group.
  • the "alicyclic hydrocarbon group” refers to a hydrocarbon group containing only an alicyclic structure as a ring structure and not containing an aromatic ring structure, and refers to a monocyclic alicyclic hydrocarbon group and a polycyclic alicyclic group. Contains both hydrocarbon groups.
  • aromatic hydrocarbon group refers to a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it does not have to be composed only of an aromatic ring structure, and a chain structure or an alicyclic structure may be included as a part thereof.
  • Examples of the monovalent hydrocarbon group having 1 to 10 carbon atoms include a monovalent chain hydrocarbon group having 1 to 10 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 10 carbon atoms, and 6 carbon atoms. Examples thereof include monovalent aromatic hydrocarbon groups of to 10.
  • Examples of the monovalent chain hydrocarbon group having 1 to 10 carbon atoms include an alkyl group such as a methyl group, an ethyl group, an n-propyl group and an i-propyl group, and an alkenyl group such as an ethenyl group, a propenyl group and a butenyl group. , Ethynyl group, propynyl group, alkynyl group such as butynyl group and the like.
  • Examples of the monovalent alicyclic hydrocarbon group having 3 to 10 carbon atoms include an alicyclic saturated hydrocarbon group such as a cyclopentyl group, a cyclohexyl group, a norbornyl group and an adamantyl group, a cyclopentenyl group, a cyclohexenyl group and a norbornenyl group. Such as an alicyclic unsaturated hydrocarbon group and the like.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 10 carbon atoms include an aryl group such as a phenyl group, a tolyl group, a xsilyl group and a naphthyl group, and an aralkyl group such as a benzyl group and a phenethyl group.
  • hetero atom constituting the monovalent or divalent hetero atom-containing group
  • examples of the hetero atom constituting the monovalent or divalent hetero atom-containing group include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, a halogen atom and the like.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • divalent heteroatom-containing group examples include -O-, -CO-, -S-, -CS-, -NR'-, and -SO 2- a group in which two or more of these are combined. Be done.
  • R' is a hydrogen atom or a monovalent hydrocarbon group.
  • Examples of the arene having 6 to 20 ring members that give Ar include benzene, naphthalene, anthracene, phenanthrene, tetracene, pyrene and the like.
  • alicyclic structure described above are combined with each other configured with a carbon chain to which they are attached ring members 4-20 such as cyclopentane structure, a saturated alicyclic structure such as cyclohexane structure of the plurality of R 3, Examples thereof include unsaturated alicyclic structures such as a cyclopentene structure and a cyclohexene structure.
  • the R 2 from the viewpoint of copolymerizability of the monomer giving the structural units (I), preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
  • benzene or naphthalene is preferable, and benzene is more preferable.
  • n 2 is preferable from the viewpoint of further improving the sensitivity of the radiation-sensitive resin composition to exposure light, the LWR performance, and the process window.
  • n 2 is preferable from the viewpoint of further improving the sensitivity of the radiation-sensitive resin composition to exposure light, the LWR performance, and the process window.
  • the two hydroxyl groups are preferably bonded to adjacent carbon atoms in Ar. In this case, the sensitivity of the radiation-sensitive resin composition to exposure light, the LWR performance, and the process window can be further improved.
  • n 0 to 2 is preferable, 0 or 1 is more preferable, and 0 is further preferable.
  • the structural unit (I-1) is, for example, a structural unit represented by the following formula (2-1) or formula (2-2) (hereinafter, "structural unit (I-1-1)" or (I-1-). 2) ”) and the like.
  • R 2 has the same meaning as the above formula (2).
  • the lower limit of the content ratio of the structural unit (I) in the [A] polymer is preferably 1 mol%, more preferably 5 mol%, and 10 mol% with respect to all the structural units constituting the [A] polymer. Is even more preferable.
  • the upper limit of the content ratio is preferably 60 mol%, more preferably 50 mol%, still more preferably 40 mol%.
  • the structural unit (II) is a structural unit containing an acid dissociative group that dissociates by the action of an acid and gives a carboxy group.
  • the "acid dissociative group” is a group that replaces a hydrogen atom of a carboxy group and dissociates by the action of an acid.
  • a carboxy group is generated by dissociating an acid dissociative group from a carbonyloxy group by the action of an acid.
  • the acid dissociative group in the [A] polymer is dissociated by the action of the acid generated from the [B] acid generator or the like described later by exposure, and the [A] polymer in the exposed portion is dissociated.
  • a resist pattern can be formed by changing the solubility in the developing solution.
  • the structural unit (II) includes, for example, a structural unit represented by the following formula (3-1) or (3-2) (hereinafter, also referred to as “structural unit (II-1) or (II-2)”). Can be mentioned.
  • structural unit (II-1) or (II-2) a structural unit represented by the following formula (3-1) or (3-2)
  • —C (R 5 ) (R 6 ) (R 7 ) bonded to the oxyoxygen atom derived from the carboxy group corresponds to the acid dissociative group.
  • R 4 is a hydrogen atom, a halogen atom, or a monovalent organic group having 1 to 10 carbon atoms.
  • L 2 is a single bond or a divalent organic group having 1 to 20 carbon atoms.
  • R 5 is a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R 6 and R 7 are independently monovalent hydrocarbon groups having 1 to 20 carbon atoms, or have 3 to 20 ring members composed of carbon atoms in which they are combined and bonded to each other. It is part of the alicyclic structure.
  • R 8 is a hydrogen atom, a halogen atom, or a monovalent organic group having 1 to 10 carbon atoms.
  • L 3 is a single bond or a divalent organic group having 1 to 20 carbon atoms.
  • R 9 and R 10 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms, or have a number of rings 4 which are combined with each other and composed of a carbon chain to which they are bonded. It is part of an unsaturated alicyclic structure of ⁇ 20.
  • R 11 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R 12 and R 13 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms, or have a number of rings 3 which are combined with each other and composed of a carbon chain to which they are bonded. It is part of the alicyclic structure of ⁇ 20.
  • halogen atom represented by R 4 or R 8 examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the monovalent organic group having 1 to 10 carbon atoms represented by R 4 or R 8 is, for example, a monovalent organic group having 1 to 10 carbon atoms exemplified as R 2 or R 3 in the above formula (2). Similar groups can be mentioned.
  • the divalent organic group having 1 to 20 carbon atoms represented by L 2 or L 3 is, for example, 1 from the same group as the monovalent organic group exemplified as R 2 or R 3 in the above formula (2). Examples thereof include groups excluding one hydrogen atom.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 5 , R 6 , R 7 , R 9 , R 10 , R 11 , R 12 or R 13 include R in the above formula (2).
  • the monovalent organic groups exemplified as 2 or R 3 the same groups as those exemplified as the monovalent hydrocarbon group can be mentioned.
  • Examples of the alicyclic structure having 3 to 20 ring members, in which R 6 and R 7 or R 12 and R 13 are combined with each other and formed together with a carbon atom or a carbon chain to which they are bonded, include a cyclopropane structure, a cyclobutene structure, and a cyclo.
  • Monocyclic saturated alicyclic structure such as pentane structure and cyclohexane structure, norbornene structure, adamantan structure, tricyclodecane structure, polycyclic saturated alicyclic structure such as tetracyclododecane structure, cyclopropene structure, cyclobutene structure, cyclopentene structure, Examples thereof include a monocyclic unsaturated alicyclic structure such as a cyclohexene structure, a norbornene structure, a tricyclodecene structure, and a polycyclic unsaturated alicyclic structure such as a tetracyclododecene structure.
  • an unsaturated alicyclic structure having 4 to 20 ring members, in which R 9 and R 10 are combined with each other and formed together with a carbon chain to which they are bonded for example, a single ring such as a cyclopropene structure, a cyclobutene structure, a cyclopentene structure, or a cyclohexene structure
  • a single ring such as a cyclopropene structure, a cyclobutene structure, a cyclopentene structure, or a cyclohexene structure
  • examples thereof include a polycyclic unsaturated alicyclic structure such as an unsaturated alicyclic structure, a norbornene structure, a tricyclodecene structure, and a tetracyclododecene structure.
  • R 4 or R 8 a hydrogen atom or a methyl group is preferable, and a methyl group is more preferable.
  • L 2 a single bond, a divalent aromatic hydrocarbon group, or a group in which a divalent chain hydrocarbon group and a divalent heteroatom-containing group are combined is preferable, and a single bond is more preferable.
  • R 6 or R 7 a chain hydrocarbon group or an alicyclic hydrocarbon group is preferable. It is also preferable that R 6 and R 7 are combined with each other to form an alicyclic structure having 3 to 20 ring members together with carbon atoms to which they are bonded. In this case, as the alicyclic structure, a monocyclic saturated alicyclic structure or a polycyclic saturated alicyclic structure is preferable.
  • R 9 or R 10 a hydrogen atom or a chain hydrocarbon group is preferable. It is also preferable that R 9 and R 10 are combined with each other to form an unsaturated alicyclic structure having 4 to 20 ring members together with a carbon chain to which they are bonded. In this case, as the unsaturated alicyclic structure, a monocyclic unsaturated alicyclic structure is preferable.
  • the R 11, a hydrogen atom or a chain hydrocarbon group is preferred.
  • R 12 or R 13 a hydrogen atom is preferable. It is also preferable that R 12 and R 13 are combined with each other to form an alicyclic structure having 3 to 20 ring members together with the carbon chain to which they are bonded. In this case, as the alicyclic structure, a monocyclic saturated alicyclic structure is preferable.
  • R 9 and R 10 or R 12 and R 13 form a part of the ring structure.
  • R 13 is preferably a hydrogen atom
  • R 9 is a hydrogen atom. Is preferable.
  • the structural unit (II) is preferable from the viewpoint of further improving the sensitivity to exposure light and the LWR performance.
  • the structural unit (II-1) is, for example, a structural unit represented by the following formulas (3-1-1) to (3-1-10) (hereinafter, "structural unit (II-1-1) to (II-1)”. -1-10) ”) and the like.
  • R 4 is synonymous with the above formula (3-1).
  • structural units (II-1) structural units (II-1-1) to (II-1-6) or (II-1-8) are preferable.
  • the structural unit (II-2) is, for example, a structural unit represented by the following formulas (3-2-1) to (3-2-6) (hereinafter, "structural unit (II-2-1) to (II)”. -2-6) ") and the like.
  • R 8 is synonymous with the above formula (3-2).
  • the structural unit (II-2) As the structural unit (II-2), the structural unit (II-2-3) is preferable.
  • the lower limit of the content ratio of the structural unit (II) in the [A] polymer is preferably 30 mol%, more preferably 40 mol%, and 55 mol% with respect to all the structural units constituting the [A] polymer. Is even more preferable.
  • the upper limit of the content ratio is preferably 80 mol%, more preferably 70 mol%, still more preferably 65 mol%.
  • structural unit (III) a structural unit containing an aromatic carbocycle to which one hydroxyl group is bonded
  • structural unit (III) a structural unit containing an aromatic carbocycle to which one hydroxyl group is bonded
  • structural unit (structural unit) a structural unit containing an alcoholic hydroxyl group
  • IV) a structural unit containing an alcoholic hydroxyl group
  • a lactone structure a lactone structure, a cyclic carbonate structure, a sultone structure, or a structural unit containing a combination thereof
  • structural unit (V) a structural unit containing a combination thereof
  • the structural unit (III) is a structural unit containing an aromatic carbocycle to which one hydroxyl group is bonded. [A] When the polymer has the structural unit (III), the process window of the radiation-sensitive resin composition can be further improved.
  • Examples of the structural unit (III) include a structural unit represented by the following formula.
  • RP is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • the lower limit of the content ratio of the structural unit (III) is preferably 1 mol% and 5 mol% with respect to all the structural units in the [A] polymer. Is more preferable.
  • the upper limit of the content ratio is preferably 70 mol%, more preferably 60 mol%.
  • the structural unit (IV) is a structural unit containing an alcoholic hydroxyl group. [A] When the polymer has a structural unit (IV), the LWR performance and process window of the resist pattern formed by the radiation-sensitive resin composition can be further improved.
  • Examples of the structural unit (IV) include a structural unit represented by the following formula.
  • RL2 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • the lower limit of the content ratio of the structural unit (IV) is preferably 1 mol% and 5 mol% with respect to all the structural units in the [A] polymer. Is more preferable.
  • the upper limit of the content ratio is preferably 20 mol%, more preferably 15 mol%.
  • the structural unit (V) is a structural unit containing a lactone structure, a cyclic carbonate structure, a sultone structure, or a combination thereof. [A] When the polymer has a structural unit (V), it may be possible to further improve the LWR performance and process window of the resist pattern formed by the radiation-sensitive resin composition.
  • Examples of the structural unit (V) include a structural unit represented by the following formula.
  • RL1 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • a structural unit containing a lactone structure or a cyclic carbonate structure is preferable.
  • the lower limit of the content ratio of the structural unit (V) is preferably 1 mol% and 5 mol% with respect to all the structural units in the [A] polymer. Is more preferable.
  • the upper limit of the content ratio is preferably 20 mol%, more preferably 15 mol%.
  • the upper limit of the ratio of Mw to the polystyrene-equivalent number average molecular weight (Mn) of the polymer by GPC (hereinafter, also referred to as “Mw / Mn” or “dispersity”) is preferably 2.50 and 2.00. Is more preferable, and 1.75 is even more preferable.
  • the lower limit of the ratio is usually 1.00, preferably 1.10, more preferably 1.20, and even more preferably 1.30.
  • the lower limit of the content ratio of the [A] polymer in the radiation-sensitive resin composition is preferably 50% by mass, more preferably 60% by mass, and 70% by mass with respect to all the components other than the [D] organic solvent. Is more preferable, and 80% by mass is particularly preferable.
  • the [A] polymer can be synthesized, for example, by polymerizing a monomer giving each structural unit by a known method.
  • the acid generator is a substance that generates an acid upon exposure.
  • Examples of the exposure light include those similar to those exemplified as the exposure light in the exposure step of the resist pattern forming method described later.
  • the acid generated by the exposure dissociates the acid dissociative group in the structural unit (II) of the polymer or the like [A] to generate a carboxy group, and the resist film is applied to the developing solution between the exposed portion and the non-exposed portion.
  • a resist pattern can be formed due to the difference in solubility.
  • the lower limit of the temperature at which the acid dissociates the acid dissociative group is preferably 80 ° C, more preferably 90 ° C, and even more preferably 100 ° C.
  • the upper limit of the temperature is preferably 130 ° C., more preferably 120 ° C., and even more preferably 110 ° C.
  • the lower limit of the time for the acid to dissociate the acid dissociative group is preferably 10 seconds, more preferably 1 minute. As the upper limit of the above time, 10 minutes is preferable, and 2 minutes is more preferable.
  • Examples of the acid generated from the acid generator include sulfonic acid and imidic acid.
  • the [B] acid generator is different from the [C] compound described later.
  • the form of the [B] acid generator in the radiation-sensitive resin composition may be, for example, a form of a low molecular weight compound described later (hereinafter, also referred to as “[B] acid generator”), or one of the polymers. It may be a form incorporated as a part, or it may be a form of both of these.
  • the radiation-sensitive resin composition may contain one or more [B] acid generators.
  • Acid generators include, for example, onium salt compounds, N-sulfonyloxyimide compounds, sulfonimide compounds, halogen-containing compounds, diazoketone compounds and the like.
  • onium salt compound examples include sulfonium salt, tetrahydrothiophenium salt, iodonium salt, phosphonium salt, diazonium salt, pyridinium salt and the like.
  • [B] acid generator examples include compounds described in paragraphs [0080] to [0113] of JP-A-2009-134808.
  • R 14 is a monovalent organic group having 1 to 30 carbon atoms.
  • R 15 is a hydrogen atom, a fluorine atom, or a monovalent organic group having 1 to 10 carbon atoms.
  • Y + is a monovalent radiation-sensitive onium cation.
  • Examples of the monovalent organic group having 1 to 30 carbon atoms represented by R 14 include a group similar to the monovalent organic group exemplified as R 2 or R 3 of the above formula (2).
  • the monovalent organic group having 1 to 10 carbon atoms represented by R 15 is a group similar to the monovalent organic group having 1 to 10 carbon atoms exemplified as R 2 or R 3 of the above formula (2), for example. And so on.
  • a monovalent group containing a ring structure having 5 or more ring members is preferable.
  • the ring structure having 5 or more ring members include an alicyclic structure having 5 or more ring members, an aliphatic heterocyclic structure having 5 or more ring members, an aromatic carbocyclic structure having 5 or more ring members, and an aromatic heterocyclic structure having 5 or more ring members.
  • a ring structure or a combination thereof and the like can be mentioned.
  • Examples of the alicyclic structure having 5 or more ring members include a monocyclic saturated alicyclic structure such as a cyclopentane structure, a cyclohexane structure, a cycloheptene structure, a cyclooctane structure, a cyclononane structure, a cyclodecane structure, and a cyclododecane structure, a cyclopentene structure, and a cyclohexene structure.
  • a monocyclic saturated alicyclic structure such as a cyclopentane structure, a cyclohexane structure, a cycloheptene structure, a cyclooctane structure, a cyclononane structure, a cyclodecane structure, and a cyclododecane structure, a cyclopentene structure, and a cyclohexene structure.
  • cycloheptene structure cyclooctene structure
  • monocyclic unsaturated alicyclic structure such as cyclodecane structure, norbornene structure, adamantan structure, tricyclodecane structure
  • polycyclic saturated alicyclic structure such as tetracyclododecane structure, norbornene structure
  • examples thereof include a polycyclic unsaturated alicyclic structure such as a tricyclodecane structure.
  • Examples of the aliphatic heterocyclic structure having 5 or more ring members include a lactone structure such as a hexanolactone structure and a norbornane lactone structure, a sulton structure such as a hexanosulton structure and a norbornane sulton structure, an oxacycloheptane structure, and an oxanorbornane structure.
  • Examples thereof include a nitrogen atom-containing heterocyclic structure such as an oxygen atom-containing heterocyclic structure, an azacyclohexane structure and a diazabicyclooctane structure, and a sulfur atom-containing heterocyclic structure such as a thiacyclohexane structure and a thianorbornane structure.
  • Examples of the aromatic carbocyclic ring structure having 5 or more ring members include a benzene structure, a naphthalene structure, a phenanthrene structure, and an anthracene structure.
  • Examples of the aromatic heterocyclic structure having 5 or more ring members include an oxygen atom-containing heterocyclic structure such as a furan structure, a pyran structure, a benzofuran structure, and a benzopyran structure, and a nitrogen atom-containing heterocyclic structure such as a pyridine structure, a pyrimidine structure, and an indole structure. And so on.
  • an oxygen atom-containing heterocyclic structure such as a furan structure, a pyran structure, a benzofuran structure, and a benzopyran structure
  • a nitrogen atom-containing heterocyclic structure such as a pyridine structure, a pyrimidine structure, and an indole structure. And so on.
  • the lower limit of the number of ring members of the ring structure 6 is preferable, 8 is more preferable, 9 is further preferable, and 10 is particularly preferable.
  • the upper limit of the number of ring members 15 is preferable, 14 is more preferable, 13 is further preferable, and 12 is particularly preferable.
  • R 15 a fluorine atom is preferable.
  • Examples of the monovalent radiation-sensitive onium cation represented by Y + include monovalent cations represented by the following formulas (ra) to (rc) (hereinafter, “cation (ra) to”. (Rc) ”) and the like.
  • b1 is an integer of 0 to 4.
  • RB1 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group or a halogen atom.
  • the plurality of RB1s are the same or different from each other and are monovalent organic groups having 1 to 20 carbon atoms, hydroxy groups, nitro groups or halogen atoms, or these groups are combined with each other. It is a part of a ring structure having 4 to 20 ring members, which is composed of a carbon chain to which these are bonded.
  • b2 is an integer from 0 to 4.
  • RB2 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group or a halogen atom.
  • the plurality of RB2s are the same or different from each other and are monovalent organic groups having 1 to 20 carbon atoms, hydroxy groups, nitro groups or halogen atoms, or these groups are combined with each other. It is a part of a ring structure having 4 to 20 ring members, which is composed of a carbon chain to which these are bonded.
  • R B3 and R B4 are each independently a hydrogen atom, a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group or a halogen atom, or these are combined with each other to represent a single bond.
  • b3 is an integer from 0 to 11.
  • RB5 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group or a halogen atom.
  • the plurality of RB5s are the same or different from each other and are monovalent organic groups having 1 to 20 carbon atoms, hydroxy groups, nitro groups or halogen atoms, or these groups are combined with each other. It is a part of a ring structure having 4 to 20 ring members, which is composed of a carbon chain to which these are bonded.
  • n b1 is an integer of 0 to 3.
  • b4 is an integer from 0 to 9. If b4 is 1, R B6 represents a monovalent organic group having 1 to 20 carbon atoms, hydroxy group, a nitro group or a halogen atom. When b4 is 2 or more, the plurality of RB6s are the same or different from each other and are monovalent organic groups having 1 to 20 carbon atoms, hydroxy groups, nitro groups or halogen atoms, or these groups are combined with each other. It is a part of a ring structure having 4 to 20 ring members, which is composed of a carbon chain to which these are bonded. b5 is an integer from 0 to 10.
  • RB7 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group or a halogen atom.
  • the plurality of RB7s are the same or different from each other and are monovalent organic groups having 1 to 20 carbon atoms, hydroxy groups, nitro groups or halogen atoms, or these groups are combined with each other. It is a part of a ring structure having 3 to 20 ring members, which is composed of a carbon atom or a carbon chain to which these are bonded.
  • n b3 is an integer of 0 to 3.
  • RB8 is a single bond or a divalent organic group having 1 to 20 carbon atoms.
  • n b2 is an integer of 0 to 2.
  • b6 is an integer of 0 to 5.
  • RB9 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group or a halogen atom.
  • the plurality of RB9s are the same or different from each other and are monovalent organic groups having 1 to 20 carbon atoms, hydroxy groups, nitro groups or halogen atoms, or these groups are combined with each other. It is a part of a ring structure having 4 to 20 ring members, which is composed of a carbon chain to which these are bonded.
  • b7 is an integer from 0 to 5.
  • RB10 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group or a halogen atom.
  • the plurality of RB10s are the same or different from each other and are monovalent organic groups having 1 to 20 carbon atoms, hydroxy groups, nitro groups or halogen atoms, or these groups are combined with each other. It is a part of a ring structure having 4 to 20 ring members, which is composed of a carbon chain to which these are bonded.
  • Examples of monovalent organic groups having 1 to 20 carbon atoms represented by R B1 , R B2 , R B3 , R B4 , R B5 , R B6 , R B7 , R B9 and R B10 include the above formula (2). Examples thereof include a group similar to the group exemplified as the monovalent organic group exemplified as R 2 or R 3 of the above.
  • Examples of the divalent organic group represented by RB8 include a group in which one hydrogen atom is removed from the group exemplified as the monovalent organic group exemplified as R 2 or R 3 in the above formula (2). Can be mentioned.
  • the R B3 and R B4 are preferably hydrogen atoms or a single bond in which they are combined with each other.
  • 0 to 2 is preferable.
  • b3, 0 to 4 is preferable, 0 to 2 is more preferable, and 0 or 1 is further preferable.
  • n b1 , 0 or 1 is preferable.
  • the R B1 and R B2 preferably a monovalent organic group or a halogen atom having 1 to 20 carbon atoms, or a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms Fluorine atoms are more preferred, and trifluoromethyl groups or fluorine atoms are even more preferred. In this case, the sensitivity to the exposure light and the LWR performance can be further improved.
  • b3 is 1 or more, the R B5, cyclohexyl, cyclohexyl-sulfonyl group or a fluorine atom is preferred.
  • a cation (ra) is preferable.
  • cation (ra) examples include cations represented by the following formulas (ra-1) to (ra-8) (hereinafter, “cations (ra-1) to (raa-)”. 8) ”) and the like.
  • Examples of the [B] compound include compounds represented by the following formulas (4-1) to (4-6) (hereinafter, also referred to as “compounds (B1) to (B6)”).
  • the lower limit of the content of the [B] acid generator is preferably 5 parts by mass with respect to 100 parts by mass of the [A] polymer. 10, 10 parts by mass is more preferable, and 15 parts by mass is further preferable.
  • the upper limit of the content is preferably 60 parts by mass, more preferably 55 parts by mass, and even more preferably 50 parts by mass.
  • the compound [C] is a compound represented by the following formula (1).
  • the compound [C] acts as an acid diffusion control agent.
  • the acid diffusion control agent has an effect of controlling the diffusion phenomenon of the acid generated from the [B] acid generator or the like in the resist film by exposure and controlling an unfavorable chemical reaction in the non-exposed region.
  • the radiation-sensitive resin composition can form a resist pattern having good sensitivity to exposure light, excellent LWR performance, and a wide process window.
  • R 1 is a monovalent organic group having 1 to 30 carbon atoms.
  • X + is a monovalent radiation-sensitive onium cation.
  • Examples of the monovalent organic group having 1 to 30 carbon atoms represented by R 1 include a group similar to the group exemplified as the monovalent organic group exemplified as R 2 or R 3 of the above formula (2). Can be mentioned.
  • Examples of the monovalent radiosensitive onium cation represented by X + include those similar to the monovalent radiosensitive onium cation exemplified as Y + in the above formula (4).
  • the above-mentioned cation (raa) is preferable, and the above-mentioned cation (ra-1) or cation (ra-2) is more preferable. ..
  • Examples of the [C] compound include compounds represented by the following formulas (1-1) to (1-4) (hereinafter, also referred to as “compounds (C1) to (C4)").
  • the lower limit of the content ratio of the [C] compound in the radiation-sensitive resin composition is preferably 1 mol%, more preferably 5 mol%, and 10 mol% with respect to 100 mol% of the [B] acid generator. More preferred.
  • the upper limit of the content ratio is preferably 200 mol%, more preferably 10 mol%, still more preferably 50 mol%.
  • the radiation-sensitive resin composition usually contains [D] an organic solvent.
  • the [D] organic solvent is not particularly limited as long as it is a solvent capable of dissolving or dispersing at least the [A] polymer and the [C] compound, and other optional components contained as necessary.
  • the radiation-sensitive resin composition may contain one or more [D] organic solvents.
  • the alcohol solvent examples include an aliphatic monoalcohol solvent having 1 to 18 carbon atoms such as 4-methyl-2-pentanol and n-hexanol, and an alicyclic monoalcohol solvent having 3 to 18 carbon atoms such as cyclohexanol.
  • examples thereof include a solvent, a polyhydric alcohol solvent having 2 to 18 carbon atoms such as 1,2-propylene glycol, and a polyhydric alcohol partial ether solvent having 3 to 19 carbon atoms such as propylene glycol-1-monomethyl ether.
  • ether-based solvent examples include dialkyl ether-based solvents such as diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether and diheptyl ether, cyclic ether-based solvents such as tetrahydrofuran and tetrahydropyran, and diphenyl ethers.
  • dialkyl ether-based solvents such as diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether and diheptyl ether, cyclic ether-based solvents such as tetrahydrofuran and tetrahydropyran, and diphenyl ethers.
  • aromatic ring-containing ether-based solvent such as anisole.
  • ketone solvent examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, 2-heptanone, ethyl-n-butyl ketone, methyl-n-hexyl ketone, and the like.
  • Chain ketone solvents such as di-iso-butyl ketone and trimethylnonanone
  • cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone and methylcyclohexanone, 2,4-pentandione and acetonylacetone. , Acetphenone and the like.
  • amide solvent examples include cyclic amide solvents such as N, N'-dimethylimidazolidinone and N-methylpyrrolidone, N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, and N.
  • chain amide solvents such as -methylacetamide, N, N-dimethylacetamide and N-methylpropionamide.
  • ester solvent examples include a monocarboxylic acid ester solvent such as n-butyl acetate and ethyl lactate, a lactone solvent such as ⁇ -butyrolactone and valerolactone, a polyhydric alcohol carboxylate solvent such as propylene glycol acetate, and propylene acetate.
  • ester solvent examples include a polyhydric alcohol partial ether carboxylate solvent such as glycol monomethyl ether, a polyvalent carboxylic acid diester solvent such as diethyl oxalate, and a carbonate solvent such as dimethyl carbonate and diethyl carbonate.
  • hydrocarbon solvent examples include an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms such as n-pentane and n-hexane, and an aromatic hydrocarbon solvent having 6 to 16 carbon atoms such as toluene and xylene. Be done.
  • an alcohol solvent and / or an ester solvent is preferable, a polyhydric alcohol partial ether solvent having 3 to 19 carbon atoms and / or a polyhydric alcohol partial ether carboxylate solvent is more preferable, and propylene. Glycol-1-monomethyl ether and / or propylene glycol monomethyl ether acetate are more preferred.
  • the lower limit of the content ratio of the [D] organic solvent is 50% by mass with respect to all the components contained in the radiation-sensitive resin composition. % Is preferable, 60% by mass is more preferable, 70% by mass is further preferable, and 80% by mass is particularly preferable.
  • the upper limit of the content ratio is preferably 99.9% by mass, preferably 99.5% by mass, and even more preferably 99.0% by mass.
  • Other optional components include, for example, surfactants.
  • the radiation-sensitive resin composition may contain one or more other optional components.
  • the radiation-sensitive resin composition is, for example, a mixture of [A] polymer and [C] compound, and if necessary, [B] acid generator, [D] organic solvent and other optional components in a predetermined ratio. However, it can be preferably prepared by filtering the obtained mixture with a polymer filter having a pore size of 0.2 ⁇ m or less.
  • the resist pattern forming method involves directly or indirectly coating a substrate with a radiation-sensitive resin composition (hereinafter, also referred to as a “coating step”) and exposing the resist film formed by the coating step. It includes a step (hereinafter, also referred to as “exposure step”) and a step of developing the exposed resist film (hereinafter, also referred to as “development step”).
  • a radiation-sensitive resin composition hereinafter, also referred to as a “exposure step”
  • development step a step of developing the exposed resist film
  • the resist pattern forming method by using the above-mentioned radiation-sensitive resin composition as the radiation-sensitive resin composition in the coating process, the sensitivity to exposure light is good and the LWR performance is excellent. Moreover, a resist pattern having a wide process window can be formed.
  • the radiation-sensitive resin composition is applied directly or indirectly to the substrate.
  • a resist film is formed directly or indirectly on the substrate.
  • the above-mentioned radiation-sensitive resin composition is used as the radiation-sensitive resin composition.
  • Examples of the substrate include conventionally known ones such as silicon wafers, silicon dioxide, and wafers coated with aluminum. Further, examples of the case where the radiation-sensitive resin composition is indirectly applied to the substrate include, for example, the case where the radiation-sensitive resin composition is applied onto the antireflection film formed on the substrate. Examples of such an antireflection film include organic or inorganic antireflection films disclosed in Japanese Patent Application Laid-Open No. 6-12452 and JP-A-59-93448.
  • the coating method examples include rotary coating (spin coating), casting coating, roll coating, and the like.
  • soft baking hereinafter, also referred to as “SB” may be performed in order to volatilize the solvent in the coating film.
  • SB temperature 60 ° C. is preferable, and 80 ° C. is more preferable.
  • the upper limit of the temperature is preferably 150 ° C., more preferably 140 ° C.
  • the lower limit of the SB time 5 seconds is preferable, and 10 seconds is more preferable.
  • the lower limit of the time 600 seconds is preferable, and 300 seconds is more preferable.
  • the lower limit of the average thickness of the resist film formed is preferably 10 nm, more preferably 20 nm.
  • the upper limit of the average thickness is preferably 1,000 nm, more preferably 500 nm.
  • the resist film formed by the above coating step is exposed.
  • This exposure is performed by irradiating the exposure light through a photomask (in some cases, through an immersion medium such as water).
  • the exposure light includes electromagnetic waves such as visible light, ultraviolet rays, far ultraviolet rays, extreme ultraviolet rays (EUV), X-rays, and ⁇ -rays; charged particles such as electron beams and ⁇ -rays, depending on the line width of the target pattern. Examples include lines.
  • EUV or electron beams are preferable, ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), EUV (wavelength 13.5 nm) or electron beams are more preferable, and ArF excimer laser light.
  • EUV or electron beam is more preferable, and EUV or electron beam is particularly preferable.
  • PEB post-exposure baking
  • the [A] polymer or the like due to the acid generated from the [B] acid generator or the like by the exposure is formed. It is preferable to promote the dissociation of the acid dissociative group having. With this PEB, it is possible to increase the difference in solubility in the developing solution between the exposed portion and the non-exposed portion.
  • the upper limit of the temperature is preferably 180 ° C., more preferably 130 ° C.
  • As the lower limit of the PEB time 5 seconds is preferable, 10 seconds is more preferable, and 30 seconds is even more preferable.
  • the upper limit of the time is preferably 600 seconds, more preferably 300 seconds, and even more preferably 100 seconds.
  • the exposed resist film is developed. As a result, a predetermined resist pattern can be formed. After development, it is generally washed with a rinse solution such as water or alcohol and dried.
  • the developing method in the developing step may be alkaline development or organic solvent development.
  • the developing solution used for development includes, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n-propylamine, diethylamine, di-n-.
  • TMAH tetramethylammonium hydroxide
  • Examples thereof include an alkaline aqueous solution in which at least one alkaline compound such as -7-undecene and 1,5-diazabicyclo- [4.3.0] -5-nonen are dissolved.
  • the TMAH aqueous solution is preferable, and the 2.38 mass% TMAH aqueous solution is more preferable.
  • examples of the developing solution include organic solvents such as hydrocarbon solvents, ether solvents, ester solvents, ketone solvents and alcohol solvents, and solutions containing the above organic solvents.
  • examples of the organic solvent include one or more of the solvents exemplified as the [D] organic solvent of the above-mentioned radiation-sensitive resin composition.
  • an ester solvent or a ketone solvent is preferable.
  • the ester solvent an acetate ester solvent is preferable, and n-butyl acetate is more preferable.
  • the ketone solvent a chain ketone is preferable, and 2-heptanone is more preferable.
  • the lower limit of the content of the organic solvent in the developing solution is preferably 80% by mass, more preferably 90% by mass, further preferably 95% by mass, and particularly preferably 99% by mass.
  • the components other than the organic solvent in the developing solution include water, silicone oil and the like.
  • Examples of the developing method include a method of immersing the substrate in a tank filled with a developing solution for a certain period of time (dip method), and a method of developing by raising the developing solution on the surface of the substrate by surface tension and allowing it to stand still for a certain period of time (paddle method). ), A method of spraying the developer on the surface of the substrate (spray method), a method of continuing to apply the developer on the substrate rotating at a constant speed while scanning the developer dispensing nozzle at a constant speed (dynamic discharge method). And so on.
  • Examples of the pattern formed by the resist pattern forming method include a line-and-space pattern and a hole pattern.
  • Mw Weight average molecular weight
  • Mn number average molecular weight
  • dispersity Mw / Mn
  • a cooled polymerization solution was put into hexane (500 parts by mass with respect to the polymerization solution), and the precipitated white powder was filtered off.
  • the filtered white powder was washed twice with 100 parts by mass of hexane based on the polymerization solution, filtered, and dissolved in propylene glycol-1-monomethyl ether (300 parts by mass).
  • methanol 500 parts by mass
  • triethylamine 50 parts by mass
  • ultrapure water 10 parts by mass
  • the resin was solidified by dropping into 500 parts by mass of water, and the obtained solid was filtered off.
  • the polymer (A-1) in the form of a white powder was obtained by drying at 50 ° C. for 12 hours.
  • the Mw of the obtained polymer (A-1) was 7,200, and the Mw / Mn was 1.54.
  • Table 1 shows the types and proportions of the monomers giving each structural unit of the polymers obtained in Synthesis Examples 1 to 26, as well as Mw and Mw / Mn. In Table 1, "-" indicates that the corresponding monomer was not used.
  • the cation (tetra n-butylammonium cation) in the compound represented by the above formula (c-3) is not a radiation-sensitive onium cation.
  • Example 1 Preparation of radiation-sensitive resin composition (R-1) [A] 100 parts by mass of (A-1) as a polymer, [B] 20 parts by mass of (B-1) as an acid generator , (C-1) as [C] compound in an amount of 20 mol% based on (B-1), and [D] 4,800 parts by mass of (D-1) and (D-2) 2 as an organic solvent.
  • a radiation-sensitive resin composition (R-1) was prepared by mixing 000 parts by mass and filtering the obtained mixed solution with a polymer filter having a pore size of 0.20 ⁇ m.
  • the resist film was post-exposure baked (PEB) at 110 ° C. for 60 seconds. Then, using 2.38 mass% of TMAH aqueous solution, it was developed at 23 ° C. for 30 seconds to form a positive 32 nm line-and-space pattern.
  • PEB post-exposure baked
  • the exposure amount for forming the 32 nm line-and-space pattern was defined as the optimum exposure amount, and this optimum exposure amount was defined as Eop (unit: mJ / cm 2 ).
  • Eop unit: mJ / cm 2
  • the sensitivity was evaluated as "good” when Eop was 30 mJ / cm 2 or less, and as “poor” when it exceeded 30 mJ / cm 2.
  • LWR performance Using the scanning electron microscope, the resist pattern formed above was observed from above. A total of 50 points of line width were measured at arbitrary points, and a 3-sigma value was obtained from the distribution of the measured values, which was defined as LWR (unit: nm). The LWR performance indicates that the smaller the LWR value, the smaller the rattling of the line and the better. The LWR performance was evaluated as "good” when the LWR was 4.0 nm or less and “poor” when the LWR exceeded 4.0 nm.
  • Process window means the range of resist dimensions that can form a pattern that is free of bridge defects and tilt. Patterns from low to high exposures were formed using masks that form 32 nm line and space (1L / 1S). Generally, in the case of a low exposure amount, defects such as bridge formation between patterns are observed, and in the case of a high exposure amount, defects such as pattern collapse are observed. The difference between the maximum value and the minimum value of the resist dimensions in which these defects are not observed was defined as a CD (Critical Demension) margin (unit: nm). The larger the value of the CD margin, the wider the process window and the better. When the CD margin was 30 nm or more, it was evaluated as “good”, and when it was less than 30 nm, it was evaluated as “poor”.
  • the radiation-sensitive resin compositions of Examples had better sensitivity, LWR performance, and CD margin than the radiation-sensitive resin compositions of Comparative Examples.
  • the radiation-sensitive resin composition and the resist pattern forming method of the present invention it is possible to form a resist pattern having good sensitivity to exposure light, excellent LWR performance, and a wide process window. Therefore, these can be suitably used for processing processes of semiconductor devices, which are expected to be further miniaturized in the future.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

露光光に対する感度が良好であり、LWR性能に優れ、かつプロセスウィンドウが広いレジストパターンを形成することができる感放射線性樹脂組成物及びレジストパターン形成方法を提供する。2以上の水酸基が結合した芳香族炭素環を含む第1構造単位及び酸の作用により解離しカルボキシ基を与える酸解離性基を含む第2構造単位を有する重合体と、下記式(1)で表される化合物とを含有し、上記重合体の重量平均分子量が10,000以下である感放射線性樹脂組成物(下記式(1)中、Rは、炭素数1~30の1価の有機基である。Xは、1価の感放射線性オニウムカチオンである。)。

Description

感放射線性樹脂組成物及びレジストパターン形成方法
 本発明は、感放射線性樹脂組成物及びレジストパターン形成方法に関する。
 リソグラフィーによる微細加工に用いられる感放射線性樹脂組成物は、ArFエキシマレーザー光(波長193nm)、KrFエキシマレーザー光(波長248nm)等の遠紫外線、極端紫外線(EUV)(波長13.5nm)等の電磁波、電子線等の荷電粒子線などの放射線の照射により露光部に酸を発生させ、この酸を触媒とする化学反応により露光部と非露光部との現像液に対する溶解速度に差異を生じさせることで基板上にレジストパターンを形成する。
 感放射線性樹脂組成物には、極端紫外線、電子線等の露光光に対する感度が良好であることや線幅の均一性を示すLWR(Line Width Roughness)性能等に優れることが要求される。
 これらの要求に対しては、感放射線性樹脂組成物に用いられる重合体、酸発生剤及びその他の成分の種類、分子構造などが検討され、さらにその組み合わせについても詳細に検討されている(特開2010-134279号公報、特開2014-224984号公報及び特開2016-047815号公報参照)。
特開2010-134279号公報 特開2014-224984号公報 特開2016-047815号公報
 レジストパターンのさらなる微細化に伴い、露光・現像条件のわずかなブレがレジストパターンの形状や欠陥の発生に及ぼす影響もますます大きくなっている。このようなプロセス条件のわずかなブレを吸収できるようなプロセスウィンドウ(プロセス余裕度)の広い感放射線性樹脂組成物も求められている。しかし、上記従来の感放射線性樹脂組成物ではこれらの要求を満たすことはできていない。
 本発明は、上述のような事情に基づいてなされたものであり、その目的は、露光光に対する感度が良好であり、LWR性能に優れ、かつプロセスウィンドウが広いレジストパターンを形成することができる感放射線性樹脂組成物及びレジストパターン形成方法を提供することにある。
 上記課題を解決するためになされた発明は、2以上の水酸基が結合した芳香族炭素環を含む第1構造単位及び酸の作用により解離しカルボキシ基を与える酸解離性基を含む第2構造単位を有する重合体(以下、「[A]重合体」ともいう)と、下記式(1)で表される化合物(以下、「[C]化合物」ともいう)とを含有し、上記[A]重合体の重量平均分子量が10,000以下である感放射線性樹脂組成物である。
Figure JPOXMLDOC01-appb-C000006
(式(1)中、Rは、炭素数1~30の1価の有機基である。Xは、1価の感放射線性オニウムカチオンである。)
 上記課題を解決するためになされた別の発明は、基板に直接又は間接に上述の当該感放射線性樹脂組成物を塗工する工程と、上記塗工工程により形成されたレジスト膜を露光する工程と、上記露光されたレジスト膜を現像する工程とを備えるレジストパターン形成方法である。
 本発明の感放射線性樹脂組成物及びレジストパターン形成方法によれば、露光光に対する感度が良好であり、LWR性能に優れ、かつプロセスウィンドウが広いレジストパターンを形成することができる。したがって、これらは、今後さらに微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。
 以下、本発明の感放射線性樹脂組成物及びレジストパターン形成方法について詳説する。
<感放射線性樹脂組成物>
 当該感放射線性樹脂組成物は、[A]重合体と、[C]化合物とを含有する。当該感放射線性樹脂組成物は、通常、有機溶媒(以下、「[D]有機溶媒」ともいう)を含有する。当該感放射線性樹脂組成物は、好適成分として、感放射線性酸発生体(以下、「[B]酸発生体」ともいう)を含有していてもよい。当該感放射線性樹脂組成物は、本発明の効果を損なわない範囲において、その他の任意成分を含有していてもよい。
 当該感放射線性樹脂組成物は、[A]重合体と[C]化合物とを含有することで、露光光に対する感度が良好であり、LWR性能に優れ、かつプロセスウィンドウが広いレジストパターンを形成することができる。当該感放射線性樹脂組成物が上記構成を備えることで上記効果を奏する理由は必ずしも明確ではないが、例えば以下のように推察することができる。すなわち、当該感放射線性樹脂組成物が含有する[A]重合体が2以上の水酸基が結合した芳香族炭素環を含む第1構造単位を有することにより、現像液に対する溶解性が向上し、その結果、露光光に対する感度が良好であり、LWR性能に優れ、かつプロセスウィンドウが広いレジストパターンを形成することができると考えられる。また、当該感放射線性樹脂組成物が含有する[A]重合体の重量平均分子量が10,000以下であることにより、現像液に対する溶解性が向上し、その結果、露光光に対する感度が良好であり、LWR性能に優れ、かつプロセスウィンドウが広いレジストパターンを形成することができると考えられる。さらに、当該感放射線性樹脂組成物は、[A]重合体と[C]化合物とを組み合わせて用いることにより、露光部の酸発生量が増加し、その結果、露光光に対する感度が良好であり、LWR性能に優れ、かつプロセスウィンドウが広いレジストパターンを形成することができると考えられる。
 以下、当該感放射線性樹脂組成物が含有する各成分について説明する。
<[A]重合体>
 [A]重合体は、2以上の水酸基が結合した芳香族炭素環を含む構造単位(以下、「構造単位(I)」ともいう)及び酸の作用により解離しカルボキシ基を与える酸解離性基を含む構造単位(以下、「構造単位(II)」ともいう)を有する。[A]重合体は、上記構造単位(I)及び構造単位(II)以外のその他の構造単位を有していてもよい。[A]重合体は、各構造単位を1種又は2種以上有していてもよい。当該感放射線性樹脂組成物は、1種又は2種以上の[A]重合体を含有することができる。
 [A]重合体の重量平均分子量は、10,000以下である。[A]重合体の重量平均分子量が10,000以下であることにより、現像液に対する溶解性が向上し、その結果、露光光に対する感度が良好であり、LWR性能に優れ、かつプロセスウィンドウが広いレジストパターンを形成することができると考えられる。なお、本明細書において「重量平均分子量」とは、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(以下、「Mw」ともいう)である。[A]重合体のMwの下限としては、3,000が好ましく、4,000がより好ましく、4,500がさらに好ましい。[A]重合体のMwの上限としては、10,000であり、9,800が好ましく、9,600がより好ましく、9,500がさらに好ましい。[A]重合体の上限が上記範囲であることで、当該感放射線性樹脂組成物の露光光に対する感度、LWR性能及びプロセスウィンドウをより向上させることができる。
 なお、本明細書における[A]重合体のMw及び後述するGPCによるポリスチレン換算数平均分子量(以下、「Mn」ともいう)は、以下の条件によるGPCにより測定される値である。
 GPCカラム:東ソー(株)の「G2000HXL」2本、「G3000HXL」1本及び「G4000HXL」1本
 溶出溶媒  :テトラヒドロフラン
 流量    :1.0mL/分
 試料濃度  :1.0質量%
 試料注入量 :100μL
 カラム温度 :40℃
 検出器   :示唆屈折計
 標準物質  :単分散ポリスチレン
 以下、[A]重合体が有する各構造単位について詳説する。
[構造単位(I)]
 構造単位(I)は、2以上の水酸基が結合した芳香族炭素環を含む構造単位である。[A]重合体が構造単位(I)を有することにより、現像液に対する溶解性が向上し、その結果、露光光に対する感度が良好であり、LWR性能に優れ、かつプロセスウィンドウが広いレジストパターンを形成することができると考えられる。
 上記芳香族炭素環の環員数としては、6~20が好ましく、6~14がより好ましく、6~10がさらに好ましい。なお、「環員数」とは、環を構成する原子数をいい、多環の場合は、この多環を構成する原子数をいう。
 上記芳香族炭素環としては、例えばベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、テトラセン環、ピレン環等が挙げられる。これらの中でも、ベンゼン環又はナフタレン環が好ましく、ベンゼン環がより好ましい。
 上記芳香族炭素環に結合する水酸基の数は2以上であり、2以上11以下が好ましく、2であることがより好ましい。上記水酸基の数が上記範囲内である場合、当該感放射線性樹脂組成物の露光光に対する感度、LWR性能及びプロセスウィンドウをより向上させることができる。また、上記水酸基の数が2である場合、2つの水酸基は芳香族炭素環における隣接する炭素原子に結合していることが好ましい。この場合、当該感放射線性樹脂組成物の露光光に対する感度、LWR性能及びプロセスウィンドウをより一層向上させることができる。
 構造単位(I)としては、下記式(2)で表される構造単位(以下、「構造単位(I-1)」ともいう)が好ましい。
Figure JPOXMLDOC01-appb-C000007
 上記式(2)中、Rは、水素原子、ハロゲン原子又は炭素数1~10の1価の有機基である。Lは、単結合、-O-、-COO-又は-CONH-である。Arは、環員数6~20のアレーンから(m+n+1)個の芳香環上の水素原子を除いた基である。mは、0~9の整数である。mが1の場合、Rは、ハロゲン原子又は炭素数1~10の1価の有機基である。mが2以上の場合、複数のRは、互いに同一又は異なり、ハロゲン原子若しくは炭素数1~10の1価の有機基であるか、又は複数のRのうちの2つ以上が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の脂環構造の一部である。nは、2~11の整数である。但し、m+nは11以下である。
 R又はRで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 「有機基」とは、少なくとも1個の炭素原子を含む基をいう。「炭素数」とは、基を構成する炭素原子数をいう。R又はRで表される炭素数1~10の1価の有機基としては、例えば炭素数1~10の1価の炭化水素基、この炭化水素基の炭素-炭素間に2価のヘテロ原子含有基を含む基(α)、上記炭化水素基又は上記基(α)が有する水素原子の一部又は全部を1価のヘテロ原子含有基で置換した基(β)、上記炭化水素基、上記基(α)又は上記基(β)と2価のヘテロ原子含有基とを組み合わせた基(γ)等が挙げられる。
 「炭化水素基」には、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基が含まれる。この「炭化水素基」は、飽和炭化水素基でも不飽和炭化水素基でもよい。「鎖状炭化水素基」とは、環状構造を含まず、鎖状構造のみで構成された炭化水素基をいい、直鎖状炭化水素基及び分岐状炭化水素基の両方を含む。「脂環式炭化水素基」とは、環構造としては脂環構造のみを含み、芳香環構造を含まない炭化水素基をいい、単環の脂環式炭化水素基及び多環の脂環式炭化水素基の両方を含む。但し、脂環構造のみで構成されている必要はなく、その一部に鎖状構造を含んでいてもよい。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基をいう。但し、芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環構造を含んでいてもよい。
 炭素数1~10の1価の炭化水素基としては、例えば炭素数1~10の1価の鎖状炭化水素基、炭素数3~10の1価の脂環式炭化水素基、炭素数6~10の1価の芳香族炭化水素基等が挙げられる。
 炭素数1~10の1価の鎖状炭化水素基としては、例えばメチル基、エチル基、n-プロピル基、i-プロピル基等のアルキル基、エテニル基、プロペニル基、ブテニル基等のアルケニル基、エチニル基、プロピニル基、ブチニル基等のアルキニル基などが挙げられる。
 炭素数3~10の1価の脂環式炭化水素基としては、例えばシクロペンチル基、シクロヘキシル基、ノルボルニル基、アダマンチル基等の脂環式飽和炭化水素基、シクロペンテニル基、シクロヘキセニル基、ノルボルネニル基等の脂環式不飽和炭化水素基などが挙げられる。
 炭素数6~10の1価の芳香族炭化水素基としては、例えばフェニル基、トリル基、キシリル基、ナフチル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基などが挙げられる。
 1価又は2価のヘテロ原子含有基を構成するヘテロ原子としては、例えば酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、ハロゲン原子等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 2価のヘテロ原子含有基としては、例えば-O-、-CO-、-S-、-CS-、-NR’-、-SO-これらのうちの2つ以上を組み合わせた基等が挙げられる。R’は、水素原子又は1価の炭化水素基である。
 Arを与える環員数6~20のアレーンとしては、例えばベンゼン、ナフタレン、アントラセン、フェナントレン、テトラセン、ピレン等が挙げられる。
 複数のRのうちの2つ以上が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の脂環構造としては、例えばシクロペンタン構造、シクロヘキサン構造等の飽和脂環構造、シクロペンテン構造、シクロヘキセン構造等の不飽和脂環構造などが挙げられる。
 Rとしては、構造単位(I)を与える単量体の共重合性の観点から、水素原子又はメチル基が好ましく、水素原子がより好ましい。
 Lとしては、単結合が好ましい。
 Arを与える環員数6~20のアレーンとしては、ベンゼン又はナフタレンが好ましく、ベンゼンがより好ましい。
 nとしては、当該感放射線性樹脂組成物の露光光に対する感度、LWR性能及びプロセスウィンドウをより向上させることができる観点から、2が好ましい。nが2である場合、2つの水酸基はArにおける隣接する炭素原子に結合していることが好ましい。この場合、当該感放射線性樹脂組成物の露光光に対する感度、LWR性能及びプロセスウィンドウをより一層向上させることができる。
 mとしては、0~2が好ましく、0又は1がより好ましく、0がさらに好ましい。
 構造単位(I-1)としては、例えば下記式(2-1)又は式(2-2)で表される構造単位(以下、「構造単位(I-1-1)又は(I-1-2)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 上記式(2-1)及び式(2-2)中、Rは、上記式(2)と同義である。
 [A]重合体における構造単位(I)の含有割合の下限としては、[A]重合体を構成する全構造単位に対して、1モル%が好ましく、5モル%がより好ましく、10モル%がさらに好ましい。上記含有割合の上限としては、60モル%が好ましく、50モル%がより好ましく、40モル%がさらに好ましい。構造単位(I)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物の露光光に対する感度、LWR性能及びプロセスウィンドウをより向上させることができる。
[構造単位(II)]
 構造単位(II)は、酸の作用により解離しカルボキシ基を与える酸解離性基を含む構造単位である。「酸解離性基」とは、カルボキシ基の水素原子を置換する基であって、酸の作用により解離する基をいう。酸解離性基が酸の作用によりカルボニルオキシ基から解離することにより、カルボキシ基が生じる。当該感放射線性樹脂組成物では、露光により後述する[B]酸発生体等から発生する酸の作用により[A]重合体における酸解離性基が解離し、露光部における[A]重合体の現像液への溶解性が変化することにより、レジストパターンを形成することができる。
 構造単位(II)としては、例えば下記式(3-1)又は(3-2)で表される構造単位(以下、「構造単位(II-1)又は(II-2)」ともいう)などが挙げられる。なお、例えば下記式(3-1)において、カルボキシ基に由来するオキシ酸素原子に結合する-C(R)(R)(R)が酸解離性基に該当する。
Figure JPOXMLDOC01-appb-C000009
 上記式(3-1)中、Rは、水素原子、ハロゲン原子又は炭素数1~10の1価の有機基である。Lは、単結合又は炭素数1~20の2価の有機基である。Rは、炭素数1~20の1価の炭化水素基である。R及びRは、それぞれ独立して、炭素数1~20の1価の炭化水素基であるか、又はこれらが互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造の一部である。
 上記式(3-2)中、Rは、水素原子、ハロゲン原子又は炭素数1~10の1価の有機基である。Lは、単結合又は炭素数1~20の2価の有機基である。R及びR10は、それぞれ独立して、水素原子又は炭素数1~20の1価の炭化水素基であるか、又はこれらが互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の不飽和脂環構造の一部である。R11は、水素原子又は炭素数1~20の1価の炭化水素基である。R12及びR13は、それぞれ独立して、水素原子又は炭素数1~20の1価の炭化水素基であるか、又はこれらが互いに合わせられこれらが結合する炭素鎖と共に構成される環員数3~20の脂環構造の一部である。
 R又はRで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 R又はRで表される炭素数1~10の1価の有機基としては、例えば上記式(2)のR又はRとして例示した炭素数1~10の1価の有機基と同様の基等が挙げられる。
 L又はLで表される炭素数1~20の2価の有機基としては、例えば上記式(2)のR又はRとして例示した1価の有機基と同様の基等から1個の水素原子を除いた基等が挙げられる。
 R、R、R、R、R10、R11、R12又はR13で表される炭素数1~20の1価の炭化水素基としては、例えば上記式(2)のR又はRとして例示した1価の有機基のうち、1価の炭化水素基として例示したものと同様の基等が挙げられる。
 R及びR、又はR12及びR13が互いに合わせられこれらが結合する炭素原子又は炭素鎖と共に構成される環員数3~20の脂環構造としては、例えばシクロプロパン構造、シクロブタン構造、シクロペンタン構造、シクロヘキサン構造等の単環の飽和脂環構造、ノルボルナン構造、アダマンタン構造、トリシクロデカン構造、テトラシクロドデカン構造等の多環の飽和脂環構造、シクロプロペン構造、シクロブテン構造、シクロペンテン構造、シクロヘキセン構造等の単環の不飽和脂環構造、ノルボルネン構造、トリシクロデセン構造、テトラシクロドデセン構造等の多環の不飽和脂環構造などが挙げられる。
 R及びR10が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の不飽和脂環構造としては、例えばシクロプロペン構造、シクロブテン構造、シクロペンテン構造、シクロヘキセン構造等の単環の不飽和脂環構造、ノルボルネン構造、トリシクロデセン構造、テトラシクロドデセン構造等の多環の不飽和脂環構造などが挙げられる。
 R又はRとしては、水素原子又はメチル基が好ましく、メチル基がより好ましい。
 Lとしては、単結合、2価の芳香族炭化水素基、又は2価の鎖状炭化水素基と2価のヘテロ原子含有基とを組み合わせた基が好ましく、単結合がより好ましい。Lとしては、単結合が好ましい。
 Rとしては、鎖状炭化水素基又は芳香族炭化水素基が好ましく、メチル基、エチル基、i-プロピル基又はフェニル基がより好ましい。
 R又はRとしては、鎖状炭化水素基又は脂環式炭化水素基が好ましい。また、R及びRが互いに合わせられこれらが結合する炭素原子と共に環員数3~20の脂環構造を構成することも好ましい。この場合、上記脂環構造としては、単環の飽和脂環構造又は多環の飽和脂環構造が好ましい。
 R又はR10としては、水素原子又は鎖状炭化水素基が好ましい。また、R及びR10が互いに合わせられこれらが結合する炭素鎖と共に環員数4~20の不飽和脂環構造を構成することも好ましい。この場合、上記不飽和脂環構造としては、単環の不飽和脂環構造が好ましい。
 R11としては、水素原子又は鎖状炭化水素基が好ましい。
 R12又はR13としては、水素原子が好ましい。また、R12及びR13が互いに合わせられこれらが結合する炭素鎖と共に環員数3~20の脂環構造を構成することも好ましい。この場合、上記脂環構造としては、単環の飽和脂環構造が好ましい。
 上記式(3-2)において、R及びR10又はR12及びR13のいずれか一方が環構造の一部を構成していることが好ましい。また、R及びR10が環構造の一部を構成する場合、R13は水素原子であることが好ましく、R12及びR13が環構造の一部を構成する場合、Rは水素原子であることが好ましい。
 構造単位(II)としては、露光光に対する感度及びLWR性能をより向上できる観点から、構造単位(II-1)が好ましい。
 構造単位(II-1)としては、例えば下記式(3-1-1)~(3-1-10)で表される構造単位(以下、「構造単位(II-1-1)~(II-1-10)」ともいう)などが挙げられる。
Figure JPOXMLDOC01-appb-C000010
 上記式(3-1-1)~(3-1-10)中、Rは、上記式(3-1)と同義である。
 構造単位(II-1)としては、構造単位(II-1-1)~(II-1-6)又は(II-1-8)が好ましい。
 構造単位(II-2)としては、例えば下記式(3-2-1)~(3-2-6)で表される構造単位(以下、「構造単位(II-2-1)~(II-2-6)」ともいう)などが挙げられる。
Figure JPOXMLDOC01-appb-C000011
 上記式(3-2-1)~(3-2-6)中、Rは、上記式(3-2)と同義である。
 構造単位(II-2)としては、構造単位(II-2-3)が好ましい。
 [A]重合体における構造単位(II)の含有割合の下限としては、[A]重合体を構成する全構造単位に対して、30モル%が好ましく、40モル%がより好ましく、55モル%がさらに好ましい。上記含有割合の上限としては、80モル%が好ましく、70モル%がより好ましく、65モル%がさらに好ましい。
[その他の構造単位]
 その他の構造単位としては、例えば1の水酸基が結合した芳香族炭素環を含む構造単位(以下、「構造単位(III)」ともいう)、アルコール性水酸基を含む構造単位(以下、「構造単位(IV)」ともいう)、ラクトン構造、環状カーボネート構造、スルトン構造又はこれらの組み合わせを含む構造単位(以下、「構造単位(V)」ともいう)などが挙げられる。
(構造単位(III))
 構造単位(III)は、1の水酸基が結合した芳香族炭素環を含む構造単位である。[A]重合体が構造単位(III)を有する場合、当該感放射線性樹脂組成物のプロセスウィンドウをより向上させることができる。
 構造単位(III)としては、例えば下記式で表される構造単位などが挙げられる。
Figure JPOXMLDOC01-appb-C000012
 上記式中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
 [A]重合体が構造単位(III)を有する場合、構造単位(III)の含有割合の下限としては、[A]重合体における全構造単位に対して、1モル%が好ましく、5モル%がより好ましい。上記含有割合の上限としては、70モル%が好ましく、60モル%がより好ましい。
(構造単位(IV))
 構造単位(IV)は、アルコール性水酸基を含む構造単位である。[A]重合体が構造単位(IV)を有する場合、当該感放射線性樹脂組成物により形成されるレジストパターンのLWR性能及びプロセスウィンドウをより向上させることができる。
 構造単位(IV)としては、例えば下記式で表される構造単位などが挙げられる。
Figure JPOXMLDOC01-appb-C000013
 上記式中、RL2は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
 [A]重合体が構造単位(IV)を有する場合、構造単位(IV)の含有割合の下限としては、[A]重合体における全構造単位に対して、1モル%が好ましく、5モル%がより好ましい。上記含有割合の上限としては、20モル%が好ましく、15モル%がより好ましい。
(構造単位(V))
 構造単位(V)は、ラクトン構造、環状カーボネート構造、スルトン構造又はこれらの組み合わせを含む構造単位である。[A]重合体が構造単位(V)を有する場合、当該感放射線性樹脂組成物により形成されるレジストパターンのLWR性能及びプロセスウィンドウをより向上させることができる場合がある。
 構造単位(V)としては、例えば下記式で表される構造単位などが挙げられる。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 上記式中、RL1は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
 構造単位(V)としては、ラクトン構造又は環状カーボネート構造を含む構造単位が好ましい。
 [A]重合体が構造単位(V)を有する場合、構造単位(V)の含有割合の下限としては、[A]重合体における全構造単位に対して、1モル%が好ましく、5モル%がより好ましい。上記含有割合の上限としては、20モル%が好ましく、15モル%がより好ましい。
 [A]重合体のGPCによるポリスチレン換算数平均分子量(Mn)に対するMwの比(以下、「Mw/Mn」又は「分散度」ともいう)の上限としては、2.50が好ましく、2.00がより好ましく、1.75がさらに好ましい。上記比の下限としては、通常1.00であり、1.10が好ましく、1.20がより好ましく、1.30がさらに好ましい。[A]重合体のMw/Mnを上記範囲とすることで、当該感放射線性樹脂組成物の塗工性をより向上させることができる。
 当該感放射線性樹脂組成物における[A]重合体の含有割合の下限としては、[D]有機溶媒以外の全成分に対して、50質量%が好ましく、60質量%がより好ましく、70質量%がさらに好ましく、80質量%が特に好ましい。
 [A]重合体は、例えば各構造単位を与える単量体を公知の方法で重合することにより合成することができる。
<[B]酸発生体>
 [B]酸発生体は、露光により酸を発生する物質である。露光光としては、例えば後述する当該レジストパターン形成方法の露光工程における露光光として例示するものと同様のものなどが挙げられる。露光により発生した酸により[A]重合体等が有する構造単位(II)における酸解離性基が解離してカルボキシ基が生じ、露光部と非露光部との間でレジスト膜の現像液への溶解性に差異が生じることにより、レジストパターンを形成することができる。
 酸が酸解離性基を解離させる温度の下限としては、80℃が好ましく、90℃がより好ましく、100℃がさらに好ましい。上記温度の上限としては、130℃が好ましく、120℃がより好ましく、110℃がさらに好ましい。酸が酸解離性基を解離させる時間の下限としては10秒が好ましく、1分がより好ましい。上記時間の上限としては、10分が好ましく、2分がより好ましい。
 [B]酸発生体から発生する酸としては、例えばスルホン酸、イミド酸などが挙げられる。なお、[B]酸発生体は、後述する[C]化合物とは異なる。
 当該感放射線性樹脂組成物における[B]酸発生体の含有形態としては、例えば後述する低分子化合物の形態(以下、「[B]酸発生剤」ともいう)でもよいし、重合体の一部として組み込まれた形態でもよいし、これらの両方の形態でもよい。当該感放射線性樹脂組成物は、[B]酸発生体を1種又は2種以上含有してもよい。
 [B]酸発生剤としては、例えばオニウム塩化合物、N-スルホニルオキシイミド化合物、スルホンイミド化合物、ハロゲン含有化合物、ジアゾケトン化合物などが挙げられる。
 オニウム塩化合物としては、例えばスルホニウム塩、テトラヒドロチオフェニウム塩、ヨードニウム塩、ホスホニウム塩、ジアゾニウム塩、ピリジニウム塩などが挙げられる。
 [B]酸発生剤の具体例としては、例えば特開2009-134088号公報の段落[0080]~[0113]に記載されている化合物などが挙げられる。
 露光によりスルホン酸を発生する[B]酸発生剤としては、例えば下記式(4)で表される化合物(以下、「[B]化合物」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000018
 上記式(4)中、R14は、炭素数1~30の1価の有機基である。R15は、水素原子、フッ素原子又は炭素数1~10の1価の有機基である。Yは、1価の感放射線性オニウムカチオンである。
 R14で表される炭素数1~30の1価の有機基としては、例えば上記式(2)のR又はRとして例示した1価の有機基と同様の基等が挙げられる。
 R15で表される炭素数1~10の1価の有機基としては、例えば上記式(2)のR又はRとして例示した炭素数1~10の1価の有機基と同様の基等が挙げられる。
 R14で表される有機基としては、環員数5以上の環構造を含む1価の基が好ましい。環員数5以上の環構造としては、例えば環員数5以上の脂環構造、環員数5以上の脂肪族複素環構造、環員数5以上の芳香族炭素環構造、環員数5以上の芳香族複素環構造又はこれらの組み合わせ等が挙げられる。
 環員数5以上の脂環構造としては、例えばシクロペンタン構造、シクロヘキサン構造、シクロヘプタン構造、シクロオクタン構造、シクロノナン構造、シクロデカン構造、シクロドデカン構造等の単環の飽和脂環構造、シクロペンテン構造、シクロヘキセン構造、シクロヘプテン構造、シクロオクテン構造、シクロデセン構造等の単環の不飽和脂環構造、ノルボルナン構造、アダマンタン構造、トリシクロデカン構造、テトラシクロドデカン構造等の多環の飽和脂環構造、ノルボルネン構造、トリシクロデセン構造等の多環の不飽和脂環構造などが挙げられる。
 環員数5以上の脂肪族複素環構造としては、例えばヘキサノラクトン構造、ノルボルナンラクトン構造等のラクトン構造、ヘキサノスルトン構造、ノルボルナンスルトン構造等のスルトン構造、オキサシクロヘプタン構造、オキサノルボルナン構造等の酸素原子含有複素環構造、アザシクロヘキサン構造、ジアザビシクロオクタン構造等の窒素原子含有複素環構造、チアシクロヘキサン構造、チアノルボルナン構造等の硫黄原子含有複素環構造などが挙げられる。
 環員数5以上の芳香族炭素環構造としては、例えばベンゼン構造、ナフタレン構造、フェナントレン構造、アントラセン構造などが挙げられる。
 環員数5以上の芳香族複素環構造としては、例えばフラン構造、ピラン構造、ベンゾフラン構造、ベンゾピラン構造等の酸素原子含有複素環構造、ピリジン構造、ピリミジン構造、インドール構造等の窒素原子含有複素環構造などが挙げられる。
 上記環構造の環員数の下限としては、6が好ましく、8がより好ましく、9がさらに好ましく、10が特に好ましい。上記環員数の上限としては、15が好ましく、14がより好ましく、13がさらに好ましく、12が特に好ましい。
 R15としては、フッ素原子が好ましい。
 Yで表される1価の感放射線性オニウムカチオンとしては、例えば下記式(r-a)~(r-c)で表される1価のカチオン(以下、「カチオン(r-a)~(r-c)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000019
 上記式(r-a)中、b1は、0~4の整数である。b1が1の場合、RB1は、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基又はハロゲン原子である。b1が2以上の場合、複数のRB1は、互いに同一又は異なり、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基若しくはハロゲン原子であるか、又はこれらの基が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部である。b2は、0~4の整数である。b2が1の場合、RB2は、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基又はハロゲン原子である。b2が2以上の場合、複数のRB2は、互いに同一又は異なり、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基若しくはハロゲン原子であるか、又はこれらの基が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部である。RB3及びRB4は、それぞれ独立して、水素原子、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基若しくはハロゲン原子であるか、又はこれらが互いに合わせられ単結合を表す。b3は、0~11の整数である。b3が1の場合、RB5は、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基又はハロゲン原子である。b3が2以上の場合、複数のRB5は、互いに同一又は異なり、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基若しくはハロゲン原子であるか、又はこれらの基が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部である。nb1は、0~3の整数である。
 上記式(r-b)中、b4は、0~9の整数である。b4が1の場合、RB6は、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基又はハロゲン原子である。b4が2以上の場合、複数のRB6は、互いに同一又は異なり、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基若しくはハロゲン原子であるか、又はこれらの基が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部である。b5は、0~10の整数である。b5が1の場合、RB7は、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基又はハロゲン原子である。b5が2以上の場合、複数のRB7は、互いに同一又は異なり、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基若しくはハロゲン原子であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子若しくは炭素鎖と共に構成される環員数3~20の環構造の一部である。nb3は、0~3の整数である。RB8は、単結合又は炭素数1~20の2価の有機基である。nb2は、0~2の整数である。
 上記式(r-c)中、b6は、0~5の整数である。b6が1の場合、RB9は、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基又はハロゲン原子である。b6が2以上の場合、複数のRB9は、互いに同一又は異なり、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基若しくはハロゲン原子であるか、又はこれらの基が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部である。b7は、0~5の整数である。b7が1の場合、RB10は、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基又はハロゲン原子である。b7が2以上の場合、複数のRB10は、互いに同一又は異なり、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基若しくはハロゲン原子であるか、又はこれらの基が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部である。
 RB1、RB2、RB3、RB4、RB5、RB6、RB7、RB9及びRB10で表される炭素数1~20の1価の有機基としては、例えば上記式(2)のR又はRとして例示した1価の有機基として例示した基と同様の基などが挙げられる。
 RB8で表される2価の有機基としては、例えば上記式(2)のR又はRとして例示した1価の有機基として例示した基から1個の水素原子を除いた基などが挙げられる。
 RB3及びRB4としては、水素原子又はこれらが互いに合わせられた単結合であることが好ましい。
 b1及びb2としては、0~2が好ましい。b3としては、0~4が好ましく、0~2がより好ましく、0又は1がさらに好ましい。nb1としては、0又は1が好ましい。
 b1及びb2が1以上である場合、RB1及びRB2としては、炭素数1~20の1価の有機基又はハロゲン原子が好ましく、炭素数1~20の1価のフッ素化炭化水素基又はフッ素原子がより好ましく、トリフルオロメチル基又はフッ素原子がさらに好ましい。この場合、露光光に対する感度及びLWR性能をより向上させることができる。
 b3が1以上である場合、RB5としては、シクロヘキシル基、シクロヘキシルスルホニル基又はフッ素原子が好ましい。
 Yで表される1価の感放射線性オニウムカチオンとしては、カチオン(r-a)が好ましい。
 カチオン(r-a)としては、例えば下記式(r-a-1)~(r-a-8)で表されるカチオン(以下、「カチオン(r-a-1)~(r-a-8)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000020
 [B]化合物としては、例えば下記式(4-1)~(4-6)で表される化合物(以下、「化合物(B1)~(B6)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000021
 上記式(4-1)~(4-6)中、Yは、上記式(4)と同義である。
 当該感放射線性樹脂組成物が[B]酸発生剤を含有する場合、[B]酸発生剤の含有量の下限としては、[A]重合体100質量部に対して、5質量部が好ましく、10質量部がより好ましく、15質量部がさらに好ましい。上記含有量の上限としては、60質量部が好ましく、55質量部がより好ましく、50質量部がさらに好ましい。[B]酸発生剤の含有量を上記範囲とすることで、当該感放射線性樹脂組成物の露光光に対する感度、LWR性能及びプロセスウィンドウをより向上させることができる。
<[C]化合物>
 [C]化合物は、下記式(1)で表される化合物である。[C]化合物は、酸拡散制御剤として作用する。酸拡散制御剤は、露光により[B]酸発生体等から生じる酸のレジスト膜中における拡散現象を制御し、非露光領域における好ましくない化学反応を制御する作用を有する。当該感放射線性樹脂組成物は[C]化合物を含有することにより、露光光に対する感度が良好であり、LWR性能に優れ、かつプロセスウィンドウが広いレジストパターンを形成することができる。
Figure JPOXMLDOC01-appb-C000022
 上記式(1)中、Rは、炭素数1~30の1価の有機基である。Xは、1価の感放射線性オニウムカチオンである。
 Rで表される炭素数1~30の1価の有機基としては、例えば上記式(2)のR又はRとして例示した1価の有機基として例示した基と同様の基などが挙げられる。
 Xで表される1価の感放射線性オニウムカチオンとしては、例えば上記式(4)のYとして例示した1価の感放射線性オニウムカチオンと同様のもの等が挙げられる。
 Xで表される1価の感放射線性オニウムカチオンとしては、上述のカチオン(r-a)が好ましく、上述のカチオン(r-a-1)又はカチオン(r-a-2)がより好ましい。
 [C]化合物としては、例えば下記式(1-1)~(1-4)で表される化合物(以下、「化合物(C1)~(C4)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000023
 上記式(1-1)~(1-4)中、Xは、上記式(1)と同義である。
 当該感放射線性樹脂組成物における[C]化合物の含有割合の下限としては、[B]酸発生剤100モル%に対して、1モル%が好ましく、5モル%がより好ましく、10モル%がさらに好ましい。上記含有割合の上限としては、200モル%が好ましく、10モル%がより好ましく、50モル%がさらに好ましい。[C]化合物の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物の露光光に対する感度、LWR性能及びプロセスウィンドウをより向上させることができる。
<[D]有機溶媒>
 当該感放射線性樹脂組成物は、通常、[D]有機溶媒を含有する。[D]有機溶媒は、少なくとも[A]重合体及び[C]化合物、並びに必要に応じて含有されるその他の任意成分を溶解又は分散可能な溶媒であれば特に限定されない。
 [D]有機溶媒としては、例えばアルコール系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、炭化水素系溶媒等が挙げられる。当該感放射線性樹脂組成物は、1種又は2種以上の[D]有機溶媒を含有することができる。
 アルコール系溶媒としては、例えば4-メチル-2-ペンタノール、n-ヘキサノール等の炭素数1~18の脂肪族モノアルコール系溶媒、シクロヘキサノール等の炭素数3~18の脂環式モノアルコール系溶媒、1,2-プロピレングリコール等の炭素数2~18の多価アルコール系溶媒、プロピレングリコール-1-モノメチルエーテル等の炭素数3~19の多価アルコール部分エーテル系溶媒などが挙げられる。
 エーテル系溶媒としては、例えばジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ジペンチルエーテル、ジイソアミルエーテル、ジヘキシルエーテル、ジヘプチルエーテル等のジアルキルエーテル系溶媒、テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶媒、ジフェニルエーテル、アニソール等の芳香環含有エーテル系溶媒などが挙げられる。
 ケトン系溶媒としては、例えばアセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-iso-ブチルケトン、2-ヘプタノン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-iso-ブチルケトン、トリメチルノナノン等の鎖状ケトン系溶媒、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等の環状ケトン系溶媒、2,4-ペンタンジオン、アセトニルアセトン、アセトフェノンなどが挙げられる。
 アミド系溶媒としては、例えばN,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶媒、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶媒などが挙げられる。
 エステル系溶媒としては、例えば酢酸n-ブチル、乳酸エチル等のモノカルボン酸エステル系溶媒、γ-ブチロラクトン、バレロラクトン等のラクトン系溶媒、酢酸プロピレングリコール等の多価アルコールカルボキシレート系溶媒、酢酸プロピレングリコールモノメチルエーテル等の多価アルコール部分エーテルカルボキシレート系溶媒、シュウ酸ジエチル等の多価カルボン酸ジエステル系溶媒、ジメチルカーボネート、ジエチルカーボネート等のカーボネート系溶媒などが挙げられる。
 炭化水素系溶媒としては、例えばn-ペンタン、n-ヘキサン等の炭素数5~12の脂肪族炭化水素系溶媒、トルエン、キシレン等の炭素数6~16の芳香族炭化水素系溶媒などが挙げられる。
 [D]有機溶媒としては、アルコール系溶媒及び/又はエステル系溶媒が好ましく、炭素数3~19の多価アルコール部分エーテル系溶媒及び/又は多価アルコール部分エーテルカルボキシレート系溶媒がより好ましく、プロピレングリコール-1-モノメチルエーテル及び/又は酢酸プロピレングリコールモノメチルエーテルがさらに好ましい。
 当該感放射線性樹脂組成物が[D]有機溶媒を含有する場合、[D]有機溶媒の含有割合の下限としては、当該感放射線性樹脂組成物に含有される全成分に対して、50質量%が好ましく、60質量%がより好ましく、70質量%がさらに好ましく、80質量%が特に好ましい。上記含有割合の上限としては、99.9質量%が好ましく、99.5質量%が好ましく、99.0質量%がさらに好ましい。
<その他の任意成分>
 その他の任意成分としては、例えば界面活性剤などが挙げられる。当該感放射線性樹脂組成物は、1種又は2種以上のその他の任意成分を含有していてもよい。
<感放射線性樹脂組成物の調製方法>
 当該感放射線性樹脂組成物は、例えば[A]重合体及び[C]化合物、並びに必要に応じて[B]酸発生体、[D]有機溶媒及びその他の任意成分などを所定の割合で混合し、好ましくは得られた混合物を孔径0.2μm以下のメンブランフィルターでろ過することにより調製することができる。
<レジストパターン形成方法>
 当該レジストパターン形成方法は、基板に直接又は間接に感放射線性樹脂組成物を塗工する工程(以下、「塗工工程」ともいう)と、上記塗工工程により形成されたレジスト膜を露光する工程(以下、「露光工程」ともいう)と、上記露光されたレジスト膜を現像する工程(以下、「現像工程」ともいう)とを備える。当該レジストパターン形成方法の上記塗工工程では、感放射線性樹脂組成物として上述の当該感放射線性樹脂組成物を用いる。
 当該レジストパターン形成方法によれば、上記塗工工程において、感放射線性樹脂組成物として上述の当該感放射線性樹脂組成物を用いることにより、露光光に対する感度が良好であり、LWR性能に優れ、かつプロセスウィンドウが広いレジストパターンを形成することができる。
 以下、当該レジストパターン形成方法が備える各工程について説明する。
[塗工工程]
 本工程では、基板に直接又は間接に感放射線性樹脂組成物を塗工する。これにより基板に直接又は間接にレジスト膜が形成される。
 本工程では、感放射線性樹脂組成物として上述の当該感放射線性樹脂組成物を用いる。
 基板としては、例えばシリコンウエハ、二酸化シリコン、アルミニウムで被覆されたウェハ等の従来公知のもの等が挙げられる。また、基板に間接に当該感放射線性樹脂組成物を塗工する場合としては、例えば基板上に形成された反射防止膜上に当該感放射線性樹脂組成物を塗工する場合などが挙げられる。このような反射防止膜としては、例えば特公平6-12452号公報や特開昭59-93448号公報等に開示されている有機系又は無機系の反射防止膜などが挙げられる。
 塗工方法としては、例えば回転塗工(スピンコーティング)、流延塗工、ロール塗工等が挙げられる。塗工した後に、必要に応じて、塗膜中の溶媒を揮発させるため、ソフトベーク(以下、「SB」ともいう。)を行ってもよい。SBの温度の下限としては、60℃が好ましく、80℃がより好ましい。上記温度の上限としては、150℃が好ましく、140℃がより好ましい。SBの時間の下限としては、5秒が好ましく、10秒がより好ましい。上記時間の下限としては、600秒が好ましく、300秒がより好ましい。形成されるレジスト膜の平均厚みの下限としては、10nmが好ましく、20nmがより好ましい。上記平均厚みの上限としては、1,000nmが好ましく、500nmがより好ましい。
[露光工程]
 本工程では、上記塗工工程により形成されたレジスト膜を露光する。この露光は、フォトマスクを介して(場合によっては、水等の液浸媒体を介して)露光光を照射することにより行う。露光光としては、目的とするパターンの線幅等に応じて、例えば可視光線、紫外線、遠紫外線、極端紫外線(EUV)、X線、γ線等の電磁波;電子線、α線等の荷電粒子線などが挙げられる。これらの中でも、遠紫外線、EUV又は電子線が好ましく、ArFエキシマレーザー光(波長193nm)、KrFエキシマレーザー光(波長248nm)、EUV(波長13.5nm)又は電子線がより好ましく、ArFエキシマレーザー光、EUV又は電子線がさらに好ましく、EUV又は電子線が特に好ましい。
 上記露光の後、ポストエクスポージャーベーク(以下、「PEB」ともいう)を行い、レジスト膜の露光された部分において、露光により[B]酸発生体等から発生した酸による[A]重合体等が有する酸解離性基の解離を促進させることが好ましい。このPEBによって、露光部と非露光部とで現像液に対する溶解性の差異を増大させることができる。PEBの温度の下限としては、50℃が好ましく、80℃がより好ましく、100℃がさらに好ましい。上記温度の上限としては、180℃が好ましく、130℃がより好ましい。PEBの時間の下限としては、5秒が好ましく、10秒がより好ましく、30秒がさらに好ましい。上記時間の上限としては、600秒が好ましく、300秒がより好ましく、100秒がさらに好ましい。
[現像工程]
 本工程では、上記露光されたレジスト膜を現像する。これにより、所定のレジストパターンを形成することができる。現像後は、水又はアルコール等のリンス液で洗浄し、乾燥することが一般的である。現像工程における現像方法は、アルカリ現像であっても、有機溶媒現像であってもよい。
 アルカリ現像の場合、現像に用いる現像液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア水、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(以下、「TMAH」ともいう)、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ水溶液等が挙げられる。これらの中で、TMAH水溶液が好ましく、2.38質量%TMAH水溶液がより好ましい。
 有機溶媒現像の場合、現像液としては、炭化水素系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、アルコール系溶媒等の有機溶媒、上記有機溶媒を含有する溶液等が挙げられる。上記有機溶媒としては、例えば上述の感放射線性樹脂組成物の[D]有機溶媒として例示した溶媒の1種又は2種以上等が挙げられる。これらの中でも、エステル系溶媒又はケトン系溶媒が好ましい。エステル系溶媒としては、酢酸エステル系溶媒が好ましく、酢酸n-ブチルがより好ましい。ケトン系溶媒としては、鎖状ケトンが好ましく、2-ヘプタノンがより好ましい。現像液中の有機溶媒の含有量の下限としては、80質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましく、99質量%が特に好ましい。現像液中の有機溶媒以外の成分としては、例えば水、シリコーンオイル等が挙げられる。
 現像方法としては、例えば現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液塗出ノズルをスキャンしながら現像液を塗出しつづける方法(ダイナミックディスペンス法)等が挙げられる。
 当該レジストパターン形成方法により形成されるパターンとしては、例えばラインアンドスペースパターン、ホールパターン等が挙げられる。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。各物性値の測定方法を以下に示す。
[重量平均分子量(Mw)、数平均分子量(Mn)及び分散度(Mw/Mn)]
 重合体のMw及びMnは、ゲルパーミエーションクロマトグラフィー(GPC)により東ソー(株)のGPCカラム(「G2000HXL」2本、「G3000HXL」1本及び「G4000HXL」1本)を使用し、以下の条件により測定した。また、分散度(Mw/Mn)は、Mw及びMnの測定結果より算出した。
 溶出溶媒 :テトラヒドロフラン
 流量   :1.0mL/分
 試料濃度 :1.0質量%
 試料注入量:100μL
 カラム温度:40℃
 検出器  :示唆屈折計
 標準物質 :単分散ポリスチレン
<[A]重合体の合成>
 各実施例及び比較例における各重合体の合成で用いた単量体を以下に示す。なお、以下の合成例においては特に断りのない限り、質量部は使用した単量体の合計質量を100質量部とした場合の値を意味し、モル%は使用した単量体の合計モル数を100モル%とした場合の値を意味する。
Figure JPOXMLDOC01-appb-C000024
[合成例1]重合体(A-1)の合成
 単量体(M-1)、単量体(M-3)及び単量体(M-6)をモル比率が30/10/60となるようプロピレングリコール-1-モノメチルエーテル(200質量部)に溶解した。次に、開始剤としてアゾビスイソブチロニトリル(AIBN)を6モル%添加し、単量体溶液を調製した。一方、空の反応容器にプロピレングリコール-1-モノメチルエーテル(100質量部)を加え、攪拌しながら85℃に加熱した。次に、上記で調製した単量体溶液を3時間かけて滴下し、その後さらに3時間85℃で加熱し、重合反応を合計6時間実施した。重合反応終了後、重合溶液を室温に冷却した。
 ヘキサン(重合溶液に対して500質量部)中に冷却した重合溶液を投入し、析出した白色粉末をろ別した。ろ別した白色粉末を重合溶液に対して100質量部のヘキサンで2回洗浄した後、ろ別し、プロピレングリコール-1-モノメチルエーテル(300質量部)に溶解した。次に、メタノール(500質量部)、トリエチルアミン(50質量部)及び超純水(10質量部)を加え、攪拌しながら70℃で6時間加水分解反応を実施した。加水分解反応終了後、残溶媒を留去し、得られた固体をアセトン(100質量部)に溶解させた。500質量部の水中に滴下して樹脂を凝固させ、得られた固体をろ別した。50℃、12時間乾燥させて白色粉末状の重合体(A-1)を得た。得られた重合体(A-1)のMwは7,200であり、Mw/Mnは1.54であった。
[合成例2~26]重合体(A-2)~(A-23)及び(a-1)~(a-3)の合成
 下記表1に示す種類及び配合割合の単量体を用いたこと以外は、合成例1と同様にして重合体(A-2)~(A-23)及び(a-1)~(a-3)を合成した。
 合成例1~26で得られた重合体の各構造単位を与える単量体の種類及び使用割合、並びにMw及びMw/Mnを下記表1に示す。なお、表1中、「-」は該当する単量体を使用しなかったことを示す。
Figure JPOXMLDOC01-appb-T000025
<感放射線性樹脂組成物の調製>
 感放射線性樹脂組成物の調製に用いた[B]酸発生剤、[C]化合物、[C]化合物以外の酸拡散制御剤及び[D]有機溶媒を以下に示す。
[[B]酸発生剤]
 (B-1)~(B-9):下記式(B-1)~(B-9)で表される化合物
Figure JPOXMLDOC01-appb-C000026
[[C]化合物]
 (C-1)~(C-4):下記式(C-1)~(C-4)で表される化合物
Figure JPOXMLDOC01-appb-C000027
[[C]化合物以外の酸拡散制御剤]
 (c-1)~(c-3):下記式(c-1)~(c-3)で表される化合物
Figure JPOXMLDOC01-appb-C000028
 なお、上記式(c-3)で表される化合物におけるカチオン(テトラn-ブチルアンモニウムカチオン)は、感放射線性オニウムカチオンではない。
[[D]有機溶媒]
 (D-1):酢酸プロピレングリコールモノメチルエーテル
 (D-2):プロピレングリコール-1-モノメチルエーテル
[実施例1]感放射線性樹脂組成物(R-1)の調製
 [A]重合体としての(A-1)100質量部、[B]酸発生剤としての(B-1)20質量部、[C]化合物としての(C-1)を(B-1)に対して20モル%、並びに[D]有機溶媒としての(D-1)4,800質量部及び(D-2)2,000質量部を混合し、得られた混合液を孔径0.20μmのメンブランフィルターでろ過することにより、感放射線性樹脂組成物(R-1)を調製した。
[実施例2~33及び比較例1~6]感放射線性樹脂組成物(R-2)~(R-36)及び(CR-1)~(CR-6)の調製
 下記表2に示す種類及び含有量の各成分を用いたこと以外は実施例1と同様にして、感放射線性樹脂組成物(R-2)~(R-36)及び(CR-1)~(CR-6)を調製した。
Figure JPOXMLDOC01-appb-T000029
<レジストパターンの形成>
 平均厚み20nmの下層膜(Brewer Science社の「AL412」)が形成された12インチのシリコンウエハ表面に、スピンコーター(東京エレクトロン(株)の「CLEAN TRACK ACT12」)を使用して、上記調製した感放射線性樹脂組成物を塗工し、130℃で60秒間ソフトベーク(SB)を行った後、23℃で30秒間冷却し、平均厚み50nmのレジスト膜を形成した。次に、このレジスト膜に、EUV露光機(ASML社の「NXE3300」、NA=0.33、照明条件:Conventional s=0.89、マスクimecDEFECT32FFR02)を用いてEUV光を照射した。上記レジスト膜に110℃で60秒間ポストエクスポージャーベーク(PEB)を行った。次いで、2.38質量%のTMAH水溶液を用い、23℃で30秒間現像しポジ型の32nmラインアンドスペースパターンを形成した。
<評価>
 上記形成した各レジストパターンについて、感度、LWR性能及びプロセスウィンドウを下記方法に従って評価した。なお、レジストパターンの測長には走査型電子顕微鏡(日立ハイテクノロジーズ(株)の「CG-4100」)を用いた。評価結果を下記表3に示す。なお、下記表3における「-」は、比較例6においてレジストパターンが形成されず、各種評価を行うことができなかったことを示す。
[感度]
 上記レジストパターンの形成において、32nmラインアンドスペースパターンを形成する露光量を最適露光量とし、この最適露光量をEop(単位:mJ/cm)とした。
感度は、Eopの値が小さいほど良好であることを示す。感度は、Eopが30mJ/cm以下の場合は「良好」と、30mJ/cmを超える場合は「不良」と評価した。
[LWR性能]
 上記走査型電子顕微鏡を用いて、上記で形成されたレジストパターンを上部から観察した。線幅を任意の箇所で計50点測定し、その測定値の分布から3シグマ値を求め、これをLWR(単位:nm)とした。LWR性能は、LWRの値が小さいほどラインのがたつきが小さく、良好であることを示す。LWR性能は、LWRが4.0nm以下の場合は「良好」と、4.0nmを超える場合は「不良」と評価した。
[プロセスウィンドウ]
 「プロセスウィンドウ」とは、ブリッジ欠陥や倒れのないパターンを形成できるレジスト寸法の範囲を意味する。32nmラインアンドスペース(1L/1S)を形成するマスクを用いて、低露光量から高露光量までのパターンを形成した。一般的に、低露光量の場合にはパターン間におけるブリッジ形成などの欠陥が見られ、高露光量の場合にはパターン倒壊などの欠陥が見られる。これらの欠陥が見られないレジスト寸法の最大値と最小値との差をCD(Critical Demension)マージン(単位:nm)とした。CDマージンは、その値が大きいほどプロセスウィンドウが広く、良好であることを示す。CDマージンが30nm以上の場合は「良好」と、30nm未満の場合は「不良」と評価した。
Figure JPOXMLDOC01-appb-T000030
 表3の結果から明らかなように、実施例の感放射線性樹脂組成物は比較例の感放射線性樹脂組成物と比較して、感度、LWR性能及びCDマージンがいずれも良好であった。
 本発明の感放射線性樹脂組成物及びレジストパターン形成方法によれば、露光光に対する感度が良好であり、LWR性能に優れ、かつプロセスウィンドウが広いレジストパターンを形成することができる。したがって、これらは、今後さらに微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。

Claims (7)

  1.  2以上の水酸基が結合した芳香族炭素環を含む第1構造単位及び酸の作用により解離しカルボキシ基を与える酸解離性基を含む第2構造単位を有する重合体と、
     下記式(1)で表される化合物と
     を含有し、
     上記重合体の重量平均分子量が10,000以下である感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは、炭素数1~30の1価の有機基である。Xは、1価の感放射線性オニウムカチオンである。)
  2.  上記第1構造単位が下記式(2)で表される請求項1に記載の感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Rは、水素原子、ハロゲン原子又は炭素数1~10の1価の有機基である。Lは、単結合、-O-、-COO-又は-CONH-である。Arは、環員数6~20のアレーンから(m+n+1)個の芳香環上の水素原子を除いた基である。mは、0~9の整数である。mが1の場合、Rは、ハロゲン原子又は炭素数1~10の1価の有機基である。mが2以上の場合、複数のRは、互いに同一又は異なり、ハロゲン原子若しくは炭素数1~10の1価の有機基であるか、又は複数のRのうちの2つ以上が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の脂環構造の一部である。nは、2~11の整数である。但し、m+nは11以下である。)
  3.  上記式(2)におけるnが2である請求項2に記載の感放射線性樹脂組成物。
  4.  上記第2構造単位が下記式(3-1)又は(3-2)で表される請求項1、請求項2又は請求項3に記載の感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式(3-1)中、Rは、水素原子、ハロゲン原子又は炭素数1~10の1価の有機基である。Lは、単結合又は炭素数1~20の2価の有機基である。Rは、炭素数1~20の1価の炭化水素基である。R及びRは、それぞれ独立して、炭素数1~20の1価の炭化水素基であるか、又はこれらが互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造の一部である。
     式(3-2)中、Rは、水素原子、ハロゲン原子又は炭素数1~10の1価の有機基である。Lは、単結合又は炭素数1~20の2価の有機基である。R及びR10は、それぞれ独立して、水素原子又は炭素数1~20の1価の炭化水素基であるか、又はこれらが互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の不飽和脂環構造の一部である。R11は、水素原子又は炭素数1~20の1価の炭化水素基である。R12及びR13は、それぞれ独立して、水素原子又は炭素数1~20の1価の炭化水素基であるか、又はこれらが互いに合わせられこれらが結合する炭素鎖と共に構成される環員数3~20の脂環構造の一部である。)
  5.  上記式(1)で表される化合物以外の感放射線性酸発生体をさらに含有する請求項1から請求項4のいずれか1項に記載の感放射線性樹脂組成物。
  6.  上記感放射線性酸発生体が下記式(4)で表される請求項5に記載の感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式(4)中、R14は、炭素数1~30の1価の有機基である。R15は、水素原子、フッ素原子又は炭素数1~10の1価の有機基である。Yは、1価の感放射線性オニウムカチオンである。)
  7.  基板に直接又は間接に感放射線性樹脂組成物を塗工する工程と、
     上記塗工工程により形成されたレジスト膜を露光する工程と、
     上記露光されたレジスト膜を現像する工程と
     を備え、
     上記感放射線性樹脂組成物が、
     2以上の水酸基が結合した芳香族炭素環を含む第1構造単位及び酸の作用により解離しカルボキシ基を与える酸解離性基を含む第2構造単位を有する重合体と、
     下記式(1)で表される化合物と
     を含有し、
     上記重合体の重量平均分子量が10,000以下であるレジストパターン形成方法。
    Figure JPOXMLDOC01-appb-C000005
    (式(1)中、Rは、炭素数1~30の1価の有機基である。Xは、1価の感放射線性オニウムカチオンである。)

     
PCT/JP2021/000096 2020-01-23 2021-01-05 感放射線性樹脂組成物及びレジストパターン形成方法 WO2021149476A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021573045A JPWO2021149476A1 (ja) 2020-01-23 2021-01-05
KR1020227024159A KR20220131907A (ko) 2020-01-23 2021-01-05 감방사선성 수지 조성물 및 레지스트 패턴 형성 방법
US17/867,739 US20230236506A2 (en) 2020-01-23 2022-07-19 Radiation-sensitive resin composition and method of forming resist pattern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-009451 2020-01-23
JP2020009451 2020-01-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/867,739 Continuation US20230236506A2 (en) 2020-01-23 2022-07-19 Radiation-sensitive resin composition and method of forming resist pattern

Publications (1)

Publication Number Publication Date
WO2021149476A1 true WO2021149476A1 (ja) 2021-07-29

Family

ID=76993358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000096 WO2021149476A1 (ja) 2020-01-23 2021-01-05 感放射線性樹脂組成物及びレジストパターン形成方法

Country Status (5)

Country Link
US (1) US20230236506A2 (ja)
JP (1) JPWO2021149476A1 (ja)
KR (1) KR20220131907A (ja)
TW (1) TW202130612A (ja)
WO (1) WO2021149476A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167725A1 (ja) * 2018-02-28 2019-09-06 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法、樹脂

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187881A1 (ja) * 2018-03-30 2019-10-03 富士フイルム株式会社 Euv光用ネガ型感光性組成物、パターン形成方法、電子デバイスの製造方法
JP2019204065A (ja) * 2018-05-25 2019-11-28 Jsr株式会社 感放射線性樹脂組成物及びレジストパターン形成方法
WO2020004306A1 (ja) * 2018-06-28 2020-01-02 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、パターン形成方法、電子デバイスの製造方法、樹脂
JP2020008842A (ja) * 2018-06-28 2020-01-16 Jsr株式会社 感放射線性樹脂組成物、レジストパターン形成方法及び重合体組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5292078B2 (ja) 2008-12-05 2013-09-18 富士フイルム株式会社 感活性光線または感放射線性樹脂組成物及び該組成物を用いたパターン形成方法
JP6287369B2 (ja) 2013-03-08 2018-03-07 Jsr株式会社 フォトレジスト組成物、レジストパターン形成方法、化合物及び重合体
JP6450660B2 (ja) 2014-08-25 2019-01-09 住友化学株式会社 塩、酸発生剤、レジスト組成物及びレジストパターンの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187881A1 (ja) * 2018-03-30 2019-10-03 富士フイルム株式会社 Euv光用ネガ型感光性組成物、パターン形成方法、電子デバイスの製造方法
JP2019204065A (ja) * 2018-05-25 2019-11-28 Jsr株式会社 感放射線性樹脂組成物及びレジストパターン形成方法
WO2020004306A1 (ja) * 2018-06-28 2020-01-02 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、パターン形成方法、電子デバイスの製造方法、樹脂
JP2020008842A (ja) * 2018-06-28 2020-01-16 Jsr株式会社 感放射線性樹脂組成物、レジストパターン形成方法及び重合体組成物

Also Published As

Publication number Publication date
US20220382152A1 (en) 2022-12-01
US20230236506A2 (en) 2023-07-27
KR20220131907A (ko) 2022-09-29
TW202130612A (zh) 2021-08-16
JPWO2021149476A1 (ja) 2021-07-29

Similar Documents

Publication Publication Date Title
CN110325916B (zh) 感放射线性组合物及抗蚀剂图案形成方法
JP2020181064A (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物
JP2020203984A (ja) 感放射線性樹脂組成物、レジストパターン形成方法、酸拡散制御剤及び化合物
JP2021071720A (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP7400818B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び化合物
JP6959538B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP2022025610A (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び化合物
JP7396360B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び感放射線性酸発生剤
WO2021140761A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び化合物
WO2021149476A1 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP2020148870A (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び感放射線性酸発生剤
JP2023108593A (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び化合物
WO2022270134A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び化合物
WO2021171852A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び重合体
JP7459636B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP7342941B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
WO2021153124A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び感放射線性酸発生剤
WO2021131280A1 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
WO2023248569A1 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP2023116251A (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び重合体
WO2022196024A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
WO2020250639A1 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
WO2024084993A1 (ja) 感放射線性組成物、レジストパターン形成方法及び重合体
WO2021215163A1 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP2022128400A (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び重合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744895

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021573045

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21744895

Country of ref document: EP

Kind code of ref document: A1