WO2020244343A1 - 一种碘酸盐的绿色生产工艺 - Google Patents

一种碘酸盐的绿色生产工艺 Download PDF

Info

Publication number
WO2020244343A1
WO2020244343A1 PCT/CN2020/087407 CN2020087407W WO2020244343A1 WO 2020244343 A1 WO2020244343 A1 WO 2020244343A1 CN 2020087407 W CN2020087407 W CN 2020087407W WO 2020244343 A1 WO2020244343 A1 WO 2020244343A1
Authority
WO
WIPO (PCT)
Prior art keywords
iodate
iodide
electrolyte
electrolysis
lithium
Prior art date
Application number
PCT/CN2020/087407
Other languages
English (en)
French (fr)
Inventor
孙桂彬
王加旺
李贺存
任淑振
Original Assignee
泰安汉威集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰安汉威集团有限公司 filed Critical 泰安汉威集团有限公司
Priority to US17/608,773 priority Critical patent/US20220298016A1/en
Publication of WO2020244343A1 publication Critical patent/WO2020244343A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/22Oxygen compounds of iodine
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/14Alkali metal compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/081Supplying products to non-electrochemical reactors that are combined with the electrochemical cell, e.g. Sabatier reactor

Definitions

  • the invention belongs to the technical field of electrochemical synthesis, and specifically relates to a green production process of iodate.
  • Iodates are widely used in chemical synthesis, chemical analysis, pesticides, medicine, and materials industries; some iodates can be used as additives in the food and feed industries.
  • potassium iodate Take potassium iodate as an example. It is used as a precipitant and standard reagent in chemical analysis; as a feed additive in agriculture; as an iodizer or agent for preventing and treating endemic goiter in medicine. It can also be used in organic synthesis; used in food industry Additive of trace element iodine.
  • the existing potassium iodate synthesis methods mainly include direct electrolysis of potassium iodide to synthesize potassium iodate and potassium chlorate oxidation.
  • the direct electrolysis of potassium iodide to synthesize potassium iodate is to add potassium iodide to the anode of a diaphragm electrolytic cell, add potassium hydroxide to the cathode, and electrolyze the anode to produce potassium iodate; or electrolyze potassium iodide in a diaphragmless electrolytic cell with lead dioxide or graphite as the anode to obtain iodine Potassium acid.
  • the reaction formula is as follows:
  • the potassium chlorate oxidation method is currently the main industrial production method of potassium iodate. This method uses potassium chlorate to directly oxidize iodine in a dilute nitric acid solution environment, and then neutralizes potassium hydrogen iodate with potassium hydroxide.
  • the reaction formula is as follows;
  • Potassium chlorate is directly oxidized to produce potassium iodate. Chlorine gas is generated during the reaction, which pollutes the environment. In addition, a large number of side reaction products are mixed in the product, which is difficult to separate and high in cost.
  • the main principle of the present invention is to take advantage of the relatively large solubility of lithium iodide and lithium iodate in water, and use the method of electrolysis of lithium iodide to first prepare lithium iodate, and then use lithium iodate as a transition material, and the target iodine The corresponding iodide of the acid salt is reacted to prepare the iodate, and the mother liquor can be returned to the electrolysis system for reuse without producing any waste.
  • the present invention is a green preparation process of iodate and has great significance for the industrial production of iodate.
  • the iodide described in step (3) is represented by the molecular formula MIx, where M is one of sodium, magnesium, potassium, calcium, ammonium, cobalt, nickel, zinc, rubidium, strontium, cadmium, indium, cesium, barium, and lanthanum.
  • M is one of sodium, magnesium, potassium, calcium, ammonium, cobalt, nickel, zinc, rubidium, strontium, cadmium, indium, cesium, barium, and lanthanum.
  • Species, x is one of 1, 2, 3, 4, 5, 6.
  • the present invention is also widely applicable to the preparation of poorly soluble iodate with low purity requirements.
  • a higher purity of poorly soluble iodate please refer to the inventor’s Another method is implemented, which will not be repeated here;
  • LiI+3H 2 O LiIO 3 +3H 2 ⁇
  • a solution containing a certain concentration of lithium iodide can be obtained. Because of the high solubility of lithium iodide, it can be directly sent to the next electrolysis system for reaction;
  • soluble dichromate can be selectively added to prevent the generated iodate from being reduced at the cathode, wherein the cation of the soluble dichromate is preferably the corresponding target iodate
  • the metal ion in, the more preferred choice is potassium dichromate or sodium dichromate
  • the lithium ion mass concentration is 0.001% or more, preferably 0.3%-1.7%, and the pH value is preferably 7-14.
  • the mass concentration of dichromate is preferably but not limited to 0.001%-0.5%;
  • the electrolytic cell can be an electrolytic cell with or without diaphragm, preferably a closed electrolytic cell without a diaphragm, the anode is graphite, lead dioxide or titanium substrate coated with a plate containing precious metal materials, and the cathode is Carbon steel or stainless steel or titanium or other conductive materials, the electrolysis reaction temperature is 0-110°C, the voltage between a pair of anode and cathode plates is 0.1V-20V, the electrolyte can be a single batch of intermittent feeding or continuous feeding, Preferred continuous feeding and continuous discharging methods;
  • the further electrolysis reaction temperature is preferably 60-100°C, and the voltage between the anode and cathode plates of a single pair is preferably 1V-10V;
  • step (3) the iodide corresponding to the target iodate or the substance that can react to form the corresponding iodide, the amount of iodide added is calculated according to the amount of iodate in the electrolyte in step (2), in order to reduce The concentration of other metal ions affects the return and application, and the molar ratio of iodate to iodide in the above iodide is preferably greater than or equal to 1:1;
  • the next step (3) can be the iodide corresponding to the target iodate, but it is not limited to the iodide, as long as the target iodate corresponding to the iodide can be formed in the system; for example, the preparation of potassium iodate
  • potassium hydroxide and iodine can also be added, or potassium hydroxide and hydroiodic acid, or other substances that can react to form potassium iodide.
  • the iodate obtained by the above three-step preparation is a crude product. If a product of higher purity is required, it needs to be refined to obtain a product that meets the requirements. This can be achieved by washing or recrystallization. After washing or recrystallization, the mother liquor is returned for refining Repeat steps or return to step (1) to apply;
  • the refined product obtained by washing or recrystallization can be processed by drying, and the target product can be obtained after passing the test;
  • the above method takes advantage of the fact that the solubility of lithium iodide and lithium iodate in water is greater than that of other iodides and iodates, which avoids the low solubility of the existing direct electrolysis of metal iodide to synthesize iodate, which is easy to
  • the product lithium iodate produced by the electrolysis system in this application is directly present in the electrolyte in an ionic state, and after entering the next step, it can directly react with the raw materials of the next step to generate the target iodate Salt, and lithium ions directly generate lithium iodide and exist in the mother liquor. You can directly return to step 1) to adjust the concentration of each ion;
  • lithium iodate is prepared by electrolysis, and then the prepared lithium iodate is reacted with iodide to prepare iodate.
  • the whole process can form a closed loop for cyclic application, and there is no waste discharge to take away the product, and the product yield High, avoid the generation of waste salt, green and environmental protection.
  • Preparation of lithium iodate by electrolysis The clean electrolysis process does not require the addition of oxidants and other additional raw materials like chemical methods. The raw materials are simple and the produced iodate products are of high quality.
  • a closed electrolytic cell without diaphragm is used.
  • the anode is preferably a titanium substrate coated with a plate containing precious metals (such as ruthenium, iridium, etc.), and the cathode is carbon steel.
  • the electrolysis reaction temperature is 75-85°C.
  • the voltage is 2V-4V, and the electrolyte feeding and discharging are intermittent feeding and intermittent extraction or continuous feeding and continuous discharging methods, preferably continuous feeding and continuous discharging methods; unless otherwise specified, the percentages involved in the examples are all Is the mass percentage;
  • the purity index of the obtained product is as follows:
  • Example 2 Take 4000 mL of the metathesis mother liquor obtained in Example 1, detect the concentration of lithium ion, potassium ion, potassium dichromate, and pH value, add appropriate amount of water, lithium hydroxide and iodine to fine-tune according to the test results, so that the mass concentration of lithium ion in the solution is 0.8 %, the mass concentration of potassium ion ⁇ 1.3%, the mass concentration of potassium dichromate 0.2%, adjust the pH to 9.6, configure 3 batches to transfer to the electrolyte storage tank for standby.
  • the above electrolyte was continuously added to the stable electrolysis circulation system containing 18% iodate in Example 1, the electrolysis cathode and anode voltage was controlled to 3.8V, and the electrolysis completed solution was continuously extracted from the discharge port, through the electrolyte feeding valve, The flow rate is adjusted to control the mass concentration of iodate in the finished electrolysis solution to be 18%, and the reaction temperature is controlled to 80-85°C during the electrolysis process.
  • the configured electrolyte is partially put into the electrolysis device, the temperature is raised to 80°C, the cycle is turned on, the voltage is set to 3.7V, and the iodate mass concentration is 16%, and the electrolyte is continuously added to the electrolysis device and collected from the discharge port.
  • the electrolysis completion liquid is discharged, and the flow is adjusted through the electrolyte feeding valve, and the mass concentration of the extracted electrolysis completion liquid is controlled to be 16%.
  • the electrolysis process controls the reaction temperature of 80-85°C.
  • the configured electrolyte is partially put into the electrolysis device, the temperature is raised to 80°C, the cycle is turned on, the voltage is set to 3.7V, and the iodate mass concentration is 16%, and the electrolyte is continuously added to the electrolysis device and collected from the discharge port.
  • the electrolysis completion liquid is discharged, and the flow is adjusted through the electrolyte feeding valve, and the mass concentration of the extracted electrolysis completion liquid is controlled to be 16%.
  • the electrolysis process controls the reaction temperature of 80-85°C.
  • the present invention prepares lithium iodate by electrolysis, and then reacts the prepared lithium iodate with iodide to prepare iodate.
  • the whole process can form a closed loop for cyclic application, and no efflux waste is produced and the product is taken away. High rate, avoid the generation of waste salt, green and environmental protection.
  • Preparation of lithium iodate by electrolysis The synthetic process uses a clean electrolysis process without the need to add oxidants and other additional raw materials like chemical methods. The raw materials are simple and the produced iodate products are of high quality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明属于电化学合成领域,具体涉及一种碘酸盐的绿色生产工艺,该工艺以电解法制备碘酸锂,然后将制备获得的碘酸锂与碘化物进行反应制备碘酸盐,母液循环利用,无外排废物产生,产品收率高,避免了大量废盐的生成,绿色环保。电解法制备碘酸锂合成过程使用清洁的电解工艺不需要像化学法那样要加入氧化剂以及其他额外的原辅料,原辅料简单,生产的碘酸盐产品质量高。

Description

一种碘酸盐的绿色生产工艺 技术领域
本发明属于电化学合成技术领域,具体涉及一种碘酸盐的绿色生产工艺。
背景技术
碘酸盐在化学合成、化学分析、农药、医药、材料行业均有广泛应用;在食品和饲料行业某些碘酸盐可作为添加剂。
以碘酸钾为例,在化学分析中作沉淀剂、标准试剂;农业上作饲料添加剂;医药上作防治地方甲状腺肿病的加碘剂或药剂,也可用于有机合成;在食品行业用作微量元素碘的添加剂。现有碘酸钾合成方法主要有直接电解碘化钾合成碘酸钾和氯酸钾氧化法。
直接电解碘化钾合成碘酸钾法是在隔膜电解槽的阳极加入碘化钾,阴极加入氢氧化钾,阳极电解生成碘酸钾;或在二氧化铅或石墨做阳极的无隔膜电解槽中电解碘化钾得到碘酸钾。其反应式如下:
KI+3H 2O=(通电)KIO 3+3H 2
直接电解合成碘酸钾一个主要缺点是:由于碘酸钾在水中溶解度小,电解过程随着生成的碘酸根浓度增大,碘酸根将和钾离子析出结晶,在极板或膜上附着,造成能耗增加,损坏设备,极板结晶短路还会造成安全事故,因此直接电解法合成碘酸钾很难实现工业化生产。
我们研究发现,除碘酸锂外的碘酸盐在水中溶解度都不大,因此使用此方法生产除碘酸锂外的其他碘酸盐也存在同样的问题。
氯酸钾氧化法是目前工业上碘酸钾的生产主要方法。此方法是在稀硝酸溶液环境中,使用氯酸钾直接氧化碘,然后用氢氧化钾中和碘酸氢钾,其反应式如下;
6I 2+11KClO 3+3H 2O=6KH(IO 3) 2+5KCl+3Cl 2
KH(IO 3) 2+KOH=2KIO 3+H 2O
氯酸钾直接氧化法制碘酸钾,在反应过程中产生氯气,污染环境,又在产品中混有大量的副反应产物,分离困难,成本高。
同样的,如果用化学合成方法生产其他碘酸盐,合成过程也会像合成碘酸钾一样产生氯气,一旦泄露造成环境污染和安全事故,使用危险品氯酸盐和硝酸反应过程有产生二氧化氯的可能,二氧化氯极不稳定,易造成爆炸事故,因此化学合成法很难实现大规模、连续化生产。同时氧化法合成碘酸盐过程会产生大量的副产氯化物,不但影响产品质量,而且污染环境。因此如何提供一种碘酸盐的绿色生产工艺成为本领域急需要解决的问题之一。
发明内容
针对现有技术存在的空白之处,本发明提供了一种碘酸盐的绿色生产工艺,该工艺以电解法制备碘酸锂,然后将制备获得的碘酸锂与碘化物进行反应制备碘酸盐,母液可调配后返回电解,整个过程可形成循环套用的闭路循环,无外排废物产生,产品收率高,避免了大量废盐的生成,绿色环保。电解法制备碘酸锂合成过程使用清洁的电解工艺不需要像化学法那样要加入氧化剂以及其他额外的原辅料,原辅料简单,生产的碘酸盐产品质量高。
本发明的主要原理是利用碘化锂和碘酸锂在水中溶解度都比较大的这一特点,利用电解碘化锂的方式先制备碘酸锂,然后用碘酸锂作为过渡物,与目标碘酸盐相应的碘化物进行反应,制备碘酸盐,其母液可返回电解系统重复利用,不产生任何废物。
因此本发明是碘酸盐的绿色制备工艺,对于碘酸盐的工业化生产具有重大意义。
本发明的具体技术方案如下:
(1)配置含有锂离子和碘离子的电解液;
(2)将电解液导入电解系统中并通电进行电解反应制备碘酸锂;
(3)向上述制备的碘酸锂溶液中加入与目标碘酸盐对应的碘化物或可反应生成对应碘化物的物质,进行反应制备目标碘酸盐;
步骤(3)中所述的碘化物以分子式MIx表示,其中M为钠、镁、钾、钙、铵、钴、镍、锌、铷、锶、镉、铟、铯、钡、镧中的一种,x为1,2,3,4,5,6,中的一个。
本发明除了可用于制备可溶性碘酸盐之外,对于制备纯度要求不高的难溶的碘酸盐也可广泛适用,但是若需要较高纯度的难溶的碘酸盐则需要参照发明人的另一方法实现,在此不再赘述;
以加入与目标碘酸盐对应的碘化物为例,上述反应的具体反应方程式为:
LiI+3H 2O=LiIO 3+3H 2
MI x+xLiIO 3=M(IO 3) x+xLiI;
通过步骤(1)配置电解液,可获得含有一定浓度的碘化锂溶液,由于碘化锂溶解度较高,可以直接送入下一步的电解系统中进行反应;
更进一步的,步骤(1)中的电解液中,可选择性加入可溶性的重铬酸盐以抑制生成的碘酸根在阴极被还原,其中可溶性重铬酸盐的阳离子优选采用对应目标碘酸盐中的金属离子,更优选的选择为重铬酸钾或重铬酸钠;
更进一步的,所述的锂离子质量浓度为0.001%以上,优选0.3%-1.7%,pH值优选7-14。重铬酸盐质量浓度优选但不限于0.001%-0.5%;
步骤(2)中的电解系统中,电解槽可采用有隔膜或无隔膜电解槽,优选采用无隔膜密闭电解槽,阳极为石墨、二氧化铅或钛基体涂含贵金属材料的极板,阴极为碳钢或不锈钢或钛材或其他导电材料,电解反应温度为0-110℃,单对阴阳极板间电压为0.1V-20V,电解液可以为单批次间歇的进出料或连续进出料,优选连续进料和连续出料方式;
当采用有隔膜的电解槽时,可以不加入重铬酸盐;
更进一步的电解反应温度优选60-100℃,单对阴阳极板间电压优选1V-10V;
步骤(3)中所述与目标碘酸盐对应的碘化物或可反应生成对应碘化物的物质,所加碘化物的量根据步骤(2)中电解液中碘酸根量计算,为降低溶液中其他金属离子浓度,影响返回套用,碘酸根与上述碘化物中碘离子摩尔比优选大于等于1:1;
更近一步的步骤(3)可以是目标碘酸盐对应的碘化物,但不限于必须是碘化物,只要在体系中能够形成目标碘酸盐对应碘化物的物质都可以;如制备碘酸钾时除可加入碘化钾外,还可加入氢氧化钾和碘,或加入氢氧化钾和氢碘酸,或加入其它可反应生成碘化钾的物质。
反应完成后,冷却,冷却温度优选-10℃~+60℃,经固液分离获得目标碘酸盐粗品;母液返回步骤(1)套用。
经过上述三步制备获得的碘酸盐为粗品,若需更高纯度的产品,则需进行精制得到符合要求的产品,可通过水洗或重结晶的方法实现,水洗或重结晶后,母液返回精制步骤重复使用或同样返回步骤(1)套用;
水洗或重结晶获得的精制产品,可采用烘干的方式进行处理,检测合格后即可获得目标产品;
采用上述方法,利用了碘化锂和碘酸锂在水中溶解度比其他碘化物和碘酸盐大的这一特点,避免了现有直接电解碘化金属盐合成碘酸盐时溶解度低,容易在极板或膜上析出结晶的问题,本申请中的电解系统产生的产物碘酸锂直接以离子态存在于电解液中,进入下步反应后可直接与后一步的原料发生反应生成目标碘酸盐,而锂离子则直接生成碘化锂存在于母液中,可以直接返回步骤1)调节各离子浓度;
上述方法以电解法制备碘酸锂,然后将制备获得的碘酸锂与碘化物进行反应制备碘酸盐,整个过程可形成循环套用的闭路循环,无外排废物产生带走产品,产品收率高,避免了废盐的生成,绿色环保。电解法制备碘酸锂合成过程使用清洁的电解工艺不需要像化学法那样要加入氧化剂以及其他额外的原辅料,原辅料简单,生产的碘酸盐产品质量高。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括根据具体实施方式的内容进行适当延伸。
本实施例中均采用无隔膜密闭电解槽,阳极优选钛基体涂含贵金属(如钌、铱等)的极板,阴极选择碳钢,电解反应温度为75-85℃,单对阴阳极板间电压为 2V-4V,电解液进出料为间歇进料间歇采出或连续进料和连续出料方式,优选采用连续进料和连续出料方式;除特殊说明外,实施例中涉及的百分比均为质量百分比;
实施例1
碘酸钾的制备:
向5000mL反应釜中加去离子水3600mL,投入氢氧化锂(≥56.5%)632g、碘1910g、重铬酸钾12.08g,取样检测锂离子和重铬酸钾浓度及pH,根据检测结果加入适量水、氢氧化锂、碘、重铬酸钾,调节最终锂离子质量浓度1.7%,加入重铬酸钾调节重铬酸钾质量浓度0.2%,调节pH为10.1,按此配比配置3批电解液转入电解液储槽备用。
配置好的电解液部分投入电解装置,升温至80℃,开启循环,电压设定为3.8V,电解至碘酸根质量浓度18%,继续向电解装置连续加入电解液,并从出料口连续采出电解完成液,通过电解液加料阀门,调节流量,控制采出电解完成液碘酸根质量浓度为18%,电解过程控制反应温度80-85℃。
将电解完成液4000g,转入另一5000mL反应釜中进行反应,加入95%氢氧化钾242g,碘522g,搅拌反应至釜中无碘颗粒存在。通冷媒降温至溶液温度5℃,经离心分离得到碘酸钾粗品612g,复分解母液转入母液储罐待调配使用。按以上复分解处理2批,共得到碘酸钾粗品1225g。
在另一5000mL反应釜中加入4000mL去离子水,并取800g上步得到的粗品投入反应釜中进行重结晶,向反应釜夹套通蒸汽将物料升温至80℃,加入2g活性炭,经过滤器过滤至另一5000mL反应釜中,通循环水降温至30℃,经离心分离得碘酸钾湿品391g,重结晶母液套入下批重结晶精制过程,碘酸钾湿品转入干燥机中干燥后得产品378g。
所得产品纯度指标如下:
项目 实际检测值
外观 白色结晶
碘酸钾(KIO 3)含量ω/% 99.1
干燥减量,ω/% 0.12
砷(As)ω/% <0.0003
重金属(以Pb计)ω/% <0.001
碘化物(以I计)ω/% <0.002
氯酸盐(以ClO 3计)ω/% <0.01
硫酸盐(以SO 4计)ω/% <0.005
pH(5%碘酸钾溶液) 7.2
实施例2
碘酸钾的制备(母液套用):
取实施例1中获得的复分解母液4000mL,检测锂离子、钾离子、重铬酸钾浓度、pH值,根据检测结果加适量水、氢氧化锂和碘微调,使溶液中锂离子质量浓度为0.8%,钾离子质量浓度≤1.3%,重铬酸钾质量浓度0.2%,调节PH为9.6,配置3批转入电解液储罐备用。
向实施例1中已稳定的含碘酸根18%的电解循环系统中连续加入以上电解液,控制电解阴阳极电压3.8V,并从出料口连续采出电解完成液,通过电解液加料阀门,调节流量,控制采出电解完成液碘酸根质量浓度为18%,电解过程控制反应温度80-85℃。
将电解完成液4000g,转入5000mL反应釜中进行复分解反应,加入99%碘化钾306g。冷冻降温至溶液温度5℃,经离心分离得到碘酸钾粗品398g,复分解母液转入母液储罐待调配使用。按以上处理2批,得粗品共806g。
在5000mL反应釜中加入4000mL实施例1中获得的重结晶母液,并取400g本实施例上步得到的粗品投入反应釜中进行重结晶,向反应釜夹套通蒸汽将物料升温至80℃,加入2g活性炭,经过滤器过滤至另一5000mL反应釜中,通循环水降温至30℃,经离心分离得碘酸钾湿品394g,重结晶母液套入下批重结晶过程,碘酸钾湿品转入干燥机中干燥后得产品376g。
所得产品纯度如下:
项目 实际检测值
外观 白色结晶
碘酸钾(KIO 3)含量ω/% 99.5
干燥减量,ω/% 0.08
砷(As)ω/% <0.0003
重金属(以Pb计)ω/% <0.001
碘化物(以I计)ω/% <0.002
氯酸盐(以ClO 3计)ω/% <0.01
硫酸盐(以SO 4计)ω/% <0.005
pH(5%碘酸钾溶液) 7.3
实施例3
碘酸钠的制备:
向5000mL反应釜中加去离子水3600mL,投入氢氧化锂和碘,调节锂离子质量浓度1.7%,加入重铬酸钠调节重铬酸钠质量浓度0.15%,调节PH为10.6,按此配比配置4批电解液转入电解液储槽备用。
配置好的电解液部分投入电解装置,升温至80℃,开启循环,电压设定为3.7V,电解至碘酸根质量浓度16%,继续向电解装置连续加入电解液,并从出料口连续采出电解完成液,通过电解液加料阀门,调节流量,控制采出电解完成液碘酸根质量浓度为16%,电解过程控制反应温度80-85℃。
将电解完成液4000g,转入5000mL反应釜中进行复分解反应,加入99%碘化钠207.8g,搅拌。通冷媒降温至溶液温度5℃,经离心分离得到碘酸钠粗品275g,复分解母液转入母液储罐待调配使用。按以上复分解处理4批,共得到碘酸钠粗品1110g。
在5000mL反应釜中加入4000mL去离子水,并取800g上步得到的粗品投入反应釜中进行重结晶,向反应釜夹套通蒸汽将物料升温至80℃,加入2g活性炭,经 过滤器过滤至另一5000mL反应釜中,通循环水降温至30℃,经离心分离得碘酸钠湿品379g,重结晶母液套入下批重结晶精制过程,碘酸钠湿品转入干燥机中干燥后得产品364g。
所得产品纯度如下:
项目 实际检测值
碘酸钠(NaIO 3)含量ω/% 99.6
干燥减量,ω/% 0.08
重金属(以Pb计)ω/% <0.001
碘化物(以I计)ω/% <0.01
硫酸盐(以SO 4计)ω/% <0.05
实施例4
碘酸钙的制备
向5000mL反应釜中加去离子水3600mL,投入氢氧化锂和碘,调节锂离子质量浓度1.7%,加入重铬酸钠调节重铬酸钠质量浓度0.15%,调节PH为10.6,按此配比配置3批电解液转入电解液储槽备用。
配置好的电解液部分投入电解装置,升温至80℃,开启循环,电压设定为3.7V,电解至碘酸根质量浓度16%,继续向电解装置连续加入电解液,并从出料口连续采出电解完成液,通过电解液加料阀门,调节流量,控制采出电解完成液碘酸根质量浓度为16%,电解过程控制反应温度80-85℃。
取电解完成液4000g于5000mL反应釜中,加入碘化钙504g(含量折百后的重量),搅拌,冷却到15℃,经过滤,得碘酸钙粗品693.1g。母液加碳酸锂除钙后用于下批电解液配置。
在2000mL反应釜中加水1000mL,升温至80℃,将上步所得碘酸钙粗品转入反应釜中,搅拌30min。经过滤,得碘酸钙湿品678.7g。碘酸钙湿品转入干燥机中干燥得碘酸钙产品652.9g。
所得产品分析结果如下:
项目 实测值
外观 黄色粉末
碘酸钙(以I计)ω/% 61.4
重金属(以Pb计)ω/% >0.002
砷(As)ω/% <0.0005
氯酸盐 通过试验
细度(通过180μm试验筛)ω/% >95
可见本发明以电解法制备碘酸锂,然后将制备获得的碘酸锂与碘化物进行反应制备碘酸盐,整个过程可形成循环套用的闭路循环,无外排废物产生带走产品,产品收率高,避免了废盐的生成,绿色环保。电解法制备碘酸锂合成过程使用清洁的电解工艺不需要像化学法那样要加入氧化剂以及其他额外的原辅料,原辅料简单,生产的碘酸盐产品质量高。

Claims (7)

  1. 一种碘酸盐的绿色生产工艺,其特征在于:以电解法制备碘酸锂,然后将制备获得的碘酸锂与碘化物进行反应制备碘酸盐。
  2. 根据权利要求1所述碘酸盐的绿色生产工艺,其特征在于:包括如下步骤:
    (1)配置含有锂离子和碘离子的电解液;
    (2)将电解液导入电解系统中并通电进行电解反应制备碘酸锂;
    (3)向上述制备的碘酸锂溶液中加入与目标碘酸盐对应的碘化物或可反应生成对应碘化物的物质,进行反应制备目标碘酸盐。
  3. 根据权利要求2所述的碘酸盐的绿色生产工艺,其特征在于:
    步骤(1)中的电解液中含有锂离子和碘离子,其中锂离子质量浓度为0.001%以上;步骤(3)中所述的碘化物以分子式MIx表示,其中M为钠、镁、钾、钙、铵、钴、镍、锌、铷、锶、镉、铟、铯、钡、镧中的一种,x为1,2,3,4,5,6,中的一个。
  4. 根据权利要求2或3所述的碘酸盐的绿色生产工艺,其特征在于:
    步骤(1)中的电解液中锂离子质量浓度为0.3%-1.7%。
  5. 根据权利要求2所述的碘酸盐的绿色生产工艺,其特征在于:
    步骤(2)中的电解系统中,电解槽采用有隔膜或无隔膜电解槽,电解槽为密闭式或敞开式,阳极为石墨、二氧化铅或钛基体涂含贵金属材料的极板,阴极为碳钢或不锈钢或钛材或其他导电材料,电解反应温度为0-110℃,单对阴阳极板间电压为0.1V-20V,电解液进出料为间歇式或连续式。
  6. 根据权利要求2所述的碘酸盐的绿色生产工艺,其特征在于: 步骤(3)中所述与目标碘酸盐对应的碘化物或可反应生成对应碘化物的物质,碘化物的量根据步骤(2)中电解液中碘酸根量计算,电解液中碘酸根与碘化物所含碘离子摩尔比为任意比例。
  7. 根据权利要求6所述的碘酸盐的绿色生产工艺,其特征在于:
    步骤(3)中所述与目标碘酸盐对应的碘化物或可反应生成对应碘化物的物质,碘化物的量根据步骤(2)中电解液中碘酸根量计算,电解液中碘酸根与碘化物所含碘离子摩尔比大于等于1:1。
PCT/CN2020/087407 2019-06-04 2020-04-28 一种碘酸盐的绿色生产工艺 WO2020244343A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/608,773 US20220298016A1 (en) 2019-06-04 2020-04-28 Green production process for iodate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910483876.9 2019-06-04
CN201910483876.9A CN112030179B (zh) 2019-06-04 2019-06-04 一种碘酸盐的绿色生产工艺

Publications (1)

Publication Number Publication Date
WO2020244343A1 true WO2020244343A1 (zh) 2020-12-10

Family

ID=73576715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087407 WO2020244343A1 (zh) 2019-06-04 2020-04-28 一种碘酸盐的绿色生产工艺

Country Status (3)

Country Link
US (1) US20220298016A1 (zh)
CN (1) CN112030179B (zh)
WO (1) WO2020244343A1 (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU865983A1 (ru) * 1979-05-14 1981-09-23 Белорусский технологический институт им.С.М.Кирова Способ получени иодата кали или натри
SU1032045A1 (ru) * 1981-10-16 1983-07-30 Белорусский Ордена Трудового Красного Знамени Политехнический Институт Способ получени иодата щелочного металла
SU1096307A1 (ru) * 1982-12-21 1984-06-07 Белорусский Ордена Трудового Красного Знамени Политехнический Институт Способ получени иодата кали или натри
BG38101A1 (en) * 1984-06-12 1985-10-15 Ljutov Method for preparing extra pure lithium iodate
CN86100607A (zh) * 1986-01-23 1987-08-19 王福昌 电解混合法制取氯酸钾
SU1366555A1 (ru) * 1986-04-01 1988-01-15 Белорусский Политехнический Институт Способ получени иодата щелочного металла
JPH01184293A (ja) * 1988-01-14 1989-07-21 Tanaka Kikinzoku Kogyo Kk ヨウ素及びヨウ素酸塩の製造方法
JPH01184294A (ja) * 1988-01-14 1989-07-21 Tanaka Kikinzoku Kogyo Kk ヨウ素酸塩の製造方法
CN1078504A (zh) * 1993-03-31 1993-11-17 王斌俊 直接电解氯化钾溶液制得氯酸钾
CN1121540A (zh) * 1994-10-24 1996-05-01 智利化学和矿业股份有限公司 从碘和氢氧化钾获得碘酸钾的方法
CN101078128A (zh) * 2007-06-30 2007-11-28 广西壮族自治区化工研究院 成对电解制备甘露醇和碘酸钾的方法及装置
CN102021600A (zh) * 2010-12-21 2011-04-20 北京化工大学 一种利用氧阴极无隔膜电解生产碘酸钾的方法及装置
RU2563870C1 (ru) * 2015-07-06 2015-09-20 Публичное акционерное общество "Научно-производственное объединение "Йодобром" (ПАО "НПО "Йодобром") Способ получения йодата калия

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4653968B2 (ja) * 2004-04-28 2011-03-16 富士フイルムファインケミカルズ株式会社 無機ヨウ化物の回収方法
JP2006225693A (ja) * 2005-02-16 2006-08-31 Japan Carlit Co Ltd:The 過ヨウ素酸塩類の製造方法
AP2624A (en) * 2008-01-25 2013-03-19 Council Scient Ind Res A process for the preparation of stable iodate-exchanged synthetic hydrotalcite with zero effluent discharge
US20170137950A1 (en) * 2015-11-18 2017-05-18 Ceramatec, Inc. Electrochemical production of hydrogen with dye-sensitized solar cell-based anode

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU865983A1 (ru) * 1979-05-14 1981-09-23 Белорусский технологический институт им.С.М.Кирова Способ получени иодата кали или натри
SU1032045A1 (ru) * 1981-10-16 1983-07-30 Белорусский Ордена Трудового Красного Знамени Политехнический Институт Способ получени иодата щелочного металла
SU1096307A1 (ru) * 1982-12-21 1984-06-07 Белорусский Ордена Трудового Красного Знамени Политехнический Институт Способ получени иодата кали или натри
BG38101A1 (en) * 1984-06-12 1985-10-15 Ljutov Method for preparing extra pure lithium iodate
CN86100607A (zh) * 1986-01-23 1987-08-19 王福昌 电解混合法制取氯酸钾
SU1366555A1 (ru) * 1986-04-01 1988-01-15 Белорусский Политехнический Институт Способ получени иодата щелочного металла
JPH01184293A (ja) * 1988-01-14 1989-07-21 Tanaka Kikinzoku Kogyo Kk ヨウ素及びヨウ素酸塩の製造方法
JPH01184294A (ja) * 1988-01-14 1989-07-21 Tanaka Kikinzoku Kogyo Kk ヨウ素酸塩の製造方法
CN1078504A (zh) * 1993-03-31 1993-11-17 王斌俊 直接电解氯化钾溶液制得氯酸钾
CN1121540A (zh) * 1994-10-24 1996-05-01 智利化学和矿业股份有限公司 从碘和氢氧化钾获得碘酸钾的方法
CN101078128A (zh) * 2007-06-30 2007-11-28 广西壮族自治区化工研究院 成对电解制备甘露醇和碘酸钾的方法及装置
CN102021600A (zh) * 2010-12-21 2011-04-20 北京化工大学 一种利用氧阴极无隔膜电解生产碘酸钾的方法及装置
RU2563870C1 (ru) * 2015-07-06 2015-09-20 Публичное акционерное общество "Научно-производственное объединение "Йодобром" (ПАО "НПО "Йодобром") Способ получения йодата калия

Also Published As

Publication number Publication date
CN112030179A (zh) 2020-12-04
US20220298016A1 (en) 2022-09-22
CN112030179B (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
CN103080009B (zh) 由氯化锂制备碳酸锂的方法
CN105895983A (zh) 一种循环式湿法制备高纯PbO的方法
CN105886767A (zh) 一种铜铟镓硒废料的回收方法
WO2018041272A1 (zh) 用粗制氟化锂制取工业级碳酸锂的方法及碳酸锂产品
CN110656343A (zh) 利用pcet反应以芒硝和石灰石制取两碱联产高纯石膏的方法
US6491807B2 (en) Process for producing sodium persulfate
CN109534372A (zh) 利用磷酸铁锂废料制备碳酸锂的方法
US20210047201A1 (en) Method for preparing high-valence iron salt
CN112028025B (zh) 一种难溶碘酸盐的绿色生产工艺
JP4276322B2 (ja) 高純度錫酸アルカリ化合物の製造方法
CN101525752A (zh) 高纯度四氧化三钴粉体的清洁生产方法
WO2020244343A1 (zh) 一种碘酸盐的绿色生产工艺
CN102674465B (zh) 含HCl的尾气回收氯气并制备氯化锰的方法及该氯化锰结晶
KR101528911B1 (ko) 과황산암모늄의 고효율 연속 생산 방법 및 장치
CN114540638B (zh) 一种锌浸出液净化方法
CN103663563B (zh) 一种高铁酸钾的制备方法
CN113274882B (zh) 基于高温双极膜电渗析的己二酸铵废液回收方法及其装置
CN105060318A (zh) 由氯化锂制备碳酸锂的方法
CN108773847A (zh) 一种回收废旧磷酸钒锂的方法
CN114275811A (zh) 一种粗品钒化合物提纯制备电解液的方法及电解液
CN108588737B (zh) 一种处理含钒废液制备偏钒酸钠的方法
CN110724968B (zh) 一种氢碘酸的工业化生产方法
CN103668312A (zh) 一种马来酸顺反异构化制备富马酸的电化学法
CN115108916B (zh) 一种三氯硝基甲烷的制备方法
CN114538497B (zh) 一种从铝电解质酸浸出液中去除氟的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20818942

Country of ref document: EP

Kind code of ref document: A1