WO2020238024A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2020238024A1
WO2020238024A1 PCT/CN2019/115805 CN2019115805W WO2020238024A1 WO 2020238024 A1 WO2020238024 A1 WO 2020238024A1 CN 2019115805 W CN2019115805 W CN 2019115805W WO 2020238024 A1 WO2020238024 A1 WO 2020238024A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
electrode
isolation
area
emitting
Prior art date
Application number
PCT/CN2019/115805
Other languages
English (en)
French (fr)
Inventor
安乐平
Original Assignee
昆山维信诺科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山维信诺科技有限公司 filed Critical 昆山维信诺科技有限公司
Publication of WO2020238024A1 publication Critical patent/WO2020238024A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8428Vertical spacers, e.g. arranged between the sealing arrangement and the OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/179Interconnections, e.g. wiring lines or terminals
    • H10K59/1795Interconnections, e.g. wiring lines or terminals comprising structures specially adapted for lowering the resistance

Definitions

  • This application relates to the field of display technology, in particular to a display panel and a display device.
  • OLED Organic Light-Emitting Diode
  • a display panel including:
  • a plurality of isolation pillars are arranged at intervals from each other; the plurality of isolation pillars are arranged on the first electrode, and the extension direction of the isolation pillars intersects the extension direction of the first electrode to connect the first electrode Divided into a plurality of first sub-electrodes;
  • each of the pixel regions is located between two adjacent isolation pillars, and the pixel region includes a plurality of effective light-emitting regions corresponding to the first sub-electrodes one-to-one;
  • At least one position between the effective light-emitting area and the isolation column in the display panel and between two adjacent effective light-emitting areas in the same pixel area is provided with a spacing groove, so that the display area guide of the related art can be disconnected by the spacing groove.
  • the pixel-defining layer and the isolation column with faster water and oxygen conduct water and oxygen to the effective light-emitting area, and the water and oxygen stored in the isolation column can be preferentially absorbed by the desiccant or drying sheet, so it effectively prevents the water and oxygen in the isolation column from passing through the pixel limit
  • the layer is conducted to the effective light-emitting area, which leads to the problem of the effective light-emitting area being reduced or no display, thereby improving the reliability and service life of the display panel.
  • the effective light-emitting area may not contain the pixel defining layer in the circumferential direction, thereby completely avoiding the problem of the isolation column contacting the pixel defining layer or the insulating layer, which causes water and oxygen to conduct to the effective light-emitting area, and the effective light-emitting area shrinks or does not display. .
  • a display panel including:
  • a plurality of isolation pillars, the plurality of isolation pillars are provided on the first electrode, and the extension direction of the isolation pillar intersects the extension direction of the first electrode to divide the first electrode into a plurality of First sub-electrode
  • each of the pixel regions is located between two adjacent isolation pillars, the pixel region includes a plurality of effective light-emitting regions corresponding to the first sub-electrodes one-to-one and two adjacent ones Dummy light-emitting areas between the effective light-emitting areas;
  • the light-emitting material of the dummy light-emitting area is in direct contact with the substrate.
  • the pixel defining layer between two adjacent effective light-emitting areas in the same pixel area corresponding to the related art is removed, so that the light-emitting material in the dummy light-emitting area directly contacts the substrate, and adjacent pixels in the same pixel area There is no pixel defining layer between the two effective light-emitting areas, so the edge of the effective light-emitting area that does not contain the pixel defining layer will not be invaded by water and oxygen from the isolation column, thereby reducing the water and oxygen stored in the isolation column to a certain extent.
  • the effect of the effective light-emitting area can effectively prevent the water and oxygen in the isolation column from being conducted to the effective light-emitting area through the pixel defining layer, thus effectively avoiding the problem of shrinking or not displaying the effective light-emitting area, thereby improving the reliability and reliability of the display panel. Service life.
  • a display device including the above-mentioned display panel.
  • FIG. 1 is a schematic diagram of a partial structure of a display panel in an embodiment
  • FIG. 2 is a schematic top view of the structure of the first electrode of the display panel in FIG. 1;
  • FIG. 3 is a schematic top view of the structure of the first electrode and isolation pillars of the display panel in FIG. 1;
  • FIG. 4 is a schematic diagram of a partial structure of a display panel in another embodiment
  • FIG. 5 is a schematic diagram of a partial structure of a display panel in another embodiment
  • FIG. 6 is a partial top structural view of a display panel in another embodiment
  • FIG. 7 is a top structural view of a first electrode of a display panel in an embodiment
  • FIG. 8 is a partial top structural view of a display panel in another embodiment
  • FIG. 9 shows the second insulating layer in the non-display area in an embodiment of the display panel.
  • first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another element.
  • first element may be referred to as the second element, and similarly, the second element may be referred to as the first element.
  • planar schematic view refers to a drawing when the target portion is viewed from above
  • cross-sectional schematic view refers to a drawing when a cross-section taken by cutting the target portion vertically is viewed from the side.
  • the display panel includes an active area for forming light-emitting elements, and surrounding areas that are not allowed to be cut off, such as wiring for providing signal lines for display.
  • a display panel may include a subsequent display area AA (Active Area, AA) for forming light-emitting elements, and may also include a subsequent non-display area (including an area where a driving circuit and a chip are provided) for the display panel.
  • AA Active Area
  • Bottom/above It is based on the substrate of the display panel.
  • the sub-pixels are located above the substrate, and for example, the sub-pixels are located below the packaging structure.
  • the organic light-emitting functional materials are highly sensitive to water and oxygen, so once water and oxygen enter the organic light-emitting functional material area, it will cause the organic light-emitting function of the display area
  • the material failure causes the problem of shrinking or non-display of pixels in the display area, which seriously affects the service life of the OLED.
  • the sub-pixels in the display area of the OLED display panel are all defined by a pixel defining layer to effectively separate the sub-pixels.
  • an isolation column is also provided on the pixel defining layer, which can play a supporting role, such as supporting a glass cover plate; it can also play a role in isolating the top electrode, for example, an inverted trapezoidal structure is used to make the top electrode It is divided into multiple independent parts, such as a passive matrix organic light-emitting diode (PMOLED, Passive matrix organic light-emitting diode).
  • PMOLED passive matrix organic light-emitting diode
  • the above-mentioned display panel 10 is PMOLED.
  • the PMOLED screen has no TFT backplane, which makes the light transmittance high, so a high-transparency PMOLED display can be used for transparent display.
  • the display panel 10 in the present application is not limited to PMOLED, and can also be used for some active-matrix organic light-emitting diodes (AMOLED, Active-matrix organic light-emitting diode) with a TFT backplane.
  • AMOLED Active-matrix organic light-emitting diode
  • the anode and cathode of the PMOLED screen are generally striped, with multiple anodes and multiple cathodes crisscrossing each other, and the overlapping positions of multiple anodes and multiple cathodes are defined by the pixel defining layer.
  • a sub-pixel area is formed, and then a sub-pixel is formed in the sub-pixel area.
  • the pixel arrangement structure of the PMOLED screen is generally the real RGB structure of the related technology, that is, the red, green, and blue sub-pixels are arranged alternately in the first direction, and in the second direction perpendicular to the first direction, each The colors of the sub-pixels are the same.
  • the isolation column is arranged on the pixel defining layer and it is easy to store water and oxygen. Therefore, the water and oxygen in the isolation column can be transmitted to the sub-pixels in the pixel limiting layer through the pixel limiting layer directly contacting, and accelerate the organic
  • the failure of the light-emitting function material causes the problem of shrinking or non-display of pixels in the display area, which seriously affects the service life of the OLED display panel and reduces the reliability of the display panel.
  • the pixel defining layer in this document refers to a structural layer that directly contacts the sub-pixel (the effective light-emitting area in this document) and defines the sub-pixel.
  • an embodiment of the present application provides a display panel, which can better solve the above problem.
  • the structure of the display panel will be described in detail below in conjunction with the manufacturing method of the display panel.
  • the display panel 10 has a display area, which includes a substrate 11, a plurality of first electrodes 12, a plurality of isolation pillars 13, and a plurality of pixel regions in the display area.
  • the substrate 11 may be made of, for example, glass material, metal material, or including polyethylene terephthalate (PET), polyethylene naphthalate (PEN) or polyimide. (Polyimide, PI for short) and other plastic materials are formed from suitable materials.
  • the substrate 11 is made of a flexible material.
  • the flexible material is, for example, polyimide PI polymer, polycarbonate PC (Polycarbonate, PC for short) resin, also called PC plastic, and polycarbonate. Terephthalic acid PET plastic etc.
  • a plurality of first electrodes 12 are provided on the substrate 11.
  • the plurality of first electrodes 12 are spaced apart from each other. Further, the first electrode 12 has a strip shape.
  • FIG. 1 is a schematic diagram of a partial structure of a display panel according to an embodiment, and only shows a part of the display panel with one isolation column 13.
  • 3 is a schematic top view showing the arrangement of a plurality of isolation pillars 13 and a plurality of first electrodes 12 in the display panel in an embodiment. 1 and 3, the extension direction of each isolation pillar 13 intersects the extension direction of the first electrode 12, a plurality of isolation pillars 13 are provided on the substrate 11 and the first electrode 12 to separate the first electrodes 12 There are a plurality of first sub-electrodes 121 arranged along the extending direction of the first electrode 12.
  • a pixel area is formed between two adjacent isolation pillars 13, that is, each pixel area is located between two adjacent isolation pillars 13.
  • Each pixel area includes a plurality of effective light-emitting areas 14 corresponding to the first sub-electrodes 121 one-to-one.
  • the effective light-emitting area 14 contains a light-emitting material.
  • one effective light-emitting area 14 is one sub-pixel, that is, multiple sub-pixels are provided on the multiple first sub-electrodes 121 in a one-to-one correspondence.
  • the partition groove 101 disconnects the pixel defining layer in the display area with faster water and oxygen conduction and the isolation column 13 conducts water and oxygen to the effective light-emitting area 14.
  • the water and oxygen stored in the isolation column 13 can be preferentially absorbed by the desiccant or drying sheet. Therefore, the water and oxygen in the isolation column 13 is effectively prevented from being conducted to the effective light-emitting area 14 through the pixel defining layer, thereby avoiding the problem of shrinking or non-display of pixels, thereby improving the reliability and service life of the display panel 10.
  • two adjacent effective light-emitting areas 14 in the same pixel area also have spacing grooves.
  • the spacing groove between the two effective light-emitting areas 14 can block the transfer of water and oxygen between the effective light-emitting areas 14.
  • the two effective light-emitting regions 14 are separated by a spacing groove instead of a pixel-defining layer interval, which prevents the pixel-defining layer from conducting the water and oxygen of the spacer 13 to the effective light-emitting region 14, thereby avoiding the problem of shrinking or non-display of pixels, and thus The reliability and service life of the display panel 10 are improved.
  • the solution with the spacing groove 101 between the effective light-emitting region 14 and the isolation pillar 13 and the solution with the spacing groove between the two adjacent effective light-emitting regions 14 in the same pixel area can be selected either or combined with each other.
  • the circumferential direction of the effective light-emitting area 14 may not contain the pixel defining layer at all, that is, the circumferential direction of the effective light-emitting area 14 does not directly contact the pixel defining layer at all, thereby completely avoiding the pixels in the display area of the related art that conduct water and oxygen faster.
  • the limiting layer and the isolation pillars conduct water and oxygen to the effective light-emitting area 14 to prevent the water and oxygen from being conducted to the effective light-emitting area 14 to cause the effective light-emitting area 14 to shrink or not display.
  • each effective light-emitting area 14 is limited to each pixel area by the isolation column 13, and the first electrode 12 of each pixel area is defined as a one-to-one correspondence with each effective light-emitting area 14 through the joint action of the isolation column 13 and the first electrode 12
  • the first sub-electrode 121 can realize the isolation pillar 13 and the first electrode 12 to directly divide the pixel points.
  • the cross-sectional shape of the isolation column 13 is not limited to a strictly inverted trapezoidal structure, as long as the projection area of the lower surface of the isolation column on the substrate 11 is located within the projection area of the upper surface of the isolation column 13 on the substrate 11 It is smaller than the projection of the upper surface of the isolation column 13 on the substrate 11, and whether the two side walls of the isolation column 13 of the inverted trapezoidal structure are flat or curved is not limited.
  • a continuous luminescent material is vapor-deposited in each pixel area. Due to the partitioning effect of the spacer 13 and the first electrode 12, between two adjacent effective luminous areas 14 in the same pixel area There is no pixel defining layer between the two adjacent effective light-emitting areas 14 which are covered by light-emitting materials and are directly arranged on the substrate, and these light-emitting materials cannot effectively emit light, that is, dummy light-emitting areas.
  • each pixel area includes a plurality of effective light-emitting areas 14 one-to-one corresponding to the first sub-electrode 121, and also includes a dummy light-emitting area located between two adjacent effective light-emitting areas 14; wherein, the dummy light-emitting area
  • the luminescent material in is in direct contact with the substrate 11.
  • the pixel defining layer between two adjacent effective light-emitting areas 14 in the same pixel area in the related art is removed, and the light-emitting material in the dummy light-emitting area directly contacts the substrate 11, so that two adjacent two in the same pixel area
  • the effective light-emitting areas 14 do not contain a pixel defining layer, so the edge of the effective light-emitting area 14 that does not contain the pixel defining layer will not be invaded by water and oxygen from the isolation column 13, thereby reducing the storage in the isolation column 13 to a certain extent.
  • the influence of water and oxygen on the effective light-emitting area 14 can effectively prevent the water and oxygen in the isolation column 13 from being conducted to the effective light-emitting area 14 through the pixel defining layer, thus effectively avoiding the problem of pixel reduction or non-display, thereby improving the display
  • the scheme of forming the spacer groove 101 and the scheme of directly contacting the luminescent material in the dummy luminous area with the substrate 11 can be selected alternatively or combined with each other.
  • neither the bottom wall nor the side portion of the spacer groove 101 contains a pixel defining layer connecting the effective light emitting region 14 and the isolation pillar 13.
  • Direct contact can reduce the design margin of the pixel defining layer, and the effective light-emitting area 14 of the same pixel area can be formed by the same vapor deposition opening. Therefore, the aperture ratio of the pixels can be effectively increased, thereby increasing the brightness of the display panel 10.
  • the pixel points are directly divided by the inverted trapezoidal isolation column 13 and the first electrode 12, so that the luminescent material located in the dummy light-emitting area is in direct contact with the substrate 11, that is, two adjacent effective light-emitting areas in the same pixel area There is no pixel defining layer between 14.
  • the display area may not contain the pixel defining layer and/or the first insulating layer 162 at all. .
  • the display area may not contain the pixel defining layer and the first insulating layer 162 at all. That is, no pixel defining layer is included around the effective light-emitting region 14 and the first insulating layer 162 is not included under the isolation pillar 13.
  • the effective light-emitting area 14 is directly divided by the isolation pillar 13 and the first electrode 12, and the light-emitting material located in the dummy light-emitting area directly contacts the substrate 11 (that is, the dummy light-emitting area is not provided with a pixel defining layer).
  • the isolation pillar 13 is directly disposed on the substrate 11 and the first electrode 12, that is, directly contacts the substrate 11 and the first electrode 12. Therefore, the width of the spacer 13 can be increased, and the adhesion of the spacer 13 on the substrate 11 can be improved, so that it is not easy to fall off.
  • the width of the isolation pillar 13 may be 12 ⁇ m-16 ⁇ m. Further, the width of the isolation column 13 can be increased from 12 microns to 14 microns to 16 microns.
  • the extending direction of the isolation pillar 13 and the extending direction of the first electrode 12 are perpendicular to each other.
  • the display panel 10 further includes a plurality of second electrodes 15.
  • Each second electrode 15 covers a plurality of effective light-emitting areas 14 in each pixel area.
  • the material of the second electrode 15 is divided to form a plurality of second electrodes 15 arranged along the extending direction of the isolation pillar 13. It should be noted that the area of the light-emitting material vapor deposited in the pixel area that is in contact with the first electrode 12 and the second electrode 15 at the same time is the effective light-emitting area 14.
  • FIG. 4 shows a schematic diagram of a partial structure of a display panel in another embodiment.
  • FIG. 5 shows a schematic diagram of a partial structure of a display panel in another embodiment.
  • At least part of the circumferential direction of the effective light-emitting area 14 does not directly contact the pixel defining layer, and the circumferential area of the effective light-emitting area 14 directly forms a spacing groove with the isolation pillar 13 101.
  • the display panel 10 has a pixel defining layer 161 formed on the substrate 11 in the display area.
  • the pixel defining layer 161 is disposed at least between the effective light emitting area 14 and the spacing groove 101.
  • the effective light-emitting area 14 is surrounded by the pixel defining layer 161.
  • the spacing groove 101 is opened between the pixel defining layer 161 and the isolation pillar 13 or between the pixel defining layer 161 and the first insulating layer 162.
  • the first electrode 12 is exposed to the spacing groove 101.
  • the area of the effective light-emitting area 14 in the circumferential direction that does not face the spacer 13 to form the spacer groove 101 is not restricted. It may or may not contain a pixel defining layer. If at this time, the circumferential area of the effective light-emitting area 14 that is not opposed to the isolation pillar 13 does not contain the pixel defining layer, which is equivalent to the solution including "the light-emitting material in the dummy light-emitting area is in direct contact with the substrate".
  • the material of the isolation pillar 13 is negative photoresist. Taking advantage of the characteristics of negative photoresist, after exposing the negative photoresist, because the lower the negative photoresist is exposed to less exposure, the more it will be dissolved after development, so it can be naturally developed after development. Form an inverted trapezoid structure with a large upper and a smaller one
  • the first electrode 12 further includes a connection portion 123 located under the isolation pillar 13 and covered by the isolation pillar 13; a plurality of first sub-electrodes 121 are connected to each other through the connection portion 123.
  • a first insulating layer 162 covering the connection portion 123 of the first electrode 12 may be provided under the isolation column 13 and on the substrate 11. , So that the isolation pillar 13 is etched on the first insulating layer 162 without directly contacting the connecting portion 123.
  • the first insulating layer 162 cannot be located in the spacer groove 101 and cannot connect the effective light-emitting region 14 and the isolation pillar 13.
  • the first insulating layer 162 may be provided in the same layer as the above-mentioned pixel defining layer. Furthermore, the first insulating layer 162 can be formed in the same process step as the aforementioned pixel defining layer, that is, the same material is used for simultaneous etching. Generally, the pixel defining layer is usually formed of organic materials, for example, organic materials such as polyimide, polyamide, styrene-acrylic cyclobutene, acrylic resin, or phenolic resin, or photoresist. Of course, in other embodiments, the pixel defining layer can also be doped with inorganic materials, such as tin oxide, silicon nitride, and/or tin oxynitride. It can be understood that, in some embodiments, the first insulating layer 162 and the aforementioned pixel defining layer may use different materials, or may be formed in different process steps.
  • FIG. 6 shows a schematic partial top view of the structure of the display panel in another embodiment.
  • the dummy light emitting area between two adjacent effective light emitting areas 14 is in direct contact with the substrate 11 (that is, the dummy light emitting area is not provided with a pixel defining layer). In this way, the edge of the effective light-emitting area 14 that does not contain the pixel defining layer will not be invaded by water and oxygen from the isolation pillar 13.
  • the region of the effective light-emitting region 14 opposite to the spacer 13 to form the spacer groove 101 does not directly contact the pixel defining layer, and the dummy light-emitting region is not provided with the pixel defining layer.
  • none of the effective light-emitting regions 14 is in direct contact with the pixel defining layer in the circumferential direction. That is, in the example shown in FIG. 6, the display area does not contain the pixel defining layer for defining the effective light-emitting region 14.
  • a first insulating layer 162 covering the connection portion 123 of the first electrode 12 may be provided under the isolation pillar 13 and on the substrate 11 to The isolation pillar 13 is etched on the first insulating layer 162 without directly contacting the connection part 123.
  • the first insulating layer 162 includes a plurality of first insulating portions, and the extending direction of each first insulating portion is set to be the same as the extending direction of the isolation column 13, and its length is the same as that of the isolation column 13. The length is the same.
  • the isolation pillar 13 is disposed above the first insulating layer 162.
  • the orthographic projection area of the isolation pillar 13 on the substrate 11 is located inside the orthographic projection area of the first insulating layer 162 on the substrate 11. That is, the orthographic projection area of the isolation pillar 13 on the substrate 11 is completely covered by the orthographic projection area of the first insulating layer 162 on the substrate 11. Specifically, as shown in FIG.
  • the orthographic projection area of the isolation pillar 13 on the substrate 11 is smaller than the orthographic projection area of the first insulating layer 162 on the substrate 11, that is, the first insulating layer 162 is partially exposed to the isolation pillar 13 At the boundary, since the first insulating layer 162 is provided, the luminescent material formed by vapor deposition will contact the first insulating layer 162.
  • the above-mentioned first insulating layer 162 may not be provided under the isolation pillar 13 and the isolation pillar 13 is directly provided on the substrate 11 and the first electrode 12, and then the luminescent material is evaporated on each pixel area. Since the isolation column 13 is in an inverted trapezoid shape, and the dummy light-emitting region is not provided with a pixel defining layer, a spacing groove 101 is formed between the continuous light-emitting material vapor deposited in each pixel region and the bottom of the isolation column 13.
  • first electrode 12 and the second electrode 15 are both strip-shaped (as shown in FIG. 1 and FIG. 2), and their extension directions are substantially perpendicular.
  • FIG. 7 shows a top structural view of the first electrode 12 of the display panel 10 in an embodiment.
  • the size of the connecting portion 123 of the first electrode 12 can be reduced. Specifically, the size of the connecting portion 123 in a direction perpendicular to the extending direction of the first electrode 12 is set to be smaller than the size of the first sub-electrode 121.
  • the first insulating layer 162 only needs to have an area that can cover the connecting portion 123, so the area of the first insulating layer 162 is greatly reduced, and the area of the first insulating layer 162 in contact with the effective light-emitting region 14 is reduced. .
  • the first electrode 12 is an anode
  • the second electrode 15 is a cathode
  • the material of the first electrode 12 is generally a transparent conductive metal oxide.
  • the transparent conductive metal oxide may be indium tin oxide (Indium Tin Oxide, ITO), indium zinc oxide (Indium Zinc Oxide, IZO), aluminum doped zinc oxide, or silver doped indium tin oxide (Ag +ITO) and at least one of silver-doped indium zinc oxide (Ag+IZO).
  • the transparent metal oxide material is preferably indium tin oxide.
  • the transparent metal oxide is made of aluminum-doped zinc oxide, silver-doped ITO, or silver-doped IZO.
  • the material of the second electrode 15 generally selects a conductive film layer with low resistivity, which can be a metal layer, such as a metal aluminum layer, a magnesium-silver alloy film layer, etc., with a low resistivity, which can improve the current carrying capacity and meet the requirements The requirement of resistivity guarantees the display effect.
  • the size of the connecting portion 123 in a direction perpendicular to the extending direction of the first electrode 12 is controlled to be greater than or equal to 8 microns. In a specific example, the size of the connecting portion 123 in a direction perpendicular to the extending direction of the first electrode 12 is 10 microns.
  • all the connecting portions 123 in the same first electrode 12 are located on the same straight line.
  • the display panel 10 further includes an auxiliary wiring portion 125, and the auxiliary wiring portion 125 may be provided above the connecting portion 123 and below the isolation column 13. Further, the auxiliary wiring portion 125 and the connecting portion 123 have the same size in a direction perpendicular to the extending direction of the first electrode 12. The size of the auxiliary wiring portion 125 in the extending direction of the first electrode 12 is slightly smaller than the size of the connecting portion 123 in the extending direction of the first electrode 12, so that the first insulating layer 162 can completely cover the connecting portion 123 without affecting effective light emission. District 14.
  • the distance between the auxiliary wiring portion 125 and the adjacent effective light-emitting area 14 (or the first sub-electrode 121) in the extending direction of the first electrode 12 is not less than 4 microns.
  • the material of the auxiliary wiring portion 125 may be metal, such as a molybdenum aluminum molybdenum electrode, which has good conductivity.
  • FIG. 8 shows a partial top view of the structure of the display panel 10 in another embodiment, which is different from the embodiment shown in FIG. 6 only in the structure of the first insulating layer.
  • the first insulating layer 162 includes a plurality of second insulating parts. Each second insulating portion covers an auxiliary wiring portion 125 correspondingly. The area of each second insulating portion is greater than or equal to the area of the auxiliary wiring portion 125, so that the auxiliary wiring portion 125 can be covered by the second insulating portion to prevent the auxiliary wiring portion 125 from being oxidized. Further, the minimum dimension of the area where the second insulating portion exceeds the auxiliary wiring portion 125 is 2 microns.
  • the shape of the second insulating part is set to be circular.
  • the luminescent material in the dummy luminescent region is in direct contact with the substrate 11, the second insulating portion of the first insulating layer 162 is only provided corresponding to the connecting portion 123 of the first electrode 12, and the isolation pillar 13 is directly provided.
  • the substrate 11 and the second insulating portion This greatly reduces the area of the second insulating part, thereby greatly reducing the contact between the effective light-emitting area 14 and the second insulating part, so that the water and oxygen in the isolation column 13 can be prevented to a large extent from being conducted to the second insulating part through the second insulating part.
  • Effective luminous area 14 is effective luminous area 14.
  • FIG. 9 shows a schematic diagram of the structure of the second insulating layer 163 in the non-display area in an embodiment of the display panel 10.
  • the display panel 10 further includes a non-display area outside the display area, and the display panel 10 may include a second insulating layer 163 in the non-display area, that is, a pixel defining layer or a first insulating layer is formed in the display area.
  • the second insulating layer 163 may be simultaneously formed in the non-display area.
  • the second insulating layer 163 needs to be reserved on the substrate 11, and then the The second electrode 15 and the wiring of the second electrode 15 are formed on the two insulating layers 163. Or, the second insulating layer 163 is reserved in the circuit area of the non-display area around the display area that needs to be protected.
  • the patterning steps of the pixel defining layer, the first insulating layer 162, and the second insulating layer 163 can all be performed after the first electrode 12 is formed. And it is performed before the effective light emitting area 14 is formed by vapor deposition.
  • the display panel 10 may further include an encapsulation structure, which is disposed on the second electrode 15 for encapsulating the effective light-emitting area 14.
  • the packaging structure is provided on the display area and part of the non-display area for packaging the display area.
  • the packaging structure can block air and water vapor for the effective light-emitting area 14 so as to ensure the reliability of the display panel 10.
  • the packaging structure includes but is not limited to glass glue packaging and thin film packaging, which is not limited here.
  • an embodiment of the present application further provides a display device, which includes the display panel in the foregoing embodiment.
  • the display device can be any product or component with a fingerprint recognition function, such as a mobile phone, a tablet computer, a TV, a monitor, a notebook computer, a digital photo frame, a vehicle-mounted device, a wearable device, or an Internet of Things device.
  • a fingerprint recognition function such as a mobile phone, a tablet computer, a TV, a monitor, a notebook computer, a digital photo frame, a vehicle-mounted device, a wearable device, or an Internet of Things device.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板,包括衬底(11)、多个第一电极(12)、多个隔离柱(13)及多个像素区;多个第一电极(12)彼此间隔设置;各隔离柱(13)的延伸方向与第一电极(12)的延伸方向相交,所述多个隔离柱(13)设于第一电极(12)上,以将第一电极(12)分隔成多个第一子电极(121);每一像素区位于相邻两个隔离柱(13)之间,所述像素区包括与第一子电极(121)一一对应的多个有效发光区(14);有效发光区(14)与隔离柱(13)之间,和同一像素区内相邻的两个有效发光区(14)之间,至少一个位置处具有间隔槽(101)。

Description

显示面板及显示装置
相关申请的交叉引用
本申请要求于2019年5月31日提交中国专利局,申请号为201910472136.5,申请名称为“显示面板及显示装置”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及显示技术领域,特别是涉及一种显示面板及显示装置。
背景技术
近年来,随着社会的发展与科技的进步,智能终端设备和可穿戴设备的技术发展日新月异,对于平板显示的要求也逐渐提高,需求也越来越多样化。有机发光二极管(Organic Light-Emitting Diode,OLED)显示面板与液晶显示器相比,在功耗更低的同时具有更高的亮度与响应速度,并且具有可弯曲、柔韧性佳的优点,因此被越来越广泛地应用于手机、平板电脑甚至电视等智能终端产品中,成为了显示领域的主流显示器。然而OLED显示面板的使用寿命一直是制约其发展的重要因素。
发明内容
基于此,有必要针对目前的显示面板使用寿命较低的问题,提供一种改善上述问题的显示面板及显示装置。
根据本申请的一个方面,提供一种显示面板,包括:
衬底;
多个第一电极,设于所述衬底上,所述多个第一电极彼此间隔设置;
多个隔离柱,彼此间隔设置;所述多个隔离柱设于所述第一电极上,且所述隔离柱的延伸方向与所述第一电极的延伸方向相交,以将所述第一电极分隔成多个第一子电极;
多个像素区,每一所述像素区位于相邻两个所述隔离柱之间,所述像素区包括与所述第一子电极一一对应的多个有效发光区;
其中,所述有效发光区与所述隔离柱之间,和同一像素区内相邻的两个所述有效发光区之间,至少一个位置处具有间隔槽。
该显示面板中的有效发光区与隔离柱之间和同一像素区内相邻的两个有效发光区之间至少一个位置处具有间隔槽,如此通过该间隔槽能够断开相关技术的显示区域导水氧较 快的像素限定层和隔离柱向有效发光区传导水氧,隔离柱中储存的水氧可优先被干燥剂或干燥片吸收,故而有效地防止了隔离柱中的水氧通过像素限定层传导至有效发光区进而导致有效发光区缩小或不显示的问题,进而提升了显示面板的可靠性和使用寿命。
进一步地,有效发光区的周向可均不含有像素限定层,进而完全避免隔离柱与像素限定层或绝缘层接触进而导致水氧导通至有效发光区致使有效发光区缩小或不显示的问题。
根据本申请的另一方面,提供一种显示面板,包括:
衬底;
多个第一电极,设于所述衬底上,所述多个第一电极彼此间隔设置;
多个隔离柱,多个所述隔离柱设于所述第一电极上,且所述隔离柱的延伸方向与所述第一电极的延伸方向相交,以将所述第一电极分隔成多个第一子电极;
多个像素区,每个所述像素区位于相邻两个所述隔离柱之间,所述像素区包括与所述第一子电极一一对应的多个有效发光区和位于相邻的两个所述有效发光区之间的虚设发光区;
其中,所述虚设发光区的发光材料与所述衬底直接接触。
该显示面板,将相关技术的对应同一像素区内的相邻两个有效发光区之间的像素限定层去除,使得位于虚设发光区的发光材料与衬底直接接触,同一像素区内的相邻两个有效发光区之间不含有像素限定层,如此有效发光区不含有像素限定层的边缘不会受到来自隔离柱的水氧入侵,进而在一定程度上减少了隔离柱中储存的水氧对于有效发光区的影响,可有效地阻止隔离柱中的水氧通过像素限定层传导至有效发光区,故而有效地避免了有效发光区缩小或不显示的问题,进而提升了显示面板的可靠性和使用寿命。
根据本申请的另一方面,提供一种显示装置,包括上述所述显示面板。
附图说明
图1为一实施例中的显示面板的局部结构示意图;
图2为图1中的显示面板的第一电极的俯视结构示意图;
图3为图1中的显示面板的第一电极及隔离柱的俯视结构示意图;
图4为又一实施例中的显示面板的局部结构示意图;
图5为又一实施例中的显示面板的局部结构示意图;
图6为又一实施例中的显示面板的局部俯视结构图;
图7为一实施例中的显示面板的第一电极的俯视结构图;
图8为又一实施例中的显示面板的局部俯视结构图;
图9示出了显示面板的一实施例中的非显示区域的第二绝缘层。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在描述位置关系时,除非另有规定,否则当一元件例如层、膜或显示基板被指为在另一膜层“上”时,其能直接在其他膜层上或亦可存在中间膜层。进一步说,当层被指为在另一层“下”时,其可直接在下方,亦可存在一或多个中间层。亦可以理解的是,当层被指为在两层“之间”时,其可为两层之间的唯一层,或亦可存在一或多个中间层。
在使用本文中描述的“包括”、“具有”、和“包含”的情况下,除非使用了明确的限定用语,例如“仅”、“由……组成”等,否则还可以添加另一部件。除非相反地提及,否则单数形式的术语可以包括复数形式,并不能理解为其数量为一个。
应当理解,尽管本文可以使用术语“第一”、“第二”等来描述各种元件,但是这些元件不应受这些术语的限制。这些术语仅用于将一个元件和另一个元件区分开。例如,在不脱离本申请的范围的情况下,第一元件可以被称为第二元件,并且类似地,第二元件可以被称为第一元件。
还应当理解的是,在解释元件时,尽管没有明确描述,但元件解释为包括误差范围,该误差范围应当由本领域技术人员所确定的特定值可接受的偏差范围内。例如,“大约”、“近似”或“基本上”可以意味着一个或多个标准偏差内,在此不作限定。
此外,在说明书中,短语“平面示意图”是指当从上方观察目标部分时的附图,短语“截面示意图”是指从侧面观察通过竖直地切割目标部分截取的剖面时的附图。
此外,附图并不是1∶1的比例绘制,并且各元件的相对尺寸在附图中仅以示例地绘制,而不一定按照真实比例绘制。
在对本申请进行详细说明之前,首先对本申请中的一些内容进行解释,以便于更清楚地理解本申请的技术方案。
显示区域/非显示区域:显示面板包括用于形成发光元件的有源区域,以及用于为显示提供信号线路的走线等不允许被切掉的周围区域。例如,一个显示面板,可以包括后续用于形成发光元件的显示区域AA(Active Area,AA),还可以包括后续用于显示面板的非显示区域(包括设置驱动电路、芯片的区域)。
下方/上方:是以显示面板的衬底为底来说的,例如,子像素位于衬底的上方,又例如子像素位于封装结构的下方。
以OLED中的子像素为有机发光功能材料为例,其中的有机发光功能材料对于水氧具有很强的敏感性,故而一旦水氧进入到有机发光功能材料区域,将导致显示区域的有机发光功能材料失效,进而引起显示区域的像素点出现缩小或不显示的问题,从而严重影响了OLED的使用寿命。
进一步地,以相关技术的OLED显示面板为例,OLED显示面板的显示区域的子像素均通过像素限定层来限定,以有效分隔各子像素。通常地,在像素限定层上还设有隔离柱,其可起到支撑作用,例如支撑玻璃盖板;还可起到隔离顶电极的作用,例如采用倒梯形结构的隔离柱,以使顶电极分隔成多个独立的部分,例如被动矩阵有机电激发光二极管(PMOLED,Passive matrix organic light-emitting diode)。
在一实施例中,上述显示面板10为PMOLED。PMOLED屏无TFT背板,使得光线透过率高,因此透明显示可以采用高透明度的PMOLED显示屏。可理解,本申请中的显示面板10并不限于PMOLED,也可用于具有TFT背板的一些主动矩阵有机电激发光二极管(AMOLED,Active-matrix organic light-emitting diode)。
此外,还需要说明的是,一般地,PMOLED屏的阳极和阴极一般为条状,多条阳极和多条阴极纵横交错,而在多条阳极和多条阴极重叠的位置则通过像素限定层限定出一个子像素区,进而在子像素区形成一个子像素。基于此,PMOLED屏的像素排布结构一般为相关技术的real RGB结构,即红、绿、蓝子像素在第一方向依次交替排布,而在与第一方向垂直的第二方向上,各子像素的颜色相同。
研究发现,隔离柱设于像素限定层上且很容易储存水氧,故而隔离柱中的水氧可通过直接接触的像素限定层,传到像素限定层内的子像素上,加速子像素的有机发光功能材料失效,进而导致显示区的像素点出现缩小或不显示的问题,从而严重影响了OLED显示面板的使用寿命,降低了显示面板的可靠性。
需要说明的是,本文中的像素限定层是指与子像素(本文中的有效发光区)直接接触并限定子像素的结构层。
为解决上述问题,本申请一实施方式提供了一种显示面板,能够较佳地解决上述问题。下文将结合该显示面板的制备方法对其结构进行详细的介绍。
请参阅图1,显示面板10具有显示区域,其在显示区域包括衬底11、多个第一电极12、多个隔离柱13及多个像素区。
衬底11可以由诸如玻璃材料、金属材料或包括聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,简称PET)、聚萘二甲酸乙二醇酯(Polyethylene Naphthalate,简称PEN)或聚酰亚胺(Polyimide,简称PI)等塑胶材料中合适的材料形成。在一些实施例中,衬底11采用柔性材料制成柔性衬底11,柔性材料例如为聚酰亚胺PI聚合物,聚碳酸酯PC(Polycarbonate,简称PC)树脂,也称为PC塑料,聚对苯二甲酸PET塑料等。
请参阅图1及图2,多个第一电极12设于衬底11上。多个第一电极12彼此间隔设置。进一步地,第一电极12为条状。
图1为一实施例的显示面板的局部结构示意图,仅示出了具有一个隔离柱13的部分显示面板。图3为俯视示意图,示出了一实施例中显示面板中多个隔离柱13和多个第一电极12的排布。请参阅图1及图3,各隔离柱13的延伸方向与第一电极12的延伸方向相交,多个隔离柱13设于衬底11及第一电极12上,以将各第一电极12分隔成沿第一电极12的延伸方向排布的多个第一子电极121。
相邻两个隔离柱13之间形成一个像素区,即每一像素区位于相邻两个隔离柱13之间。每个像素区包括与第一子电极121一一对应的多个有效发光区14。有效发光区14中包含有发光材料。也就是说,一个有效发光区14即为一个子像素,即多个子像素一一对应设于多个第一子电极121上。
其中,参见图1,有效发光区14与隔离柱13之间具有间隔槽101。如此通过该间隔槽101断开显示区域导水氧较快的像素限定层和隔离柱13向有效发光区14传导水氧,隔离柱13中储存的水氧可优先被干燥剂或干燥片吸收,故而有效地防止了隔离柱13中的水氧通过像素限定层传导至有效发光区14,进而避免了导致像素点缩小或不显示的问题,进而提升了显示面板10的可靠性和使用寿命。
在一实施例中,同一像素区内相邻的两个有效发光区14之间也具有间隔槽。两个有效发光区14之间的间隔槽可以阻断水氧在有效发光区14之间的传递。两个有效发光区14之间通过间隔槽而非像素限定层间隔,避免像素限定层将隔离柱13的水氧传导至有效发 光区14,进而避免了导致像素点缩小或不显示的问题,进而提升了显示面板10的可靠性和使用寿命。
可以理解,有效发光区14与隔离柱13之间具有间隔槽101的方案和同一像素区内相邻的两个有效发光区14之间具有间隔槽的方案可以选择其一,也可以相互组合。
进一步地,有效发光区14的周向可完全不含有像素限定层,即有效发光区14的周向完全不直接接触有像素限定层,进而完全避免相关技术的显示区域导水氧较快的像素限定层和隔离柱向有效发光区14传导水氧,防止水氧导通至有效发光区14致使有效发光区14缩小或不显示的问题。
进一步地,隔离柱13在垂直于衬底11且垂直于隔离柱13的延伸方向上的截面形状为倒梯形。如此通过隔离柱13将各有效发光区14限定至各像素区,通过隔离柱13和第一电极12的共同作用将各像素区的第一电极12限定为与各有效发光区14一一对应的第一子电极121,可实现隔离柱13及第一电极12直接分割像素点。
可理解,隔离柱13的该截面形状并不限于严格的倒梯形结构,只要是隔离柱的下表面在衬底11上的投影区域位于隔离柱13的上表面在衬底11上的投影区域内且小于隔离柱13的上表面在衬底11上的投影即可,该倒梯形结构的隔离柱13的两侧壁为平面还是曲面均不做限定。
在一个实施例中,请参阅图3,在各像素区蒸镀形成连续的发光材料,由于隔离柱13和第一电极12的分割作用,同一像素区内的相邻两个有效发光区14之间不含有像素限定层,相邻两个有效发光区14之间被发光材料覆盖直接设于衬底上,而这些发光材料不能够有效发光,即为虚设发光区。即:每个像素区除了包括与第一子电极121一一对应的多个的有效发光区14,还包括位于相邻的两个有效发光区14之间的虚设发光区;其中,虚设发光区中的发光材料与衬底11直接接触。
如此将相关技术的对应同一像素区内的相邻两个有效发光区14之间的像素限定层去除,位于虚设发光区的发光材料与衬底11直接接触,使得同一像素区内的相邻两个有效发光区14之间不含有像素限定层,如此有效发光区14不含有像素限定层的边缘不会受到来自隔离柱13的水氧入侵,进而在一定程度上减少了隔离柱13中储存的水氧对于有效发光区14的影响,可有效地阻止隔离柱13中的水氧通过像素限定层传导至有效发光区14,故而有效地避免了像素点缩小或不显示的问题,进而提升了显示面板10的可靠性和使用寿命。
可理解,形成间隔槽101的方案和位于虚设发光区的发光材料与衬底11直接接触的方 案,可以择一选择,也可以相互组合。其中,该间隔槽101的底壁及侧部均不含有连接有效发光区14和隔离柱13的像素限定层。
一方面,由于有效发光区14与隔离柱13之间和/或同一像素区内相邻的两个有效发光区14之间具有间隔槽101,和/或位于虚设发光区的发光材料与衬底直接接触,故而可减少像素限定层的设计余量,且同一像素区的有效发光区14可以采用同一蒸镀开口形成,因此可有效提高像素的开口率,从而提高显示面板10的亮度。
另一方面,通过倒梯形的隔离柱13及第一电极12直接分割像素点,故而使得位于虚设发光区的发光材料与衬底11直接接触,即同一像素区内的相邻两个有效发光区14之间不含有像素限定层。
进一步地,如图1及图3所示,为了避免像素限定层和第一绝缘层162(见图5)导通水氧,显示区域可以完全不含有像素限定层和/或第一绝缘层162。
在一实施例中,显示区域可以完全不含有像素限定层和第一绝缘层162。即,有效发光区14的周围不含有像素限定层,且隔离柱13的下方不含有第一绝缘层162。有效发光区14通过隔离柱13和第一电极12直接分割,位于虚设发光区的发光材料与衬底11直接接触(即虚设发光区不设有像素限定层)。隔离柱13直接设于衬底11及第一电极12上,即与衬底11和第一电极12直接接触。故而可以增加隔离柱13的宽度,提高隔离柱13在衬底11上的粘附力,使其不易脱落。
在一具体示例中,隔离柱13的宽度可为12微米-16微米。进一步地,隔离柱13的宽度可由12微米增加到14微米-16微米。
在一实施例中,隔离柱13的延伸方向与第一电极12的延伸方向相互垂直。
参见图1及图3,显示面板10还包括多个第二电极15。各第二电极15覆盖各像素区中的多个有效发光区14。在有效发光区14上形成第二电极15时,由于隔离柱13的隔离作用,第二电极15的材料被分割,进而形成沿隔离柱13延伸方向设置的多个第二电极15。需要说明的是,像素区蒸镀的发光材料中的与第一电极12和第二电极15同时接触的区域为有效发光区14。
图4示出了又一实施例中的显示面板的局部结构示意图。图5示出了又一实施例中的显示面板的局部结构示意图。
参见图1或图4,在一实施例中,有效发光区14的周向至少部分区域不直接接触像素限定层,有效发光区14的周向的该区域直接与隔离柱13之间形成间隔槽101。
参见图5,在另一实施例中,显示面板10在显示区域具有形成于衬底11上的像素限 定层161。像素限定层161至少设置在有效发光区14和间隔槽101之间。在一实施例中,有效发光区14被该像素限定层161包围。间隔槽101开设于该像素限定层161和隔离柱13之间,或者开设于该像素限定层161和第一绝缘层162之间。在一个实施例中,第一电极12暴露于所述间隔槽101。
需要说明的是,上述两种实施例中,只对有效发光区14周向的部分区域做限制,有效发光区14的周向的不与隔离柱13相对形成间隔槽101的区域不做限制,可以含有像素限定层,也可不含有像素限定层。如若此时,有效发光区14的周向的不与隔离柱13相对的区域也不含有像素限定层,即相当于包含了“位于虚设发光区的发光材料与衬底直接接触”的方案。
在一实施例中,隔离柱13的材质为负性光刻胶。利用负性光刻胶的特性,对负性光刻胶曝光后,由于越底层的负性光刻胶受到的曝光量越少,显影后被溶解掉的也就越多,因此显影后可以自然形成上大下小的倒梯形结构。
需要说明的是,第一电极12还包括位于隔离柱13下方被隔离柱13覆盖的连接部123;多个第一子电极121通过连接部123彼此连接。参见图5和图7,进一步地,为了便于隔离柱13形成倒梯形结构,可在隔离柱13的下方且在衬底11上设有覆盖第一电极12的连接部123的第一绝缘层162,以使隔离柱13刻蚀时在第一绝缘层162上进行而不与连接部123直接接触。第一绝缘层162不能位于间隔槽101内,不能使有效发光区14和隔离柱13相连接。
进一步地,第一绝缘层162可与上述像素限定层同层设置。更进一步地,第一绝缘层162可与上述像素限定层在同一工艺步骤中形成,即采用相同的材质同步刻蚀形成。一般地,像素限定层通常由有机材料形成,例如,聚酰亚胺、聚酰胺、苯丙环丁烯、亚克力树脂或酚醛树脂等有机材料,也可由光刻胶形成。当然,在另外一些实施例中,像素限定层亦可掺杂有无机材料,例如,氧化锡、氮化矽和/或氮氧化锡。可理解,在一些实施例中,第一绝缘层162与上述像素限定层可采用不同的材质,也可在不同工艺步骤中形成。
图6示出了又一实施例中的显示面板的局部俯视结构示意图。
参见图6,相邻的两个有效发光区14之间的虚设发光区与衬底11直接接触(即虚设发光区不设有像素限定层)。如此有效发光区14不含有像素限定层的边缘不会受到来自隔离柱13的水氧入侵。
在一些实施例中,有效发光区14的周向与隔离柱13相对形成间隔槽101的区域不直接接触有像素限定层,且虚设发光区不设有像素限定层。也就是说,有效发光区14的周 向均不直接接触有像素限定层,即在图6所示的示例中,显示区域不含有用于限定有效发光区14的像素限定层。
进一步地,如前所述,为了便于隔离柱13形成倒梯形结构,可在隔离柱13的下方且在衬底11上设有覆盖第一电极12的连接部123的第一绝缘层162,以使隔离柱13刻蚀在第一绝缘层162上进行,而不与连接部123直接接触。
参见图6,在一些实施例中,第一绝缘层162包括多个第一绝缘部,各第一绝缘部的延伸方向设置为与隔离柱13的延伸方向相同,且其长度与隔离柱13的长度相同。隔离柱13设于第一绝缘层162的上方。
具体地,为了便于形成较平整的隔离柱13,优选隔离柱13在衬底11上的正投影区位于第一绝缘层162在衬底11上的正投影区内部。即隔离柱13在衬底11上的正投影区被第一绝缘层162在衬底11上的正投影区完全覆盖。具体如图6所示,隔离柱13在衬底11上的正投影区小于第一绝缘层162在衬底11上的正投影区,即第一绝缘层162会有部分露出于隔离柱13的边界,由于设置了第一绝缘层162,蒸镀形成的发光材料会与第一绝缘层162接触。
可理解,在一实施例中,隔离柱13的下方也可不设置上述第一绝缘层162,隔离柱13直接设于衬底11和第一电极12上,然后在各像素区蒸镀发光材料,由于隔离柱13为倒梯形,且虚设发光区不设有像素限定层,故而各像素区蒸镀形成的连续的发光材料与隔离柱13的底部之间形成间隔槽101。
一般地,第一电极12和第二电极15形状均为条状(如图1和图2所示),且两者的延伸方向基本垂直。
图7示出了一实施例中的显示面板10的第一电极12的俯视结构图。参见图7,为了尽可能地减少发光材料与这部分的第一绝缘层162接触的面积,可减小第一电极12的连接部123的尺寸。具体地,将连接部123在与第一电极12的延伸方向垂直的方向的尺寸设置为小于第一子电极121的尺寸。如此第一绝缘层162只需要具有能够覆盖该连接部123的面积即可,故而大大减小了第一绝缘层162的面积,进而减小了第一绝缘层162与有效发光区14接触的面积。
一般地,第一电极12为阳极,第二电极15为阴极。相应地,第一电极12的材质一般选择透明导电金属氧化物。具体地,透明导电金属氧化物可为氧化铟锡(Indium Tin Oxide,ITO),也可为氧化铟锌(Indium Zinc Oxide,IZO)、铝掺杂氧化锌或者掺杂银的氧化铟锡(Ag+ITO)和掺杂银的氧化铟锌(Ag+IZO)中的至少一种。其中,由于ITO工艺成熟、 成本低,透明金属氧化物材质优选为氧化铟锡。进一步地,为了在保证高透光率的基础上,减小各导电走线的电阻,透明金属氧化物材质采用铝掺杂氧化锌、掺杂银的ITO或者掺杂银的IZO等材料。相应地,第二电极15的材质一般选用低电阻率的导电膜层,可为金属层,例如金属铝层、镁银合金膜层等,其电阻率较低,可以提高电流承载能力,能够满足电阻率的要求,保证显示效果。
为了避免连接部123的电阻过大,连接部123在与第一电极12的延伸方向垂直的方向的尺寸控制为大于或等于8微米。在一具体示例中,连接部123在与第一电极12的延伸方向垂直的方向的该尺寸为10微米。
进一步地,同一第一电极12中的所有连接部123均位于同一直线上。
参见图6,为了进一步降低连接部123的电阻,显示面板10还包括辅助走线部125,可在位于连接部123的上方且位于隔离柱13的下方位置设置辅助走线部125。进一步地,辅助走线部125与连接部123在与第一电极12的延伸方向垂直的方向的尺寸相同。辅助走线部125在第一电极12的延伸方向的尺寸略小于连接部123在第一电极12的延伸方向的尺寸,以使第一绝缘层162能够完全覆盖连接部123而尽量不影响有效发光区14。
进一步地,辅助走线部125与相邻的有效发光区14(或第一子电极121)在第一电极12的延伸方向之间的距离不小于4微米。进一步地,辅助走线部125的材质可为金属,例如钼铝钼电极,其具有良好的导电性。
图8示出了又一实施例中的显示面板10的局部俯视结构图,其与图6所示的实施例的不同之处仅在于第一绝缘层的结构。参见图8,为了进一步地减小该第一绝缘层162的面积,第一绝缘层162包括多个第二绝缘部。每个第二绝缘部对应覆盖一个辅助走线部125。每个第二绝缘部的面积大于或等于辅助走线部125的面积,如此通过第二绝缘部覆盖辅助走线部125,可以防止辅助走线部125被氧化。进一步地,第二绝缘部超出辅助走线部125的区域的最小尺寸为2微米。
为了将该第二绝缘部的面积最小化,第二绝缘部的形状设置为圆形。
具体在如图8的示例中,位于虚设发光区的发光材料与衬底11直接接触,第一绝缘层162的第二绝缘部仅对应第一电极12的连接部123设置,隔离柱13直接设于衬底11和第二绝缘部上。如此大大减少了第二绝缘部的面积,进而大大减少了有效发光区14与第二绝缘部的接触,故而可在很大程度上防止了隔离柱13中的水氧通过第二绝缘部传导至有效发光区14。
图9示出了显示面板10的一实施例中的非显示区域的第二绝缘层163的结构示意图。 参见图9,可理解,显示面板10还包括位于显示区域外侧的非显示区域,显示面板10在非显示区域可以包括第二绝缘层163,即在上述显示区域形成像素限定层或第一绝缘层162的步骤中,可在非显示区域同步形成第二绝缘层163。例如在第二电极15的搭接区,为了使显示区域的第二电极15与非显示区域的第二电极15走线连接,需要在衬底11上保留该第二绝缘层163,然后在第二绝缘层163上形成第二电极15及第二电极15走线。或者在显示区域四周的非显示区域需要保护的线路区域保留第二绝缘层163。
可理解,由于有效发光区14可通过隔离柱13和第一电极12直接分割,故而像素限定层、第一绝缘层162和第二绝缘层163的图案化步骤均可以在形成第一电极12之后、且在有效发光区14蒸镀形成之前执行。
可理解,显示面板10还可包括封装结构,封装结构设于第二电极15上,用于封装有效发光区14。可理解封装结构设于显示区域和部分非显示区域上,以用于封装显示区域。封装结构能够为有效发光区14阻挡空气及水汽,从而保证显示面板10的可靠性。可理解,封装结构包括但不限于玻璃胶封装和薄膜封装,在此不做限制。
基于同一申请构思,本申请实施例还提供一种显示装置,该显示装置包括上述实施例中的显示面板。
该显示装置可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、车载设备、可穿戴设备或物联网设备等任何具有指纹识别功能的产品或部件。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种显示面板,包括:
    衬底;
    多个第一电极,设于所述衬底上,所述多个第一电极彼此间隔设置;
    多个隔离柱,彼此间隔设置;各所述隔离柱的延伸方向与所述第一电极的延伸方向相交,所述多个隔离柱设于所述第一电极上,以将所述第一电极分隔成多个第一子电极;
    多个像素区,每一所述像素区位于相邻两个所述隔离柱之间,所述像素区包括与所述第一子电极一一对应的多个有效发光区;
    其中,所述有效发光区与所述隔离柱之间,和同一像素区内相邻的两个所述有效发光区之间,至少一个位置处具有间隔槽。
  2. 如权利要求1所述的显示面板,其中,所述显示面板包括设于所述衬底上的像素限定层,所述间隔槽开设于所述像素限定层上。
  3. 如权利要求1所述的显示面板,其中,所述第一电极还包括位于所述隔离柱下方被所述隔离柱覆盖的连接部;多个所述第一子电极通过所述连接部彼此连接;
    所述连接部在与所述第一电极的延伸方向垂直的方向上的尺寸小于所述第一子电极的尺寸。
  4. 如权利要求3所述的显示面板,其中,还包括辅助走线部,所述辅助走线部设于所述连接部上且位于所述隔离柱下方。
  5. 如权利要求1~4任一项所述的显示面板,其中,还包括第一绝缘层,所述第一绝缘层设于所述衬底上且位于所述隔离柱的下方。
  6. 如权利要求1~4任一项所述的显示面板,其中,所述显示面板还包括第一绝缘层及辅助走线部,所述第一绝缘层覆盖所述辅助走线部。
  7. 如权利要求5所述的显示面板,其中,所述第一绝缘层包括多个第一绝缘部,各所述第一绝缘部的延伸方向与各所述隔离柱的延伸方向相同,且所述隔离柱在所述衬底上的正投影区位于所述第一绝缘部在所述衬底上的正投影区内。
  8. 如权利要求5所述的显示面板,其中,所述第一绝缘层包括多个第二绝缘部,每个所述第二绝缘部对应覆盖一个所述辅助走线部。
  9. 根据权利要求1所述的显示面板,其中,所述隔离柱与所述衬底和所述第一电极直接接触。
  10. 根据权利要求1所述的显示面板,其中,所述第一电极为条状;各所述隔离柱的延伸方向与所述第一电极的延伸方向垂直。
  11. 根据权利要求1所述的显示面板,还包括多个第二电极;每一第二电极对应覆盖所述像素区中的所述多个有效发光区中的一个有效发光区。
  12. 根据权利要求11所述的显示面板,其中,所述第一电极和第二电极均为条状,且所述第一电极的延伸方向和所述第二电极的延伸方向垂直。
  13. 根据权利要求3所述的显示面板,其中,所述连接部在与所述第一电极的延伸方向垂直的方向的尺寸大于或等于8微米。
  14. 根据权利要求8所述的显示面板,其中,所述第二绝缘部的形状为圆形。
  15. 根据权利要求8所述的显示面板,其中,每个所述第二绝缘部的面积大于或等于所述辅助走线部的面积。
  16. 根据权利要求1所述的显示面板,其中,所述隔离柱在垂直于所述隔离柱的延伸方向上的截面形状为倒梯形。
  17. 一种显示面板,包括:
    衬底;
    多个第一电极,设于所述衬底上,所述多个第一电极彼此间隔设置;
    多个隔离柱,各所述隔离柱的延伸方向与所述第一电极的延伸方向相交,多个所述隔离柱设于所述第一电极上,以将所述第一电极分隔成多个第一子电极;
    多个像素区,每个所述像素区位于相邻两个所述隔离柱之间,所述像素区包括与所述第一子电极一一对应的多个的有效发光区和位于相邻的两个所述有效发光区之间的虚设发光区;
    其中,所述虚设发光区的发光材料与所述衬底直接接触。
  18. 根据权利要求17所述的显示面板,其中,所述第一电极为条状;各所述隔离柱的延伸方向与所述第一电极的延伸方向垂直。
  19. 根据权利要求17所述的显示面板,其中,所述隔离柱直接设于所述衬底及第一电极上,与所述衬底和所述第一电极直接接触。
  20. 一种显示装置,包括如权利要求1-4任一项所述的显示面板。
PCT/CN2019/115805 2019-05-31 2019-11-05 显示面板及显示装置 WO2020238024A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910472136.5 2019-05-31
CN201910472136.5A CN110137378B (zh) 2019-05-31 2019-05-31 显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2020238024A1 true WO2020238024A1 (zh) 2020-12-03

Family

ID=67579669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115805 WO2020238024A1 (zh) 2019-05-31 2019-11-05 显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN110137378B (zh)
WO (1) WO2020238024A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113157150A (zh) * 2021-03-19 2021-07-23 武汉华星光电半导体显示技术有限公司 一种触控模组及显示装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110137378B (zh) * 2019-05-31 2020-09-22 昆山维信诺科技有限公司 显示面板及显示装置
CN111276415B (zh) * 2020-02-18 2023-11-07 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN114628448A (zh) * 2021-11-30 2022-06-14 京东方科技集团股份有限公司 显示基板及其制作方法和显示装置
CN116209312A (zh) * 2021-11-30 2023-06-02 京东方科技集团股份有限公司 显示基板及其制作方法和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5952037A (en) * 1995-03-13 1999-09-14 Pioneer Electronic Corporation Organic electroluminescent display panel and method for manufacturing the same
US6320312B1 (en) * 1998-07-20 2001-11-20 Lg Electronics Inc. Organic electroluminescent display panel with first and second bus electrodes and electrically insulating layers
JP2004303699A (ja) * 2003-04-01 2004-10-28 Seiko Epson Corp 有機el装置及びその製造方法並びに電子機器
CN101296539A (zh) * 2007-04-25 2008-10-29 精工爱普生株式会社 有机场致发光装置
CN110137378A (zh) * 2019-05-31 2019-08-16 昆山维信诺科技有限公司 显示面板及显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3886219B2 (ja) * 1997-07-29 2007-02-28 株式会社アルバック 有機el素子
JP4578032B2 (ja) * 2001-08-22 2010-11-10 大日本印刷株式会社 エレクトロルミネッセント素子の製造方法
JP2003249363A (ja) * 2002-02-22 2003-09-05 Dainippon Printing Co Ltd 有機エレクトロルミネッセント画像表示装置およびその製造方法
JP3864805B2 (ja) * 2002-02-26 2007-01-10 株式会社豊田自動織機 有機elディスプレイパネルの製造方法
CN109004106A (zh) * 2018-08-02 2018-12-14 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5952037A (en) * 1995-03-13 1999-09-14 Pioneer Electronic Corporation Organic electroluminescent display panel and method for manufacturing the same
US6320312B1 (en) * 1998-07-20 2001-11-20 Lg Electronics Inc. Organic electroluminescent display panel with first and second bus electrodes and electrically insulating layers
JP2004303699A (ja) * 2003-04-01 2004-10-28 Seiko Epson Corp 有機el装置及びその製造方法並びに電子機器
CN101296539A (zh) * 2007-04-25 2008-10-29 精工爱普生株式会社 有机场致发光装置
CN110137378A (zh) * 2019-05-31 2019-08-16 昆山维信诺科技有限公司 显示面板及显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113157150A (zh) * 2021-03-19 2021-07-23 武汉华星光电半导体显示技术有限公司 一种触控模组及显示装置
CN113157150B (zh) * 2021-03-19 2023-07-25 武汉华星光电半导体显示技术有限公司 一种触控模组及显示装置

Also Published As

Publication number Publication date
CN110137378B (zh) 2020-09-22
CN110137378A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
WO2020238024A1 (zh) 显示面板及显示装置
US11844239B2 (en) Display substrate and preparation method thereof, and display apparatus
US20220093894A1 (en) Display panel, method for manufacturing same, and display device
WO2022057491A1 (zh) 显示基板及其制备方法、显示装置
US20170338293A1 (en) Array Substrate and Method for Fabricating the Same, and Display Apparatus
US8274219B2 (en) Electro-luminescent display panel including a plurality of island patterns serving as an encapsulation film
US11910691B2 (en) Display panel, manufacturing method thereof, and display device
US11785821B2 (en) Display substrate and related device
US10937998B1 (en) Display panel and method for preparing the same, and display device
CN107302016B (zh) 一种有机发光二极管显示面板及其制作方法
US11527735B2 (en) Flexible display panel with connecting portion and flexible bridging portion, method for manufacturing the same and display device
KR102542177B1 (ko) 유기 발광 표시 장치 및 이를 구비한 전자 기기
WO2021088832A1 (zh) 电子设备、显示装置、显示基板及其制造方法
US20220328579A1 (en) Display substrate and display device
WO2021164602A1 (zh) 显示基板及其制备方法、显示装置
WO2022001405A1 (zh) 显示基板及其制备方法、显示装置
WO2021083226A1 (zh) 一种显示基板及其制作方法、显示装置
US20190237695A1 (en) Oled display panel, display device and manufacturing method of oled display panel
CN101513121B (zh) 有机发光显示器
WO2021207930A1 (zh) 显示基板及显示装置
KR20240035624A (ko) 표시 패널, 표시 패널의 제조 방법 및 표시 장치
US10777618B2 (en) Transparent display panel, fabricating method for the same, and display device
CN109461834B (zh) 发光显示器件及其制作方法、电子设备
KR20210126187A (ko) 표시 장치 및 표시 장치의 제조 방법
WO2023141836A1 (zh) 触控结构、触控显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931078

Country of ref document: EP

Kind code of ref document: A1