WO2020235006A1 - 制振部材用熱可塑性エラストマー組成物 - Google Patents
制振部材用熱可塑性エラストマー組成物 Download PDFInfo
- Publication number
- WO2020235006A1 WO2020235006A1 PCT/JP2019/020135 JP2019020135W WO2020235006A1 WO 2020235006 A1 WO2020235006 A1 WO 2020235006A1 JP 2019020135 W JP2019020135 W JP 2019020135W WO 2020235006 A1 WO2020235006 A1 WO 2020235006A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- styrene
- mass
- polymer block
- hydrogenated
- elastomer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/13—Phenols; Phenolates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/17—Amines; Quaternary ammonium compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L53/02—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C08L71/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
- C08L71/12—Polyphenylene oxides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
Definitions
- the present invention relates to a thermoplastic elastomer composition for a vibration damping member applied to noise and vibration countermeasures for home appliances, automobile parts, sporting goods, etc., a vibration damping member using the thermoplastic elastomer composition, and a rotor for an electric motor. ..
- vibration damping members include, for example, bearings installed to support the rotating shafts of electric motors and power transmission members in electrical equipment such as air conditioners, heat pump water heaters, and air purifiers.
- electrical equipment such as air conditioners, heat pump water heaters, and air purifiers.
- the sound and vibration generated by the electric motor are generated by fitting the anti-vibration rubber between the rotating shaft and the outer core having a permanent magnet, ferrite magnet, electromagnetic steel plate, etc. It is known to prevent deterioration of the entire device due to vibration as well as to suppress and pursue quietness.
- Patent Document 1 discloses that, instead of fitting rubber into the rotor of an electric motor, the core and the vibration isolator can be integrally molded using an elastomer to prevent the vibration isolator from slipping or coming off. ..
- Styrene-isoprene-styrene block copolymers, styrene-isoprene-butadiene-styrene block copolymers, and hydrogenated additives thereof are known as thermoplastic elastomers having high vibration damping performance, but these are vulcanized rubbers. Although it is superior in vibration damping performance, it has a problem that the compression set is large. If the compression set of the damping material used for the bearing is large, the support position of the rotating shaft and the position of the outer core of the rotor will fluctuate over time, resulting in poor engagement with the rotation transmission component or rotation. Improvement is necessary because there is a risk of contact between the child and the case.
- Patent Document 2 contains a polyphenylene ether-based resin, a conjugated diene-alkenyl aromatic copolymer, and a polystyrene-based resin, and is a thermoplastic resin having excellent dimensional accuracy and dimensional stability and excellent vibration damping properties.
- the polyphenylene ether-based resin itself does not have satisfactory vibration damping performance. Therefore, in order to improve the vibration damping performance, a specific conjugated diene-alkenyl aromatic copolymer is used. It has been suggested that it should be used in combination.
- a fibrous filler such as glass fiber and a scaly filler such as mica and talc are mentioned.
- Patent Document 1 when an elastomer is integrally molded on a rotor having a complicated shape, if the filling property is poor, voids may occur and the weight balance of the rotor may be lost. Therefore, the elastomer used has high moldability. Although it is necessary, Patent Document 1 does not disclose what kind of elastomer should be used as an elastomer having both vibration damping properties and moldability.
- the needle-shaped or layered filler described in Patent Document 2 has long been known to be preferable as a damping material, and is sometimes collectively referred to as a damping filler, but on the other hand.
- the moldability of the thermoplastic composition tends to decrease by blending the filler.
- thermoplastic elastomer composition a thermoplastic elastomer composition having excellent vibration damping properties is known, and a vibration damping filler that improves vibration damping properties is also known, but further moldability and compression resistance permanent strain are known.
- the problem has not been sufficiently solved for applications that require sex, and a solution is required.
- An object of the present invention is a thermoplastic elastomer composition for a vibration damping member, which is excellent in compression set resistance and moldability as well as vibration damping, a vibration damping member using the thermoplastic elastomer composition, and a rotor for an electric motor. Is to provide.
- the amount of 1,2-vinyl bond of the conjugated diene compound polymer block (B2) is less than 50% by mass, and the weight ratio of hydrogenated thermoplastic styrene-based elastomer B is 5/95 to 55/45 (hydrogenated heat).
- thermoplastic elastomer composition for a vibration damping member which contains 10 to 200 parts by mass of a rubber softener, 50 to 1000 parts by mass of a heavy calcium carbonate, and an A hardness of 50 or less.
- thermoplastic elastomer composition according to [1] above wherein the volume-based median diameter of heavy calcium carbonate is 0.5 to 10 ⁇ m and the specific surface area is 0.3 to 3.0 m2 / g.
- thermoplastic elastomer composition according to any one of [1] to [3] above, which further contains polypropylene.
- a rotation damping member for an electric motor which is a molded body of the thermoplastic elastomer composition according to any one of [1] to [4] above, and [6] a vibration damping member according to [5] above. Regarding the child.
- thermoplastic elastomer composition of the present invention has the effect of being excellent in damping properties, compression set resistance and moldability as a damping member.
- thermoplastic elastomer composition of the present invention A hydrogenated block copolymer composed of a styrene-based polymer block (S1) and a conjugated diene compound polymer block (B1), and having a weight average molecular weight of 1,2- of the conjugated diene compound polymer block (B1).
- the hydrogenated thermoplastic styrene-based elastomer B in which the 1,2-vinyl bond amount of the conjugated diene compound polymer block (B2) is less than 50% by mass, and It contains a polyphenylene ether resin, a softening agent for rubber, and heavy calcium carbonate.
- thermoplastic elastomer The peculiar property of the thermoplastic elastomer is derived from the structure in which it is separated into a soft segment (soft phase) composed of a soft rubber component and a hard segment (hard phase) composed of a hard resin component. Then, the softening agent for rubber is held in the soft segment portion, and is further held according to the length of the soft segment portion.
- the hydrogenated thermoplastic styrene-based elastomer A has a 1,2-vinyl bond amount of 50% by mass or more and has good vibration damping properties, but when only the hydrogenated thermoplastic styrene-based elastomer A is used, there are many branches. In the molecular chain, the length of the soft segment portion is shortened, which makes it difficult for the rubber softener to be retained, and the composition may become sticky. Therefore, the composition of the present invention contains a hydrogenated thermoplastic styrene-based elastomer B having a 1,2-vinyl bond amount of less than 50% by mass.
- the hydrogenated thermoplastic styrene-based elastomer B Since the hydrogenated thermoplastic styrene-based elastomer B has a long molecular chain with few branches, the length of the soft segment portion becomes long, and the softening agent for rubber is easily retained.
- the combined use of the hydrogenated thermoplastic styrene elastomer A and the hydrogenated thermoplastic styrene elastomer B improves the vibration damping property and the improvement of stickiness.
- the 1,2-vinyl bond amount means the total amount of the 1,2-vinyl bond amount and the 3,4-vinyl bond amount.
- the conjugated diene compound polymer block (B1) has a polybutadiene unit
- the 1,2-vinyl bond unit and the 3,4-vinyl bond unit have the same structure, so the difference in effect due to the difference in structure is ignored.
- each of the binding units has more side chains than the 1,4-vinyl binding unit, a vibration damping effect appears.
- the conjugated diene compound polymer block (B1) has an isoprene unit, there is a difference in the shape of the side chain between the 1,2-vinyl bond unit and the 3,4-vinyl bond unit, and the 3,4-vinyl bond is formed. Since the side chain is bulkier, the vibration damping effect is greater.
- the total amount of 1,2-vinyl bond and 3,4-vinyl bond is larger than that of 1,4-vinyl bond, and further 1, Of the total of the 2-vinyl bond amount and the 3,4-vinyl bond amount, the one having a large 3,4-vinyl bond amount is preferable.
- the present invention has a major feature in that it contains heavy calcium carbonate.
- Calcium carbonate generally used as a filler is natural calcium carbonate (heavy calcium carbonate), which is obtained by mechanically crushing and classifying limestone, and synthetic calcium carbonate (light), which is chemically synthesized by dissolving limestone in a raw material.
- Calcium carbonate is roughly divided into two types. Since heavy calcium carbonate is a crushed product, it basically has an amorphous crushed shape, and may have various particle sizes and particle size distributions. On the other hand, since light calcium carbonate is precipitated from a solution by a chemical reaction, a product having a certain particle shape is produced by a manufacturing method, and light calcium carbonate having a spindle shape and a major axis on the order of micron and primary particles are produced. It is classified as a cubic colloidal calcium carbonate with a diameter of nano order.
- Light calcium carbonate has been used as a filler for natural rubber for a long time, and it is known that rubber in which light calcium carbonate having a large specific surface area is dispersed with ultrafine particles improves tensile strength. Due to the property of light calcium carbonate that the surface is hydrophilic, it tends to aggregate in non-polar molten resin, and it is necessary to surface-treat it with an organic acid such as stearic acid in order to disperse it in the resin.
- thermoplastic elastomer composition Since the thermoplastic elastomer composition is similar in use and properties to natural rubber, it is often blended with light calcium carbonate for rubber as an additive, but the thermoplastic elastomer composition of the present invention used for a vibration damping member is used. It is not necessary to increase the tensile strength of the product, but on the other hand, it was found that the moldability and compression resistance to permanent strain deteriorate when light calcium carbonate is added, and heavy calcium carbonate having a specific particle size is used. By blending, these problems were solved.
- the hydrogenated thermoplastic styrene-based elastomer A is composed of a styrene-based polymer block (S1) and a conjugated diene compound polymer block (B1), and the conjugated diene compound polymer block (B1) is a part thereof. Or all are hydrogenated.
- the hydrogenation rate is preferably 80% or more, more preferably 90% or more. In the present invention, the hydrogenation rate is determined by measuring the content of carbon-carbon double bonds derived from the conjugated diene compound in the block copolymer before and after hydrogenation by a 1 H-NMR spectrum. Can be obtained from.
- styrene polymer block (S1) examples include styrene, o-methylstyrene, p-methylstyrene, pt (territory) -butylstyrene, 1,3-dimethylstyrene, ⁇ -methylstyrene, vinylnaphthalene, and vinyl.
- examples thereof include a polymer block of a styrene-based monomer such as anthracene.
- conjugated diene compound polymer block (B1) examples include a polymer block of a conjugated diene compound such as butadiene, isoprene, and 1,3-pentadiene.
- Examples of the hydrogenated thermoplastic styrene-based elastomer A include styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene-ethylene-propylene-styrene block copolymer (SEPS), and styrene-ethylene-ethylene-propylene.
- SEEPS styrene-ethylene-butylene-styrene block copolymer
- SEPS styrene-ethylene-propylene-styrene block copolymer
- SEEPS polystyrene-polyisoprene-polystyrene
- the weight average molecular weight of the hydrogenated thermoplastic styrene elastomer A is preferably 50,000 to 500,000, more preferably 100,000 to 300,000, and further preferably 200,000 to 250,000 from the viewpoint of compression set resistance and moldability.
- the content of the styrene-based monomer in the hydrogenated thermoplastic styrene-based elastomer A is preferably 20% by mass or more, more preferably 20 to 40% by mass.
- the hydrogenated thermoplastic styrene elastomer A is preferably a block copolymer composed of at least two styrene polymer blocks (S1) and at least one conjugated diene compound polymer block (B1).
- the amount of 1,2-vinyl bond of the conjugated diene compound polymer block (B1) in the hydrogenated thermoplastic styrene elastomer A is 50% by mass or more, preferably 50 to 80% by mass.
- Such a hydrogenated thermoplastic styrene-based elastomer A has many branches in the elastomer molecular chain and has a bulky structure. Therefore, when vibration energy is applied to the composition of the present invention, the probability that the molecules collide with each other increases, the vibration energy is efficiently converted into thermal energy, and the composition of the present invention has good vibration damping properties. give.
- the hydrogenated thermoplastic styrene-based elastomer B is a hydrogenated compound of a block copolymer composed of a styrene-based polymer block (S2) and a conjugated diene compound polymer block (B2), and is a conjugated diene compound polymer block (B2). ),
- the amount of 1,2-vinyl bond is less than 50% by mass.
- the hydrogenation rate is preferably 80% or more, more preferably 90% or more. In the present invention, the hydrogenation rate is determined by measuring the content of carbon-carbon double bonds derived from the conjugated diene compound in the block copolymer before and after hydrogenation by a 1 H-NMR spectrum. Can be obtained from.
- the amount of 1,2-vinyl bond of the conjugated diene compound polymer block (B2) is preferably 20 to 45% by mass, more preferably 30 to 40% by mass.
- Examples of the styrene-based polymer block (S2) and the conjugated diene compound polymer block (B2) include the same as the styrene-based polymer block (S1) and the conjugated diene compound polymer block (B1).
- the hydrogenated thermoplastic styrene-based elastomer B for example, a styrene-ethylene-butylene-styrene block copolymer (SEBS), a styrene-ethylene-propylene-styrene block, as in the hydrogenated thermoplastic styrene-based elastomer A.
- SEBS styrene-ethylene-butylene-styrene block copolymer
- SEEPS styrene-ethylene-propylene-styrene block copolymer
- SIS polystyrene-polyisoprene-polystyrene
- the weight average molecular weight of the hydrogenated thermoplastic styrene elastomer B is preferably 50,000 to 500,000, more preferably 150,000 to 450,000, and further preferably 200,000 to 400,000, from the viewpoint of compression set resistance and moldability.
- the content of the styrene-based monomer in the hydrogenated thermoplastic styrene-based elastomer B is preferably 20% by mass or more, more preferably 20 to 40% by mass.
- the hydrogenated thermoplastic styrene-based elastomer B is preferably a block copolymer composed of at least two styrene-based polymer blocks (S2) and at least one conjugated diene compound polymer block (B2).
- the mass ratio of the hydrogenated thermoplastic styrene elastomer A to the hydrogenated thermoplastic styrene elastomer B is 5/95 to 55/45. , Preferably 10/90 to 50/50, more preferably 20/80 to 40/60.
- the total content of the hydrogenated thermoplastic styrene elastomer A and the hydrogenated thermoplastic styrene elastomer B is preferably 10 to 40% by mass, more preferably 15 to 35% by mass in the thermoplastic elastomer composition. ..
- Polyphenylene ether resin is a resin with excellent heat resistance, mechanical strength, insulation, etc. In addition to being used as a heat-resistant resin material by itself, it has good compatibility with styrene-based resin, so the impact resistance of styrene-based resin is good. In the present invention, which is known to be used in combination to improve the properties, it has the effect of reinforcing the association of the styrene blocks of the thermoplastic styrene-based elastomer to improve the heat resistance, and has the effect of compressive permanent strain resistance. There is also an improvement effect.
- the polyphenylene ether resin is not particularly limited, and for example, the formula (A):
- R 1 , R 2 , R 3 , and R 4 are independently hydrogen atom, halogen atom, primary alkyl group having 1 to 7 carbon atoms, and secondary alkyl group having 1 to 7 carbon atoms, respectively.
- Examples thereof include a homopolymer composed of a repeating unit represented by, a copolymer having a repeating unit represented by the formula (A), and the like.
- polyphenylene ether resin known ones can be used without particular limitation.
- specific examples of the polyphenylene ether include poly (2,6-dimethyl-1,4-phenylene ether), poly (2-methyl-6-ethyl-1,4-phenylene ether), and poly (2-methyl-).
- Homopolymers such as 6-phenyl-1,4-phenylene ether), poly (2,6-dichloro-1,4-phenylene ether); 2,6-dimethylphenol and other phenols (eg 2,3) , 6-trimethylphenol, 2-methyl-6-butylphenol, etc.) and other copolymers, among which poly (2,6-dimethyl-1,4-phenylene ether) , 2,6-dimethylphenol and 2,3,6-trimethylphenol are preferred, and poly (2,6-dimethyl-1,4-phenylene ether) is more preferred.
- the method for producing the polyphenylene ether resin is not particularly limited, and a conventionally known method can be used.
- Specific examples of the method for producing polyphenylene ether include US Pat. No. 3,306,874, which is produced by, for example, oxidatively polymerizing 2,6-xylenol using a complex of ferrous salt and amine as a catalyst. Methods described in such documents, US Pat. No. 3,306,875, US Pat. No. 3,257,357, US Pat. No. 3,257,358, Japanese Patent Application Laid-Open No. 52-17880, Japanese Patent Application Laid-Open No. 50-51197, Examples thereof include the methods described in JP-A-63-152628.
- the number average molecular weight of polyphenylene ether is preferably 5,000 to 40,000, more preferably 10,000 to 20,000, from the viewpoint of melt fluidity.
- the polyphenylene ether resin in the present invention may be a modified polyphenylene ether resin.
- the modified polyphenylene ether is not particularly limited, and examples thereof include those obtained by grafting or adding a styrene-based polymer or a derivative thereof to the above-mentioned polyphenylene ether.
- the rate of mass increase due to grafting or addition is not particularly limited, and is preferably 0.01% by mass or more, more preferably 10% by mass or less, and more preferably 7 in the modified polyphenylene ether resin. It is mass% or less, more preferably 5 mass% or less.
- the method for producing the modified polyphenylene ether is not particularly limited, and is, for example, in the presence or absence of a radical generator, in a molten state, a solution state, or a slurry state under the conditions of 80 to 350 ° C.
- a radical generator in a molten state, a solution state, or a slurry state under the conditions of 80 to 350 ° C.
- examples thereof include a method of reacting the polyphenylene ether of the above with a styrene-based polymer or a derivative thereof.
- the content of the polyphenylene ether resin is 10 to 200 parts by mass, preferably 15 to 100 parts by mass, based on 100 parts by mass of the total of the hydrogenated thermoplastic styrene elastomer A and the hydrogenated thermoplastic styrene elastomer B. More preferably, it is 20 to 80 parts by mass.
- the content of the polyphenylene ether resin is preferably 2 to 50% by mass, more preferably 5 to 20% by mass in the thermoplastic elastomer composition.
- softening agent for rubber examples include paraffin-based oil, naphthen-based oil, aromatic-based oil, etc.
- the affinity with the styrene-based block copolymer is good and bleeding is unlikely to occur. From this point of view, at least one selected from paraffinic oil and naphthenic oil is preferable, and paraffinic oil is more preferable.
- Kinematic viscosity at 40 ° C. of softening agent for rubber higher is prevents volatilization during heating and melting, since the bleeding resistance even better, preferably 30 mm 2 / s or more, more preferably 60 mm 2 / s or more , More preferably 80 mm 2 / s or more, further preferably 150 mm 2 / s or more, and lower is preferably 500 mm 2 / s or less, more preferably 450 mm 2 / s or less because lower is easier to handle. , More preferably 400 mm 2 / s or less.
- the content of the softener for rubber if the amount of the softener is too small, the flexibility of the composition is lowered and the vibration damping performance is lowered. Also, if too much softener is used, oil bleeding is likely to occur.
- the content of the softening agent is 50 to 1000 parts by mass, preferably 60 to 1000 parts by mass with respect to 100 parts by mass in total of the hydrogenated thermoplastic styrene elastomer A and the hydrogenated thermoplastic styrene elastomer B. It is 300 parts by mass, more preferably 70 to 200 parts by mass.
- the content of the softening agent for rubber is preferably 5 to 60% by mass, more preferably 20 to 50% by mass in the thermoplastic elastomer composition.
- the heavy calcium carbonate in the present invention preferably has a larger particle size and a smaller specific surface area than light calcium carbonate, that is, a low proportion of fine particles. It is unexpected that the heavy calcium carbonate preferably used in the present invention has excellent melt fluidity when made into a composition, does not easily affect the hardness of the composition, and has excellent compression-resistant permanent strain resistance of the molded product. Demonstrate the characteristics of. The reason for this is that while the melt viscosity of the composition is low due to its non-porous shape and low content of fine particles, it has an amorphous shape and a substantially spherical shape, so that it has good adhesion to the resin and the resin composition. It is presumed that the melt fluidity of the resin is not impaired.
- the volume-based median diameter of heavy calcium carbonate is preferably 0.5 to 10 ⁇ m, more preferably 0.7 to 8.0 ⁇ m, still more preferably 1.0 to 5.0 ⁇ m, still more preferably 1.0 to 3.0 ⁇ m.
- the specific surface area of heavy calcium carbonate is preferably 0.1 to 8.0 m 2 / g, more preferably 0.3 to 3.0 m 2 / g, still more preferably 0.5 to 2.4 m 2 / g, still more preferably 0.7 to 1.7 m. 2 / g.
- the method for producing heavy calcium carbonate is not particularly limited, and non-porous and irregularly shaped substantially spherical shape is a general characteristic of heavy calcium carbonate produced by crushing natural stone.
- a method of coarsely and mediumly crushing crystalline limestone with a jaw crusher, hammer crusher, etc., finely crushing with a hammer mill, vertical roller mill, vibrating ball mill, etc., and performing airflow classification operation with a turbo classifier, turboplex, etc. A desired particle size distribution can be obtained.
- those having a low content of fine particles can be obtained by classifying particles having a specific particle size from a pulverized mixture of natural calcium carbonate. Even if the average particle size is the same, a large amount of fine particles and coarse particles are contained in the product that is simply made by strengthening the crushing process to lower the average particle size, but it can be specified by a method such as a vibrating sieve or air flow classification. By collecting particles having a particle size, the proportion of fine particles and coarse particles can be reduced.
- the present invention is characterized in that heavy calcium carbonate having a specific particle size distribution is effective in improving moldability, compressive permanent strain characteristics, and the like.
- the most common laser diffraction type particle size distribution meter is excellent in that the spread of the particle size distribution and the median diameter as a representative value can be easily specified, but the lower limit value that can be measured is about 0.1 ⁇ m. Therefore, the content of fine particles smaller than that cannot be measured accurately.
- the specific surface area measured by the gas adsorption method known as the so-called BET method can be said to be a measurement method that strongly expresses the influence of fine particles.
- the preferred heavy calcium carbonate in the present invention can be preferably specified by combining the particle size measurement by the laser diffraction type particle size distribution meter and the specific surface area measured by the gas adsorption method.
- the heavy calcium carbonate in the present invention may be surface-treated.
- a surface treatment method a method using an organic acid such as stearic acid, a method using a silane coupling agent, and the like are known, and the surface treatment has effects such as improvement of dispersibility and adhesion with a resin component.
- heavy calcium carbonate is originally a crushed mineral product, so its particle shape is inevitably indefinite, and it has better adhesion to resin than, for example, a spherical filler.
- surface treatment is not always necessary.
- the content of the heavy calcium carbonate is 10 to 300 parts by mass, preferably 15 to 200 parts by mass with respect to 100 parts by mass in total of the hydrogenated thermoplastic styrene elastomer A and the hydrogenated thermoplastic styrene elastomer B. , More preferably 20 to 100 parts by mass.
- the content of heavy calcium carbonate is preferably 3 to 50% by mass, more preferably 10 to 30% by mass in the thermoplastic elastomer composition.
- thermoplastic elastomer composition of the present invention preferably further contains polypropylene.
- the polypropylene may be homopolypropylene which is a propylene homopolymer, block polypropylene, random polypropylene or the like, but homopolypropylene is preferable from the viewpoint of heat resistance and vibration damping properties.
- the melt mass flow rate of polypropylene at 230 ° C. and a nominal load of 21 N is preferably 0.1 to 100 g / 10 min, more preferably 0.5 to 80 g / 10 min, still more preferably 1 to 50 g / 10 min, still more preferably. It is 1 to 20 g / 10 min.
- the flexural modulus of polypropylene is preferably 50 to 2000 MPa, more preferably 100 to 1850 MPa, still more preferably 200 to 1700 MPa, still more preferably 800 to 1700 MPa from the viewpoint of vibration damping and flexibility.
- the polypropylene content is preferably 1 to 50 parts by mass, more preferably 3 to 30 parts by mass, and further, with respect to 100 parts by mass of the total of the hydrogenated thermoplastic styrene elastomer A and the hydrogenated thermoplastic styrene elastomer B. It is preferably 5 to 20 parts by mass.
- the polypropylene content is preferably 0.2 to 30% by mass, more preferably 1 to 10% by mass in the thermoplastic elastomer composition.
- the thermoplastic elastomer composition of the present invention preferably contains an antioxidant. Since the polyphenylene ether resin contained in the thermoplastic elastomer composition of the present invention has a high softening temperature, it is preferable to raise the temperature when the composition is melt-kneaded, and in that case, charring or discoloration is likely to occur. For thermal discoloration during melt kneading, it is common technical knowledge to use an antioxidant in combination. Examples of the antioxidant include 2,6-ditert-butyl-p-cresol and 2,6-.
- the content of the antioxidant is preferably 0.1 to 5.0% by mass, more preferably 0.15 to 2.0% by mass in the thermoplastic elastomer composition.
- the thermoplastic elastomer composition of the present invention preferably contains a hindered amine-based light stabilizer together with a phenol-based antioxidant.
- the hindered amine light stabilizer is usually intended to prevent discoloration due to photodegradation, but when used in combination with a phenolic antioxidant in the present invention, it prevents thermal discoloration even under high temperature conditions for melting the polyphenylene ether resin. The effect is significantly higher. Further, when a filler having a large specific surface area such as talc known as a vibration damping filler is used, the effect of preventing thermal discoloration is diminished probably because the hindered amine light stabilizer is adsorbed, but it is heavy as in the present invention. It has been found that when used in combination with quality calcium carbonate, a surprising effect is exhibited even for those skilled in the art that such a phenomenon does not occur.
- the hindered amine-based light stabilizer in the present invention is usually abbreviated as HALS (Hindered Amine Light Stabilizers), and a compound having a 2,2,6,6-tetramethylpiperidine skeleton in the molecule is preferable.
- HALS Hindered Amine Light Stabilizers
- a compound having a 2,2,6,6-tetramethylpiperidine skeleton in the molecule is preferable.
- HALS is commercially available, those having a hindered phenol structure in the molecule have a large effect on heat-resistant discoloration, and are more preferable when used in combination with a phenolic antioxidant.
- Examples of the hindered amine-based light stabilizer having a hindered phenol structure in the molecule include BASF Japan's Tinubin 144 and Sankyo Lifetech's sanol LS-2626.
- the mass ratio of the phenolic antioxidant to the hindered amine light stabilizer is preferably 0.2 to 10, more preferably 0.5 to 5, and even more preferably 1 to 3. ..
- the content of the hindered amine-based light stabilizer is preferably 0.01 to 1% by mass, more preferably 0.05 to 0.5% by mass in the thermoplastic elastomer composition.
- thermoplastic elastomer composition of the present invention may further contain additives such as an antiblocking agent, a heat stabilizer, an ultraviolet absorber, a lubricant, a crystal nucleating agent, a foaming agent, and a coloring agent.
- additives such as an antiblocking agent, a heat stabilizer, an ultraviolet absorber, a lubricant, a crystal nucleating agent, a foaming agent, and a coloring agent.
- thermoplastic elastomer composition of the present invention may contain other thermoplastic resins or thermoplastic elastomers as long as the effects of the present invention are not impaired.
- thermoplastic elastomer composition of the present invention comprises a hydrogenated thermoplastic styrene elastomer A, a hydrogenated thermoplastic styrene elastomer B, a polypropylene ether resin, a softener for rubber, and heavy calcium carbonate, if necessary. It is obtained by appropriately mixing additives such as an antioxidant, a light stabilizer, and polypropylene, and solidifying the mixture by cooling.
- mixing is not particularly limited as long as it is a method in which various raw materials are mixed well, and various raw materials may be dissolved in a soluble organic solvent and mixed, or by melt kneading. Although they may be mixed, it is preferable to mix the raw materials under the condition that the raw materials are melted.
- a general extruder In the case of melt-kneading, a general extruder can be used, and it is preferable to use a twin-screw extruder in order to improve the kneading state.
- a mixing device such as a Henschel mixer in advance may be supplied from one hopper, or each component is charged into two hoppers and quantified with a screw or the like under the hopper. You may serve while.
- the product obtained by mixing the raw materials constituting the thermoplastic elastomer composition can be in the form of pellets, powders, sheets, etc., depending on the application. For example, it is melt-kneaded by an extruder and extruded into a strand, and while being cooled in cold water, it is cut into pellets such as cylinders and rice granules by a cutter.
- the obtained pellets are usually made into a predetermined sheet-shaped molded product or mold-molded product by injection molding or extrusion molding. Further, the melt-kneaded product can be pelletized with a ruder or the like and used as a raw material for molding. It may be an intermediate product in which a mount or the like is attached to a sheet-shaped thermoplastic elastomer composition.
- the A hardness of the thermoplastic elastomer composition of the present invention is 50 or less, preferably 20 to 48, and more preferably 30 to 45.
- the melt mass flow rate of the thermoplastic elastomer composition of the present invention at 200 ° C. and a nominal load of 49 N is preferably 0.5 to 6.0 g / 10 min, more preferably 1.3 to 3.5 g / 10 min, from the viewpoint of fluidity and moldability. More preferably, it is 1.5 to 2.5 g / 10 min.
- a molded product can be obtained by appropriately heat-molding the thermoplastic elastomer composition of the present invention according to a conventional method.
- Any molding machine capable of melting the molding material can be used as the apparatus used for manufacturing the molded body, for example, a kneader, an extrusion molding machine, an injection molding machine, a press molding machine, a blow molding machine, a mixing roll and the like. Can be mentioned.
- thermoplastic elastomer composition of the present invention has excellent vibration damping properties
- the molded product is used as a vibration damping member. Further, since it is excellent in vibration damping property, compression set resistance, and moldability, it can be used as a rotary bearing of an electric motor to stably suppress vibration and noise for a long period of time.
- the present invention further provides a rotor for an electric motor provided with the vibration damping member of the present invention.
- a brushless type is preferable, and a general brushless type rotor for an electric motor has, as main parts, a shaft of the rotor, an inner peripheral portion for fixing the shaft, and an outer circumference of the rotor. It is composed of four parts, a magnetic steel body such as an electromagnetic steel plate or a permanent magnet, and a fastening member that connects the inner peripheral part and the outer peripheral part. In addition to these parts, the surface of the outer peripheral part is necessary. In addition, it may further have an outer layer or the like made of magnet parts.
- the vibration damping member of the present invention is used as a fastening member, and even if it is filled between the inner peripheral portion and the outer peripheral portion and integrally molded, it is molded as a separate part from other members, and the inner circumference is assembled. It may be fitted between the portion and the outer peripheral portion.
- Component A and Component B hydrogenated thermoplastic styrene elastomer
- Content of styrene-based monomer is determined by performing proton NMR measurement with a nuclear magnetic resonance apparatus (manufactured by BRUKER, Germany, DPX-400) and quantifying the characteristic group of styrene.
- the content of other monomer units can also be determined by proton NMR measurement.
- Weight average molecular weight (Mw) Under the following measurement conditions, the molecular weight is measured in terms of polystyrene by a gel permeation chromatograph to determine the weight average molecular weight.
- Measuring device / pump JASCO (JASCO Corporation), PU-980 ⁇ Column oven: Showa Denko KK, AO-50 ⁇ Detector: Hitachi, RI (differential refractometer) detector L-3300 -Column type: Showa Denko Corporation "K-805L (8.0 x 300 mm)" and "K-804L (8.0 x 300 mm)" are used in series.
- Eluent Chloroform ⁇ Eluent flow rate: 1.0 ml / min ⁇ Sample concentration: Approximately 1 mg / ml ⁇
- Sample solution filtration Polytetrafluoroethylene 0.45 ⁇ m pore size disposable filter ⁇ Standard sample for calibration curve: Polystyrene manufactured by Showa Denko KK
- the specific surface area is measured according to JIS Z 8830 "Method for measuring the specific surface area of powder (solid) by gas adsorption". Specifically, a sample adjusted to an appropriate amount so that the absolute value of the gas adsorption amount falls within the measurable range of the device is weighed in a glass cell, and the nitrogen adsorption amount is measured by Malvern's "AUTOSORB-1". Calculate the surface area. This is the so-called BET method specific surface area, and the larger the number of fine particles, the larger the specific surface area.
- calcium carbonates a to c are classified using an airflow type classifier (manufactured by Nisshin Engineering Co., Ltd., TC-15) into three types of classified fine powder, classified medium grain powder, and classified coarse powder shown in Table 1. Sorted.
- Examples 1 to 12 and Comparative Examples 1 to 4 (1) Preparation of Thermoplastic Elastomer Composition (Pellet) A mixture was prepared by dry-blending the materials shown in Table 9 other than the softener and then impregnating the material with the softener. Then, the mixture is melt-kneaded with an extruder under the following conditions, extruded into strands, and cut into a diameter of about 3 mm and a thickness of about 3 mm with a cutter while being cooled in cold water to obtain pellets of the thermoplastic elastomer composition. Manufactured.
- Injection molding conditions Injection molding machine: 100MSIII-10E (trade name, manufactured by Mitsubishi Heavy Industries, Ltd.) Injection molding temperature: 200 ° C Injection pressure: 30% Injection time: 10 sec Mold temperature: 40 °C
- thermoplastic elastomer compositions obtained in Examples and Comparative Examples were evaluated as follows using the pellets or plates. The results are shown in Table 9.
- Vibration damping (loss tangent (tan ⁇ ))
- a plate cut to a width of 12 mm is set as a test piece on ARES G-2 manufactured by TA Instruments, and in torsion mode (torsion) with a length of 25 mm, the temperature rise rate is 5 ° C / min and -60 ° C. Viscoelasticity was measured at 30 Hz up to ⁇ 200 ° C, and the loss tangent (tan ⁇ ) at 20 ° C was calculated.
- a disk-shaped molded body was used as a test piece, and the measurement was performed by a compression set as specified in JIS K 6262. Specifically, seven plates are punched out in a disk shape, and the diameter and thickness of the test pieces are 29.0 ⁇ 0.5 mm (diameter) and 12.5 mm ⁇ 0.5 mm (thickness), respectively, by heat pressing. was prepared and the initial dimensions were measured at standard temperature (23.2 ⁇ 2 ° C). The test piece was sandwiched between compression plates with a spacer of 9.3 to 9.4 mm in thickness, held at 70 ° C for 24 hours under the condition of 25% by volume compression, then the compression plate was removed at standard temperature and left for 30 minutes. The thickness of the central part of the test piece was measured later, and the value of the compression set was calculated.
- the compositions of Examples 1 to 12 are excellent in vibration damping property, compression set resistance and moldability, excellent flexibility, and suppression of stickiness and thermal discoloration.
- the above characteristics are maintained at a higher level by adjusting the particle size of the heavy calcium carbonate.
- Comparative Example 1 using light calcium carbonate the composition became hard and the vibration damping property was lowered, and in Comparative Example 2 using talc, the vibration damping property and the compression set resistance were good. However, it is sticky and discolored due to heat, and lacks moldability.
- Comparative Example 3 in which the polyphenylene ether resin is not used and Comparative Example 4 in which the filler is not used, the fluidity is good, but the compression set resistance is lacking.
- Example 1 From the results of noise measurement, it can be seen that in Example 1, the increase in noise is suppressed even after continuous operation, as compared with Comparative Example 1.
- thermoplastic elastomer composition for vibration damping members of the present invention is used for vibration damping members applied to noise and vibration countermeasures for home appliances, automobile parts, sports equipment, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
スチレン系重合体ブロック(S1)と共役ジエン化合物重合体ブロック(B1)とからなるブロック共重合体の水素添加物であり、共役ジエン化合物重合体ブロック(B1)の1,2-ビニル結合量が50質量%以上である水添熱可塑性スチレン系エラストマーAと、スチレン系重合体ブロック(S2)と共役ジエン化合物重合体ブロック(B2)とからなるブロック共重合体の水素添加物であり、共役ジエン化合物重合体ブロック(B2)の1,2-ビニル結合量が50質量%未満である水添熱可塑性スチレン系エラストマーBとを、5/95~55/45の質量比(水添熱可塑性スチレン系エラストマーA/水添熱可塑性スチレン系エラストマーB)で含有する、A硬度が50以下である、制振部材用熱可塑性エラストマー組成物、該熱可塑性エラストマー組成物を用いた制振部材及び電動機用回転子。本発明の制振部材用熱可塑性エラストマー組成物は、家電製品や自動車部品、スポーツ用品等の騒音・振動対策に適用される制振部材に用いられる。
Description
本発明は、家電製品や自動車部品、スポーツ用品等の騒音・振動対策に適用される制振部材用熱可塑性エラストマー組成物、該熱可塑性エラストマー組成物を用いた制振部材及び電動機用回転子に関する。
制振部材の代表的な用途としては、例えば、エアコンやヒートポンプ式給湯器、空気清浄機等の電気機器内で、電動機や動力伝達部材の回転軸を支持するために設置される軸受部等を挙げることができ、中でもブラシレス型の電動機の回転子では、回転軸と永久磁石やフェライト磁石、電磁鋼板等を有する外コアの間に防振ゴムをはめ込むことによって、電動機から発生する音や振動を抑え、静粛性の追求と共に、振動に由来する機器全体の故障劣化を防ぐことが知られている。
特許文献1には、電動機の回転子にゴムをはめ込む代わりに、エラストマーを用いてコアと防振材を一体成形することにより、防振材のずれや抜けを防ぐことができることが開示されている。
制振性能の高い熱可塑性エラストマーとしては、スチレン-イソプレン-スチレンブロック共重合体やスチレン-イソプレン-ブタジエン-スチレンブロック共重合体及びこれらの水素添加物が知られているが、これらは加硫ゴムに比べて制振性能には優れるものの圧縮永久歪が大きいという問題点がある。軸受部に用いる制振材料の圧縮永久歪が大きいと、回転軸の支持位置や回転子の外コアの位置が経時的に変動してしまい、回転伝達部品とのかみ合わせが不良となったり、回転子とケースが接触したりする恐れがあるため、改良が必要である。
特許文献2には、ポリフェニレンエーテル系樹脂、共役ジエン-アルケニル芳香族系共重合体、及びポリスチレン系樹脂とを含有し、寸法精度及び寸法安定性に優れ、制振性にも優れた熱可塑性樹脂組成物が開示されているが、ポリフェニレンエーテル系樹脂自体は満足すべき制振性能は有していないので、制振性能を向上させるためには特定の共役ジエン-アルケニル芳香族系共重合体を併用する必要があることが示唆されている。また、好ましいフィラーとして、ガラス繊維等の繊維状や、マイカ、タルク等の鱗片状フィラーが挙げられている。
特許文献1では、複雑な形状の回転子にエラストマーを一体成型するときに充填性が悪ければボイドを生じて回転子の重量バランスを崩してしまう恐れがあるため、用いるエラストマーには高い成形性が必要となるが、特許文献1には制振性と成形性を兼ね備えたエラストマーとしてどのようなものを用いたらよいかについての開示はない。
また、特許文献2に記載されている針状や層状のフィラーは、以前から制振材料として好ましいものであることが知られており、総称して制振フィラーと呼ばれることもあるが、一方で、フィラーを配合することで、熱可塑性組成物としての成形性は低下する傾向がある。
従って、熱可塑性エラストマー組成物として、制振性に優れた熱可塑性エラストマー組成物が知られており、制振性を向上させる制振フィラーも知られているが、さらに成形性や耐圧縮永久歪性が要求される用途に対しては問題が十分解消されておらず、解決が求められている。
本発明の課題は、制振性とともに、耐圧縮永久歪性及び成形性にも優れた制振部材用熱可塑性エラストマー組成物、該熱可塑性エラストマー組成物を用いた制振部材及び電動機用回転子を提供することにある。
本発明は、
〔1〕 スチレン系重合体ブロック(S1)と共役ジエン化合物重合体ブロック(B1)とからなるブロック共重合体の水素添加物であり、共役ジエン化合物重合体ブロック(B1)の1,2-ビニル結合量が50質量%以上である水添熱可塑性スチレン系エラストマーAと、スチレン系重合体ブロック(S2)と共役ジエン化合物重合体ブロック(B2)とからなるブロック共重合体の水素添加物であり、共役ジエン化合物重合体ブロック(B2)の1,2-ビニル結合量が50質量%未満である水添熱可塑性スチレン系エラストマーBとを、5/95~55/45の質量比(水添熱可塑性スチレン系エラストマーA/水添熱可塑性スチレン系エラストマーB)で含有し、該水添熱可塑性スチレン系エラストマーAと該水添熱可塑性スチレン系エラストマーBの合計100質量部に対して、ポリフェニレンエーテル樹脂を10~200質量部、ゴム用軟化剤を50~1000質量部、及び重質炭酸カルシウムを10~300質量部を含有し、A硬度が50以下である、制振部材用熱可塑性エラストマー組成物、
〔2〕 重質炭酸カルシウムの、体積基準メジアン径が0.5~10μmであり、比表面積が0.3~3.0m2/gである、前記〔1〕記載の熱可塑性エラストマー組成物、
〔3〕 さらに、フェノール系酸化防止剤及びヒンダードアミン系光安定剤を含有する、前記〔1〕又は〔2〕記載の熱可塑性エラストマー組成物、
〔4〕 さらに、ポリプロピレンを含有する、前記〔1〕~〔3〕いずれか記載の熱可塑性エラストマー組成物、
〔5〕 前記〔1〕~〔4〕いずれか記載の熱可塑性エラストマー組成物の成形体である、制振部材、並びに
〔6〕 前記〔5〕記載の制振部材を備えた、電動機用回転子
に関する。
〔1〕 スチレン系重合体ブロック(S1)と共役ジエン化合物重合体ブロック(B1)とからなるブロック共重合体の水素添加物であり、共役ジエン化合物重合体ブロック(B1)の1,2-ビニル結合量が50質量%以上である水添熱可塑性スチレン系エラストマーAと、スチレン系重合体ブロック(S2)と共役ジエン化合物重合体ブロック(B2)とからなるブロック共重合体の水素添加物であり、共役ジエン化合物重合体ブロック(B2)の1,2-ビニル結合量が50質量%未満である水添熱可塑性スチレン系エラストマーBとを、5/95~55/45の質量比(水添熱可塑性スチレン系エラストマーA/水添熱可塑性スチレン系エラストマーB)で含有し、該水添熱可塑性スチレン系エラストマーAと該水添熱可塑性スチレン系エラストマーBの合計100質量部に対して、ポリフェニレンエーテル樹脂を10~200質量部、ゴム用軟化剤を50~1000質量部、及び重質炭酸カルシウムを10~300質量部を含有し、A硬度が50以下である、制振部材用熱可塑性エラストマー組成物、
〔2〕 重質炭酸カルシウムの、体積基準メジアン径が0.5~10μmであり、比表面積が0.3~3.0m2/gである、前記〔1〕記載の熱可塑性エラストマー組成物、
〔3〕 さらに、フェノール系酸化防止剤及びヒンダードアミン系光安定剤を含有する、前記〔1〕又は〔2〕記載の熱可塑性エラストマー組成物、
〔4〕 さらに、ポリプロピレンを含有する、前記〔1〕~〔3〕いずれか記載の熱可塑性エラストマー組成物、
〔5〕 前記〔1〕~〔4〕いずれか記載の熱可塑性エラストマー組成物の成形体である、制振部材、並びに
〔6〕 前記〔5〕記載の制振部材を備えた、電動機用回転子
に関する。
本発明の熱可塑性エラストマー組成物は、制振部材として、制振性とともに、耐圧縮永久歪性及び成形性にも優れるという効果を奏するものである。
本発明の熱可塑性エラストマー組成物は、
スチレン系重合体ブロック(S1)と共役ジエン化合物重合体ブロック(B1)とからなるブロック共重合体の水素添加物であり、重量平均分子量が共役ジエン化合物重合体ブロック(B1)の1,2-ビニル結合量が50質量%以上である水添熱可塑性スチレン系エラストマーA、及び
スチレン系重合体ブロック(S2)と共役ジエン化合物重合体ブロック(B2)とからなるブロック共重合体の水素添加物であり、共役ジエン化合物重合体ブロック(B2)の1,2-ビニル結合量が50質量%未満である水添熱可塑性スチレン系エラストマーBと、
ポリフェニレンエーテル樹脂、ゴム用軟化剤、及び重質炭酸カルシウムを含有するものである。
スチレン系重合体ブロック(S1)と共役ジエン化合物重合体ブロック(B1)とからなるブロック共重合体の水素添加物であり、重量平均分子量が共役ジエン化合物重合体ブロック(B1)の1,2-ビニル結合量が50質量%以上である水添熱可塑性スチレン系エラストマーA、及び
スチレン系重合体ブロック(S2)と共役ジエン化合物重合体ブロック(B2)とからなるブロック共重合体の水素添加物であり、共役ジエン化合物重合体ブロック(B2)の1,2-ビニル結合量が50質量%未満である水添熱可塑性スチレン系エラストマーBと、
ポリフェニレンエーテル樹脂、ゴム用軟化剤、及び重質炭酸カルシウムを含有するものである。
熱可塑性エラストマーの特異な性質は、軟らかいゴム成分からなるソフトセグメント(軟質相)と硬い樹脂成分からなるハードセグメント(硬質相)に分離している構造に由来する。そして、ゴム用軟化剤は、ソフトセグメント部分に保持されるのであり、さらには該ソフトセグメント部分の長さに応じて保持される。
水添熱可塑性スチレン系エラストマーAは、1,2-ビニル結合量が50質量%以上であり、制振性は良好であるが、水添熱可塑性スチレン系エラストマーAのみを使用すると、枝分かれの多い分子鎖ではソフトセグメント部分の長さが短くなり、このためゴム用軟化剤が保持されにくくなり、組成物にベタツキが生じる可能性がある。そこで、本発明の組成物は、1,2-ビニル結合量が50質量%未満の水添熱可塑性スチレン系エラストマーBを含有する。水添熱可塑性スチレン系エラストマーBは、枝分かれの少ない長い分子鎖を有するので、ソフトセグメント部分の長さが長くなり、ゴム用軟化剤が保持されやすい。水添熱可塑性スチレン系エラストマーAと水添熱可塑性スチレン系エラストマーBとの併用により、制振性とベタツキの改善が向上する。なお、本発明において、1,2-ビニル結合量とは、1,2-ビニル結合量と3,4-ビニル結合量との合計量を意味する。共役ジエン化合物重合体ブロック(B1)がポリブタジエンユニットを有する場合、1,2-ビニル結合単位と3,4-ビニル結合単位とは同じ構造のものとなるため、構造の差による効果の違いは無視でき、いずれの結合単位も1,4-ビニル結合単位に比べて側鎖が多いために制振効果が現れる。一方、共役ジエン化合物重合体ブロック(B1)がイソプレンユニットを有する場合、1,2-ビニル結合単位と3,4-ビニル結合単位では側鎖の形に差があり、3,4-ビニル結合の方がより嵩高い側鎖を有するために、制振効果がより大きくなる。従って、共役ジエン化合物重合体ブロック(B1)においては1,4-ビニル結合に比べて1,2-ビニル結合及び3,4-ビニル結合量の合計量が多いものの方が好ましく、さらには1,2-ビニル結合量と3,4-ビニル結合量との合計の内、3,4-ビニル結合量が多いものが好ましい。
さらに、本発明においては、重質炭酸カルシウムを含有している点に大きな特徴を有している。
一般的にフィラーとして使用される炭酸カルシウムは、石灰石を機械的に粉砕分級した天然炭酸カルシウム(重質炭酸カルシウム)と、石灰石を、いったん原料に溶解して化学的に合成した合成炭酸カルシウム(軽質炭酸カルシウム)の2種類に大別される。重質炭酸カルシウムは粉砕品であるため、基本的に不定形の破砕形状であり、粒子径や粒径分布も様々なものがあり得る。一方、軽質炭酸カルシウムは、溶液から化学反応によって析出するものであるため、製法によって一定の粒子形状を有するものが製造され、粒子形状が紡錘形で長径がミクロンオーダーの軽微性炭酸カルシウムと、一次粒子径がナノオーダーで立方形状のコロイド炭酸カルシウムに分類される。
軽質炭酸カルシウムは天然ゴム用の充填剤として古くから用いられており、極微粒子で比表面積の大きな軽質炭酸カルシウムを分散させたゴムは引張強さが向上することが知られているが、微粒子で表面が親水性であるという軽質炭酸カルシウムの性質から、非極性の溶融樹脂中では凝集しやすい傾向があり、樹脂中で分散させるためにはステアリン酸等の有機酸で表面処理する必要がある。
熱可塑性エラストマー組成物は、用途や性状が天然ゴムと似ているため、ゴム用の軽質炭酸カルシウムを添加剤として配合することはよくあるが、制振部材に用いられる本発明の熱可塑性エラストマー組成物では、引張強度を特に高くする必要性は低く、一方で、軽質炭酸カルシウムを配合すると成形性や耐圧縮永久歪性が悪化してしまうことを見出し、特定の粒度を有する重質炭酸カルシウムを配合することで、これらの課題を解決した。
水添熱可塑性スチレン系エラストマーAは、スチレン系重合体ブロック(S1)と、共役ジエン化合物重合体ブロック(B1)とからなるものであって、共役ジエン化合物重合体ブロック(B1)は、一部または全部が水素添加されている。水素添加率は、80%以上が好ましく、90%以上がより好ましい。本発明において、水素添加率は、ブロック共重合体中の共役ジエン化合物に由来する炭素-炭素二重結合の含有量を、水素添加の前後において、1H-NMRスペクトルによって測定し、該測定値から求めることができる。
スチレン系重合体ブロック(S1)としては、例えば、スチレン、o-メチルスチレン、p-メチルスチレン、p-t(ターシャリー)-ブチルスチレン、1,3-ジメチルスチレン、α-メチルスチレン、ビニルナフタレン、ビニルアントラセン等のスチレン系単量体の重合体ブロック等が挙げられる。
共役ジエン化合物重合体ブロック(B1)としては、ブタジエン、イソプレン、1,3-ペンタジエン等の共役ジエン化合物の重合体ブロック等が挙げられる。
水添熱可塑性スチレン系エラストマーAとしては、例えば、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、スチレン-エチレン-プロピレン-スチレンブロック共重合体(SEPS)、スチレン-エチレン-エチレン-プロピレン-スチレンブロック共重合体(SEEPS)ポリスチレン-ポリイソプレン-ポリスチレン(SIS)の水素添加物等が挙げられる。
水添熱可塑性スチレン系エラストマーAの重量平均分子量は、耐圧縮永久歪性及び成形性の観点から、好ましくは50,000~500,000、より好ましくは100,000~300,000、さらに好ましくは200,000~250,000である。
水添熱可塑性スチレン系エラストマーAにおけるスチレン系単量体の含有量は、耐熱性の観点から、好ましくは20質量%以上、より好ましくは20~40質量%である。
水添熱可塑性スチレン系エラストマーAは、スチレン系重合体ブロック(S1)が少なくとも2個、共役ジエン化合物重合体ブロック(B1)が少なくとも1個で構成されたブロック共重合体であることが好ましい。
水添熱可塑性スチレン系エラストマーAにおける共役ジエン化合物重合体ブロック(B1)の1,2-ビニル結合量は、50質量%以上であり、好ましくは50~80質量%である。このような水添熱可塑性スチレン系エラストマーAは、エラストマー分子鎖に枝分かれが多く、嵩高い構造を有している。このため、本発明の組成物に振動エネルギーが及ぼされた際、分子同士が衝突する確率が高くなり、振動エネルギーが熱エネルギーに効率良く変換され、本発明の組成物に良好な制振性を与える。
水添熱可塑性スチレン系エラストマーBは、スチレン系重合体ブロック(S2)と共役ジエン化合物重合体ブロック(B2)とからなるブロック共重合体の水素添加物であり、共役ジエン化合物重合体ブロック(B2)の1,2-ビニル結合量が50質量%未満である。水素添加率は、80%以上が好ましく、90%以上がより好ましい。本発明において、水素添加率は、ブロック共重合体中の共役ジエン化合物に由来する炭素-炭素二重結合の含有量を、水素添加の前後において、1H-NMRスペクトルによって測定し、該測定値から求めることができる。
共役ジエン化合物重合体ブロック(B2)の1,2-ビニル結合量は、好ましくは20~45質量%、より好ましくは30~40質量%である。
スチレン系重合体ブロック(S2)及び共役ジエン化合物重合体ブロック(B2)としては、スチレン系重合体ブロック(S1)及び共役ジエン化合物重合体ブロック(B1)と同様のものが例示できる。
従って、水添熱可塑性スチレン系エラストマーBとしては、水添熱可塑性スチレン系エラストマーAと同様に、例えば、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、スチレン-エチレン-プロピレン-スチレンブロック共重合体(SEPS)、スチレン-エチレン-エチレン-プロピレン-スチレンブロック共重合体(SEEPS)、ポリスチレン-ポリイソプレン-ポリスチレン(SIS)の水素添加物等が挙げられる。
水添熱可塑性スチレン系エラストマーBの重量平均分子量は、耐圧縮永久歪性及び成形性の観点から、好ましくは50,000~500,000、より好ましくは150,000~450,000、さらに好ましくは200,000~400,000である。
水添熱可塑性スチレン系エラストマーBにおけるスチレン系単量体の含有量は、耐熱性の観点から、好ましくは20質量%以上、より好ましくは20~40質量%である。
水添熱可塑性スチレン系エラストマーBは、スチレン系重合体ブロック(S2)が少なくとも2個、共役ジエン化合物重合体ブロック(B2)が少なくとも1個で構成されたブロック共重合体であることが好ましい。
水添熱可塑性スチレン系エラストマーAと水添熱可塑性スチレン系エラストマーBの質量比(水添熱可塑性スチレン系エラストマーA/水添熱可塑性スチレン系エラストマーB)は、5/95~55/45であり、好ましくは10/90~50/50、より好ましくは20/80~40/60である。
また、水添熱可塑性スチレン系エラストマーAと水添熱可塑性スチレン系エラストマーBの合計含有量は、熱可塑性エラストマー組成物中、好ましくは10~40質量%、より好ましくは15~35質量%である。
ポリフェニレンエーテル樹脂は耐熱性や機械的強度、絶縁性等に優れた樹脂であり、それ自体が耐熱樹脂材料として用いられる他に、スチレン系樹脂との相溶性が良いためにスチレン系樹脂の耐衝撃性を向上させるために併用すること等が知られている、本発明においては、熱可塑性スチレン系エラストマーのスチレンブロックの会合を補強して耐熱性を向上させる効果があり、耐圧縮永久歪性の向上の効果もある。
ポリフェニレンエーテル樹脂としては、特に限定されることなく、例えば、式(A):
(式中、R1、R2、R3、及びR4は、各々独立して、水素原子、ハロゲン原子、炭素数1~7の第一級アルキル基、炭素数1~7の第二級アルキル基、フェニル基、ハロアルキル基、アミノアルキル基、炭化水素オキシ基、及び少なくとも2個の炭素原子がハロゲン原子と酸素原子とを隔てているハロ炭化水素オキシ基からなる群から選択される一価の基である)
で表される繰り返し単位からなる単独重合体、式(A)で表される繰り返し単位を有する共重合体等が挙げられる。
で表される繰り返し単位からなる単独重合体、式(A)で表される繰り返し単位を有する共重合体等が挙げられる。
このようなポリフェニレンエーテル樹脂としては、特に限定されることなく、公知のものを用いることができる。ポリフェニレンエーテルの具体例としては、例えば、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-エチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-フェニル-1,4-フェニレンエーテル)、ポリ(2,6-ジクロロ-1,4-フェニレンエーテル)等の単独重合体;2,6-ジメチルフェノールと他のフェノール類(例えば、2,3,6-トリメチルフェノール、2-メチル-6-ブチルフェノール等)との共重合体等の共重合体等が挙げられ、これらの中では、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとの共重合体が好ましく、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)がより好ましい。
ポリフェニレンエーテル樹脂の製造方法としては、特に限定されることなく、従来公知の方法を用いることができる。ポリフェニレンエーテルの製造方法の具体例としては、例えば、第一銅塩とアミンとのコンプレックスを触媒として用いて、例えば、2,6-キシレノールを酸化重合することによって製造する、米国特許第3306874号明細書等に記載される方法や、米国特許第3306875号明細書、米国特許第3257357号明細書、米国特許第3257358号明細書、特公昭52-17880号公報、特開昭50-51197号公報、特開昭63-152628号公報等に記載される方法等が挙げられる。
ポリフェニレンエーテルの数平均分子量は、溶融流動性の観点から、好ましくは5,000~40,000、より好ましくは10,000~20,000である。
本発明におけるポリフェニレンエーテル樹脂は、変性ポリフェニレンエーテル樹脂であってもよい。変性ポリフェニレンエーテルとしては、特に限定されることなく、例えば、上記のポリフェニレンエーテルに、スチレン系重合体又はその誘導体をグラフト化又は付加させたもの等が挙げられる。グラフト化又は付加による質量増加の割合は、特に限定されることなく、変性ポリフェニレンエーテル樹脂中、0.01質量%以上であることが好ましく、また、10質量%以下であることが好ましく、より好ましくは7質量%以下、さらに好ましくは5質量%以下である。
変性ポリフェニレンエーテルの製造方法としては、特に限定されることなく、例えば、ラジカル発生剤の存在下又は非存在下で、溶融状態、溶液状態又はスラリー状態において、80~350℃の条件下で、上記のポリフェニレンエーテルとスチレン系重合体又はその誘導体とを反応させる方法等が挙げられる。
ポリフェニレンエーテル樹脂の含有量は、水添熱可塑性スチレン系エラストマーAと水添熱可塑性スチレン系エラストマーBの合計100質量部に対して、10~200質量部であり、好ましくは15~100質量部、より好ましくは20~80質量部である。
また、ポリフェニレンエーテル樹脂の含有量は、熱可塑性エラストマー組成物中、好ましくは2~50質量%、より好ましくは5~20質量%である。
ゴム用軟化剤としては、例えば、パラフィン系オイル、ナフテン系オイル、芳香族系オイル等が挙げられるが、これらのなかでは、スチレン系ブロック共重合体との親和性が良好で、ブリードが起きにくいという観点から、パラフィン系オイル及びナフテン系オイルから選択される少なくとも1種が好ましく、パラフィン系オイルがより好ましい。
ゴム用軟化剤の40℃での動粘度は、高い方が、加熱溶融時の揮発を防ぎ、耐ブリード性も良くなることから、好ましくは30mm2/s以上、より好ましくは60mm2/s以上、さらに好ましくは80mm2/s以上であり、さらに好ましくは150mm2/s以上であり、低い方が取扱いが容易であることから、好ましくは500mm2/s以下、より好ましくは450mm2/s以下、さらに好ましくは400mm2/s以下である。
ゴム用軟化剤の含有量は、軟化剤が少なすぎると組成物の柔軟性が低下し、制振性能が低下する。また、軟化剤が多すぎると、オイルブリードが生じやすい。これらの観点から、軟化剤の含有量は、水添熱可塑性スチレン系エラストマーAと水添熱可塑性スチレン系エラストマーBの合計100質量部に対して、50~1000質量部であり、好ましくは60~300質量部、より好ましくは70~200質量部である。
また、ゴム用軟化剤の含有量は、熱可塑性エラストマー組成物中、好ましくは5~60質量%、より好ましくは20~50質量%である。
本発明における重質炭酸カルシウムは、軽質炭酸カルシウムに比べて粒径が大きく、比表面積が小さいもの、即ち微小粒子の割合が低いものが好ましい。このような本発明において好ましく用いられる重質炭酸カルシウムは、組成物にしたときの溶融流動性に優れ、組成物の硬度に影響を及ぼしにくく、成形品の耐圧縮永久歪性が優れるという予想外の特性を発揮する。この理由としては、無孔質で微小粒子の含有量が少ないために組成物の溶融粘度が低い一方で、不定形で略球状の形状であるため、樹脂との密着性が良く、樹脂組成物の溶融流動性を損ねないことが推察される。
以上の観点から、重質炭酸カルシウムの体積基準メジアン径は、好ましくは0.5~10μm、より好ましくは0.7~8.0μm、さらに好ましくは1.0~5.0μm、さらに好ましくは1.0~3.0μmである。
また、重質炭酸カルシウムの比表面積は、好ましくは0.1~8.0m2/g、より好ましくは0.3~3.0m2/g、さらに好ましくは0.5~2.4m2/g、さらに好ましくは0.7~1.7m2/gである。
重質炭酸カルシウムの製造方法は、特に限定されず、無孔質で不定形の略球状となることは、天然石を粉砕して製造する重質炭酸カルシウムの一般的な特性であるが、例えば、結晶質石灰石を定法により、ジョークラッシャー、ハンマークラッシャー等で粗・中粉砕し、ハンマーミル、竪型ローラーミル、振動ボールミル等で微粉砕し、ターボクラシファイア、ターボプレックス等で気流分級操作を行う方法により、所望の粒度分布のものを得ることができる。
例えば、微小粒子の含有量が少ないものは、天然炭酸カルシウムの粉砕混合品の中から特定粒径の粒子を分級することで得られる。平均粒径が同じ値でも、単に粉砕工程を強力にして平均粒径を下げただけの物には微小粒子や粗大粒子が多量に含まれるが、振動篩や気流分級等の方法で、特定の粒径のものを集めることにより、微小粒子や粗大粒子の割合を低くすることができる。
本発明においては、特定の粒度分布を有する重質炭酸カルシウムが、成形性及び圧縮永久歪特性等の向上に有効であることを特徴とするものである。粒度の測定方法として、最も一般的なレーザー回折式粒度分布計は、粒径分布の広がりや代表値としてのメジアン径を容易に特定できる点で優れているが、測定できる下限値は0.1μm程度であるので、それ以下の微小粒子の含有量は正確に測定できない。一方、いわゆるBET法として知られるガス吸着法で測定される比表面積は、微小粒子の影響を強く表す測定方法であると言える。特に、無孔性で細孔容積のない重質炭酸カルシウムの測定においては、有効である。そこで、本発明において好ましい重質炭酸カルシウムは、レーザー回折式粒度分布計による粒度測定と、ガス吸着法で測定される比表面積とを組み合わせることによって好ましく特定することができる。
本発明における重質炭酸カルシウムは、表面処理されていてもよい。表面処理の方法としては、ステアリン酸等の有機酸を用いる方法や、シランカップリング剤を用いる方法等が知られており、表面処理によって分散性向上や樹脂成分との密着性向上等の効果が知られているが、重質炭酸カルシウムについていえば、もともと鉱物の粉砕品であるので必然的に粒子形状は不定形であり、例えば真球状の充填剤に比べて樹脂との密着性には優れており、また比較的大粒径であることから分散性に優れているので必ずしも表面処理は必要ない。
重質炭酸カルシウムの含有量は、水添熱可塑性スチレン系エラストマーAと水添熱可塑性スチレン系エラストマーBの合計100質量部に対して、10~300質量部であり、好ましくは15~200質量部、より好ましくは20~100質量部である。
また、重質炭酸カルシウムの含有量は、熱可塑性エラストマー組成物中、好ましくは3~50質量%、より好ましくは10~30質量%である。
本発明の熱可塑性エラストマー組成物は、成形性の観点から、さらにポリプロピレンを含有することが好ましい。
ポリプロピレンは、プロピレン単独重合体であるホモポリプロピレンであっても、ブロックポリプロピレンやランダムポリプロピレン等であってもよいが、耐熱性、制振性の観点から、ホモポリプロピレンが好ましい。
ポリプロピレンの230℃、公称荷重21Nでのメルトマスフローレイトは、成形性の観点から、好ましくは0.1~100g/10min、より好ましくは0.5~80g/10min、さらに好ましくは1~50g/10min、さらに好ましくは1~20g/10minである。
ポリプロピレンの曲げ弾性率は、制振性と柔軟性の観点から、好ましくは50~2000MPa、より好ましくは100~1850MPa、さらに好ましくは200~1700MPa、さらに好ましくは800~1700MPaである。
ポリプロピレンの含有量は、水添熱可塑性スチレン系エラストマーAと水添熱可塑性スチレン系エラストマーBの合計100質量部に対して、好ましくは1~50質量部、より好ましくは3~30質量部、さらに好ましくは5~20質量部である。
また、ポリプロピレンの含有量は、熱可塑性エラストマー組成物中、好ましくは0.2~30質量%、より好ましくは1~10質量%である。
本発明の熱可塑性エラストマー組成物は、酸化防止剤を含有することが好ましい。本発明の熱可塑性エラストマー組成物が含有するポリフェニレンエーテル樹脂は、軟化温度が高いために、組成物を溶融混錬する際の温度を高くすることが好ましく、その場合、焦げや変色が起きやすい。溶融混錬時の熱変色に対しては、酸化防止剤を併用することが技術常識であり、酸化防止剤としては、例えば、2,6-ジtert-ブチル-p-クレゾール、2,6-ジtert-ブチルフェノール、2,4-ジメチル-6-tert-ブチルフェノール、4,4’-ジヒドロキシジフェニル、トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、テトラキス[メチレン-3-(3,5-ジtert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、3,9ビス{2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ-5,5-ウンデカン等のフェノール系酸化防止剤、ホスファイト系酸化防止剤、チオエーテル系酸化防止剤等が挙げられる。このうちフェノール系酸化防止剤、及びホスファイト系酸化防止剤が好ましく、フェノール系酸化防止剤がより好ましい。
酸化防止剤の含有量は、熱可塑性エラストマー組成物中、好ましくは0.1~5.0質量%、より好ましくは0.15~2.0質量%である。
本発明の熱可塑性エラストマー組成物は、フェノール系酸化防止剤とともにヒンダードアミン系光安定剤を含有することが好ましい。ヒンダードアミン系光安定剤は、通常、光劣化による変色を防ぐためのものであるが、本発明においてフェノール系酸化防止剤と併用すると、ポリフェニレンエーテル樹脂を溶融させるための高温条件でも、熱変色を防ぐ効果が顕著に高くなる。さらに、制振フィラーとして知られるタルク等の、比表面積の大きな充填剤を用いると、ヒンダードアミン系光安定剤が吸着されてしまうためか熱変色を防ぐ効果は減弱するが、本発明のように重質炭酸カルシウムと併用する場合には、このような現象が起きないという当業者にも意外な効果が奏されることを見出した。
本発明におけるヒンダードアミン系光安定剤としては、通常HALS(Hindered Amine Light Stabilizers)と略称されるものであり、分子内に2,2,6,6-テトラメチルピペリジン骨格をもつ化合物が好ましい。HALSは市販されているが、中でも分子内にヒンダードフェノール構造を有するものは耐熱変色に対する効果が大きく、フェノール系酸化防止剤と併用する場合に、より好ましい。分子内にヒンダードフェノール構造を有するヒンダードアミン系光安定剤としては、BASFジャパン社のチヌビン 144や、三共ライフテック社製のsanol LS-2626等がある。
フェノール系酸化防止剤とヒンダードアミン系光安定剤の質量比(フェノール系酸化防止剤/ヒンダードアミン系光安定剤)は、好ましくは0.2~10、より好ましくは0.5~5、さらに好ましくは1~3である。
また、ヒンダードアミン系光安定剤の含有量は、熱可塑性エラストマー組成物中、好ましくは0.01~1質量%、より好ましくは0.05~0.5質量%である。
本発明の熱可塑性エラストマー組成物は、さらに、ブロッキング防止剤、熱安定剤、紫外線吸収剤、滑剤、結晶核剤、発泡剤、着色剤等の添加剤を含有していてもよい。
また、本発明の熱可塑性エラストマー組成物は、本発明の効果を損なわない範囲で、他の熱可塑性樹脂や熱可塑性エラストマーを含有していてもよい。
本発明の熱可塑性エラストマー組成物は、水添熱可塑性スチレン系エラストマーA、水添熱可塑性スチレン系エラストマーB、ポリフェニレンエーテル樹脂、ゴム用軟化剤、及び重質炭酸カルシウムと、さらに必要に応じて、酸化防止剤、光安定剤、ポリプロピレン等の添加剤を適宜混合し、冷却により固化させて得られる。
本発明でいう「混合」とは、各種原料が良好に混合される方法であれば特に限定されず、各種原料を溶解可能な有機溶媒中に溶解させて混合してもよいし、溶融混練によって混合してもよいが、原料の混合は、各原料が溶融する条件下で行うことが好ましい。
溶融混練する場合には、一般的な押出機を用いることができ、混練状態の向上のため、二軸の押出機を使用することが好ましい。押出機への供給は、予めヘンシェルミキサー等の混合装置を用いて各種成分を混合したものを一つのホッパーから供してもよいし、二つのホッパーにそれぞれの成分を仕込みホッパー下のスクリュー等で定量しながら供してもよい。
熱可塑性エラストマー組成物を構成する原料を混合して得られる生成物は、用途に応じて、ペレット、粉体、シート等の形状とすることができる。例えば、押出機によって溶融混練してストランドに押出し、冷水中で冷却しつつカッターによって円柱状や米粒状等のペレットに切断される。得られたペレットは、通常、射出成形、押出成形によって所定のシート状成形品や金型成形品とする。また、溶融混練物をルーダー等でペレットにし成形加工原料とすることもできる。シート状の熱可塑性エラストマー組成物に、台紙等を貼付した中間製品としてもよい。
本発明の熱可塑性エラストマー組成物のA硬度は、制振性の観点から、50以下であり、好ましくは20~48、より好ましくは30~45である。
本発明の熱可塑性エラストマー組成物の200℃、公称荷重49Nでのメルトマスフローレイトは、流動性及び成形性の観点から、好ましくは0.5~6.0g/10min、より好ましくは1.3~3.5g/10min、さらに好ましくは1.5~2.5g/10minである。
本発明の熱可塑性エラストマー組成物を、常法に従って、適宜加熱成形することにより、成形体が得られる。成形体の製造に用いられる装置には、成形材料を溶融できる任意の成形機を用いることができ、例えば、ニーダー、押出成形機、射出成形機、プレス成形機、ブロー成形機、ミキシングロール等が挙げられる。
本発明の熱可塑性エラストマー組成物は、制振性に優れているため、その成形体は制振部材として用いられる。また、制振性と共に耐圧縮永久歪性に優れ、成形性にも優れていることから、電動機の回転軸受として用いることで、振動や騒音を長期間安定して抑えることができるものである。
従って、本発明ではさらに、本発明の制振部材を備えた、電動機用回転子を提供する。
電動機用回転子としては、ブラシレス型のものが好ましく、一般的なブラシレスタイプの電動機用回転子は、主要な部品として、回転子の軸と、軸を固定する内周部と、回転子の外周部となる電磁鋼板や永久磁石等の磁力体と、内周部と外周部を連結する締結部材の4つ部品から構成されており、これらの部品の他、必要に応じて、外周部の表面に、さらに磁石部品による外層等を有していてもよい。回転子において、本発明の制振部材は締結部材として使用し、内周部と外周部の間に充填され、一体成形されていても、他の部材と別部品として成形し、組み立てにより内周部と外周部の間にはめ込まれていてもよい。
以下に、実施例により本発明を具体的に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。実施例及び比較例で使用した原料の各種物性は、以下の方法により測定した。
<成分A及び成分B(水添熱可塑性スチレン系エラストマー)>
〔スチレン系単量体の含有量〕
核磁気共鳴装置(ドイツ国BRUKER社製、DPX-400)によって、プロトンNMR測定を行い、スチレンの特性基の定量を行うことによってスチレン及び/又はスチレン誘導体の含有量を決定する。他の単量体単位の含有量もプロトンNMR測定により求めることができる。
〔スチレン系単量体の含有量〕
核磁気共鳴装置(ドイツ国BRUKER社製、DPX-400)によって、プロトンNMR測定を行い、スチレンの特性基の定量を行うことによってスチレン及び/又はスチレン誘導体の含有量を決定する。他の単量体単位の含有量もプロトンNMR測定により求めることができる。
〔重量平均分子量(Mw)〕
以下の測定条件で、ゲルパーミエーションクロマトグラフにより、ポリスチレン換算で分子量を測定し、重量平均分子量を求める。
以下の測定条件で、ゲルパーミエーションクロマトグラフにより、ポリスチレン換算で分子量を測定し、重量平均分子量を求める。
測定装置
・ポンプ:JASCO(日本分光(株))製、PU-980
・カラムオーブン:昭和電工(株)製、AO-50
・検出器:日立製、RI(示差屈折計)検出器 L-3300
・カラム種類:昭和電工(株)製「K-805L(8.0×300mm)」及び「K-804L(8.0×300mm)」各1本を直列使用
・カラム温度:40℃
・ガードカラム:K-G(4.6×10mm)
・溶離液:クロロホルム
・溶離液流量:1.0ml/min
・試料濃度:約1mg/ml
・試料溶液ろ過:ポリテトラフルオロエチレン製0.45μm孔径ディスポーザブルフィルタ
・検量線用標準試料:昭和電工(株)製ポリスチレン
・ポンプ:JASCO(日本分光(株))製、PU-980
・カラムオーブン:昭和電工(株)製、AO-50
・検出器:日立製、RI(示差屈折計)検出器 L-3300
・カラム種類:昭和電工(株)製「K-805L(8.0×300mm)」及び「K-804L(8.0×300mm)」各1本を直列使用
・カラム温度:40℃
・ガードカラム:K-G(4.6×10mm)
・溶離液:クロロホルム
・溶離液流量:1.0ml/min
・試料濃度:約1mg/ml
・試料溶液ろ過:ポリテトラフルオロエチレン製0.45μm孔径ディスポーザブルフィルタ
・検量線用標準試料:昭和電工(株)製ポリスチレン
〔共役ジエン化合物重合体ブロックにおける1,2-ビニル結合量〕
水素添加前のブロック共重合体をCDCl3に溶解して1H-NMRスペクトルを測定[装置:JNM-Lambda 500(日本電子(株)製)、測定温度:50℃]し、共役ジエン化合物由来の構造単位の全ピーク面積と、イソプレン単位における1,2-ビニル結合単位及び3,4-ビニル結合単位、ブタジエン単位における1,2-ビニル結合単位、またイソプレンとブタジエンの混合物の場合にはそれぞれの前記結合単位に対応するピーク面積の比から、1,2-ビニル結合量又は1,2-ビニル結合量と3,4-ビニル結合量の合計を算出する。
水素添加前のブロック共重合体をCDCl3に溶解して1H-NMRスペクトルを測定[装置:JNM-Lambda 500(日本電子(株)製)、測定温度:50℃]し、共役ジエン化合物由来の構造単位の全ピーク面積と、イソプレン単位における1,2-ビニル結合単位及び3,4-ビニル結合単位、ブタジエン単位における1,2-ビニル結合単位、またイソプレンとブタジエンの混合物の場合にはそれぞれの前記結合単位に対応するピーク面積の比から、1,2-ビニル結合量又は1,2-ビニル結合量と3,4-ビニル結合量の合計を算出する。
<成分C(ポリフェニレンエーテル樹脂)>
〔数平均分子量(Mn)〕
成分A及びBの重量平均分子量と同様の方法により、分子量を測定し、数平均分子量を算出する。
〔数平均分子量(Mn)〕
成分A及びBの重量平均分子量と同様の方法により、分子量を測定し、数平均分子量を算出する。
<成分D(ゴム用軟化剤)>
〔動粘度〕
JIS Z 8803に従って、40℃の温度で測定する。
〔動粘度〕
JIS Z 8803に従って、40℃の温度で測定する。
<成分E(重質炭酸カルシウム等)>
〔体積基準メジアン径〕
JIS M8511に定めるレーザー回折・散乱法に準じて、試料0.1gを10mLの脱イオン水に分散させ、70wの超音波で30秒間分散させたスラリーを、マルバーン社製「マスターサイザー2000」によりで粒度分布を測定し、体積基準の積算分率における50%値を体積基準メジアン径とする。
〔体積基準メジアン径〕
JIS M8511に定めるレーザー回折・散乱法に準じて、試料0.1gを10mLの脱イオン水に分散させ、70wの超音波で30秒間分散させたスラリーを、マルバーン社製「マスターサイザー2000」によりで粒度分布を測定し、体積基準の積算分率における50%値を体積基準メジアン径とする。
〔比表面積〕
比表面積はJIS Z8830「気体吸着による粉体(固体)の比表面積測定方法」に準じて測定する。具体的には、ガス吸着量の絶対値が装置の測定可能範囲に入るように適量に加減した試料をガラスセルに秤量し、マルバーン社製「AUTOSORB-1」によって窒素吸着量を測定し、比表面積を算出する。これはいわゆるBET法比表面積であり、微小粒子が多くなるほど比表面積は大きくなる。
比表面積はJIS Z8830「気体吸着による粉体(固体)の比表面積測定方法」に準じて測定する。具体的には、ガス吸着量の絶対値が装置の測定可能範囲に入るように適量に加減した試料をガラスセルに秤量し、マルバーン社製「AUTOSORB-1」によって窒素吸着量を測定し、比表面積を算出する。これはいわゆるBET法比表面積であり、微小粒子が多くなるほど比表面積は大きくなる。
<成分F(ポリプロピレン)>
〔メルトマスフローレイト(MFR)〕
ASTM D1238に準拠して、230℃、公称荷重21.2Nの条件で測定する。
〔メルトマスフローレイト(MFR)〕
ASTM D1238に準拠して、230℃、公称荷重21.2Nの条件で測定する。
〔曲げ弾性率〕
JIS K7171に準拠した方法により測定する。
JIS K7171に準拠した方法により測定する。
重質炭酸カルシウムの製造例
白色結晶質石灰石を、ハンマークラッシャーにより粗粉砕し、目開き10mmの振動篩を通過する粗粉砕物を得た。次に、この粗粉砕物をジルコニアボールと共にバッチ式振動ボールミルにて微粉砕し、表1に示す粒度を有する重質炭酸カルシウムa~cを製造した。
白色結晶質石灰石を、ハンマークラッシャーにより粗粉砕し、目開き10mmの振動篩を通過する粗粉砕物を得た。次に、この粗粉砕物をジルコニアボールと共にバッチ式振動ボールミルにて微粉砕し、表1に示す粒度を有する重質炭酸カルシウムa~cを製造した。
さらに、炭酸カルシウムa~cを、気流式分級機(日清エンジニアリング社製、TC-15)を用いて分級し、表1に示す分級微粉、分級中粒粉、及び分級粗大粉の3種類に選別した。
実施例1~12及び比較例1~4
(1)熱可塑性エラストマー組成物(ペレット)の作製
軟化剤以外の表9に示す材料をドライブレンドした後、これに軟化剤を含浸させて混合物を作製した。その後、混合物を下記の条件で、押出機で溶融混練して、ストランドに押出し、冷水中で冷却しつつカッターによって、直径3mm程度、厚さ3mm程度に切断し、熱可塑性エラストマー組成物のペレットを製造した。
(1)熱可塑性エラストマー組成物(ペレット)の作製
軟化剤以外の表9に示す材料をドライブレンドした後、これに軟化剤を含浸させて混合物を作製した。その後、混合物を下記の条件で、押出機で溶融混練して、ストランドに押出し、冷水中で冷却しつつカッターによって、直径3mm程度、厚さ3mm程度に切断し、熱可塑性エラストマー組成物のペレットを製造した。
〔溶融混練条件〕
押出機:KZW32TW-60MG-NH(商品名、(株)テクノベル製)
シリンダー温度:180~220℃
スクリュー回転数:300r/min
押出機:KZW32TW-60MG-NH(商品名、(株)テクノベル製)
シリンダー温度:180~220℃
スクリュー回転数:300r/min
実施例及び比較例で使用した表9に記載の原料の詳細は以下の通り。
(2) 熱可塑性エラストマー組成物の成形体の作製
ペレットを、下記の条件で射出成形し、幅125mm×長さ125mm×厚さ2mmのプレートを作製した。
ペレットを、下記の条件で射出成形し、幅125mm×長さ125mm×厚さ2mmのプレートを作製した。
〔射出成形条件〕
射出成形機:100MSIII-10E(商品名、三菱重工業(株)製)
射出成形温度:200℃
射出圧力:30%
射出時間:10sec
金型温度:40℃
射出成形機:100MSIII-10E(商品名、三菱重工業(株)製)
射出成形温度:200℃
射出圧力:30%
射出時間:10sec
金型温度:40℃
実施例及び比較例で得られた熱可塑性エラストマー組成物について、前記ペレット又はプレートを用い、下記の評価を行った。結果を表9に示す。
〔柔軟性(A硬度)〕
プレートを用い、JIS K 6253-3 タイプAにて測定する。
プレートを用い、JIS K 6253-3 タイプAにて測定する。
〔成形性〕
(1) メルトマスフローレイト(MFR)
ペレットを用い、ASTM D1238に準拠して、200℃、公称荷重49Nの条件で測定した。
(1) メルトマスフローレイト(MFR)
ペレットを用い、ASTM D1238に準拠して、200℃、公称荷重49Nの条件で測定した。
(2) 成形体の表面性状
プレートの表面性状を目視にて観察し、下記評価基準に基づいて評価した。
<評価基準>
◎:プレートにヒケ・フローマークがなく、鏡面性も良好。
○:プレート表面にわずかなくもりがあるが、ヒケ・フローマークはない。
△:プレートにヒケ・フローマークのいずれかが発生。
×:プレートにヒケ・フローマークの両方が発生。
プレートの表面性状を目視にて観察し、下記評価基準に基づいて評価した。
<評価基準>
◎:プレートにヒケ・フローマークがなく、鏡面性も良好。
○:プレート表面にわずかなくもりがあるが、ヒケ・フローマークはない。
△:プレートにヒケ・フローマークのいずれかが発生。
×:プレートにヒケ・フローマークの両方が発生。
〔ベタツキ〕
プレートの表面を指触して、明らかなベタツキの有無を判断し、以下の評価基準に従って評価した。
<評価基準>
◎:表面はサラサラで、ベタツキは一切感じない。
○:指に追従してこないが、若干のベタツキを感じる。
×:指触した際に指に追従してくるレベル。
プレートの表面を指触して、明らかなベタツキの有無を判断し、以下の評価基準に従って評価した。
<評価基準>
◎:表面はサラサラで、ベタツキは一切感じない。
○:指に追従してこないが、若干のベタツキを感じる。
×:指触した際に指に追従してくるレベル。
〔耐熱変色性〕
プレートを120℃のギヤオーブンで500時間加熱した。加熱前のプレートと加熱後のプレートの色差を目視で比較し、以下の評価基準に従って評価した。
<評価基準>
◎:並べてみても目視で色差が感じられない。
○:離して比べると差が分からないが、並べてみると色差が感じられる程度の変色がある。
×:明らかに加熱変色している。
プレートを120℃のギヤオーブンで500時間加熱した。加熱前のプレートと加熱後のプレートの色差を目視で比較し、以下の評価基準に従って評価した。
<評価基準>
◎:並べてみても目視で色差が感じられない。
○:離して比べると差が分からないが、並べてみると色差が感じられる程度の変色がある。
×:明らかに加熱変色している。
〔制振性(損失正接(tanδ))〕
TAインスツルメント社製のARES G-2に、幅12mmに切断したプレートを試験片としてセットし、長さ25mm間でのトーションモード(ねじり)で、昇温速度5℃/minで-60℃~200℃まで30Hzにて粘弾性を測定し、20℃における損失正接(tanδ)を算出した。
TAインスツルメント社製のARES G-2に、幅12mmに切断したプレートを試験片としてセットし、長さ25mm間でのトーションモード(ねじり)で、昇温速度5℃/minで-60℃~200℃まで30Hzにて粘弾性を測定し、20℃における損失正接(tanδ)を算出した。
〔耐圧縮永久歪性〕
円盤状成形体を試験片として用い、JIS K6262に規定される圧縮永久歪試験によって測定した。具体的には、プレートを円盤状に打ち抜いて7枚重ね、熱プレスによって試験片の直径及び厚さがそれぞれ、29.0±0.5mm(直径)、12.5mm±0.5mm(厚さ)である測定片を作製し、標準温度(23.2±2℃)において初期寸法を測定した。厚さ9.3~9.4mmのスペーサをかませた圧縮板に試験片を挟んで、25体積%圧縮の条件で、70℃で24時間保持した後、標準温度で圧縮板を外して30分放置した後の試験片中央部の厚さを測定し、圧縮永久歪の値を算出した。
円盤状成形体を試験片として用い、JIS K6262に規定される圧縮永久歪試験によって測定した。具体的には、プレートを円盤状に打ち抜いて7枚重ね、熱プレスによって試験片の直径及び厚さがそれぞれ、29.0±0.5mm(直径)、12.5mm±0.5mm(厚さ)である測定片を作製し、標準温度(23.2±2℃)において初期寸法を測定した。厚さ9.3~9.4mmのスペーサをかませた圧縮板に試験片を挟んで、25体積%圧縮の条件で、70℃で24時間保持した後、標準温度で圧縮板を外して30分放置した後の試験片中央部の厚さを測定し、圧縮永久歪の値を算出した。
以上の結果より、実施例1~12の組成物は、制振性とともに、耐圧縮永久歪性及び成形性にも優れており、柔軟性に優れ、ベタツキや熱変色も抑制されていることが分かる。なかでも、実施例1、2、4と実施例6、7の対比から、重質炭酸カルシウムの粒度を調整することで、上記特性がより高いレベルで維持されることが分かる。
これに対し、軽質炭酸カルシウムを用いた比較例1では、組成物が硬くなり、制振性が低下しており、タルクを用いた比較例2では、制振性と耐圧縮永久歪性は良好であるものの、ベタツキ、熱変色が生じ、成形性にも欠けている。また、ポリフェニレンエーテル樹脂を用いていない比較例3と充填剤を用いていない比較例4では、流動性は良好であるものの、耐圧縮永久歪性に欠けている。
これに対し、軽質炭酸カルシウムを用いた比較例1では、組成物が硬くなり、制振性が低下しており、タルクを用いた比較例2では、制振性と耐圧縮永久歪性は良好であるものの、ベタツキ、熱変色が生じ、成形性にも欠けている。また、ポリフェニレンエーテル樹脂を用いていない比較例3と充填剤を用いていない比較例4では、流動性は良好であるものの、耐圧縮永久歪性に欠けている。
〔騒音測定〕
ブラシレス型の回転子を備えた市販の家庭用ルームエアコンの室外機からファンモーターを取り外し、モーターのケースを分解して回転子を取り出した。回転子内の軸の周りに締結部材としてはめ込まれた防振材を取り外し、実施例1又は比較例1の熱可塑性エラストマー組成物を用いて同じ形に成形した防振材をはめ込んで、実施例1又は比較例1の熱可塑性エラストマー組成物を用いた回転子を再構成し、ファンモーターに戻して室外機にセットした。
室外機を70℃の恒温室内におき、ファンモーターが1000rpmの一定回転速度で回転するようにして3000時間連続運転し、運転開始時と連続運転後のA特性音圧を、カスタム社製のデジタル騒音計「MRS-1」を用いて、JIS Z8731に準拠した方法により測定した。結果を表10に示す。
ブラシレス型の回転子を備えた市販の家庭用ルームエアコンの室外機からファンモーターを取り外し、モーターのケースを分解して回転子を取り出した。回転子内の軸の周りに締結部材としてはめ込まれた防振材を取り外し、実施例1又は比較例1の熱可塑性エラストマー組成物を用いて同じ形に成形した防振材をはめ込んで、実施例1又は比較例1の熱可塑性エラストマー組成物を用いた回転子を再構成し、ファンモーターに戻して室外機にセットした。
室外機を70℃の恒温室内におき、ファンモーターが1000rpmの一定回転速度で回転するようにして3000時間連続運転し、運転開始時と連続運転後のA特性音圧を、カスタム社製のデジタル騒音計「MRS-1」を用いて、JIS Z8731に準拠した方法により測定した。結果を表10に示す。
騒音測定の結果より、実施例1では、比較例1と対比して、連続運転後も騒音の上昇が抑制されていることが分かる。
本発明の制振部材用熱可塑性エラストマー組成物は、家電製品や自動車部品、スポーツ用品等の騒音・振動対策に適用される制振部材に用いられる。
Claims (6)
- スチレン系重合体ブロック(S1)と共役ジエン化合物重合体ブロック(B1)とからなるブロック共重合体の水素添加物であり、共役ジエン化合物重合体ブロック(B1)の1,2-ビニル結合量が50質量%以上である水添熱可塑性スチレン系エラストマーAと、スチレン系重合体ブロック(S2)と共役ジエン化合物重合体ブロック(B2)とからなるブロック共重合体の水素添加物であり、共役ジエン化合物重合体ブロック(B2)の1,2-ビニル結合量が50質量%未満である水添熱可塑性スチレン系エラストマーBとを、5/95~55/45の質量比(水添熱可塑性スチレン系エラストマーA/水添熱可塑性スチレン系エラストマーB)で含有し、該水添熱可塑性スチレン系エラストマーAと該水添熱可塑性スチレン系エラストマーBの合計100質量部に対して、ポリフェニレンエーテル樹脂を10~200質量部、ゴム用軟化剤を50~1000質量部、及び重質炭酸カルシウムを10~300質量部を含有し、A硬度が50以下である、制振部材用熱可塑性エラストマー組成物。
- 重質炭酸カルシウムの、体積基準メジアン径が0.5~10μmであり、比表面積が0.3~3.0m2/gである、請求項1記載の熱可塑性エラストマー組成物。
- さらに、フェノール系酸化防止剤及びヒンダードアミン系光安定剤を含有する、請求項1又は2記載の熱可塑性エラストマー組成物。
- さらに、ポリプロピレンを含有する、請求項1~3いずれか記載の熱可塑性エラストマー組成物。
- 請求項1~4いずれか記載の熱可塑性エラストマー組成物の成形体である、制振部材。
- 請求項5記載の制振部材を備えた、電動機用回転子。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980096594.1A CN113825820B (zh) | 2019-05-21 | 2019-05-21 | 阻尼构件用热塑性弹性体组合物 |
PCT/JP2019/020135 WO2020235006A1 (ja) | 2019-05-21 | 2019-05-21 | 制振部材用熱可塑性エラストマー組成物 |
JP2021519944A JP7239691B2 (ja) | 2019-05-21 | 2019-05-21 | 制振部材用熱可塑性エラストマー組成物 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/020135 WO2020235006A1 (ja) | 2019-05-21 | 2019-05-21 | 制振部材用熱可塑性エラストマー組成物 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020235006A1 true WO2020235006A1 (ja) | 2020-11-26 |
Family
ID=73458976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/020135 WO2020235006A1 (ja) | 2019-05-21 | 2019-05-21 | 制振部材用熱可塑性エラストマー組成物 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7239691B2 (ja) |
CN (1) | CN113825820B (ja) |
WO (1) | WO2020235006A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7182333B1 (ja) | 2022-08-17 | 2022-12-02 | 株式会社Tbm | 樹脂組成物及び成形品 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62256845A (ja) * | 1986-04-30 | 1987-11-09 | Asahi Chem Ind Co Ltd | 高充填組成物 |
JP2006206715A (ja) * | 2005-01-27 | 2006-08-10 | Dow Corning Toray Co Ltd | 車両モールディング用熱可塑性エラストマー組成物および車両用モールディング付きガラス板 |
JP2009091384A (ja) * | 2007-10-03 | 2009-04-30 | Aron Kasei Co Ltd | 熱可塑性樹脂配合物、および複合材料、および複合材料の製造方法 |
JP2011074233A (ja) * | 2009-09-30 | 2011-04-14 | Nitto Denko Corp | 制振組成物、制振基材および制振シート |
JP2011074168A (ja) * | 2009-09-30 | 2011-04-14 | Kuraray Co Ltd | ホットメルトシーラント |
JP2012219150A (ja) * | 2011-04-06 | 2012-11-12 | Sumitomo Rubber Ind Ltd | 高減衰組成物 |
WO2014073327A1 (ja) * | 2012-11-09 | 2014-05-15 | 北川工業株式会社 | 制振性材料 |
JP2014118516A (ja) * | 2012-12-18 | 2014-06-30 | Sumitomo Rubber Ind Ltd | 高減衰組成物および制振用ダンパ |
JP2018197329A (ja) * | 2017-05-25 | 2018-12-13 | 株式会社カネカ | 室温硬化性組成物 |
JP2019001950A (ja) * | 2017-06-19 | 2019-01-10 | 東レ株式会社 | 制振部材用ポリアミド樹脂、および制振部材用ポリアミド樹脂組成物、ならびにそれらの成形品 |
JP2019073680A (ja) * | 2017-10-11 | 2019-05-16 | 株式会社カネカ | 硬化性組成物 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3364960B2 (ja) * | 1992-09-04 | 2003-01-08 | 松下電器産業株式会社 | 永久磁石電動機の回転子 |
JP2003235188A (ja) * | 2002-02-08 | 2003-08-22 | Bridgestone Corp | 永久磁石電動機の回転子およびその製造方法 |
JP4287126B2 (ja) * | 2002-11-11 | 2009-07-01 | 株式会社カネカ | 熱可塑性エラストマー組成物 |
JP5247276B2 (ja) * | 2008-07-16 | 2013-07-24 | アロン化成株式会社 | 耐熱制振性エラストマー組成物 |
JP2013159635A (ja) * | 2012-02-01 | 2013-08-19 | Bridgestone Corp | 熱可塑性エラストマー組成物 |
KR20160096610A (ko) * | 2013-12-11 | 2016-08-16 | 주식회사 쿠라레 | 실란트 |
CN107189454B (zh) * | 2017-07-20 | 2020-05-19 | 广东创弘材料科技有限公司 | 热塑性硫化弹性体组合物及其制备方法、用途 |
CN109651750A (zh) * | 2018-11-29 | 2019-04-19 | 徐建 | 一种高强度的热塑性橡胶 |
-
2019
- 2019-05-21 WO PCT/JP2019/020135 patent/WO2020235006A1/ja active Application Filing
- 2019-05-21 CN CN201980096594.1A patent/CN113825820B/zh active Active
- 2019-05-21 JP JP2021519944A patent/JP7239691B2/ja active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62256845A (ja) * | 1986-04-30 | 1987-11-09 | Asahi Chem Ind Co Ltd | 高充填組成物 |
JP2006206715A (ja) * | 2005-01-27 | 2006-08-10 | Dow Corning Toray Co Ltd | 車両モールディング用熱可塑性エラストマー組成物および車両用モールディング付きガラス板 |
JP2009091384A (ja) * | 2007-10-03 | 2009-04-30 | Aron Kasei Co Ltd | 熱可塑性樹脂配合物、および複合材料、および複合材料の製造方法 |
JP2011074233A (ja) * | 2009-09-30 | 2011-04-14 | Nitto Denko Corp | 制振組成物、制振基材および制振シート |
JP2011074168A (ja) * | 2009-09-30 | 2011-04-14 | Kuraray Co Ltd | ホットメルトシーラント |
JP2012219150A (ja) * | 2011-04-06 | 2012-11-12 | Sumitomo Rubber Ind Ltd | 高減衰組成物 |
WO2014073327A1 (ja) * | 2012-11-09 | 2014-05-15 | 北川工業株式会社 | 制振性材料 |
JP2014118516A (ja) * | 2012-12-18 | 2014-06-30 | Sumitomo Rubber Ind Ltd | 高減衰組成物および制振用ダンパ |
JP2018197329A (ja) * | 2017-05-25 | 2018-12-13 | 株式会社カネカ | 室温硬化性組成物 |
JP2019001950A (ja) * | 2017-06-19 | 2019-01-10 | 東レ株式会社 | 制振部材用ポリアミド樹脂、および制振部材用ポリアミド樹脂組成物、ならびにそれらの成形品 |
JP2019073680A (ja) * | 2017-10-11 | 2019-05-16 | 株式会社カネカ | 硬化性組成物 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7182333B1 (ja) | 2022-08-17 | 2022-12-02 | 株式会社Tbm | 樹脂組成物及び成形品 |
WO2024038765A1 (ja) * | 2022-08-17 | 2024-02-22 | 株式会社Tbm | 樹脂組成物及び成形品 |
JP2024027356A (ja) * | 2022-08-17 | 2024-03-01 | 株式会社Tbm | 樹脂組成物及び成形品 |
Also Published As
Publication number | Publication date |
---|---|
JP7239691B2 (ja) | 2023-03-14 |
CN113825820B (zh) | 2024-07-02 |
JPWO2020235006A1 (ja) | 2020-11-26 |
CN113825820A (zh) | 2021-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7786206B2 (en) | Thermoplastic resin composition | |
JP6033411B2 (ja) | ゴム組成物、その形成方法および該組成物を含む自動車用タイヤ | |
JP5570440B2 (ja) | 樹脂組成物、熱可塑性樹脂組成物および該樹脂組成物の製造方法ならびに該樹脂組成物を成形して得られる成形体 | |
WO2005030872A1 (ja) | ポリフェニレンエーテル樹脂組成物の製造方法 | |
KR20080054401A (ko) | 강화 스티렌계 수지 조성물, 방법 및 물품 | |
EP1633808A1 (en) | Method for making a conductive thermoplastic composition | |
WO2020235006A1 (ja) | 制振部材用熱可塑性エラストマー組成物 | |
JP6507039B2 (ja) | 樹脂組成物、成形品、フィルムおよび積層フィルム | |
JP2007295239A (ja) | 音響機器用樹脂成形体 | |
JP2008189744A (ja) | 無機フィラー強化スチレン系樹脂組成物 | |
JP2008195883A (ja) | 樹脂組成物の製造方法 | |
JP6035453B2 (ja) | 靴形成用部材、靴形成用部材の製造方法、及び、靴 | |
JP6175339B2 (ja) | 樹脂組成物及びその成形体 | |
JP5647480B2 (ja) | 軋み音を低減した熱可塑性樹脂組成物製接触用部品 | |
JP2010189603A (ja) | 電子線架橋性エラストマー組成物および成形体の製造方法 | |
JP4455256B2 (ja) | 耐油性に優れたポリフェニレンエーテル樹脂組成物 | |
JPH1112457A (ja) | 制振性に優れたポリフェニレンエーテル系樹脂組成物 | |
JP7206414B2 (ja) | 樹脂組成物及びその製造方法、成形体、機械部品、並びに筐体 | |
JP5977316B2 (ja) | 軋み音を低減した熱可塑性樹脂組成物及び成形品 | |
JP4836433B2 (ja) | 難燃ポリフェニレンエーテル樹脂組成物 | |
JP7157257B2 (ja) | 熱可塑性エラストマー組成物 | |
EP3978567A1 (en) | Thermoplastic resin composition | |
JPH0539386A (ja) | 耐油性に優れた水添ブロツク共重合体組成物 | |
JP2003292799A (ja) | 充填材マスターバッチ及び熱可塑性エラストマー組成物 | |
US9522992B1 (en) | Polypropylene-based resin composition and molded article thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19929945 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021519944 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19929945 Country of ref document: EP Kind code of ref document: A1 |