WO2020233279A1 - Procédé de traitement d'une fibre optique monocristalline de diamètre uniforme - Google Patents
Procédé de traitement d'une fibre optique monocristalline de diamètre uniforme Download PDFInfo
- Publication number
- WO2020233279A1 WO2020233279A1 PCT/CN2020/084443 CN2020084443W WO2020233279A1 WO 2020233279 A1 WO2020233279 A1 WO 2020233279A1 CN 2020084443 W CN2020084443 W CN 2020084443W WO 2020233279 A1 WO2020233279 A1 WO 2020233279A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- diameter
- crystal
- optical fiber
- single crystal
- fiber
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28D—WORKING STONE OR STONE-LIKE MATERIALS
- B28D5/00—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
- C30B29/20—Aluminium oxides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
- C30B29/22—Complex oxides
- C30B29/28—Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
- C30B33/08—Etching
- C30B33/10—Etching in solutions or melts
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
Definitions
- the invention belongs to the field of crystal processing, and particularly relates to a method for processing a single crystal optical fiber with uniform diameter.
- Fiber refers to a slender round rod with a diameter on the order of micrometers to millimeters. Materials that meet this condition can be called fibers and are used to transmit light.
- the fiber of the signal is called an optical fiber.
- Fibers of different crystal materials have been widely used in various application fields, such as sapphire fiber. Because the hardness of sapphire crystal (Mohs 9) is second only to diamond, it has high hardness and strength, wear resistance, and high temperature resistance. The characteristics of sapphire fiber and a series of characteristics such as stable chemical properties, acid and alkali corrosion resistance, so sapphire fiber is used as a metal-based reinforcement material in the aviation industry; sapphire crystal has good transmission performance in the visible light to 5.6um spectral range, and is used in military Used for electro-optical aiming; used in medicine to transmit the 2.94 ⁇ m laser of Er:YAG laser; due to the high melting point and optical properties of sapphire, it can be used for high temperature measurement in industry.
- the commonly used laser crystal yttrium aluminum garnet (YAG) crystal has a thermal conductivity of ⁇ 14W/mK, and the thermal conductivity of yttrium aluminate (YAP) crystal also exceeds ⁇ 11W/mK, which is higher than that of quartz glass. Therefore, single crystal can be considered as the matrix of the active fiber, and its high thermal conductivity can be used to improve the heat dissipation performance of the fiber itself, reduce the cooling requirements of the system, simplify the complexity of the system, and improve the output of the laser power and beam quality Performance.
- YAG yttrium aluminum garnet
- YAP yttrium aluminate
- Oxide single crystal fibers are widely used in linear and nonlinear optical devices. Can make transmission elements, activation elements and nonlinear optical elements, etc. The manufacture of these components requires single crystal fibers to be uniform in size and contain very few defects. For a single crystal fiber with a diameter of 25 ⁇ m and a length of 5 cm, a 1% diameter fluctuation will cause a 25% optical transmission loss. For the production of single crystal fiber for nonlinear components, the diameter fluctuation requirement is less than 0.1 to 1%. As we all know, the optical loss of a single crystal is mainly caused by diameter fluctuations and various crystal defects.
- rods with uniform size and few defects can be selected by mechanical processing, while single crystal fibers have a small diameter (usually ⁇ 500 ⁇ m), and it is difficult to process single crystal fibers with a diameter of less than 2mm by mechanical processing. Especially when the optical fiber length>100mm, the processing yield is less than 60%. Crystal fibers with a diameter of less than 2 mm are usually obtained by crystal growth.
- the existing common methods for growing oxide crystal fibers include micro pull-down method, laser heating pedestal method, and guided mode method, all of which face the problem of large fluctuations in fiber diameter. Therefore, how to obtain crystal fibers with uniform diameter has become an important research topic.
- the purpose of the present invention is to solve the problem that it is difficult to obtain a single crystal fiber with uniform diameter in the prior art.
- the present invention provides a method for processing a single crystal fiber with uniform diameter, which is simple to operate, easy to process, and obtainable.
- the specific method steps of crystal fibers with uniform diameters of different oxide single crystals are:
- step (4) the concentration of the concentrated sulfuric acid solution is 90%-99.8%, the concentration of the concentrated phosphoric acid solution is 60%-90%, and the molar ratio of concentrated sulfuric acid and concentrated phosphoric acid is (1.5-3.5): 1.
- the optical fiber is a sapphire or garnet optical fiber.
- the method for processing a single crystal optical fiber with uniform diameter involves immersing a crystal rod in concentrated sulfuric acid and concentrated phosphoric acid with a molar ratio of (1.5-3.5):1, wherein the concentration of the concentrated sulfuric acid solution is 90%-99.8% , The concentration of the concentrated phosphoric acid solution is 60% to 90%, placed together in the muffle furnace, set the appropriate time and temperature under the process conditions, obtain a single crystal fiber with uniform diameter, the diameter is more uniform and accurate, Simple and easy to process.
- Figure 1 is a scanning electron micrograph of a fiber with a diameter of 800 ⁇ m obtained in the present invention.
- a method for processing a single crystal fiber with uniform diameter First, crystals with a length of 30-300mm are obtained by pulling or other crystal growth methods; and a uniform diameter of about 1.5-4.5mm is obtained by processing methods of orientation, cutting, and rounding in turn. Place the spheronized crystal rod in a quartz or glassware with a lid of matching length; pour a certain concentration of concentrated sulfuric acid and concentrated phosphoric acid into the above-mentioned container with the crystal rod in turn, and set the height of the acid The height beyond the top of the crystal rod is 1cm-10cm; put the utensils containing the crystal rod and the acid solution into the muffle furnace, and the heating rate is 100-300°C/h, heated to 300-380°C, constant temperature; During the interval of 5-15 minutes, take out the ingot to measure the diameter, and stop the measurement until the required fiber diameter is reached. The measured diameter is drawn as a diameter change curve with time. The drawing curve will get the diameter change rate for precise control of corrosion in the future. time.
- the concentration of the concentrated sulfuric acid, the concentration of the concentrated phosphoric acid solution, and the corrosion time of the concentrated sulfuric acid are determined according to the material type of the optical fiber to be processed, the diameter of the optical fiber and the diameter of the prepared optical fiber.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
L'invention concerne un procédé de traitement d'une fibre optique monocristalline de diamètre uniforme. La fibre optique monocristalline de diamètre uniforme est obtenue par l'obtention d'un cristal de 30 à 300 mm de longueur au moyen d'un procédé de Czochralski ou d'un autre procédé de croissance de cristal, la soumission successive de ce dernier aux opérations de procédé de traitement d'orientation, de coupe et d'arrondissement, de façon à obtenir une barre de cristal, l'immersion de la barre de cristal dans de l'acide sulfurique concentré et de l'acide phosphorique concentré à un rapport molaire de (1,5-3,5) : 1, la concentration de l'acide sulfurique concentré étant de 90 à 99,8 %, et la concentration de l'acide phosphorique concentré étant de 60 à 90 %, puis le placement de cette dernière dans un four à moufle et le chauffage de cette dernière jusqu'à ébullition, et le réglage de conditions de traitement appropriées pour le temps et la température ; la taille de diamètre de cette dernière est uniforme et précise. Le procédé présente les avantages d'un fonctionnement simple et d'un traitement facile, et convient à une production industrielle.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910424254.9 | 2019-05-21 | ||
CN201910424254.9A CN110257919A (zh) | 2019-05-21 | 2019-05-21 | 一种直径均匀单晶光纤加工方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020233279A1 true WO2020233279A1 (fr) | 2020-11-26 |
Family
ID=67914965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/084443 WO2020233279A1 (fr) | 2019-05-21 | 2020-04-13 | Procédé de traitement d'une fibre optique monocristalline de diamètre uniforme |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110257919A (fr) |
WO (1) | WO2020233279A1 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110257919A (zh) * | 2019-05-21 | 2019-09-20 | 南京同溧晶体材料研究院有限公司 | 一种直径均匀单晶光纤加工方法 |
CN111501104A (zh) * | 2020-04-14 | 2020-08-07 | 中国科学院上海光学精密机械研究所 | 百微米直径稀土掺杂yag晶体纤芯及其制备方法 |
CN111424318B (zh) | 2020-06-10 | 2020-10-16 | 眉山博雅新材料有限公司 | 一种用于制备掺杂yag单晶光纤的方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1460573A (zh) * | 2003-04-25 | 2003-12-10 | 中国科学院上海光学精密机械研究所 | 掺钛蓝宝石晶体激光捧的表面加工方法 |
US20040179796A1 (en) * | 2001-03-09 | 2004-09-16 | Christian Jakobsen | Fabrication of microstructured fibres |
CN102565925A (zh) * | 2012-01-17 | 2012-07-11 | 清华大学 | 一种利用化学腐蚀法制备微细光纤的方法 |
CN104101737A (zh) * | 2014-07-11 | 2014-10-15 | 华中科技大学 | 一种光纤探针的制备方法 |
CN107915400A (zh) * | 2017-10-31 | 2018-04-17 | 华南理工大学 | 一种管‑熔体法制备梯度折射率yas玻璃芯光纤的方法 |
CN110257919A (zh) * | 2019-05-21 | 2019-09-20 | 南京同溧晶体材料研究院有限公司 | 一种直径均匀单晶光纤加工方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007123486A (ja) * | 2005-10-27 | 2007-05-17 | Sumitomo Metal Mining Co Ltd | サファイア基板の表面処理方法 |
CN102166790A (zh) * | 2011-01-21 | 2011-08-31 | 苏州辰轩光电科技有限公司 | 一种去除蓝宝石基片表面粗糙以及伤痕的加工方法 |
CN104651948B (zh) * | 2015-01-12 | 2017-05-31 | 上海应用技术学院 | 一种c面蓝宝石的刻蚀方法 |
CN105420816B (zh) * | 2015-12-24 | 2017-10-03 | 哈尔滨工业大学 | 对称六角星形图形化蓝宝石的制备方法 |
-
2019
- 2019-05-21 CN CN201910424254.9A patent/CN110257919A/zh active Pending
-
2020
- 2020-04-13 WO PCT/CN2020/084443 patent/WO2020233279A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040179796A1 (en) * | 2001-03-09 | 2004-09-16 | Christian Jakobsen | Fabrication of microstructured fibres |
CN1460573A (zh) * | 2003-04-25 | 2003-12-10 | 中国科学院上海光学精密机械研究所 | 掺钛蓝宝石晶体激光捧的表面加工方法 |
CN102565925A (zh) * | 2012-01-17 | 2012-07-11 | 清华大学 | 一种利用化学腐蚀法制备微细光纤的方法 |
CN104101737A (zh) * | 2014-07-11 | 2014-10-15 | 华中科技大学 | 一种光纤探针的制备方法 |
CN107915400A (zh) * | 2017-10-31 | 2018-04-17 | 华南理工大学 | 一种管‑熔体法制备梯度折射率yas玻璃芯光纤的方法 |
CN110257919A (zh) * | 2019-05-21 | 2019-09-20 | 南京同溧晶体材料研究院有限公司 | 一种直径均匀单晶光纤加工方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110257919A (zh) | 2019-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020233279A1 (fr) | Procédé de traitement d'une fibre optique monocristalline de diamètre uniforme | |
Hu et al. | Bulk growth and an efficient mid-IR laser of high-quality Er: YSGG crystals | |
CN106995277B (zh) | 一种硫系玻璃光子晶体光纤预制棒的制备方法 | |
US20190218686A1 (en) | Tellurate crystal, growth method therefor, and use thereof | |
JP5337011B2 (ja) | 磁気光学素子用酸化テルビウム結晶 | |
CN106521625A (zh) | 掺四价铬氧化镓晶体及制备方法与应用 | |
CN104775153A (zh) | 新型磁光单晶材料生长方法 | |
CN104609849B (zh) | Si/Ti掺杂的铽铝石榴石法拉第磁旋光透明陶瓷及其制备方法 | |
Yang et al. | Growth and characterization of Yb: Ho: YAG single crystal fiber | |
CN109161970A (zh) | 一种可视三温区硒化镓单晶生长装置及生长方法 | |
CN108456926A (zh) | 一种晶体包层内生长晶体光纤纤芯的方法 | |
CN103014856B (zh) | 掺铁钛蓝宝石晶片及其制备方法 | |
WANG et al. | Defects and optical property of single-crystal sapphire fibers grown by edge-defined film-fed growth method | |
CN106517764B (zh) | 一种稀土掺杂石英玻璃原料粉的合成方法 | |
CN101880908B (zh) | 一种原生多段式钒酸钇激光晶体的制备方法 | |
CN109137080A (zh) | 一种硒镓钡晶体生长的方法 | |
CN117166051A (zh) | 一种基于逆向激光加热基座法快速生长稀土掺杂铝酸钇晶体的方法 | |
Zhang et al. | Growth and spectroscopic properties investigation of Er: LuYAG and Er/Eu: LuYAG single crystal fibers used in mid-infrared lasers | |
CN115341284B (zh) | 一种高浓度梯度钕掺杂钆钇铝石榴石激光晶体及其制备方法 | |
CN109518270B (zh) | 一种单晶光纤的包层制备方法 | |
JP2008050240A (ja) | セシウムホウ酸化合物結晶の製造方法及びそれにより得られたセシウムホウ酸化合物 | |
CN101328613B (zh) | 光子雪崩机制Zn和Er双掺杂铌酸锂晶体上转换材料的制备方法 | |
CN201406482Y (zh) | 用于顶部籽晶泡生法生长大尺寸钒酸钇晶体的金属发热体 | |
JP2002348196A (ja) | 希土類バナデート単結晶およびその製造方法 | |
Wang et al. | Record size crystal growth and laser performance of Yb-doped lutetium oxide (Yb: Lu 2 O 3) single crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20808763 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20808763 Country of ref document: EP Kind code of ref document: A1 |