CN111501104A - 百微米直径稀土掺杂yag晶体纤芯及其制备方法 - Google Patents

百微米直径稀土掺杂yag晶体纤芯及其制备方法 Download PDF

Info

Publication number
CN111501104A
CN111501104A CN202010288577.2A CN202010288577A CN111501104A CN 111501104 A CN111501104 A CN 111501104A CN 202010288577 A CN202010288577 A CN 202010288577A CN 111501104 A CN111501104 A CN 111501104A
Authority
CN
China
Prior art keywords
diameter
rare earth
sample
yag crystal
fiber core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010288577.2A
Other languages
English (en)
Inventor
申冰磊
于春雷
胡丽丽
王世凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN202010288577.2A priority Critical patent/CN111501104A/zh
Publication of CN111501104A publication Critical patent/CN111501104A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/10Etching in solutions or melts
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/28Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种百微米直径稀土掺杂YAG晶体纤芯的制备方法,本发明方法的加热工具是小型退火炉,加热环境为密闭空间,热量利用率高,浓磷酸的温度分布均匀,通过简单的化学腐蚀就实现了具有较好的端面形状、表面形貌和光学质量的Yb:YAG纤芯的制备。

Description

百微米直径稀土掺杂YAG晶体纤芯及其制备方法
技术领域
本发明涉及材料领域,特别是一种百微米直径稀土掺杂YAG晶体纤芯的制备方法。
背景技术
光纤激光器在工业和通信等领域中有着广泛应用,光纤作为光纤激光器的增益介质,随着光纤激光器的迅速发展有了极大的进步。不同的光纤激光器对增益介质有着不同的性能需求,例如:高功率飞秒脉冲、超短脉冲锁模及可协调等。稀土掺杂YAG(以下简称为RE:YAG),RE(Yb、Er、Nd、Ce、Tm、Ho等):YAG的优点在于热传导效率高,热膨胀系数小,物化性质稳定,机械性能好,稀土离子掺杂浓度较高,受激布里渊散射增益系数小,极限输出功率高等。目前,小直径RE(Yb、Er、Nd、Ce、Tm、Ho等):YAG晶体纤芯的制备方法有激光加热基座生长技术、微下拉法、溶胶凝胶法及化学腐蚀法等,前三种制备方法的设备昂贵,而且制备过程复杂,制备周期长,不利于大规模生产。而化学腐蚀法是一种简单的制备方法,它具有成本低,设备简单,产物直径均匀等特点。
发明内容
本发明的目的在于提供一种一种百微米直径稀土掺杂YAG晶体纤芯的制备方法,该纤芯具有细小直径的YAG晶体结构,较玻璃基质,具有高功率输出、非线性效应低和热损伤小等特点;该制备方法具有低成本、高重复性和短周期等特点。
本发明所采用的技术方案为:
一种百微米直径稀土掺杂YAG晶体纤芯的制备方法,其特点在于,该方法包括以下步骤:
①样品放入浓磷酸并加热:
将市场上获得的直径为500μm,一定长度的稀土掺杂YAG晶体纤芯的样品放入刚玉坩埚,再倒入30mL的85%的浓磷酸,然后迅速将样品转移到退火炉中;
②升温至250℃并保持:
退火炉从室温开始升温,1小时后达到250℃,当温度到达250℃后,保持温度不变,250℃的浓磷酸与所述的样品发生化学反应,经长时间的腐蚀,测量所述的样品的直径,未达到纤芯的目的直径,则继续腐蚀,达到纤芯的目的直径,则进入下一步;
③将样品直接从退火炉中取出取出超声清洗,完成百微米直径稀土掺杂YAG晶体纤芯的制备。
所述的稀土掺杂YAG晶体纤芯的稀土掺杂为Yb、Er、Nd、Ce、Tm或Ho。
所述的纤芯的目的直径范围为100μm~80μm以下。
相比于现有技术,本发明的有益效果如下:
本发明采用浓热的磷酸腐蚀制备Yb:YAG纤芯是首创,本发明方法的加热工具是小型退火炉,加热环境为密闭空间,热量利用率高,浓磷酸的温度分布均匀,通过简单的化学腐蚀就实现了具有较好的端面形状、表面形貌和光学质量的Yb:YAG纤芯的制备。本发明以85%的浓磷酸作为腐蚀剂,刚玉坩埚作为容器,由最初的500μm经过30小时,最终腐蚀得到的RE(Yb、Er、Nd、Ce、Tm、Ho等)YAG晶体纤芯可以直径均匀,直径在100μm左右,而经过36小时,直径可以减小到68μm。
附图说明
图1为本发明实施例1#制备的Yb:YAG纤芯腐蚀前的直径(μm)和端面形状。
图2为本发明实施例1#制备的Yb:YAG纤芯腐蚀后的直径(μm)和端面形状。
图3为本发明实施例1#制备的Yb:YAG纤芯腐蚀前的表面形貌(50×)。
图4为本发明实施例1#制备的Yb:YAG纤芯腐蚀后的表面形貌(×)。
图5为本发明实施例1#制备的Yb:YAG纤芯的腐蚀速率。
具体实施方式
下面结合附图举例对本发明做更详细地描述,但本发明的实施方式不限于此,对未特别说明的工艺参数,可参照常规技术进行。
实施例1
一种百微米直径稀土掺杂YAG晶体纤芯的制备方法,该方法包括以下步骤:
①样品放入浓磷酸并加热:
将市场上获得的直径为500μm,一定长度的稀土掺杂YAG晶体纤芯的样品放入刚玉坩埚,再倒入30mL的85%的浓磷酸,然后迅速将样品转移到退火炉中;
②升温至250℃并保持:
退火炉从室温开始升温,1小时后达到250℃,当温度到达250℃后,保持温度不变,250℃的浓磷酸与所述的样品发生化学反应,经长时间的腐蚀,测量所述的样品的直径,未达到纤芯的目的直径,则继续腐蚀,达到纤芯的目的直径,则进入下一步;
③将样品直接从退火炉中取出取出超声清洗,完成百微米直径稀土掺杂YAG晶体纤芯的制备。
所述的稀土掺杂YAG晶体纤芯的稀土掺杂为Yb、Er、Nd、Ce、Tm或Ho。
实验表明,本发明由最初的500μm经过30小时,最终腐蚀得到的RE(Yb、Er、Nd、Ce、Tm、Ho等)YAG晶体纤芯可以直径均匀,直径在100μm左右,而经过36小时,直径可以减小到68μm。
本发明实例1制备的Yb:YAG纤芯的端面形状和表面形貌的测试结果,分别如图1、图2、图3和图4所示。

Claims (3)

1.一种百微米直径稀土掺杂YAG晶体纤芯的制备方法,其特征在于,该方法包括以下步骤:
①样品放入浓磷酸并加热:
将市场上获得的直径为500μm,一定长度的稀土掺杂YAG晶体纤芯的样品放入刚玉坩埚,再倒入30mL的85%的浓磷酸,然后迅速将样品转移到退火炉中;
②升温至250℃并保持:
退火炉从室温开始升温,1小时后达到250℃,当温度到达250℃后,保持温度不变,250℃的浓磷酸与所述的样品发生化学反应,经长时间的腐蚀,测量所述的样品的直径,未达到纤芯的目的直径,则继续腐蚀,达到纤芯的目的直径,则进入下一步;
③将样品直接从退火炉中取出取出超声清洗,完成百微米直径稀土掺杂YAG晶体纤芯的制备。
2.根据权利要求1所述的百微米直径稀土掺杂YAG晶体纤芯的制备方法,其特征在于,所述的稀土掺杂YAG晶体纤芯的稀土掺杂为Yb、Er、Nd、Ce、Tm或Ho。
3.根据权利要求1所述的百微米直径稀土掺杂YAG晶体纤芯的制备方法,其特征在于,所述的纤芯的目的直径范围为100μm~80μm以下。
CN202010288577.2A 2020-04-14 2020-04-14 百微米直径稀土掺杂yag晶体纤芯及其制备方法 Pending CN111501104A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010288577.2A CN111501104A (zh) 2020-04-14 2020-04-14 百微米直径稀土掺杂yag晶体纤芯及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010288577.2A CN111501104A (zh) 2020-04-14 2020-04-14 百微米直径稀土掺杂yag晶体纤芯及其制备方法

Publications (1)

Publication Number Publication Date
CN111501104A true CN111501104A (zh) 2020-08-07

Family

ID=71869238

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010288577.2A Pending CN111501104A (zh) 2020-04-14 2020-04-14 百微米直径稀土掺杂yag晶体纤芯及其制备方法

Country Status (1)

Country Link
CN (1) CN111501104A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1366098A (zh) * 2002-01-10 2002-08-28 北京工业大学 用于位错密度测定的钒酸盐及掺杂单晶的浸蚀方法
CN110257919A (zh) * 2019-05-21 2019-09-20 南京同溧晶体材料研究院有限公司 一种直径均匀单晶光纤加工方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1366098A (zh) * 2002-01-10 2002-08-28 北京工业大学 用于位错密度测定的钒酸盐及掺杂单晶的浸蚀方法
CN110257919A (zh) * 2019-05-21 2019-09-20 南京同溧晶体材料研究院有限公司 一种直径均匀单晶光纤加工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FELDMAN, R.等: "Thermo-chemical strengthening of Nd:YAG laser rods", 《INTERNATIONAL SOCIETY FOR OPTICS AND PHOTONICS》 *

Similar Documents

Publication Publication Date Title
Tammela et al. The potential of direct nanoparticle deposition for the next generation of optical fibers
CN102023318B (zh) 超大模面积硅酸盐光纤的组成及其制备方法
CN112281213B (zh) 稀土掺杂(LuaScbYc)2O3(a+b+c=1)单晶光纤及其制备方法与应用
CN110927866A (zh) 高增益的稀土掺杂锗酸盐玻璃芯复合玻璃光纤及器件
CN102515500A (zh) 一种掺杂稀土光纤预制棒的制造方法
CN105293892B (zh) 一种高应力有源保偏光纤预制棒的拉丝方法
CN110320592B (zh) 一种单晶玻璃复合光纤及其制备方法
CN106087055B (zh) 一种铝酸钇复合晶体及其制备方法
CN111501104A (zh) 百微米直径稀土掺杂yag晶体纤芯及其制备方法
CN102033249B (zh) 超大模面积偏磷酸盐光纤的组成及其制备方法
CN106082676B (zh) 掺钐、镱的红外吸收高铝硅酸盐微晶玻璃
CN109279774B (zh) 一种锑锗酸盐玻璃及其制备方法
CN214735394U (zh) 一种多玻璃包层光纤的制备装置
CN112851129B (zh) 一种近红外波段宽带发射稀土掺杂铋酸盐光纤玻璃及其制备方法
CN115180815B (zh) 一种稀土掺杂yag晶体芯-玻璃包层复合光纤及其制备方法
CN105271727A (zh) 铒掺杂中红外发光氟锆锌基玻璃及其制备方法
CN210323454U (zh) 一种单晶玻璃复合光纤
CN106483599B (zh) 一种稀土离子掺杂的磷酸盐玻璃微晶光纤
CN109180010B (zh) 一种高增益的Tm3+/Ho3+共掺多组分锗酸盐玻璃单模光纤及其制备方法
CN115373069B (zh) 一种夹心式光纤端帽及制备方法
CN112919814B (zh) 一种Pr3+/Ho3+掺杂ZAlFB光纤玻璃及其制备方法
CN103288352A (zh) SiO2—NaF—Er3+:GGG系玻璃陶瓷及其制备方法
CN103663956A (zh) 利用堆积法制备双包层光纤预制棒的方法
CN112723751B (zh) 一种稀土掺杂锗酸铋单晶光纤及包层方法
CN103073191A (zh) SiO2—NaF—Eu:YAG系玻璃陶瓷制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200807