WO2020226045A1 - 薄膜トランジスタ及びその製造方法 - Google Patents

薄膜トランジスタ及びその製造方法 Download PDF

Info

Publication number
WO2020226045A1
WO2020226045A1 PCT/JP2020/017061 JP2020017061W WO2020226045A1 WO 2020226045 A1 WO2020226045 A1 WO 2020226045A1 JP 2020017061 W JP2020017061 W JP 2020017061W WO 2020226045 A1 WO2020226045 A1 WO 2020226045A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
semiconductor layer
oxide semiconductor
film transistor
metal oxide
Prior art date
Application number
PCT/JP2020/017061
Other languages
English (en)
French (fr)
Inventor
浦岡 行治
パオロ ソリア ベルムンド,フアン
前田 真一
忠之 伊左治
Original Assignee
国立大学法人 奈良先端科学技術大学院大学
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 奈良先端科学技術大学院大学, 日産化学株式会社 filed Critical 国立大学法人 奈良先端科学技術大学院大学
Priority to JP2021518334A priority Critical patent/JPWO2020226045A1/ja
Publication of WO2020226045A1 publication Critical patent/WO2020226045A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present invention relates to a novel thin film transistor and a method for manufacturing the same.
  • the film formation by the coating method can realize the film formation with a simpler configuration (process, device) and at low cost, and is highly produced. In addition to its properties, it is promising in that it enables film formation in a large area and film formation in a more complicated pattern. Therefore, application of the coating method is being studied not only for film formation of semiconductor layers but also for film formation of each layer constituting a thin film transistor.
  • the presence of impurities derived from the precursor used when forming the semiconductor layer, the formation of incomplete metal oxides, and the activation of the channel layer are observed. Due to various factors such as difficulty, it is difficult to realize a channel layer having high mobility, and thus a thin film transistor.
  • An object of the present invention is to provide a top gate type thin film transistor having a high mobility of 12 cm 2 / Vs or more, preferably 18 cm 2 / Vs or more, and a method for manufacturing a top gate type thin film transistor that realizes a high mobility.
  • the present inventors carry out excimer laser light irradiation or YAG laser light irradiation on the metal oxide semiconductor layer, particularly UV light irradiation and excimer laser light.
  • the metal oxide semiconductor layer could be converted into an electrode (conductor) and the metal oxide semiconductor layer could be converted into a channel layer with high mobility.
  • it is a top gate type thin film transistor and completed the present invention.
  • the present invention relates to a top gate type thin film transistor having a mobility of 12 cm 2 / Vs or more as a first aspect.
  • the top gate type thin film transistor according to the first aspect which has a mobility of 18 cm 2 / Vs or more.
  • the top gate type thin film transistor according to the first aspect or the second aspect wherein the top gate type thin film transistor is a top contact type or a bottom contact type.
  • a fourth aspect of the present invention relates to the topgate type thin film transistor according to any one of the first to third aspects, wherein the topgate type thin film transistor has a polysiloxane film containing fluorine as a gate insulating film.
  • the top gate type thin film transistor according to any one of the first to fourth aspects, which is a thin film transistor formed on a glass substrate, a silicon substrate, or a flexible substrate.
  • the thin film contains a metal oxide semiconductor layer, and the metal oxide semiconductor layer contains an oxide of at least one metal atom selected from the group consisting of indium, tin, zinc, gallium, and aluminum.
  • the metal oxide semiconductor layer is made of indium gallium oxide, indium gallium oxide, indium tin oxide, zinc oxide, indium tin oxide, indium zinc oxide, zinc oxide, zinc oxide, zinc oxide, zinc oxide, and tin oxide.
  • the top gate type thin film trans is a layer containing at least one metal oxide selected from the group.
  • a method for manufacturing a top gate type thin film transistor including the following steps (A) to (E).
  • Step of firing to form the metal oxide semiconductor layer (c) Step (C): A step of patterning and etching the metal oxide semiconductor layer (c), Step (D): A step of etching the lower insulating layer (b) using the patterned and etched metal oxide semiconductor layer (c) as a mask pattern.
  • Step: The present invention relates to a method for manufacturing a top gate type thin film transistor, which comprises a step of irradiating an excimer laser beam or a YAG laser beam from above the substrate.
  • the ninth aspect is the method for manufacturing a top gate type thin film transistor according to the eighth aspect, wherein the insulating layer (b) formed in the step (B) is a polysiloxane film containing fluorine.
  • the top gate according to the eighth or ninth aspect wherein the step (E) is a step (E') of irradiating both UV light and excimer laser light or YAG laser light from above the substrate.
  • the present invention relates to a method for manufacturing a type thin film transistor.
  • the eighth or ninth viewpoint wherein the step (E) is a step of irradiating the excimer laser light or the YAG laser light after irradiating the UV light from above the substrate (E ").
  • the present invention relates to a method for manufacturing a top gate type thin film transistor.
  • the composition for forming a metal oxide semiconductor layer contains a metal salt, a first amide compound, and a solvent mainly composed of water.
  • the present invention relates to a method for manufacturing a top gate type thin film transistor.
  • the composition for forming a metal oxide semiconductor layer is applied by a spin coat under the same or different conditions and procedures, and the composition is applied at 110 ° C to 180 ° C.
  • the metal oxide semiconductor is heat-treated for 1 to 30 minutes, and the coating and heat treatment operations are repeated 1 to 10 times, and then the metal oxide semiconductor is heated by firing at 250 ° C. to 350 ° C.
  • the method for manufacturing a top gate type thin film transistor according to any one of the eighth to twelfth viewpoints As a fourteenth aspect, in the step (E), 1 irradiates nano seconds to 120 nano-seconds at 50mJ / cm 2 ⁇ 150mJ / cm 2 excimer laser beam having a wavelength of 150 nm - 380 nm, The method for manufacturing a top gate type thin film transistor according to any one of the eighth to thirteenth viewpoints.
  • step (E) 1 irradiates nano seconds to 120 nano-seconds at 50mJ / cm 2 ⁇ 150mJ / cm 2 the YAG laser beam having a wavelength of 250 nm - 400 nm,
  • the method for manufacturing a top gate type thin film transistor according to any one of the eighth to thirteenth viewpoints From the 16th viewpoint, in the step (E), UV light having a wavelength of 150 nm to 350 nm is irradiated for 1 minute to 120 minutes.
  • it is 12 cm 2 / Vs or more, 18 cm 2 / Vs or more, 20 cm 2 / Vs or more, 30 cm 2 / Vs or more, for example, 12 cm 2 / Vs to 80 cm 2 / Vs, 12 cm 2 / Vs to 70 cm 2.
  • a top gate type thin film transistor can be provided. Further, according to the production method of the present invention, the metal oxide semiconductor layer is activated by irradiation with an excima laser beam or YAG laser beam to convert it into a channel layer having high mobility, thereby further forming the metal oxide semiconductor layer.
  • a top-gate thin film transistor having high mobility can be manufactured by converting it into a conductor (electrode) by irradiating it with UV light.
  • FIG. 1 is a cross-sectional view showing the structure A manufactured in the embodiment.
  • FIG. 2 is a cross-sectional view showing the top gate type thin film transistor manufactured in the example.
  • FIG. 3 is a graph showing the transfer characteristics of the top gate type thin film transistor manufactured in Example 1.
  • FIG. 4 is a graph showing the transfer characteristics of the top gate type thin film transistor manufactured in Example 7.
  • FIG. 5 is a diagram showing steps (A) to (E) in the method for manufacturing a top-gate thin film transistor of the present invention.
  • 6A and 6B are views showing a general top-gate type thin film transistor, FIG. 6A shows a cross section of a top contact type structure, and FIG. 6B shows a cross section of a bottom contact type structure.
  • the thin film transistor (TFT) targeted by the present invention is a top gate type thin film transistor having a mobility of 12 cm 2 / Vs or more, preferably 18 cm 2 / Vs or more.
  • the top-gate thin film transistor targeted by the present invention has high mobility in the range of 12 cm 2 / Vs to 60 cm 2 / Vs, 18 cm 2 / Vs to 50 cm 2 / Vs, or 18 cm 2 / Vs to 40 cm 2 / Vs. Can be obtained.
  • the thin film transistor is structurally classified according to the positional relationship between the semiconductor and the electrode (conductor), and the top gate type thin film transistor in which the gate electrode is arranged above the semiconductor layer, which is the object of the present invention, includes a source electrode and a drain electrode.
  • the top contact type having a structure arranged on the upper side of the semiconductor layer
  • a bottom contact type having a structure in which these electrodes are arranged on the lower side of the semiconductor layer.
  • the top gate type thin film transistor of the present invention includes both top contact type and bottom contact type.
  • FIG. 6 shows a sectional view of a top contact type (FIG. 6 (a)) structure and a cross section of a bottom contact type (FIG. 6 (b)) structure as schematic views showing an example of a general top gate type thin film transistor.
  • FIG. 6A the semiconductor layer 2 (channel 2a) is formed on the substrate 1, and the drain electrode 3 and the source electrode 4 are formed on the semiconductor layer 2.
  • the gate insulating film 5 is formed on the semiconductor layer 2, the drain electrode 3, and the source electrode 4, and the gate electrode 6 is installed on the gate electrode 6. Further, in the example of FIG.
  • a drain electrode 3 and a source electrode 4 are formed on the substrate 1, and a semiconductor layer 2 (channel 2a) is formed so as to cover these electrodes.
  • the gate insulating film 5 is formed on the semiconductor layer 2, and the gate electrode 6 is installed on the gate insulating film 5.
  • the substrate on which the thin film transistor is formed is not particularly limited, and examples thereof include a silicon substrate, a metal substrate, a gallium substrate, a transparent electrode substrate, an organic thin film substrate, a plastic substrate, and a glass substrate. More specifically, for example, plastic films such as polyimide, polycarbonate, polyethylene terephthalate, and polyethylene naphthalate, stainless foil, glass, and the like can be mentioned. Further, it may be a semiconductor substrate or the like on which a circuit element such as a wiring layer or a transistor is formed. Further, it may be a flexible substrate (for example, a flexible substrate) or the like. Above all, a glass substrate, a silicon substrate, a flexible substrate and the like can be preferably used.
  • the thin film of the present invention includes a metal oxide semiconductor layer as a semiconductor layer, and the semiconductor layer is, for example, Li, Be, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Mo, Cd, In, Ir, Sn, Sb, Cs, Ba, La, Hf, Ta, W, It contains an oxide of at least one metal atom selected from the group consisting of Tl, Pb, Bi, Ce, Pr, Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • the semiconductor layer is, for example, Li, Be, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Mo, Cd,
  • the metal oxide semiconductor layer is an oxidation of at least one metal atom selected from the group consisting of indium (In), tin (Sn), zinc (Zn), gallium (Ga), and aluminum (Al). Including things.
  • the metal oxide semiconductor layer is, for example, zinc indium gallium oxide, indium gallium oxide, indium tin oxide, zinc oxide, indium tin oxide, indium zinc oxide, zinc oxide, zinc oxide, tin oxide, that is.
  • the metal oxide semiconductor layer can be formed by using a vacuum method such as a CVD method, a sputtering method, a pulse laser deposition method, or a vacuum vapor deposition method, or a coating method described later.
  • the metal oxide semiconductor layer may be irradiated with excimer laser light or YAG laser light after the layer is formed.
  • the electrode materials (materials for the gate electrode, source electrode, and drain electrode) used for the thin film include metals such as gold, silver, copper, aluminum, molybdenum, and titanium, and Mg / Cu, Mg / Ag, and Mg / Al.
  • different electrode materials may be used for each of the gate electrode, the source electrode, and the drain electrode.
  • a method for forming these electrodes conventional conventional techniques such as vacuum deposition and sputtering can be used, and in order to simplify the manufacturing method, a coating method such as a spray coating method, a printing method, or an inkjet method is adopted. You may.
  • the metal oxide semiconductor layer can be converted into a conductor by irradiation with ultraviolet rays to form an electrode.
  • the gate insulating film includes, for example, an inorganic insulating film such as silicon oxide, silicon nitride, aluminum oxide, hafnium oxide, and yttrium oxide, polyimide, polymethylmethacrylate, polyvinylphenol, benzocyclobutene, and silicone (for example, polysiloxane).
  • organic insulating films such as, which may contain a halogen element.
  • a fluorine-containing polysiloxane film (such as a film containing fluorine-modified polysiloxane) can be used as a gate insulating film.
  • the gate insulating film can be formed by conventional conventional techniques such as vacuum deposition and sputtering, but in order to simplify the manufacturing method, a coating method such as a spray coating method, a printing method, or an inkjet method can also be adopted.
  • a coating method such as a spray coating method, a printing method, or an inkjet method can also be adopted.
  • the gate insulating film can also be formed by oxidation with heat.
  • the insulating film-forming coating liquid may contain a surfactant in order to improve the film-forming property of the insulating film-forming coating liquid on the substrate.
  • the manufacturing method of the top gate type thin film transistor of the present invention is a manufacturing method including the following steps (A) to (E).
  • Step of firing to form the metal oxide semiconductor layer (c) Step (C): A step of patterning and etching the metal oxide semiconductor layer (c), Step (D): A step of etching the lower insulating layer (b) using the patterned and etched metal oxide semiconductor layer (c) as a mask pattern.
  • Step (E) A step of irradiating an excimer laser beam or a YAG laser beam from above the substrate. Further, the step (E) can be a step (E') of irradiating UV light with excimer laser light or YAG laser light. Then, the step (E) can be a step of irradiating the excimer laser light or the YAG laser light after irradiating the UV light (E ").
  • a composition for forming a metal oxide semiconductor layer is applied onto a substrate and fired to form a metal oxide semiconductor layer (a), and then the metal oxide semiconductor layer (a) is patterned and etched. (See step 5 (A)).
  • the substrate on which the metal oxide semiconductor layer (a) is formed is not particularly limited, and examples of the substrate on which the thin film transistor is formed include the various substrates described above.
  • composition for forming a metal oxide semiconductor layer used in this step examples include a composition containing a metal salt, a first amide compound, and a solvent mainly composed of water.
  • Examples of the first amide compound include compounds represented by the following general formula (I).
  • R 1 is a hydrogen atom; a linear or branched alkyl group having 1 to 6 carbon atoms; a hydrogen atom or a linear or branched alkyl having 1 to 6 carbon atoms. It represents an oxygen atom to which a group is bonded; or a nitrogen atom to which a hydrogen atom, an oxygen atom, or a linear or branched alkyl group having 1 to 6 carbon atoms is bonded.
  • R 1 the hydrogen atom or the oxygen atom to which a linear or branched alkyl group having 1 to 6 carbon atoms is bonded is -OH or -OR 2 (R 2 has 1 to 6 carbon atoms). Linear or branched alkyl group). Further, the hydrogen atom, the oxygen atom, or the nitrogen atom to which a linear or branched alkyl group having 1 to 6 carbon atoms is bonded is, for example, -NH 2 , -NHR 3, or -NR 4 R 5. (R 3 , R 4 and R 5 are independently linear or branched alkyl groups having 1 to 6 carbon atoms).
  • Specific examples of the first amide compound which is not limited to the compound represented by the above general formula (I), include acetamide, acetylurea, acrylamide, adipamide, acetaldehyde semicarbazone, azodicarboxylicamide, 4-amino-2,3.
  • examples of the metal constituting the metal salt include Li, Be, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Mo, Cd, In, Ir, Sn, Sb, Cs, Ba, La, Hf, Ta, W, Tl, Pb, Bi, Ce, It is at least one selected from the group consisting of Pr, Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • At least one metal selected from the group consisting of indium (In), tin (Sn), zinc (Zn), gallium (Ga), and aluminum (Al) is preferable, and indium (in particular) It preferably contains any of In), tin (Sn), and zinc (Zn), and may further contain gallium (Ga) or aluminum (Al).
  • the above metal salt is preferably an inorganic acid salt.
  • the inorganic acid salt for example, at least one selected from the group consisting of nitrate, sulfate, phosphate, carbonate, hydrogen carbonate, borate, hydrochloride and hydrofluoride can be used. .. These salts may be in the form of hydrates. From the viewpoint that the heat treatment (calcination) after coating the composition for forming a metal oxide semiconductor layer can be performed at a lower temperature, it is preferable to use hydrochloride or nitrate as the inorganic acid salt.
  • the ratio (composition ratio) of each metal is not particularly limited as long as a desired metal oxide semiconductor layer can be formed, but for example.
  • the composition for forming a metal oxide semiconductor layer may be prepared as an aqueous solution containing the first amide of the general formula (I) or the like, which is dissolved in a solvent containing water as a main component.
  • the solvent of the composition for forming a metal oxide semiconductor layer is mainly water.
  • the water-based solvent means a main solvent, that is, a solvent in which 50% by mass or more of the solvent is water.
  • the solvent used in the composition for forming the metal oxide semiconductor layer may be mainly water, and either water alone may be used as the solvent or a mixed solvent of water and an organic solvent may be used.
  • Specific examples of the organic solvent contained in addition to water include propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monopropyl ether, methyl ethyl ketone, ethyl lactate, cyclohexanone, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, and N.
  • the solid content concentration in the composition for forming a metal oxide semiconductor layer is 0.1% by mass or more, preferably 0.3% by mass or more, and more preferably 0.5% by mass or more.
  • the solid content concentration is 30.0% by mass or less, preferably 20.0% by mass or less, and more preferably 15.0% by mass or less.
  • the solid content concentration is the total concentration of the metal salt and the first amide compound.
  • the method for producing the composition for forming a metal oxide semiconductor layer is not particularly limited, and for example, a metal salt and a first amide compound may be mixed with a solvent mainly composed of water. Acids such as nitric acid, sulfuric acid, phosphoric acid, carbonic acid, boric acid, hydrochloric acid, and hydrofluoric acid may be added as necessary to adjust the pH of the composition.
  • a dense amorphous metal oxide semiconductor layer can be formed by applying the above composition for forming a metal oxide semiconductor layer to a substrate to form a thin film and then firing the film.
  • a drying step by heat treatment at 110 ° C. to 180 ° C. for 0.1 minute to 30 minutes may be performed.
  • a known method for applying the composition for forming a metal oxide semiconductor layer to a substrate a known method can be applied, for example, spin coating, dip coating, screen printing method, roll coating, inkjet coating, die coating method, transfer printing. Examples include the method, the spray method, and the slit coating method.
  • the thickness of the thin film obtained by applying the composition for forming a metal oxide semiconductor layer by various coating methods is 1 nm to 1 ⁇ m, preferably 10 nm to 100 nm.
  • a drying step is performed if necessary, and then a firing step is carried out.
  • the metal salt in the thin film undergoes an oxidation reaction, and an amorphous metal oxide semiconductor layer can be produced.
  • oxides of the metals constituting the above-mentioned metal salts for example, indium gallium oxide, gallium oxide, indium tin oxide, gallium oxide, zinc oxide, indium tin oxide, indium zinc oxide, tin oxide, zinc oxide, oxidation
  • a semiconductor layer is formed containing tin, eg, InGaZnO x , InGaO x , InSnZnO x , GaZnO x , InSnO x , InZnO x , SnZnO x (all x> 0), ZnO, SnO 2, etc.).
  • the firing temperature can be 250 ° C. to 500 ° C., for example, 250 ° C.
  • a dense amorphous metal oxide can be fired at a lower temperature than the firing temperature conventionally required to be 300 ° C. or higher. It is possible to form a semiconductor layer.
  • the firing time is not particularly limited, but is, for example, 0.1 hour to 120 hours.
  • a conventionally used atmospheric pressure plasma device, microwave heating device, hot plate, IR furnace, oven, or the like can be used for firing the thin film.
  • the specific composition for forming a metal oxide semiconductor layer can be applied to a firing temperature at a low temperature of 300 ° C. or lower, and is highly versatile from the viewpoint of productivity and uses a cheaper heating device. , IR furnace, oven, etc. are advantageous.
  • the firing of the thin film can be performed not only in an oxidizing atmosphere such as oxygen in the air but also in an inert gas such as nitrogen, helium or argon.
  • the thickness of the metal oxide semiconductor layer (a) thus obtained is not particularly limited, but is, for example, 5 nm to 100 nm. If the desired thickness cannot be obtained by a single coating / firing treatment, the coating / firing process may be repeated until the desired film thickness is reached, or the coating / drying step may be performed to obtain the desired film thickness. After repeating until the result becomes, the firing step may be carried out.
  • the obtained metal oxide semiconductor layer (a) is patterned and etched to process the metal oxide semiconductor layer into a desired shape.
  • a patterning method for example, there is a method of etching with hydrochloric acid or the like using a photoresist as a mask. The photoresist that is no longer needed can be removed by an organic solvent, ashing, or the like.
  • ⁇ (B) process> an insulating layer (b) to be a gate insulating film is formed on the patterned and etched metal oxide semiconductor layer (a), and then a metal oxide semiconductor layer is formed on the layer (b).
  • the insulating layer (b) (gate insulating film)
  • a sputtering method As a method for forming the insulating layer (b) (gate insulating film), as described above, there are a sputtering method, a vacuum vapor deposition method, and a chemical vapor deposition (plasma CVD) method using plasma. Examples of the CVD method include film formation with SiNx, film formation with SiH 4 , and oxidation thereof. Further, a coating type oxide film prepared by preparing a precursor solution containing silicon dioxide as a main component by various coating methods can be mentioned.
  • Examples of the precursor solution containing silicon dioxide as a main component include silicone, which is amino-modified, epoxy-modified, carboxy-modified, carbinol-modified, methacryl-modified, mercapto-modified, and phenol-modified by introducing a functional group into the silicone skeleton.
  • Modified silicone such as fluorine-modified can be used.
  • a surfactant can be added to the precursor solution containing silicon dioxide as a main component.
  • an anionic surfactant a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant can be used.
  • Anionic surfactants include aliphatic monocarboxylates, polyoxyethylene alkyl ether carboxylates, N-acylsarcosphates, N-acylglutamates and other carboxylic acid types, dialkyl sulfosuccinates, alkane sulfonates, alpha.
  • Sulfonic acids such as olefin sulfonate, linear alkylbenzene sulfonate, alkyl (branched chain) benzene sulfonate, naphthalene sulfonate-formaldehyde condensate, alkylnaphthalene sulfonate, N-methyl-N-acyltaurine salt
  • Sulfonate type alkyl sulphate, polyoxyethylene alkyl ether sulphate, sulphate such as oil and fat sulphate, alkyl phosphate, polyoxyethylene alkyl ether phosphate, polyoxyethylene alkyl phenyl ether phosphate and other phosphorus
  • An acid ester type can be mentioned.
  • Cationic surfactants include alkylamine salt types such as monoalkylamine salts, dialkylamine salts, and trialkylamine salts, halogenated (fluorinated, chlorinated, brominated, or iodide) alkyltrimethylammonium, and halogenated (huh).
  • alkylamine salt types such as monoalkylamine salts, dialkylamine salts, and trialkylamine salts, halogenated (fluorinated, chlorinated, brominated, or iodide) alkyltrimethylammonium, and halogenated (huh).
  • alkylamine salt types such as monoalkylamine salts, dialkylamine salts, and trialkylamine salts, halogenated (fluorinated, chlorinated, brominated, or iodide) alkyltrimethylammonium, and halogenated (huh).
  • quaternary ammonium salt types such as dialkyldimethylammonium (flu
  • amphoteric surfactant examples include a carboxybetaine type such as alkylbetaine and fatty acid amidepropylbetaine, a derivative type of 2-alkylimidazolin such as 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine, and an alkyl (or alkyl (or) Dialkyl)
  • carboxybetaine type such as alkylbetaine and fatty acid amidepropylbetaine
  • 2-alkylimidazolin such as 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine
  • glycine type such as diethylenetriaminoacetic acid
  • amine oxide type such as alkylamine oxide.
  • nonionic surfactant examples include ester types such as glycerin fatty acid ester, sorbitan fatty acid ester, and sucrose fatty acid ester, and ether types such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, and polyoxyethylene polyoxypropylene glycol.
  • ester ether types such as fatty acid polyethylene glycol and fatty acid polyoxyethylene sorbitan
  • alkanolamide types such as fatty acid alkanolamide.
  • Each of these surfactants may have a part or all of hydrogen atoms in the alkyl chain replaced with halogen atoms.
  • a polysiloxane film containing fluorine can be mentioned as a preferable example of the insulating layer (b) (gate insulating film).
  • the fluorine-containing polysiloxane film can be obtained by applying and firing a material such as fluorinated polysiloxane, modified silicone such as fluorine-modified, or polysiloxane containing a fluorine-containing surfactant. That is, the fluorine-containing polysiloxane film is not only an embodiment in which a part of the polysiloxane structure is replaced with a fluorine atom, but also an embodiment in which a fluorine atom-containing additive (surfactant or the like) is contained in the membrane. Means both.
  • the polysiloxane film containing fluorine contains, for example, fluorinated polysiloxane, modified silicone such as fluorine-modified, or polysiloxane containing a fluorine-containing surfactant, and has a solid content concentration of 0.1% by mass to 50% by mass.
  • it can be formed by using a water-soluble composition of 0.1% by mass to 40% by mass, 0.1% by mass to 30% by mass, 1% by mass to 20% by mass, or 5% by mass to 20% by mass. More specifically, the water-soluble composition is applied onto the metal oxide semiconductor layer (a) formed on the substrate by pin coating or the like, and the temperature is 110 ° C. to 180 ° C. for 0.1 minutes to 30 minutes.
  • the composition for forming a metal oxide semiconductor layer is applied onto the layer (b) and fired to form the metal oxide semiconductor layer (c).
  • the layer (c) may be formed with the same material, procedure, and thickness as the formation of the metal oxide semiconductor layer (a) in the above-mentioned ⁇ step (A)>.
  • Step (C)> This step is a step of patterning and etching the metal oxide semiconductor layer (c), and is carried out by the same procedure as the patterning and etching of the metal oxide semiconductor layer (a) in the above-mentioned ⁇ (A) step>. It is possible (see step 5 (C)).
  • This step is a step of etching the lower insulating layer (b) using the patterned and etched metal oxide semiconductor layer (c) as a mask pattern to obtain an insulating layer (b) having a desired shape (FIG. 5).
  • the etching of the insulating layer (b) may be performed by appropriately selecting dry etching or wet etching depending on the material constituting the insulating layer (b), and can be performed using, for example, a reactive ion etching apparatus.
  • the excima laser light is emitted from above the substrate, that is, from above the laminated structure (metal oxide semiconductor layer (a) -insulating layer (b) -metal oxide semiconductor layer (c)) formed on the substrate.
  • it is a step of irradiating a YAG laser beam (see step 5 (E)).
  • This step is preferably carried out as a step of irradiating UV light in addition to the excimer laser light or the YAG laser light [(E') step].
  • This step is more preferably carried out as a step [(E ”) step of irradiating with excimer laser light or YAG laser light after irradiating with UV light.
  • the wavelength, irradiation time, energy, and the like of the excimer laser light, the YAG laser light, and the UV light may be appropriately selected depending on the configuration and thickness of the metal oxide semiconductor layer to be irradiated.
  • the irradiation of excimer laser light is carried out by irradiating 1 nanosecond to 120 nanoseconds excimer laser light having a wavelength of 150 nm ⁇ 380 nm at 50mJ / cm 2 ⁇ 150mJ / cm 2.
  • YAG laser light is performed by irradiating 1 nanosecond to 120 nanoseconds a YAG laser beam having a wavelength of 250 nm ⁇ 400 nm at 50mJ / cm 2 ⁇ 150mJ / cm 2.
  • the irradiation of UV light is carried out by, for example, irradiating UV light having a wavelength of 150 nm to 350 nm for 1 minute to 120 minutes.
  • the semiconductor layer is converted into a channel layer having high mobility by irradiation with excimer laser light or YAG laser light. Further, the metal oxide layer exposed on the surface layer is converted into a conductor (electrode) by UV light irradiation.
  • it is essential to irradiate the excimer laser light or the YAG laser light.
  • the step of irradiating the UV light and the excimer laser light or the YAG laser light (E') can be performed.
  • the step of irradiating the excimer laser light or the YAG laser light (E ") can be performed.
  • Mobility Measurement Method A semiconductor parameter analyzer Agent4156C was used to measure the mobility of the thin film transistors manufactured in Examples and Comparative Examples. With a drain voltage of 0.1 V, a TFT size of 90 ⁇ m in a channel width, and a channel length of 10 ⁇ m, the change in drain current from a gate voltage of ⁇ 20 V to + 20 V was measured, and mobility (unit: cm 2 / Vs) was calculated.
  • the illuminance of the low pressure mercury lamp used in the examples was measured by connecting a probe having a sensitivity peak at 253.7 nm to an illuminance meter (MODEL306) manufactured by OAI.
  • the two main emission spectra of the low-pressure mercury lamp are 185 nm and 254 nm, the illuminance ratio is 15:85, and the illuminance measured by MODEL 306 (illuminance at 254 nm) is divided by 0.85 to obtain the low-pressure mercury lamp.
  • the illuminance was used.
  • composition for forming a metal oxide semiconductor layer (precursor solution) 0.90 g of indium nitrate (III) trihydrate (manufactured by Aldrich, 99.999% trace metals bases) and zinc nitrate hexahydrate 0 .23 g (Aldrich, 99.999% trace metals bases) and 0.09 g of formamide (Tokyo Kasei Kogyo Co., Ltd., 98.5%) were added to 8.78 g of ultrapure water to completely complete the solution.
  • the composition 1 for forming a metal oxide semiconductor layer was prepared by stirring until it became transparent to prepare an aqueous solution.
  • a composition 1 for forming a metal oxide semiconductor layer is applied to a silicon substrate on which a silicon oxide film is laminated at 100 nm at 4,000 rpm using a spin coater, and dried at 150 ° C. for 10 minutes.
  • An oxide semiconductor precursor layer was obtained.
  • coating with a spin coater and drying at 150 ° C. for 10 minutes were repeated four times as one cycle, and finally an annealing treatment was performed at 300 ° C. for 60 minutes using a hot plate to form InZNO having a film thickness of 50 nm.
  • An oxide semiconductor layer A was obtained.
  • a photoresist was applied to the upper part of the oxide semiconductor layer A and exposed and developed to form a resist pattern.
  • the oxide semiconductor layer A was etched by immersing it in a 0.01 M aqueous hydrochloric acid solution for 5 minutes. After the etching treatment, the photoresist left on the upper part of the oxide semiconductor layer A was removed by using a stripping solution. Next, a polysiloxane film containing fluorine having a film thickness of 200 nm was formed as a gate insulating film on the upper part of the oxide semiconductor layer A by using a spin coater. The firing temperature was 300 ° C. Next, the composition 1 for forming a metal oxide semiconductor layer is applied to the upper part of the gate insulating film at 4,000 rpm using a spin coater, and dried at 150 ° C.
  • oxide semiconductor precursor layer for 10 minutes to obtain an oxide semiconductor precursor layer.
  • coating with a spin coater and drying at 150 ° C. for 10 minutes were repeated four times as one cycle, and finally, annealing treatment was performed at 300 ° C. for 60 minutes using a hot plate, and InZNO having a film thickness of 50 nm
  • An oxide semiconductor layer B composed of the above was obtained.
  • a photoresist was applied to the upper part of the oxide semiconductor layer B and exposed and developed to form a resist pattern. Using this resist pattern as a mask, the oxide semiconductor layer B was etched with a 0.01 M aqueous hydrochloric acid solution in the same manner as described above. After the etching treatment, the photoresist left on the upper part of the oxide semiconductor layer B was removed by using a stripping solution.
  • FIG. 1 shows a schematic view (cross-sectional view) of the structure A.
  • Example 1 Fabrication and evaluation of top gate type thin film transistor (1) Using a low-pressure mercury lamp (UV ozone cleaner UV1, illuminance 15 mW / cm 2 , wavelength 185 nm to 254 nm manufactured by Samco), the structure A was subjected to an atmospheric atmosphere. Ultraviolet rays were continuously irradiated for 60 minutes (54 J / cm 2 ). Upon irradiation with ultraviolet rays, the structure A was heated to 115 ° C. on a hot plate.
  • UV ozone cleaner UV1, illuminance 15 mW / cm 2 , wavelength 185 nm to 254 nm manufactured by Samco UV ozone cleaner UV1, illuminance 15 mW / cm 2 , wavelength 185 nm to 254 nm manufactured by Samco
  • the structure A was irradiated with a KrF excimer laser (wavelength 248 nm) for 9 nanoseconds under the condition that the irradiation energy amount was 120 mJ / cm 2 .
  • the peak output at this time was 13.3 MW / cm 2 .
  • the exposed portions of the oxide semiconductor layer B and the oxide semiconductor layer A were greatly reduced in electrical resistance to become conductors and function as electrodes.
  • the region of the oxide semiconductor layer A covered with the gate insulating film functioned as a semiconductor (channel). That is, as shown in FIG. 2, the oxide semiconductor layer B exposed on the surface layer functions as a gate electrode, and the oxide semiconductor layer A (part) exposed on the surface layer is a source electrode or a drain electrode (note that the source electrode and the source electrode).
  • the drain electrode functions as (not particularly distinguished), and as a result, a top gate type thin film transistor can be manufactured.
  • the transfer characteristics of the top gate type thin film transistor manufactured in Example 1 are shown in FIG.
  • the mobility of the top-gate thin film transistor manufactured in Example 1 was 35.94 cm 2 / Vs.
  • Example 2 Fabrication and Evaluation of Top-Gate Thin Film Transistor The same as in Example 1 except that the irradiation condition of the KrF excimer laser was 140 mJ / cm 2 (peak output 15.6 MW / cm 2 ) using the structure A. Under the conditions, a top gate type thin film transistor having the structure (cross-sectional view) shown in FIG. 2 was produced. The mobility of the top-gate thin film transistor manufactured in Example 2 was 31.59 cm 2 / Vs.
  • Example 3 Fabrication and Evaluation of Top-Gate Thin Film Transistor
  • the structure A was used, and the irradiation conditions of the KrF excimer laser were 100 mJ / cm 2 (peak output 11.1 MW / cm 2 ) under vacuum conditions.
  • a top-gate thin film transistor having the structure (cross-sectional view) shown in FIG. 2 was produced under the same conditions as in Example 1.
  • the mobility of the top gate type thin film transistor manufactured in Example 3 was 41.75 cm 2 / Vs.
  • Example 4 Fabrication and Evaluation of Top Gate Thin Film Transistor
  • the structure A was used, and the irradiation conditions of the KrF excimer laser were 120 mJ / cm 2 (peak output 13.3 MW / cm 2 ) under vacuum conditions.
  • a top-gate thin film transistor having the structure (cross-sectional view) shown in FIG. 2 was produced under the same conditions as in Example 1.
  • the mobility of the top gate type thin film transistor manufactured in Example 4 was 45.56 cm 2 / Vs.
  • Example 5 Fabrication and Evaluation of Top-Gate Thin Film Transistor
  • the structure A was used, and the Irradiation condition of the KrF excimer laser was 140 mJ / cm 2 (peak output 15.6 MW / cm 2 ) under vacuum conditions.
  • a top-gate thin film transistor having the structure (cross-sectional view) shown in FIG. 2 was produced under the same conditions as in Example 1.
  • the mobility of the top-gate thin film transistor manufactured in Example 5 was 18.38 cm 2 / Vs.
  • Example 6 Fabrication and Evaluation of Top Gate Thin Film Transistor
  • the structure A was used, and the Irradiation condition of the KrF excimer laser was 120 mJ / cm 2 (peak output 13.3 MW / cm 2 ) under a nitrogen atmosphere.
  • a top-gate thin film transistor having the structure (cross-sectional view) shown in FIG. 2 was produced under the same conditions as in Example 1.
  • the mobility of the top gate type thin film transistor manufactured in Example 6 was 27.78 cm 2 / Vs.
  • Reference Example 1 Fabrication and evaluation of top-gate thin film transistor Using a low-pressure mercury lamp (UV ozone cleaner UV1, illuminance 15 mW / cm 2 manufactured by SAMCO), the structure A was continuously irradiated with ultraviolet rays for 60 minutes in an atmospheric atmosphere ( 54 J / cm 2 ). Upon irradiation with ultraviolet rays, the structure A was heated to 115 ° C. on a hot plate. In the structure A subjected to only the ultraviolet irradiation treatment, the oxide semiconductor layer B and the exposed portion of the oxide semiconductor layer A have greatly reduced electrical resistance and function as electrodes. The region of the oxide semiconductor layer A covered with the gate insulating film functioned as a semiconductor (channel).
  • UV ozone cleaner UV1, illuminance 15 mW / cm 2 manufactured by SAMCO
  • a top gate type thin film transistor having the structure (cross-sectional view) shown in FIG. 2 could be manufactured.
  • mobility 14.33cm 2 / Vs becomes a top-gate type thin film transistor prepared in Reference Example 1
  • good top-gate-performance obtained mobility is more than 18cm 2 / Vs in Examples 1 to 6
  • the thin film transistor could not be manufactured.
  • Comparative Example 1 The oxide semiconductor layer B of the structure A (unirradiated with ultraviolet rays and not irradiated with excimer laser) is regarded as a gate electrode, the exposed portion of the oxide semiconductor layer A is regarded as a source electrode and a drain electrode, respectively, and the structure A is regarded as a top gate.
  • the performance when treated as a type thin film transistor was evaluated, and the mobility was 0.01 cm 2 / Vs.
  • Example 7 Fabrication and Evaluation of Top Gate Thin Film Transistor Using a low-pressure mercury lamp (UV ozone cleaner UV1, illuminance 15 mW / cm 2 , wavelength 185 nm to 254 nm, manufactured by Samco), 60 ultraviolet rays are applied to the structure A under an atmospheric atmosphere. Irradiation was continued for 1 minute (54 J / cm 2 ). Upon irradiation with ultraviolet rays, the structure A was heated to 115 ° C. on a hot plate.
  • UV ozone cleaner UV1, illuminance 15 mW / cm 2 , wavelength 185 nm to 254 nm, manufactured by Samco 60 ultraviolet rays are applied to the structure A under an atmospheric atmosphere. Irradiation was continued for 1 minute (54 J / cm 2 ). Upon irradiation with ultraviolet rays, the structure A was heated to 115 ° C. on a hot plate.
  • the structure A was irradiated with the YAG laser under the condition that the irradiation energy amount was 120 mJ / cm 2 in an air atmosphere. ..
  • the pulse width of the YAG laser (wavelength 355 nm) was 25 nanoseconds or less, the frequency was 60 kHz, the irradiation time was 4 minutes, and the intensity was 0.5 mW / cm 2 .
  • the exposed portions of the oxide semiconductor layer B and the oxide semiconductor layer A became conductors with greatly reduced electrical resistance and functioned as electrodes.
  • the region of the oxide semiconductor layer A covered with the gate insulating film functioned as a semiconductor (channel). That is, as shown in FIG. 2, the oxide semiconductor layer B exposed on the surface layer functions as a gate electrode, and the oxide semiconductor layer A (part) exposed on the surface layer is a source electrode or a drain electrode (note that the source electrode and the source electrode).
  • the drain electrode functions as (not particularly distinguished), and as a result, a top gate type thin film transistor can be manufactured.
  • the transfer characteristics of the top gate type thin film transistor manufactured in Example 7 are shown in FIG.
  • the mobility of the top gate type thin film transistor manufactured in Example 7 was 12.18 cm 2 / Vs.
  • the mobility was about the same as that of Reference Example 1, but more stable transmission characteristics were obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】高移動度を有するトップゲート型薄膜トランジスタ、並びに、高移動度を実現するトップゲート型薄膜トランジスタの製造方法の提供。 【解決手段】12cm/Vs以上、好ましくは18cm/Vs以上の移動度を有するトップゲート型薄膜トランジスタ、及び、(A)工程:基板上に金属酸化物半導体層形成用組成物を塗布し焼成して金属酸化物半導体層(a)を形成し該層(a)のパターニングとエッチングを行う工程、(B)工程:該金属酸化物半導体層(a)上に絶縁層(b)を形成し、該層(b)の上に金属酸化物半導体層形成用組成物を塗布し焼成して金属酸化物半導体層(c)を形成する工程、(C)工程:金属酸化物半導体層(c)のパターニングとエッチングを行う工程、(D)工程:該金属酸化物半導体層(c)をマスクパターンとして下層の絶縁層(b)をエッチングする工程、(E)工程:基板の上方からエキシマレーザー光又はYAGレーザー光を照射する工程を含むトップゲート型薄膜トランジスタの製造方法。

Description

薄膜トランジスタ及びその製造方法
 本発明は、新規な薄膜トランジスタ及びその製造方法に関する。
 従来の蒸着法、スパッタ法やCVD法といった成膜技術に代えて、塗布法による金属酸化物半導体層の成膜を行った薄膜トランジスタの製造方法が近年提案されている(例えば特許文献1~特許文献3)。
国際公開第2012/014885号 国際公開第2009/081862号 特開2010-0983035号公報
 塗布法による成膜は、スパッタ法等の真空系の成膜装置を用いる従来法と比べて、より簡易な構成(工程、装置)で、また低コストにての成膜を実現でき、高い生産性に加え、大面積にての成膜やより複雑なパターンにての成膜をも可能とする点で有望視されている。そのため、半導体層の成膜のみならず、薄膜トランジスタを構成する各層の成膜においても塗布法の適用が検討されている。
 しかし、一般に、塗布法によって成膜・製造された薄膜トランジスタにおいては、半導体層の形成時に使用する前駆体に由来する不純物の存在、不完全な金属酸化物の形成、さらにはチャネル層の活性化が難しい等の種々の要因により、高い移動度を有するチャネル層、ひいては薄膜トランジスタを実現することは難しい。
 本発明は、12cm/Vs以上、好ましくは18cm/Vs以上という高い移動度を有するトップゲート型薄膜トランジスタ、並びに、高移動度を実現するトップゲート型薄膜トランジスタの製造方法の提供を課題とする。
 本発明者らは、上記の課題を解決するべく鋭意研究を重ねた結果、金属酸化物半導体層に対して、エキシマレーザー光照射又はYAGレーザー光照射を実施する、特にUV光照射とエキシマレーザー光照射又はYAGレーザー光照射とを組みわせて実施したところ、金属酸化物半導体層を電極(導体)に変換するとともに、金属酸化物半導体層を移動度の高いチャネル層に変換でき、高移動度のトップゲート型薄膜トランジスタとなることを見出し、本発明を完成させた。
 すなわち本発明は、第1観点として、12cm/Vs以上の移動度を有するトップゲート型薄膜トランジスタに関する。
 第2観点として、移動度が18cm/Vs以上である、第1観点に記載のトップゲート型薄膜トランジスタに関する。
 第3観点として、トップゲート型薄膜トランジスタが、トップコンタクト式又はボトムコンタクト式である、第1観点又は第2観点に記載のトップゲート型薄膜トランジスタに関する。
 第4観点として、トップゲート型薄膜トランジスタが、フッ素を含むポリシロキサン膜をゲート絶縁膜として有するものである、第1観点乃至第3観点のうちいずれか一項に記載のトップゲート型薄膜トランジスタに関する。
 第5観点として、ガラス基板、シリコン基板、又はフレキシブル基板上に形成された薄膜トランジスタである、第1観点乃至第4観点のうちいずれか一項に記載のトップゲート型薄膜トランジスタに関する。
 第6観点として、該薄膜トランジスタが金属酸化物半導体層を含み、該金属酸化物半導体層が、インジウム、スズ、亜鉛、ガリウム、及びアルミニウムからなる群から選ばれる少なくとも1種の金属原子の酸化物を含む、第1観点乃至第5観点のうちいずれか一項に記載のトップゲート型薄膜トランジスタに関する。
 第7観点として、前記金属酸化物半導体層が、酸化インジウムガリウム亜鉛、酸化インジウムガリウム、酸化インジウムスズ亜鉛、酸化ガリウム亜鉛、酸化インジウムスズ、酸化インジウム亜鉛、酸化スズ亜鉛、酸化亜鉛、及び酸化スズからなる群から選ばれる少なくとも1種の金属酸化物を含む層である、第6観点に記載のトップゲート型薄膜トランジスに関するタ。
 第8観点として、下記(A)工程から(E)工程を含む、トップゲート型薄膜トランジスタの製造方法。
(A)工程:基板上に金属酸化物半導体層形成用組成物を塗布し焼成して金属酸化物半導体層(a)を形成し、該層(a)のパターニングとエッチングを行う工程、
(B)工程:パターニング及びエッチングされた金属酸化物半導体層(a)上に、絶縁層(b)を形成し、該層(b)の上に金属酸化物半導体層形成用組成物を塗布し焼成して金属酸化物半導体層(c)を形成する工程、
(C)工程:金属酸化物半導体層(c)のパターニングとエッチングを行う工程、
(D)工程:パターニング及びエッチングされた金属酸化物半導体層(c)をマスクパターンとして下層の絶縁層(b)をエッチングする工程、
(E)工程:基板の上方からエキシマレーザー光又はYAGレーザー光を照射する工程
を含むトップゲート型薄膜トランジスタの製造方法に関する。
 第9観点として、(B)工程で形成する絶縁層(b)がフッ素を含むポリシロキサン膜である、第8観点に記載のトップゲート型薄膜トランジスタの製造方法に関する。
 第10観点として、(E)工程が、基板の上方からUV光と、エキシマレーザー光又はYAGレーザー光をともに照射する(E’)工程である、第8観点又は第9観点に記載のトップゲート型薄膜トランジスタの製造方法に関する。
 第11観点として、(E)工程が、基板の上方からUV光を照射した後、エキシマレーザー光又はYAGレーザー光を照射する(E”)工程である、第8観点又は第9観点に記載のトップゲート型薄膜トランジスタの製造方法に関する。
 第12観点として、前記金属酸化物半導体層形成用組成物が、金属塩と第一アミド化合物と水を主体とする溶媒とを含む、第8観点乃至第11観点のうちいずれか一項に記載のトップゲート型薄膜トランジスタの製造方法に関する。
 第13観点として、前記(A)工程及び(B)工程において、同一又は異なる条件及び手順で、金属酸化物半導体層形成用組成物をスピンコートにて塗布し、110℃~180℃で0.1分間~30分間熱処理する、塗布及び熱処理の操作を1回~10回繰り返し行った後、250℃~350℃で0.1時間~120時間焼成する加熱を行うことにより、前記金属酸化物半導体層(a)及び金属酸化物半導体層(c)をそれぞれ形成する、
第8観点乃至第12観点のうちいずれか一項に記載のトップゲート型薄膜トランジスタの製造方法に関する。
 第14観点として、前記(E)工程において、波長150nm~380nmのエキシマレーザー光を50mJ/cm~150mJ/cmにて1ナノ秒間~120ナノ秒間照射する、
第8観点乃至第13観点のうち何れか一項に記載のトップゲート型薄膜トランジスタの製造方法に関する。
 第15観点として、前記(E)工程において、波長250nm~400nmのYAGレーザー光を50mJ/cm~150mJ/cmにて1ナノ秒間~120ナノ秒間照射する、
第8観点乃至第13観点のうち何れか一項に記載のトップゲート型薄膜トランジスタの製造方法に関する。
 第16観点として、前記(E)工程において、波長150nm~350nmのUV光を1分間~120分間照射する、
第10観点至第15観点のうち何れか一項に記載のトップゲート型薄膜トランジスタの製造方法に関する。
 本発明によれば、12cm/Vs以上、18cm/Vs以上、20cm/Vs以上、30cm/Vs以上であり、例えば12cm/Vs~80cm/Vs、12cm/Vs~70cm/Vs、12cm/Vs~60cm/Vs、18cm/Vs~80cm/Vs、18cm/Vs~70cm/Vs、18cm/Vs~60cm/Vs、18cm/Vs~50cm/Vs、18cm/Vs~50cm/Vs、20cm/Vs~80cm/Vs、20cm/Vs~70cm/Vs、20cm/Vs~60cm/Vs、30cm/Vs~80cm/Vs、30cm/Vs~70cm/Vs、30cm/Vs~60cm/Vs、30cm/Vs~50cm/Vs、30cm/Vs~50cm/Vsの範囲の高移動度を有するトップゲート型薄膜トランジスタを提供することができる。
 また本発明の製造方法によれば、エキシマレーザー光照射又はYAGレーザー光照射により金属酸化物半導体層を活性化して、移動度の高いチャネル層に変換することにより、さらには金属酸化物半導体層をUV光照射することで導体(電極)に変換することによって、高移動度のトップゲート型薄膜トランジスタを製造できる。
図1は、実施例で製造した構造体Aを示す断面図である。 図2は、実施例で製造したトップゲート型薄膜トランジスタを示す断面図である。 図3は、実施例1で製造したトップゲート型薄膜トランジスタの伝達特性を示すグラフである。 図4は、実施例7で製造したトップゲート型薄膜トランジスタの伝達特性を示すグラフである。 図5は、本発明のトップゲート型薄膜トランジスタの製造方法における(A)工程~(E)工程を示す図である。 図6は、一般的なトップゲート型薄膜トランジスタを示す図であり、図6(a)はトップコンタクト式の構造の断面を示し、図6(b)はボトムコンタクト式の構造の断面を示す。
[トップゲート型薄膜トランジスタ]
 本発明が対象とする薄膜トランジスタ(TFT)は、12cm/Vs以上、好ましくは18cm/Vs以上の移動度を有するトップゲート型薄膜トランジスタである。例えば、本発明が対象とするトップゲート型薄膜トランジスタは、12cm/Vs~60cm/Vs、18cm/Vs~50cm/Vs、又は18cm/Vs~40cm/Vsの範囲といった高い移動度を得られる。
 薄膜トランジスタ(TFT)は半導体と電極(導体)の位置関係によって構造分類され、本発明が対象とする、ゲート電極が半導体層の上側に配置されるトップゲート型薄膜トランジスタには、ソース電極とドレイン電極が半導体層の上側に配置される構造のトップコンタクト式と、これら電極が半導体層の下側に配置される構造のボトムコンタクト式がある。本発明のトップゲート型薄膜トランジスタは、トップコンタクト式及びボトムコンタク式の双方の態様を包含する。
 図6に、一般的なトップゲート型薄膜トランジスタの一例を示す模式図として、トップコンタクト式(図6(a))の構造の断面図と、ボトムコンタクト式(図6(b))の構造の断面図をそれぞれ示す。
 図6(a)の例では、基板1上に半導体層2(チャネル2a)が形成され、半導体層2上にドレイン電極3とソース電極4が形成されている。そしてゲート絶縁膜5は、半導体層2とドレイン電極3とソース電極4の上に形成され、その上にゲート電極6が設置された構成となっている。
 また図6(b)の例では、基板1上に、ドレイン電極3とソース電極4が形成され、これら電極を覆うように半導体層2(チャネル2a)が形成されている。そして半導体層2上にゲート絶縁膜5が形成され、その上にゲート電極6が設置された構成となっている。
 薄膜トランジスタが形成される基板としては特に限定されず、例えばシリコン基板、金属基板、ガリウム基板、透明電極基板、有機薄膜基板、プラスチック基板、ガラス基板等が挙げられる。より具体的には、例えば、ポリイミド、ポリカーボネート、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのプラスチックフィルム、ステンレス箔、ガラス等が挙げられる。また、配線層やトランジスタ等の回路素子が形成された半導体基板等であってもよい。さらに屈曲可能な基板(例えばフレキシブル基板)等であってもよい。中でも、ガラス基板、シリコン基板、フレキシブル基板等を好適に用いることができる。
 本発明の薄膜トランジスタでは、半導体層として金属酸化物半導体層を含み、該半導体層は、例えば、Li、Be、B、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Rb、Sr、Y、Zr、Nb、Mo、Cd、In、Ir、Sn、Sb、Cs、Ba、La、Hf、Ta、W、Tl、Pb、Bi、Ce、Pr、Nd、Pm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、及びLuからなる群から選ばれる少なくとも1種の金属原子の酸化物を含む。好ましくは、上記金属酸化物半導体層は、インジウム(In)、スズ(Sn)、亜鉛(Zn)、ガリウム(Ga)、及びアルミニウム(Al)からなる群から選ばれる少なくとも1種の金属原子の酸化物を含む。
 好ましい態様において、上記金属酸化物半導体層は、例えば酸化インジウムガリウム亜鉛、酸化インジウムガリウム、酸化インジウムスズ亜鉛、酸化ガリウム亜鉛、酸化インジウムスズ、酸化インジウム亜鉛、酸化スズ亜鉛、酸化亜鉛、酸化スズ、すなわち例えば、InGaZnO、InGaO、InSnZnO、GaZnO、InSnO、InZnO、SnZnO(いずれもx>0)、ZnO、SnO等を含む。
 上記金属酸化物半導体層は、CVD法、スパッタリング法、パルスレーザー堆積法、真空蒸着法などの真空法のほか、後述する塗布法を用いて形成可能である。
 なお金属酸化物半導体層は、層形成後にエキシマレーザー光又はYAGレーザー光による照射処理が施されていてもよい。
 薄膜トランジスタに用いられる電極材料(ゲート電極、ソース電極、ドレイン電極の材料)としては、例えば、金、銀、銅、アルミニウム、モリブデン、チタンなどの金属や、Mg/Cu、Mg/Ag、Mg/Al、Mg/In等の合金、SnO、InO、ZnO、InO・SnO(ITO)、InO・ZnO(IZO)、Sb・SnO(ATO)等の金属酸化物、カーボンブラック、フラーレン類、カーボンナノチューブなどの無機材料、ポリチオフェン、ポリアニリン、ポリピロール、ポリフルオレンおよびこれらの誘導体などの有機π共役ポリマーなどが挙げられる。これらの電極材料は1種類で用いてもよいが、薄膜トランジスタの電界効果移動度の向上、オン/オフ比の向上を目的として、もしくは閾値電圧の制御を目的として、複数の材料を組み合わせて用いてもよい。又、ゲート電極、ソース電極、ドレイン電極のそれぞれにおいて異なる電極材料を用いてもよい。
 なおこれら電極の形成方法としては、真空蒸着、スパッタ法などの従来慣用の技術を用いることができ、また製造方法の簡略化のため、スプレーコート法、印刷法、インクジェット法などの塗布法を採用してもよい。また後述するように、本発明では、紫外線照射により金属酸化物半導体層を導体に変換し、電極とすることができる。
 また、ゲート絶縁膜としては、例えば、酸化シリコン、窒化シリコン、酸化アルミニウム、酸化ハフニウム、酸化イットリウムなどの無機絶縁膜、ポリイミド、ポリメチルメタクリレート、ポリビニルフェノール、ベンゾシクロブテン、シリコーン(例えばポリシロキサン等)などの有機絶縁膜が挙げられ、これらはハロゲン元素を含んでいてもよい。例えば、フッ素を含むポリシロキサン膜(フッ素変性されたポリシロキサンを含む膜など)をゲート絶縁膜にする事ができる。
 ゲート絶縁膜は1種類の膜を単独で用いてもよいが、薄膜トランジスタの電界効果移動度の向上、オン/オフ比の向上を目的として、もしくは閾値電圧の制御を目的として、複数の膜を組み合わせて用いてもよい。
 上記ゲート絶縁膜は、真空蒸着、スパッタ法などの従来慣用の技術により形成可能であるが、製造方法の簡略化のため、スプレーコート法、印刷法、インクジェット法などの塗布法も採用でき、また基板としてシリコン基板を用いる場合、ゲート絶縁膜は熱による酸化によっても形成することができる。塗布法の場合は、絶縁膜形成塗布液の基板上への成膜性を改善するために絶縁膜形成塗布液に界面活性剤を含有していてもよい。
[トップゲート型薄膜トランジスタの製造方法]
 本発明のトップゲート型薄膜トランジスタの製造方法は、下記(A)工程から(E)工程を含む製造方法である。
(A)工程:基板上に金属酸化物半導体層形成用組成物を塗布し焼成して金属酸化物半導体層(a)を形成し、該層(a)のパターニングとエッチングを行う工程、
(B)工程:パターニング及びエッチングされた金属酸化物半導体層(a)上に、絶縁層(b)を形成し、該層(b)の上に金属酸化物半導体層形成用組成物を塗布し焼成して金属酸化物半導体層(c)を形成する工程、
(C)工程:金属酸化物半導体層(c)のパターニングとエッチングを行う工程、
(D)工程:パターニング及びエッチングされた金属酸化物半導体層(c)をマスクパターンとして下層の絶縁層(b)をエッチングする工程、
(E)工程:基板の上方からエキシマレーザー光又はYAGレーザー光を照射する工程。
 また、(E)工程がUV光と、エキシマレーザー光又はYAGレーザー光を照射する(E’)工程とすることができる。
 そして、(E)工程がUV光を照射した後、エキシマレーザー光又はYAGレーザー光を照射する(E”)工程とすることができる。
 これら各工程の模式図を図5にそれぞれ示す。
 以下、各工程について詳述する。
<(A)工程>
 本工程は、基板上に金属酸化物半導体層形成用組成物を塗布し焼成して金属酸化物半導体層(a)を形成した後、該金属酸化物半導体層(a)のパターニングとエッチング行う工程である(図5(A)工程参照)。
 金属酸化物半導体層(a)を形成する基板としては特に限定されず、例えば薄膜トランジスタが形成される基板として上述した各種基板を挙げることができる。
 本工程で使用する金属酸化物半導体層形成用組成物として、例えば、金属塩と第一アミド化合物と水を主体とする溶媒とを含む組成物を挙げることができる。
 上記第一アミド化合物としては、例えば下記一般式(I)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000001
 式(I)中、Rは水素原子;炭素原子数1~6の直鎖状又は分枝状のアルキル基;水素原子、又は炭素原子数1~6の直鎖状若しくは分枝状のアルキル基が結合した酸素原子;又は、水素原子、酸素原子、又は炭素原子数1~6の直鎖状若しくは分枝状のアルキル基が結合した窒素原子を表す。
 上記Rにおいて、水素原子、又は炭素原子数1~6の直鎖状若しくは分枝状のアルキル基が結合した酸素原子とは、-OH又は-OR(Rは炭素原子数1~6の直鎖状若しくは分枝状のアルキル基)である。
 また、水素原子、酸素原子、又は炭素原子数1~6の直鎖状若しくは分枝状のアルキル基が結合した窒素原子とは、例えば、-NH、-NHRや、-NR(R、R及びRはそれぞれ独立に炭素原子数1~6の直鎖状若しくは分枝状のアルキル基である)である。
 また上記一般式(I)で表される化合物に限定されない、第一アミド化合物の具体例としては、アセトアミド、アセチル尿素、アクリルアミド、アジポアミド、アセトアルデヒド セミカルバゾン、アゾジカルボンアミド、4-アミノ-2,3,5,6-テトラフルオロベンズアミド、β-アラニンアミド塩酸塩、L-アラニンアミド塩酸塩、ベンズアミド、ベンジル尿素、ビ尿素、ビュウレット、ブチルアミド、3-ブロモプロピオンアミド、ブチル尿素、3,5-ビス(トリフルオロメチル)ベンズアミド、カルバミン酸tert-ブチル、ヘキサンアミド、カルバミン酸アンモニウム、カルバミン酸エチル、2-クロロアセトアミド、2-クロロエチル尿素、クロトンアミド、2-シアノアセトアミド、カルバミン酸ブチル、カルバミン酸イソプロピル、カルバミン酸メチル、シアノアセチル尿素、シクロプロパンカルボキサミド、シクロヘキシル尿素、2,2-ジクロロアセトアミド、リン酸ジシアンジアミジン、グアニル尿素硫酸塩、1,1-ジメチル尿素、2,2-ジメトキシプロピオンアミド、エチル尿素、フルオロアセトアミド、ホルムアミド、フマルアミド、グリシンアミド塩酸塩、ヒドロキシ尿素、ヒダントイン酸、2-ヒドロキシエチル尿素、ヘプタフルオロブチルアミド、2-ヒドロキシイソブチルアミド、イソ酪酸アミド、乳酸アミド、マレアミド、マロンアミド、1-メチル尿素、ニトロ尿素、オキサミン酸、オキサミン酸エチル、オキサミド、オキサミン酸ヒドラジド、オキサミン酸ブチル、フェニル尿素、フタルアミド、プロピオン酸アミド、ピバル酸アミド、ペンタフルオロベンズアミド、ペンタフルオロプロピオンアミド、セミカルバジド塩酸塩、コハク酸アミド、トリクロロアセトアミド、トリフルオロアセトアミド、硝酸尿素、尿素、バレルアミド等が挙げられる。これらの中でもホルムアミド、尿素、カルバミン酸アンモニウムが好ましい。
 これらは1種を用いても、2種以上を組み合わせて用いてもよい。
 また上記金属塩として、それを構成する金属としては、例えば、Li、Be、B、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Rb、Sr、Y、Zr、Nb、Mo、Cd、In、Ir、Sn、Sb、Cs、Ba、La、Hf、Ta、W、Tl、Pb、Bi、Ce、Pr、Nd、Pm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、及びLuからなる群から選ばれる少なくとも1種である。上記に挙げた金属の中でも、インジウム(In)、スズ(Sn)、亜鉛(Zn)、ガリウム(Ga)、及びアルミニウム(Al)からなる群から選ばれる少なくとも1種の金属が好ましく、特にインジウム(In)、スズ(Sn)、亜鉛(Zn)のいずれかを含むことが好ましく、更にガリウム(Ga)またはアルミニウム(Al)を含んでもよい。
 また上記の金属塩は無機酸塩であることが好ましい。無機酸塩としては、例えば、硝酸塩、硫酸塩、リン酸塩、炭酸塩、炭酸水素塩、ホウ酸塩、塩酸塩及びフッ化水素酸塩からなる群から選ばれる少なくとも1種を用いることができる。これらの塩は水和物の形態であってもよい。金属酸化物半導体層形成用組成物を塗布後の加熱処理(焼成)をより低温で行うことができる観点からは、無機酸塩として、塩酸塩、硝酸塩を用いることが好ましい。
 なお、上記金属酸化物半導体層形成用組成物が複数種の金属を含有する場合、各金属の割合(組成比)は所望の金属酸化物半導体層を形成することができれば特に限定されないが、例えば、Inや、Snの金属塩から選ばれる塩に含有される金属(金属A)と、Znの金属塩から選ばれる塩に含有される金属(金属B)と、Gaや、Alの金属塩に含有される金属(金属C)とのモル比率が、金属A:金属B:金属C=1:0.05~1:0~1を満たすことが好ましい。例えば、金属塩として好適な硝酸塩を用いる場合、モル比率が金属A:金属B:金属C=1:0.05~1:0~1を満たすように、各金属の硝酸塩を、詳しくは後述する水を主成分とした溶媒に溶解し、さらに上記一般式(I)等の第一アミドが含まれる水溶液として、金属酸化物半導体層形成用組成物を調製すればよい。
 上記金属酸化物半導体層形成用組成物の溶媒は、水を主体とするものである。水を主体とする溶媒とは、すなわち主溶媒、つまり溶媒の50質量%以上が水である溶媒を意味する。上記金属酸化物半導体層形成用組成物において使用する溶媒は水を主体としていればよく、水のみを溶媒として用いても、水と有機溶媒との混合溶媒を用いてもよい。水以外に含まれる有機溶媒の具体例としては、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノプロピルエーテル、メチルエチルケトン、乳酸エチル、シクロヘキサノン、γ-ブチロラクトン、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、メタノール、エタノール、1-プロパノール、イソプロパノール、n-ブタノール、2-ブタノール、tert-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、n-ヘキサノール、シクロヘキサノール、2-メチル-2-ブタノール、3-メチル-2-ブタノール、2-メチル-1-ブタノール、3-メチル-1-ブタノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-メチル-3-ペンタノール、3-メチル-1-ペンタノール、3-メチル-2-ペンタノール、3-メチル-3-ペンタノール、4-メチル-1-ペンタノール、4-メチル-2-ペンタノール、2,2-ジメチル-3-ペンタノール、2,3-ジメチル-3-ペンタノール、2,4-ジメチル-3-ペンタノール、4,4-ジメチル-2-ペンタノール、3-エチル-3-ペンタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、2-メチル-2-ヘキサノール、2-メチル-3-ヘキサノール、5-メチル-1-ヘキサノール、5-メチル-2-ヘキサノール、2-エチル-1-ヘキサノール、4-メチル-3-ヘプタノール、6-メチル-2-ヘプタノール、1-オクタノール、2-オクタノール、3-オクタノール、2-プロピル-1-ペンタノール、2,4,4-トリメチル-1-ペンタノール、2,6-ジメチル-4-ヘプタノール、3-エチル-2,2-ジメチル-ペンタノール、1-ノナノール、2-ノナノール、3,5,5-トリメチル-1-ヘキサノール、1-デカノール、2-デカノール、4-デカノール、3,7-ジメチル-1-オクタノール、3,7-ジメチル-3-オクタノール等が挙げられる。これらの有機溶媒は2種以上を組み合わせて用いてもよい。
 上記金属酸化物半導体層形成用組成物中の固形分濃度は0.1質量%以上であり、好ましくは0.3質量%以上であり、より好ましくは0.5質量%以上である。また上記固形分濃度は30.0質量%以下であり、好ましくは20.0質量%以下であり、より好ましくは15.0質量%以下である。なお、固形分濃度とは、上記金属塩と第一アミド化合物の合計の濃度である。
 上記金属酸化物半導体層形成用組成物の製造方法は特に限定されず、例えば、金属塩と第一アミド化合物を、水を主体とする溶媒に混合すればよい。
 組成物のpH調整のために、必要に応じて、硝酸、硫酸、リン酸、炭酸、ホウ酸、塩酸、フッ化水素酸等の酸を添加してもよい。
 上記金属酸化物半導体層形成用組成物を基板に塗布して薄膜を形成した後、焼成することにより、緻密なアモルファスの金属酸化物半導体層を形成することができる。なお、焼成工程の前に、残存溶媒を予め除去するために、前処理として、例えば110℃~180℃、0.1分間~30分間の熱処理による乾燥工程を行ってもよい。
 上記金属酸化物半導体層形成用組成物の基板への塗布方法は、公知の方法を適用することができ、例えばスピンコート、ディップコート、スクリーン印刷法、ロールコート、インクジェットコート、ダイコート法、転写印刷法、スプレー法、スリットコート法等が挙げられる。上記金属酸化物半導体層形成用組成物を各種の塗布方法により塗布して得られる薄膜の厚さは1nm~1μmであり、好ましくは10nm~100nmである。
 薄膜形成後、必要に応じて乾燥工程を経た後、焼成工程を実施する。薄膜の焼成により、薄膜(金属酸化物半導体層形成用組成物)中の金属塩が酸化反応し、アモルファスな金属酸化物半導体層を製造することができる。すなわち、上記した金属塩を構成する金属の酸化物(例えば、酸化インジウムガリウム亜鉛、酸化インジウムガリウム、酸化インジウムスズ亜鉛、酸化ガリウム亜鉛、酸化インジウムスズ、酸化インジウム亜鉛、酸化スズ亜鉛、酸化亜鉛、酸化スズ、すなわち例えば、InGaZnO、InGaO、InSnZnO、GaZnO、InSnO、InZnO、SnZnO(いずれもx>0)、ZnO、SnO等)を含む、半導体層が形成される。
 この焼成温度は250℃~500℃、例えば250℃~350℃とすることができる。なお、上記特定の金属酸化物半導体層形成用組成物を用いることにより、従来300℃以上が必要とされていた焼成温度よりも、より低い温度で焼成しても、緻密なアモルファスの金属酸化物半導体層を形成することが可能である。焼成時間は特に限定されないが、例えば、0.1時間~120時間である。
 薄膜の焼成には、従来使用されている大気圧プラズマ装置やマイクロ波加熱装置、またホットプレート、IR炉、オーブン等の装置を使用できる。上記特定の金属酸化物半導体層形成用組成物は300℃以下の低温での焼成温度も適用できること、また生産性の観点から汎用性が高く、より安価な加熱装置を用いるという観点から、ホットプレート、IR炉、オーブンなどの使用が有利である。
 また、前記薄膜の焼成は、空気中、酸素等の酸化雰囲気だけでなく、窒素、ヘリウム、アルゴン等の不活性ガス中で行うこともできる。
 こうして得られた金属酸化物半導体層(a)の厚さは特に限定されないが、例えば5nm~100nmである。
 なお、一回の塗布・焼成処理により所望の厚さが得られない場合には、塗布・焼成処理の工程を所望の膜厚となるまで繰り返したり、また、塗布・乾燥工程を所望の膜厚となるまで繰り返した後、焼成工程を実施すればよい。
 続いて、得られた金属酸化物半導体層(a)のパターニングとエッチングを行い、金属酸化物半導体層を所望の形状に加工する。パターニング法としては、例えばフォトレジストをマスクとして塩酸などによりエッチングする方法がある。不要になったフォトレジストは有機溶媒やアッシングなどによって除去することができる。
<(B)工程>
 本工程は、パターニング及びエッチングされた金属酸化物半導体層(a)上に、ゲート絶縁膜となる絶縁層(b)を形成した後、該層(b)の上に、金属酸化物半導体層形成用組成物を塗布し焼成して金属酸化物半導体層(c)を形成する工程である(図5(B)工程参照)。
 絶縁層(b)(ゲート絶縁膜)の形成方法としては、前述したように、スパッタ法、真空蒸着法、プラズマを用いた化学気相成長(プラズマCVD)法による形成方法がある。CVD法では、SiNxによる成膜や、SiHの成膜とその酸化が挙げられる。
 また、二酸化ケイ素を主成分とする前駆体溶液を各種の塗布法を用いて作成した、塗布型の酸化膜を挙げることができる。前記二酸化ケイ素を主成分とする前駆体溶液として、例えばシリコーンが挙げられ、シリコーン骨格に官能基を導入してアミノ変性、エポキシ変性、カルボキシ変性、カルビノール変性、メタクリル変性、メルカプト変性、フェノール変性、フッ素変性等の変性シリコーンを用いることができる。
 前記二酸化ケイ素を主成分とする前駆体溶液には、界面活性剤を添加することができる。界面活性剤としては、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、非イオン性界面活性剤を用いることができる。
 アニオン界面活性剤としては脂肪族モノカルボン酸塩、ポリオキシエチレンアルキルエーテルカルボン酸塩、N-アシルサルコシン塩、N-アシルグルタミン酸塩等のカルボン酸型、ジアルキルスルホコハク酸塩、アルカンスルホン酸塩、アルファーオレフィンスルホン酸塩、直鎖アルキルベンゼンスルホン酸塩、アルキル(分岐鎖)ベンゼンスルホン酸塩、ナフタレンスルホン酸塩-ホルムアルデヒド縮合物、アルキルナフタレンスルホン酸塩、N-メチル-N-アシルタウリン塩等のスルホン酸型、アルキル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、油脂硫酸エステル塩等の硫酸エステル型、アルキルリン酸塩、ポリオキシエチレンアルキルエーテルリン酸塩、ポリオキシエチレンアルキルフェニルエーテルリン酸塩等のリン酸エステル型が挙げられる。
 カチオン界面活性剤としては、モノアルキルアミン塩、ジアルキルアミン塩、トリアルキルアミン塩等のアルキルアミン塩型、ハロゲン化(フッ化、塩化、臭化、又はヨウ化)アルキルトリメチルアンモニウム、ハロゲン化(フッ化、塩化、臭化、又はヨウ化)ジアルキルジメチルアンモニウム、ハロゲン化(フッ化、塩化、臭化、又はヨウ化)アルキルベンザルコニウム等の第4級アンモニウム塩型が挙げられる。
 両性界面活性剤としては、アルキルベタイン、脂肪酸アミドプロピルベタイン等のカルボキシベタイン型、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン等の2-アルキルイミダゾリンの誘導体型、アルキル(又はジアルキル)ジエチレントリアミノ酢酸等のグリシン型、アルキルアミンオキシド等のアミンオキシド型が挙げられる。
 非イオン界面活性剤としては、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル等のエステル型、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコール等のエーテル型、脂肪酸ポリエチレングリコール、脂肪酸ポリオキシエチレンソルビタン等のエステルエーテル型、脂肪酸アルカノールアミド等のアルカノールアミド型が挙げられる。
 これらの界面活性剤はそれぞれアルキル鎖中の水素原子の一部もしくは全部をハロゲン原子に置換したものでもよい。
 絶縁層(b)(ゲート絶縁膜)の好適な一例としてフッ素を含むポリシロキサン膜を挙げることができる。フッ素を含むポリシロキサン膜は、フッ素化ポリシロキサン、フッ素変性等の変性シリコーン、又はフッ素含有界面活性剤を含むポリシロキサン等の材料を塗布し焼成することにより得られる。すなわち、フッ素を含むポリシロキサン膜とは、ポリシロキサン構造の一部がフッ素原子で置換された態様だけでなく、膜中にフッ素原子を含有する添加剤(界面活性剤等)を含有する態様の双方を意味する。
 フッ素を含むポリシロキサン膜は、固形分として例えばフッ素化ポリシロキサン、フッ素変性等の変性シリコーン、又はフッ素含有界面活性剤を含むポリシロキサン等を、固形分濃度0.1質量%~50質量%、又は0.1質量%~40質量%、又は0.1質量%~30質量%、又は1質量%~20質量%、又は5質量%~20質量%の水溶性組成物を用いて形成できる。
 より具体的には、基板上に形成された金属酸化物半導体層(a)上に、前記水溶性組成物をピンコート等により塗布して、110℃~180℃で0.1分間~30分間の乾燥後、250℃~350℃で0.1時間~10時間の焼成を行い、膜厚が例えば10nm~500nm、又は50nm~400nm、100nm~300nmの範囲にて、フッ素を含むポリシロキサン膜を得られる。
 絶縁層(b)形成後、該層(b)上に、金属酸化物半導体層形成用組成物を塗布し焼成して金属酸化物半導体層(c)を形成する。該(c)層は、前述の<(A)工程>における金属酸化物半導体層(a)の形成と同様の材料・手順・厚さにて形成すればよい。
<(C)工程>
 本工程は、金属酸化物半導体層(c)のパターニングとエッチングを行う工程であり、前述の<(A)工程>における金属酸化物半導体層(a)のパターニングとエッチングと同様の手順により、実施可能である(図5(C)工程参照)。
<(D)工程>
 本工程は、パターニング及びエッチングされた金属酸化物半導体層(c)をマスクパターンとして、下層の絶縁層(b)をエッチングし、所望の形状の絶縁層(b)を得る工程である(図5(D)工程参照)。
 絶縁層(b)のエッチングは、絶縁層(b)を構成する材料に応じてドライエッチング又はウェットエッチングを適宜選択すればよく、例えば反応性イオンエッチング装置を用いて実施することができる。
<(E)工程>
 本工程は、基板の上方から、すなわち基板上に形成された積層構造(金属酸化物半導体層(a)-絶縁層(b)-金属酸化物半導体層(c))の上方から、エキシマレーザー光又はYAGレーザー光を照射する工程である(図5(E)工程参照)。
 本工程は、エキシマレーザー光又はYAGレーザー光に加えて、UV光を照射する工程[(E’)工程]として実施されることが好ましい。
 本工程は、より好ましくはUV光を照射した後、エキシマレーザー光又はYAGレーザー光を照射する工程[(E”)工程]として実施される。
 エキシマレーザー光、YAGレーザー光、UV光の波長や照射時間、またエネルギー等は、照射する金属酸化物半導体層の構成や厚さ等によって適宜選択すればよい。
 例えばエキシマレーザー光の照射は、波長150nm~380nmのエキシマレーザー光を50mJ/cm~150mJ/cmにて1ナノ秒間~120ナノ秒間照射することによって実施される。
 例えば、YAGレーザー光は、波長250nm~400nmのYAGレーザー光を50mJ/cm~150mJ/cmにて1ナノ秒間~120ナノ秒間照射することによって実施される。
 またUV光の照射は、例えば、波長150nm~350nmのUV光を1分間~120分間照射することによって実施される。
 上記(E)工程を経ることにより、エキシマレーザー光又はYAGレーザー光の照射により該半導体層が移動度の高いチャネル層に変換される。また表層に露出した金属酸化物層は、UV光照射によって導体(電極)に変換される。
 前述したとおり、上記(E)工程ではエキシマレーザー光又はYAGレーザー光を照射することを必須とするものである。そして、上記(E)工程ではUV光とエキシマレーザー光又はYAGレーザー光を照射する(E’)工程を行うことができる。更に(E)工程ではUV光を照射した後、エキシマレーザー光又はYAGレーザー光を照射する(E”)工程を行うことができる。
 以下、実施例を挙げて、本発明を更に詳しく説明するが、本発明は、これら実施例に限定されるものでない。なお、実施例で用いた各測定装置等は以下のとおりである。
移動度の測定方法
 実施例及び比較例で製造した薄膜トランジスタの移動度の測定には、半導体パラメータ―アナライザー Agilent4156Cを用いた。
 ドレイン電圧0.1V、TFTのサイズはチャンネル幅90μm、チェンネル長10μmにて、ゲート電圧-20Vから+20Vにおけるドレイン電流の変化を測定し、移動度(単位:cm/Vs)を算出した。
低圧水銀ランプの照度の測定方法
 実施例で用いた低圧水銀ランプの照度は、OAI社製の照度計(MODEL306)に253.7nmに感度ピークを持つプローブを接続し測定した。低圧水銀ランプの主な発光スペクトルは185nmと254nmの2つとなり、照度の比を15:85とし、MODEL306で測定された照度(254nmの照度)を0.85で除する事で低圧水銀ランプの照度とした。
金属酸化物半導体層形成用組成物(前駆体溶液)1の調製
 硝酸インジウム(III)3水和物0.90g(Aldrich社製、99.999%trace metals basis)と硝酸亜鉛6水和物0.23g(Aldrich社製、99.999%trace metals basis)とホルムアミド0.09g(東京化成工業(株)製、98.5%)とを超純水8.78gに添加し、溶液が完全に透明になるまで撹拌して水溶液としたものを、金属酸化物半導体層形成用組成物1とした。
構造体Aの作製
 シリコン酸化膜が100nm積層したシリコン基板に、金属酸化物半導体層形成用組成物1をスピンコーターを用いて4,000rpmにて塗工し、150℃で10分間乾燥することで酸化物半導体前駆体層を得た。続いて、スピンコーターによる塗工と150℃での10分間の乾燥を1サイクルとして4回繰り返し、最後にホットプレートを用いて300℃で60分のアニール処理を行い、膜厚50nmのInZnOからなる酸化物半導体層Aを得た。
 次に、酸化物半導体層Aの上部にフォトレジストを塗布し露光と現像を行い、レジストパターンを形成した。このレジストパターンをマスクとし、酸化物半導体層Aを0.01Mの塩酸水溶液に5分間浸漬することでエッチングした。エッチング処理後、剥離液を用いて、酸化物半導体層Aの上部に残されたフォトレジストを除去した。
 次に、酸化物半導体層Aの上部にスピンコーターを用いて膜厚200nmのフッ素を含むポリシロキサン膜をゲート絶縁膜として形成した。焼成温度は300℃であった。
 次に、ゲート絶縁膜の上部に、金属酸化物半導体層形成用組成物1をスピンコーターを用いて4,000rpmにて塗工し、150℃で10分間乾燥することで酸化物半導体前駆体層を得た。続いて、スピンコーターによる塗工と150℃での10分間の乾燥を1サイクルとして4回繰り返した後、最後にホットプレートを用いて300℃で60分のアニール処理を行い、膜厚50nmのInZnOからなる酸化物半導体層Bを得た。
 次に、酸化物半導体層Bの上部にフォトレジストを塗布し露光と現像を行い、レジストパターンを形成した。このレジストパターンをマスクとし、酸化物半導体層Bを0.01Mの塩酸水溶液を用いて上記同様にエッチングした。エッチング処理後、剥離液を用いて、酸化物半導体層Bの上部に残されたフォトレジストを除去した。
 次に、反応性イオンエッチング装置を用いて、酸化物半導体層Bをマスクにして、ゲート絶縁膜をドライエッチングした。プロセスガスはCFとArの混合ガスを用いた。
 ドライエッチングの工程において、マスクされていないポリシロキサンと酸化物半導体B上のフォトレジストは完全に除去され、構造体Aを得た。
 図1に構造体Aの模式図(断面図)を示す。
実施例1 トップゲート型薄膜トランジスタ(1)の作製及び評価
 低圧水銀ランプ(サムコ社製UVオゾンクリーナーUV1、照度15mW/cm、波長185nm~254nm)を用い、構造体Aに、大気雰囲気下で、紫外線を60分間連続照射した(54J/cm)。紫外線照射時、構造体Aをホットプレートにて115℃に加熱した。
 次に、KrFエキシマレーザーアニール装置を用いて、大気雰囲気下で、照射エネルギー量が120mJ/cmになる条件にて、KrFエキシマレーザー(波長248nm)を9ナノ秒間、構造体Aに照射した。この時のピーク出力は13.3MW/cmであった。
 上記の紫外線照射とエキシマレーザー照射の処理を施した構造体Aにおいては、酸化物半導体層B及び酸化物半導体層Aの露出部は、電気抵抗が大きく低下して導体となり、電極として機能した。一方、酸化物半導体層Aのゲート絶縁膜に覆われている領域は、半導体(チャネル)として機能した。すなわち、図2に示すように、表層に露出した酸化物半導体層Bはゲート電極として機能し、また表層に露出した酸化物半導体層A(一部)はソース電極又はドレイン電極(なおソース電極とドレイン電極は特に区別されない)として機能し、結果として、トップゲート型薄膜トランジスタが製造できた。
 実施例1で製造したトップゲート型薄膜トランジスタの伝達特性を図3に示す。実施例1で製造したトップゲート型薄膜トランジスタの移動度は35.94cm/Vsとなった。
実施例2 トップゲート型薄膜トランジスタの作製及び評価
 構造体Aを用い、KrFエキシマレーザーの照射条件を、140mJ/cm(ピーク出力15.6MW/cm)とした以外は、実施例1と同一の条件にて、図2に示す構造(断面図)を有するトップゲート型薄膜トランジスタを作製した。実施例2で製造したトップゲート型薄膜トランジスタの移動度は31.59cm/Vsとなった。
実施例3 トップゲート型薄膜トランジスタの作製及び評価
 構造体Aを用い、KrFエキシマレーザーの照射条件を、真空条件下にて100mJ/cm(ピーク出力11.1MW/cm)とした以外は、実施例1と同一の条件にて、図2に示す構造(断面図)を有するトップゲート型薄膜トランジスタを作製した。実施例3で製造したトップゲート型薄膜トランジスタの移動度は41.75cm/Vsとなった。
実施例4 トップゲート型薄膜トランジスタの作製及び評価
 構造体Aを用い、KrFエキシマレーザーの照射条件を、真空条件下にて120mJ/cm(ピーク出力13.3MW/cm)とした以外は、実施例1と同一の条件にて、図2に示す構造(断面図)を有するトップゲート型薄膜トランジスタを作製した。実施例4で製造したトップゲート型薄膜トランジスタの移動度は45.56cm/Vsとなった。
実施例5 トップゲート型薄膜トランジスタの作製及び評価
 構造体Aを用い、KrFエキシマレーザーの照射条件を、真空条件下にて140mJ/cm(ピーク出力15.6MW/cm)とした以外は、実施例1と同一の条件にて、図2に示す構造(断面図)を有するトップゲート型薄膜トランジスタを作製した。実施例5で製造したトップゲート型薄膜トランジスタの移動度は18.38cm/Vsとなった。
実施例6 トップゲート型薄膜トランジスタの作製及び評価
 構造体Aを用い、KrFエキシマレーザーの照射条件を、窒素雰囲気下にて120mJ/cm(ピーク出力13.3MW/cm)とした以外は、実施例1と同一の条件にて、図2に示す構造(断面図)を有するトップゲート型薄膜トランジスタを作製した。実施例6で製造したトップゲート型薄膜トランジスタの移動度は27.78cm/Vsとなった。
参考例1 トップゲート型薄膜トランジスタの作製及び評価
 低圧水銀ランプ(サムコ社製UVオゾンクリーナーUV1、照度15mW/cm)を用い、構造体Aに、大気雰囲気下で、紫外線を60分間連続照射した(54J/cm)。紫外線照射時、構造体Aをホットプレートにて115℃に加熱した。
 紫外線照射処理のみを施した構造体Aにおいて、酸化物半導体層B及び酸化物半導体層Aの露出部は、電気抵抗が大きく低下し電極として機能した。酸化物半導体層Aのゲート絶縁膜に覆われている領域は、半導体(チャネル)として機能した。すなわち、参考例1においても、先の図2に示す構造(断面図)を有するトップゲート型薄膜トランジスタが製造できた。ただし、参考例1で製造したトップゲート型薄膜トランジスタの移動度は14.33cm/Vsとなり、実施例1~実施例6で得られた移動度が18cm/Vsを超える性能の良いトップゲート型薄膜トランジスタは作製できなかった。
比較例1
 構造体A(紫外線未照射、エキシマレーザー未照射)の酸化物半導体層Bをゲート電極とみなし、酸化物半導体層Aの露出部をそれぞれソース電極、ドレイン電極とみなして、構造体Aをトップゲート型薄膜トランジスタとして扱った場合の性能を評価したが、その移動度は0.01cm/Vsとなった。
実施例7 トップゲート型薄膜トランジスタの作製及び評価
 低圧水銀ランプ(サムコ社製UVオゾンクリーナーUV1、照度15mW/cm、波長185nm~254nm)を用い、構造体Aに、大気雰囲気下で、紫外線を60分間連続照射した(54J/cm)。紫外線照射時、構造体Aをホットプレートにて115℃に加熱した。
 次に、YAGレーザー装置(COHERENT社製、MATRIX 355-1-60)を用いて、大気雰囲気下で、照射エネルギー量が120mJ/cmになる条件にて、YAGレーザーを構造体Aに照射した。この時のYAGレーザー(波長355nm)のパルス幅は25ナノ秒以下、周波数は60kHz、照射時間は4分、強度は0.5mW/cmとした。
 上記の紫外線照射とYAGレーザー照射の処理を施した構造体Aにおいては、酸化物半導体層B及び酸化物半導体層Aの露出部は、電気抵抗が大きく低下して導体となり、電極として機能した。一方、酸化物半導体層Aのゲート絶縁膜に覆われている領域は、半導体(チャネル)として機能した。すなわち、図2に示すように、表層に露出した酸化物半導体層Bはゲート電極として機能し、また表層に露出した酸化物半導体層A(一部)はソース電極又はドレイン電極(なおソース電極とドレイン電極は特に区別されない)として機能し、結果として、トップゲート型薄膜トランジスタが製造できた。
 実施例7で製造したトップゲート型薄膜トランジスタの伝達特性を図4に示す。実施例7で製造したトップゲート型薄膜トランジスタの移動度は12.18cm/Vsとなった。移動度は参考例1と同程度であったが、より安定した伝達特性が得られた。

Claims (16)

  1. 12cm/Vs以上の移動度を有するトップゲート型薄膜トランジスタ。
  2. 移動度が18cm/Vs以上である、請求項1に記載のトップゲート型薄膜トランジスタ。
  3. トップゲート型薄膜トランジスタが、トップコンタクト式又はボトムコンタクト式である、請求項1又は請求項2に記載のトップゲート型薄膜トランジスタ。
  4. トップゲート型薄膜トランジスタが、フッ素を含むポリシロキサン膜をゲート絶縁膜として有するものである、請求項1乃至請求項3のうちいずれか一項に記載のトップゲート型薄膜トランジスタ。
  5. ガラス基板、シリコン基板、又はフレキシブル基板上に形成された薄膜トランジスタである、請求項1乃至請求項4のうちいずれか一項に記載のトップゲート型薄膜トランジスタ。
  6. 該薄膜トランジスタが金属酸化物半導体層を含み、該金属酸化物半導体層が、インジウム、スズ、亜鉛、ガリウム、及びアルミニウムからなる群から選ばれる少なくとも1種の金属原子の酸化物を含む、請求項1乃至請求項5のうちいずれか一項に記載のトップゲート型薄膜トランジスタ。
  7. 前記金属酸化物半導体層が、酸化インジウムガリウム亜鉛、酸化インジウムガリウム、酸化インジウムスズ亜鉛、酸化ガリウム亜鉛、酸化インジウムスズ、酸化インジウム亜鉛、酸化スズ亜鉛、酸化亜鉛、及び酸化スズからなる群から選ばれる少なくとも1種の金属酸化物を含む層である、請求項6に記載のトップゲート型薄膜トランジスタ。
  8. 下記(A)工程から(E)工程を含む、トップゲート型薄膜トランジスタの製造方法。
    (A)工程:基板上に金属酸化物半導体層形成用組成物を塗布し焼成して金属酸化物半導体層(a)を形成し、該層(a)のパターニングとエッチングを行う工程、
    (B)工程:パターニング及びエッチングされた金属酸化物半導体層(a)上に、絶縁層(b)を形成し、該層(b)の上に金属酸化物半導体層形成用組成物を塗布し焼成して金属酸化物半導体層(c)を形成する工程、
    (C)工程:金属酸化物半導体層(c)のパターニングとエッチングを行う工程、
    (D)工程:パターニング及びエッチングされた金属酸化物半導体層(c)をマスクパターンとして下層の絶縁層(b)をエッチングする工程、
    (E)工程:基板の上方からエキシマレーザー光又はYAGレーザー光を照射する工程
    を含むトップゲート型薄膜トランジスタの製造方法。
  9. (B)工程で形成する絶縁層(b)がフッ素を含むポリシロキサン膜である、請求項8に記載のトップゲート型薄膜トランジスタの製造方法。
  10. (E)工程が、基板の上方からUV光と、エキシマレーザー光又はYAGレーザー光をともに照射する(E’)工程である、請求項8又は請求項9に記載のトップゲート型薄膜トランジスタの製造方法。
  11. (E)工程が、基板の上方からUV光を照射した後、エキシマレーザー光又はYAGレーザー光を照射する(E”)工程である、請求項8又は請求項9に記載のトップゲート型薄膜トランジスタの製造方法。
  12. 前記金属酸化物半導体層形成用組成物が、金属塩と第一アミド化合物と水を主体とする溶媒とを含む、請求項8乃至請求項11のうちいずれか一項に記載のトップゲート型薄膜トランジスタの製造方法。
  13. 前記(A)工程及び(B)工程において、同一又は異なる条件及び手順で、金属酸化物半導体層形成用組成物をスピンコートにて塗布し、110℃~180℃で0.1分間~30分間熱処理する、塗布及び熱処理の操作を1回~10回繰り返し行った後、250℃~350℃で0.1時間~120時間焼成する加熱を行うことにより、前記金属酸化物半導体層(a)及び金属酸化物半導体層(c)をそれぞれ形成する、
    請求項8乃至請求項12のうちいずれか一項に記載のトップゲート型薄膜トランジスタの製造方法。
  14. 前記(E)工程において、波長150nm~380nmのエキシマレーザー光を50mJ/cm~150mJ/cmにて1ナノ秒間~120ナノ秒間照射する、
    請求項8乃至請求項13のうち何れか一項に記載のトップゲート型薄膜トランジスタの製造方法。
  15. 前記(E)工程において、波長250nm~400nmのYAGレーザー光を50mJ/cm~150mJ/cmにて1ナノ秒間~120ナノ秒間照射する、
    請求項8乃至請求項13のうち何れか一項に記載のトップゲート型薄膜トランジスタの製造方法。
  16. 前記(E)工程において、波長150nm~350nmのUV光を1分間~120分間照射する、
    請求項10乃至請求項15のうち何れか一項に記載のトップゲート型薄膜トランジスタの製造方法。
PCT/JP2020/017061 2019-05-09 2020-04-20 薄膜トランジスタ及びその製造方法 WO2020226045A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021518334A JPWO2020226045A1 (ja) 2019-05-09 2020-04-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019089093 2019-05-09
JP2019-089093 2019-05-09

Publications (1)

Publication Number Publication Date
WO2020226045A1 true WO2020226045A1 (ja) 2020-11-12

Family

ID=73050619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017061 WO2020226045A1 (ja) 2019-05-09 2020-04-20 薄膜トランジスタ及びその製造方法

Country Status (3)

Country Link
JP (1) JPWO2020226045A1 (ja)
TW (1) TW202111775A (ja)
WO (1) WO2020226045A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206505A (ja) * 2008-01-29 2009-09-10 Semiconductor Energy Lab Co Ltd 発光装置
JP2010080490A (ja) * 2008-09-24 2010-04-08 National Institute Of Advanced Industrial Science & Technology 半導体素子
US20120018718A1 (en) * 2010-07-21 2012-01-26 National Chiao Tung University Self-aligned top-gate thin film transistors and method for fabricating same
JP2014140005A (ja) * 2012-12-20 2014-07-31 Nippon Hoso Kyokai <Nhk> 薄膜トランジスタおよびその製造方法
JP2015109315A (ja) * 2013-12-03 2015-06-11 出光興産株式会社 薄膜トランジスタ、その製造方法、酸化物半導体層、表示装置及び半導体装置
JP2015153909A (ja) * 2014-02-14 2015-08-24 富士フイルム株式会社 金属錯体組成物、金属酸化物薄膜及びその製造方法、電子素子、薄膜トランジスタ、表示装置、イメージセンサ、並びにx線センサ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206505A (ja) * 2008-01-29 2009-09-10 Semiconductor Energy Lab Co Ltd 発光装置
JP2010080490A (ja) * 2008-09-24 2010-04-08 National Institute Of Advanced Industrial Science & Technology 半導体素子
US20120018718A1 (en) * 2010-07-21 2012-01-26 National Chiao Tung University Self-aligned top-gate thin film transistors and method for fabricating same
JP2014140005A (ja) * 2012-12-20 2014-07-31 Nippon Hoso Kyokai <Nhk> 薄膜トランジスタおよびその製造方法
JP2015109315A (ja) * 2013-12-03 2015-06-11 出光興産株式会社 薄膜トランジスタ、その製造方法、酸化物半導体層、表示装置及び半導体装置
JP2015153909A (ja) * 2014-02-14 2015-08-24 富士フイルム株式会社 金属錯体組成物、金属酸化物薄膜及びその製造方法、電子素子、薄膜トランジスタ、表示装置、イメージセンサ、並びにx線センサ

Also Published As

Publication number Publication date
JPWO2020226045A1 (ja) 2020-11-12
TW202111775A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
JP5854231B2 (ja) アモルファス金属酸化物半導体層形成用前駆体組成物、アモルファス金属酸化物半導体層の製造方法及び半導体デバイスの製造方法
JP5200322B2 (ja) 半導体デバイスおよびその製造方法
JP5640323B2 (ja) 金属酸化物半導体の製造方法、金属酸化物半導体および薄膜トランジスタ
JP5132053B2 (ja) 有機薄膜トランジスタの製造方法
JP2010010175A (ja) 薄膜トランジスタおよび薄膜トランジスタの製造方法
CN105489486B (zh) 一种基于超薄氧化镁高k介电层薄膜晶体管的制备方法
JP2007150156A (ja) トランジスタおよびその製造方法
JP2010258057A (ja) 金属酸化物半導体、その製造方法、及びそれを用いた薄膜トランジスタ
JPWO2010061721A1 (ja) 薄膜トランジスタおよび薄膜トランジスタの製造方法
Wei et al. Solution-processed flexible metal-oxide thin-film transistors operating beyond 20 MHz
WO2010079581A1 (ja) 薄膜トランジスタ及びその製造方法
JP2010263103A (ja) 薄膜トランジスタ、及びその製造方法
WO2020226045A1 (ja) 薄膜トランジスタ及びその製造方法
JP2010147206A (ja) 薄膜トランジスタ、及びその製造方法
JP2010258018A (ja) 半導体薄膜およびこれを用いた薄膜トランジスタ
KR101992480B1 (ko) 저온 용액공정을 이용한 산화물 반도체의 제조방법 및 산화물 반도체
CN209747522U (zh) 一种双层金属氧化物半导体异质结薄膜晶体管
Maeda et al. Investigation of pentacene growth on SiO2 gate insulator after photolithography for nitrogen-doped LaB6 bottom-contact electrode formation
JP2010251591A (ja) 薄膜トランジスタおよび該薄膜トランジスタの製造方法
CN111180310B (zh) 金属氧化物薄膜图案化的方法及应用
JP7217626B2 (ja) 塗布型金属酸化物膜の製造方法
JP7484701B2 (ja) グラフェンナノリボン前駆体、グラフェンナノリボン、電子装置、グラフェンナノリボンの製造方法及び電子装置の製造方法
Kim et al. Photo-patterned oxide films produced using polymeric metal acrylate for low-voltage thin-film transistors
WO2022181707A1 (ja) 無機/有機ハイブリッド相補型半導体デバイス及びその製造方法
JP2019091740A (ja) 塗布型金属酸化物膜の製造方法、それを用いて製造された塗布型金属酸化物膜および電子デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802847

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021518334

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20802847

Country of ref document: EP

Kind code of ref document: A1