WO2020224319A1 - 隔离膜和电化学装置 - Google Patents

隔离膜和电化学装置 Download PDF

Info

Publication number
WO2020224319A1
WO2020224319A1 PCT/CN2020/078453 CN2020078453W WO2020224319A1 WO 2020224319 A1 WO2020224319 A1 WO 2020224319A1 CN 2020078453 W CN2020078453 W CN 2020078453W WO 2020224319 A1 WO2020224319 A1 WO 2020224319A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer binder
particle size
oxide
inorganic particles
coating layer
Prior art date
Application number
PCT/CN2020/078453
Other languages
English (en)
French (fr)
Inventor
樊晓贺
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to JP2021517395A priority Critical patent/JP7195414B2/ja
Priority to KR1020217009261A priority patent/KR102608006B1/ko
Priority to US16/652,472 priority patent/US20210234233A1/en
Priority to EP20712432.2A priority patent/EP3758097A4/en
Publication of WO2020224319A1 publication Critical patent/WO2020224319A1/zh
Priority to US18/303,877 priority patent/US20230261322A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/06Mounting in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This application relates to the field of electrochemical devices, in particular to an isolation membrane and an electrochemical device using the isolation membrane.
  • the polymer binder in the isolation membrane will be squashed and adhered to form a film after the electrolyte swelling and the hot pressing of the formation process, which affects the rate performance and cycle performance of the electrochemical device (for example, lithium ion battery), and even leads to the cycle process Lithium in the negative electrode.
  • the polymer binder of the isolation membrane is mostly a weakly polar polymer binder, which has poor affinity with the electrolyte, resulting in difficulty in electrolyte transport, and poor electrolyte infiltration in a high-pressure dense material system.
  • increasing the degree of crosslinking of the polymer binder increases the rigidity of the particles of the polymer binder, resulting in a decrease in the cohesive force of the polymer binder.
  • the interfacial adhesion between the isolation membrane and the pole piece will decrease, and the electrochemical device is prone to deformation.
  • the flatness of the interface of the electrochemical device is reduced, it is easy to produce lithium at the interface, which in turn affects the cycle performance of the electrochemical device.
  • a binder coating including inorganic particles is formed on the porous substrate of the separator to prevent the binder from being squashed and adhered to form a film after swelling of the electrolyte and the hot pressing of the chemical forming process, and at the same time, the electrolysis of the separator Liquid affinity promotes the transfer of electrolyte.
  • the embodiment of the present application provides an isolation membrane, including a porous substrate and a first coating layer on at least one surface of the porous substrate; wherein, the first coating layer includes a first polymer binder and The first inorganic particle, the first polymer binder is a particle with a core-shell structure.
  • the isolation membrane further includes a second coating layer disposed between the porous substrate and the first coating layer, and the second coating layer includes a second polymer binder and a second coating layer. Two inorganic particles.
  • the first coating layer further includes an auxiliary binder, and the mass ratio of the first polymer binder, the first inorganic particles, and the auxiliary binder is 10-80: 85 ⁇ 5: 5 ⁇ 15.
  • the first coating has a particle monolayer structure.
  • the first polymer binder satisfies the following formulas (1)-(3):
  • Dv50 represents the particle size that reaches 50% of the cumulative volume from the small particle size side in the volume-based particle size distribution
  • Dv90 represents the particle size that reaches 90% of the volume cumulative from the small particle size side in the volume-based particle size distribution.
  • the diameter, Dn10 indicates the particle size that reaches 10% of the cumulative number from the small particle size side in the number-based particle size distribution.
  • the isolation membrane satisfies the following formula (4):
  • the core of the first polymer binder is selected from a polymer formed by the polymerization of at least one of the following monomers: ethyl acrylate, butyl acrylate, ethyl methacrylate, styrene, Chlorostyrene, fluorostyrene, methyl styrene, acrylic acid, methacrylic acid, maleic acid.
  • the shell of the first polymer binder is selected from polymers formed by polymerization of at least one of the following monomers: methyl acrylate, ethyl acrylate, butyl acrylate, and methyl methacrylate , Ethyl methacrylate, butyl methacrylate, ethylene, chlorostyrene, fluorostyrene, methyl styrene, acrylonitrile, methacrylonitrile.
  • the first inorganic particles are selected from aluminum oxide, silicon dioxide, magnesium oxide, titanium oxide, hafnium dioxide, tin oxide, cerium oxide, nickel oxide, zinc oxide, calcium oxide, oxide One or more of zirconium, yttrium oxide, silicon carbide, boehmite, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, and barium sulfate.
  • An embodiment of the present application also provides an electrochemical device, including a positive pole piece, a negative pole piece, and the above-mentioned isolation film, and the isolation film is disposed between the positive pole piece and the negative pole piece.
  • the first inorganic particles are used in the first coating layer, which not only ensures that the first polymer binder exerts a binding effect, but also promotes the electrolytic solution transport and improves the rate performance of the electrochemical device.
  • FIG. 1 is a schematic structural diagram of an isolation membrane provided by an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of an isolation membrane provided by another embodiment of the application.
  • Example 3 is a scanning electron microscope (SEM) image of the isolation membrane under 1000 times magnification in Example 2 of the application.
  • the first coating 2 is the first coating 2
  • the first polymer binder 3, 5 The first polymer binder 3, 5
  • the first inorganic particle 4, 6 is the first inorganic particle 4, 6
  • Fig. 1 shows a schematic structural diagram of an isolation membrane according to an embodiment of the present application.
  • the isolation membrane of the present application includes a porous substrate 1 and a first coating layer 2 provided on the porous substrate 1.
  • the first coating 2 is located on one surface of the porous substrate 1. In other embodiments, the first coating layer 2 may be provided on both surfaces of the porous substrate 1.
  • the porous substrate 1 is a polymer film, a multilayer polymer film, or a non-woven fabric formed of any one polymer or a mixture of two or more selected from the following: polyethylene, polypropylene, polyethylene terephthalate Ester, polyphthalamide, polybutylene terephthalate, polyester, polycarboxylic acid, polyamide, polycarbonate, polyimide, polyether ether ketone, polyaryl ether ketone, Polyetherimide, polyamideimide, polybenzimidazole, polyethersulfone, polyphenylene ether, cyclic olefin copolymer, polyphenylene sulfide, and polyethylene naphthalene.
  • the polyethylene is selected from at least one component selected from high-density polyethylene, low-density polyethylene, and ultra-high molecular weight polyethylene.
  • the average pore diameter of the porous substrate 1 is 0.001 ⁇ m to 10 ⁇ m.
  • the porosity of the porous substrate 1 is 5%-95%.
  • the porous substrate 1 has a thickness between 0.5 ⁇ m and 50 ⁇ m.
  • the first coating 2 includes a first polymer binder 3 and first inorganic particles 4.
  • the first polymer binder 3 is a particle with a core-shell structure.
  • the core of the first polymer binder 3 is selected from a polymer formed by polymerization of at least one of the following monomers: ethyl acrylate, butyl acrylate, ethyl methacrylate, styrene, chlorostyrene, fluorostyrene , Methyl styrene, acrylic acid, methacrylic acid, maleic acid.
  • the shell of the first polymer binder 3 is selected from polymers formed by the polymerization of at least one of the following monomers: methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, Butyl methacrylate, ethylene, chlorostyrene, fluorostyrene, methylstyrene, acrylonitrile, methacrylonitrile.
  • the first polymerization The shell of the material binder can be softened first, and then the core of the first polymer binder can play a bonding role.
  • the core-shell structure particles of the first polymer binder can be obtained by an emulsion polymerization method commonly used in the art.
  • the first inorganic particles 4 are selected from aluminum oxide, silicon dioxide, magnesium oxide, titanium oxide, hafnium dioxide, tin oxide, ceria, nickel oxide, zinc oxide, calcium oxide, and zirconium oxide. , Yttrium oxide, silicon carbide, boehmite, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium sulfate one or more.
  • the first inorganic particles 4 are high-hardness inorganic materials, which do not change significantly after the electrolyte swells and heat-pressing in the formation process, and can play a role in supporting the skeleton. At the same time, the first inorganic particles 4 have good electrolyte affinity, which is beneficial to Electrolyte transfer.
  • the isolation membrane further includes a second coating layer 7 disposed between the porous substrate 1 and the first coating layer 2, and the second coating layer 7 includes a second polymer Binder and second inorganic particles.
  • the second polymer binder in the second coating layer 7 is selected from vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-trichloroethylene copolymer, polystyrene, polyacrylate, polyacrylic acid , Polyacrylate, polyacrylonitrile, polyvinylpyrrolidone, vinyl acetate, ethylene-vinyl acetate copolymer, polyimide, polyethylene oxide, cellulose acetate, cellulose acetate butyrate, propionic acid Cellulose, cyanoethyl pullulan, cyanoethyl polyvinyl alcohol, cyanoethyl cellulose, cyanoethyl sucrose, pullulan, carboxymethyl cellulose, sodium carb
  • the second inorganic particles may also be selected from aluminum oxide, silicon dioxide, magnesium oxide, titanium oxide, hafnium dioxide, tin oxide, ceria, nickel oxide, zinc oxide, calcium oxide, oxide One or more of zirconium, yttrium oxide, silicon carbide, boehmite, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, and barium sulfate.
  • the content of the second inorganic particles is not particularly limited. However, based on the total weight of the second coating layer 7 being 100%, the weight percentage of the second inorganic particles is 40% to 99%.
  • the second polymer binder is present in a large amount, thereby reducing the interstitial volume formed between the second inorganic particles, and reducing the pore size and porosity, resulting in a change in the conduction of lithium ions. Slowly, the performance of the electrochemical device decreases. If the weight percentage of the second inorganic particles is greater than 99%, the content of the second polymer binder is too low to allow sufficient adhesion between the second inorganic particles, resulting in a reduction in the mechanical properties of the finally formed isolation film.
  • the first coating layer 2 further includes an auxiliary binder, and the mass ratio of the first polymer binder, the first inorganic particles and the auxiliary binder is 10-80:85-5:5 ⁇ 15.
  • the auxiliary binder is selected from vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-trichloroethylene copolymer, polystyrene, polyacrylate, polyacrylic acid, polyacrylate , Polyacrylonitrile, polyvinylpyrrolidone, vinyl acetate, ethylene-vinyl acetate copolymer, polyimide, polyoxyethylene, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanogen Ethyl ethyl pullulan, cyanoethyl polyvinyl alcohol, cyanoethyl cellulose, cyanoethyl sucrose, pullulan, carboxymethyl cellulose, sodium carboxy
  • the polyacrylate includes one or more of polymethyl methacrylate, polyethyl acrylate, polypropyl acrylate, and polybutyl acrylate. If the content of the first polymer binder is too small, the bonding performance will decrease. If the content of the first polymer binder is too much, the rate performance of the electrochemical device will decrease.
  • the auxiliary binder helps to increase the adhesion of the first coating. If the content of auxiliary binder is too small, the improvement of adhesion performance is not obvious. If the content of auxiliary binder is too much, the rate performance of the electrochemical device will change. difference. The addition amount of the first inorganic particles is too small to achieve the supporting effect, and the addition amount is too large, which affects the bonding effect of the first polymer binder.
  • the first coating 2 has a particle single-layer structure.
  • the particle monolayer structure helps increase the energy density of the electrochemical device, and at the same time can improve the rate performance and cycle performance of the electrochemical device.
  • the first polymer binder is spherical or quasi-spherical particles, and the first polymer binder satisfies the following formulas (1)-(3):
  • Dv50 represents the particle size that reaches 50% of the cumulative volume from the small particle size side in the volume-based particle size distribution
  • Dv90 represents the particle size that reaches 90% of the volume cumulative from the small particle size side in the volume-based particle size distribution.
  • the diameter, Dn10 represents the particle size that reaches 10% of the cumulative number from the small particle size side in the number-based particle size distribution.
  • the particles of the first polymer binder satisfying the above formula have high consistency, and the high particle consistency helps the first polymer binder to play a binding effect and can improve the thickness consistency of the electrochemical device. If the particle size of the first polymer binder is too small, the rate performance of the electrochemical device will decrease, and if the particle size of the first polymer binder is too large, the bonding performance will be affected.
  • the isolation membrane satisfies the following formula (4):
  • the main function of the first inorganic particles is to prevent the first polymer binder from being squashed during the formation process.
  • the particle size of the first inorganic particles is too small to play a supporting role. However, if the particle size of the first inorganic particles is too large, for example, close to or larger than the particle size of the first polymer binder, the first polymer binder will not be able to exert a bonding effect during hot pressing, resulting in bonding failure.
  • the thickness space supported by the first inorganic particles facilitates electrolyte transport.
  • the application also provides a lithium ion battery including the above-mentioned separator.
  • the lithium ion battery is only used as an exemplary example of the electrochemical device, and the electrochemical device may also include other suitable devices.
  • the lithium ion battery also includes a positive pole piece, a negative pole piece and an electrolyte, wherein the separator of the present application is inserted between the positive pole piece and the negative pole piece.
  • the positive electrode piece includes a positive electrode current collector
  • the negative electrode piece includes a negative electrode current collector
  • the positive electrode current collector can be aluminum foil or nickel foil
  • the negative electrode current collector can be copper foil or nickel foil.
  • the positive pole piece includes a positive electrode material
  • the positive electrode material includes a positive electrode material capable of absorbing and releasing lithium (Li) (hereinafter, sometimes referred to as "a positive electrode material capable of absorbing/releasing lithium Li”).
  • positive electrode materials capable of absorbing/releasing lithium (Li) may include lithium cobaltate, lithium nickel cobalt manganate, lithium nickel cobalt aluminate, lithium manganate, lithium iron phosphate, lithium vanadium phosphate, lithium vanadyl phosphate, iron phosphate Lithium, lithium titanate and lithium-rich manganese-based materials.
  • the chemical formula of lithium cobalt oxide can be as chemical formula 1:
  • M1 represents selected from nickel (Ni), manganese (Mn), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), iron (Fe), copper (Cu), Zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), tungsten (W), yttrium (Y), lanthanum (La), zirconium (Zr) and silicon (Si) At least one of the values of x, a, b, and c are within the following ranges: 0.8 ⁇ x ⁇ 1.2, 0.8 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 0.2, -0.1 ⁇ c ⁇ 0.2;
  • the chemical formula of lithium nickel cobalt manganate or lithium aluminate can be as chemical formula 2:
  • M2 represents selected from cobalt (Co), manganese (Mn), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), iron (Fe), copper (Cu), At least one of zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), tungsten (W), zirconium (Zr) and silicon (Si), y, d, e
  • the and f values are in the following ranges: 0.8 ⁇ y ⁇ 1.2, 0.3 ⁇ d ⁇ 0.98, 0.02 ⁇ e ⁇ 0.7, -0.1 ⁇ f ⁇ 0.2;
  • the chemical formula of lithium manganate can be as chemical formula 3:
  • M3 represents selected from cobalt (Co), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), At least one of copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr) and tungsten (W), with z, g and h values in the following ranges respectively Inner: 0.8 ⁇ z ⁇ 1.2, 0 ⁇ g ⁇ 1.0 and -0.2 ⁇ h ⁇ 0.2.
  • the anode pole piece includes an anode material
  • the anode material includes an anode material capable of absorbing and releasing lithium (Li) (hereinafter, sometimes referred to as "an anode material capable of absorbing/releasing lithium Li”).
  • the negative electrode material capable of absorbing/releasing lithium (Li) may include carbon materials, metal compounds, oxides, sulfides, lithium nitrides such as LiN 3 , lithium metal, metals forming alloys with lithium, and polymer materials.
  • Examples of carbon materials may include low graphitization carbon, easy graphitization carbon, artificial graphite, natural graphite, mesophase carbon microspheres, soft carbon, hard carbon, pyrolysis carbon, coke, glassy carbon, sintered organic polymer compounds Body, carbon fiber and activated carbon.
  • the coke may include pitch coke, needle coke and petroleum coke.
  • the organic polymer compound sintered body refers to a material obtained by carbonizing a polymer material such as phenol plastic or furan resin at an appropriate temperature, and some of these materials are divided into low graphitized carbon or easily graphitized carbon .
  • Examples of polymer materials may include polyacetylene and polypyrrole.
  • negative electrode materials capable of absorbing/releasing lithium Li
  • a material whose charge and discharge voltage is close to that of lithium metal is selected. This is because the lower the charge and discharge voltage of the negative electrode material, the easier it is for electrochemical devices (such as lithium ion batteries) to have higher energy density.
  • carbon materials can be selected as the negative electrode material, because their crystal structure only changes slightly during charging and discharging, and therefore, good cycle characteristics and large charging and discharging capacities can be obtained.
  • graphite can be selected because it can give a large electrochemical equivalent and a high energy density.
  • the negative electrode material capable of absorbing/releasing lithium (Li) may include elemental lithium metal, metal elements and semimetal elements capable of forming alloys with lithium (Li), alloys and compounds including such elements, and the like. In particular, they are used together with carbon materials, because in this case, good cycle characteristics and high energy density can be obtained.
  • the alloys used herein also include alloys containing one or more metal elements and one or more semi-metal elements. The alloy can be in the following states: solid solution, eutectic crystal (eutectic mixture), intermetallic compound and mixtures thereof.
  • metal elements and semi-metal elements may include tin (Sn), lead (Pb), aluminum (Al), indium (In), silicon (Si), zinc (Zn), antimony (Sb), bismuth (Bi), Cadmium (Cd), magnesium (Mg), boron (B), gallium (Ga), germanium (Ge), arsenic (As), silver (Ag), zirconium (Zr), yttrium (Y), and hafnium (Hf).
  • Examples of the above-mentioned alloys and compounds may include materials having the chemical formula: Ma s Mb t Li u and materials having the chemical formula: Ma p Mc q Md r .
  • Ma represents at least one element of metal elements and semimetal elements that can form alloys with lithium
  • Mb represents at least one element of metal elements and semimetal elements other than lithium and Ma
  • Mc Represents at least one element among non-metal elements
  • Md represents at least one element among metal elements and semimetal elements other than Ma
  • s, t, u, p, q, and r satisfy s>0, t ⁇ 0, u ⁇ 0, p>0, q>0, and r ⁇ 0.
  • inorganic compounds that do not include lithium (Li), such as MnO 2 , V 2 O 5 , V 6 O 13 , NiS, and MoS, may be used in the negative electrode.
  • the above-mentioned lithium ion battery further includes an electrolyte.
  • the electrolyte may be one or more of a gel electrolyte, a solid electrolyte, and an electrolyte.
  • the electrolyte includes a lithium salt and a non-aqueous solvent.
  • the lithium salt is selected from LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB(C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2 , LiC(SO 2 CF 3) ) 3 , one or more of LiSiF 6 , LiBOB and lithium difluoroborate.
  • LiPF 6 is selected as the lithium salt because it can give high ionic conductivity and improve cycle characteristics.
  • the non-aqueous solvent may be a carbonate compound, a carboxylate compound, an ether compound, other organic solvents, or a combination thereof.
  • the carbonate compound may be a chain carbonate compound, a cyclic carbonate compound, a fluorocarbonate compound, or a combination thereof.
  • chain carbonate compounds are diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), methyl propyl carbonate (MPC), ethylene propyl carbonate (EPC), methyl carbonate Ethyl ester (MEC) and combinations thereof.
  • chain carbonate compounds are diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), methyl propyl carbonate (MPC), ethylene propyl carbonate (EPC), methyl carbonate Ethyl ester (MEC) and combinations thereof.
  • Examples of the cyclic carbonate compound are ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinyl ethylene carbonate (VEC), and combinations thereof.
  • fluorocarbonate composition examples include fluoroethylene carbonate (FEC), 1,2-difluoroethylene carbonate, 1,1-difluoroethylene carbonate, 1,1,2-difluoroethylene carbonate Trifluoroethylene, 1,1,2,2-tetrafluoroethylene carbonate, 1-fluoro-2-methylethylene carbonate, 1-fluoro-1-methylethylene carbonate, 1,2-tetrafluoroethylene carbonate, 2-Difluoro-1-methylethylene, 1,1,2-trifluoro-2-methylethylene carbonate, trifluoromethylethylene carbonate, and combinations thereof.
  • FEC fluoroethylene carbonate
  • 1,2-difluoroethylene carbonate 1,1-difluoroethylene carbonate
  • 1,1,2-difluoroethylene carbonate Trifluoroethylene
  • 1,1,2,2-tetrafluoroethylene carbonate 1-fluoro-2-methylethylene carbonate
  • 1-fluoro-1-methylethylene carbonate 1-fluoro-1-methylethylene carbonate
  • carboxylic acid ester compounds are methyl acetate, ethyl acetate, n-propyl acetate, tert-butyl acetate, methyl propionate, ethyl propionate, propyl propionate, ⁇ -butyrolactone, decanolactone, Valerolactone, mevalonolactone, caprolactone, methyl formate, and combinations thereof.
  • ether compounds are dibutyl ether, tetraglyme, diglyme, 1,2-dimethoxyethane, 1,2-diethoxyethane, ethoxymethoxy Ethane, 2-methyltetrahydrofuran, tetrahydrofuran and combinations thereof.
  • organic solvents examples include dimethyl sulfoxide, 1,2-dioxolane, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone, methyl Amides, dimethylformamide, acetonitrile, trimethyl phosphate, triethyl phosphate, trioctyl phosphate, and phosphate esters and combinations thereof.
  • Such an electrochemical device includes any device that undergoes an electrochemical reaction, and specific examples thereof include all kinds of primary batteries, secondary batteries, fuel cells, solar cells, or capacitors.
  • the electrochemical device can be manufactured by conventional methods known to those skilled in the art.
  • the electrochemical device forms an electrochemical device with a separator interposed between a positive electrode piece and a negative electrode piece.
  • a liquid electrolyte can be injected at a suitable step.
  • the liquid electrolyte can be injected before assembling the electrochemical device or in the final step during the assembling of the electrochemical device.
  • the electrochemical device of the present application may be a lithium ion battery
  • the electrochemical device of the lithium ion battery may be a winding type, a laminated (stacked) type, and a folding type.
  • a lithium ion battery is taken as an example and combined with specific examples to illustrate the preparation of a lithium ion battery.
  • preparation methods described in this application are only examples, and any other suitable preparation methods are within the scope of this application.
  • the boehmite and polyacrylate are mixed in a mass ratio of 90:10 and dissolved in deionized water to form a second coating slurry. Subsequently, the second coating slurry was uniformly coated on one side of the porous substrate (polyethylene, thickness 7 ⁇ m, average pore size 0.073 ⁇ m, porosity 26%) by using the micro-gravure coating method, and then dried. To obtain a double-layer structure of the second coating layer and the porous substrate.
  • the polyvinylidene fluoride and polyacrylate were mixed in a mass ratio of 96:4 and dissolved in deionized water to form the first coating slurry.
  • the Dv50 of the polyvinylidene fluoride was 600 nm.
  • the first coating slurry is uniformly coated on the surface of the above-mentioned second coating layer and the porous substrate double-layer structure by a micro-gravure coating method, and the desired isolation film is obtained through drying treatment.
  • the positive active material lithium cobalt oxide, conductive agent acetylene black, and binder polyvinylidene fluoride (PVDF) are mixed thoroughly in the N-methylpyrrolidone solvent system at a mass ratio of 94:3:3, and then coated on After drying, cold pressing and slitting on the positive electrode current collector Al foil, a positive electrode piece is obtained.
  • SBR binder styrene butadiene rubber
  • CMC thickener sodium carboxymethyl cellulose
  • EC ethylene carbonate
  • PC propylene carbonate
  • the positive pole piece, the isolation film, and the negative pole piece are stacked in order, so that the isolation film is located between the positive pole piece and the negative pole piece for safe isolation, and the electrochemical device is obtained by winding.
  • the electrochemical device is placed in a packaging case, and electrolyte is injected and packaged to obtain a lithium ion battery.
  • the boehmite and polyacrylate are mixed in a mass ratio of 90:10 and dissolved in deionized water to form a second coating slurry. Subsequently, the second coating slurry was uniformly coated on one side of the porous substrate (polyethylene, thickness 7 ⁇ m, average pore size 0.073 ⁇ m, porosity 26%) by using the micro-gravure coating method, and then dried. To obtain a double-layer structure of the second coating layer and the porous substrate.
  • the first polymer binder (the core is polyethyl methacrylate, the shell is a copolymer of methyl methacrylate-methyl styrene) is added to the mixer, and the Dv50 of the first polymer binder is 600 nm , Dv90 is 823nm, Dn10 is 121nm. Then add the auxiliary binder polyacrylate, continue to stir evenly, and finally add deionized water to adjust the slurry viscosity.
  • the mass ratio of the first polymer binder to the auxiliary binder is 90:10.
  • the slurry is coated on the two surfaces of the above-mentioned second coating layer and the porous substrate double-layer structure, the first coating layer is formed on both surfaces, and dried to obtain the desired isolation membrane.
  • the boehmite and polyacrylate are mixed in a mass ratio of 90:10 and dissolved in deionized water to form a second coating slurry. Subsequently, the second coating slurry was uniformly coated on one side of the porous substrate (polyethylene, thickness 7 ⁇ m, average pore size 0.073 ⁇ m, porosity 26%) by using the micro-gravure coating method, and then dried. To obtain a double-layer structure of the second coating layer and the porous substrate.
  • the first polymer binder (the core is polyethyl methacrylate and the shell is a copolymer of methyl methacrylate-methyl styrene) is added to the mixer, and the Dv50 of the first polymer binder is 300 nm , Dv90 is 276nm, Dn10 is 109nm.
  • add aluminum oxide particles (the first inorganic particles), add in two times, 50% each time, and stir evenly.
  • the Dv50 of the aluminum oxide particles is 150 nm.
  • add the auxiliary binder polyacrylate continue to stir evenly, and finally add deionized water to adjust the slurry viscosity.
  • the mass ratio of the first polymer binder, aluminum oxide and auxiliary binder is 40:50:10.
  • the slurry is coated on both surfaces of the above-mentioned second coating layer and the double-layer structure of the porous substrate, and the first coating layer is formed on both surfaces.
  • the particles are in a single-layer structure and dried to obtain
  • Example 2 It is consistent with the preparation method of Example 1, except that the Dv50 of the first polymer binder in Example 2 is 600 nm, Dv90 is 823 nm, and Dn10 is 121 nm.
  • the Dv50 of the aluminum oxide particles is 300 nm.
  • Example 3 It is consistent with the preparation method of Example 1, except that the Dv50 of the first polymer binder in Example 3 is 1200 nm, Dv90 is 1670 nm, and Dn10 is 133 nm. The Dv50 of the aluminum oxide particles is 600 nm.
  • Example 4 It is the same as the preparation method of Example 1, except that the Dv50 of the first polymer binder in Example 4 is 1600 nm, Dv90 is 2253 nm, and Dn10 is 136 nm.
  • the Dv50 of the aluminum oxide particles is 800 nm.
  • the preparation method is consistent with the preparation method of Example 1, except that the Dv50 of the first polymer binder in Example 5 is 2800nm, Dv90 is 3891nm, and Dn10 is 152nm.
  • the Dv50 of the aluminum oxide particles is 1400 nm.
  • the preparation method is consistent with the preparation method of Example 1, except that the Dv50 of the first polymer binder in Example 6 is 4000nm, Dv90 is 5391nm, and Dn10 is 172nm.
  • the Dv50 of the aluminum oxide particles is 2000 nm.
  • Example 7 It is consistent with the preparation method of Example 1, except that the Dv50 of the first polymer binder in Example 7 is 5000 nm, Dv90 is 6931 nm, and Dn10 is 196 nm.
  • the Dv50 of the aluminum oxide particles is 2500 nm.
  • the preparation method is consistent with the preparation method of Example 2, except that the mass ratio of the first polymer binder, aluminum oxide and auxiliary binder in Example 8 is 10:80:10.
  • the preparation method is consistent with the preparation method of Example 2, except that the mass ratio of the first polymer binder, aluminum oxide and auxiliary binder in Example 9 is 30:60:10.
  • the preparation method is consistent with the preparation method of Example 2, except that the mass ratio of the first polymer binder, aluminum oxide and the auxiliary binder in Example 10 is 50:40:10.
  • the preparation method is consistent with the preparation method of Example 2, except that the mass ratio of the first polymer binder, aluminum oxide and auxiliary binder in Example 11 is 60:30:10.
  • the preparation method is consistent with the preparation method of Example 2, except that the mass ratio of the first polymer binder, aluminum oxide and the auxiliary binder in Example 12 is 80:10:10.
  • Example 13 It is consistent with the preparation method of Example 2, except that the Dv50 of the aluminum oxide particles in Example 13 is 180 nm.
  • Example 14 It is consistent with the preparation method of Example 2, except that the Dv50 of the aluminum oxide particles in Example 14 is 240 nm.
  • Example 15 It is consistent with the preparation method of Example 2, except that the Dv50 of the aluminum oxide particles in Example 15 is 360 nm.
  • Example 16 It is consistent with the preparation method of Example 2, except that the Dv50 of the aluminum oxide particles in Example 16 is 420 nm.
  • Example 17 It is consistent with the preparation method of Example 2, except that the Dv90 of the first polymer binder in Example 17 is 1132 nm, and the Dn10 is 182 nm.
  • Example 18 It is consistent with the preparation method of Example 2, except that the Dv90 of the first polymer binder in Example 18 is 886 nm, and the Dn10 is 279 nm.
  • Example 19 It is consistent with the preparation method of Example 2, except that the Dv90 of the first polymer binder in Example 19 is 1097 nm, and the Dn10 is 273 nm.
  • the lithium ion batteries of the examples and comparative examples were tested for adhesion and rate performance.
  • the specific test methods are as follows:
  • the 180° peeling test standard is used to test the dry pressure adhesion between the separator and the positive and negative pole pieces.
  • the separator and the positive and negative pole pieces are cut into 54.2mm*72.5mm samples, and the separator is combined with the positive pole piece/negative pole piece.
  • the first inorganic particle Dv50 and the first polymer binder Dv50 should satisfy 0.3*first polymer binder Dv50 ⁇ first inorganic particle Dv50 ⁇ 0.7*first polymer Binder Dv50, this is because if the particle size of the first inorganic particles is too small, it cannot play a supporting role; and if the particle size of the first inorganic particles is too large, for example, close to or larger than the particle size of the first polymer binder When hot pressing, the first polymer binder will not be able to play a binding effect, resulting in bonding failure, and as the first inorganic particles Dv50 relative to the first polymer binder Dv50 increase, the isolation film and the positive / The dry pressure bonding force of the negative pole piece shows a decreasing trend, while the rate performance of the lithium ion battery shows an increasing trend.
  • FIG. 3 a scanning electron microscope (SEM) image of the isolation film prepared in Example 2 of the present application is observed under a magnification of 1000 times, where 5 is the first polymer binder, and 6 is the first inorganic particle. It can be seen that the particle distribution of the first polymer binder is uniform.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Ceramic Engineering (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

一种隔离膜和电化学装置。隔离膜包括多孔基材(1)和位于多孔基材(1)的至少一个表面上的第一涂层(2)。其中,第一涂层(2)包括第一聚合物粘结剂(3、5)和第一无机颗粒(4、6),第一聚合物粘结剂(3、5)为核壳结构的颗粒。通过在第一涂层(2)中采用第一无机颗粒(4、6),在确保第一聚合物粘结剂(3、5)发挥粘性作用的同时,促进了电解液传输,提高了电化学装置的倍率性能。

Description

隔离膜和电化学装置 技术领域
本申请涉及电化学装置领域,尤其涉及一种隔离膜及应用所述隔离膜的电化学装置。
背景技术
隔离膜中的聚合物粘结剂在经过电解液溶胀以及化成工序热压后会被压扁粘连成膜,影响电化学装置(例如,锂离子电池)的倍率性能以及循环性能,甚至导致循环过程中的负极析锂。隔离膜的聚合物粘结剂多为弱极性聚合物粘结剂,与电解液亲和性差,导致电解液传输困难,在高压密材料体系中容易发生电解液浸润不良。
为了克服上述问题,目前通常采用以下两种手段:第一,通过增加聚合物粘结剂的交联度,用以降低聚合物粘结剂的溶胀度;第二,调整化成工序条件,例如,降低化成工序温度,减小化成工序压力,缩短化成工序流程时间。然而,增加聚合物粘结剂的交联度会增加聚合物粘结剂的颗粒的刚性,导致聚合物粘结剂的粘结力下降。另外,通常难以精确的通过交联度的改变来调整溶胀度。而通过调整化成工序条件,会使得隔离膜与极片之间得界面粘结力下降,电化学装置容易发生变形。此外,在电化学装置界面平整度下降时,容易产生界面析锂,进而影响电化学装置的循环性能。
发明内容
本申请通过在隔离膜的多孔基材上形成包括无机颗粒的粘结剂涂层,防止粘结剂在电解液溶胀以及化成工序热压后被压扁粘 连成膜,同时提高了隔离膜的电解液亲和性,促进了电解液的传输。
本申请实施例提供了一种隔离膜,包括多孔基材及位于所述多孔基材的至少一个表面上的第一涂层;其中,所述第一涂层包括第一聚合物粘结剂和第一无机颗粒,所述第一聚合物粘结剂为核壳结构的颗粒。
在一些实施例中,所述隔离膜还包括设置在所述多孔基材和所述第一涂层之间的第二涂层,所述第二涂层包括第二聚合物粘结剂和第二无机颗粒。
在一些实施例中,所述第一涂层还包括辅助粘结剂,所述第一聚合物粘结剂、所述第一无机颗粒和所述辅助粘结剂的质量比为10~80:85~5:5~15。
在一些实施例中,所述第一涂层为颗粒单层结构。
在一些实施例中,所述第一聚合物粘结剂满足下式(1)-(3):
300nm≤Dv50≤5000nm             式(1);
Dv90≤1.5*Dv50                  式(2);
Dn10≤200nm                     式(3);
其中,Dv50表示在体积基准的粒度分布中,从小粒径侧起、达到体积累积50%的粒径,Dv90表示在体积基准的粒度分布中,从小粒径侧起、达到体积累积90%的粒径,Dn10表示在数量基准的粒度分布中,从小粒径侧起、达到数量累积10%的粒径。
在一些实施例中,所述隔离膜满足下式(4):
0.3*第一聚合物粘结剂Dv50≤第一无机颗粒Dv50≤0.7*第一聚合物粘结剂Dv50      式(4)。
在一些实施例中,所述第一聚合物粘结剂的核选自以下单体中的至少一种聚合形成的聚合物:丙烯酸乙酯、丙烯酸丁酯、甲基丙烯酸乙酯、苯乙烯、氯苯乙烯、氟苯乙烯、甲基苯乙烯、丙 烯酸、甲基丙烯酸、马来酸。
在一些实施例中,所述第一聚合物粘结剂的壳选自以下单体中的至少一种聚合形成的聚合物:丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丁酯、乙烯、氯苯乙烯、氟苯乙烯、甲基苯乙烯、丙烯腈、甲基丙烯腈。
在一些实施例中,所述第一无机颗粒选自三氧化二铝、二氧化硅、氧化镁、氧化钛、二氧化铪、氧化锡、二氧化铈、氧化镍、氧化锌、氧化钙、氧化锆、氧化钇、碳化硅、勃姆石、氢氧化铝、氢氧化镁、氢氧化钙、硫酸钡中的一种或多种。
本申请实施例还提供一种电化学装置,包括正极极片、负极极片以及上述隔离膜,所述隔离膜设置在所述正极极片和所述负极极片之间。
本申请通过在第一涂层中采用第一无机颗粒,在确保第一聚合物粘结剂发挥粘结作用的同时,促进了电解液传输,提高了电化学装置的倍率性能。
附图说明
为了更清楚地说明本申请实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施方式提供的隔离膜的结构示意图。
图2为本申请另一实施方式提供的隔离膜的结构示意图。
图3为本申请实施例2的1000倍放大下的隔离膜的扫描电子显微镜(SEM)图。
主要元件符号说明
多孔基材               1
第一涂层               2
第一聚合物粘结剂       3、5
第一无机颗粒           4、6
第二涂层               7
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整的描述,显然,所描述的实施方式仅是本申请的一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
图1示出了根据本申请一实施例的隔离膜的结构示意图。参见图1,本申请的隔离膜包括多孔基材1以及设置在多孔基材1上的第一涂层2。第一涂层2位于所述多孔基材1的一个表面上。在其他实施例中,第一涂层2可设置在多孔基材1的两个表面上。
多孔基材1为由选自以下任一种聚合物或两种以上的混合物形成的聚合物膜、多层聚合物膜或无纺布:聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯、聚苯二甲酰苯二胺、聚对苯二甲酸丁二醇酯、聚酯、聚羧酸、聚酰胺、聚碳酸酯、聚酰亚胺、聚醚醚酮、聚芳醚酮、聚醚酰亚胺、聚酰胺酰亚胺、聚苯并咪唑、聚醚砜、聚苯醚、环烯烃共聚物、聚苯硫醚和聚乙烯萘。聚乙烯选自高密度聚乙烯、低密度聚乙烯、超高分子量聚乙烯中的至少一种组分。多孔基材1的平均孔径为0.001μm~10μm。多孔基材1的孔隙率为5%~95%。另外,多孔基材1具有0.5μm至50μm之间的厚度。
第一涂层2包括第一聚合物粘结剂3和第一无机颗粒4。第一聚合物粘结剂3为核壳结构的颗粒。第一聚合物粘结剂3的核选自以下单体中的至少一种聚合形成的聚合物:丙烯酸乙酯、丙烯酸丁酯、甲基丙烯酸乙酯、苯乙烯、氯苯乙烯、氟苯乙烯、甲基苯乙烯、丙烯酸、甲基丙烯酸、马来酸。第一聚合物粘结剂3的壳选自以下单体中的至少一种聚合形成的聚合物:丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丁酯、乙烯、氯苯乙烯、氟苯乙烯、甲基苯乙烯、丙烯腈、甲基丙烯腈。在本申请中,通过采用核壳颗粒结构的第一聚合物粘结剂,一方面有助于提高聚合物粘结剂的颗粒的均匀性,另一方面,在后期加热工艺中,第一聚合物粘结剂的壳可以首先软化,之后,第一聚合物粘结剂的核可以起到粘结作用。第一聚合物粘结剂的核壳结构的颗粒可以通过本领域常用的乳液聚合法得到。
在一些实施例中,第一无机颗粒4选自三氧化二铝、二氧化硅、氧化镁、氧化钛、二氧化铪、氧化锡、二氧化铈、氧化镍、氧化锌、氧化钙、氧化锆、氧化钇、碳化硅、勃姆石、氢氧化铝、氢氧化镁、氢氧化钙、硫酸钡中的一种或多种。第一无机颗粒4为高硬度的无机材料,在电解液溶胀以及化成工序热压后无明显变化,可以起到支撑骨架作用,同时第一无机颗粒4有良好的电解液亲和性,有利于电解液传输。
请参阅图2,在一些实施例中,隔离膜还包括设置在多孔基材1和所述第一涂层2之间的第二涂层7,所述第二涂层7包括第二聚合物粘结剂和第二无机颗粒。第二涂层7中的第二聚合物粘结剂选自偏二氟乙烯-六氟丙烯的共聚物、偏二氟乙烯-三氯乙烯的共聚物、聚苯乙烯、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、聚丙烯腈、聚乙烯基吡咯烷酮、据乙酸乙烯酯、乙烯-乙酸乙烯酯的共聚 物、聚酰亚胺、聚氧化乙烯、乙酸纤维素、乙酸丁酸纤维素、乙酸丙酸纤维素、氰基乙基支链淀粉、氰基乙基聚乙烯醇、氰基乙基纤维素、氰基乙基蔗糖、支链淀粉、羧甲基纤维素、羧甲基纤维钠、羧甲基纤维素锂、丙烯腈-苯乙烯-丁二烯的共聚物、聚苯二甲酰苯二胺、聚乙烯醇、苯乙烯-丁二烯的共聚物和聚偏二氟乙烯中的一种或多种。聚丙烯酸酯包括聚甲基丙烯酸甲酯、聚丙烯酸乙酯、聚丙烯酸丙酯和聚丙烯酸丁酯中的一种或多种。
在一些实施例中,第二无机颗粒也可以选自三氧化二铝、二氧化硅、氧化镁、氧化钛、二氧化铪、氧化锡、二氧化铈、氧化镍、氧化锌、氧化钙、氧化锆、氧化钇、碳化硅、勃姆石、氢氧化铝、氢氧化镁、氢氧化钙、硫酸钡中的一种或多种。对第二无机颗粒的含量没有特别限定。但是,以第二涂层7的总重量为100%计,第二无机颗粒的重量百分比为40%~99%。如果第二无机颗粒的重量百分比小于40%,则第二聚合物粘结剂大量存在,从而降低了第二无机颗粒间形成的间隙体积,并降低了孔径和孔隙率,导致锂离子的传导变慢,电化学装置的性能下降。如果第二无机颗粒的重量百分比大于99%,则第二聚合物粘结剂的含量太低以致不能使第二无机颗粒间充分的附着,导致最终形成的隔离膜的机械性能降低。
在有一些实施例中,第一涂层2还包括辅助粘结剂,第一聚合物粘结剂、第一无机颗粒和辅助粘结剂的质量比为10~80:85~5:5~15。在一些实施例中,辅助粘结剂选自偏二氟乙烯-六氟丙烯的共聚物、偏二氟乙烯-三氯乙烯的共聚物、聚苯乙烯、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、聚丙烯腈、聚乙烯基吡咯烷酮、据乙酸乙烯酯、乙烯-乙酸乙烯酯的共聚物、聚酰亚胺、聚氧化乙烯、乙酸纤维素、乙酸丁酸纤维素、乙酸丙酸纤维素、氰基乙基支链淀粉、氰基乙基聚乙烯醇、氰基乙基纤维素、氰基乙基蔗糖、支链 淀粉、羧甲基纤维素、羧甲基纤维钠、羧甲基纤维素锂、丙烯腈-苯乙烯-丁二烯的共聚物、聚苯二甲酰苯二胺、聚乙烯醇、苯乙烯-丁二烯的共聚物和聚偏二氟乙烯中的一种或多种。聚丙烯酸酯包括聚甲基丙烯酸甲酯、聚丙烯酸乙酯、聚丙烯酸丙酯和聚丙烯酸丁酯中的一种或多种。第一聚合物粘结剂的含量太少,粘结性能会下降,第一聚合物粘结剂的含量过多,电化学装置的倍率性能下降。辅助粘结剂有助于增加第一涂层的粘结性,辅助粘结剂的含量太少,粘结性能的提升不明显,辅助粘结剂的含量过多,电化学装置的倍率性能变差。第一无机颗粒的添加量太小起不到支撑效果,添加量太大,影响第一聚合物粘结剂的粘结作用的发挥。
如图1所示,在一些实施例中,第一涂层2为颗粒单层结构。颗粒单层结构有助于电化学装置的能量密度提升,同时可以改善电化学装置的倍率性能以及循环性能。
在一些实施例中,第一聚合物粘结剂为球形或类球形颗粒,第一聚合物粘结剂满足下式(1)-(3):
300nm≤Dv50≤5000nm             式(1);
Dv90≤1.5*Dv50                  式(2);
Dn10≤200nm                     式(3);
其中,Dv50表示在体积基准的粒度分布中,从小粒径侧起、达到体积累积50%的粒径,Dv90表示在体积基准的粒度分布中,从小粒径侧起、达到体积累积90%的粒径,Dn10表示在数量基准的粒度分布中,从小粒径侧起、达到数量累积10%的粒径。满足上式的第一聚合物粘结剂的颗粒的一致性较高,颗粒一致性高有助于第一聚合物粘结剂发挥粘结作用,并且能提升电化学装置的厚度一致性。第一聚合物粘结剂的粒径太小,电化学装置的倍率性能会下降,第一聚合物粘结剂的粒径过大,粘结性能会受影响。
在一些实施例中,隔离膜满足下式(4):
0.3*第一聚合物粘结剂Dv50≤第一无机颗粒Dv50≤0.7*第一聚合物粘结剂Dv50式(4)。
第一无机颗粒的主要作用是防止第一聚合物粘结剂在化成工序中被压扁,第一无机颗粒的粒径太小,无法起到支撑作用。而如果第一无机颗粒的粒径太大,例如接近或大于第一聚合物粘结剂粒径,热压时第一聚合物粘结剂将无法发挥粘结作用,导致粘结失效。另外,第一无机颗粒支撑起的厚度空间有助于电解液传输。
本申请还提供了包括上述隔离膜的锂离子电池。在本申请中,锂离子电池仅作为电化学装置的示例性实例,电化学装置还可以包括其他合适的装置。锂离子电池还包括正极极片、负极极片以及电解质,其中,本申请的隔离膜插入在正极极片和负极极片之间。正极极片包括正极集流体,负极极片包括负极集流体,正极集流体可以为铝箔或镍箔,负极集流体可为铜箔或镍箔。
正极极片
正极极片包括正极材料,正极材料包括能够吸收和释放锂(Li)的正极材料(下文中,有时称为“能够吸收/释放锂Li的正极材料”)。能够吸收/释放锂(Li)的正极材料的例子可以包括钴酸锂、镍钴锰酸锂、镍钴铝酸锂、锰酸锂、磷酸铁锂、磷酸钒锂、磷酸钒氧锂、磷酸铁锂、钛酸锂和富锂锰基材料。
具体的,钴酸锂的化学式可以如化学式1:
Li xCo aM1 bO 2-c  化学式1
其中M1表示选自镍(Ni)、锰(Mn)、镁(Mg)、铝(Al)、硼(B)、钛(Ti)、钒(V)、铁(Fe)、铜(Cu)、锌(Zn)、钼(Mo)、锡(Sn)、钙(Ca)、锶(Sr)、钨(W)、钇(Y)、镧(La)、锆(Zr)和硅(Si)中的至少一种,x、a、b和c值分别在以下范围内:0.8≤x≤1.2、0.8≤a≤1、0≤b≤0.2、-0.1≤c ≤0.2;
镍钴锰酸锂或铝酸锂的化学式可以如化学式2:
LiyNidM2eO2-f  化学式2
其中M2表示选自钴(Co)、锰(Mn)、镁(Mg)、铝(Al)、硼(B)、钛(Ti)、钒(V)、铁(Fe)、铜(Cu)、锌(Zn)、钼(Mo)、锡(Sn)、钙(Ca)、锶(Sr)、钨(W)、锆(Zr)和硅(Si)中的至少一种,y、d、e和f值分别在以下范围内:0.8≤y≤1.2、0.3≤d≤0.98、0.02≤e≤0.7、-0.1≤f≤0.2;
锰酸锂的化学式可以如化学式3:
Li zMn 2-gM3 gO 4-h  化学式3
其中M3表示选自钴(Co)、镍(Ni)、镁(Mg)、铝(Al)、硼(B)、钛(Ti)、钒(V)、铬(Cr)、铁(Fe)、铜(Cu)、锌(Zn)、钼(Mo)、锡(Sn)、钙(Ca)、锶(Sr)和钨(W)中的至少一种,z、g和h值分别在以下范围内:0.8≤z≤1.2、0≤g≤1.0和-0.2≤h≤0.2。
负极极片
负极极片包括负极材料,负极材料包括能够吸收和释放锂(Li)的负极材料(下文中,有时称为“能够吸收/释放锂Li的负极材料”)。能够吸收/释放锂(Li)的负极材料的例子可以包括碳材料、金属化合物、氧化物、硫化物、锂的氮化物例如LiN 3、锂金属、与锂一起形成合金的金属和聚合物材料。
碳材料的例子可以包括低石墨化的碳、易石墨化的碳、人造石墨、天然石墨、中间相碳微球、软碳、硬碳、热解碳、焦炭、玻璃碳、有机聚合物化合物烧结体、碳纤维和活性碳。其中,焦碳可以包括沥青焦炭、针状焦炭和石油焦炭。有机聚合物化合物烧结体指的是通过在适当的温度下煅烧聚合物材料例如苯酚塑料或者呋喃树脂以使之碳化获得的材料,将这些材料中的一些分成 低石墨化碳或者易石墨化的碳。聚合物材料的例子可以包括聚乙炔和聚吡咯。
在能够吸收/释放锂(Li)的这些负极材料中,更进一步地,选择充电和放电电压接近于锂金属的充电和放电电压的材料。这是因为负极材料的充电和放电电压越低,电化学装置(例如锂离子电池)越容易具有更高的能量密度。其中,负极材料可以选择碳材料,因为在充电和放电时它们的晶体结构只有小的变化,因此,可以获得良好的循环特性以及大的充电和放电容量。尤其可以选择石墨,因为可以给出大的电化学当量和高的能量密度。
此外,能够吸收/释放锂(Li)的负极材料可以包括单质锂金属、能够和锂(Li)一起形成合金的金属元素和半金属元素,包括这样的元素的合金和化合物等等。特别的,将它们和碳材料一起使用,因为在这种情况中,可以获得良好的循环特性以及高能量密度。除了包括两种或多种金属元素的合金之外,这里使用的合金还包括包含一种或者多种金属元素和一种或者多种半金属元素的合金。该合金可以处于以下状态固溶体、共晶晶体(共晶混合物)、金属间化合物及其混合物。
金属元素和半金属元素的例子可以包括锡(Sn)、铅(Pb)、铝(Al)、铟(In)、硅(Si)、锌(Zn)、锑(Sb)、铋(Bi)、镉(Cd)、镁(Mg)、硼(B)、镓(Ga)、锗(Ge)、砷(As)、银(Ag)、锆(Zr)、钇(Y)和铪(Hf)。上述合金和化合物的例子可以包括具有化学式:Ma sMb tLi u的材料和具有化学式:Ma pMc qMd r的材料。在这些化学式中,Ma表示能够与锂一起形成合金的金属元素和半金属元素中的至少一种元素;Mb表示除锂和Ma之外的金属元素和半金属元素中的至少一种元素;Mc表示非金属元素中的至少一种元素;Md表示除Ma之外的金属元素和半金属元素中的至少一种元素;并且s、t、u、p、q和r满足s>0、t ≥0、u≥0、p>0、q>0和r≥0。
此外,可以在负极中使用不包括锂(Li)的无机化合物,例如MnO 2、V 2O 5、V 6O 13、NiS和MoS。
电解质
上述锂离子电池还包括电解质,电解质可以是凝胶电解质、固态电解质和电解液中的一种或多种,电解液包括锂盐和非水溶剂。
锂盐选自LiPF 6、LiBF 4、LiAsF 6、LiClO 4、LiB(C 6H 5) 4、LiCH 3SO 3、LiCF 3SO 3、LiN(SO 2CF 3) 2、LiC(SO 2CF 3) 3、LiSiF 6、LiBOB和二氟硼酸锂中的一种或多种。例如,锂盐选用LiPF 6,因为它可以给出高的离子导电率并改善循环特性。
非水溶剂可为碳酸脂化合物、羧酸酯化合物、醚化合物、其它有机溶剂或它们的组合。
碳酸脂化合物可为链状碳酸脂化合物、环状碳酸脂化合物、氟代碳酸脂化合物或其组合。
链状碳酸脂化合物的实例为碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸二丙酯(DPC)、碳酸甲丙酯(MPC)、碳酸乙丙酯(EPC)、碳酸甲乙酯(MEC)及其组合。所述环状碳酸酯化合物的实例为碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸亚丁酯(BC)、碳酸乙烯基亚乙酯(VEC)及其组合。所述氟代碳酸酯组合物的实例为碳酸氟代亚乙酯(FEC)、碳酸1,2-二氟亚乙酯、碳酸1,1-二氟亚乙酯、碳酸1,1,2-三氟亚乙酯、碳酸1,1,2,2-四氟亚乙酯、碳酸1-氟-2-甲基亚乙酯、碳酸1-氟-1-甲基亚乙酯、碳酸1,2-二氟-1-甲基亚乙酯、碳酸1,1,2-三氟-2-甲基亚乙酯、碳酸三氟甲基亚乙酯及其组合。
羧酸酯化合物的实例为乙酸甲酯、乙酸乙酯、乙酸正丙酯、乙酸叔丁酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、γ-丁内酯、癸内 酯、戊内酯、甲瓦龙酸内酯、己内酯、甲酸甲酯及其组合。
醚化合物的实例为二丁醚、四甘醇二甲醚、二甘醇二甲醚、1,2-二甲氧基乙烷、1,2-二乙氧基乙烷、乙氧基甲氧基乙烷、2-甲基四氢呋喃、四氢呋喃及其组合。
其它有机溶剂的实例为二甲亚砜,1,2-二氧戊环、环丁砜、甲基环丁砜、1,3-二甲基-2-咪唑烷酮、N-甲基-2-吡咯烷酮、甲酰胺、二甲基甲酰胺、乙腈、磷酸三甲酯、磷酸三乙酯、磷酸三辛酯、和磷酸酯及其组合。
虽然上面以锂离子电池进行了举例说明,但是本领域技术人员在阅读本申请之后,能够想到本申请的隔离膜可以用于其他合适的电化学装置。这样的电化学装置包括发生电化学反应的任何装置,它的具体实例包括所有种类的一次电池、二次电池、燃料电池、太阳电池或电容。
该电化学装置可以用本领域技术人员知道的传统方法制造。在制造电化学装置的方法的一个实施例中,该电化学装置用插入在正极极片和负极极片之间的隔离膜形成电化学装置。根据最终产品的制造方法和所需要的性能,在电化学装置的制造过程期间,可以在合适的步骤注入液态电解质。换句话说,可以在组装电化学装置之前或在组装电化学装置期间的最后步骤注入液态电解质。
具体地,本申请的电化学装置可以为锂离子电池,锂离子电池的电化学装置可以为卷绕型、层压(堆叠)型和折叠型。
下面以锂离子电池为例并结合具体的实施例说明锂离子电池的制备,本领域技术人员将理解,本申请中描述的制备方法仅是实例,其他任何合适的制备方法均在本申请的范围内。
本申请的实施例与对比例的锂离子电池的制备过程如下所示:
对比例1
(1)隔离膜的制备
将勃姆石与聚丙烯酸酯依照质量比90:10混合并将其溶入到去离子水中以形成第二涂层浆料。随后采用微凹涂布法将所述第二涂层浆料均匀涂布到多孔基材(聚乙烯,厚度7μm,平均孔径为0.073μm,孔隙率为26%)的其中一面上,经过干燥处理以获得所述第二涂层与所述多孔基材的双层结构。
将聚偏二氟乙烯与聚丙烯酸酯依照质量比96:4混合并将其溶入到去离子水中以形成第一涂层浆料,聚偏二氟乙烯的Dv50为600nm。随后采用微凹涂布法将所述第一涂层浆料均匀涂布到上述第二涂层与多孔基材双层结构的表面上,经过干燥处理以获得所需隔离膜。
(2)正极极片的准备
将正极活性物质钴酸锂、导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)按照质量比94:3:3在N-甲基吡咯烷酮溶剂体系中充分搅拌混合均匀后,涂覆于正极集流体Al箔上,经烘干、冷压、分条,得到正极极片。
(3)负极极片的制备
将负极活性物质人造石墨、导电剂乙炔黑、粘结剂丁苯橡胶(SBR)、增稠剂羧甲基纤维素钠(CMC)按质量比96:1:1.5:1.5在去离子水溶剂体系中充分搅拌混合均匀后,涂覆于负极集流体Cu箔上,经烘干、冷压、分条,得到负极极片。
(4)电解液的制备
将锂盐LiPF 6与非水有机溶剂(碳酸乙烯酯(EC):碳酸亚丙酯(PC)=50:50,质量比)按照质量比8:92配制而成的溶液作为锂离子电池的电解液。
(5)锂离子电池的制备
将正极极片、隔离膜、负极极片按顺序叠好,使隔离膜处于正极极片和负极极片中间起到安全隔离的作用,并卷绕得到电化学装置。将电化学装置置于包装壳中,注入电解液并封装,获得锂离子电池。
对比例2
与对比例1的制备方法一致,不同的是对比例2中聚偏二氟乙烯与聚丙烯酸酯的质量比为84:16。
对比例3
与对比例1的制备方法一致,不同的是对比例3的隔离膜的制备方法为:
将勃姆石与聚丙烯酸酯依照质量比90:10混合并将其溶入到去离子水中以形成第二涂层浆料。随后采用微凹涂布法将所述第二涂层浆料均匀涂布到多孔基材(聚乙烯,厚度7μm,平均孔径为0.073μm,孔隙率为26%)的其中一面上,经过干燥处理以获得所述第二涂层与所述多孔基材的双层结构。
将第一聚合物粘结剂(核为聚甲基丙烯酸乙酯,壳为甲基丙烯酸甲基-甲基苯乙烯的共聚物)加入搅拌器中,第一聚合物粘结剂的Dv50为600nm,Dv90为823nm,Dn10为121nm。然后加入辅助粘结剂聚丙烯酸酯,继续搅拌均匀,最后加入去离子水,调整浆料粘度。第一聚合物粘结剂与辅助粘结剂的质量比为90:10。将浆料涂覆在上述第二涂层与多孔基材双层结构的两个表面上,在两表面形成第一涂层,干燥,即得所需隔离膜。
实施例1
与对比例1的制备方法一致,不同的是实施例1的隔离膜的制备方法为:
将勃姆石与聚丙烯酸酯依照质量比90:10混合并将其溶入到去离子水中以形成第二涂层浆料。随后采用微凹涂布法将所述第 二涂层浆料均匀涂布到多孔基材(聚乙烯,厚度7μm,平均孔径为0.073μm,孔隙率为26%)的其中一面上,经过干燥处理以获得所述第二涂层与所述多孔基材的双层结构。
将第一聚合物粘结剂(核为聚甲基丙烯酸乙酯,壳为甲基丙烯酸甲基-甲基苯乙烯的共聚物)加入搅拌器中,第一聚合物粘结剂的Dv50为300nm,Dv90为276nm,Dn10为109nm。然后加入三氧化二铝颗粒(第一无机颗粒),分两次加入,每次50%,搅拌均匀。三氧化二铝颗粒的Dv50为150nm。然后加入辅助粘结剂聚丙烯酸酯,继续搅拌均匀,最后加入去离子水,调整浆料粘度。第一聚合物粘结剂、三氧化二铝与辅助粘结剂的质量比为40:50:10。将浆料涂覆在上述第二涂层与多孔基材双层结构的两个表面上,在两表面形成第一涂层,颗粒为单层结构,干燥,即得所需隔离膜。
实施例2
与实施例1的制备方法一致,不同的是实施例2中的第一聚合物粘结剂的Dv50为600nm,Dv90为823nm,Dn10为121nm。三氧化二铝颗粒的Dv50为300nm。
实施例3
与实施例1的制备方法一致,不同的是实施例3中的第一聚合物粘结剂的Dv50为1200nm,Dv90为1670nm,Dn10为133nm。三氧化二铝颗粒的Dv50为600nm。
实施例4
与实施例1的制备方法一致,不同的是实施例4中的第一聚合物粘结剂的Dv50为1600nm,Dv90为2253nm,Dn10为136nm。三氧化二铝颗粒的Dv50为800nm。
实施例5
与实施例1的制备方法一致,不同的是实施例5中的第一聚 合物粘结剂的Dv50为2800nm,Dv90为3891nm,Dn10为152nm。三氧化二铝颗粒的Dv50为1400nm。
实施例6
与实施例1的制备方法一致,不同的是实施例6中的第一聚合物粘结剂的Dv50为4000nm,Dv90为5391nm,Dn10为172nm。三氧化二铝颗粒的Dv50为2000nm。
实施例7
与实施例1的制备方法一致,不同的是实施例7中的第一聚合物粘结剂的Dv50为5000nm,Dv90为6931nm,Dn10为196nm。三氧化二铝颗粒的Dv50为2500nm。
实施例8
与实施例2的制备方法一致,不同的是实施例8中的第一聚合物粘结剂、三氧化二铝与辅助粘结剂的质量比为10:80:10。
实施例9
与实施例2的制备方法一致,不同的是实施例9中的第一聚合物粘结剂、三氧化二铝与辅助粘结剂的质量比为30:60:10。
实施例10
与实施例2的制备方法一致,不同的是实施例10中的第一聚合物粘结剂、三氧化二铝与辅助粘结剂的质量比为50:40:10。
实施例11
与实施例2的制备方法一致,不同的是实施例11中的第一聚合物粘结剂、三氧化二铝与辅助粘结剂的质量比为60:30:10。
实施例12
与实施例2的制备方法一致,不同的是实施例12中的第一聚合物粘结剂、三氧化二铝与辅助粘结剂的质量比为80:10:10。
实施例13
与实施例2的制备方法一致,不同的是实施例13中的三氧化 二铝颗粒的Dv50为180nm。
实施例14
与实施例2的制备方法一致,不同的是实施例14中的三氧化二铝颗粒的Dv50为240nm。
实施例15
与实施例2的制备方法一致,不同的是实施例15中的三氧化二铝颗粒的Dv50为360nm。
实施例16
与实施例2的制备方法一致,不同的是实施例16中的三氧化二铝颗粒的Dv50为420nm。
实施例17
与实施例2的制备方法一致,不同的是实施例17中的第一聚合物粘结剂的Dv90为1132nm,Dn10为182nm。
实施例18
与实施例2的制备方法一致,不同的是实施例18中的第一聚合物粘结剂的Dv90为886nm,Dn10为279nm。
实施例19
与实施例2的制备方法一致,不同的是实施例19中的第一聚合物粘结剂的Dv90为1097nm,Dn10为273nm。
之后,对实施例及对比例的锂离子电池进行粘结力和倍率性能测试,具体测试方法如下:
(1)粘结力测试
采用180°剥离测试标准测试隔离膜与正负极极片干压粘结力,将隔离膜和正负极极片裁切成54.2mm*72.5mm样品,将隔离膜与正极极片/负极极片复合,使用热压机热压,条件85℃、1Mpa、85S,将复合好的样品裁切成15mm*54.2mm小条,按照180°剥离测试标准测试粘结力。
(2)倍率性能测试
将恒温箱温度设定为25℃。0.5C恒流充电至4.4V,恒压充电至0.05C,静置5min,0.1C恒流放电至3V,静置5min。以0.1C放电容量为基准100%。之后以0.5C恒流充电至4.4V,恒压充电至0.05C,静置5min,2C恒流放电至3V,并记录2C放电电容,进行倍率性能测试。2C放电倍率性能=2C放电容量/0.1C放电容量*100%。
实施例1-19以及对比例1-3的实验参数和测量结果如下表1所示。为了方便比较,表1的结果以分组的方式示出。
表1
Figure PCTCN2020078453-appb-000001
Figure PCTCN2020078453-appb-000002
通过比较实施例1-19和对比例1-2可知,通过在第一涂层中采用第一无机颗粒,隔离膜与正/负极极片的干压粘结力增大,或者锂离子电池的倍率性能显著提高。
通过比较实施例1-7可知,随着第一聚合物粘结剂的颗粒粒径的增大,隔离膜与正/负极极片的干压粘结力呈现减小的趋势,而锂离子电池的倍率性能逐渐提高。
通过比较实施例2和8-12可知,随着第一无机颗粒相对于第一聚合物粘结剂的含量的增大,隔离膜与正/负极极片的干压粘结力呈现减小的趋势,而锂离子电池的倍率性能呈现增强的趋势。
通过比较实施例2和13-16可知,第一无机颗粒Dv50与第一聚合物粘结剂Dv50应满足0.3*第一聚合物粘结剂Dv50≤第一无机颗粒Dv50≤0.7*第一聚合物粘结剂Dv50,这是由于如果第一无机颗粒的粒径太小,无法起到支撑作用;而如果第一无机颗粒的粒径太大,例如接近或大于第一聚合物粘结剂粒径,热压时第一 聚合物粘结剂将无法发挥粘结作用,导致粘结失效,并且随着第一无机颗粒Dv50相对于第一聚合物粘结剂Dv50的增大,隔离膜与正/负极极片的干压粘结力呈现减小的趋势,而锂离子电池的倍率性能呈现增强的趋势。
通过比较实施例2和17-19可知,当第一聚合物物粘结剂的粒径过大,不满足Dv90≤1.5*Dv50,或者Dn10≤200nm的关系时,第一聚合物粘结剂颗粒的一致性较差,隔离膜与正/负极极片的干压粘结力减小,小颗粒的Dn10会影响锂离子电池的倍率性能。
通过比较实施例2、8-12和对比例3可知,通过在第一涂层中采用第一无机颗粒,锂离子电池的倍率性能显著提高。
请参阅图3,对本申请的实施例2制得的隔离膜在放大1000倍数下观察其扫描电子显微镜(SEM)图,其中,5为第一聚合物粘结剂,6为第一无机颗粒,可以看出,第一聚合物粘结剂的颗粒分布均匀。
以上所揭露的仅为本申请较佳实施方式而已,当然不能以此来限定本申请,因此依本申请所作的等同变化,仍属本申请所涵盖的范围。

Claims (10)

  1. 一种隔离膜,包括:
    多孔基材;以及
    第一涂层,位于所述多孔基材的至少一个表面上;
    其中,所述第一涂层包括第一聚合物粘结剂和第一无机颗粒,所述第一聚合物粘结剂为核壳结构的颗粒。
  2. 如权利要求1所述的隔离膜,还包括设置在所述多孔基材和所述第一涂层之间的第二涂层,所述第二涂层包括第二聚合物粘结剂和第二无机颗粒。
  3. 如权利要求1所述的隔离膜,其中,所述第一涂层还包括辅助粘结剂,所述第一聚合物粘结剂、所述第一无机颗粒和所述辅助粘结剂的质量比为10~80:85~5:5~15。
  4. 如权利要求1所述的隔离膜,其中,所述第一涂层为颗粒单层结构。
  5. 如权利要求1所述的隔离膜,其中,所述第一聚合物粘结剂满足下式(1)-(3):
    300nm≤Dv50≤5000nm             式(1);
    Dv90≤1.5*Dv50                  式(2);
    Dn10≤200nm                     式(3);
    其中,Dv50表示在体积基准的粒度分布中,从小粒径侧起、达到体积累积50%的粒径,Dv90表示在体积基准的粒度分布中,从小粒径侧起、达到体积累积90%的粒径,Dn10表示在数量基准的粒度分布中,从小粒径侧起、达到数量累积10%的粒径。
  6. 如权利要求1所述的隔离膜,其中,所述隔离膜满足下式(4):
    0.3*第一聚合物粘结剂Dv50≤第一无机颗粒Dv50≤0.7*第一聚合物粘结剂Dv50式(4)。
  7. 如权利要求1所述的隔离膜,其中,所述第一聚合物粘结剂 的核选自以下单体中的至少一种聚合形成的聚合物:丙烯酸乙酯、丙烯酸丁酯、甲基丙烯酸乙酯、苯乙烯、氯苯乙烯、氟苯乙烯、甲基苯乙烯、丙烯酸、甲基丙烯酸、马来酸。
  8. 如权利要求1所述的隔离膜,其中,所述第一聚合物粘结剂的壳选自以下单体中的至少一种聚合形成的聚合物:丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丁酯、乙烯、氯苯乙烯、氟苯乙烯、甲基苯乙烯、丙烯腈、甲基丙烯腈。
  9. 如权利要求1所述的隔离膜,其中,所述第一无机颗粒选自三氧化二铝、二氧化硅、氧化镁、氧化钛、二氧化铪、氧化锡、二氧化铈、氧化镍、氧化锌、氧化钙、氧化锆、氧化钇、碳化硅、勃姆石、氢氧化铝、氢氧化镁、氢氧化钙、硫酸钡中的一种或多种。
  10. 一种电化学装置,包括:
    正极极片;
    负极极片;
    以及如权利要求1至9中任一项所述的隔离膜,所述隔离膜设置在正极极片和所述负极极片之间。
PCT/CN2020/078453 2019-05-08 2020-03-09 隔离膜和电化学装置 WO2020224319A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021517395A JP7195414B2 (ja) 2019-05-08 2020-03-09 セパレータ及び電気化学デバイス
KR1020217009261A KR102608006B1 (ko) 2019-05-08 2020-03-09 분리막 및 전기 화학 장치
US16/652,472 US20210234233A1 (en) 2019-05-08 2020-03-09 Separator and electrochemical device
EP20712432.2A EP3758097A4 (en) 2019-05-08 2020-03-09 SEPARATOR AND ELECTROCHEMICAL DEVICE
US18/303,877 US20230261322A1 (en) 2019-05-08 2023-04-20 Separator and electrochemical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910380301.4 2019-05-08
CN201910380301.4A CN111916624B (zh) 2019-05-08 2019-05-08 隔离膜和电化学装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/652,472 A-371-Of-International US20210234233A1 (en) 2019-05-08 2020-03-09 Separator and electrochemical device
US18/303,877 Continuation US20230261322A1 (en) 2019-05-08 2023-04-20 Separator and electrochemical device

Publications (1)

Publication Number Publication Date
WO2020224319A1 true WO2020224319A1 (zh) 2020-11-12

Family

ID=73050580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078453 WO2020224319A1 (zh) 2019-05-08 2020-03-09 隔离膜和电化学装置

Country Status (6)

Country Link
US (2) US20210234233A1 (zh)
EP (1) EP3758097A4 (zh)
JP (1) JP7195414B2 (zh)
KR (1) KR102608006B1 (zh)
CN (1) CN111916624B (zh)
WO (1) WO2020224319A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113506953A (zh) * 2021-06-02 2021-10-15 郑州轻工业大学 磷酸钒锂在锂硫电池隔膜涂覆中的应用
CN114171849A (zh) * 2021-11-18 2022-03-11 哈尔滨工业大学 一种核壳结构复合隔膜及其制备方法
WO2022181560A1 (ja) * 2021-02-26 2022-09-01 日本ゼオン株式会社 電気化学素子機能層用組成物、電気化学素子用積層体及び電気化学素子
WO2024032162A1 (zh) * 2022-08-12 2024-02-15 珠海冠宇电池股份有限公司 一种电池隔膜和电池

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022110223A1 (zh) * 2020-11-30 2022-06-02 宁德时代新能源科技股份有限公司 一种隔离膜、含有它的二次电池及其相关的电池模块、电池包和装置
EP4207467A1 (en) * 2020-12-09 2023-07-05 Ningde Amperex Technology Ltd. Polymer binder, laminated porous membrane, battery, and electronic apparatus
CN112563663B (zh) * 2020-12-11 2022-11-11 上海恩捷新材料科技有限公司 一种锂离子电池陶瓷涂布隔离膜
EP4207353A4 (en) * 2020-12-11 2023-11-01 Dongguan Amperex Technology Limited ELECTROCHEMICAL DEVICE AND ELECTRONIC DEVICE
WO2022133859A1 (zh) * 2020-12-24 2022-06-30 宁德新能源科技有限公司 电池以及应用所述电池的电子装置
CN116724458A (zh) * 2021-01-29 2023-09-08 日本瑞翁株式会社 电化学元件功能层用组合物、电化学元件用层叠体以及电化学元件
CN113410576B (zh) * 2021-06-17 2023-11-24 无锡恩捷新材料科技有限公司 电池隔膜及其制备方法、电池、核壳型球体的制备方法
CN114361717B (zh) * 2022-02-18 2024-04-30 珠海冠宇电池股份有限公司 复合隔膜及电化学装置
US20240047822A1 (en) * 2022-08-05 2024-02-08 Alsym Energy, Inc. Separators, additives, energy storage devices and electrodes including them, and methods of their manufacture
CN116169428B (zh) * 2023-04-06 2023-06-20 宁德新能源科技有限公司 一种隔膜及包含该隔膜的电化学装置和电子装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220452A (ja) * 2006-02-16 2007-08-30 Matsushita Electric Ind Co Ltd 非水電解液二次電池用セパレータおよび非水電解液二次電池
CN104953128A (zh) * 2015-07-15 2015-09-30 宁德时代新能源科技有限公司 一种水性粘合剂及其制备方法,应用了该水性粘合剂的电极片、隔离膜和电池
CN105273444A (zh) * 2014-07-23 2016-01-27 乐凯胶片股份有限公司 一种浆料组合物及包含该浆料组合物的锂离子电池隔膜
CN105440770A (zh) * 2014-06-30 2016-03-30 成都中科来方能源科技有限公司 用于改性锂离子电池用隔膜的水性组合物及改性隔膜和电池
CN108389999A (zh) * 2018-01-23 2018-08-10 惠州市旭然新能源有限公司 有机、无机复合涂覆多孔性隔离膜、制备方法及其锂离子电池
CN109659470A (zh) * 2018-11-30 2019-04-19 欣旺达电子股份有限公司 一种陶瓷隔膜的制备方法、陶瓷隔膜及动力锂电池
CN109722124A (zh) * 2018-12-29 2019-05-07 河北金力新能源科技股份有限公司 核壳聚合物改性陶瓷浆料及锂离子电池隔膜和包含其的锂离子电池及其制备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19521727B4 (de) * 1994-06-27 2006-04-06 Toshiba Battery Co., Ltd. Alkalische Sekundärbatterie
KR100980355B1 (ko) * 2002-02-12 2010-09-06 에버레디 배터리 컴퍼니, 인크. 가요성의 얇은 인쇄 전지 및 장치와 그것의 제조 방법
CN103904276B (zh) * 2014-03-28 2017-09-19 东莞新能源科技有限公司 复合多孔隔离膜及电化学装置
WO2015198534A1 (ja) 2014-06-27 2015-12-30 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
JP5952504B1 (ja) * 2014-08-29 2016-07-13 住友化学株式会社 多孔質層、多孔質層を積層してなるセパレータ、および多孔質層またはセパレータを含む非水電解液二次電池
KR102005869B1 (ko) * 2016-06-30 2019-07-31 삼성에스디아이 주식회사 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
KR20180017526A (ko) * 2016-08-09 2018-02-21 주식회사 엘지화학 이차전지용 세퍼레이터 및 이를 포함하는 이차전지
WO2019049510A1 (ja) * 2017-09-11 2019-03-14 株式会社クラレ 非水電解質電池セパレータ用塗工液、並びに、それを用いた非水電解質電池用セパレータ及び非水電解質電池
CN116526071A (zh) * 2017-10-20 2023-08-01 株式会社Lg新能源 隔板以及包括该隔板的电化学装置
CN109088030B (zh) * 2018-06-25 2021-07-27 东莞市赛普克电子科技有限公司 封闭多孔陶瓷复合材料及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220452A (ja) * 2006-02-16 2007-08-30 Matsushita Electric Ind Co Ltd 非水電解液二次電池用セパレータおよび非水電解液二次電池
CN105440770A (zh) * 2014-06-30 2016-03-30 成都中科来方能源科技有限公司 用于改性锂离子电池用隔膜的水性组合物及改性隔膜和电池
CN105273444A (zh) * 2014-07-23 2016-01-27 乐凯胶片股份有限公司 一种浆料组合物及包含该浆料组合物的锂离子电池隔膜
CN104953128A (zh) * 2015-07-15 2015-09-30 宁德时代新能源科技有限公司 一种水性粘合剂及其制备方法,应用了该水性粘合剂的电极片、隔离膜和电池
CN108389999A (zh) * 2018-01-23 2018-08-10 惠州市旭然新能源有限公司 有机、无机复合涂覆多孔性隔离膜、制备方法及其锂离子电池
CN109659470A (zh) * 2018-11-30 2019-04-19 欣旺达电子股份有限公司 一种陶瓷隔膜的制备方法、陶瓷隔膜及动力锂电池
CN109722124A (zh) * 2018-12-29 2019-05-07 河北金力新能源科技股份有限公司 核壳聚合物改性陶瓷浆料及锂离子电池隔膜和包含其的锂离子电池及其制备

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181560A1 (ja) * 2021-02-26 2022-09-01 日本ゼオン株式会社 電気化学素子機能層用組成物、電気化学素子用積層体及び電気化学素子
CN113506953A (zh) * 2021-06-02 2021-10-15 郑州轻工业大学 磷酸钒锂在锂硫电池隔膜涂覆中的应用
CN113506953B (zh) * 2021-06-02 2022-11-22 郑州轻工业大学 磷酸钒锂在锂硫电池隔膜涂覆中的应用
CN114171849A (zh) * 2021-11-18 2022-03-11 哈尔滨工业大学 一种核壳结构复合隔膜及其制备方法
CN114171849B (zh) * 2021-11-18 2023-09-08 哈尔滨工业大学 一种核壳结构复合隔膜及其制备方法
WO2024032162A1 (zh) * 2022-08-12 2024-02-15 珠海冠宇电池股份有限公司 一种电池隔膜和电池

Also Published As

Publication number Publication date
EP3758097A4 (en) 2021-06-16
KR20210042404A (ko) 2021-04-19
KR102608006B1 (ko) 2023-12-01
CN111916624A (zh) 2020-11-10
CN111916624B (zh) 2022-02-01
JP7195414B2 (ja) 2022-12-23
EP3758097A1 (en) 2020-12-30
US20210234233A1 (en) 2021-07-29
US20230261322A1 (en) 2023-08-17
JP2022501784A (ja) 2022-01-06

Similar Documents

Publication Publication Date Title
WO2020224319A1 (zh) 隔离膜和电化学装置
US20220123435A1 (en) Electrochemical device
US11374286B2 (en) Separator and electrochemical device
CN111902978B (zh) 锂二次电池用正极活性材料、其制备方法、包含其的锂二次电池用正极和锂二次电池
US20210184315A1 (en) Separator and energy storage device
US20060105245A1 (en) Secondary battery and method for producing the same
CN111952518A (zh) 电化学装置
US20200403205A1 (en) Separator for lithium secondary battery and lithium secondary battery comprising same
CN113366673B (zh) 电化学装置和电子装置
KR20150099648A (ko) 분리막, 분리막의 제조 방법, 이를 포함하는 리튬 폴리머 이차 전지, 및 이를 이용한 리튬 폴리머 이차 전지의 제조 방법
CN110462885B (zh) 用于圆柱形卷芯的条形电极以及包含其的锂二次电池
WO2022141508A1 (zh) 一种电化学装置和电子装置
WO2022262287A1 (zh) 电化学装置和电子装置
JP7456671B2 (ja) リチウム二次電池用正極材、これを含む正極及びリチウム二次電池
CN116741930A (zh) 一种正极极片及包含所述正极极片的电化学装置和电子装置
JP7466981B2 (ja) 負極及びこれを含む二次電池
KR102343094B1 (ko) 전극 활물질 입자 표면에 고체 전해질 코팅막을 균일하게 코팅하는 방법
WO2023208007A1 (zh) 复合材料及其制备方法和应用
CN114128028A (zh) 用于电化学装置的复合隔板和包括该复合隔板的电化学装置
JP2003331827A (ja) 負極およびそれを用いた電池
WO2021195881A1 (zh) 负极极片与包含其的电化学装置
WO2021134279A1 (zh) 电化学装置及包含所述电化学装置的电子装置
CN114586213A (zh) 电化学装置和电子装置
CN117832758A (zh) 固态电解质隔膜及其制备方法、电化学装置
KR20230095579A (ko) 리튬 이차 전지용 음극의 전리튬화 방법, 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020712432

Country of ref document: EP

Effective date: 20200330

ENP Entry into the national phase

Ref document number: 2021517395

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217009261

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE