WO2020220766A1 - 一种半导体晶体生长方法和装置 - Google Patents

一种半导体晶体生长方法和装置 Download PDF

Info

Publication number
WO2020220766A1
WO2020220766A1 PCT/CN2020/072501 CN2020072501W WO2020220766A1 WO 2020220766 A1 WO2020220766 A1 WO 2020220766A1 CN 2020072501 W CN2020072501 W CN 2020072501W WO 2020220766 A1 WO2020220766 A1 WO 2020220766A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
initial position
graphite crucible
batch
crystal growth
Prior art date
Application number
PCT/CN2020/072501
Other languages
English (en)
French (fr)
Inventor
沈伟民
王刚
黄瀚艺
刘赟
Original Assignee
上海新昇半导体科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海新昇半导体科技有限公司 filed Critical 上海新昇半导体科技有限公司
Priority to US17/606,694 priority Critical patent/US12000060B2/en
Publication of WO2020220766A1 publication Critical patent/WO2020220766A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating

Definitions

  • the invention relates to the field of semiconductor manufacturing, in particular to a method and device for growing semiconductor crystals.
  • the Czochralski method is an important method for preparing silicon single crystals for semiconductors and solar energy.
  • the high-purity silicon material placed in the crucible is heated by a thermal field composed of carbon materials to melt it, and then the seed crystal is immersed in In the melt, a series of (seeding, shoulder setting, equal diameter, finishing, cooling) processes are carried out to obtain a single crystal rod.
  • the heating power control of the heater that provides the heat source for crystal growth is the most critical part of the crystal growth process.
  • the usual control method is to set different heater current power P according to different crystal equal diameter length LEN.
  • a quartz crucible is sheathed in the graphite crucible, and the silicon melt contained in the quartz crucible is melted by the graphite crucible to absorb the radiant heat of the heater to form a silicon melt.
  • the position of the quartz crucible and the graphite crucible incorporated into the quartz crucible needs to be raised as the length of the crystal increases (hereinafter referred to as the crucible position CP) to ensure that the melt is liquid
  • the distance between the surface and the guide tube hereinafter referred to as the liquid surface distance GAP) does not change, and the relative position of the melt liquid surface and the vertical direction of the heater does not change.
  • a patent application document with application number JP2010136937 discloses a method for controlling the manufacture of single crystal silicon, which accurately measures the distance between the melt surface and the lower end surface of the insulating member located at the lower part of the flow guide tube and is based on The measurement results are used to control it, so as to precisely control the distance between the melt surface and the insulating part to control the axial temperature of crystal growth.
  • the same polysilicon charge weight W0, the same liquid level distance GAP, and the same process settings will be used, such as the different stages of crystal pulling speed PS, crystal rotation speed SR, crucible rotation speed CR, and different stages of heater Target temperature T or power P.
  • the present invention provides a semiconductor crystal growth method, the method includes:
  • the polysilicon raw material is loaded into the quartz crucible nested in the graphite crucible, wherein the total weight of the polysilicon raw material is called the charging amount W(N), and the charging amount W( N) Adjust according to the current production batch N, so as to keep the initial position of the silicon melt level in the quartz crucible stable while keeping the initial position CP0 of the graphite crucible unchanged.
  • the method further includes obtaining the charging amount W(1) of the quartz crucible when the graphite crucible is used for the first time in the semiconductor growth process and the quartz crucible when the graphite crucible is used in the current production batch N
  • the charging amount dW that should be increased in the middle wherein the charging amount W(N) is the charging amount W(1) in the quartz crucible and the graphite crucible when the graphite crucible is first used in the semiconductor growth process
  • the method for obtaining the charging amount dW of the crucible that should be increased under the current production batch N includes:
  • the amount of material dW that should be increased in the quartz crucible in the current production batch N is obtained.
  • CP0(N)' A*N+B, where A is the batch influence factor of the crucible and B is the related parameter of the crucible's wall thickness.
  • the batch impact factor A and the wall thickness related parameter B are obtained through the following steps:
  • the batch impact factor A and the wall thickness related parameter B are obtained according to the correlation relationship.
  • the step of obtaining the correlation between the adjusted initial position CPO(i) of the graphite crucible and batch i according to the adjusted initial position CPO(i) of the graphite crucible includes: obtaining the adjustment of the graphite crucible The relationship curve between the initial position CP0(i) and batch i.
  • the charge amount dW that should be increased in the quartz crucible when the current production batch N is obtained by the following formula:
  • D is the diameter of the quartz crucible
  • Rho is the density of the silicon melt.
  • the present invention also provides a semiconductor crystal growth device, including a memory and a controller storing executable program instructions, wherein when the controller executes the executable program instructions, the semiconductor growth device executes The method of any one of claims 1-9.
  • the semiconductor crystal growth method and device of the present invention by setting the initial position of the graphite crucible unchanged during the crystal pulling process, and by changing the amount of material in the quartz crucible, the initial position of the silicon melt liquid level in the quartz crucible is stable and effective The adjustment of process parameters in the crystal pulling process is reduced, the stability of various parameters in the crystal pulling process is ensured, and the crystal pulling speed and the quality of the crystal pulling are improved.
  • Fig. 1 is a schematic structural diagram of a semiconductor crystal growth apparatus according to an embodiment of the present invention.
  • Fig. 2 is a flow chart of semiconductor crystal growth according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the relationship curve between the adjusted initial position of the crucible and the batch according to an embodiment of the present invention
  • Fig. 4A is a curve of heater power P varying with equal diameter length L during semiconductor growth
  • FIG. 4B is a curve of the heater power P as a function of the equal diameter length L during the semiconductor growth process according to an embodiment of the present invention.
  • the semiconductor crystal growth device includes a furnace body 1 in which a crucible 11 is arranged, and a heater 12 for heating the crucible 11 is arranged outside the crucible 11.
  • a silicon melt 13 is contained therein.
  • the crucible 11 is composed of a graphite crucible and a quartz crucible sleeved in the graphite crucible.
  • the graphite crucible receives heating from the heater to melt the polysilicon material in the quartz crucible to form a silicon melt.
  • Each quartz crucible is used for one batch of semiconductor growth process, and each graphite crucible is used for multiple batches of semiconductor growth process.
  • a pulling device 14 is provided on the top of the furnace body 1. Driven by the pulling device 14, the seed crystal pulls the silicon crystal rod 10 from the liquid surface of the silicon melt, and at the same time, a heat shield device is arranged around the silicon crystal rod 10.
  • the heat shield device includes a diversion cylinder 16, which is set in a conical barrel shape, which serves as a heat shield device to isolate the quartz crucible and the crucible during the crystal growth process.
  • the heat radiation generated by the silicon melt on the crystal surface increases the cooling rate and axial temperature gradient of the crystal rod, and increases the number of crystal growth. On the other hand, it affects the thermal field distribution on the surface of the silicon melt and avoids the center and the crystal rod.
  • the axial temperature gradient difference at the edge is too large to ensure the stable growth between the crystal rod and the liquid surface of the silicon melt; at the same time, the diversion cylinder is also used to divert the inert gas introduced from the upper part of the crystal growth furnace to make it more A large flow rate passes through the surface of the silicon melt to achieve the effect of controlling the oxygen content and impurity content in the crystal.
  • a driving device 15 that drives the crucible 11 to rotate and move up and down is also provided at the bottom of the furnace body 1.
  • the driving device 15 drives the crucible 11 to keep rotating during the crystal pulling process to reduce the heat of the silicon melt.
  • the asymmetry makes the silicon crystal column grow with equal diameter.
  • the present invention provides a semiconductor crystal growth method.
  • FIG. 2 is a flowchart of a semiconductor crystal growth method according to an embodiment of the present invention.
  • step S1 is performed: obtaining the initial position CP0 of the graphite crucible when it is first used in the semiconductor crystal growth process.
  • the crucible set in the furnace body is composed of a graphite crucible and a quartz crucible sleeved in the graphite crucible.
  • the graphite crucible is heated by the heater to melt the polysilicon material in the quartz crucible to form a silicon melt.
  • Each quartz crucible is used for one batch of semiconductor growth process, and each graphite crucible is used for multiple batches of semiconductor growth process. Since the same graphite crucible is applied to multiple batches of crystal growth processes, the same graphite crucible often consumes graphite during multiple batches of crystal growth processes, resulting in a reduction in the wall thickness of the graphite crucible.
  • the method of batch of semiconductor crystal growth process controls the stability of the initial position F0 of the silicon melt liquid level, so that there is no need to adjust the change of the heating power of the heater, which effectively reduces the change of process parameters during the crystal growth process and improves the crystal The speed and quality of growth.
  • the weight W of the silicon melt 13 determined here is used to further determine the charging amount under the current production batch N, which will be further introduced in subsequent steps.
  • the initial position CP0 of the graphite crucible when it is first used in the semiconductor crystal growth process can be obtained by the initial setting of the crystal growth equipment, and the quality of the silicon melt contained therein is also obtained by the initial setting.
  • step S2 Obtain the current production batch N of the graphite crucible, where the current production batch N represents the number of semiconductor crystal growth processes currently used by the graphite crucible.
  • the same graphite crucible is often subjected to multiple batches of crystal growth processes to obtain multiple silicon crystal rods.
  • Obtain the current production batch of the graphite crucible that is, from the first application of the graphite crucible to the crystal growth process to the current batch, how many semiconductor crystal growth processes have been performed in total.
  • the silicon in the quartz crucible The initial position of the solution level is always stable.
  • step S3 according to the current production batch N, the polysilicon raw material is loaded into the quartz crucible sleeved in the graphite crucible, wherein the total weight of the polysilicon raw material is called the charging amount W (N), the charging amount W(N) is adjusted according to the current production batch N, so as to keep the initial position CP0 of the graphite crucible unchanged while keeping the silicon melt level in the quartz crucible The initial position remains stable.
  • the position CP0 of the graphite crucible is kept unchanged while the initial liquid level position of the silicon melt in the quartz crucible is kept stable, so there is no need to adjust the heating power of the heater.
  • the change of process parameters during the crystal growth process is reduced, and the speed and quality of crystal growth are improved.
  • step S1 by obtaining in step S1 the loading amount W(1) of the quartz crucible in the quartz crucible when the graphite crucible is first used in the semiconductor growth process and the graphite crucible in the current
  • the charging amount dW that should be increased in the quartz crucible when the batch N is produced, wherein the charging amount W(N) is the charging amount W in the quartz crucible when the graphite crucible is first used in the semiconductor growth process (1)
  • the sum of the charging amount dW that the graphite crucible should increase in the quartz crucible under the current production batch N. .
  • the method for obtaining the charging amount dW that should be increased in the quartz crucible when the graphite crucible is used in the current production batch N includes:
  • Step S31 Obtain the calculated initial position of the graphite crucible under the current production batch N in order to ensure that the initial position of the silicon melt liquid level remains unchanged under the condition that the loading amount in the quartz crucible remains unchanged CP0(N)'.
  • CP0(N)' A*N+B, where A is the batch influence factor of the crucible and B is the related parameter of the crucible's wall thickness.
  • the same graphite crucible is used to perform a multi-batch semiconductor crystal growth process in which the initial position of the graphite crucible is adjusted to obtain the same initial position of the silicon melt liquid level by keeping the charge in the quartz crucible unchanged, Obtain the batch impact factor A and the wall thickness related parameter B.
  • the traditional process is to keep the charge in the quartz crucible unchanged and adjust the initial position of the graphite crucible to obtain the same initial liquid surface position
  • the semiconductor crystal growth process is different from that in this application by keeping the initial position of the graphite crucible unchanged. Adjust the charge in the quartz crucible to obtain the same initial liquid level position of the semiconductor crystal growth process.
  • the wall thickness of the graphite crucible decreases by the same amount. That is to say, the batch influence factor A in each batch of semiconductor growth process and the graphite crucible wall thickness related parameter B in the process can be regarded as the same, and it does not change because of the initial position of the graphite crucible. .
  • the batch impact factor A and the wall thickness related parameter B are obtained through the following steps:
  • step S311 Obtain a large number of batch M semiconductor crystal growth processes using the same graphite crucible, where the same amount of material is loaded in the quartz crucible during the large number of batch M semiconductor production processes, The same initial position of the silicon melt liquid level is obtained by adjusting the initial position of the graphite crucible.
  • This process can be obtained directly from the production line of the traditional production process.
  • the same graphite crucible can perform 100 semiconductor crystal growth processes, and a large number of batches M that can be obtained is 100.
  • each batch of quartz crucible has the same charge
  • the initial position of the graphite crucible is adjusted to obtain the same initial position of the silicon melt level in each batch of quartz crucibles.
  • This process can be obtained directly from the production line of the traditional production process.
  • each time the initial position CP0(i) of the graphite crucible, where i 1, 2...100.
  • the wall thickness of the graphite crucible gradually decreases, and the initial position CP0(i) of the graphite crucible gradually increases.
  • the adjusted initial position of the graphite crucible is -30mm.
  • the adjusted initial position of the graphite crucible was -26mm.
  • step S313 is performed: obtaining the correlation between the adjusted initial position CPO(i) of the graphite crucible and batch i according to the adjusted initial position CPO(i) of the graphite crucible.
  • this step is obtained by plotting the relationship curve between the adjusted initial position CP0(i) of the graphite crucible and batch i.
  • FIG. 3 there is shown a graph of the graphite crucible according to an embodiment of the present invention. Schematic diagram of the relationship curve between the adjustment of the initial position and the batch.
  • step S314 is performed: obtaining the batch impact factor A and the wall thickness related parameter B according to the correlation relationship.
  • the slope represents the influence of the batch on shadow A, and the diagonal line of the linear relationship is extended to intersect the CP0 axis
  • the characterization parameter B related to wall thickness.
  • the loading amount dW that should be increased in the quartz crucible under the current production batch N proceed to step S32: according to the calculated initial position CPO(N)' and the graphite crucible when it is first used in the semiconductor crystal growth process
  • step S33 is performed: obtaining the amount of material dW that should be increased in the quartz crucible in the current production batch N according to the initial position difference dCP0(N).
  • the charging amount dW that should be increased in the current production batch N is obtained by the following formula:
  • D is the diameter of the quartz crucible
  • Rho is the density of the silicon melt.
  • the above method of calculating the current charging amount that should be increased is only an example, and those skilled in the art can also directly pass the initial position difference based on the proportional relationship between the weight of the silicon melt in the quartz crucible and the crucible depth, for example.
  • the value d CPO(N) obtains the amount of material that should be increased in the quartz crucible.
  • the method of obtaining the calculation of the initial position CPO(N)' in the above embodiment is only an example. In the case of using a large number of batches of relevant data in the semiconductor crystal growth process, for example, it can also be calculated by methods such as machine learning.
  • the calculated initial position CP0(N)' of the graphite crucible under the current production batch N is only an example, and those skilled in the art can also directly pass the initial position difference based on the proportional relationship between the weight of the silicon melt in the quartz crucible and the crucible depth, for example.
  • the value d CPO(N) obtains the amount of material that should be increased in the
  • each quartz crucible is used for a batch of semiconductor growth process, and each graphite crucible is used for multiple batches of semiconductors. Growth process.
  • each quartz crucible replacement it has a certain diameter deviation ⁇ D. Therefore, in the above formula for calculating the charging amount, it needs to be determined according to the diameter D of the quartz crucible to be replaced each time.
  • the quartz crucible is charged according to the current production batch N in the above step S3, the semiconductor crystal growth process is started, including vacuuming, silicon melting, seeding, and shouldering
  • the growth steps of semiconductor crystals known to those skilled in the art, such as equal diameter, finishing, and cooling, are not repeated here. At the same time, it is necessary to control the change of heater power in these steps.
  • FIGS. 4A and 4B there are shown a curve of heater power P as a function of equal diameter length L during semiconductor growth, and a curve of heater power P as a function of equal diameter length during semiconductor growth according to an embodiment of the present invention.
  • the curve of L change. It can be seen from Fig. 4A that when the growth batches are 1, 11 and 21, the curve of the heater power P with the equal diameter length L needs to be adjusted with different production batches. According to the embodiment of the present invention, as shown in FIG. 4B, when the growth batches are 1, 11, and 21, the curve of the change of the heater power P with the equal diameter length L basically does not need to be adjusted.
  • the semiconductor crystal growth method according to the present invention effectively reduces the number of process parameters that need to be adjusted during the semiconductor crystal growth process (especially the heater power setting can be kept unchanged), so that the crystal diameter, crystal pulling speed and The quality of the crystal can be reproducible, which effectively improves the speed and quality of semiconductor crystal growth.
  • the present invention also provides a semiconductor crystal growth device including a memory and a controller storing executable program instructions, wherein when the controller executes the executable program instructions, the semiconductor growth device executes The following steps:
  • the polysilicon raw material is loaded into the quartz crucible nested in the graphite crucible, wherein the total weight of the polysilicon raw material is called the charging amount W(N), and the charging amount W( N) Adjust according to the current production batch N, so as to keep the initial position of the silicon melt level in the quartz crucible stable while keeping the initial position CP0 of the graphite crucible unchanged.
  • the initial position of the graphite crucible is not changed during the crystal pulling process, and the loading amount in the quartz crucible is changed to ensure the stability of the initial position of the silicon melt level in the quartz crucible and effectively reduce
  • the adjustment of the process parameters in the crystal pulling process ensures the stability of various parameters in the crystal pulling process, and improves the pulling speed and the quality of the crystal pulling.
  • the above-mentioned steps of setting the loading amount are realized by the memory and the controller of executable program instructions, so that the loading amount can be programmed, reducing manual operation steps, simplifying operations, and improving work efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供一种半导体晶体生长方法和装置。所述半导体晶体生长方法包括:获取石墨坩埚在首次用于半导体晶体生长过程时的初始位置CP0;获取所述石墨坩埚的当前生产批次N,所述当前生产批次N表征所述石墨坩埚当前用来进行的半导体晶体生长过程的次数;根据所述当前生产批次N在所述石墨坩埚内套设的石英坩埚内装入多晶硅原料,其中,所述多晶硅原料的总重量称为装料量W(N),所述装料量W(N)根据当前生产批次N进行调整,以在保持所述石墨坩埚的初始位置CP0不变的同时,使所述石英坩埚内硅熔体液面的初始位置保持稳定。根据本发明,保证了拉晶过程中各参数的稳定,提升了拉晶的速度和拉晶的质量。

Description

一种半导体晶体生长方法和装置
说明书
技术领域
本发明涉及半导体制造领域,具体而言涉及一种半导体晶体生长方法和装置。
背景技术
直拉法(Cz)是制备半导体及太阳能用硅单晶的一种重要方法,通过碳素材料组成的热场对放入坩埚的高纯硅料进行加热使之熔化,之后通过将籽晶浸入熔体当中并经过一系列(引晶、放肩、等径、收尾、冷却)工艺过程,最终获得单晶棒。
使用CZ法的半导体单晶硅或太阳能单晶硅的晶体生长中,晶体和熔体的温度分布直接影响晶体的品质和生长速度。因此对晶体生长提供热源的加热器的加热功率控制是晶体生长工艺中的最关键的部分。通常的控制方法是按照不同的晶体等径长度LEN设定不同的加热器电流功率P。
半导体晶体生长过程中采用在石墨坩埚内套设石英坩埚,通过石墨坩埚吸收加热器的辐射热对容纳于石英坩埚内的硅熔体进行熔融的方式形成硅熔体。随着晶体的长度增加,石英坩埚内的熔体体积减少,石英坩埚和纳入石英坩埚的石墨坩埚需要随着晶体长度增加而提升其位置(以下称为坩埚位置CP),以保证熔体的液面和导流筒间的距离(以下称为液面距GAP)不变,以及熔体液面和加热器的垂直方向的相对位置不变。例如,在申请号为JP2010136937的专利申请文件中就公开了一种控制制造单晶硅的方法,其通过精确测量熔体表面和位于导流筒下部的绝热构件的下端表面之间的距离并基于测量结果对其进行控制,从而精确控制熔体表面和绝热部件之间的距离从而控制晶体生长的轴向温度。
然而,对半导体单晶硅硅片而言,有非常严格稳定的品质要求,需要在硅晶体的生长过程中有稳定的工艺,包括稳定的工艺参数。因此会采用 同样的多晶硅装料重量W0,同样的液面距GAP,以及同样的工艺设定,诸如不同阶段的晶体提拉拉速PS,晶体转速SR、坩埚转速CR、不同阶段的加热器的目标温度T或功率P。
同时,实际的批次生产中,由于随着工艺过程的进行,石墨坩埚等零部件的消耗,仍然存在需要调整和修改工艺参数(比如目标温度T或目标加热功率P)的情况,由于工艺参数的调整和修改往往引起晶体质量(如晶棒直径、含氧量和内部缺陷等)的变化。
为此,有必要提出一种新的半导体晶体生长方法和装置,用以解决现有技术中的问题。
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
为了解决现有技术中的问题,本发明提供了一种半导体晶体生长方法,所述方法包括:
获取石墨坩埚在首次用于半导体晶体生长过程时的初始位置CP0;
获取所述石墨坩埚的当前生产批次N,所述当前生产批次N表征所述石墨坩埚当前用来进行的半导体晶体生长过程的次数;
根据所述当前生产批次N在所述石墨坩埚内套设的石英坩埚内装入多晶硅原料,其中,所述多晶硅原料的总重量称为装料量W(N),所述装料量W(N)根据当前生产批次N进行调整,以在保持所述石墨坩埚的初始位置CP0不变的同时,使所述石英坩埚内硅熔体液面的初始位置保持稳定。
示例性地,还包括获取所述石墨坩埚在首次用于半导体生长过程时所述石英坩埚中的装料量W(1)和所述石墨坩埚在用于当前生产批次N时所述石英坩埚中应当增加的装料量dW,其中所述装料量W(N)为所述石墨坩埚首次用于半导体生长过程时所述石英坩埚中的装料量W(1)与所述石墨坩埚在当前生产批次N下所述石英坩埚中应当增加的装料量dW的加和。
示例性地,获取所述坩埚在当前生产批次N下应当增加的装料量dW的方法包括:
获取在保持所述石英坩埚中的装料量不变的情况下,为保证硅熔体液面的初始位置保持不变时所述石墨坩埚在当前生产批次N下的计算初始位置CP0(N)’;
根据所述计算初始位置CP0(N)’和所述石墨坩埚在首次用于半导体晶体生长过程时的初始位置CP0,获得初始位置差值d CP0(N),其中,d CP0(N)=CP0(N)’-CP0;
根据所述初始位置差值d CP0(N)获得所述当前生产批次N时所述石英坩埚中应当增加的装料量dW。
示例性地,所述计算初始位置CP0(N)’通过下式获得:
CP0(N)’=A*N+B,其中A为坩埚的批次影响因子和B为坩埚的壁厚相关参数。
示例性地,所述批次影响因子A和所述壁厚相关参数B通过以下步骤获得:
获取采用同一石墨坩埚进行的大量批次M的半导体晶体生长过程,其中,在所述大量批次M的半导体晶体生产过程中在所述石墨坩埚中套设的石英坩埚内具有相同的装料量,通过调整所述石墨坩埚的初始位置以获得相同的硅熔体液面的初始位置;
获取所述石墨坩埚在所述大量批次M的半导体晶体生产过程中每一批次下的调整初始位置CP0(i),其中i=1,2……M;
根据所述石墨坩埚的调整初始位置CP0(i)获得所述坩埚的调整初始位置CP0(i)与批次i之间的相关关系;
根据所述相关关系获得所述批次影响因子A和所述壁厚相关参数B。
示例性地,根据所述石墨坩埚的调整初始位置CP0(i)获得所述石墨坩埚的调整初始位置CP0(i)与批次i之间的相关关系的步骤包括:获得所述石墨坩埚的调整初始位置CP0(i)与批次i之间的关系曲线。
示例性地,通过下式获得所述当前生产批次N时所述石英坩埚中应当增加的装料量dW,
Figure PCTCN2020072501-appb-000001
其中D为所述石英坩埚的直径,Rho是 硅熔体的密度。
本发明还提供了一种半导体晶体生长装置,包括存储有可执行的程序指令的存储器和控制器,其中,所述控制器执行所述可执行的程序指令时,使所述半导体生长装置执行如权利要求1-9任意一项所述的方法。
根据本发明的半导体晶体生长方法和装置,通过设置拉晶过程中石墨坩埚的初始位置不变,通过改变石英坩埚中装料量,保证石英坩埚内硅熔体液面的初始位置的稳定,有效减少了拉晶过程中工艺参数的调整,保证了拉晶过程中各参数的稳定,提升了拉晶的速度和拉晶的质量。
附图说明
本发明的下列附图在此作为本发明的一部分用于理解本发明。附图中示出了本发明的实施例及其描述,用来解释本发明的原理。
附图中:
图1为根据本发明的一个实施例的一种半导体晶体生长装置的结构示意图;
图2为根据本发明的一个实施例的一种半导体晶体生长的流程图;
图3为根据本发明的一个实施例的坩埚的调整初始位置与批次之间的关系曲线的示意图;
图4A为一种半导体生长过程中加热器功率P随等径长度L变化的曲线;
图4B为根据本发明的一个实施例的半导体生长过程中加热器功率P随等径长度L变化的曲线。
具体实施方式
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
为了彻底理解本发明,将在下列的描述中提出详细的描述,以说明本发明所述的半导体晶体生长方法。显然,本发明的施行并不限于半导体领域的 技术人员所熟习的特殊细节。本发明的较佳实施例详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。
应予以注意的是,这里所使用的术语仅是为了描述具体实施例,而非意图限制根据本发明的示例性实施例。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式。此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在所述特征、整体、步骤、操作、元件和/或组件,但不排除存在或附加一个或多个其他特征、整体、步骤、操作、元件、组件和/或它们的组合。
现在,将参照附图更详细地描述根据本发明的示例性实施例。然而,这些示例性实施例可以多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施例。应当理解的是,提供这些实施例是为了使得本发明的公开彻底且完整,并且将这些示例性实施例的构思充分传达给本领域普通技术人员。在附图中,为了清楚起见,夸大了层和区域的厚度,并且使用相同的附图标记表示相同的元件,因而将省略对它们的描述。
参看图1,示出了一种半导体晶体装置的结构示意图,半导体晶体生长装置包括炉体1,炉体1内设置有坩埚11,坩埚11外侧设置有对其进行加热的加热器12,坩埚11内容纳有硅熔体13,坩埚11由石墨坩埚和套设在石墨坩埚内的石英坩埚构成,石墨坩埚接收加热器的加热使石英坩埚内的多晶硅材料融化形成硅熔体。其中每一石英坩埚用于一个批次半导体生长工艺,而每一石墨坩埚用于多批次半导体生长工艺。
在炉体1顶部设置有提拉装置14,在提拉装置14的带动下,籽晶从硅熔体液面提拉拉出硅晶棒10,同时环绕硅晶棒10四周设置热屏装置,示例性地,如图1所示,热屏装置包括有导流筒16,导流筒16设置为圆锥桶型,其作为热屏装置一方面用以在晶体生长过程中隔离石英坩埚以及坩埚内的硅熔体对晶体表面产生的热辐射,提升晶棒的冷却速度和轴向温度梯度,增加晶体生长数量,另一方面,影响硅熔体表面的热场分布,而避免晶棒的中心和边缘的轴向温度梯度差异过大,保证晶棒与硅熔体液面之间的稳定生长;同时导流筒还用以对从晶体生长炉上部导入的惰性气体进行导流,使之以较大的流速通过硅熔体表面,达到控制晶体内氧含量和杂质含量的效果。
为了实现硅晶棒的稳定增长,在炉体1底部还设置有驱动坩埚11旋转和 上下移动的驱动装置15,驱动装置15驱动坩埚11在拉晶过程中保持旋转是为了减少硅熔体的热的不对称性,使硅晶柱等径生长。
在半导体晶体生长过程中,伴随着晶体的形核和生长,需要通过控制包括硅熔体液面位置、加热器功率等工艺参数来控制硅晶体的稳定生长。由于在晶体生长过程中,加热器和石墨坩埚在高温下和炉内气体SiOx发生反应,石墨表面发生消耗,导致电阻及热源形态发生变化;同时,由于同一石墨坩埚应用于多个批次的晶体生长过程,随着石墨坩埚发生消耗,需要调整坩埚位置以保证在石墨坩埚内容纳相同量的硅熔体时,硅熔体液面位置保持稳定。
在一个示例中,生长直径为28英寸的晶体的石英坩埚中,随着晶体生长过程的进行,在每批次装载300kg的硅熔体的装料量的情况下,经过20个批次的晶体生长过程之后,发现开始拉晶的坩埚初始位置相对于首次进行的晶体生长过程中的坩埚初始位置下降了6mm,同时,在20个批次之间坩埚的初始位置波动范围在±2.0mm,因此,每个批次都需要根据坩埚的初始位置修改加热器的设定功率曲线。由于加热器功率的变化,影响了晶体生长后的直径、晶棒的提晶速度,乃至晶棒的内部缺陷、氧含量等。
为了解决现有技术中的技术问题,本发明提供了一种半导体晶体生长方法。
下面参看图2对本发明所提出的一种半导体晶体生长方法进行示例性说明,图2为根据本发明的一个实施例的一种半导体晶体生长方法的流程图。
首先参看图2,执行步骤S1:获取石墨坩埚在首次用于半导体晶体生长过程时的初始位置CP0。
在生产过程中,设置在炉体内的坩埚由石墨坩埚和套设在石墨坩埚内的石英坩埚构成,石墨坩埚接收加热器的加热使石英坩埚内的多晶硅材料融化形成硅熔体。其中每一石英坩埚用于一个批次半导体生长工艺,而每一石墨坩埚用于多批次半导体生长工艺。由于同一石墨坩埚应用于多个批次的晶体生长过程,同一石墨坩埚在多个批次的晶体生长过程中往往发生石墨的消耗,导致石墨坩埚壁厚减少。为了保证石英坩埚内硅熔体的液面在不同生长批次下保持稳定的同时,减少工艺参数(如加热器功率)的调整以减少晶体生长的缺陷,在本发明中,如图1所示,获取首次用于半导体晶体生长过程的石 墨坩埚的初始位置CP0(即,坩埚顶部11与加热器12顶部之间的距离),以及坩埚11在首次应于半导体生长过程时石英坩埚内装入多晶硅原料的重量,即装料量W(1),其中,在此硅熔体13的重量为W(1)的情形下,硅熔体13液面的初始位置F0(如图1所示)为硅熔体13液面到导流筒16底部之间的距离。在本发明中,通过在后续批次的半导体晶体的生长过程中固定CP0,改变所述石英坩埚中的装料量W(i)(其中i=1、2、3……,表示当前进行的半导体晶体生长过程的批次)的方法控制硅熔体液面的初始位置F0的稳定,从而不需要调整加热器的加热功率的变化,有效减少了晶体生长过程中工艺参数的变化,提升了晶体生长的速度和质量。
本实施例中,在此确定的硅熔体13重量W用于后续进一步确定在当前生产批次N下的装料量,这将在后续的步骤中进一步介绍。
在根据本发明的一个示例中,石墨坩埚在首次用于半导体晶体生长过程时的初始位置CP0可以通过晶体生长设备的初始设置获得,其中容纳的硅熔体的质量也通过初始设置获得。
接着,继续参看图2,执行步骤S2:获取所述石墨坩埚的当前生产批次N,所述当前生产批次N表征所述石墨坩埚当前用来进行的半导体晶体生长过程的次数。
在晶体生长过程中,同一石墨坩埚往往进行多批次晶体生长过程获得多个硅晶棒。获取石墨坩埚的当前生产批次,即从该石墨坩埚首次应用于晶体生长过程到当前批次,总共进行了多少次半导体晶体的生长过程,在这些半导体晶体的生长过程中,石英坩埚内的硅溶液液面的初始位置始终保持稳定。
接着,继续参看图2,执行步骤S3:根据所述当前生产批次N在所述石墨坩埚内套设的石英坩埚内装入多晶硅原料,其中,所述多晶硅原料的总重量称为装料量W(N),所述装料量W(N)根据当前生产批次N进行调整,以在保持所述石墨坩埚的初始位置CP0不变的同时,使所述石英坩埚内硅熔体液面的初始位置保持稳定。
在这一步骤中,通过调整装料量,保持石墨坩埚的位置CP0不变的同时使石英坩埚内硅熔体的初始液面位置保持稳定,从而不需要调整加热器的加 热功率的变化,有效减少了晶体生长过程中工艺参数的变化,提升了晶体生长的速度和质量。
示例性地,在本实施例中,通过在步骤S1中获取所述石墨坩埚在首次用于半导体生长过程时所述石英坩埚中的装料量W(1)和所述石墨坩埚在用于当前生产批次N时所述石英坩埚中应当增加的装料量dW,其中所述装料量W(N)为所述石墨坩埚首次用于半导体生长过程时所述石英坩埚中的装料量W(1)与所述石墨坩埚在当前生产批次N下所述石英坩埚中应当增加的装料量dW的加和。。
示例性地,获取所述石墨坩埚在用于当前生产批次N时所述石英坩埚中应当增加的装料量dW的方法包括:
步骤S31:获取在保持所述石英坩埚中的装料量不变的情况下,为保证硅熔体液面的初始位置保持不变时所述石墨坩埚在当前生产批次N下的计算初始位置CP0(N)’。
示例性地,所述计算初始位置CP0(N)’通过下式获得:
CP0(N)’=A*N+B,其中A为坩埚的批次影响因子和B为坩埚的壁厚相关参数。
根据本发明的一个示例,采用同一石墨坩埚进行的通过保持石英坩埚中的装料量不变调整石墨坩埚的初始位置获得相同的硅熔体液面的初始位置的多批次半导体晶体生长过程,获得批次影响因子A和所述壁厚相关参数B。需要理解的是,虽然传统工艺通过保持石英坩埚中装料量不变调整石墨坩埚的初始位置获得相同的初始液面位置的半导体晶体生长过程不同于本申请中通过保持石墨坩埚的初始位置不变调整石英坩埚中的装料量来获得相同的初始液面位置的半导体晶体的生长过程,两种半导体晶体的生长过程中,随着生产批次的增加,石墨坩埚的壁厚的减少是相当的,也就是说,每一批次的半导体生长工艺中批次影响因子A和工艺过程中石墨坩埚壁厚相关参数B可以看作是相同的,并不因为石墨坩埚初始位置的变化而有所变化。
具体的,所述批次影响因子A和所述壁厚相关参数B通过以下步骤获得:
首先执行步骤S311:获取采用同一石墨坩埚进行的大量批次M的半导体晶体生长过程,其中,在所述大量批次M的半导体生产该过程中在所述石英坩埚中具有相同的装料量,通过调整所述石墨坩埚的初始位置以获得相同 的硅熔体液面的初始位置。
这一过程,可以直接从传统生产工艺的生产线上获得。示例性地,同一石墨坩埚可以进行100次的半导体晶体生长过程,可以获取的大量批次M为100,在这100次半导体晶体生长过程中,每一批次的石英坩埚中具有相同的装料量,通过调整所述石墨坩埚的初始位置以获得每一批次的石英坩埚中硅熔体液面的相同的初始位置。
接着执行步骤S312:获取所述石墨坩埚在所述大量批次M的半导体晶体生产过程中每一批次下的调整初始位置CP0(i),其中i=1,2……M。
这一过程,可以直接从传统生产工艺的生产线上获得。示例性地,获取100次的半导体晶体生长过程中,每一次所述石墨坩埚的初始位置CP0(i),其中i=1,2……100。由于在半导体生长过程中,随着批次的增加,石墨坩埚的壁厚逐渐减小,石墨坩埚的初始位置CP0(i)逐渐增大。在一个示例中,首次用于半导体晶体生长过程时石墨坩埚的调整初始位置为-30mm。在第20批次时石墨坩埚的调整初始位置为-26mm。
接着执行步骤S313:根据所述石墨坩埚的调整初始位置CP0(i)获得所述石墨坩埚的调整初始位置CP0(i)与批次i之间的相关关系。
示例性地,这一步骤通过绘制所述石墨坩埚的调整初始位置CP0(i)与批次i之间的关系曲线获得,参看图3,示出了根据本发明的一个实施例的石墨坩埚的调整初始位置与批次之间的关系曲线的示意图。
在绘制的关系曲线中,往往获得分散得点状分布图,通过图线拟合可以获得石墨坩埚的调整初始位置CP0(i)与批次i之间呈现线性关系,其中,CP0(i)=A*i+B。
接着执行步骤S314:根据所述相关关系获得所述批次影响因子A和所述壁厚相关参数B。
继续参看图3,通过拟合获得的坩埚的调整初始位置CP0(i)与批次i之间的线性关系中,斜率表征批次影响影子A,将线性关系的斜线延伸到与CP0轴相交的地方表征壁厚相关参数B。
根据上述方法得到的批次影响因子A和壁厚相关参数B计算出计算初始位置CP0(N)’=A*N+B。为了得到在当前生产批次N下石英坩埚中应当增加的装料量dW继续执行步骤S32:根据所述计算初始位置CP0(N)’和所 述石墨坩埚在首次用于半导体晶体生长过程时的初始位置CP0,获得初始位置差值d CP0(N);其中,d CP0(N)=CP0(N)’-CP0。
接着,执行步骤S33:根据所述初始位置差值d CP0(N)获得所述当前生产批次N下石英坩埚内应当增加的装料量dW。
根据本发明的一个实施例,所述当前生产批次N下应当增加的装料量dW通过下式获得:
Figure PCTCN2020072501-appb-000002
其中D为所述石英坩埚的直径,Rho是硅熔体的密度。
需要理解的是,上述根据计算当前应当增加的装料量的方法仅仅是示例性地,本领域技术人员还可以根据例如石英坩埚中硅熔体重量和坩埚深度的比例关系,直接通过初始位置差值d CP0(N)获得石英坩埚中应当增加的装料量。上述实施例中获得计算初始位置CP0(N)’的方法也仅仅是示例性地,在采用大量批次的半导体晶体生长过程中的相关数据的情况下,例如还可以通过机器学习等方法计算得到石墨坩埚在当前生产批次N下的计算初始位置CP0(N)’。
在实际生产工艺中,往往采用在石墨坩埚中套设石英坩埚的设置进行半导体生长装置的设置,其中每一石英坩埚用于一个批次半导体生长工艺,而每一石墨坩埚用于多批次半导体生长工艺。在每一次石英坩埚的更换中,其具有一定的直径偏差ΔD,为此,在上述计算装料量的公式中,需要根据每次更换的石英坩埚的直径D进行确定。
根据本发明的一个实施例,在完成上述步骤S3中根据所述当前生产批次N对石英坩埚进行装料之后,开始进行半导体晶体的生长过程,包括抽真空,硅熔化、引晶、放肩、等径、收尾、冷却等本领域技术人员所熟知的半导体晶体的生长步骤,在此不再赘述。同时,在这些步骤中需要控制加热器功率的变化。
参看图4A和图4B,分别示出了一种半导体生长过程中加热器功率P随等径长度L变化的曲线和根据本发明的一个实施例的半导体生长过程中加热器功率P随等径长度L变化的曲线。从图4A中可以看出,在生长批次为1、11和21时,加热器功率P随等径长度L变化的曲线需要随着生产批次的不 同而调整。而根据本发明的实施例中,如图4B所示,在生长批次为1、11和21时加热器功率P随等径长度L变化的曲线基本无需调整。显然根据本发明的半导体晶体的生长方法,有效减少了半导体晶体生长过程中需要调整的工艺参数的数量(特别是加热器的功率设定可以保持不变),使得晶体的直径,拉晶速度和晶体的质量都可实现可重复性,有效提升了半导体晶体生长的速度和质量。
实施例二
本发明了还提供了一种半导体晶体生长装置,包括存储有可执行的程序指令的存储器和控制器,其中,所述控制器执行所述可执行的程序指令时,使所述半导体生长装置执行以下步骤:
获取石墨坩埚在首次用于半导体晶体生长过程时的初始位置CP0;
获取所述石墨坩埚的当前生产批次N,所述当前生产批次N表征所述石墨坩埚当前用来进行的半导体晶体生长过程的次数;
根据所述当前生产批次N在所述石墨坩埚内套设的石英坩埚内装入多晶硅原料,其中,所述多晶硅原料的总重量称为装料量W(N),所述装料量W(N)根据当前生产批次N进行调整,以在保持所述石墨坩埚的初始位置CP0不变的同时,使所述石英坩埚内硅熔体液面的初始位置保持稳定。
在根据本发明的半导体晶体生长装置,通过设置拉晶过程中石墨坩埚的初始位置不变,通过改变石英坩埚中装料量,保证石英坩埚内硅熔体液面的初始位置的稳定,有效减少了拉晶过程中工艺参数的调整,保证了拉晶过程中各参数的稳定,提升了拉晶的速度和拉晶的质量。同时,将上述设置装料量的步骤通过可执行的程序指令的存储器和控制器实现,使得装料量程序化实现,减少人工操作步骤,简化操作,提高了工作效率。
本发明已经通过上述实施例进行了说明,但应当理解的是,上述实施例只是用于举例和说明的目的,而非意在将本发明限制于所描述的实施例范围内。此外本领域技术人员可以理解的是,本发明并不局限于上述实施例,根据本发明的教导还可以做出更多种的变型和修改,这些变型和修改均落在本发明所要求保护的范围以内。本发明的保护范围由附属的权利要求书及其等 效范围所界定。

Claims (8)

  1. 一种半导体晶体生长方法,其特征在于,包括:
    获取石墨坩埚在首次用于半导体晶体生长过程时的初始位置CP0;
    获取所述石墨坩埚的当前生产批次N,所述当前生产批次N表征所述石墨坩埚当前用来进行的半导体晶体生长过程的次数;
    根据所述当前生产批次N在所述石墨坩埚内套设的石英坩埚内装入多晶硅原料,其中,所述多晶硅原料的总重量称为装料量W(N),所述装料量W(N)根据当前生产批次N进行调整,以在保持所述石墨坩埚的初始位置CP0不变的同时,使所述石英坩埚内硅熔体液面的初始位置保持稳定。
  2. 根据权利要求1所述的半导体晶体生长方法,其特征在于,还包括获取所述石墨坩埚在首次用于半导体生长过程时所述石英坩埚中的装料量W(1)和所述石墨坩埚在用于当前生产批次N时所述石英坩埚中应当增加的装料量dW,其中所述装料量W(N)为所述石墨坩埚首次用于半导体生长过程时所述石英坩埚中的装料量W(1)与所述石墨坩埚在当前生产批次N下所述石英坩埚中应当增加的装料量dW的加和。
  3. 根据权利要求1所述的半导体晶体生长方法,其特征在于,获取所述坩埚在当前生产批次N下应当增加的装料量dW的方法包括:
    获取在保持所述石英坩埚中的装料量不变的情况下,为保证硅熔体液面的初始位置保持不变时所述石墨坩埚在当前生产批次N下的计算初始位置CP0(N)’;
    根据所述计算初始位置CP0(N)’和所述石墨坩埚在首次用于半导体晶体生长过程时的初始位置CP0,获得初始位置差值d CP0(N),其中,d CP0(N)=CP0(N)’-CP0;
    根据所述初始位置差值d CP0(N)获得所述当前生产批次N时所述石英坩埚中应当增加的装料量dW。
  4. 根据权利要求2所述的半导体晶体生长方法,其特征在于,
    所述计算初始位置CP0(N)’通过下式获得:
    CP0(N)’=A*N+B,其中A为坩埚的批次影响因子和B为坩埚的壁厚相关参数。
  5. 根据权利要求4所述的半导体晶体生长方法,其特征在于,所述批次影响因子A和所述壁厚相关参数B通过以下步骤获得:
    获取采用同一石墨坩埚进行的大量批次M的半导体晶体生长过程,其中, 在所述大量批次M的半导体晶体生产过程中在所述石墨坩埚中套设的石英坩埚内具有相同的装料量,通过调整所述石墨坩埚的初始位置以获得相同的硅熔体液面的初始位置;
    获取所述石墨坩埚在所述大量批次M的半导体晶体生产过程中每一批次下的调整初始位置CP0(i),其中i=1,2……M;
    根据所述石墨坩埚的调整初始位置CP0(i)获得所述坩埚的调整初始位置CP0(i)与批次i之间的相关关系;
    根据所述相关关系获得所述批次影响因子A和所述壁厚相关参数B。
  6. 根据权利要求5所述的半导体晶体生长方法,其特征在于,根据所述石墨坩埚的调整初始位置CP0(i)获得所述石墨坩埚的调整初始位置CP0(i)与批次i之间的相关关系的步骤包括:获得所述石墨坩埚的调整初始位置CP0(i)与批次i之间的关系曲线。
  7. 根据权利要求3所述的半导体晶体生长方法,其特征在于,通过下式获得所述当前生产批次N时所述石英坩埚中应当增加的装料量dW,
    Figure PCTCN2020072501-appb-100001
    其中D为所述石英坩埚的直径,Rho是硅熔体的密度。
  8. 一种半导体晶体生长装置,其特征在于,包括存储有可执行的程序指令的存储器和控制器,其中,所述控制器执行所述可执行的程序指令时,使所述半导体生长装置执行如权利要求1-7任意一项所述的方法。
PCT/CN2020/072501 2019-04-29 2020-01-16 一种半导体晶体生长方法和装置 WO2020220766A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/606,694 US12000060B2 (en) 2019-04-29 2020-01-16 Semiconductor crystal growth method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910357352.5 2019-04-29
CN201910357352.5A CN111850681B (zh) 2019-04-29 2019-04-29 一种半导体晶体生长方法和装置

Publications (1)

Publication Number Publication Date
WO2020220766A1 true WO2020220766A1 (zh) 2020-11-05

Family

ID=72966410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072501 WO2020220766A1 (zh) 2019-04-29 2020-01-16 一种半导体晶体生长方法和装置

Country Status (4)

Country Link
US (1) US12000060B2 (zh)
CN (1) CN111850681B (zh)
TW (1) TWI736169B (zh)
WO (1) WO2020220766A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101724891A (zh) * 2009-12-14 2010-06-09 晶龙实业集团有限公司 直拉硅单晶直径自动补偿方法
WO2011158425A1 (ja) * 2010-06-16 2011-12-22 信越半導体株式会社 遮熱部材下端面と原料融液面との間の距離の測定方法及び制御方法、並びにシリコン単結晶の製造方法
CN106048723A (zh) * 2016-08-01 2016-10-26 中国电子科技集团公司第四十六研究所 一种采用提拉法生长氧化镓晶体的固液界面控制方法
CN106687624A (zh) * 2014-09-24 2017-05-17 株式会社Sumco 单晶硅的制造方法及制造系统
CN106906513A (zh) * 2017-04-07 2017-06-30 天通吉成机器技术有限公司 单晶炉的锅跟比调节方法及锅跟比调节装置
CN108138355A (zh) * 2015-10-14 2018-06-08 信越半导体株式会社 单晶制造装置以及熔液面位置的控制方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4591409A (en) * 1984-05-03 1986-05-27 Texas Instruments Incorporated Control of nitrogen and/or oxygen in silicon via nitride oxide pressure during crystal growth
DE3712668A1 (de) * 1987-04-14 1988-10-27 Hans J Scheel Verfahren und vorrichtung zur zuechtung von kristallen nach der czochralski-methode
US5268063A (en) * 1990-04-27 1993-12-07 Sumitomo Sitix Co., Ltd. Method of manufacturing single-crystal silicon
US5980629A (en) * 1995-06-14 1999-11-09 Memc Electronic Materials, Inc. Methods for improving zero dislocation yield of single crystals
JP3528758B2 (ja) * 2000-05-31 2004-05-24 三菱住友シリコン株式会社 単結晶引き上げ装置
JP4753308B2 (ja) * 2006-07-13 2011-08-24 Sumco Techxiv株式会社 半導体ウェーハ素材の溶解方法及び半導体ウェーハの結晶育成方法
CN101148777B (zh) * 2007-07-19 2011-03-23 任丙彦 直拉法生长掺镓硅单晶的方法和装置
JP2010105914A (ja) * 2010-01-15 2010-05-13 Sumco Techxiv株式会社 結晶体の製造方法
CN103952759B (zh) * 2014-05-09 2016-05-25 淮安红相光电科技有限公司 加热体内置的坩埚下降法制备氟化钙晶体的方法及装置
JP2016121023A (ja) * 2014-12-24 2016-07-07 株式会社Sumco 単結晶の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101724891A (zh) * 2009-12-14 2010-06-09 晶龙实业集团有限公司 直拉硅单晶直径自动补偿方法
WO2011158425A1 (ja) * 2010-06-16 2011-12-22 信越半導体株式会社 遮熱部材下端面と原料融液面との間の距離の測定方法及び制御方法、並びにシリコン単結晶の製造方法
CN106687624A (zh) * 2014-09-24 2017-05-17 株式会社Sumco 单晶硅的制造方法及制造系统
CN108138355A (zh) * 2015-10-14 2018-06-08 信越半导体株式会社 单晶制造装置以及熔液面位置的控制方法
CN106048723A (zh) * 2016-08-01 2016-10-26 中国电子科技集团公司第四十六研究所 一种采用提拉法生长氧化镓晶体的固液界面控制方法
CN106906513A (zh) * 2017-04-07 2017-06-30 天通吉成机器技术有限公司 单晶炉的锅跟比调节方法及锅跟比调节装置

Also Published As

Publication number Publication date
CN111850681B (zh) 2021-09-07
US12000060B2 (en) 2024-06-04
TWI736169B (zh) 2021-08-11
TW202039946A (zh) 2020-11-01
US20220213614A1 (en) 2022-07-07
CN111850681A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
TW202016366A (zh) 一種晶體生長控制方法、裝置、系統及電腦儲存媒體
US9885122B2 (en) Method of manufacturing silicon single crystal
US20100101485A1 (en) Manufacturing method of silicon single crystal
JP7036217B2 (ja) シリコン単結晶の育成方法
TW202018132A (zh) 一種晶體生長控制方法、裝置、系統及電腦儲存媒體
TWI774174B (zh) 一種用於晶體生長的引晶方法
KR101385997B1 (ko) 단결정 제조장치 및 단결정 제조방법
JP4209325B2 (ja) 単結晶半導体の製造装置および製造方法
US10655242B2 (en) Growing apparatus and single-crystal ingot growing method using the same
US8236104B2 (en) Single-crystal manufacturing apparatus and single-crystal manufacturing method
CN114250508A (zh) 一种快速控制直拉单晶硅直径的方法
JP6863506B2 (ja) シリコン単結晶の製造方法
TW202225501A (zh) 拉晶方法和拉晶裝置
JP4457584B2 (ja) 単結晶の製造方法及び単結晶
WO2020220766A1 (zh) 一种半导体晶体生长方法和装置
JP2018177593A (ja) 単結晶の製造方法及び装置
TWI745974B (zh) 一種半導體晶體生長裝置
JP2010208894A (ja) シリコン単結晶の引き上げ方法
JP2018043904A (ja) シリコン単結晶の製造方法
JP7238709B2 (ja) シリコン単結晶の製造方法
JP5181171B2 (ja) 半導体単結晶製造方法
WO2022254885A1 (ja) シリコン単結晶の製造方法
KR20100071507A (ko) 실리콘 단결정 제조 장치, 제조 방법 및 실리콘 단결정의 산소 농도 조절 방법
WO2022102251A1 (ja) 単結晶の製造方法、磁場発生装置及び単結晶製造装置
JP2024018607A (ja) シリコン単結晶

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20799110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20799110

Country of ref document: EP

Kind code of ref document: A1