WO2020220572A1 - 水质硬度检测探头、传感器、检测方法及软水机 - Google Patents

水质硬度检测探头、传感器、检测方法及软水机 Download PDF

Info

Publication number
WO2020220572A1
WO2020220572A1 PCT/CN2019/107569 CN2019107569W WO2020220572A1 WO 2020220572 A1 WO2020220572 A1 WO 2020220572A1 CN 2019107569 W CN2019107569 W CN 2019107569W WO 2020220572 A1 WO2020220572 A1 WO 2020220572A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
water
potential difference
pipeline
hardness
Prior art date
Application number
PCT/CN2019/107569
Other languages
English (en)
French (fr)
Inventor
郭民
李国平
夏雪
Original Assignee
深圳安吉尔饮水产业集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳安吉尔饮水产业集团有限公司 filed Critical 深圳安吉尔饮水产业集团有限公司
Priority to US16/979,158 priority Critical patent/US11927584B2/en
Publication of WO2020220572A1 publication Critical patent/WO2020220572A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1853Hardness of water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • G01N27/07Construction of measuring vessels; Electrodes therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • G01N27/08Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid which is flowing continuously
    • G01N27/10Investigation or analysis specially adapted for controlling or monitoring operations or for signalling

Definitions

  • the invention belongs to the field of water quality detection, and in particular relates to a water quality hardness detection probe, sensor, detection method and water softener.
  • Water hardness refers to the concentration of calcium and magnesium ions in the water (converted to calcium carbonate), and high hardness water refers to water with a high content of calcium and magnesium ions in the water. High-hardness water scales during use, especially after heating (calcium carbonate precipitation, commonly known as scale).
  • the commonly used water hardness treatment equipment is a water softener.
  • Water softener is a water treatment equipment that uses ion exchange resin to exchange calcium and magnesium ions in water to reduce water hardness. After the resin filled in the water softener treats a certain amount of water, the calcium and magnesium ions on the resin will reach saturation. At this time, the resin needs to use salt water (sodium chloride) to reverse the calcium and magnesium ions. This process is called regeneration.
  • the current water softener products are not technically perfect.
  • the main performance is that the product cannot monitor and display the water hardness of the water softener in real time.
  • Consumers only operate the resin regeneration maintenance of the water softener based on the simple time reminder set at the factory or the experience and perception of the use of the water softener, which leads to unscientific, inconvenient and unreasonable use of the water softener, and also reduces the water softener’s Work efficiency.
  • Current water softeners have problems such as inconvenient use of products, low maintenance efficiency, and poor user experience due to technical defects.
  • the current water softener usually uses the initial hardness value of the raw water to be set, and the flowmeter assists in calculating the water production to estimate the resin life, which is used as a reference for the regeneration and maintenance of the water softener.
  • this method cannot objectively reflect the saturation state of calcium and magnesium ions on the ion exchange resin. Premature regeneration will cause waste of water resources and salt, and excessive salt discharge will also cause environmental problems. Delayed regeneration will cause excessive resin failure and high effluent water hardness.
  • the present invention proposes a new type of probe that can be used to detect water hardness, a sensor and a detection method, through the cooperation of two probes and other components, the water hardness can be displayed in real time.
  • the embodiment of the present invention provides a water hardness detection probe, the probe includes a substrate and a coating, the coating is located on the surface of the substrate, the substrate is made of metallic titanium, and the coating is made of ruthenium-iridium alloy or oxide Lead or tin oxide.
  • the probe includes a housing, and the housing is made of insulating material and is located outside the plating layer.
  • the probe is connected to the pipeline through a joint
  • the joint is a three-way structure
  • the first end and the second end of the joint are used to connect the pipeline
  • the probe Insert the third end of the connector, and the water in the connector contacts the probe.
  • the thickness of the plating layer is 0.1-200 nm.
  • the detection probe includes a first probe and a second probe, the first probe and the second probe are both in raw water, and the potential difference between the first probe and the second probe Is the first potential difference; the first probe is in raw water, the second probe is in softened water, and the potential difference between the first probe and the second probe is the second potential difference.
  • An embodiment of the present invention also provides a sensor with a detection probe according to the above, the sensor includes the water hardness detection probe and a control unit, the control unit includes a processing module and a potential detection module; the potential detection module determines the first A potential difference between a probe and a second probe; the processing module determines the water hardness of the softened water according to the difference between the first potential difference and the second potential difference.
  • the processing module determines the water hardness of the softened water according to the difference between the first electric potential difference and the second electric potential difference and the relationship between the difference and the water hardness.
  • obtaining the relational expression includes: obtaining a plurality of sets of the difference between the first potential difference and the second potential difference and the hardness of the softened water corresponding to the difference; and comparing the difference and the water quality The hardness is fitted to obtain the relational expression.
  • control unit further includes a pre-processing module, the electric potential detection module is connected to the pre-processing module, the pre-processing module is connected to the processing module;
  • the first potential difference and the second potential difference are pre-processed, and the pre-processing includes impedance transformation matching, linear amplification, level shift, and noise processing.
  • control unit further includes a regeneration module, the regeneration module is connected to the processing module, and the regeneration module is connected to the regeneration system of the water softener.
  • the senor further includes a display unit, and the display unit is connected to the control unit.
  • the senor includes a raw water pipeline, a softened water pipeline, and a merged pipeline.
  • the raw water pipeline and the softened water pipeline are respectively connected to the merged pipeline;
  • the raw water pipeline is provided with a first A valve, a first probe connected to the raw water pipeline is arranged between the first valve and the outlet of the raw water pipeline;
  • a second valve is arranged on the softened water pipeline;
  • the junction pipeline is arranged to communicate with the junction The second probe of the pipeline; the first valve and the second valve are respectively connected to the control unit.
  • the embodiment of the present invention also provides a method for detecting the hardness of water quality according to the above sensor, which is characterized in that it comprises: opening the first valve, closing the second valve, and passing raw water into the raw water pipeline; The first probe and the second probe are both in the raw water, and the potential difference between the first probe and the second probe is detected as the first potential difference; the second valve is opened, the first valve is closed, and the softened water pipeline Demineralized water is introduced, the first probe is in raw water, the second probe is in demineralized water, and the potential difference between the first probe and the second probe is detected as a second potential difference; the processing module is based on the first potential difference The difference between and the second potential difference determines the water hardness of the softened water.
  • the first electric potential difference and the second electric potential difference are pre-processed and then input to the processing module.
  • the pre-processing includes impedance transformation matching, linear amplification, level displacement, and noise processing.
  • control unit activates the regeneration system of the water softener through the regeneration module.
  • the water hardness of the softened water is displayed through a display unit.
  • the embodiment of the present invention also provides a water softener using the above sensor.
  • the raw water pipeline is connected to the raw water main pipeline of the water softener
  • the softened water pipeline is connected to the softened water main pipeline of the water softener
  • the merged pipeline is connected to the sewage outlet of the water softener.
  • the water hardness detection probe of the present invention can accurately detect the monovalent ions in the water; the potentials formed by the ions in the water on the two probes are different, so that there is a certain potential difference between the two probes, and one of the probes alternates In raw water and softened water, the potential difference between the two probes changes accordingly.
  • the sensor can calculate the hardness of the soft water according to the change in the potential difference; real-time monitoring of the water hardness of the water softener is realized. Due to the detection probe, sensor and detection method of the present invention, the water softener can overcome the test error caused by the drift of the detection probe when detecting the water hardness, especially eliminate the difference between different detection probes of the same model, and overcome the water hardness. The deposition of different substances in the detection probe and the influence of air bubbles in the water will interfere with the detection results, and at the same time eliminate errors caused by different detector probes and drift.
  • Figure 1 is a schematic diagram of the water hardness detection probe of the present invention.
  • Figure 2 is a schematic diagram of the connection joint of the water hardness detection probe of the present invention.
  • Fig. 3 is a schematic diagram of the water softener of the present invention.
  • Figure 4 is a schematic diagram of the sensor of the present invention.
  • Fig. 5 is a schematic diagram of the control unit of the present invention.
  • Fig. 6 is a schematic diagram of the pre-processing module of the present invention.
  • Fig. 7 is a schematic diagram of the regeneration process of the present invention.
  • Fig. 8 is a schematic diagram of the change of the treated water volume and the difference signal value of the water softener.
  • connection mentioned in the present invention should be understood in a broad sense, unless it is clearly stipulated or limited otherwise. It may be directly connected or connected through an intermediary. In the description of the present invention, it needs to be understood that the directions or positions indicated by “up”, “down”, “front”, “rear”, “left”, “right”, “top”, “bottom”, etc. The relationship is based on the orientation or position relationship shown in the drawings, which is only for the convenience of describing the present invention and simplifying the description, and does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, therefore It cannot be understood as a limitation to the present invention.
  • the water hardness detection probe 100 of this embodiment includes a base 101 and a plating layer 102.
  • the material of the base 101 is metallic titanium
  • the plating layer 102 is located on the surface of the base 101
  • the material of the plating layer 102 can be ruthenium-iridium alloy or lead oxide or tin oxide. Existing materials can be used for ruthenium-iridium alloy or lead oxide or tin oxide.
  • the thickness of the plating layer 102 is 0.1 to 200 nm, and preferably, the thickness of the plating layer 102 is 1 to 100 nm.
  • the probe 100 may further include a housing 103, and the housing 103 may be made of insulating material and located outside the plating layer 102.
  • the probe 100 includes a detection terminal and a terminal, and the terminal can be connected to a wire.
  • the probe 100 of this embodiment is easy to detect monovalent and divalent ions in water.
  • the monovalent ions are mainly K and Na ions
  • the divalent ions are mainly Ca and Mg ions.
  • the probe 100 is fast and sensitive to electric potential signals. , In the water softener, the hardness of the softened water can be reflected by calculation.
  • the shape of the probe 100 may be cylindrical, square column or needle, and the present invention does not limit the shape of the probe 100.
  • the size of the probe 100 is determined according to specific conditions. Taking the probe 100 as a cylinder as an example, the diameter of the detection end of the probe 100 is 5 mm.
  • the probe 100 can be connected to the pipeline through the connector 200.
  • the connector 200 is a three-way structure.
  • the first end 201 and the second end 202 are used to connect the pipeline, so that the water in the pipeline can pass through the connector 200.
  • the detection end of the probe 100 is inserted into the third end 203, and the connector 200 The water is in contact with the probe 100.
  • this embodiment provides a sensor 300, which uses the above-mentioned detection probe to detect water hardness.
  • the detection probe includes a first probe 312 and a second probe 331.
  • the first probe 312 and the second probe 331 are probes of the same model.
  • the first probe 312 and the second probe 331 are both in water, the first probe 312 and the second probe 331 A potential difference is formed between the probes 331. Even if the first probe 312 and the second probe 331 are located in the same water, since the first probe 312 and the second probe 331 are not exactly the same, a slight potential difference will be formed between the first probe 312 and the second probe 331.
  • the sensor 300 is applied to the water softener, the first probe 312 and the second probe 331 are both in raw water, and the potential difference between the first probe 312 and the second probe 331 is the first potential difference; the first probe 312 is in raw water, and the second probe 331 In softened water, the potential difference between the first probe and the second probe is the second potential difference.
  • the sensor 300 further includes a control unit 400. As shown in FIG. 5, the control unit 400 includes a potential detection module 401 and a processing module 402.
  • the first probe 312 and the second probe 331 are connected to the potential detection module 401, the potential difference between the first probe 312 and the second probe 331 is detected by the potential detection module 401, and the control unit 400 determines the first potential difference and the second potential difference through the potential detection module 401 .
  • the processing module 402 may include an MCU to perform arithmetic processing on data.
  • the processing module 402 determines the water hardness of the softened water according to the difference between the first electric potential difference and the second electric potential difference.
  • the sensor 300 includes a raw water pipeline 310, a softened water pipeline 320, and a merged pipeline 330.
  • the raw water pipeline 310 and the softened water pipeline 320 are respectively connected to the merge pipeline 330, and the raw water passing through the raw water pipeline 310 and the softened water passing through the softened water pipeline 320 both flow through the merge pipeline 330.
  • Both the raw water pipeline 310 and the softened water pipeline 320 are equipped with solenoid valves for opening or stopping the passage of water flow, which can effectively control the opening and closing of the pipeline to avoid liquid backflow and affect the accuracy of the test.
  • the control unit 400 controls the operation of the sensor 300.
  • the arrows in Figures 3 and 4 represent the direction of water flow.
  • the raw water pipeline 310 is provided with a first valve 311, and the first valve 311 can open or stop the flow of raw water through the raw water pipeline 310.
  • a second valve 321 is provided on the softened water pipeline 320, and the second valve 321 can open or stop the flow of softened water through the softened water pipeline 320.
  • the first valve 311 and the second valve 321 are respectively connected to the control unit 400, and the control unit 400 controls the opening or closing of the first valve 311 and the second valve 321.
  • a first probe 312 is provided on the raw water pipeline 310, and the first probe 312 is located between the first valve 311 and the outlet of the raw water pipeline 310.
  • the first probe 312 can be connected to the raw water pipeline 310 through the joint 200 so that the first probe 312 is connected to the raw water pipeline 310, that is, the first probe 312 can contact the water in the raw water pipeline 310.
  • a second probe 331 is provided on the merging pipeline 330, and the second probe 331 can be connected to the merging pipeline 330 through the joint 200, so that the second probe 331 is connected to the merging pipeline 330, that is, the second probe 331 can contact the merging pipeline 330. water.
  • the raw water (untreated water) of the water softener can flow into the merged pipeline 330 through the raw water pipeline 310.
  • the first probe 312 and the second probe 331 are both in raw water, and the potential difference between the first probe 312 and the second probe 331 is regarded as the first potential difference.
  • the softened water processed by the water softener flows into the merged pipeline 330 through the softened water pipeline 320.
  • the first probe 312 is in raw water
  • the second probe 331 is in softened water
  • the potential difference between the first probe 312 and the second probe 331 is taken as the second potential difference.
  • the first probe 312 is always in raw water
  • the second probe 331 is first in raw water and then in softened water.
  • the environment in which the second probe 331 is located is a variable, which makes the first potential difference and the second potential difference appear different.
  • the variation of the first electric potential difference and the second electric potential difference can reflect the hardness of the softened water.
  • the control unit 400 determines the water hardness of the softened water according to the first electric potential difference and the second electric potential difference.
  • the two detection probes are first located in the same water environment, and then the water environment where the second probe is located is changed, which can eliminate the error of the detection result caused by the manufacturing difference and drift of the first probe and the second probe, and make the detection structure more accurate.
  • the above-mentioned sensor 300 is connected to the pipeline of the water softener.
  • the raw water pipeline 310 is connected to the raw water main line 501 of the water softener
  • the softened water pipeline 320 is connected to the softened water main line 502 of the water softener
  • the merged pipeline 330 is connected to the sewage outlet 503 of the water softener.
  • the water in the merging pipeline 330 is discharged from the sewage outlet 503.
  • the processing module 402 stores the relationship between the difference and the water hardness.
  • determining the relationship between the difference and the water hardness first, collect a large number of differences and the water hardness of the softened water corresponding to the difference, and fit the two to determine the above relationship. After the processing module 402 obtains the difference, it determines the hardness of the softened water according to the relational expression.
  • control unit 400 further includes a pre-processing module 403, the electric potential detection module 401 is connected to the pre-processing module 403, and the pre-processing module 403 is connected to the processing module 402.
  • the pre-processing module 403 performs pre-processing on the potential difference signals of the first probe 312 and the second probe 331 collected by the potential detection module 401, and the processed signal is sent to the processing module 402 for calculation.
  • the pre-processing module 403 includes an impedance transformation matching sub-module, a linear amplification sub-module, a level shift sub-module, and a noise processing sub-module.
  • the pre-processing of the pre-processing module 403 includes impedance transformation matching, linear amplification, level shift, and noise processing, and the signal processing can be performed sequentially.
  • the parameters of the above sub-modules can be set according to actual conditions. For example, the impedance transformation matching parameter is 10 ⁇ , the linear amplification factor is 10 to 30 times, the level shift parameter is 1.5V, the noise processing is low-pass filtering, and the cutoff frequency is 1000 Hz.
  • control unit 400 further includes a regeneration module 404, the regeneration module 404 is connected to the processing module 402, and the regeneration module 404 is connected to the regeneration system 600 of the water softener.
  • the start signal is sent to the regeneration module 404, and the regeneration module 404 controls the regeneration system 600 to start to regenerate and maintain the ion exchange resin in the water softener .
  • the workflow of the regeneration system 600 includes:
  • the sensor of this embodiment may further include a display unit (not shown in the figure).
  • the display unit is connected to the control unit 400 and can display the water hardness of the softened water and the working status of the sensor in real time.
  • the display unit may be a display of the water softener.
  • This embodiment also provides a method for detecting water hardness by using the above-mentioned sensor, and the specific process is as follows:
  • the control unit 400 obtains the first electric potential difference and the second electric potential difference, and the processing module determines the hardness of the softened water according to the difference between the first electric potential difference and the second electric potential difference.
  • the difference between the first probe 312 and the second probe 331 and the influence of the environment may cause errors in the test results.
  • the two probe phases are kept in the same water environment, and the two probe phases are detected in different water environments for the second time.
  • the second potential difference minus the first potential difference can eliminate the test caused by manufacturing and detection probe drift. error.
  • the first electric potential difference and the second electric potential difference are detected by the electric potential detection module 401 of the control unit.
  • the processing module 402 determines the water hardness of the softened water according to the difference between the first electric potential difference and the second electric potential difference and the relationship between the difference and the water hardness.
  • the first potential difference obtained by the initial test is 10mV
  • the second potential difference obtained by the second test is 30mV
  • the difference between the two is 20mV
  • the water hardness of the softened water can be calculated to be 110ppm.
  • the first electric potential difference and the second electric potential difference signal are sent to the processing module to perform AD conversion by a 12-bit analog-to-digital converter, and then the difference between the first electric potential difference and the second electric potential difference is taken, and then the function processing is performed according to the relational expression, Obtain the water hardness value of the water softener.
  • y A ⁇ (-2.4395x 3 +5.3328x 2 -3.9047x+1), where A is the raw water hardness value, and x is the ratio of the difference signal value to the reference value (x is between 0 and 1), The reference value is proportional to the hardness of the raw water, and y is the hardness of the softened water.
  • Reference value 8A/3, preferably, the value range of the reference value is 500-1000.
  • the raw water hardness value A can be obtained by actual measurement.
  • the current effluent water hardness can be calculated to be 198ppm, which is only 4.5% from the 190ppm measurement result of the atomic absorption spectrometry ICP instrument;
  • the current effluent water hardness can be obtained as 124ppm, which is only 4.8% in error with the 118ppm measured by the atomic absorption spectrometry ICP instrument;
  • the current water hardness can be calculated to be 23ppm, which is only 4.3% error from the 24ppm measurement result of the atomic absorption spectrometry ICP instrument;
  • the actual measured water softener processing water volume and the change of the difference signal value conforms to the change of the working state of the softened resin.
  • the initial treatment efficiency of the resin is the highest, and the difference signal value is high and stable; after a certain amount of water is processed, an inflection point appears, indicating that the performance of the resin begins to decline.
  • the hardness value of the softened water will continue to increase, and the trend is The faster it comes, the decrease of the difference signal value; when the resin reaches the saturation state, the difference signal value tends to stabilize and reach the lowest limit.
  • the first electric potential difference and the second electric potential difference are pre-processed by the pre-processing module and then input to the processing module.
  • the pre-processing includes impedance transformation matching, linear amplification, level shift, and noise processing.
  • the pre-processed signal is sent to the processing module for 12-bit analog-to-digital converter for AD conversion, and then the difference between the first electric potential difference and the second electric potential difference is taken, and then the function is processed according to the relational expression to obtain the water softener water hardness value.
  • the control unit starts the regeneration system 600 of the water softener through the regeneration module 404.
  • the regeneration system 600 regenerates and maintains the ion exchange resin in the water softener.
  • the water hardness obtained by the processing module can be sent to the display unit, and the real-time water hardness of the softened water is displayed through the display unit.
  • the sensor of this embodiment can set the initial detection time, the second detection time, and the interval time for starting the detection program according to the stable performance of the probe and the working environment.
  • the initial detection time and the second detection time can be set to a value between 10s and 60s, and the initial detection process and the second detection process form a complete test cycle.
  • the test cycle is started at intervals for continuous running detection.
  • the interval time can be set according to requirements.
  • the sensor of this embodiment realizes that the pipeline flushing of the sensor is completed synchronously every time the measurement is started, and the factors that cause errors are automatically eliminated, which simplifies the application of equipment and components. There is no need to set a standard electrode as a reference, and it also avoids the previous The test affects the current test result.
  • the detection probe includes a first probe 312 and a second probe 331.
  • the first probe 312 and the second probe 331 are probes of the same model.
  • the first probe 312 and the second probe 331 are both in water, the first probe 312 and the second probe 331 A potential difference is formed between the probes 331. Even if the first probe 312 and the second probe 331 are located in the same water, since the first probe 312 and the second probe 331 are not exactly the same, a weak potential difference will be formed between the first probe 312 and the second probe 331.
  • the detection system is applied to the water softener, the first probe 312 and the second probe 331 are both in raw water, and the potential difference between the first probe 312 and the second probe 331 is the first potential difference; the first probe 312 is in raw water, and the second probe 331 In softened water, the potential difference between the first probe and the second probe is the second potential difference.
  • the detection system further includes a control unit 400.
  • the control unit 400 includes a potential detection module 401 and a processing module 402.
  • the first probe 312 and the second probe 331 are connected to the potential detection module 401, the potential difference between the first probe 312 and the second probe 331 is detected by the potential detection module 401, and the control unit 400 determines the first potential difference and the second potential difference through the potential detection module 401 .
  • the processing module 402 may include an MCU to perform arithmetic processing on data.
  • the processing module 402 determines the water hardness of the softened water according to the difference between the first electric potential difference and the second electric potential difference.
  • the system includes a raw water pipeline 310, a softened water pipeline 320, and a merge pipeline 330.
  • the raw water pipeline 310 and the softened water pipeline 320 are respectively connected to the merge pipeline 330, and the raw water passing through the raw water pipeline 310 and the softened water passing through the softened water pipeline 320 both flow through the merge pipeline 330.
  • Both the raw water pipeline 310 and the softened water pipeline 320 are equipped with solenoid valves for opening or stopping the passage of water, which can effectively control the pipeline switch to avoid liquid backflow and affect the accuracy of the test.
  • the control unit 400 controls the operation of the water hardness detection system.
  • the raw water pipeline 310 is provided with a first valve 311, and the first valve 311 can open or stop the flow of raw water through the raw water pipeline 310.
  • a second valve 321 is provided on the softened water pipeline 320, and the second valve 321 can open or stop the flow of softened water through the softened water pipeline 320.
  • the first valve 311 and the second valve 321 are respectively connected to the control unit 400, and the control unit 400 controls the opening or closing of the first valve 311 and the second valve 321.
  • a first probe 312 is provided on the raw water pipeline 310, and the first probe 312 is located between the first valve 311 and the outlet of the raw water pipeline 310.
  • the first probe 312 can be connected to the raw water pipeline 310 through the joint 200, so that the first probe 312 is connected to the raw water pipeline 310, that is, the first probe 312 can contact the water in the raw water pipeline 310.
  • a second probe 331 is provided on the merging pipeline 330, and the second probe 331 can be connected to the merging pipeline 330 through the joint 200, so that the second probe 331 is connected to the merging pipeline 330, that is, the second probe 331 can contact with water.
  • the raw water (untreated water) of the water softener can flow into the merged pipeline 330 through the raw water pipeline 310.
  • the first probe 312 and the second probe 331 are both in raw water, and the potential difference between the first probe 312 and the second probe 331 is regarded as the first potential difference.
  • the softened water processed by the water softener flows into the merged pipeline 330 through the softened water pipeline 320.
  • the first probe 312 is in raw water
  • the second probe 331 is in softened water
  • the potential difference between the first probe 312 and the second probe 331 is taken as the second potential difference.
  • the first probe 312 is always in raw water
  • the second probe 331 is first in raw water and then in softened water.
  • the environment in which the second probe 331 is located is a variable, which makes the first potential difference and the second potential difference appear different.
  • the variation of the first electric potential difference and the second electric potential difference can reflect the hardness of the softened water.
  • the control unit 400 determines the water hardness of the softened water according to the first electric potential difference and the second electric potential difference.
  • the two detection probes are first located in the same water environment, and then the water environment where the second probe is located is changed, which can eliminate the error of the detection result caused by the manufacturing difference and drift of the first probe and the second probe, and make the detection structure more accurate.
  • the above-mentioned water hardness detection system is connected to the pipeline of the water softener.
  • the raw water pipeline 310 is connected to the raw water main line 501 of the water softener
  • the softened water pipeline 320 is connected to the softened water main line 502 of the water softener
  • the merged pipeline 330 is connected to the sewage outlet 503 of the water softener.
  • the water in the merging pipeline 330 is discharged from the sewage outlet 503.
  • the processing module 402 stores the relationship between the difference and the water hardness.
  • determining the relationship between the difference and the water hardness first, collect a large number of differences and the water hardness of the softened water corresponding to the difference, and fit the two to determine the above relationship. After the processing module 402 obtains the difference, it determines the water hardness of the softened water according to the relational expression.
  • control unit 400 further includes a pre-processing module 403, the electric potential detection module 401 is connected to the pre-processing module 403, and the pre-processing module 403 is connected to the processing module 402.
  • the pre-processing module 403 performs pre-processing on the potential difference signals of the first probe 312 and the second probe 331 collected by the potential detection module 401, and the processed signal is sent to the processing module 402 for calculation.
  • the pre-processing module 403 includes an impedance transformation matching sub-module, a linear amplification sub-module, a level shift sub-module, and a noise processing sub-module.
  • the pre-processing of the pre-processing module 403 includes impedance transformation matching, linear amplification, level shift, and noise processing, and the signal processing can be performed sequentially.
  • the parameters of the above sub-modules can be set according to actual conditions. For example, the impedance transformation matching parameter is 10 ⁇ , the linear amplification factor is 10 to 30 times, the level shift parameter is 1.5V, the noise processing is low-pass filtering, and the cutoff frequency is 1000 Hz.
  • control unit 400 further includes a regeneration module 404, the regeneration module 404 is connected to the processing module 402, and the regeneration module 404 is connected to the regeneration system 600 of the water softener.
  • the start signal is sent to the regeneration module 404, and the regeneration module 404 controls the regeneration system 600 to start to regenerate and maintain the ion exchange resin in the water softener .
  • the water hardness detection system of this embodiment may further include a display unit (not shown in the figure).
  • the display unit is connected to the control unit 400 and can display the water hardness of the softened water and the working status of the detection system in real time.
  • the display unit may be a display of the water softener.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

一种水质硬度检测探头(100)、传感器(300)、检测方法及软水机。传感器(300)包括控制单元(400),控制单元(400)包括处理模块(402)和电势检测模块(401);检测探头(100)包括第一探头(312)和第二探头(331),第一探头(312)和第二探头(331)均处于原水中,第一探头(312)和第二探头(331)的电势差为第一电势差;第一探头(312)处于原水中,第二探头(331)处于软化水中,第一探头(312)和第二探头(331)的电势差为第二电势差;电势检测模块(401)确定第一探头(312)与第二探头(331)的电势差;处理模块(402)根据第一电势差和第二电势差之间的差值确定软化水的水质硬度。传感器(300)可实时检测软水机的水质硬度,并消除因制造以及检测探头(100)因漂移产生的测试误差。

Description

水质硬度检测探头、传感器、检测方法及软水机 技术领域
本发明属于水质检测领域,尤其涉及一种水质硬度检测探头、传感器、检测方法及软水机。
背景技术
水质硬度是指水中钙镁离子浓度(折算成碳酸钙)含量,高硬度水质是指水中钙镁离子含量较高的水。高硬度水在使用过程中,尤其是在加热后结垢(碳酸钙沉淀,俗称水垢)。常用的水质硬度处理设备是软水机。软水机是利用离子交换树脂来交换水中钙、镁离子,达到降低水质硬度的水处理设备。软水机中装填的树脂在处理一定的水量后,树脂上的钙镁离子将达到饱和,此时树脂就需要用食盐水(氯化钠)把钙镁离子逆向交换下来,此过程称为再生。
目前的软水机产品技术上还不完善。主要表现为产品无法实时监控并显示软水机出水水质硬度。消费者只是根据出厂设置的简易时间提醒或软水机使用的体验感觉感知来操作软水机树脂的再生维护,从而导致软水机的不科学、不便利、不合理的使用,同时也降低了软水机的工作效率。目前的软水机由于技术缺陷导致产品使用不方便、维护效率低,用户体验效果不佳等问题。
目前的软水机,通常采用设置原水初始硬度值,通过流量计辅助计算产水量来估算树脂寿命,作为软水机的再生启动与维护的参考。但是由于用户地域不同水质差异较大,此方法不能客观反映离子交换树脂上钙镁离子的饱和状态。过早再生将造成水资源和盐的浪费,过量盐排放也会带来环保问题。延迟再生就出现树脂过度失效,出水水质硬度高。
通过仪器检测水质硬度时,不同的仪器之间检测结果会有较大的偏差,最大原因是由于检测探头因漂移产生的测试误差,以及相同型号的 不同检测探头之间存在的差异,差异可能是细微的,但会影响检测的结果。漂移产生的主要原因:水中的物质在检测探头的沉积及水中气泡的影响等也会对检测结果造成干扰。如何消除不同检测器探头及漂移产生的误差,是本领域一直未解决的问题。
发明内容
本发明提出一种新型的探头可用于检测水质硬度,传感器及检测方法,通过两个探头及其它元件的配合,可实时显示水质硬度。
本发明实施例提供一种水质硬度检测探头,所述探头包括基体和镀层,所述镀层位于所述基体的表面,所述基体的材质为金属钛,所述镀层的材质为钌铱合金或氧化铅或氧化锡。
如本发明的一实施方式,所述探头包括外壳,所述外壳为绝缘材质,位于所述镀层的外侧。
如本发明的一实施方式,所述探头通过接头接入到管路中,所述接头为三通状的结构,所述接头的第一端和第二端用于连接管路,所述探头插入接头的第三端,所述接头内的水与所述探头接触。
如本发明的一实施方式,所述镀层的厚度为0.1~200nm。
如本发明的一实施方式,所述检测探头包括第一探头和第二探头,所述第一探头和所述第二探头均处于原水中,所述第一探头和所述第二探头的电势差为第一电势差;所述第一探头处于原水中,所述第二探头处于软化水中,所述第一探头和所述第二探头的电势差为第二电势差。
本发明的实施例还提供一种具有根据上述检测探头的传感器,所述传感器包括所述水质硬度检测探头和控制单元,所述控制单元包括处理模块和电势检测模块;所述电势检测模块确定第一探头与第二探头的电势差;所述处理模块根据所述第一电势差和第二电势差之间的差值确定所述软化水的水质硬度。
如本发明的一实施方式,所述处理模块根据所述第一电势差和所述第二电势差之间的差值及所述差值和水质硬度的关系式确定所述软化 水的水质硬度。
如本发明的一实施方式,获得所述关系式包括:获得多组所述第一电势差和第二电势差之间的差值及差值对应的软化水的水质硬度;对所述差值及水质硬度进行拟合,获得所述关系式。
如本发明的一实施方式,所述控制单元还包括前处理模块,所述电势检测模块连接所述前处理模块,所述前处理模块连接所述处理模块;所述前处理模块对所述第一电势差和第二电势差进行前处理,所述前处理包括阻抗变换匹配、线性放大、电平位移、噪声处理。
如本发明的一实施方式,所述控制单元还包括再生模块,所述再生模块连接所述处理模块,所述再生模块连接软水机的再生系统。
如本发明的一实施方式,传感器还包括显示单元,所述显示单元连接所述控制单元。
如本发明的一实施方式,所述传感器包括原水管路、软化水管路、汇合管路,所述原水管路、软化水管路分别连通所述汇合管路;所述原水管路上设有第一阀门,所述第一阀门与所述原水管路的出口之间设置连通所述原水管路的第一探头;所述软化水管路上设有第二阀门;所述汇合管路上设置连通所述汇合管路的第二探头;所述第一阀门和第二阀门分别连接所述控制单元。
本发明的实施例还提供一种根据上述传感器的检测水质硬度的方法,其特征在于,包括:打开所述第一阀门,关闭所述第二阀门,向所述原水管路通入原水,所述第一探头和第二探头均处于原水中,检测所述第一探头和第二探头的电势差作为第一电势差;打开所述第二阀门,关闭所述第一阀门,向所述软化水管路通入软化水,所述第一探头处于原水中,所述第二探头处于软化水中,检测所述第一探头和第二探头的电势差作为第二电势差;所述处理模块根据所述第一电势差和第二电势差之间的差值确定所述软化水的水质硬度。
如本发明的一实施方式,对所述第一电势差和第二电势差进行前处理后输入所述处理模块,所述前处理包括阻抗变换匹配、线性放大、电 平位移、噪声处理。
如本发明的一实施方式,若所述水质硬度达到预设值,所述控制单元通过再生模块启动软水机的再生系统。
如本发明的一实施方式,通过显示单元显示所述软化水的水质硬度。
本发明的实施例还一种应用上述传感器的软水机。
上述的软水机中,原水管路连接所述软水机的原水主管路,软化水管路连接所述软水机的软化水主管路,汇合管路连接所述软水机的排污口。
本发明的水质硬度检测探头,可准确检测出水中的一二价离子;水中的离子在两个探头上所形成的电势有一定的差异,使得两探头之间有一定的电势差,其中一个探头交替处于原水和软化水中,两个探头之间的电势差因此而改变,传感器根据电势差的变化可计算出软水的水质硬度;实现了软水机出水硬度的实时监测。由于采用本发明的检测探头、传感器及检测方法,软水机在检测水质硬度时,能够克服由于检测探头因漂移产生的测试误差,特别是消除相同型号的不同检测探头之间存在的差异,克服水中的物质在检测探头的沉积及水中气泡的影响会对检测结果造成干扰,同时消除掉不同检测器探头及漂移产生的误差。
附图说明
图1是本发明的水质硬度检测探头的示意图。
图2是本发明的水质硬度检测探头连接接头的示意图。
图3是本发明的软水机的示意图。
图4是本发明的传感器的示意图。
图5是本发明的控制单元的示意图。
图6是本发明的前处理模块的示意图。
图7是本发明的再生流程的示意图。
图8是软水机的处理水量与差值信号值的变化示意图。
具体实施方式
以下结合附图和实施例,对本发明的具体实施方式进行更加详细的说明,以便能够更好地理解本发明的方案及其各个方面的优点。然而,以下描述的具体实施方式和实施例仅是说明的目的,而不是对本发明的限制。
本发明中所述的“连接”,除非另有明确的规定或限定,应作广义理解,可以是直接相连,也可以是通过中间媒介相连。在本发明的描述中,需要理解的是,“上”、“下”、“前”、“后”、“左”、“右”、“顶端”、“底端”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
如图1所示,本实施例的水质硬度检测探头100包括基体101和镀层102。基体101的材质为金属钛,镀层102位于基体101的表面,镀层102的材质可以为钌铱合金或氧化铅或氧化锡。钌铱合金或氧化铅或氧化锡均使用已有的材质即可。镀层102的厚度为0.1~200nm,优选的,镀层102的厚度为1~100nm。
探头100还可包括外壳103,外壳103可为绝缘材质,位于镀层102的外侧。探头100包括检测端和接线端,接线端可连接导线。本实施例的探头100易于检测出水中的一、二价离子,其中,一价离子主要为K、Na离子,二价离子主要在Ca、Mg离子,探头100对电势信号的反映即快又灵敏,在软水机中,通过计算可反映出软化水的水质硬度。
探头100的形状可以为圆柱形、方柱形或针型,本发明不对探头100的形状进行限制。探头100的尺寸根据具体情况确定,以探头100为圆柱形为例,探头100的检测端的直径为5mm。
如图2所示,探头100可通过接头200接入到管路中。接头200为类似三通的结构,其第一端201和第二端202用于连接管路,使得管路中的水可以通过接头200,探头100的检测端插入第三端203,接头200内的水与探头100接触。
如图3和图4所示,本实施例提供一种传感器300,传感器300利用上述的检测探头进行水质硬度检测。检测探头包括第一探头312和第二探头331,第一探头312和第二探头331为相同型号的探头,当第一探头312和第二探头331均处于水中时,第一探头312和第二探头331之间会形成电势差。即使第一探头312和第二探头331位于相同的水中,由于第一探头312和第二探头331并非完全相同,第一探头312和第二探头331之间也会形成微弱的电势差。
将传感器300应用到软水机上,第一探头312和第二探头331均处于原水中,第一探头312和第二探头331的电势差为第一电势差;第一探头312处于原水中,第二探头331处于软化水中,第一探头和第二探头的电势差为第二电势差。
传感器300还包括控制单元400,如图5所示,控制单元400包括电势检测模块401和处理模块402。
第一探头312和第二探头331连接电势检测模块401,第一探头312与第二探头331的电势差通过电势检测模块401进行检测,控制单元400通过电势检测模块401确定第一电势差和第二电势差。
本实施例中处理模块402可包括MCU,对数据进行运算处理。处理模块402根据第一电势差和第二电势差之间的差值确定软化水的水质硬度。
可选地,传感器300包括原水管路310、软化水管路320、汇合管路330。原水管路310、软化水管路320分别连通汇合管路330,经过原水管路310的原水和经过软化水管路320的软化水均会流经汇合管路330。在原水管路310、软化水管路320上均设有电磁阀,用于开启或停止水流的通过,可以有效控制管路开关,避免液体倒流,影响测试的 精度。控制单元400控制传感器300的运行。图3和图4中箭头代表了水流的方向。
原水管路310上设有第一阀门311,第一阀门311可开启或停止原水流过原水管路310。软化水管路320上设有第二阀门321,第二阀门321可开启或停止软化水流过软化水管路320。第一阀门311和第二阀门321分别连接控制单元400,控制单元400控制第一阀门311和第二阀门321的开启或关闭。
原水管路310上设置第一探头312,第一探头312位于第一阀门311与原水管路310的出口之间。第一探头312可通过接头200接入原水管路310,使得第一探头312连通原水管路310,即第一探头312可接触原水管路310中的水。
汇合管路330上设置第二探头331,第二探头331可通过接头200接入汇合管路330,使得第二探头331连通汇合管路330,即第二探头331可接触汇合管路330中的水。
当第一阀门311开启,第二阀门321关闭时,软水机的原水(未经处理的水)可经原水管路310流入汇合管路330。此时,第一探头312和第二探头331均处于原水中,第一探头312和第二探头331的电势差作为第一电势差。
当第一阀门311关闭,第二阀门321开启时,软水机经过处理的软化水经软化水管路320流入汇合管路330。此时,第一探头312处于原水中,第二探头331处于软化水中,第一探头312和第二探头331的电势差作为第二电势差。
上述过程中,第一探头312一直处于原水中,第二探头331先处于原水中,后处于软化水中,第二探头331所处的环境为一个变量,使得第一电势差和第二电势差出现不同,第一电势差和第二电势差的变化量可反映软化水的水质硬度。控制单元400根据第一电势差和第二电势差确定软化水的水质硬度。
传统的检测探头之间的差异及环境的影响,会导致检测结果产生较 大误差。本申请将两个检测探头首先位于同样的水环境,之后改变第二探头所处的水环境,可以消除第一探头与第二探头制造差异和漂移引起检测结果的误差,使得检测结构更精准。
如图3所示,软水机中,上述传感器300与软水机的管路相连。原水管路310连接软水机的原水主管路501,软化水管路320连接软水机的软化水主管路502,汇合管路330连接软水机的排污口503。汇合管路330中的水由排污口503排出。
可选地,处理模块402存储有上述差值和水质硬度的关系式。在确定差值和水质硬度的关系式时,首先,采集大量的差值及差值对应的软化水的水质硬度,对二者进行拟合,确定上述关系式。处理模块402获得差值后,根据关系式确定软化水的水质硬度。
作为一种优选的方案,控制单元400还包括前处理模块403,电势检测模块401连接前处理模块403,前处理模块403连接处理模块402。前处理模块403对电势检测模块401采集的第一探头312和第二探头331的电势差信号进行前处理,处理后的信号发送给处理模块402进行计算。
如图6所示,前处理模块403包括阻抗变换匹配子模块、线性放大子模块、电平位移子模块、噪声处理子模块。前处理模块403的前处理包括阻抗变换匹配、线性放大、电平位移、噪声处理,对信号的处理可依次进行。上述各子模块的参数,可根据实际情况设置。如阻抗变换匹配的参数为10Ω,线性放大的倍数为10~30倍,电平位移的参数为1.5V、噪声处理为低通滤波,截止频率为1000Hz。
可选地,控制单元400还包括再生模块404,再生模块404连接处理模块402,再生模块404连接软水机的再生系统600。处理模块402获得的软化水的水质硬度达到预设值(如120ppm)时,将启动信号发送给再生模块404,再生模块404控制再生系统600启动,对软水机内的离子交换树脂进行再生和维护。
如图7所示,再生系统600的工作流程包括:
A、反冲洗,水由软化水出口进入软水机,对树脂进行反冲洗,废水由排污口排出。
B、吸盐慢洗,由软化水主管路吸入盐水,对树脂进行清洗。
C、正冲洗,水由原水进口进入软水机,清洗树脂及管路中的盐水。
D、补水,对再生系统600的盐水进行补充。
本实施例的传感器还可包括显示单元(图中未示出),显示单元连接控制单元400,可实时显示软化水的水质硬度及传感器的工作状态。显示单元可以为软水机的显示器。
本实施例还提供一种利用上述传感器检测水质硬度的方法,具体流程为:
1、初始检测,打开第一阀门311,关闭第二阀门321,向原水管路310通入原水,原水流经汇合管路330后由排污口503排出。第一探头312和第二探头331均处于原水中,检测第一探头和第二探头的电势差作为第一电势差。
2、二次检测,打开第二阀门321,关闭第一阀门311,向软化水管路320通入软化水,软化水流经汇合管路330后由排污口503排出。第一探头312处于原水中,第二探头331处于软化水中,检测第一探头和第二探头的电势差作为第二电势差。
3、控制单元400获得第一电势差和第二电势差,处理模块根据第一电势差和第二电势差之间的差值确定软化水的水质硬度。
第一探头312和第二探头331之间的差异及环境的影响,会导致测试结果产生误差。通过初始检测过程,保持两个探头相处于同样的水环境,二次检测两个探头相处于不同的水环境,第二电势差减去第一电势差,可消除因制造以及检测探头因漂移产生的测试误差。
上述的步骤1和步骤2中,通过控制单元的电势检测模块401检测第一电势差和第二电势差。处理模块402根据第一电势差和第二电势差之间的差值及差值和水质硬度的关系式确定软化水的水质硬度。
如初始检测获得的第一电势差为10mV,二次检测获得的第二电势差为30mV,两者的差值为20mV,根据关系式可计算得出软化水的水质硬度为110ppm。
可选地,第一电势差和第二电势差信号送入处理模块后进行12位模数转换器进行AD转换,然后对第一电势差和第二电势差进行取差值,之后依据关系式进行函数处理,得到软水机出水硬度值。
上述的关系式可通过对大数据的处理获得,具体为:
获得大量的第一电势差和第二电势差之间的差值及差值对应的软化水的水质硬度;对差值及水质硬度进行拟合,获得关系式y=f(x)。
例如,通过大量的数据拟合出关系式为:
y=A×(-2.4395x 3+5.3328x 2-3.9047x+1),其中,A为原水硬度值,x为差值信号值与基准值的比例(x取值0~1之间),基准值与原水硬度值成正比,y为软化水的水质硬度。
基准值=8A/3,优选的,基准值的取值范围为500~1000。原水硬度值A可通过实际测量获得。
以原水硬度值A为300ppm为例,设定基准值为800。
当差值信号值为80,则x=0.1时,可求得当前出水水质硬度为198ppm,与原子吸收光谱ICP仪器测量结果190ppm误差仅为4.5%;
当差值信号值为160,则x=0.2时,可求得当前出水水质硬度为124ppm,与原子吸收光谱ICP仪器测量结果118ppm误差仅为4.8%;
当差值信号值为400,则x=0.5时,可求得当前水质硬度为23ppm,与原子吸收光谱ICP仪器测量结果24ppm误差仅为4.3%;
如图8所示,实测的软水机的处理水量与差值信号值的变化情况。差值信号值的变化规律符合软化树脂的工作状态变化。树脂的初始处理效率最高,差值信号值较高,且平稳;待处理一定水量后,出现拐点,表明树脂效能开始下降,随着处理水量的增加,软化水硬度值会不断增高,且趋势越来越快,差值信号值之减小;待树脂达到饱和状态,差值 信号值趋于稳定,达到最低限。
可选地,通过前处理模块对第一电势差和第二电势差进行前处理后输入处理模块,前处理包括阻抗变换匹配、线性放大、电平位移、噪声处理。前处理后的信号送入处理模块进行12位模数转换器进行AD转换,然后对第一电势差和第二电势差进行取差值,之后依据关系式进行函数处理,得到软水机出水硬度值。
本实施例的方法中,如果软化水的水质硬度达到预设值,控制单元通过再生模块404启动软水机的再生系统600。再生系统600对软水机内的离子交换树脂进行再生和维护。
处理模块获得的水质硬度可发送给显示单元,通过显示单元显示软化水的实时水质硬度。
本实施例的传感器可根据探头的稳定性能及工作环境,设定初始检测时间、二次检测时间及检测程序启动的间隔时间。例如,初始检测时间、二次检测时间均可设置为10s到60s之间某一个值,其中经历一次初始检测过程与一次二次检测过程,构成一个完整的测试周期。测试周期以间隔启动的方式进行连续的运行检测。间隔的时间可根据需求设置。
本实施例仅采用一组探头,避免了安装多组探头的结构方式,降低测试误差。探头的安全可靠性高,稳定性好。本发明的探头位置与结构设置,简化了管路布置,减少成本投入,更有效提高测试稳定性。探头采用快插的结构形式,便于探头的维护检测及更换。
本实施例的传感器实现每次测量启动时同步完成传感器的管路冲洗、自动消除产生误差的因素,简化设备与元器件的应用,无需另外设置标准电极作参比,也同时避免由于前次的测试影响当次的测试结果。
本实施例提供一种水质硬度检测系统,检测系统利用上述的检测探头进行水质硬度检测。检测探头包括第一探头312和第二探头331,第一探头312和第二探头331为相同型号的探头,当第一探头312和第二探头331均处于水中时,第一探头312和第二探头331之间会形成电势差。即使第一探头312和第二探头331位于相同的水中,由于第一探头 312和第二探头331并非完全相同,第一探头312和第二探头331之间也会形成微弱的电势差。
将检测系统应用到软水机上,第一探头312和第二探头331均处于原水中,第一探头312和第二探头331的电势差为第一电势差;第一探头312处于原水中,第二探头331处于软化水中,第一探头和第二探头的电势差为第二电势差。
检测系统还包括控制单元400,如图5所示,控制单元400包括电势检测模块401和处理模块402。
第一探头312和第二探头331连接电势检测模块401,第一探头312与第二探头331的电势差通过电势检测模块401进行检测,控制单元400通过电势检测模块401确定第一电势差和第二电势差。
本实施例中处理模块402可包括MCU,对数据进行运算处理。处理模块402根据第一电势差和第二电势差之间的差值确定软化水的水质硬度。
可选地,系统包括原水管路310、软化水管路320、汇合管路330。原水管路310、软化水管路320分别连通汇合管路330,经过原水管路310的原水和经过软化水管路320的软化水均会流经汇合管路330。在原水管路310、软化水管路320上均设有电磁阀,用于开启或停止水流的通过,可以有效控制管路开关,避免液体倒流,影响测试的精度。控制单元400控制水质硬度检测系统的运行。
原水管路310上设有第一阀门311,第一阀门311可开启或停止原水流过原水管路310。软化水管路320上设有第二阀门321,第二阀门321可开启或停止软化水流过软化水管路320。第一阀门311和第二阀门321分别连接控制单元400,控制单元400控制第一阀门311和第二阀门321的开启或关闭。
原水管路310上设置第一探头312,第一探头312位于第一阀门311与原水管路310的出口之间。第一探头312可通过接头200接入原水管路310,使得第一探头312连通原水管路310,即第一探头312可接触 原水管路310中的水。
汇合管路330上设置第二探头331,第二探头331可通过接头200接入汇合管路330,使得第二探头331连通汇合管路330,即第二探头331可接触汇合管路330中的水。
当第一阀门311开启,第二阀门321关闭时,软水机的原水(未经处理的水)可经原水管路310流入汇合管路330。此时,第一探头312和第二探头331均处于原水中,第一探头312和第二探头331的电势差作为第一电势差。
当第一阀门311关闭,第二阀门321开启时,软水机经过处理的软化水经软化水管路320流入汇合管路330。此时,第一探头312处于原水中,第二探头331处于软化水中,第一探头312和第二探头331的电势差作为第二电势差。
上述过程中,第一探头312一直处于原水中,第二探头331先处于原水中,后处于软化水中,第二探头331所处的环境为一个变量,使得第一电势差和第二电势差出现不同,第一电势差和第二电势差的变化量可反映软化水的水质硬度。控制单元400根据第一电势差和第二电势差确定软化水的水质硬度。
传统的检测探头之间的差异及环境的影响,会导致检测结果产生较大误差。本申请将两个检测探头首先位于同样的水环境,之后改变第二探头所处的水环境,可以消除第一探头与第二探头制造差异和漂移引起检测结果的误差,使得检测结构更精准。
如图3所示,软水机中,上述水质硬度检测系统与软水机的管路相连。原水管路310连接软水机的原水主管路501,软化水管路320连接软水机的软化水主管路502,汇合管路330连接软水机的排污口503。汇合管路330中的水由排污口503排出。
可选地,处理模块402存储有上述差值和水质硬度的关系式。在确定差值和水质硬度的关系式时,首先,采集大量的差值及差值对应的软化水的水质硬度,对二者进行拟合,确定上述关系式。处理模块402获 得差值后,根据关系式确定软化水的水质硬度。
作为一种优选的方案,控制单元400还包括前处理模块403,电势检测模块401连接前处理模块403,前处理模块403连接处理模块402。前处理模块403对电势检测模块401采集的第一探头312和第二探头331的电势差信号进行前处理,处理后的信号发送给处理模块402进行计算。
如图6所示,前处理模块403包括阻抗变换匹配子模块、线性放大子模块、电平位移子模块、噪声处理子模块。前处理模块403的前处理包括阻抗变换匹配、线性放大、电平位移、噪声处理,对信号的处理可依次进行。上述各子模块的参数,可根据实际情况设置。如阻抗变换匹配的参数为10Ω,线性放大的倍数为10~30倍,电平位移的参数为1.5V、噪声处理为低通滤波,截止频率为1000Hz。
可选地,控制单元400还包括再生模块404,再生模块404连接处理模块402,再生模块404连接软水机的再生系统600。处理模块402获得的软化水的水质硬度达到预设值(如120ppm)时,将启动信号发送给再生模块404,再生模块404控制再生系统600启动,对软水机内的离子交换树脂进行再生和维护。
本实施例的水质硬度检测系统还可包括显示单元(图中未示出),显示单元连接控制单元400,可实时显示软化水的水质硬度及检测系统的工作状态。显示单元可以为软水机的显示器。
需要说明的是,以上参照附图所描述的各个实施例仅用以说明本发明而非限制本发明的范围,本领域的普通技术人员应当理解,在不脱离本发明的精神和范围的前提下对本发明进行的修改或者等同替换,均应涵盖在本发明的范围之内。此外,除上下文另有所指外,以单数形式出现的词包括复数形式,反之亦然。另外,除非特别说明,那么任何实施例的全部或一部分可结合任何其它实施例的全部或一部分来使用。

Claims (18)

  1. 一种水质硬度检测探头,其特征在于,所述探头包括基体和镀层,所述镀层位于所述基体的表面,所述基体的材质为金属钛,所述镀层的材质为钌铱合金或氧化铅或氧化锡。
  2. 根据权利要求1所述的检测探头,其特征在于,所述探头包括外壳,所述外壳为绝缘材质,位于所述镀层的外侧。
  3. 根据权利要求1所述的检测探头,其特征在于,所述探头通过接头接入到管路中,所述接头为三通状的结构,所述接头的第一端和第二端用于连接管路,所述探头插入所述接头的第三端,所述接头内的水与所述探头接触。
  4. 根据权利要求1所述的检测探头,其特征在于,所述镀层的厚度为0.1~1000nm。
  5. 根据权利要求1~4任一项所述的检测探头,其特征在于,所述检测探头包括第一探头和第二探头,所述第一探头和所述第二探头均处于原水中,所述第一探头和所述第二探头的电势差为第一电势差;所述第一探头处于原水中,所述第二探头处于软化水中,所述第一探头和所述第二探头的电势差为第二电势差。
  6. 一种具有根据权利要求5所述检测探头的传感器,其特征在于,所述传感器包括所述水质硬度检测探头和控制单元,所述控制单元包括处理模块和电势检测模块;
    所述电势检测模块确定第一探头与第二探头的电势差;
    所述处理模块根据所述第一电势差和第二电势差之间的差值确定所述软化水的水质硬度。
  7. 根据权利要求6所述的传感器,其特征在于,所述处理模块根据所述第一电势差和所述第二电势差之间的差值及所述差值和水质硬度的关系式确定所述软化水的水质硬度。
  8. 根据权利要求7所述的传感器,其特征在于,获得所述关系式包括:
    获得多组所述第一电势差和第二电势差之间的差值及差值对应的软化水的水质硬度;
    对所述差值及水质硬度进行拟合,获得所述关系式。
  9. 根据权利要求6所述的传感器,其特征在于,所述控制单元还包括前处理模块,所述电势检测模块连接所述前处理模块,所述前处理模块连接所述处理模块;
    所述前处理模块对所述第一电势差和第二电势差进行前处理,所述前处理包括阻抗变换匹配、线性放大、电平位移、噪声处理。
  10. 根据权利要求6所述的传感器,其特征在于,所述控制单元还包括再生模块,所述再生模块连接所述处理模块,所述再生模块连接软水机的再生系统。
  11. 根据权利要求6所述传感器,其特征在于,还包括显示单元,所述显示单元连接所述控制单元。
  12. 根据权利要求6所述的传感器,其特征在于,所述传感器包括原水管路、软化水管路、汇合管路,所述原水管路、软化水管路分别连通所述汇合管路;
    所述原水管路上设有第一阀门,所述第一阀门与所述原水管路的出口之间设置连通所述原水管路的第一探头;
    所述软化水管路上设有第二阀门;
    所述汇合管路上设置连通所述汇合管路的第二探头;
    所述第一阀门和第二阀门分别连接所述控制单元。
  13. 一种根据权利要求12所述传感器的检测水质硬度的方法,其特征在于,包括:
    打开所述第一阀门,关闭所述第二阀门,向所述原水管路通入原水,所述第一探头和第二探头均处于原水中,检测所述第一探头和第二探头的电势差作为第一电势差;
    打开所述第二阀门,关闭所述第一阀门,向所述软化水管路通入软化水,所述第一探头处于原水中,所述第二探头处于软化水中,检测所述第一探头和第二探头的电势差作为第二电势差;
    所述处理模块根据所述第一电势差和第二电势差之间的差值确定所述软化水的水质硬度。
  14. 根据权利要求13所述的方法,其特征在于,对所述第一电势差和第二电势差进行前处理后输入所述处理模块,
    所述前处理包括阻抗变换匹配、线性放大、电平位移、噪声处理。
  15. 根据权利要求13所述的方法,其特征在于,若所述水质硬度达到预设值,所述控制单元通过再生模块启动软水机的再生系统。
  16. 根据权利要求13所述方法,其特征在于,通过显示单元显示所述软化水的水质硬度。
  17. 一种包含权利要求6~12任一项所述传感器的软水机。
  18. 根据权利要求17所述的软水机,其特征在于,原水管路连接所述软水机的原水主管路,软化水管路连接所述软水机的软化水主管路,汇合管路连接所述软水机的排污口。
PCT/CN2019/107569 2019-04-29 2019-09-24 水质硬度检测探头、传感器、检测方法及软水机 WO2020220572A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/979,158 US11927584B2 (en) 2019-04-29 2019-09-24 Water hardness detection probe, sensor, detection method and water softener

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910353938.4A CN111855754B (zh) 2019-04-29 2019-04-29 水质硬度检测探头、传感器、检测方法及软水机
CN201910353938.4 2019-04-29

Publications (1)

Publication Number Publication Date
WO2020220572A1 true WO2020220572A1 (zh) 2020-11-05

Family

ID=72966040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107569 WO2020220572A1 (zh) 2019-04-29 2019-09-24 水质硬度检测探头、传感器、检测方法及软水机

Country Status (3)

Country Link
US (1) US11927584B2 (zh)
CN (1) CN111855754B (zh)
WO (1) WO2020220572A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2494985Y (zh) * 2001-09-12 2002-06-12 江苏电分析仪器厂 纳米材料化学修饰电极
US7068054B2 (en) * 2002-06-01 2006-06-27 Worcester Polytechnic Institute Real-time carbon sensor for measuring concentration profiles in carburized steel
CN105403254A (zh) * 2015-12-07 2016-03-16 重庆多邦科技股份有限公司 地下水质传感器
CN107957439A (zh) * 2016-10-17 2018-04-24 英属开曼群岛商通润股份有限公司 平面型溶氧感测电极及其制法
CN207301045U (zh) * 2017-09-29 2018-05-01 郑州南格尔电子科技有限公司 水质监测装置

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2736637A (en) * 1952-07-24 1956-02-28 Ionics Water hardness measurement-method and apparatus
US3207679A (en) * 1960-05-03 1965-09-21 American Potash & Chem Corp Method for electroplating on titanium
US3135677A (en) * 1961-02-02 1964-06-02 Thermo Craft Electric Corp Durable anode protective system
US3213004A (en) * 1961-03-08 1965-10-19 American Potash & Chem Corp Surface preparation of platinum group metals for electrodeposition
BE637043A (zh) * 1962-09-05
US3463707A (en) * 1965-06-16 1969-08-26 Pacific Eng & Production Co Electrodeposition of lead dioxide
US3542656A (en) * 1967-01-11 1970-11-24 Basf Ag Production of cyclohexadiene dicarboxylic acids
US3778307A (en) * 1967-02-10 1973-12-11 Chemnor Corp Electrode and coating therefor
GB1244650A (en) * 1968-10-18 1971-09-02 Ici Ltd Electrodes for electrochemical processes
GB1327760A (en) * 1969-12-22 1973-08-22 Imp Metal Ind Kynoch Ltd Electrodes
US3706646A (en) * 1970-10-28 1972-12-19 Fred D Gibson Jr Method for removing solids build-up from cathodes of electrolytic cell
US3764500A (en) * 1970-10-28 1973-10-09 Pacific Eng & Prod Co Of Nevad Method and apparatus for electrolytic treatment of sewage
GB1373611A (en) * 1971-01-12 1974-11-13 Electricity Council Lead dioxide electrode
US4001037A (en) * 1971-09-03 1977-01-04 Badische Anilin- & Soda-Fabrik Aktiengesellschaft Lead batteries
JPS4892269A (zh) * 1972-03-09 1973-11-30
US3935082A (en) * 1973-02-13 1976-01-27 Rheinisch-Westfalisches Elektrizitatswerk Ag Process for making lead electrode
JPS5230030B2 (zh) * 1973-04-23 1977-08-05
DE2444691A1 (de) * 1974-09-18 1976-04-01 Rhein Westfael Elect Werk Ag Verfahren zur herstellung von aus titantraeger und bleidioxidauflage aufgebauten elektroden fuer elektrolytische zwecke
US3957613A (en) * 1974-11-01 1976-05-18 General Electric Company Miniature probe having multifunctional electrodes for sensing ions and gases
US4040939A (en) * 1975-12-29 1977-08-09 Diamond Shamrock Corporation Lead dioxide electrode
CH615895A5 (zh) * 1976-09-27 1980-02-29 Sulzer Ag
US4159231A (en) * 1978-08-04 1979-06-26 The United States Of America As Represented By The Secretary Of The Interior Method of producing a lead dioxide coated cathode
CH631951A5 (de) * 1978-08-23 1982-09-15 Bbc Brown Boveri & Cie Vorrichtung zur aufbereitung von verunreinigtem wasser und verfahren zum betrieb einer derartigen vorrichtung.
DE2928910A1 (de) * 1979-06-29 1981-01-29 Bbc Brown Boveri & Cie Elektrode fuer die wasserelektrolyse
US4320010A (en) * 1980-01-24 1982-03-16 Sys-Tec, Inc. Regeneration detector for water softeners
JPS5830957B2 (ja) * 1980-03-04 1983-07-02 日本カ−リツト株式会社 二酸化鉛被覆電極
GB2096642A (en) * 1981-04-09 1982-10-20 Diamond Shamrock Corp Electrode with lead dioxide coating and intermediate coating with semiconducting polymer on valve metal base
JPS57131376A (en) * 1981-02-06 1982-08-14 Japan Atom Energy Res Inst Electrolyzing method for water
US4563263A (en) * 1982-01-15 1986-01-07 Terumo Corporation Selectively permeable film and ion sensor
US4440603A (en) * 1982-06-17 1984-04-03 The Dow Chemical Company Apparatus and method for measuring dissolved halogens
FR2587039B1 (fr) * 1985-09-10 1990-06-08 Hoechst France Procede de fabrication d'oxyde glyoxylique par reduction electrochimique d'acide oxalique
US4801886A (en) * 1986-05-19 1989-01-31 Steininger Jacques M Mounting means for water chemistry analysis device
CH671408A5 (zh) * 1987-02-20 1989-08-31 Bbc Brown Boveri & Cie
CH677325A5 (zh) * 1989-04-28 1991-05-15 Asea Brown Boveri
JPH0440284A (ja) * 1990-06-04 1992-02-10 Kurita Water Ind Ltd 軟水製造装置
JPH09329580A (ja) * 1996-06-07 1997-12-22 Miura Co Ltd 硬度センサ
DE19734209A1 (de) * 1997-08-07 1999-02-11 Decontas Ges Fuer Decontaminie Verfahren zur elektrochemischen Behandlung stark schäumender flüssiger Medien
TW369411B (en) * 1998-11-09 1999-09-11 Apex Biotechnology Co Ltd Disposal electrode test block for current-type non-enzymatic uric acid test, its process and application
EP1287345A2 (en) * 2000-05-18 2003-03-05 Medtronic, Inc. Ion-selective solid-state polymeric membrane electrodes
JP3577544B2 (ja) * 2000-09-18 2004-10-13 三重県 ガスセンサおよび金属酸化物薄層表面状態制御方法。
GB0217268D0 (en) * 2002-07-23 2002-09-04 Cross David E Electrochemical cells
US20040055896A1 (en) * 2002-09-20 2004-03-25 Sterilox Technologies, Inc. Biocidal solution
US6814872B2 (en) * 2002-12-03 2004-11-09 General Electric Company Controller and method for controlling regeneration of a water softener
CN1600941A (zh) * 2003-09-27 2005-03-30 乐金电子(天津)电器有限公司 装有水质检测装置的洗衣机及其洗衣方法
WO2007093395A2 (de) * 2006-02-17 2007-08-23 Actides Gmbh Verfahren zur herstellung eines desinfektionsmittels durch elektrochemische aktivierung (eca) von wasser, solchermassen hergestelltes desinfektionsmittel und seine verwendung
JP5115112B2 (ja) * 2006-09-14 2013-01-09 株式会社Gsユアサ 正極集電体及び正極集電体の製造方法並びにこの正極集電体を用いた鉛蓄電池
CN200964446Y (zh) * 2006-10-11 2007-10-24 比亚迪股份有限公司 一种电镀用阳极
US8877257B2 (en) * 2007-01-16 2014-11-04 Puricore, Inc. Methods and compositions for treating conditions associated with infection and/or inflammation
US9999635B2 (en) * 2007-01-16 2018-06-19 Realm Therapeutics, Inc. Methods and compositions for treating inflammatory disorders
US20080237060A1 (en) * 2007-03-27 2008-10-02 Hegel Rudolph R Methods and apparatus for electrolytic treatment of water
WO2009119572A1 (ja) * 2008-03-25 2009-10-01 有限会社ターナープロセス 飲料水の硬度を調整するための携帯用硬度調整装置
DE102008045354B3 (de) * 2008-09-02 2010-02-25 Judo Wasseraufbereitung Gmbh Aussetzen von Messgrößenauswertungen in einer automatischen Wasserenthärtungsanlage bei Vorliegen von definierten Betriebssituationen
CN101857288B (zh) * 2010-06-18 2011-10-26 南京理工大学 钛基二氧化钛纳米管二氧化锡电极的制备方法
US8887556B2 (en) * 2011-02-15 2014-11-18 Michael A. Silveri Amperometric sensor system
CN202099386U (zh) * 2011-05-11 2012-01-04 宝鸡新城钛管股份公司 钛阳极管
DK2831307T3 (en) * 2012-03-30 2017-12-18 Akzo Nobel Chemicals Int Bv STABILIZATION OF Aqueous SOLUTION OF AN ORGANIC IRON COMPLEX SALT
CN202583118U (zh) * 2012-05-31 2012-12-05 北京电子科技职业学院 一种测量水硬度的传感装置
US20130341200A1 (en) * 2012-06-21 2013-12-26 Proteus Solutions, Llc Series cell electrochemical production of modified anolyte solution
US9163319B2 (en) * 2012-11-02 2015-10-20 Tennant Company Three electrode electrolytic cell and method for making hypochlorous acid
CN104651895A (zh) * 2013-11-18 2015-05-27 李征 钛基二氧化铅电极制备方法
ES2690325T3 (es) * 2013-12-17 2018-11-20 Judo Wasseraufbereitung Gmbh Control de mezclado con determinación de la dureza del agua no tratada a través de la conductividad del agua blanda y mezclada
CN106233119B (zh) * 2014-01-17 2019-07-26 艾尔菲能堤有限责任公司 具有传感器功能的流体监测组件
US9630863B2 (en) * 2014-03-28 2017-04-25 Neptune-Benson, Llc Advanced oxidation system and method in a UV reactor with electrode
DE102014207224A1 (de) * 2014-04-15 2015-10-15 Klaro Gmbh Verfahren und Vorrichtung zum Hygienisieren von Wasser
EP3261995A4 (en) * 2014-12-31 2019-01-16 General Electric Company DEVICE AND METHOD FOR IN-SITU GENERATION OF OXIDIZING AGENTS
AU2016215195B2 (en) * 2015-02-04 2021-02-25 Spraying Systems Co. Electrolytic cartridge, systems and methods of using same
CN205061708U (zh) * 2015-09-16 2016-03-02 厦门建霖工业有限公司 软水机硬度自动检测结构
US20170362093A1 (en) * 2016-06-17 2017-12-21 Emonix, Inc. Method and device for controlling a water conditioning system
CN109213215A (zh) * 2017-07-05 2019-01-15 佛山市顺德区美的饮水机制造有限公司 软水机、软水机的水质硬度控制装置和方法
US11029301B2 (en) * 2017-08-31 2021-06-08 Harvey Water Softeners Limited Device for initiating a liquid treatment process in a liquid treatment system and a method thereof
CN207684988U (zh) * 2017-11-01 2018-08-03 芜湖美的厨卫电器制造有限公司 软水机、用于软水机的水质硬度检测装置
US10837895B2 (en) * 2018-01-08 2020-11-17 A. O. Smith Corporation Electrochemical analysis device for reagentless detection
WO2019191610A1 (en) * 2018-03-29 2019-10-03 Ecowater Systems Llc Apparatus for measuring water hardness using ion selective electrode
US10968119B2 (en) * 2018-08-27 2021-04-06 U.S. Clean Water Technologies Water treatment process
CN113811513B (zh) * 2019-05-16 2023-10-20 A.O.史密斯公司 在线水硬度传感器和软水器控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2494985Y (zh) * 2001-09-12 2002-06-12 江苏电分析仪器厂 纳米材料化学修饰电极
US7068054B2 (en) * 2002-06-01 2006-06-27 Worcester Polytechnic Institute Real-time carbon sensor for measuring concentration profiles in carburized steel
CN105403254A (zh) * 2015-12-07 2016-03-16 重庆多邦科技股份有限公司 地下水质传感器
CN107957439A (zh) * 2016-10-17 2018-04-24 英属开曼群岛商通润股份有限公司 平面型溶氧感测电极及其制法
CN207301045U (zh) * 2017-09-29 2018-05-01 郑州南格尔电子科技有限公司 水质监测装置

Also Published As

Publication number Publication date
US20220042964A1 (en) 2022-02-10
CN111855754B (zh) 2021-12-03
CN111855754A (zh) 2020-10-30
US11927584B2 (en) 2024-03-12

Similar Documents

Publication Publication Date Title
CN108535178B (zh) 一种管道腐蚀速率在线监测装置及在线监测方法
CN101788522B (zh) 基于硼掺杂金刚石膜电极的cod在线监测装置和方法
CN102445488A (zh) 基于阳极溶出伏安法的多参数水质重金属自动在线监测仪
CN102692415A (zh) 酸、碱一机高锰酸盐指数在线监测系统及其检测方法
RU2731092C1 (ru) Водоумягчительное устройство и способ эксплуатиции водоумягчительного устройства
CN104281123A (zh) 水处理系统的氯测量/过滤测试/盐水容器监控
WO2020220572A1 (zh) 水质硬度检测探头、传感器、检测方法及软水机
CN211206333U (zh) 一种脱气电导率测量系统
CN204065048U (zh) 一种反渗透水处理阻垢剂质量评价试验装置
CN210647485U (zh) 一种在线检测pH计自动清洗装置
WO2023020144A1 (zh) 一种抗浊度干扰的水质分析装置及方法
CN209878650U (zh) 一种水质硬度检测传感器
CN107462491B (zh) 一种全自动页岩含气量测试系统和方法
CN209132262U (zh) 一种软水机水质检测装置
CN102192934A (zh) 钠离子浓度在线分析记录仪
CN113740386A (zh) 一种精确测量水质氢电导率的测量装置及测量方法
CN209432817U (zh) 一种水质在线检测仪
CN111896676A (zh) 一种采用抗污染pH电极自动测量水质中离子的装置及方法
CN203572797U (zh) 一种箱式可视化pH在线测量装置
CN215574914U (zh) 一种自动测量地层水等水样中离子含量的装置
CN110182911A (zh) 船舶压载水处理控制装置、方法及船舶压载水处理系统
CN217638834U (zh) 一种水中臭氧浓度检测装置
WO2023010806A1 (zh) 一种检测水样碱度的方法
AU2021106079A4 (en) Oil and gas field produced water scaling amount measurement and scale type prediction analysis device
CN113484462A (zh) 一种自动测量地层水等水样中离子含量的装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927062

Country of ref document: EP

Kind code of ref document: A1