WO2023020144A1 - 一种抗浊度干扰的水质分析装置及方法 - Google Patents

一种抗浊度干扰的水质分析装置及方法 Download PDF

Info

Publication number
WO2023020144A1
WO2023020144A1 PCT/CN2022/103877 CN2022103877W WO2023020144A1 WO 2023020144 A1 WO2023020144 A1 WO 2023020144A1 CN 2022103877 W CN2022103877 W CN 2022103877W WO 2023020144 A1 WO2023020144 A1 WO 2023020144A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbidity
water quality
quality analysis
analysis device
switching valve
Prior art date
Application number
PCT/CN2022/103877
Other languages
English (en)
French (fr)
Inventor
罗勇钢
刘冠军
曹翊军
雷丽江
卢欣春
孙颖奇
程鸿雨
丁新
祁文科
袁颖华
Original Assignee
南京南瑞水利水电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞水利水电科技有限公司 filed Critical 南京南瑞水利水电科技有限公司
Publication of WO2023020144A1 publication Critical patent/WO2023020144A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis

Definitions

  • the invention relates to a water quality analysis device and method capable of resisting turbidity interference, and belongs to the technical field of water quality detection.
  • Water quality analysis is to use chemical and physical methods to determine the content of various chemical components in water.
  • Water quality analysis instruments can realize the detection and analysis of water environmental quality factors.
  • most of the existing automatic water quality analyzers on the market are based on the principle of spectrophotometry, and realize the quantitative measurement of the water samples to be tested according to Lambert-Beer's law.
  • the absorbance of the water sample to be tested is proportional to the concentration of the substance to be tested.
  • suspended particles such as sediment in water samples will scatter during the light transmission process, resulting in changes in the intensity of transmitted light, that is, changes in absorbance, resulting in large deviations in measurement results.
  • the purpose of the present invention is to overcome the deficiencies in the prior art, to provide a water quality analysis device and method against turbidity interference, which can effectively improve the anti-turbidity interference ability of water quality analysis; the method uses the aforementioned device to complete the analysis of water quality
  • the detection and analysis of environmental factors can further reduce the interference of the turbidity of the water sample to be tested under the premise of ensuring reliable results, thereby improving the accuracy and reliability of the water quality analysis results.
  • the present invention provides a water quality analysis device for anti-turbidity interference, including a control unit, a sample injection and discharge unit, a detection unit, an anti-turbidity processing unit and a waste liquid processing unit;
  • the detection unit includes a reaction pool
  • the control unit is electrically connected to the sample injection and discharge unit, the anti-turbidity processing unit and the detection unit;
  • the anti-turbidity processing unit includes a sampling tube, a filter, a power pump, a switch valve one, a quantitative tube and a switch valve two;
  • the power pump and the filter are arranged between the switching valve one and the sampling pipe;
  • the sampling tube is connected to the reaction pool
  • One end of the quantitative tube is connected to switching valve one, and the other end is connected to switching valve two;
  • the waste liquid processing unit is connected to switching valve one by pipeline.
  • the detection unit also includes a light source, a transmitted light receiver and a scattered light receiver arranged on the periphery of the reaction pool;
  • the angle formed by the light source and the transmitted light receiver is 180°.
  • the angle formed by the light source and the scattered light receiver is 30°-150°.
  • the detection unit further includes a condenser lens; the condenser lens is arranged between the scattered light receiver and the reaction pool and/or between the transmitted light receiver and the reaction pool.
  • the detection unit also includes a high pressure valve; the high pressure valve is installed on the reaction pool.
  • reaction pool is made of glass.
  • the filter pore size is 0.45-100 ⁇ m.
  • sample injection and discharge unit includes a selection valve connected by pipelines, a metering component, and a liquid flow sensor;
  • the liquid flow sensor is connected to the switching valve 2 through a pipeline.
  • an air valve is also included, and the air valve pipeline is connected to the reaction pool.
  • the present invention provides a water quality analysis method for anti-turbidity interference, the method uses the water quality analysis device for anti-turbidity interference described in any one of the above, and includes the following steps:
  • the present invention can not only filter and re-quantify the liquid to be tested, effectively improve the accuracy of the water quality test results, but also improve the automation of the device, avoid errors caused by human factors, and further Improve the reliability of the device.
  • the anti-turbidity interference water quality analysis method of the present invention uses the aforementioned device to complete the detection and analysis of environmental factors, and can further reduce the interference of the turbidity of the water sample to be tested under the premise of ensuring reliable results, thereby improving the accuracy of the water quality analysis results and reliability.
  • Fig. 1 shows a kind of structural representation of the water quality analysis device of anti-turbidity interference of the present invention
  • Figure 2 shows a top view of an embodiment of the detection unit of the present invention
  • Fig. 3 is a flowchart of an embodiment of the water quality analysis method against turbidity interference of the present invention.
  • 110 sampling and discharging unit
  • 111 liquid flow sensor
  • 120 reaction tank
  • 121 light source
  • 122 transmitted light receiver
  • 123 scattered light receiver
  • 124 air valve
  • 101 sampling tube
  • 102 Filter
  • 103 Power pump
  • 104 Switching valve one
  • 105 Quantitative tube
  • 106 Switching valve two
  • 130 Waste liquid processing unit.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention based on specific situations.
  • this embodiment provides a water quality analysis device for anti-turbidity interference, including a control unit, a sample injection and discharge unit 110, a detection unit, and an anti-turbidity treatment unit and waste liquid treatment unit 130;
  • the detection unit includes a reaction tank 120;
  • the control unit is electrically connected to the sample discharge unit, the anti-turbidity processing unit and the detection unit;
  • the anti-turbidity processing unit includes a sampling tube 101, a filter 102, a power pump 103, switching valve one 104, quantitative tube 105 and switching valve two 106; power pump 103 and filter 102 are arranged between switching valve one 104 and sampling tube 101; sampling tube 101 is connected to reaction pool 120; one end of quantitative tube 105 is connected
  • the switch valve one 104 is connected to the switch valve two 106 at the other end;
  • the waste liquid treatment unit 130 is connected to the switch valve one 104 through pipelines.
  • the power pump 103 is a peristaltic pump.
  • the peristaltic pump can rotate clockwise or counterclockwise: when the peristaltic pump rotates clockwise, the liquid in the device flows clockwise; when the peristaltic pump rotates counterclockwise, the liquid in the device The liquid flows counterclockwise.
  • those skilled in the art can use different types of power pumps to replace according to the actual situation, as long as the above functions can be realized.
  • both switching valve 1 and switching valve 2 include at least 3 valve ports; through the switching valve core, the liquid barrier and flow path in the control device are realized.
  • the light source 121 , the transmitted light receiver 122 and the scattered light receiver 123 are all arranged on the outer periphery of the lower middle part of the reaction pool 120 for detecting the transmitted light intensity and scattered light intensity of the liquid in the reaction pool. But not limited thereto, those skilled in the art can set the detection unit at different positions according to the actual situation, so as to better detect the light absorption intensity of the liquid in the reaction cell.
  • the invention improves the automation degree of the device by setting a control unit; by setting an anti-turbidity processing unit, it can filter and requantify the liquid to be tested, effectively improving the accuracy of water quality detection results, thereby improving the reliability of the device.
  • the present invention can filter large particles in the liquid to be tested by setting a filter, thereby improving the detection result; by setting a switching valve, a quantitative tube and a power pump, the liquid to be tested can be re-quantitatively filtered to avoid multi-factor variable phenomena, thereby Improve the accuracy of test results.
  • the detection unit of this embodiment also includes a light source 121, a transmitted light receiver 122 and a scattered light receiver 123 arranged on the periphery of the reaction pool 120; 121 and the transmitted light receiver 122 form an angle of 180°.
  • the angle formed by the light source 121 and the scattered light receiver 123 is 30°-150°.
  • the detection unit further includes a condenser lens; the condenser lens is disposed between the scattered light receiver 123 and the reaction pool 102 and/or between the transmitted light receiver 122 and the reaction pool 102 .
  • the detection unit also includes a high-pressure valve; the high-pressure valve is installed on the reaction tank 102, but is not limited to this, and those skilled in the art can reasonably adjust the number and installation position of the high-pressure valve according to the actual situation, so as to better control the reaction pool pressure.
  • the reaction pool 102 is made of glass, and is provided with a heating resistor and a temperature sensor to realize temperature control.
  • the filter pore size of the filter 102 is 0.45-100 ⁇ m, and those skilled in the art can reasonably select the filter pore size according to the actual situation of the water sample to be tested and the limited number of tests.
  • the sample injection and discharge unit 110 includes a selection valve, a metering assembly, and a liquid flow sensor 112 connected by pipelines; the liquid flow sensor 112 is connected to the switching valve 2 106 through pipelines.
  • the device also includes an air valve 107; the air valve 107 is piped to the reaction pool 102.
  • the high pressure valve can be closed to increase the pressure of the reaction tank to meet the requirements of the reaction conditions and complete the reaction.
  • the present invention can satisfy the high-pressure condition of the chemical reaction in the reaction pool by setting the high-pressure resistant valve, so as to promote the complete chemical reaction in the reaction pool; reduce the deviation of the detection and analysis results caused by the incomplete reaction to the greatest possible extent, thereby improving the detection and analysis results accuracy and improve device reliability.
  • the present embodiment provides a kind of anti-turbidity interference water quality analysis method:
  • S1 opens the air valve 107 through the control unit and switches the switching valve 106 to channel 1-3, the water sample enters the reaction pool 120 after being metered by the sample injection and discharge unit 110, and the light source 121 is turned on to measure the scattered light intensity I 10 and the transmitted light intensity I 11. Measure and compare the size of I 10 /I 11 with the preset ratio I and the scattered light intensity I 10 with the preset scattered light intensity value I';
  • step S3 If I 10 /I 11 is greater than I and the scattered light intensity I 10 is greater than I', then enter steps S31-S34 for anti-turbidity treatment, otherwise, directly enter step S4:
  • S31 switches the switching valve 104 to channel 2-3, switching valve 2 106 to channel 2-3, opens the air valve 107, and regulates the power pump 103 to rotate clockwise, so that the test solution is filtered through the sampling tube 101 to the filter 102 , into the quantitative tube 105; when the liquid flow sensor 111 detects a liquid flow signal, turn off the power pump 103;
  • S32 switches switching valve one 104 to channel 1-3, and switching valve two 106 switches to channel 1-3, so that the test solution outside the quantitative tube 105 in the device is discharged to the waste liquid through the sampling liquid discharge unit 110 and the power pump 103 processing unit 130;
  • S33 switches the switching valve 104 to channel 2-3, switches the switching valve 2 106 to channel 1-2, and regulates the power pump to rotate clockwise, so that the test solution in the quantitative tube 105 enters the reaction pool 120;
  • S4 enters the second reaction reagent into the reaction pool 120 after being metered by the sample injection and discharge unit 110, and undergoes a second chemical reaction with the test solution 1 to generate the test solution 2, and obtain the transmitted light intensity I 31 of the test solution 2;
  • S5 discharges the test solution 2 to the waste liquid treatment unit 130 through the liquid injection and drainage unit 110, and switches the switching valve 2 106 to channel 1-3, so that the deionized water enters the reaction pool 120 through the liquid injection and drainage unit 110, thereby Cleaning the reaction pool 120;
  • step S6 switches switching valve one 104 to channel 2-3, switching valve two 106 switches to channel 1-2, and regulates the power pump 103 to rotate counterclockwise, backwashing the anti-turbidity processing unit, if not entering steps S31-S34 Anti-turbidity treatment, then skip this step and directly enter step S7;
  • S7 uses the transmitted light intensity I 21 of the test solution 1 after the anti-turbidity treatment as the background light intensity, and the transmitted light intensity I 31 of the test solution 2 as the measured light intensity to calculate the absorbance, and substitute the absorbance into the standard set in the meter The measurement results are calculated by the curve, and the deionized water is drained to prepare for the next measurement.
  • the present invention calculates the absorbance by measuring the transmitted light intensities I 21 and I 31 of the test solution 1 and test solution 2 after the anti-turbidity treatment, and can effectively reduce the interference of the turbidity of the water sample to be tested on the detection of the absorbed light intensity, thereby Improve the accuracy of monitoring analysis.
  • the present embodiment provides a kind of anti-turbidity interference water quality analysis method:
  • S1 opens the air valve 107 through the control unit and switches the switching valve 106 to channel 1-3, the water sample enters the reaction pool 120 after being metered by the sample injection and discharge unit 110, and the light source 121 is turned on to measure the scattered light intensity I 10 and the transmitted light intensity I 11. Measure and compare the size of I 10 /I 11 with the preset ratio I and the scattered light intensity I 10 with the preset scattered light intensity value I';
  • S2 keeps the air valve 107 open, the first reaction reagent enters the reaction tank 120 after being metered by the sampling unit 111, and closes the air valve 107 and the high pressure resistant valve, heats and controls the temperature of the reaction tank, and the first chemical reaction occurs in the reaction tank 120, After generating test solution 1, cool to room temperature;
  • step S3 If I 10 /I 11 is greater than I and the scattered light intensity I 10 is greater than I', then enter steps S31-S33 for anti-turbidity treatment, otherwise, directly enter step S4:
  • S31 switches the switching valve 104 to channel 2-3, switching valve 2 106 to channel 2-3, opens the air valve 107, and regulates the power pump 103 to rotate clockwise, so that the test solution is filtered through the sampling tube 101 to the filter 102 , into the quantitative tube 105; when the liquid flow sensor 111 detects a liquid flow signal, turn off the power pump 103;
  • S32 switches switching valve one 104 to channel 1-3, and switching valve two 106 switches to channel 1-3, so that the test solution outside the quantitative tube 105 in the device is discharged to the waste liquid through the sampling liquid discharge unit 110 and the power pump 103 processing unit 130;
  • S33 switches the switching valve 104 to channel 2-3, switches the switching valve 2 106 to channel 1-2, and regulates the power pump to rotate clockwise, so that the test solution in the quantitative tube 105 enters the reaction pool 120;
  • S4 enters the second reaction reagent into the reaction pool 120 after being metered by the sample injection and discharge unit 110, and undergoes a second chemical reaction with the test solution 1 to generate the test solution 2, and obtain the transmitted light intensity I 31 of the test solution 2;
  • S5 discharges the test solution 2 to the waste liquid treatment unit 130 through the liquid injection and drainage unit 110, and switches the switching valve 2 106 to channel 1-3, so that the deionized water enters the reaction pool 120 through the liquid injection and drainage unit 110, thereby Cleaning the reaction pool 120;
  • step S6 switches switching valve one 104 to channel 2-3, switching valve two 106 switches to channel 1-2, and regulates the power pump 103 to rotate counterclockwise, backwashing the anti-turbidity processing unit, if not entering steps S31-S34 Anti-turbidity treatment, then skip this step and directly enter step S7;
  • S7 switches the switching valve 2 106 to channel 1-3, discharges the deionized water in the device through the liquid injection and drainage unit, and then injects new deionized water into the reaction cell 120 to detect the transmitted light intensity I 41 of the deionized water.
  • S8 uses the transmitted light intensity I 41 of deionized water as the background light intensity, and the transmitted light intensity I 31 of the test solution 2 as the measured light intensity to calculate the absorbance, and substitute the absorbance into the standard curve provided in the instrument to calculate the measurement result; Deionized water, ready for the next measurement.
  • the invention calculates the absorbance by measuring the transmitted light intensity I 41 and I 31 of the deionized water and the anti-turbidity treatment test solution 2, thereby improving the accuracy of monitoring and analysis.
  • the present embodiment provides a kind of anti-turbidity interference water quality analysis method:
  • S1 opens the air valve 107 through the control unit and switches the switching valve 106 to channel 1-3, the water sample enters the reaction pool 120 after being metered by the sample injection and discharge unit 110, and the light source 121 is turned on to measure the scattered light intensity I 10 and the transmitted light intensity I 11. Measure and compare the size of I 10 /I 11 with the preset ratio I and the scattered light intensity I 10 with the preset scattered light intensity value I';
  • S4 enters the second reaction reagent into the reaction pool 120 after being metered by the sample injection and discharge unit 110, and undergoes a second chemical reaction with the test solution 1 to generate the test solution 2, and obtain the transmitted light intensity I 31 of the test solution 2;
  • S5 discharges the test solution 2 to the waste liquid treatment unit 130 through the liquid injection and drainage unit 110, and switches the switching valve 2 106 to channel 1-3, so that the deionized water enters the reaction pool 120 through the liquid injection and drainage unit 110, thereby Cleaning the reaction pool 120;
  • the absorbance is calculated from the transmitted light intensity I 11 of the water sample stock solution and the transmitted light intensity I 31 of the test solution 2 without anti-turbidity treatment.
  • the anti-turbidity interference water quality analysis device of the present invention can effectively improve the anti-turbidity interference ability of water quality analysis; the water quality analysis method for anti-turbidity interference of the present invention completes the analysis of environmental factors by using the aforementioned device The detection and analysis can further reduce the interference of the turbidity of the water sample to be tested under the premise of ensuring reliable results, thereby improving the accuracy and reliability of the water quality analysis results.
  • the present invention can adjust the amount and type of reagents according to different environmental factors to be detected, and select the stock solution or deionized water of the water sample to be tested as the background absorbance to detect and analyze the absorbed light intensity of the water sample to be tested, thereby improving the performance of the device and generality of the method.

Abstract

本发明公开了水质检测技术领域的一种抗浊度干扰的水质分析装置及方法,其装置包括控制单元、进样排液单元、检测单元、抗浊度处理单元和废液处理单元;所述检测单元包括反应池;所述控制单元电连接进样排液单元、抗浊度处理单元和检测单元;所述抗浊度处理单元包括取样管、过滤器、动力泵、切换阀一、定量管和切换阀二;所述动力泵和过滤器设置于切换阀一和取样管之间;所述取样管连接反应池;所述定量管的一端连接切换阀一,另一端连接切换阀二;所述废液处理单元管道连接切换阀一;其方法应用前述装置完成。本发明能够提高水质分析装置抗浊度干扰能力,提高分析结果的准确度和可靠性。

Description

一种抗浊度干扰的水质分析装置及方法 技术领域
本发明涉及一种抗浊度干扰的水质分析装置及方法,属于水质检测技术领域。
背景技术
水质分析是用化学和物理方法测定水中各种化学成分的含量,水质分析仪器可实现对水环境质量因子的检测和分析。目前,市面上已有的水质自动分析仪,大多是基于分光光度法的原理,依据朗伯比尔定律实现待测水样的定量测量。当待测水样在一定浓度范围内,在某特定波长下测量时,待测水样的吸光度与待测物质的浓度成正比。
然而,在实际工作过程中,水样中的泥沙等悬浮颗粒物在光透过程中会发生散射现象,致使透射光强度发生改变,即吸光度发生变化,导致测量结果出现较大偏差。
由此可见,有效地提高水质分析仪抗浊度干扰能力以及分析仪测量结果的可靠性,是本领域技术人员亟待解决的技术问题。
发明内容
本发明的目的在于克服现有技术中的不足,提供一种抗浊度干扰的水质分析装置及方法,该装置能够有效地提高水质分析的抗浊度干扰能力;该方法应用前述装置完成对水质环境因子的检测分析,能够在保证结果可靠的前提下,进一步降低待测水样浊度的干扰,从而提高水质分析结果的准确度和可靠性。
为达到上述目的,一方面,本发明提供一种抗浊度干扰的水质分析装置,包括控制单元、进样排液单元、检测单元、抗浊度处理单元和废液处理单元;
所述检测单元包括反应池;
所述控制单元电连接进样排液单元、抗浊度处理单元和检测单元;
所述抗浊度处理单元包括取样管、过滤器、动力泵、切换阀一、定量管和切换阀二;
所述动力泵和过滤器设置于切换阀一和取样管之间;
所述取样管连接反应池;
所述定量管的一端连接切换阀一,另一端连接切换阀二;
所述废液处理单元管道连接切换阀一。
进一步地,所述检测单元还包括设置在反应池外周的光源、透射光接收器以及散射光接 收器;
所述光源和透射光接收器形成的夹角角度为180°。
进一步地,所述光源和散射光接收器形成的夹角角度为30°-150°。
进一步地,所述检测单元还包括聚光透镜;所述聚光透镜设置于所述散射光接收器与反应池之间和/或透射光接收器与反应池之间。
进一步地,所述检测单元还包括耐高压阀;所述耐高压阀安装在反应池上。
进一步地,所述反应池为玻璃材质。
进一步地,所述过滤器的过滤孔径为0.45-100μm。
进一步地,所述进样排液单元包括管路连接的选择阀、计量组件、液流传感器;
所述液流传感器通过管路连接至切换阀二。
进一步地,还包括空气阀所述空气阀管道连接至反应池。
第二方面,本发明提供一种抗浊度干扰的水质分析方法,该方法应用上述任一项所述的抗浊度干扰的水质分析装置,并且包括如下步骤:
获取水样的散射光强I 10和透射光强I 11,并比较I 10/I 11与预设比值I的大小和散射光强I 10与预设散射光强值I’的大小;
将第一反应试剂加入水样中,发生第一化学反应,生成试液一;
当I 10/I 11大于I和/或I 10大于I’时,将试液一通过抗浊度处理单元过滤和重新定量,并检测抗浊度处理后试液一的透射光强I 21,当I 10/I 11小于I且I 10小于I’时,跳过该步骤;
将第二反应试剂加入试液一中,发生第二化学反应,生成试液二,则获取试液二的透射光强I 31
排尽装置内的试液二,并用去离子水清洗分析装置后,获取去离子水的透射光强I 41
计算测量结果,准备下一次测量。
与现有技术相比,本发明所达到的有益效果:
本发明通过设置控制单元和抗浊度处理单元,不仅能够过滤并重新定量待测液,有效地提高水质检测结果的准确度,同时还能提高装置的自动化程度,避免人为原因造成的误差,进一步提高装置的可信度。
本发明的抗浊度干扰的水质分析方法应用前述装置完成对环境因子的检测分析,能够在保证结果可靠的前提下,进一步降低待测水样浊度的干扰,从而提高水质分析结果的准确度和可靠性。
附图说明
图1所示为本发明抗浊度干扰的水质分析装置的一种实施例结构示意图;
图2所示为本发明检测单元的一种实施例俯视图;
图3所示为本发明抗浊度干扰的水质分析方法的一种实施例流程图。
图中:110、进样排液单元;111、液流传感器;120、反应池;121、光源;122、透射光接收器;123、散射光接收器;124、空气阀;101、取样管;102、过滤器;103、动力泵;104、切换阀一;105、定量管;106、切换阀二;130、废液处理单元。
具体实施方式
下面结合附图对发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以通过具体情况理解上述术语在本发明中的具体含义。
实施例1
为提高水质分析装置的抗浊度的干扰能力,参考图1,本实施例提供一种抗浊度干扰的水质分析装置,包括控制单元、进样排液单元110、检测单元、抗浊度处理单元和废液处理单元130;检测单元包括反应池120;控制单元电连接进样排液单元、抗浊度处理单元和检测单元;抗浊度处理单元包括取样管101、过滤器102、动力泵103、切换阀一104、定量管105和切换阀二106;动力泵103和过滤器102设置于切换阀一104和取样管101之间;取样管 101连接反应池120;定量管105的一端连接切换阀一104,另一端连接切换阀二106;废液处理单元130管道连接切换阀一104。
应用中,动力泵103为蠕动泵,通过转换,蠕动泵可顺时针转动或者逆时针转动:当蠕动泵顺时针转动时,装置中的液体顺时针流动;当蠕动泵逆时针转动时,装置中的液体逆时针流动。但不限于此,本领域技术人员可根据实际情况,使用不同种类的动力泵进行替代,能实现上述功能即可。
本实施例应用时,参考图1,切换阀一和切换阀二均至少包括3个阀口;通过转换阀芯,实现控制装置中液体的阻隔以及流动路径。光源121、透射光接收器122以及散射光接收器123均设置在反应池120中下部的外周,用于检测反应池中液体的透射光强和散射光强。但不限于此,本领域技术人员可根据实际情况,将检测单元设置在不同的位置上,能较好地检测反应池中液体的吸收光强即可。
本发明通过设置控制单元,提高装置的自动化程度;通过设置抗浊度处理单元,能够过滤并重新定量待测液,有效地提高水质检测结果的准确度,从而提高装置的可信度。
本发明通过设置过滤器,能够过滤待测液中大颗粒物质,从而提高检测结果;通过设置切换阀、定量管和动力泵,能够重新定量过滤后的待测液,避免多因素变量现象,从而提高检测结果的精确度。
实施例2
为提高装置的可靠性,在实施例1的基础上,参考图1,本实施例的检测单元还包括设置在反应池120外周的光源121、透射光接收器122以及散射光接收器123;光源121和透射光接收器122形成的夹角角度为180°。光源121和散射光接收器123形成的夹角角度为30°-150°。检测单元还包括聚光透镜;聚光透镜设置于所述散射光接收器123与反应池102之间和/或透射光接收器122与反应池102之间。检测单元还包括耐高压阀;耐高压阀安装在反应池102上,但不限于此,本领域技术人员可根据实际情况,合理地调整耐高压阀的数量和安装位置,能较好地控制反应池的压强即可。反应池102为玻璃材质,并设置有加热电阻和温度传感器实现温度控制。过滤器102的过滤孔径为0.45-100μm,本领域技术人员可根据待测水样的实际情况以及有限次试验,合理地选择过滤器的过滤孔径。进样排液单元110包括管路连接的选择阀、计量组件、液流传感器112;液流传感器112通过管路连接至切换阀二106。装置还包括空气阀107;空气阀107管道连接反应池102。
本实施例应用中,当反应池120中的化学反应需要高温和/或高压的条件时,可闭合耐高压阀增加反应池的压力,以满足反应条件要求,促使反应完成。
本发明通过设置耐高压阀,能够满足反应池中化学反应的高压条件,促使反应池中的化学反应发生完全;最大可能地减少因反应不完全而导致检测分析结果产生偏差,从而提高检测分析结果的准确度,提高装置的可靠性。
实施例3
在实施例1或2的基础上,参考图3,本实施例提供一种抗浊度干扰的水质分析方法:
S1通过控制单元打开空气阀107并转换切换阀二106至1-3通道,水样经进样排液单元110计量后进入反应池120,打开光源121进行散射光强I 10和透射光强I 11测量,并比较I 10/I 11与预设比值I的大小和散射光强I 10与预设散射光强值I’的大小;
S2保持空气阀107开启,第一反应试剂经进样排液单元110计量后进入反应池120,发生第一化学反应,生成试液一;
S3如果I 10/I 11大于I且散射光强I 10大于I’,则进入步骤S31-S34进行抗浊度处理,否则,直接进入步骤S4:
S31将切换阀一104切换至2-3通道,切换阀二106切换至2-3通道,开启空气阀107,调控动力泵103顺时针转动,使得试液一经取样管101至过滤器102过滤后,进入定量管105;当液流传感器111检测到液流信号时,关闭动力泵103;
S32将切换阀一104切换至1-3通道,切换阀二106切换至1-3通道,使得装置中定量管105外的试液均通过进样排液单元110和动力泵103排至废液处理单元130;
S33将切换阀一104切换至2-3通道,切换阀二106切换至1-2通道,调控动力泵顺时针转动,使得定量管105内的试液进入反应池120;
S34打开光源121,测量试液的透射光强I 21
S4将第二反应试剂经进样排液单元110计量后进入反应池120,与试液一发生第二化学反应,生成试液二,并获取试液二的透射光强I 31
S5将试液二通过进样排液单元110排至废液处理单元130,并将切换阀二106切换至1-3通道,使得去离子水通过进样排液单元110进入反应池120,从而清洗反应池120;
S6将切换阀一104切换至2-3通道,切换阀二106切换至1-2通道,且调控动力泵103逆时针转动,反向冲洗抗浊度处理单元,若未进入步骤S31-S34的抗浊度处理,则跳过该步骤,直接进入步骤S7;
S7以经抗浊度处理后的试液一透射光强I 21作为背景光强,以试液二的透射光强I 31作为测量光强,计算吸光度,并将该吸光度代入仪表内设的标准曲线计算测量结果,排尽去离子 水,准备下一次测量。
本发明通过测量经抗浊度处理后的试液一和试液二的透射光强I 21和I 31,计算吸光度,能够有效降低待测水样的浊度对吸收光强检测的干扰,从而提高监测分析的准确度。
实施例4
在实施例1或2的基础上,参考图3,本实施例提供一种抗浊度干扰的水质分析方法:
S1通过控制单元打开空气阀107并转换切换阀二106至1-3通道,水样经进样排液单元110计量后进入反应池120,打开光源121进行散射光强I 10和透射光强I 11测量,并比较I 10/I 11与预设比值I的大小和散射光强I 10与预设散射光强值I’的大小;
S2保持空气阀107开启,第一反应试剂经进样单元111计量后进入反应池120,并关闭空气阀107和耐高压阀,加热并控制反应池温度,反应池120内发生第一化学反应,生成试液一后,冷却至室温;
S3如果I 10/I 11大于I且散射光强I 10大于I’,则进入步骤S31-S33进行抗浊度处理,否则,直接进入步骤S4:
S31将切换阀一104切换至2-3通道,切换阀二106切换至2-3通道,开启空气阀107,调控动力泵103顺时针转动,使得试液一经取样管101至过滤器102过滤后,进入定量管105;当液流传感器111检测到液流信号时,关闭动力泵103;
S32将切换阀一104切换至1-3通道,切换阀二106切换至1-3通道,使得装置中定量管105外的试液均通过进样排液单元110和动力泵103排至废液处理单元130;
S33将切换阀一104切换至2-3通道,切换阀二106切换至1-2通道,调控动力泵顺时针转动,使得定量管105内的试液进入反应池120;
S4将第二反应试剂经进样排液单元110计量后进入反应池120,与试液一发生第二化学反应,生成试液二,并获取试液二的透射光强I 31
S5将试液二通过进样排液单元110排至废液处理单元130,并将切换阀二106切换至1-3通道,使得去离子水通过进样排液单元110进入反应池120,从而清洗反应池120;
S6将切换阀一104切换至2-3通道,切换阀二106切换至1-2通道,且调控动力泵103逆时针转动,反向冲洗抗浊度处理单元,若未进入步骤S31-S34的抗浊度处理,则跳过该步骤,直接进入步骤S7;
S7将切换阀二106切换至1-3通道,通过进样排液单元排出装置内的去离子水,然后重新注入新的去离子水进入反应池120以检测去离子水透射光强I 41
S8以去离子水的透射光强I 41作为背景光强,以试液二的透射光强I 31作为测量光强,计算吸光度,并将吸光度代入仪表内设的标准曲线计算测量结果;排尽去离子水,准备下一次测量。
本发明通过测量去离子水和抗浊度处理试液二的透射光强I 41和I 31,计算吸光度,从而提高监测分析的准确度。
实施例5
在实施例1或2的基础上,参考图3,本实施例提供一种抗浊度干扰的水质分析方法:
S1通过控制单元打开空气阀107并转换切换阀二106至1-3通道,水样经进样排液单元110计量后进入反应池120,打开光源121进行散射光强I 10和透射光强I 11测量,并比较I 10/I 11与预设比值I的大小和散射光强I 10与预设散射光强值I’的大小;
S2保持空气阀107开启,第一反应试剂经进样单元111计量后进入反应池120,并关闭空气阀107,反应池120内发生第一化学反应,生成试液一后;
S3若I 10/I 11小于I且I 10小于I’,则水样浑浊度较低,无需进行抗浊度处理。
S4将第二反应试剂经进样排液单元110计量后进入反应池120,与试液一发生第二化学反应,生成试液二,并获取试液二的透射光强I 31
S5将试液二通过进样排液单元110排至废液处理单元130,并将切换阀二106切换至1-3通道,使得去离子水通过进样排液单元110进入反应池120,从而清洗反应池120;
S6以经水样的透射光强I 11作为背景光强,以试液二的透射光强I 31作为测量光强,计算吸光度,并将吸光度代入仪表内设的标准曲线计算测量结果;排尽去离子水,准备下一次测量。
本实施例应用中,通过水样原液的透射光强I 11和未进行抗浊度处理的试液二透射光强I 31,计算吸光度。
综上实施例,本发明的抗浊度干扰的水质分析装置,能够有效地提高水质分析的抗浊度干扰能力;本发明的抗浊度干扰的水质分析方法通过应用前述装置完成对环境因子的检测分析,能够在保证结果可靠的前提下,进一步降低待测水样浊度的干扰,从而提高水质分析结果的准确度和可靠性。
本发明可根据检测的环境因子不同,对试剂用量和种类进行调整,以及选用待测水样的原液或者去离子水作为背景吸光度,进行待测水样吸收光强的检测分析,从而提高装置和方法的通用性。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说, 在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (10)

  1. 一种抗浊度干扰的水质分析装置,其特征是,包括控制单元、进样排液单元、检测单元、抗浊度处理单元和废液处理单元(130);
    所述检测单元包括反应池(120);
    所述控制单元电连接进样排液单元、抗浊度处理单元和检测单元;
    所述抗浊度处理单元包括取样管(101)、过滤器(102)、动力泵(103)、切换阀一(104)、定量管(105)和切换阀二(106);
    所述动力泵(103)和过滤器(102)设置于切换阀一(104)和取样管(101)之间;
    所述取样管(101)连接反应池(120);
    所述定量管(105)的一端连接切换阀一(104),另一端连接切换阀二(106);
    所述废液处理单元(130)管道连接切换阀一(104)。
  2. 根据权利要求1所述的抗浊度干扰的水质分析装置,其特征是,所述检测单元还包括设置在反应池(120)外周的光源(121)、透射光接收器(122)以及散射光接收器(123);
    所述光源(121)和透射光接收器(122)形成的夹角角度为180°。
  3. 根据权利要求2所述的抗浊度干扰的水质分析装置,其特征是,所述光源(121)和散射光接收器(123)形成的夹角角度为30°-150°。
  4. 根据权利要求2所述的抗浊度干扰的水质分析装置,其特征是,所述检测单元还包括聚光透镜;所述聚光透镜设置于所述散射光接收器(123)与反应池(102)之间和/或透射光接收器(122)与反应池(102)之间。
  5. 根据权利要求1所述的抗浊度干扰的水质分析装置,其特征是,所述检测单元还包括耐高压阀;所述耐高压阀安装在反应池(102)上。
  6. 根据权利要求1所述的抗浊度干扰的水质分析装置,其特征是,所述反应池(102)为玻璃材质。
  7. 根据权利要求1所述的抗浊度干扰的水质分析装置,其特征是,所述过滤器(102)的过滤孔径为0.45-100μm。
  8. 根据权利要求1所述的抗浊度干扰的水质分析装置,其特征是,所述进样排液单元(110)包括管路连接的选择阀、计量组件、液流传感器(112);
    所述液流传感器(112)通过管路连接至切换阀二(106)。
  9. 根据权利要求1所述的抗浊度干扰的水质分析装置,其特征是,还包括空气阀(107)所述空气阀(107)管道连接至反应池(102)。
  10. 一种抗浊度干扰的水质分析方法,其特征是,包括使用权利要求1至9中任一项所述的抗浊度干扰的水质分析装置,该方法包括以下步骤:
    获取水样的散射光强I 10和透射光强I 11,并比较I 10/I 11与预设比值I的大小和散射光强I 10与预设散射光强值I’的大小;
    将第一反应试剂加入水样中,发生第一化学反应,生成试液一;
    当I 10/I 11大于I和/或I 10大于I’时,将试液一通过抗浊度处理单元过滤和重新定量,并检测抗浊度处理后试液一的透射光强I 21,当I 10/I 11小于I且I 10小于I’时,跳过该步骤;
    将第二反应试剂加入试液一中,发生第二化学反应,生成试液二,则获取试液二的透射光强I 31
    排尽装置内的试液二,并用去离子水清洗分析装置后,获取去离子水的透射光强I 41
    计算测量结果,准备下一次测量。
PCT/CN2022/103877 2021-08-20 2022-07-05 一种抗浊度干扰的水质分析装置及方法 WO2023020144A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110961680.3A CN113624686A (zh) 2021-08-20 2021-08-20 一种抗浊度干扰的水质分析装置及方法
CN202110961680.3 2021-08-20

Publications (1)

Publication Number Publication Date
WO2023020144A1 true WO2023020144A1 (zh) 2023-02-23

Family

ID=78387077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103877 WO2023020144A1 (zh) 2021-08-20 2022-07-05 一种抗浊度干扰的水质分析装置及方法

Country Status (2)

Country Link
CN (1) CN113624686A (zh)
WO (1) WO2023020144A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113624686A (zh) * 2021-08-20 2021-11-09 南京南瑞水利水电科技有限公司 一种抗浊度干扰的水质分析装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454252A (zh) * 2013-09-02 2013-12-18 苏州奥特福环境科技有限公司 双光路散射水质浊度测量仪
CN106053751A (zh) * 2016-08-11 2016-10-26 力合科技(湖南)股份有限公司 一种水质监测系统
CN106404681A (zh) * 2016-11-10 2017-02-15 李秀超 水质检测方法及系统
CN113049307A (zh) * 2021-03-01 2021-06-29 威海精讯畅通电子科技有限公司 一种水质在线分析仪及其检测方法
CN113624686A (zh) * 2021-08-20 2021-11-09 南京南瑞水利水电科技有限公司 一种抗浊度干扰的水质分析装置及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6134210B2 (ja) * 2013-06-19 2017-05-24 株式会社日立ハイテクノロジーズ 自動分析装置及び自動分析方法
CN106596434B (zh) * 2016-12-26 2020-01-03 高安水务有限公司 一种水质检测系统
CN111766208B (zh) * 2020-06-17 2023-05-05 南京南瑞水利水电科技有限公司 一种智能化多参数水质分析仪及分析方法
CN213121886U (zh) * 2020-08-24 2021-05-04 广东骏信科技有限公司 一种水质自动监测仪器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454252A (zh) * 2013-09-02 2013-12-18 苏州奥特福环境科技有限公司 双光路散射水质浊度测量仪
CN106053751A (zh) * 2016-08-11 2016-10-26 力合科技(湖南)股份有限公司 一种水质监测系统
CN106404681A (zh) * 2016-11-10 2017-02-15 李秀超 水质检测方法及系统
CN113049307A (zh) * 2021-03-01 2021-06-29 威海精讯畅通电子科技有限公司 一种水质在线分析仪及其检测方法
CN113624686A (zh) * 2021-08-20 2021-11-09 南京南瑞水利水电科技有限公司 一种抗浊度干扰的水质分析装置及方法

Also Published As

Publication number Publication date
CN113624686A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
WO2023020144A1 (zh) 一种抗浊度干扰的水质分析装置及方法
CN106872452A (zh) 一种游离氯在线分析仪和其使用方法
CN206248652U (zh) 实时原位水质监测仪
CN205484020U (zh) 一种测量流通池
CN203275349U (zh) 氨氮浓度水质分析仪
CN107300525A (zh) 一种水质分析仪
CN105784692A (zh) 烟气中二氧化硫的测定方法
KR20150106493A (ko) 표준물첨가법을 이용한 흐름셀을 갖는 미세유체칩과 이를 포함하는 흡광 검출 장치
CN106645619A (zh) 一种实时原位水质监测仪及其监测方法
CA2476341C (en) Method for detecting a gas bubble in a liquid
CN213302004U (zh) 一种水质高锰酸盐指数在线分析仪
RU201094U1 (ru) Устройство для непрерывного измерения изменения электропроводности деионизированной воды в резервуаре
CN116203089B (zh) 一种便携检测氢导装置及使用方法
CN112305034B (zh) 校准分析测量设备的方法和校准分析测量设备的测量点
CN109580507B (zh) 一种平行质控水质分析装置及方法
CN210572077U (zh) 一种连续测量水箱去离子水电导率变化的装置
CN220019366U (zh) 一种氨气浓度的检测系统
RU2391654C1 (ru) Проточная ионометрическая ячейка
CN207457062U (zh) 血液净化系统用尿素含量监测装置
CN207300848U (zh) 一种水质分析仪
CN106908414B (zh) 基于光纤传感器的尿液比重测量系统和测量方法
CN2713463Y (zh) 生化分析仪流动比色皿
KR20230172137A (ko) 자동생성되는 고압의 유체로 탐침자를 세척하여 탐침자의 오염이 방지되는 수질측정용 플로우셀
CN208383841U (zh) 氢气质量分析仪及氢冷系统
CN219434729U (zh) 一种全自动双流路电解质分析仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857457

Country of ref document: EP

Kind code of ref document: A1