WO2020218367A1 - 変速機用潤滑油組成物、その製造方法、変速機用潤滑油組成物を用いた潤滑方法及び変速機 - Google Patents

変速機用潤滑油組成物、その製造方法、変速機用潤滑油組成物を用いた潤滑方法及び変速機 Download PDF

Info

Publication number
WO2020218367A1
WO2020218367A1 PCT/JP2020/017378 JP2020017378W WO2020218367A1 WO 2020218367 A1 WO2020218367 A1 WO 2020218367A1 JP 2020017378 W JP2020017378 W JP 2020017378W WO 2020218367 A1 WO2020218367 A1 WO 2020218367A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
lubricating oil
olefin copolymer
less
mass
Prior art date
Application number
PCT/JP2020/017378
Other languages
English (en)
French (fr)
Inventor
和志 田村
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to EP20793979.4A priority Critical patent/EP3960839A4/en
Priority to CN202080030681.XA priority patent/CN113748189B/zh
Priority to US17/601,800 priority patent/US11820954B2/en
Publication of WO2020218367A1 publication Critical patent/WO2020218367A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • C10M143/04Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation containing propene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/041Mixtures of base-materials and additives the additives being macromolecular compounds only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/022Ethene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/024Propene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/58Elastohydrodynamic lubrication, e.g. for high compressibility layers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/042Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for automatic transmissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/045Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for continuous variable transmission [CVT]

Definitions

  • the present invention relates to a transmission oil composition, a method for producing the same, a lubrication method using the transmission oil composition, and a transmission.
  • One of the measures to reduce fuel consumption is to reduce the viscosity of the transmission lubricating oil composition used for the transmission and reduce the stirring resistance.
  • Another method is to reduce the weight of the vehicle. When the weight of the vehicle is reduced, that is, the size of the vehicle is reduced, the transmission mounted on the vehicle also needs to be made compact, and the lubrication area is reduced. Therefore, the lubricating oil composition used for the transmission has a stricter fatigue life. Etc. will be imposed.
  • Fatigue life is one of the important performances required for the lubricating oil composition used in transmissions. In order to improve the fatigue life, it is necessary to have a high viscosity index and stable viscosity characteristics.
  • a lubricating oil composition having such characteristics a lubricating oil composition in which polymethacrylate (PMA) is used as a viscosity index improver has been proposed (see, for example, Patent Document 1). Further, a lubricating oil composition containing a lubricating oil base oil having a predetermined 100 ° C. kinematic viscosity and an ethylene- ⁇ -olefin copolymer has also been proposed (see Patent Document 2).
  • the lubricating oil composition described in Patent Document 1 is caused by the characteristic of polymethacrylate (PMA) that the viscosity index is improved, but the oil film forming property is lowered especially when used at a high temperature, and the viscosity is remarkably increased at a low temperature. As a result, the fatigue life may be shortened, or sufficient fuel efficiency may not be achieved. Further, in the lubricating oil composition described in Patent Document 2, an ethylene- ⁇ -olefin copolymer having a molecular weight in a specific range is blended in a predetermined ratio, and the viscosity is lowered and the fatigue life is improved. Although a certain effect is seen in the above, there is room for improvement in further reducing the viscosity and improving the fatigue life.
  • PMA polymethacrylate
  • the present invention provides a lubricating oil composition for a transmission having the following configuration, a method for producing the same, a lubricating method using the lubricating oil composition for a transmission, and a transmission.
  • 1. It contains a base oil and an olefin copolymer, the mass average molecular weight of the olefin copolymer is 5,000 or more and 30,000 or less, and the hydrodynamic radius of the olefin copolymer is 1.00 nm or more and 5.00 nm or less.
  • a lubricating oil composition for a transmission in which the content of the olefin copolymer is 1.0% by mass or more and 8.0% by mass or less based on the total amount of the composition. 2.
  • Rh Hydrodynamic radius of olefin copolymer (nm)
  • C Content (% by mass) based on the total amount of the composition of the olefin copolymer 3.
  • kinematic viscosity of the base oil is 1.0 mm 2 / s or more and 15.0 mm 2 / s or less. 5.
  • the content of the base oil and the olefin copolymer having a mass average molecular weight of 5,000 or more and 30,000 or less and a hydrodynamic radius of 1.00 nm or more and 5.00 nm or less based on the total amount of the composition of the olefin copolymer.
  • a method for producing a lubricating oil composition for a transmission wherein (C) is blended so as to be 1.0% by mass or more and 8.0% by mass or less.
  • Rh Hydrodynamic radius of olefin copolymer (nm)
  • C Content (% by mass) based on the total composition of the olefin copolymer 10.
  • the present invention can provide a transmission oil composition having a long fatigue life and a low viscosity, a method for producing the same, a lubrication method using the transmission oil composition, and a transmission.
  • the present embodiment an embodiment of the present invention (hereinafter, may be referred to as “the present embodiment”) will be described.
  • the numerical values relating to "greater than or equal to”, “less than or equal to”, "!, etc. relating to the description of the numerical range are numerical values that can be arbitrarily combined, and the numerical values of Examples are used as upper or lower limits of the numerical range. It is a numerical value that can be used.
  • the transmission lubricating oil composition of the present embodiment contains a base oil and an olefin copolymer, and the mass average molecular weight of the olefin copolymer is 5,000 or more and 30,000 or less, and the hydrodynamic of the olefin copolymer. It is characterized in that the radius is 1.00 nm or more and 5.00 nm or less, and the content of the olefin copolymer based on the total amount of the composition is 1.0% by mass or more and 8.0% by mass or less.
  • the base oil may be a mineral oil, a synthetic oil, or a mixed oil of a mineral oil and a synthetic oil.
  • the mineral oil for example, atmospheric residual oil obtained by atmospheric distillation of crude oil such as paraffin crude oil, intermediate base crude oil, and naphthenic crude oil; and distillate obtained by vacuum distillation of these atmospheric residual oils. Examples thereof include mineral oil obtained by subjecting the distillate oil to one or more refining treatments such as solvent desorption, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, and hydrorefining.
  • those classified into either Group II or Group III in the base oil category of API are preferably used from the viewpoint of achieving a low coefficient of friction and improving copper corrosion resistance. Be done.
  • synthetic oils include poly ⁇ -olefins such as polybutene, ethylene- ⁇ -olefin copolymer, ⁇ -olefin homopolymer or copolymer; various types such as polyol ester, dibasic acid ester and phosphoric acid ester.
  • GTL base oil and the like can be mentioned.
  • one of the above-mentioned mineral oils and synthetic oils may be used alone, a plurality of types of mineral oils may be used in combination, a plurality of types of synthetic oils may be used in combination, or a synthetic oil and a synthetic oil may be used. It may be used in combination with oil.
  • the viscosity of the base oil is not particularly limited, but the kinematic viscosity at 40 ° C. is preferably 3.0 mm 2 / s or more, more preferably 5.0 mm 2 / s or more, still more preferably 7.0 mm 2 / s or more.
  • As the upper limit 50.0 mm 2 / s or less is preferable, 30.0 mm 2 / s or less is more preferable, and 15.0 mm 2 / s or less is further preferable. 100 ° C.
  • the kinematic viscosity is preferably at least 1.0 mm 2 / s, more preferably at least 1.5 mm 2 / s, more preferably not less than 2.0 mm 2 / s, the upper limit, is 15.0 mm 2 / s or less Preferably, 10.0 mm 2 / s or less is more preferable, and 5.0 mm 2 / s or less is further preferable.
  • the viscosity index of the base oil is preferably 85 or more, more preferably 90 or more, and even more preferably 100 or more. In the present specification, the kinematic viscosity and the viscosity index are values measured using a glass capillary viscometer in accordance with JIS K 2283: 2000.
  • the composition of the lubricating oil for a transmission having a lower viscosity can be obtained, and the fatigue life can be easily extended, that is, the fatigue life can be easily improved.
  • extending the fatigue life may be described as “improving the fatigue life” and “improving the fatigue life”).
  • the content of the base oil based on the total amount of the composition is preferably 70.0% by mass or more, more preferably 75.0% by mass or more, still more preferably 80.0% by mass or more, and the upper limit is preferably 99.0. It is mass% or less, more preferably 95.0 mass% or less, still more preferably 90.0 mass% or less.
  • the content of the base oil is within the above range, the content of the olefin copolymer described later is secured, and the effect of adding the polymer can be sufficiently obtained.
  • the transmission lubricating oil composition of the present embodiment has an olefin copolymer having a mass average molecular weight of 5,000 or more and 30,000 or less and a hydrodynamic radius (Rh) of 1.00 nm or more and 5.00 nm or less (hereinafter). , "OCP" is included in the content of 1.0% by mass or more and 8.0% by mass or less based on the total amount of the composition. It is known that the mass average molecular weight of OCP tends to be lower as it is smaller and higher in viscosity as it is larger.
  • the hydrodynamic radius (Rh) which is an index of the frictional resistance received by OCP in the lubricating oil composition, is taken into consideration, and those within a predetermined range are used. As a result, it has become possible to achieve both the contradictory performances of improved fatigue life and lower viscosity at a higher level.
  • the mechanism that can achieve both improvement of fatigue life and reduction of viscosity is not clear, by using OCP having a predetermined mass average molecular weight and hydrodynamic radius, the viscosity of the entire composition can be reduced. It is possible to improve the coating state (oil film forming state) of the lubricating oil composition on the metal surface of the transmission to be lubricated, especially the metal having fine irregularities on the surface, and to prevent the impact between the metals. It is thought that this is because it can be alleviated. If the mass average molecular weight of the OCP is less than 5,000, it is advantageous for reducing the viscosity, but sufficient oil film forming property cannot be obtained.
  • the viscosity cannot be reduced, and the OCP The molecules become too large to come into contact with the surface of the metal, fine irregularities on the surface, and the like, making it impossible to form a sufficient oil film on the surface of the metal.
  • the hydrodynamic radius (Rh) of the OCP is less than 1.00 nm, the frictional resistance received from the lubricating oil composition itself becomes too small, and a sufficient contact time between the OCP and the object to be lubricated can be obtained.
  • the mass average molecular weight of the olefin copolymer is 5,000 or more and 30,000 or less.
  • the mass average molecular weight of OCP is preferably 7,500 or more, more preferably 8,500 or more, still more preferably 9,500 or more, and is preferable as an upper limit. Is 25,000 or less, more preferably 20,000 or less, still more preferably 17,500 or less, still more preferably 16,000 or less.
  • the mass average molecular weight of OCP is a polystyrene-equivalent mass average molecular weight measured by a gel permeation chromatography (GPC) method.
  • the hydrodynamic radius (Rh) of the olefin copolymer is 1.00 nm or more and 5.00 nm or less. From the viewpoint of improving the fatigue life and reducing the viscosity, the hydrodynamic radius (Rh) of the OCP is preferably 1.50 nm or more, more preferably 1.75 nm or more, still more preferably 2.00 nm or more.
  • the upper limit is preferably 4.80 nm or less, more preferably 4.50 nm or less, and further preferably 4.00 nm or less.
  • the hydrodynamic radius (Rh) of the OCP is a numerical value obtained by the following method.
  • the olefin copolymer examples include a copolymer of ethylene and ⁇ -olefin, a copolymer of styrene and diene, and the like.
  • the ⁇ -olefin preferably has 3 or more carbon atoms, preferably 30 or less as the upper limit, more preferably 20 or less, still more preferably 10 or less, more specifically propylene, 1-butene, 1-pentene, 4 -Methyl-1-pentene, 1-hexene, 1-hexene, 1-octene, 1-nonene, 1-decene and the like can be mentioned.
  • propylene and 1-butene are preferable as the ⁇ -olefin from the viewpoint of improving the fatigue life and reducing the viscosity, and considering the availability.
  • diene examples include isoprene and butadiene.
  • the content of the olefin copolymer based on the total amount of the composition is 1.0% by mass or more and 8.0% by mass or less. If it is less than 1.0% by mass, the effect of improving the fatigue life, which is the effect of the olefin copolymer, cannot be sufficiently obtained, while if it is more than 8.0% by mass, fuel efficiency cannot be improved.
  • the content of OCP based on the total amount of the composition is preferably 1.25% by mass or more, more preferably 1.5% by mass or more, still more preferably 1.9% by mass. As described above, it is more preferably 2.5% by mass or more, and the upper limit is preferably 6.5% by mass or less, 5.0% by mass or less, and further preferably 4.5% by mass or less.
  • the lubricating oil composition for a transmission of the present embodiment may be a composition consisting only of the base oil and the olefin copolymer, and if desired, the above components may be added as long as the effects of the present invention are not impaired.
  • Other additives that do not fall under this category may include additives such as antioxidants, extreme pressure agents, friction modifiers, corrosion inhibitors, cleaning agents, dispersants, pour point lowering agents, and defoaming agents. These additives may be used alone or in combination of two or more.
  • each of the other additives can be appropriately adjusted within a range that does not impair the effects of the present invention, and is usually 0.1 to 15% by mass, preferably 0.5 to 10 based on the total amount of the lubricating oil composition. It is by mass, more preferably 1.0 to 8% by mass.
  • the total content of the other additives is preferably 25% by mass or less, more preferably 20% by mass or less, still more preferably 15% by mass or less, based on the total amount of the lubricating oil composition.
  • antioxidants examples include monoalkyldiphenylamines having an alkyl group having about 3 to 10 carbon atoms such as mono-t-butyldiphenylamine; and each alkyl group having 3 to 10 carbon atoms such as 4,4′-dibutyldiphenylamine.
  • Phenyl- ⁇ -naphthylamines such as alkyl-substituted phenyl- ⁇ -naphthylamines and phenyl- ⁇ -naphthylamines having at least one alkyl group of about 12; monohindered amines such as 2,2,6,6-tetramethylpiperidinyl methacrylate.
  • Bisphenol antioxidants monophenolic oxidations such as 2,6-di-t-butyl-4-methylphenol, n-octadecyl-3- (4-hydroxy-3,5-di-t-butylphenyl) propionate
  • phenolic antioxidants such as inhibitors.
  • extreme pressure agent examples include sulfur-based extreme pressure agents such as olefin sulfide, hydrocarbyl sulfide, oil sulfide, fatty acid sulfide, and sulfide ester; phosphoric acid ester, acidic phosphoric acid ester, phosphite ester, hydrogen phosphite ester, and the like.
  • Phosphoric acid ester compound and phosphorus-based extreme pressure agent such as amine salt of the phosphoric acid ester compound; monothiophosphate ester, dithiophosphate ester, trithiophosphate ester, amine base of monothiophosphate ester, amine salt of dithiophosphate ester, monothio
  • an extreme pressure agent containing a sulfur atom and a phosphorus atom such as a phosphite, a dithios-phosphate, and a trithio-phosphate.
  • friction modifier for example, there is no aliphatic amine, fatty acid ester, fatty acid amide, fatty acid, fatty alcohol, aliphatic ether or the like having at least one alkyl group or alkenyl group having 6 to 30 carbon atoms in the molecule.
  • examples include ash-based friction modifiers.
  • corrosion inhibitor examples include benzotriazole-based compounds, tolyltriazole-based compounds, imidazole-based compounds, pyrimidine-based compounds, and the like.
  • cleaning agent examples include salicylates such as sodium, calcium and magnesium, and metal-based cleaning agents such as sulfonate and phenate.
  • Dispersants include boron-free succinic acid imides, boron-containing succinic acid imides, benzylamines, boron-containing benzylamines, succinic acid esters, fatty acids, and monovalent or divalent carboxylic acids typified by succinic acid. Examples thereof include ashless dispersants such as amides.
  • pour point lowering agent examples include ethylene-vinyl acetate copolymer, condensate of chlorinated paraffin and naphthalene, condensate of chlorinated paraffin and phenol, polymethacrylate, polyalkylstyrene and the like.
  • defoaming agent examples include silicone-based defoaming agents such as silicone oil and fluorosilicone oil, and fluorine-based defoaming agents such as fluoroalkyl ether.
  • the transmission lubricating oil composition of the present embodiment preferably satisfies the following mathematical formula (1). 25.00 ⁇ -23.00 ⁇ Rh 2 +139.00 ⁇ Rh +4.75 ⁇ C-179.88 (1)
  • Rh Hydrodynamic radius of olefin copolymer (nm)
  • C Content (% by mass) based on the total amount of the composition of the olefin copolymer
  • x calculated by the above mathematical formula (1) is a value (within ⁇ 20%) close to the measured value of the fatigue life, it is used, for example, to obtain a lubricating oil composition having a desired fatigue life.
  • x calculated in advance by the mathematical formula (1) can be used as a fatigue life (predicted value) and used as an index for obtaining a desired fatigue life. Is.
  • the value of x is preferably 27.50 or more, more preferably 30.00 or more, still more preferably 35.00 or more, still more preferably 40.00 or more. That is, in the present embodiment, the hydrodynamic radius and content of the OCP are preferably 27.50 or more, more preferably 30.00 or more, still more preferably 35.00 or more, and further preferably the value of x. Is preferably selected so as to be 40.00 or more. When the hydrodynamic radius and the content of OCP are within the above preferable numerical ranges, the value of x is likely to be within the above ranges.
  • the 100 ° C. kinematic viscosity of the transmission lubricating oil composition of the present embodiment is preferably 2.0 mm 2 / s or more, more preferably 2.5 mm 2 / s or more, further preferably 3.5 mm 2 / s or more.
  • As the upper limit 10.0 mm 2 / s or less is preferable, 7.5 mm 2 / s or less is more preferable, 5.0 mm 2 / s or less is further preferable, and 4.5 mm 2 / s or less is further preferable.
  • the lubricating oil composition of the present embodiment is for a transmission, for example, a transmission used in an automobile, such as a manual transmission, an automatic transmission, a continuously variable transmission, or a lockup clutch in the case of an automatic transmission. If it is a continuously variable transmission, it is suitably used for various types of transmissions such as a metal belt type, a chain type, and a toroidal type. From the viewpoint of effectively utilizing the characteristics of the lubricating oil composition for a transmission of the present embodiment, which has a long fatigue life and a low viscosity, it is preferably used for either an automatic transmission or a continuously variable transmission among the above. ..
  • an olefin having a mass average molecular weight of 5,000 or more and 30,000 or less and a hydrodynamic radius (Rh) of 1.00 nm or more and 5.00 nm or less. It is characterized in that the copolymer and the copolymer are blended so that the content (C) based on the total amount of the composition of the olefin copolymer is 1.0% by mass or more and 8.0% by mass or less.
  • the base oil, the olefin copolymer, the blending amounts thereof, other components and the blending amounts thereof, and other details are described in the transmission of the present embodiment described above. This is the same as the preferred embodiment of the lubricating oil composition for use. It is also preferable that the above mathematical formula (1) is satisfied.
  • the order of blending is not particularly limited.
  • the olefin copolymer may be blended with the base oil.
  • the olefin copolymer and other additives may be sequentially blended with the base oil.
  • a premixed olefin copolymer and other additives may be added to the base oil.
  • the lubrication method of the present embodiment is characterized by using the lubricating oil composition for a transmission of the present embodiment, that is, a speed change characterized by using the lubricating oil composition for a transmission of the present embodiment.
  • This is the lubrication method for the machine.
  • the transmission for example, various types of transmissions such as manual transmissions, automatic transmissions, and continuously variable transmissions, which are transmissions used in automobiles, are preferable. Since the transmission lubricating oil composition of the present embodiment has a long fatigue life and low viscosity, it can be used for, for example, industrial gears, and has the same effect as that used for a transmission. Is obtained.
  • the transmission of the present embodiment is characterized by using the lubricating oil composition for the transmission of the present embodiment.
  • the transmission is the same as that exemplified as the above-described transmission lubrication method can be preferably applied.
  • the mass average molecular weight (Mw) is a polystyrene-equivalent mass average molecular weight measured by a gel permeation chromatography (GPC) method, and is measured under the following conditions, and polystyrene is used as a calibration curve.
  • GPC gel permeation chromatography
  • Fatigue life (predicted value) is a value calculated by mathematical formula (1).
  • Base oil A Paraffinic mineral oil (40 ° C. kinematic viscosity: 7.1 mm 2 / s, 100 ° C. kinematic viscosity: 2.2 mm 2 / s, viscosity index: 109)
  • Base oil B Paraffinic mineral oil (40 ° C. kinematic viscosity: 10.1 mm 2 / s, 100 ° C.
  • kinematic viscosity 2.8 mm 2 / s, viscosity index: 113)
  • OCP Olefin copolymer (ethylene-propylene copolymer)
  • PMA Polyalkyl Methacrylate Additive: ATF Additive Package (Antioxidant, Extreme Pressure Agent, Friction Modifier, Metal Cleaner, Ashless Dispersant, Pour Point Lowering Agent, Silicone Defoamer)
  • the transmission lubricating oil composition of the present embodiment has a long fatigue life and a low viscosity.
  • the fatigue life (calculated value) calculated by the mathematical formula (1) is within ⁇ 20% of the measured value of the fatigue life, and it can be said that the calculated value can be used as an index of the fatigue life. It was confirmed that.
  • the lubricating oil compositions of Comparative Examples 1 and 2 using the olefin copolymer having a mass average molecular weight of less than 5,000 cannot be said to have a long fatigue life, and polyalkyl methacrylate was used instead of the olefin copolymer. It cannot be said that the lubricating oil compositions of Comparative Examples 3 to 5 also have a long fatigue life, and the lubricating oil compositions of all Comparative Examples have a long fatigue life and cannot be said to have a low viscosity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

疲労寿命が長く、かつ低粘度である、基油と、オレフィンコポリマーとを含有し、該オレフィンコポリマーの質量平均分子量が5,000以上30,000以下であり、該オレフィンコポリマーの流体力学的半径が1.00nm以上5.00nm以下であり、該オレフィンコポリマーの組成物全量基準の含有量が1.0質量%以上8.0質量%以下である変速機用潤滑油組成物、その製造方法、変速機用潤滑油組成物を用いた潤滑方法及び変速機を提供する。

Description

変速機用潤滑油組成物、その製造方法、変速機用潤滑油組成物を用いた潤滑方法及び変速機
 本発明は、変速機用潤滑油組成物、その製造方法、変速機用潤滑油組成物を用いた潤滑方法及び変速機に関する。
 近年問題となっている環境への配慮から、自動車等の車両に対して、更なる低燃費化への要請が強まっている。低燃費化への対応の一つとして、変速機に用いられる変速機用潤滑油組成物の低粘度化を図り、撹拌抵抗を低減することによる方法が挙げられる。
 また、車両を軽量化する方法も挙げられる。車両を軽量化する、すなわちコンパクト化すると、これに搭載される変速機もコンパクト化する必要が生じることとなり、潤滑面積が小さくなるため、変速機に用いられる潤滑油組成物にはより厳しい疲労寿命等の性能が課せられることになる。
 疲労寿命は、変速機に用いられる潤滑油組成物が求められる性能の中でも重要な性能の一つである。疲労寿命の向上には、粘度指数が高く、安定した粘度特性を有すること等が必要である。このような特性を有する潤滑油組成物としては、粘度指数向上剤としてポリメタクリレート(PMA)が用いられる潤滑油組成物が提案されている(例えば、特許文献1参照)。また、所定の100℃動粘度を有する潤滑油基油と、エチレン-α-オレフィン共重合体とを含む潤滑油組成物も提案されている(特許文献2参照)。
特開2006-117851号公報 特開2008-037963号公報
 低燃費化への対応の一つとしてあげた低粘度化について、一般的に潤滑油を低粘度化すると、高温領域において更に粘度が低下することで、油膜形成性が大幅に低下することになる。そのため、変速機の摺動部材等の金属疲労が発生しやすくなり、疲労寿命の低下につながり、変速機の耐久性が低下しやすくなる。このように、疲労寿命の向上と低粘度化による低燃費化とは相反する性能であるといえる。
 特許文献1に記載の潤滑油組成物は、粘度指数は向上するものの、特に高温下における使用において油膜形成性が低下し、低温下で粘度上昇が著しいというポリメタクリレート(PMA)の特性に起因して、疲労寿命が低下する、あるいは十分な低燃費化が図れない、といった場合がある。また、特許文献2に記載の潤滑油組成物では、特定の範囲の分子量を有するエチレン-α-オレフィン共重合体を所定の割合で配合して用いられており、低粘度化、疲労寿命の点で一定の効果はみられているが、更なる低粘度化、疲労寿命の向上に改良の余地がある。
 そこで本発明は、疲労寿命が長く、かつ低粘度の変速機用潤滑油組成物、その製造方法、変速機用潤滑油組成物を用いた潤滑方法及び変速機を提供することを課題とするものである。
 本発明者らは、上記課題に鑑みて鋭意検討の結果、下記の発明により解決できることを見出した。すなわち、本発明は、下記の構成を有する変速機用潤滑油組成物、その製造方法、変速機用潤滑油組成物を用いた潤滑方法及び変速機を提供するものである。
1.基油と、オレフィンコポリマーとを含有し、該オレフィンコポリマーの質量平均分子量が5,000以上30,000以下であり、該オレフィンコポリマーの流体力学的半径が1.00nm以上5.00nm以下であり、該オレフィンコポリマーの組成物全量基準の含有量が1.0質量%以上8.0質量%以下である変速機用潤滑油組成物。
2.下記数式(1)を満足する前記1に記載の変速機用潤滑油組成物。
 25.00≦-23.00×Rh+139.00×Rh+4.75×C-179.88 (1)
   Rh:オレフィンコポリマーの流体力学的半径(nm)
   C:オレフィンコポリマーの組成物全量基準の含有量(質量%)
3.前記オレフィンコポリマーの流体力学的半径が、2.00nm以上4.00nm以下である前記1又は2に記載の変速機用潤滑油組成物。
4.前記基油の100℃動粘度が、1.0mm/s以上15.0mm/s以下である前記1~3のいずれか1に記載の変速機用潤滑油組成物。
5.前記基油が、鉱油である前記1~4のいずれか1に記載の変速機用潤滑油組成物。
6.100℃動粘度が、10.0mm/s以下である前記1~5のいずれか1に記載の変速機用潤滑油組成物。
7.自動変速機用又は無段変速機用である前記1~6のいずれか1に記載の変速機用潤滑油組成物。
8.基油と、質量平均分子量が5,000以上30,000以下であり、流体力学的半径が1.00nm以上5.00nm以下であるオレフィンコポリマーと、を該オレフィンコポリマーの組成物全量基準の含有量(C)が1.0質量%以上8.0質量%以下となるように配合する、変速機用潤滑油組成物の製造方法。
9.下記数式(1)を満足するように配合する、前記8に記載の変速機用潤滑油組成物の製造方法。
 25.00≦-23.00×Rh+139.00×Rh+4.75×C-179.88 (1)
   Rh:オレフィンコポリマーの流体力学的半径(nm)
   C:オレフィンコポリマーの組成物全量基準の含有量(質量%)
10.前記1~7のいずれか1に記載の変速機用潤滑油組成物を用いた潤滑方法。
11.前記1~7のいずれか1に記載の変速機用潤滑油組成物を用いた変速機。
 本発明は、疲労寿命が長く、かつ低粘度の変速機用潤滑油組成物、その製造方法、変速機用潤滑油組成物を用いた潤滑方法及び変速機を提供し得る。
 以下、本発明の実施形態(以下、「本実施形態」と称することもある)について説明する。なお、本明細書中において、数値範囲の記載に関する「以上」、「以下」、「~」等に係る数値は任意に組み合わせできる数値であり、実施例の数値は、数値範囲の上限又は下限として用いられ得る数値である。
〔変速機用潤滑油組成物〕
 本実施形態の変速機用潤滑油組成物は、基油と、オレフィンコポリマーとを含有し、該オレフィンコポリマーの質量平均分子量が5,000以上30,000以下であり、該オレフィンコポリマーの流体力学的半径が1.00nm以上5.00nm以下であり、該オレフィンコポリマーの組成物全量基準の含有量が1.0質量%以上8.0質量%以下である、ことを特徴とする。
(基油)
 基油は、鉱油であってもよく、合成油であってもよく、鉱油と合成油との混合油を用いてもよい。
 鉱油としては、例えば、パラフィン系原油、中間基系原油、ナフテン系原油等の原油を常圧蒸留して得られる常圧残油;これらの常圧残油を減圧蒸留して得られる留出油;当該留出油を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製等の精製処理を1つ以上施して得られる鉱油等が挙げられる。
 また、鉱油としては、低摩擦係数を実現し、かつ耐銅腐食性を向上させる観点から、API(米国石油協会)のベースオイルカテゴリーにおいて、グループII、IIIのいずれかに分類されるものが好ましく用いられる。
 合成油としては、例えば、ポリブテン、エチレン-α-オレフィン共重合体、α-オレフィン単独重合体又は共重合体等のポリα-オレフィン類;ポリオールエステル、二塩基酸エステル、リン酸エステル等の各種エステル油;ポリフェニルエーテル等の各種エーテル;ポリグリコール;アルキルベンゼン;アルキルナフタレン;天然ガスからフィッシャー・トロプシュ法等により製造されるワックス(GTLワックス(Gas to Liquids WAX))を異性化することで得られるGTL基油等が挙げられる。
 基油は、上記の鉱油、合成油のうちの一種を単独で用いてもよいし、鉱油を複数種組み合わせて用いてもよく、合成油を複数種組み合わせて用いてもよく、また鉱油と合成油とを組み合わせて用いてもよい。
 基油の粘度については特に制限はないが、40℃動粘度は、3.0mm/s以上が好ましく、5.0mm/s以上がより好ましく、7.0mm/s以上が更に好ましく、上限としては、50.0mm/s以下が好ましく、30.0mm/s以下がより好ましく、15.0mm/s以下が更に好ましい。
 100℃動粘度は、1.0mm/s以上が好ましく、1.5mm/s以上がより好ましく、2.0mm/s以上が更に好ましく、上限としては、15.0mm/s以下が好ましく、10.0mm/s以下がより好ましく、5.0mm/s以下が更に好ましい。
 また、基油の粘度指数は、85以上が好ましく、90以上がより好ましく、100以上が更に好ましい。本明細書において、動粘度、及び粘度指数は、JIS K 2283:2000に準拠し、ガラス製毛管式粘度計を用いて測定した値である。基油の動粘度、粘度指数が上記範囲内であると、より低粘度の変速機用潤滑油組成物とすることができ、また疲労寿命をより長くしやすくなる、すなわち疲労寿命を向上させやすくなる(以後、本明細書において、疲労寿命をより長くすることを、「疲労寿命を向上させる」、「疲労寿命の向上を図る」と説明することがある。)。
 基油の組成物全量基準の含有量は、好ましくは70.0質量%以上、より好ましくは75.0質量%以上、更に好ましくは80.0質量%以上であり、上限として好ましくは99.0質量%以下、より好ましくは95.0質量%以下、更に好ましくは90.0質量%以下である。基油の含有量を上記範囲内とすると、後述するオレフィンコポリマーの含有量を確保し、該ポリマーの添加効果が十分に得られる。
(オレフィンコポリマー)
 本実施形態の変速機用潤滑油組成物は、質量平均分子量が5,000以上30,000以下であり、流体力学的半径(Rh)が1.00nm以上5.00nm以下であるオレフィンコポリマー(以下、「OCP」と称することがある。)を組成物全量基準の含有量1.0質量%以上8.0質量%以下で含む。OCPの質量平均分子量は、一般に小さくなるほど粘度は低く、大きくなるほど粘度は高くなる傾向にあることが知られている。本実施形態においては、質量平均分子量の概念に加えて、潤滑油組成物中におけるOCPが受ける摩擦抵抗の指標となる流体力学的半径(Rh)を考慮し、所定の範囲内のものを用いることにより、疲労寿命の向上と低粘度化という、相反する性能を、より高いレベルで両立することを可能とした。
 疲労寿命の向上と低粘度化とを両立し得る機構は定かではないが、所定の質量平均分子量と流体力学的半径とを有するOCPを用いることで、組成物全体としての低粘度化を図りながら、潤滑対象物となる変速機の金属の表面、とりわけその表面に微細な凹凸を有する金属への潤滑油組成物の被覆状態(油膜の形成状態)を向上させることができ、金属同士の衝撃を緩和できるからであると考えられる。
 OCPの質量平均分子量が5,000未満であると低粘度化には有利であるが十分な油膜形成性が得られず、逆に30,000を超えると低粘度化が図れず、またOCPの分子が大きくなりすぎて金属の表面、該表面の微細な凹凸等に接触しにくくなり、金属の表面に十分な油膜を形成することができなくなる。他方、OCPの流体力学的半径(Rh)が1.00nm未満であると、潤滑油組成物自体から受ける摩擦抵抗が小さくなりすぎてしまい、OCPと潤滑対象物との接触時間が十分に得られず、油膜を形成しにくくなり、一方5.00nm超であると潤滑油組成物自体から受ける摩擦抵抗が大きくなりすぎて、潤滑対象物との接触自体を図ることができず、油膜を形成しにくくなり、かつ低粘度化が図りにくくなる。かくして、特定の質量平均分子量及び流体力学的半径を有するオレフィンコポリマーを用いることにより、油膜形成性を確保し、疲労寿命の向上を図りつつ、低粘度化も可能になったと考えられる。
 オレフィンコポリマーの質量平均分子量としては、5,000以上30,000以下である。疲労寿命を向上させ、かつ低粘度化を図る観点から、OCPの質量平均分子量は、好ましくは7,500以上、より好ましくは8,500以上、更に好ましくは9,500以上であり、上限として好ましくは25,000以下、より好ましくは20,000以下、更に好ましくは17,500以下、より更に好ましくは16,000以下である。
 本明細書において、OCPの質量平均分子量は、ゲルパーミエイションクロマトグラフィ(GPC)法により測定される、ポリスチレン換算の質量平均分子量とする。
 オレフィンコポリマーの流動力学的半径(Rh)は、1.00nm以上5.00nm以下である。疲労寿命を向上させ、かつ低粘度化を図る観点から、OCPの流動力学的半径(Rh)は、好ましくは1.50nm以上、より好ましくは1.75nm以上、更に好ましくは2.00nm以上であり、上限として好ましくは4.80nm以下、より好ましくは4.50nm以下、更に好ましくは4.00nm以下である。
 本明細書において、OCPの流動力学的半径(Rh)は、以下の手法により得られる数値である。
 上記基油に用いられ得る鉱油、合成油を溶媒とし、当該溶媒、及び当該溶媒にOCPを任意の少なくとも3種の含有量(g/l)で溶解した溶液の粘度(溶媒の粘度を「η」及び溶液の粘度を「η」と称する。)を測定し、比粘度ηsp(=(η-η)/η)を算出し、これを用いてOCPの単位濃度あたりの粘度の増加量(還元粘度)ηsp/C(l/g、「C」はOCPの質量濃度である。)と、当該OCPの質量濃度Cとを用いてHugginsプロットを作成し、固有粘度[η]を求めた。得られた固有粘度[η]について、ストークス-アインシュタインの式([η]=2.5×N×V/M、N:アボガドロ数、M:OCPの質量平均分子量、V:流体力学的体積)により算出される流体力学的体積(V)を、球としたときに該当する半径を流体力学的半径(Rh)とする。
 オレフィンコポリマーとしては、例えばエチレンとα-オレフィンとの共重合体、スチレンとジエンとの共重合体等が挙げられる。
 α-オレフィンとしては、好ましくは炭素数3以上、上限として好ましくは30以下、より好ましくは20以下、更に好ましくは10以下のもの、より具体的にはプロピレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン等が挙げられる。中でも、疲労寿命の向上と低粘度化の観点、また入手の容易さ等も考慮すると、α-オレフィンとしては、プロピレン、1-ブテンが好ましい。
 また、ジエンとしては、イソプレン、ブタジエン等が挙げられる。
 オレフィンコポリマーの組成物全量基準の含有量は、1.0質量%以上8.0質量%以下である。1.0質量%未満であるとオレフィンコポリマーの効果である疲労寿命向上効果が十分に得られず、一方8.0質量%超であると低燃費化が図れない。疲労寿命の向上と低粘度化の観点から、OCPの組成物全量基準の含有量は、好ましくは1.25質量%以上、より好ましくは1.5質量%以上、更に好ましくは1.9質量%以上、より更に好ましくは2.5質量%以上であり、上限として好ましくは6.5質量%以下、5.0質量%以下、更に好ましくは4.5質量%以下である。
(その他添加剤)
 本実施形態の変速機用潤滑油組成物は、上記基油及びオレフィンコポリマーのみからなる組成物であってもよいし、所望に応じて、本発明の効果を損なわない範囲において、上記成分には該当しないその他添加剤として、酸化防止剤、極圧剤、摩擦調整剤、腐食防止剤、清浄剤、分散剤、流動点降下剤、消泡剤等の添加剤を含有してもよい。これらの添加剤は、一種を単独で又は複数種を組み合わせて用いてもよい。
 その他添加剤の各含有量は、本発明の効果を損なわない範囲内で適宜調整することができ、潤滑油組成物全量基準で、通常0.1~15質量%、好ましくは0.5~10質量%、より好ましくは1.0~8質量%である。
 また、その他添加剤の合計含有量は、潤滑油組成物全量基準で、好ましくは25質量%以下、より好ましくは20質量%以下、更に好ましくは15質量%以下である。
 酸化防止剤としては、例えばモノ-t-ブチルジフェニルアミン等の炭素数が3~10程度のアルキル基を有するモノアルキルジフェニルアミン類;4,4’-ジブチルジフェニルアミン等の各アルキル基の炭素数が3~10程度のジアルキルジフェニルアミン類;テトラブチルジフェニルアミン等のアルキル基を3つ以上有し、各アルキル基の炭素数が1~10程度のポリアルキルジフェニルアミン類;メチルフェニル-α-ナフチルアミン等の炭素数1~12程度のアルキル基を少なくとも1つ有するアルキル置換フェニル-α-ナフチルアミン、フェニル-α-ナフチルアミン等のフェニル-α-ナフチルアミン類;2,2,6,6-テトラメチルピペリジニルメタクリレート等のモノヒンダードアミン系酸化防止剤、等のアミン系酸化防止剤、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)ビス(3-メチル-4-ヒドロキシ-5-t-ブチルベンジル)スルフィド等のビスフェノール系酸化防止剤;2,6-ジ-t-ブチル-4-メチルフェノール、n-オクタデシル-3-(4-ヒドロキシ-3,5-ジ-t-ブチルフェニル)プロピオネート等のモノフェノール系酸化防止剤、等のフェノール系酸化防止剤が挙げられる。
 極圧剤としては、例えば、硫化オレフィン、ヒドロカルビルサルファイド、硫化油脂、硫化脂肪酸、硫化エステル等の硫黄系極圧剤;リン酸エステル、酸性リン酸エステル、亜リン酸エステル、亜リン酸水素エステル等のリン酸エステル化合物、及び該リン酸エステル化合物のアミン塩等のリン系極圧剤;モノチオリン酸エステル、ジチオリン酸エステル、トリチオリン酸エステル、モノチオリン酸エステルのアミン塩基、ジチオリン酸エステルのアミン塩、モノチオ亜リン酸エステル、ジチオ亜リン酸エステル、トリチオ亜リン酸エステル等の硫黄原子とリン原子とを含む極圧剤、等が挙げられる。
 摩擦調整剤としては、例えば、炭素数6~30のアルキル基又はアルケニル基を分子中に少なくとも1個有する、脂肪族アミン、脂肪酸エステル、脂肪酸アミド、脂肪酸、脂肪族アルコール、脂肪族エーテル等の無灰系摩擦調整剤等が挙げられる。
 腐食防止剤としては、例えば、ベンゾトリアゾール系化合物、トリルトリアゾール系化合物、イミダゾール系化合物、ピリミジン系化合物等が挙げられる。
 清浄剤としては、ナトリウム、カルシウム、マグネシウム等のサリシレート、スルホネート、フェネート等の金属系清浄剤等が挙げられる。
 分散剤としては、ホウ素非含有コハク酸イミド類、ホウ素含有コハク酸イミド類、ベンジルアミン類、ホウ素含有ベンジルアミン類、コハク酸エステル類、脂肪酸あるいはコハク酸で代表される一価又は二価カルボン酸アミド類等の無灰系分散剤が挙げられる。
 流動点降下剤としては、例えば、エチレン-酢酸ビニル共重合体、塩素化パラフィンとナフタレンとの縮合物、塩素化パラフィンとフェノールとの縮合物、ポリメタクリレート、ポリアルキルスチレン等が挙げられる。
 消泡剤としては、例えば、シリコーン油、フルオロシリコーン油等のシリコーン系消泡剤、フルオロアルキルエーテル等のフッ素系消泡剤等が挙げられる。
(潤滑油組成物の性状)
 本実施形態の変速機用潤滑油組成物は、下記数式(1)を満足するものであることが好ましい。
 25.00≦-23.00×Rh+139.00×Rh+4.75×C-179.88 (1)
   Rh:オレフィンコポリマーの流体力学的半径(nm)
   C:オレフィンコポリマーの組成物全量基準の含有量(質量%)
 数式(1)において、オレフィンコポリマーの流体力学的半径と含有量との関係式「-23.00×Rh+139.00×Rh+4.75×C-179.88」により算出される数値(以下、「x」と称することがある。)が、25.00以上であると、疲労寿命が向上し、より低粘度の潤滑油組成物となる。すなわち、本実施形態において、OCPの流体力学的半径と含有量を、流体力学的半径を1.00nm以上5.00nm以下、含有量を1.0質量%以上8.0質量%以下の範囲内であることを前提に、xが25.00以上となるようにすることにより、疲労寿命を向上させ、かつ低粘度化を図ることができる。また、上記数式(1)により算出されるxは、疲労寿命の実測値と近い数値(±20%以内)となるため、例えば、所望の疲労寿命を有する潤滑油組成物とするために、使用するOCPの種類の選定、含有量の選定を行う際に、予め数式(1)により算出されるxを疲労寿命(予測値)とし、所望の疲労寿命を得るための指標として利用することが可能である。
 本実施形態において、xの値は好ましくは27.50以上、より好ましくは30.00以上、更に好ましくは35.00以上、より更に好ましくは40.00以上である。すなわち、本実施形態においては、OCPの流体力学的半径と含有量とを、xの値は好ましくは27.50以上、より好ましくは30.00以上、更に好ましくは35.00以上、より更に好ましくは40.00以上となるように選定することが好ましい。OCPの流体力学的半径と含有量とを、上記の各々の好ましい数値範囲内とすると、xの値を上記範囲としやすくなる。
 本実施形態の変速機用潤滑油組成物の100℃動粘度は、2.0mm/s以上が好ましく、2.5mm/s以上がより好ましく、3.5mm/s以上が更に好ましく、上限としては、10.0mm/s以下が好ましく、7.5mm/s以下がより好ましく、5.0mm/s以下が更に好ましく、4.5mm/s以下がより更に好ましい。
(潤滑油組成物の用途)
 本実施形態の潤滑油組成物は、変速機用であり、例えば自動車に用いられる変速機である、手動変速機、自動変速機、無段変速機等、また自動変速機であればロックアップクラッチを有するもの、無段変速機であれば金属ベルト式、チェーン式、トロイダル式等の様々なタイプの変速機に好適に用いられる。本実施形態の変速機用潤滑油組成物の疲労寿命が長く、低粘度であるという特徴を有効に活用する観点から、上記の中でも自動変速機、無段変速機のいずれかに用いることが好ましい。
〔変速機用潤滑油組成物の製造方法〕
 本実施形態の変速機用潤滑油組成物の製造方法は、質量平均分子量が5,000以上30,000以下であり、流体力学的半径(Rh)が1.00nm以上5.00nm以下であるオレフィンコポリマーと、を該オレフィンコポリマーの組成物全量基準の含有量(C)が1.0質量%以上8.0質量%以下となるように配合する、ことを特徴とするものである。
 本実施形態の駆動系機器用潤滑油組成物の製造方法において、基油、オレフィンコポリマー、これらの配合量、その他成分及びその配合量、及びその他の詳細は、既述した本実施形態の変速機用潤滑油組成物の好適な実施態様と同様である。また、上記数式(1)を満足することが好ましいことも、同様である。
 配合の順序としては、特に制限はなく、例えば基油に、オレフィンコポリマーを配合すればよく、他の添加剤等を用いる場合には、基油にオレフィンコポリマー、その他添加剤を逐次配合してもよいし、オレフィンコポリマーとその他添加剤とを予め混合したものを基油に配合してもよい。
〔潤滑方法及び変速機〕
 本実施形態の潤滑方法は、本実施形態の変速機用潤滑油組成物を用いることを特徴とするものである、すなわち本実施形態の変速機用潤滑油組成物を用いることを特徴とする変速機の潤滑方法である。
 変速機としては、例えば自動車に用いられる変速機である、手動変速機、自動変速機、無段変速機等の様々なタイプの変速機が好ましく挙げられる。なお、本実施形態の変速機用潤滑油組成物は、疲労寿命が長く、かつ低粘度であることから、例えば産業用ギヤ等に用いることも可能であり、変速機に用いるのと同様の効果が得られる。
 また、本実施形態の変速機は、本実施形態の変速機用潤滑油組成物を用いることを特徴とするものである。変速機は、既述の変速機の潤滑方法を好適に適用し得るものとして例示したものと同様である。
 次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
 実施例及び比較例の潤滑油組成物を構成する成分、並びに、実施例及び比較例の潤滑油組成物の各種物性値は、下記に方法に準拠して測定した。
(動粘度及び粘度指数)
 JIS K2283:2000に準拠して測定した。
(質量平均分子量)
 質量平均分子量(Mw)は、ゲルパーミエイションクロマトグラフィ(GPC)法により測定される、ポリスチレン換算の質量平均分子量であり、以下の条件で測定され、ポリスチレンを検量線として得られる値とした。
装置:「1260 Infinity」 (製品名、Agilent Technologies社製)
カラム:「GPC LF404」(製品名、Shodex社製)×2本
溶媒:クロロホルム
温度:40℃
サンプル濃度:0.5質量%
検量線:ポリスチレン検出器:示差屈折検出器
(流体力学的半径の算出)
 実施例及び比較例で用いたポリマーを、基油A(後述)に溶解させた溶液を調製し、当該溶媒及び溶液の粘度を測定し、各々「η」及び「η」として、比粘度ηsp(=(η-η)/η)を算出し、これを用いてOCPの単位濃度あたりの粘度の増加量(還元粘度)ηsp/C(l/g、「C」はOCPの質量濃度である。)と、当該OCPの質量濃度Cとを用いてHugginsプロットを作成し、固有粘度[η]を求めた。得られた固有粘度[η]について、ストークス-アインシュタインの式([η]=2.5×N×V/M、N:アボガドロ数、M:OCPの質量平均分子量、V:流体力学的体積)により算出される流体力学的体積(V)を、球としたときに該当する半径を、ポリマーの流体力学的半径(Rh)とした。
(疲労寿命の測定)
 実施例及び比較例の潤滑油組成物について、四球転動疲労試験機を用い、下記の要領にて疲労寿命を測定した。
(ベアリング)
  材質    :ベアリング鋼
  試験片   :φ60×厚さ5mm
  試験鋼球寸法:φ3/8インチ(3/8×2.54cm)
(試験条件)
  荷重  :147N
  回転速度:2200rpm
  油温  :120℃
 試験片にフレーキングが発生するまでの時間を疲労寿命とし、6回の試験の結果からL50(平均値)を計算した
(実施例1~5、比較例1~5)
 表1に示される組成比にて、実施例及び比較例の潤滑油組成物を調製し、上記方法により各性状の測定を行った。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001

*1,疲労寿命(予測値)は、数式(1)による計算値である。
 上記表における各成分の詳細は以下の通りである。
基油A:パラフィン系鉱油(40℃動粘度:7.1mm/s、100℃動粘度:2.2mm/s、粘度指数:109)
基油B:パラフィン系鉱油(40℃動粘度:10.1mm/s、100℃動粘度:2.8mm/s、粘度指数:113)
OCP:オレフィンコポリマー(エチレン-プロピレン共重合体)
PMA:ポリアルキルメタクリレート
添加剤:ATF添加剤パッケージ(酸化防止剤、極圧剤、摩擦調整剤、金属系清浄剤、無灰系分散剤、流動点降下剤、シリコーン系消泡剤)
 表1の結果から、本実施形態の変速機用潤滑油組成物は、疲労寿命が長く、低粘度であることが確認された。また、数式(1)により算出した疲労寿命(計算値)は疲労寿命の実測値の±20%以内に入っており、当該計算値を疲労寿命の指標として利用することができるといえる数値であることが確認された。
 一方、オレフィンコポリマーの質量平均分子量が5,000未満のものを用いた比較例1及び2の潤滑油組成物は疲労寿命が長いといえるものではなく、オレフィンコポリマーの代わりにポリアルキルメタクリレートを用いた比較例3~5の潤滑油組成物も疲労寿命が長いとはいえず、いずれの比較例の潤滑油組成物も疲労寿命が長く、また低粘度であるとはいえないものであった。

Claims (11)

  1.  基油と、オレフィンコポリマーとを含有し、該オレフィンコポリマーの質量平均分子量が5,000以上30,000以下であり、該オレフィンコポリマーの流体力学的半径が1.00nm以上5.00nm以下であり、該オレフィンコポリマーの組成物全量基準の含有量が1.0質量%以上8.0質量%以下である変速機用潤滑油組成物。
  2.  下記数式(1)を満足する請求項1に記載の変速機用潤滑油組成物。
     25.00≦-23.00×Rh+139.00×Rh+4.75×C-179.88 (1)
       Rh:オレフィンコポリマーの流体力学的半径(nm)
       C:オレフィンコポリマーの組成物全量基準の含有量(質量%)
  3.  前記オレフィンコポリマーの流体力学的半径が、2.00nm以上4.00nm以下である請求項1又は2に記載の変速機用潤滑油組成物。
  4.  前記基油の100℃動粘度が、1.0mm/s以上15.0mm/s以下である請求項1~3のいずれか1項に記載の変速機用潤滑油組成物。
  5.  前記基油が、鉱油である請求項1~4のいずれか1項に記載の変速機用潤滑油組成物。
  6.  100℃動粘度が、10.0mm/s以下である請求項1~5のいずれか1項に記載の変速機用潤滑油組成物。
  7.  自動変速機用又は無段変速機用である請求項1~6のいずれか1項に記載の変速機用潤滑油組成物。
  8.  基油と、質量平均分子量が5,000以上30,000以下であり、流体力学的半径(Rh)が1.00nm以上5.00nm以下であるオレフィンコポリマーと、を該オレフィンコポリマーの組成物全量基準の含有量(C)が1.0質量%以上8.0質量%以下となるように配合する、変速機用潤滑油組成物の製造方法。
  9.  下記数式(1)を満足するように配合する、請求項8に記載の変速機用潤滑油組成物の製造方法。
     25.00≦-23.00×Rh+139.00×Rh+4.75×C-179.88 (1)
       Rh:オレフィンコポリマーの流体力学的半径(nm)
       C:オレフィンコポリマーの組成物全量基準の含有量(質量%)
  10.  請求項1~7のいずれか1項に記載の変速機用潤滑油組成物を用いた潤滑方法。
  11.  請求項1~7のいずれか1項に記載の変速機用潤滑油組成物を用いた変速機。
PCT/JP2020/017378 2019-04-26 2020-04-22 変速機用潤滑油組成物、その製造方法、変速機用潤滑油組成物を用いた潤滑方法及び変速機 WO2020218367A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20793979.4A EP3960839A4 (en) 2019-04-26 2020-04-22 LUBRICANT COMPOSITION FOR TRANSMISSIONS, PROCESS FOR THEIR PRODUCTION, METHOD OF LUBRICATION WITH LUBRICANT COMPOSITION FOR TRANSMISSIONS AND TRANSMISSIONS
CN202080030681.XA CN113748189B (zh) 2019-04-26 2020-04-22 变速器用润滑油组合物、其制造方法、使用了变速器用润滑油组合物的润滑方法及变速器
US17/601,800 US11820954B2 (en) 2019-04-26 2020-04-22 Lubricant composition for transmission, production method thereof, lubricating method using lubricant composition for transmission, and transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-086169 2019-04-26
JP2019086169A JP7348747B2 (ja) 2019-04-26 2019-04-26 変速機用潤滑油組成物、その製造方法、変速機用潤滑油組成物を用いた潤滑方法及び変速機

Publications (1)

Publication Number Publication Date
WO2020218367A1 true WO2020218367A1 (ja) 2020-10-29

Family

ID=72942046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017378 WO2020218367A1 (ja) 2019-04-26 2020-04-22 変速機用潤滑油組成物、その製造方法、変速機用潤滑油組成物を用いた潤滑方法及び変速機

Country Status (5)

Country Link
US (1) US11820954B2 (ja)
EP (1) EP3960839A4 (ja)
JP (1) JP7348747B2 (ja)
CN (1) CN113748189B (ja)
WO (1) WO2020218367A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002511519A (ja) * 1998-04-09 2002-04-16 エクソンモービル ケミカル パテンツ インコーポレイテッド 高分子量分散剤を有する濃縮物及びその調製法
WO2004026998A1 (ja) * 2002-09-18 2004-04-01 Idemitsu Kosan Co., Ltd. トラクションドライブ用流体組成物
JP2010070591A (ja) * 2008-09-16 2010-04-02 Mitsui Chemicals Inc 自動変速機用潤滑油組成物
JP2014098090A (ja) * 2012-11-14 2014-05-29 Idemitsu Kosan Co Ltd 手動変速機用ギヤ油組成物
WO2015147215A1 (ja) * 2014-03-28 2015-10-01 三井化学株式会社 エチレン/α-オレフィン共重合体および潤滑油
JP2016069405A (ja) * 2014-09-26 2016-05-09 三井化学株式会社 潤滑油組成物

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217636A (en) * 1992-03-10 1993-06-08 Albright & Wilson Americas Inc. Lubricating oil viscosity index improver composition
GB9807731D0 (en) * 1998-04-09 1998-06-10 Exxon Chemical Patents Inc Oleaginous compositions
JP4907074B2 (ja) 2004-10-22 2012-03-28 Jx日鉱日石エネルギー株式会社 変速機用潤滑油組成物
JP5350583B2 (ja) * 2006-08-03 2013-11-27 出光興産株式会社 潤滑油組成物及びそれを用いた自動車変速機の金属疲労の向上方法
JP5727713B2 (ja) * 2010-03-19 2015-06-03 出光興産株式会社 内燃機関用潤滑油組成物
US20140179578A1 (en) * 2012-12-24 2014-06-26 Exxonmobil Research And Engineering Company Alternating block copolymer and process for making
WO2015017068A1 (en) * 2013-07-31 2015-02-05 Exxonmobil Chemical Patents Inc. Comb-star viscosity modifier and its compositions
WO2015133529A1 (ja) * 2014-03-04 2015-09-11 出光興産株式会社 潤滑油組成物
US20170175029A1 (en) * 2014-03-31 2017-06-22 Idemitsu Kosan Co., Ltd. Lubricating-oil composition
JP6702611B2 (ja) * 2016-03-04 2020-06-03 出光興産株式会社 潤滑油組成物、潤滑方法、及び変速機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002511519A (ja) * 1998-04-09 2002-04-16 エクソンモービル ケミカル パテンツ インコーポレイテッド 高分子量分散剤を有する濃縮物及びその調製法
WO2004026998A1 (ja) * 2002-09-18 2004-04-01 Idemitsu Kosan Co., Ltd. トラクションドライブ用流体組成物
JP2010070591A (ja) * 2008-09-16 2010-04-02 Mitsui Chemicals Inc 自動変速機用潤滑油組成物
JP2014098090A (ja) * 2012-11-14 2014-05-29 Idemitsu Kosan Co Ltd 手動変速機用ギヤ油組成物
WO2015147215A1 (ja) * 2014-03-28 2015-10-01 三井化学株式会社 エチレン/α-オレフィン共重合体および潤滑油
JP2016069405A (ja) * 2014-09-26 2016-05-09 三井化学株式会社 潤滑油組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3960839A4 *

Also Published As

Publication number Publication date
CN113748189A (zh) 2021-12-03
JP2020180266A (ja) 2020-11-05
CN113748189B (zh) 2024-02-27
EP3960839A1 (en) 2022-03-02
JP7348747B2 (ja) 2023-09-21
EP3960839A4 (en) 2023-01-18
US20220204883A1 (en) 2022-06-30
US11820954B2 (en) 2023-11-21

Similar Documents

Publication Publication Date Title
JP2009500489A5 (ja)
JP2009500489A (ja) 工業潤滑油及びグリース組成物中のhvi−pao
US11111455B2 (en) Lubricating oil composition for automatic transmissions
JP6721230B2 (ja) 潤滑油組成物、潤滑方法、及び変速機
WO2011102037A1 (ja) 無段変速機用潤滑油組成物
KR100664428B1 (ko) 떨림 억제성능 및 엘라스토머 성분과의 상용성을 제공하는윤활유 조성물
JP2016069531A (ja) 変速機用潤滑油組成物
JP2017155079A (ja) 潤滑油組成物、潤滑方法、及び変速機
EP2837677B1 (en) Lubricating oil composition
JP2014177608A (ja) 消泡剤組成物、潤滑油組成物及びその製造方法
JP7129035B2 (ja) 駆動系機器用潤滑油組成物及びその製造方法、駆動系機器の潤滑方法並びに駆動系機器
JP6702611B2 (ja) 潤滑油組成物、潤滑方法、及び変速機
WO2020218367A1 (ja) 変速機用潤滑油組成物、その製造方法、変速機用潤滑油組成物を用いた潤滑方法及び変速機
JP6702612B2 (ja) 潤滑油組成物、潤滑方法、及び変速機
JP2011052047A (ja) 湿式クラッチ用潤滑油組成物
JP7266382B2 (ja) 潤滑油組成物
JP7089899B2 (ja) 潤滑油組成物、潤滑油組成物の製造方法及び駆動系機器
JP2010180279A (ja) 無段変速機用潤滑油組成物
JP2020180249A (ja) 潤滑油組成物
WO2014207172A1 (en) A drive system transmission lubricant oil composition
US20060105926A1 (en) Fluid lubricant
JP2022043579A (ja) 潤滑油組成物
WO2023058440A1 (ja) 潤滑油組成物、潤滑方法及び変速機
WO2023214505A1 (ja) 潤滑油組成物、潤滑方法及び変速機
KR20230025048A (ko) 소음저감 및 내구성 향상을 위한 변속기오일 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20793979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020793979

Country of ref document: EP

Effective date: 20211126