JP2016069405A - 潤滑油組成物 - Google Patents

潤滑油組成物 Download PDF

Info

Publication number
JP2016069405A
JP2016069405A JP2014197123A JP2014197123A JP2016069405A JP 2016069405 A JP2016069405 A JP 2016069405A JP 2014197123 A JP2014197123 A JP 2014197123A JP 2014197123 A JP2014197123 A JP 2014197123A JP 2016069405 A JP2016069405 A JP 2016069405A
Authority
JP
Japan
Prior art keywords
group
viscosity
ethylene
lubricating oil
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014197123A
Other languages
English (en)
Other versions
JP6320262B2 (ja
Inventor
昌太 阿部
Shota Abe
昌太 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2014197123A priority Critical patent/JP6320262B2/ja
Publication of JP2016069405A publication Critical patent/JP2016069405A/ja
Application granted granted Critical
Publication of JP6320262B2 publication Critical patent/JP6320262B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lubricants (AREA)

Abstract

【課題】剪断安定性が極めて優れ、かつ温度粘度特性、低温粘度特性および油膜保持性能が高い水準でバランス良く優れる自動車変速機油用潤滑油組成物を提供すること。
【解決手段】潤滑油基油と、エチレン含有率が30〜85モル%、100℃動粘度が10〜5,000mm2/s、分子量分布が2.5以下、B値が1.1以上、不飽和結合量が炭素原子1000個あたり0.5個未満であるエチレン−α−オレフィン共重合体とを含有し、100℃動粘度が4.0〜7.5mm2/sであり、−40℃におけるブルックフィールド粘度が20,000mPa・s以下であり、前記潤滑油基油が、100℃動粘度が2〜10mm2/s、粘度指数が105以上、流動点が−10℃以下である鉱物油、および/または100℃動粘度が1〜10mm2/s、粘度指数が120以上、流動点が−30℃以下である合成油からなる自動車変速機用潤滑油組成物。
【選択図】なし

Description

本発明は、自動車変速機油用潤滑油組成物に関するものである。
ギア油、変速機油、作動油、グリースといった潤滑油には、内燃機関や工作機械の保護、放熱といった性能に加え、耐摩耗性、耐熱性、耐スラッジ性、潤滑油消費特性、省燃費性など多様な性能が要求される。しかも近年、使用される内燃機関や工業機械の高性能化、高出力化、運転条件の過酷化などに伴い、各要求性能が益々高度化されてきている。特に最近では、潤滑油の使用環境が苛酷化する一方で、環境問題への配慮から長寿命化が求められる傾向にあり、耐熱性の向上、酸化安定性の向上に加え、機関、機械からの剪断応力に起因する低粘度化の抑制、すなわち潤滑油の剪断安定性の向上が求められている。また一方では、機関のエネルギー変換効率の向上、もしくは極低温環境下における機関の良好な潤滑性を確保するため、高温下では潤滑油の油膜を保持し、低温下ではより流動性を保持するといった温度粘度特性が重要視されている。ここで述べる温度粘度特性の一つの指標として、JIS K2283に記載の方法によって算出される粘度指数によって温度粘度特性を数値化することが可能であり、より高い粘度指数がより優れた温度粘度特性を表す。
従って、潤滑油には、耐熱性、酸化安定性、および剪断安定性に優れ、かつ良好な温度粘度特性を有する材料が求められている。
特に、自動車に使用される変速機油においては、これまで以上の優れた温度粘度特性、さらには−40℃といった極低温下での高流動性、すなわち優れた低温粘度特性が求められてきている。これらの粘度特性は自動車の燃費性能に直結するものであるが、この性能向上要求は1997年に京都議定書が採択されて以降、近年世界各極の政府にて乗用車に対する二酸化炭素排出規制や燃費規制、もしくは将来的な目標が定められたためである。
これに基づき、燃費目標達成を目指し、燃費向上のため自動車変速機における機関各部は小型化が進み、使用される潤滑油量も減少してきている。このため、潤滑油に掛かる負荷が増大してきており、潤滑油の更なる長寿命化が求められてきている。また、特に普通自動車用の自動車変速機油によっては、近年では変速機油自体の無交換化が求められてきていることからも、潤滑油の更なる長寿命化は喫緊の課題となっている。
自動車用変速機としては、手動変速機、自動変速機、無段変速機、デュアルクラッチ変速機等が挙げられるが、いずれの変速機においても、変速機油はギア、もしくは金属ベルト等より剪断応力を受けるため、使用経過に伴い潤滑油中に用いられる基材の分子が切断されることにより潤滑油粘度が低下する。潤滑油粘度が低下するとギア同士、金属間の接触が生じ、ギアに著しい損傷を与える。このため、予め使用期間の粘度低下を予想し、潤滑油製造時の初期粘度を上げておくことで、使用・劣化後の潤滑油が理想的な潤滑を行えるように備える必要がある。当然、潤滑油中に用いられる基材の剪断安定性が優れれば、すなわち寿命が長ければ初期粘度を上げる必要がなくなり、結果ギアに対する潤滑油の撹拌抵抗を下げることができるため、燃費向上を図ることができる。
更には、近年の燃費向上策として、変速機油の粘度を従来よりも下げることによって、潤滑油による撹拌抵抗の低減を実現させており、粘度低下に備えた初期粘度の上昇はこの方策に背反しているのみならず、低粘度化により益々ギアにおける金属接触の危険性が高まっているため、粘度低下を生じさせない極めて剪断安定性の高い材料が求められている。
Sciety of Automobile Engineers(SAE)に定められる自動車用ギア油では、その粘度規格であるJ306においてCRC L−45−T−93にて規定される剪断試験後も同一粘度規格内にとどまること、すなわち「Stay−in−grade」が定められているが、近年変速機油においても低粘度化により金属接触の危険性が高まっていることから、変速機の使用・劣化後に潤滑性能不足が生じないよう、この剪断試験後の最低粘度を規定することが求められてきている。
また、変速機油に使用される基材の油膜保持性能が高いことも上述の低粘度変速機油には重要な性能となってくる。すなわち、基材の油膜保持性能が高ければ更なる低粘度化、言い換えれば省燃費性能の向上が実現できるからである。
さらには、温度粘度特性が優れれば、すなわち潤滑油粘度の温度依存性が低ければ、低温環境下においても粘度上昇が抑えられ、結果潤滑油によるギア抵抗が従来技術に対し相対的に低くなり、燃費向上を図ることができる。
従来、燃費向上の方策として潤滑油の温度粘度特性を向上させるために、特許文献1〜4に例示されるようなメタクリレート共重合体やメタクリル酸エステル共重合体等を粘度調整剤、もしくは粘度指数向上剤として用いた潤滑油組成物が知られている。このような共重合体はポリメタクリレートと総称される。
従来より、潤滑油組成物の剪断安定性は含有する成分の分子量に依存することが知られている。すなわち、より分子量の高い成分を含有する潤滑油組成物は剪断応力による粘度低下が生じやすく、この粘度低下率は含有成分の分子量に相関する。
一方で、潤滑油組成物の温度粘度特性や低温粘度特性は高分子量成分をより多く含有することにより向上する。すなわち、潤滑油組成物に使用する粘度調整剤、もしくは粘度指数向上剤は分子量が高くなるにつれ温度粘度特性は向上するものの、剪断安定性が低下していくといった二律背反の関係にある。この点について、剪断安定性と温度粘度特性との両立といった観点から改良の余地がある。
特に湿式クラッチを使用したデュアルクラッチ変速機油は、手動変速機油と同様のギア機構であるため変速機油に高い剪断応力が掛かる一方で、湿式クラッチであるために充填量が手動変速機よりも格段に多くなり、変速機油による撹拌抵抗の影響が大きくなるため、非常に高い剪断安定性と温度粘度特性との両立が求められている。
特開平8−53683号公報 特許第4414123号公報 特許第3816847号公報 特開2009−256665号公報
このような従来技術における問題点に鑑みて本発明が解決しようとする課題は、自動車の省燃費化・省エネルギー化の観点から、剪断安定性が極めて優れ、かつ同一の潤滑油基油を含む従来の潤滑油に比べて温度粘度特性、低温粘度特性、および油膜保持性能が高い水準でバランスよく優れる自動車変速機油用潤滑油組成物を提供することにある。
本発明者らは、優れた性能を有する潤滑油組成物を開発すべく鋭意検討をした結果、特定の潤滑油基油に対し、特定のエチレン−α−オレフィン(共)重合体を含有し、特定の条件を満足する潤滑油組成物が、上記課題を解決できることを見いだし、本発明を完成するに至った。本発明としては、具体的には、以下の態様が挙げられる。
〔1〕 潤滑油基油と、以下の(C1)〜(C5)の特徴を有するエチレン−α−オレフィン共重合体(C)とを含有し、100℃における動粘度が4.0〜7.5mm2/sであり、−40℃におけるブルックフィールド粘度が20,000mPa・s以下であり、
前記潤滑油基油が、以下の(A1)〜(A3)の特徴を有する鉱物油(A)、および/または(B1)〜(B3)の特徴を有する合成油(B)からなる
自動車変速機用潤滑油組成物。
(A1)100℃における動粘度が2〜10mm2/sであること
(A2)粘度指数が105以上であること
(A3)流動点が−10℃以下であること
(B1)100℃における動粘度が1〜10mm2/sであること
(B2)粘度指数が120以上であること
(B3)流動点が−30℃以下であること
(C1)エチレン含有率が30〜85モル%の範囲にあること
(C2)100℃における動粘度が10〜5,000mm2/sであること
(C3)ゲルパーミエーションクロマトグラフィー(GPC)により測定し、ポリスチレン換算により得られた分子量において、分子量分布(Mw/Mn)が2.5以下であること
(C4)下記式[1]
Figure 2016069405
(式中、PEはエチレン成分の含有モル分率を示し、POはα−オレフィン成分の含有モル分率を示し、POEは全dyad連鎖のエチレン−α−オレフィン連鎖のモル分率を示す。)
で表されるB値が、1.1以上であること
(C5)1H−NMRにより測定した不飽和結合量が炭素原子1000個あたり0.5個未満であること
〔2〕 前記エチレン−α−オレフィン共重合体(C)のエチレン含有率が40〜70モル%の範囲にある上記〔1〕に記載の自動車変速機用潤滑油組成物。
〔3〕 前記エチレン−α−オレフィン共重合体(C)の100℃における動粘度が20〜2,500mm2/sである上記〔1〕または〔2〕に記載の自動車変速機用潤滑油組成物。
〔4〕 前記エチレン−α−オレフィン共重合体(C)のα−オレフィンがプロピレンである上記〔1〕〜〔3〕のいずれかに記載の自動車変速機用潤滑油組成物。
〔5〕 上記〔1〕〜〔4〕のいずれかに記載の自動車変速機用潤滑油組成物からなるデュアルクラッチ変速機油。
本発明の潤滑油組成物は、極めて高い剪断安定性を有し、併せて同一の潤滑油基油を含む従来の潤滑油に比べて、温度粘度特性、低温粘度特性、および油膜保持性能が高い水準でバランス良く優れる潤滑油組成物であり、自動車変速機油、特にデュアルクラッチ変速機油に好適に適用できる。
以下、本発明に係る自動車変速機用潤滑油組成物(以下、単に「潤滑油組成物」ともいう。)について詳細に説明する。
本発明に係る自動車変速機用潤滑油組成物は、潤滑油基油とエチレン−α−オレフィン共重合体(C)とを含有し、100℃における動粘度が4.0〜7.5mm2/sであり、−40℃におけるブルックフィールド粘度が20,000mPa・s以下であり、前記潤滑油基油が鉱物油(A)または合成油(B)からなることを特徴としている。
<潤滑油基油>
本発明に使用される潤滑油基油は、その製造方法や精製方法等により粘度特性や耐熱性、酸化安定性等の性能・品質が異なる。API(American Petroleum Institute)では、潤滑油基油をグループI、II、III、IV、Vの5種類に分類している。これらAPIカテゴリーはAPI Publication 1509、15th Edition、Appendix E、April 2002において定義されており、表1に示すとおりである。
Figure 2016069405
<(A)鉱物油>
鉱物油(A)は、以下(A1)〜(A3)の特徴を有する。
(A1)100℃における動粘度が2〜10mm2/sであること
この動粘度の値はJIS K2283に記載の方法に従い測定した場合のものである。鉱物油(A)の100℃における動粘度は、2〜10mm2/s、好ましくは2.5〜8mm2/s、より好ましくは3.5〜6.5mm2/sである。100℃における動粘度がこの範囲にあると、本発明の潤滑油組成物は、揮発性、温度粘度特性の点において優れる。
(A2)粘度指数が105以上であること
この粘度指数の値はJIS K2283に記載の方法に従い測定した場合のものである。鉱物油(A)の粘度指数は、105以上、好ましくは115以上、より好ましくは120以上である。粘度指数がこの範囲にあると、本発明の潤滑油組成物は、優れた温度粘度特性を有する。
(A3)流動点が−10℃以下であること
この流動点の値はASTM D97に記載の方法に従い測定した場合のものである。鉱物油(A)の流動点は、−10℃以下、好ましくは−15℃以下である。流動点がこの範囲にあると、本発明の潤滑油組成物は、鉱物油(A)を流動点降下剤と併用した際に優れた低温粘度特性を有する。
本発明における鉱物油(A)は、上述のAPIカテゴリーにおけるグループI〜IIIに帰属される。
鉱物油の品質は上述の通りであり、精製の方法により、上述したそれぞれの品質の鉱物油が得られる。鉱物油(A)としては、具体的には、原油を常圧蒸留して得られる常圧残油を減圧蒸留して得られた潤滑油留分を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、水素化精製等の処理を1つ以上行って精製したもの、あるいはワックス異性化鉱油等の潤滑油基油が例示できる。
また、フィッシャー・トロプシュ法によって得られたガス・トゥー・リキッド(GTL)基油もグループIII鉱物油として好適に用いることのできる基油である。このようなGTL基油は、グループIII+潤滑油基油として扱われることもあり、例えば、特許文献であるEP0776959、EP0668342、WO97/21788、WO00/15736、WO00/14188、WO00/14187、WO00/14183、WO00/14179、WO00/08115、WO99/41332、EP1029029、WO01/18156およびWO01/57166に記載されている。
本発明の潤滑油組成物においては、潤滑油基油として、鉱物油(A)を単独で用いてもよく、また、合成油(B)、鉱物油(A)の中から選ばれる2種以上の潤滑油の任意混合物等を使用してもよい。
<(B)合成油>
合成油(B)は以下(B1)〜(B3)の特徴を有する。
(B1)100℃における動粘度が1〜10mm2/sであること
この動粘度の値はJIS K2283に記載の方法に従い測定した場合のものである。合成油(B)の100℃における動粘度は、1〜10mm2/s、好ましくは2〜8mm2/s、より好ましくは3.5〜6mm2/sである。100℃における動粘度がこの範囲にあると、本発明の潤滑油組成物は、揮発性、温度粘度特性の点において優れる。
(B2)粘度指数が120以上であること
この粘度指数の値はJIS K2283に記載の方法に従い測定した場合のものである。合成油(B)の粘度指数は、120以上、好ましくは125以上である。粘度指数がこの範囲にあると、本発明の潤滑油組成物は、優れた温度粘度特性を有する。
(B3)流動点が−30℃以下であること
この流動点の値はASTM D97に記載の方法に従い測定した場合のものである。合成油(B)の流動点は、−30℃以下、好ましくは−40℃以下、より好ましくは−50℃以下、さらに好ましくは−60℃以下である。流動点がこの範囲にあると、本発明の潤滑油組成物は、優れた低温粘度特性を有する。
本発明における合成油(B)は、上述のAPIカテゴリーにおけるグループIV、またはグループVに帰属される。
グループIVに帰属されるポリ−α−オレフィンは米国特許第3,780,128号公報、米国特許第4,032,591号公報、特開平1−163136号公報等に記載のように、酸触媒により高級α−オレフィンをオリゴメリゼーションすることにより得ることができる。このうちポリ−α−オレフィンとしては、炭素原子数8以上のオレフィンから選ばれる少なくとも1種のオレフィンの低分子量オリゴマーが使用できる。前記潤滑油基油としてポリ−α−オレフィンを用いると、極めて温度粘度特性、低温粘度特性、さらには耐熱性に優れた潤滑油組成物が得られる。
ポリ−α−オレフィンは、工業的にも入手可能であり、100℃動粘度2mm2/s〜10mm2/sのものが市販されている。例えば、NESTE社製NEXBASE2000シリーズ、ExxonMobil Chemical社製Spectrasyn、Ineos Oligmers社製Durasyn、Chevron Phillips Chemical社製Synfluidなどが挙げられる。
グループVに帰属される合成油としては、例えばアルキルベンゼン類、アルキルナフタレン類、イソブテンオリゴマーまたはその水素化物、パラフィン類、ポリオキシアルキレングリコール、ジアルキルジフェニルエーテル、ポリフェニルエーテル、エステル等が挙げられる。
アルキルベンゼン類、アルキルナフタレン類の大部分は、通常アルキル鎖長が炭素原子数6〜14のジアルキルベンゼンまたはジアルキルナフタレンであり、このようなアルキルベンゼン類またはアルキルナフタレン類は、ベンゼンまたはナフタレンとオレフィンとのフリーデルクラフトアルキル化反応によって製造される。アルキルベンゼン類またはアルキルナフタレン類の製造において使用されるアルキル化オレフィンは、線状もしくは枝分かれ状のオレフィンまたはこれらの組み合わせでもよい。これらの製造方法は、例えば、米国特許第3,909,432号に記載されている。
また、エステルはエチレン−α−オレフィン共重合体(C)との相溶性の観点から脂肪酸エステルが好ましい。
脂肪酸エステルとしては、特に限定されないが、以下のような炭素、酸素、水素のみからなる脂肪酸エステルが挙げられ、例えば、一塩基酸とアルコールから製造されるモノエステル;二塩基酸とアルコールとから、またはジオールと一塩基酸または酸混合物とから製造されるジエステル;ジオール、トリオール(たとえばトリメチロールプロパン)、テトラオール(たとえばペンタエリスリトール)、ヘキサオール(たとえばジペンタエリスリトール)などと一塩基酸または酸混合物とを反応させて製造したポリオールエステルなどが挙げられる。これらのエステルの例としては、ジトリデシルグルタレート、ジ−2−エチルヘキシルアジペート、ジイソデシルアジペート、ジトリデシルアジペート、ジ−2−エチルヘキシルセバケート、トリデシルペラルゴネート、ジ−2−エチルヘキシルアジペート、ジ−2−エチルヘキシルアゼレート、トリメチロールプロパンカプリレート、トリメチロールプロパンペラルゴネート、トリメチロールプロパントリヘプタノエート、ペンタエリスリトール−2−エチルヘキサノエート、ペンタエリスリトールペラルゴネート、ペンタエリスリトールテトラヘプタノエートなどが挙げられる。
エチレン−α−オレフィン共重合体(C)との相溶性の観点から、エステルを構成するアルコール部位としては、水酸基が2官能以上のアルコールが好ましく、脂肪酸部位としては、炭素数が8以上の脂肪酸が好ましい。ただし、脂肪酸については製造コストの点において、工業的に入手が容易である炭素数が20以下の脂肪酸が優位である。エステルを構成する脂肪酸は1種でもよく、2種以上の酸混合物を用いて製造される脂肪酸エステルを用いても、本発明の効果は十分に発揮される。脂肪酸エステルとしては、より具体的には、トリメチロールプロパンラウリン酸ステアリン酸混合トリエステルやジイソデシルアジペートなどが挙げられ、これらはエチレン−α−オレフィン共重合体(A)のような飽和炭化水素成分と、後述する極性基を有する酸化防止剤、腐食防止剤、耐摩耗剤、摩擦調整剤、流動点降下剤、防錆剤および消泡剤等の安定剤との相溶性の点から好ましい。
本発明の潤滑油組成物は、潤滑油基油として合成油(B)、特にポリ−α−オレフィンを用いる場合、潤滑油組成物全体を100質量%としたときに、脂肪酸エステルを5〜20質量%の量で含むことが好ましい。5質量%以上の脂肪酸エステルを含有することにより、各種内燃機関、工業機械内部における樹脂やエラストマーといった潤滑油封止材に対し、良好な適合性が得られる。具体的には、潤滑油封止材の膨潤を抑制できる。酸化安定性または耐熱性の観点から、エステルの量は20質量%以下であることが好ましい。潤滑油組成物に鉱物油が含まれる場合、鉱物油そのものが潤滑油封止剤の膨潤抑制効果を有するため、脂肪酸エステルは必ずしも要さない。
<(C)エチレン−α−オレフィン共重合体>
エチレン−α−オレフィン共重合体(C)は以下(C1)〜(C5)の特徴を有する。
(C1)エチレン含有率が30〜85モル%であること
エチレン−α−オレフィン共重合体(C)のエチレン含量は、通常30〜85モル%、好ましくは40〜70モル%、特に好ましくは45〜65モル%である。これよりも過度に低いと潤滑油組成物の粘度温度特性が悪化し、これよりも過度に高いと分子内のエチレン連鎖が伸びることにより結晶性が発現する場合があり、潤滑油組成物の低温粘度特性が悪化する。
エチレン−α−オレフィン共重合体(C)のエチレン含量は、「高分子分析ハンドブック」(朝倉書店 発行 P163〜170)に記載の方法に従って13C−NMRで測定される。また、この方法により求められた試料を既知試料として、フーリエ変換赤外分光(FT−IR)を用いて測定することも可能である。
(C2)100℃における動粘度が10〜5,000mm2/sであること
この動粘度の値はJIS K2283に記載の方法により測定した場合のものである。エチレン−α−オレフィン共重合体(C)の100℃における動粘度は、10〜5,000mm2/s、好ましくは20〜2,500mm2/s、より好ましくは40〜2,500mm2/s、さらに好ましくは90〜2,500mm2/s、特に好ましくは300〜2,500mm2/sである。エチレン−α−オレフィン共重合体(C)の100℃における動粘度が上記範囲内であると、潤滑油組成物の低温粘度特性の点で好ましい。
(C3)分子量分布が2.5以下であること
エチレン−α−オレフィン共重合体(C)の分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)によって後述する方法に従い測定し、標準ポリスチレン換算により得られた重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)として算出される。このMw/Mnは2.5以下であり、好ましくは2.3以下、より好ましくは2.0以下である。分子量分布がこの範囲を過度に超えると、高温環境での使用において低分子量成分の揮発による潤滑油組成物の粘度変化、もしくは潤滑油組成物の剪断安定性の悪化が生じる。また、エチレン−α−オレフィン共重合体(C)の分子量分布は少なくとも1.4以上あることが好ましい。分子量分布がこの範囲にあると、潤滑油組成物の粘度温度特性、並びに低温粘度特性が優れる。
(C4)B値が1.1以上であること
エチレン−α−オレフィン共重合体(C)の下記式[1]で表されるB値は、1.1以上、好ましくは1.2以上である。
Figure 2016069405
式[1]中、PEはエチレン成分の含有モル分率を示し、POはα−オレフィン成分の含有モル分率を示し、POEは全dyad連鎖のエチレン−α−オレフィン連鎖のモル分率を示す。
上記B値が大きいほど、ブロック的な連鎖が少なく、エチレンおよびα−オレフィンの分布が一様であり、組成分布の狭い共重合体であることを示している。このブロック的連鎖の長さが共重合体の物性面における特性に影響を及ぼすことになり、B値が大きいほどブロック的連鎖が短く、エチレン−α−オレフィン共重合体(C)の流動点が低くなって、潤滑油組成物は良好な低温粘度特性を示す。
B値は、共重合体中における共重合モノマー連鎖分布のランダム性を示す指標であり、上記式[1]中のPE、POおよびPOEは、13C−NMRスペクトルを測定し、J. C. Randall [Macromolecules, 15, 353 (1982)]、J. Ray [Macromolecules, 10, 773 (1977)]らの報告に基づいて求めることができる。
B値の具体的な測定条件は実施例に記載した通りである。
(C5)1H−NMRにより測定した不飽和結合量が炭素原子1000個あたり0.5個未満であること
エチレン−α−オレフィン共重合体(C)の分子が有する、1H−NMRで測定される、ビニル、ビニリデン、二置換オレフィンおよび三置換オレフィン等に由来する二重結合の合計個数(以下「不飽和結合量」ともいう。)は、1000個の炭素原子に対し0.5個未満、好ましくは0.3個未満、より好ましくは0.2個未満、さらに好ましくは0.1個未満である。不飽和結合量が当該範囲内にあると、潤滑油組成物の耐熱性が良好となる。不飽和結合量の具体的な測定条件は実施例に記載した通りである。
エチレン−α−オレフィン共重合体(C)はさらに(C6)の特徴を有することが好ましい。
(C6)融点が観測されないこと
エチレン−α−オレフィン共重合体(C)には示差走査熱量分析(DSC)において融点が観測されないことが好ましい。ここで、融点(Tm)が観測されないとは、示差走査型熱量測定(DSC)で測定される融解熱量(ΔH)(単位:J/g)が実質的に計測されないことをいう。融解熱量(ΔH)が実質的に計測されないとは、示差走査熱量計(DSC)測定においてピークが観測されないか、あるいは観測された融解熱量が1J/g以下であることである。エチレン−α−オレフィン共重合体(C)の融点(Tm)および融解熱量(ΔH)は、示差走査熱量計(DSC)測定を行い、−100℃まで冷却してから昇温速度10℃/分で150℃まで昇温したときにDSC曲線をJIS K7121を参考に解析し求められる。融点が観測されないと低温で結晶成分が生じないため低温粘度の上昇が抑制され、潤滑油組成物は低温粘度特性に優れる。
エチレン−α−オレフィン共重合体(C)に用いられるα−オレフィンとしては、プロピレン、1−ブテン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3−メチル−1−ペンテン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセン、ビニルシクロヘキサンなどの炭素数3〜20の直鎖状または分岐状のα−オレフィンを例示することができる。α−オレフィンとしては、炭素数3〜10の直鎖状または分岐状のα−オレフィンが好ましく、プロピレン、1−ブテン、1−ヘキセンおよび1−オクテンがより好ましく、得られる共重合体を用いた潤滑油組成物の剪断安定性の点からプロピレンが最も好ましい。これらのα−オレフィンは1種単独で、または2種以上組み合わせて用いることができる。
また、極性基含有モノマー、芳香族ビニル化合物、および環状オレフィンから選択される少なくとも1種の他のモノマーを反応系に共存させて重合を進めることもできる。エチレンおよび炭素数が3〜20のα−オレフィンとの合計100質量部に対して、他のモノマーは、例えば20質量部以下、好ましくは10質量部以下の量で用いることができる。
極性基含有モノマーとしては、アクリル酸、メタクリル酸、フマル酸、無水マレイン酸などのα,β−不飽和カルボン酸類、およびこれらのナトリウム塩等の金属塩類、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、メタクリル酸メチル、メタクリル酸エチルなどのα,β−不飽和カルボン酸エステル類、酢酸ビニル、プロピオン酸ビニルなどのビニルエステル類、アクリル酸グリシジル、メタクリル酸グリシジルなどの不飽和グリシジル類などを例示することができる。
芳香族ビニル化合物としては、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、o,p−ジメチルスチレン、メトキシスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルベンジルアセテート、ヒドロキシスチレン、p−クロロスチレン、ジビニルベンゼン、α−メチルスチレン、アリルベンゼンなどを例示することができる。
環状オレフィンとしては、シクロペンテン、シクロヘプテン、ノルボルネン、5−メチル−2−ノルボルネン、テトラシクロドデセンなどの炭素数3〜30、好ましくは3〜20の環状オレフィン類を例示することができる。
エチレン−α−オレフィン共重合体(C)の製造方法は特に限定されないが、特公平2−1163号公報、特公平2−7998号公報に記載されているようなバナジウム化合物と有機アルミニウム化合物とからなるバナジウム系触媒による方法が挙げられる。また、高い重合活性で共重合体を製造する方法として特開昭61−221207号、特公平7−121969号公報、特許第2796376号公報に記載されているようなジルコノセンなどのメタロセン化合物と有機アルミニウムオキシ化合物(アルミノキサン)からなる触媒系を用いる方法等を用いてもよく、得られる共重合体の塩素含量、およびプロピレンの2,1−挿入が低減できるため、より好ましい。バナジウム系触媒による方法では、メタロセン系触媒を用いる方法に対し、助触媒に塩素化合物をより多く使用するため、得られるエチレン−α−オレフィン共重合体中(C)に微量の塩素が残存する可能性がある。
一方、メタロセン系触媒を用いる方法では、実質的に塩素を残存させないため、内燃機関、機械等における金属部分の腐食の可能性を考慮する必要がなくなる。塩素含量は100ppm以下であることが好ましく、50ppm以下であることがより好ましく、20ppm以下であることがさらに好ましく、5ppm以下であることが特に好ましい。塩素含量は種々の公知の方法で定量することができる。本発明における具体的な測定方法は実施例に記載した通りである。
また、プロピレンの2,1−挿入低減は、共重合体分子内のエチレン連鎖をより低減することが可能になり、エチレンの分子内結晶性を抑制できることから、潤滑油組成物の粘度温度特性、低温粘度特性を向上させることができる。プロピレンの2,1−挿入量は特開平7−145212号公報に記載された方法に従って13C−NMR測定の解析によって求められ、好ましくは1%未満、さらに好ましくは0〜0.5%、より好ましくは0〜0.1%である。15.0〜17.5ppmの範囲にピークが観察されないものが特に好ましい。
特に以下のような方法を用いることにより、分子量制御、分子量分布、非晶性、B値の点において良好な性能バランスを有するエチレン−α−オレフィン共重合体(C)が得られる。
エチレン−α−オレフィン共重合体(C)は、下記一般式[I]で表される架橋メタロセン化合物(a)、ならびに、有機金属化合物(b−1)、有機アルミニウムオキシ化合物(b−2)および前記架橋メタロセン化合物(a)と反応してイオン対を形成する化合物(b−3)からなる群より選ばれる少なくとも1種の化合物(b)を含むオレフィン重合触媒の存在下で、エチレンと炭素数が3〜20のα−オレフィンとを共重合することにより製造することができる。
Figure 2016069405
<架橋メタロセン化合物>
架橋メタロセン化合物(a)は、上記式[I]で表される。式[I]中のY、M、R1〜R14、Q、nおよびjを以下に説明する。
(Y、M、R1〜R14、Q、nおよびj)
Yは、第14族原子であり、例えば、炭素原子、ケイ素原子、ゲルマニウム原子およびスズ原子が挙げられ、好ましくは炭素原子またはケイ素原子であり、より好ましくは炭素原子である。
Mは、チタン原子、ジルコニウム原子またはハフニウム原子であり、好ましくはジルコニウム原子である。
1〜R12は、水素原子、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基からなる群より選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよい。また、R1からR12までの隣接した置換基は互いに結合して環を形成していてもよく、互いに結合していなくてもよい。
ここで、炭素数1〜20の炭化水素基としては、炭素数1〜20のアルキル基、炭素数3〜20の環状飽和炭化水素基、炭素数2〜20の鎖状不飽和炭化水素基、炭素数3〜20の環状不飽和炭化水素基、炭素数1〜20のアルキレン基、炭素数6〜20のアリーレン基等が例示される。
炭素数1〜20のアルキル基としては、直鎖状飽和炭化水素基であるメチル基、エチル基、n−プロピル基、アリル(allyl)基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デカニル基など、分岐状飽和炭化水素基であるイソプロピル基、イソブチル基、s−ブチル基、t−ブチル基、t−アミル基、ネオペンチル基、3−メチルペンチル基、1,1−ジエチルプロピル基、1,1−ジメチルブチル基、1−メチル−1−プロピルブチル基、1,1−プロピルブチル基、1,1−ジメチル−2−メチルプロピル基、1−メチル−1−イソプロピル−2−メチルプロピル基、シクロプロピルメチル基などが例示される。アルキル基の炭素数は好ましくは1〜6である。
炭素数3〜20の環状飽和炭化水素基としては、環状飽和炭化水素基であるシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルネニル基、1−アダマンチル基、2−アダマンチル基など、環状飽和炭化水素基の水素原子が炭素数1〜17の炭化水素基で置き換えられた基である3−メチルシクロペンチル基、3−メチルシクロヘキシル基、4−メチルシクロヘキシル基、4−シクロヘキシルシクロヘキシル基、4−フェニルシクロヘキシル基などが例示される。環状飽和炭化水素基の炭素数は好ましくは5〜11である。
炭素数2〜20の鎖状不飽和炭化水素基としては、アルケニル基であるエテニル基(ビニル基)、1−プロペニル基、2−プロペニル基(アリル基)、1−メチルエテニル基(イソプロペニル基)など、アルキニル基であるエチニル基、1−プロピニル基、2−プロピニル基(プロパルギル基)などが例示される。鎖状不飽和炭化水素基の炭素数は好ましくは2〜4である。
炭素数3〜20の環状不飽和炭化水素基としては、環状不飽和炭化水素基であるシクロペンタジエニル基、ノルボルニル基、フェニル基、ナフチル基、インデニル基、アズレニル基、フェナントリル基、アントラセニル基など、環状不飽和炭化水素基の水素原子が炭素数1〜15の炭化水素基で置き換えられた基である3−メチルフェニル基(m−トリル基)、4−メチルフェニル基(p−トリル基)、4−エチルフェニル基、4−t−ブチルフェニル基、4−シクロヘキシルフェニル基、ビフェニリル基、3,4−ジメチルフェニル基、3,5−ジメチルフェニル基、2,4,6−トリメチルフェニル基(メシチル基)など、直鎖状炭化水素基または分岐状飽和炭化水素基の水素原子が炭素数3〜19の環状飽和炭化水素基または環状不飽和炭化水素基で置き換えられた基であるベンジル基、クミル基などが例示される。環状不飽和炭化水素基の炭素数は好ましくは6〜10である。
炭素数1〜20のアルキレン基としては、メチレン基、エチレン基、ジメチルメチレン基(イソプロピリデン基)、エチルメチレン基、メチルエチレン基、n−プロピレン基などが例示される。アルキレン基の炭素数は好ましくは1〜6である。
炭素数6〜20のアリーレン基としては、o−フェニレン基、m−フェニレン基、p−フェニレン基、4,4’−ビフェニリレン基などが例示される。アリ−レン基の炭素数は好ましくは6〜12である。
ケイ素含有基としては、炭素数1〜20の炭化水素基において、炭素原子がケイ素原子で置き換えられた基であるトリメチルシリル基、トリエチルシリル基、t−ブチルジメチルシリル基、トリイソプロピルシリル基等のアルキルシリル基、ジメチルフェニルシリル基、メチルジフェニルシリル基、t−ブチルジフェニルシリル基等のアリールシリル基、ペンタメチルジシラニル基、トリメチルシリルメチル基などが例示される。アルキルシリル基の炭素数は1〜10が好ましく、アリールシリル基の炭素数は6〜18が好ましい。
窒素含有基としては、アミノ基や、上述した炭素数1〜20の炭化水素基またはケイ素含有基において、=CH−構造単位が窒素原子で置き換えられた基、−CH2-構造単位が炭素数1〜20の炭化水素基が結合した窒素原子で置き換えられた基、または−CH3構造単位が炭素数1〜20の炭化水素基が結合した窒素原子またはニトリル基で置き換えられた基であるジメチルアミノ基、ジエチルアミノ基、N−モルフォリニル基、ジメチルアミノメチル基、シアノ基、ピロリジニル基、ピペリジニル基、ピリジニル基など、N−モルフォリニル基およびニトロ基などが例示される。窒素含有基としては、ジメチルアミノ基、N−モルフォリニル基が好ましい。
酸素含有基としては、水酸基や、上述した炭素数1〜20の炭化水素基、ケイ素含有基または窒素含有基において、−CH2−構造単位が酸素原子またはカルボニル基で置き換えられた基、または−CH3構造単位が炭素数1〜20の炭化水素基が結合した酸素原子で置き換えられた基であるメトキシ基、エトキシ基、t−ブトキシ基、フェノキシ基、トリメチルシロキシ基、メトキシエトキシ基、ヒドロキシメチル基、メトキシメチル基、エトキシメチル基、t−ブトキシメチル基、1−ヒドロキシエチル基、1−メトキシエチル基、1−エトキシエチル基、2−ヒドロキシエチル基、2−メトキシエチル基、2−エトキシエチル基、n−2−オキサブチレン基、n−2−オキサペンチレン基、n−3−オキサペンチレン基、アルデヒド基、アセチル基、プロピオニル基、ベンゾイル基、トリメチルシリルカルボニル基、カルバモイル基、メチルアミノカルボニル基、カルボキシ基、メトキシカルボニル基、カルボキシメチル基、エトカルボキシメチル基、カルバモイルメチル基、フラニル基、ピラニル基などが例示される。酸素含有基としては、メトキシ基が好ましい。
ハロゲン原子としては、第17族元素であるフッ素、塩素、臭素、ヨウ素などが例示される。
ハロゲン含有基としては、上述した炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基または酸素含有基において、水素原子がハロゲン原子によって置換された基であるトリフルオロメチル基、トリブロモメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基などが例示される。
Qは、ハロゲン原子、炭素数1〜20の炭化水素基、アニオン配位子および孤立電子対で配位可能な中性配位子から、同一のまたは異なる組合せで選ばれる。
ハロゲン原子および炭素数1〜20の炭化水素基の詳細は、上述のとおりである。Qがハロゲン原子である場合は、塩素原子が好ましい。Qが炭素数1〜20の炭化水素基である場合は、該炭化水素基の炭素数は1〜7であることが好ましい。
アニオン配位子としては、メトキシ基、t−ブトキシ基、フェノキシ基などのアルコキシ基、アセテート、ベンゾエートなどのカルボキシレート基、メシレート、トシレートなどのスルホネート基などを例示することができる。
孤立電子対で配位可能な中性配位子としては、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン、ジフェニルメチルホスフィンなどの有機リン化合物、テトラヒドロフラン、ジエチルエーテル、ジオキサン、1,2−ジメトキシエタンなどのエーテル化合物などを例示することができる。
jは1〜4の整数であり、好ましくは2である。
nは1〜4の整数であり、好ましくは1または2であり、さらに好ましくは1である。
13およびR14は水素原子、炭素数1〜20の炭化水素基、アリール基、置換アリール基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基からなる群より選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよい。また、R13およびR14は互いに結合して環を形成していてもよく、互いに結合していなくてもよい。
炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基の詳細については、上述の通りである。
アリール基としては、前述した炭素数3〜20の環状不飽和炭化水素基の例と一部重複するが、芳香族化合物から誘導された置換基であるフェニル基、1−ナフチル基、2−ナフチル基、アントラセニル基、フェナントレニル基、テトラセニル基、クリセニル基、ピレニル基、インデニル基、アズレニル基、ピロリル基、ピリジル基、フラニル基、チオフェニル基などが例示される。アリール基としては、フェニル基または2−ナフチル基が好ましい。
前記芳香族化合物としては、芳香族炭化水素および複素環式芳香族化合物であるベンゼン、ナフタレン、アントラセン、フェナントレン、テトラセン、クリセン、ピレン、インデン、アズレン、ピロール、ピリジン、フラン、チオフェンなどが例示される。
置換アリール基としては、前述した炭素数3〜20の環状不飽和炭化水素基の例と一部重複するが、前記アリール基が有する1以上の水素原子が炭素数1〜20の炭化水素基、アリール基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基からなる群より選ばれる少なくとも1種の置換基により置換されてなる基が挙げられ、具体的には3−メチルフェニル基(m−トリル基)、4−メチルフェニル基(p−トリル基)、3−エチルフェニル基、4−エチルフェニル基、3,4−ジメチルフェニル基、3,5−ジメチルフェニル基、ビフェニリル基、4−(トリメチルシリル)フェニル基、4−アミノフェニル基、4−(ジメチルアミノ)フェニル基、4−(ジエチルアミノ)フェニル基、4−モルフォリニルフェニル基、4−メトキシフェニル基、4−エトキシフェニル基、4−フェノキシフェニル基、3,4−ジメトキシフェニル基、3,5−ジメトキシフェニル基、3−メチル−4−メトキシフェニル基、3,5−ジメチル−4−メトキシフェニル基、3−(トリフルオロメチル)フェニル基、4−(トリフルオロメチル)フェニル基、3−クロロフェニル基、4−クロロフェニル基、3−フルオロフェニル基、4−フルオロフェニル基、5−メチルナフチル基、2−(6−メチル)ピリジル基などが例示される。
上記式[I]で表される架橋メタロセン化合物(a)において、nは1であることが好ましい。このような架橋メタロセン化合物(以下「架橋メタロセン化合物(a−1)」ともいう。)は、下記一般式[II]で表わされる。
Figure 2016069405
式[II]において、Y、M、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14、Qおよびjの定義等は、上述のとおりである。
架橋メタロセン化合物(a−1)は、上記式[I]におけるnが2〜4の整数である化合物に比べ、製造工程が簡素化され、製造コストが低減され、ひいてはこの架橋メタロセン化合物(a−1)を用いることでエチレン−α−オレフィン共重合体(C)の製造コストが低減されるという利点が得られる。
上記式[II]で表される架橋メタロセン化合物(a−1)において、R1、R2、R3およびR4は全て水素であることが好ましい。このような架橋メタロセン化合物(以下「架橋メタロセン化合物(a−2)」ともいう。)は、下記一般式[III]で表わされる。
Figure 2016069405
式[III]において、Y、M、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14、Qおよびjの定義等は、上述のとおりである。
架橋メタロセン化合物(a−2)は、上記式[I]におけるR1、R2、R3およびR4のいずれか一つ以上が水素原子以外の置換基で置換された化合物に比べ、製造工程が簡素化され、製造コストが低減され、ひいてはこの架橋メタロセン化合物(a−2)を用いることでエチレン−α−オレフィン共重合体(C)の製造コストが低減されるという利点が得られる。また、一般に高温重合を行うことにより、エチレン−α−オレフィン共重合体(C)のランダム性は低下することが知られているが、該架橋メタロセン化合物(a−2)を含むオレフィン重合触媒の存在下でエチレンと炭素数3〜20のα−オレフィンから選ばれる1種以上のモノマ−とを共重合する場合、高温重合であっても、得られるエチレン−α−オレフィン共重合体(C)のランダム性が高いという利点も得られる。
上記式[III]で表される架橋メタロセン化合物(a−2)において、R13およびR14のいずれか一方が、アリール基または置換アリール基であることが好ましい。このような架橋メタロセン化合物(a−3)は、R13およびR14がいずれもアリール基および置換アリール基以外の置換基である場合に比べ、生成するエチレン−α−オレフィン共重合体(C)中の二重結合量が少ないという利点が得られる。
架橋メタロセン化合物(a−3)において、R13およびR14のいずれか一方が、アリール基または置換アリール基であり、他方が炭素数1〜20のアルキル基であることがさらに好ましく、R13およびR14のいずれか一方が、アリール基または置換アリール基であり、他方がメチル基であることが特に好ましい。このような架橋メタロセン化合物(以下「架橋メタロセン化合物(a−4)」ともいう。)は、R13およびR14がいずれもアリール基または置換アリール基である場合に比べ、生成するエチレン−α−オレフィン共重合体(C)中の二重結合量と重合活性とのバランスに優れ、この架橋メタロセン化合物を用いることでエチレン−α−オレフィン共重合体(C)の製造コストが低減されるという利点が得られる。
ある一定の重合器内全圧および温度の条件下で重合を実施する場合において、水素導入による水素分圧の上昇は重合モノマーであるオレフィンの分圧の低下を引き起こし、とりわけ水素分圧が高い領域において重合速度を低下させるという問題を生じる。重合反応器はその設計上許容される内部全圧が制限されているため、特に低分子量のオレフィン重合体を製造する際に過度な水素導入を必要とすると、オレフィン分圧が著しく低下するため、重合活性が低下する場合がある。しかしながら、架橋メタロセン化合物(a−4)を用いて本発明におけるエチレン−α−オレフィン共重合体(C)を製造する場合、上記架橋メタロセン化合物(a−3)を用いる場合に比べ、重合反応器に導入する水素量が低減され、重合活性が向上し、エチレン−α−オレフィン共重合体(C)の製造コストが低減されるという利点が得られる。
上記架橋メタロセン化合物(a−4)において、R6およびR11は隣接した置換基と互いに結合して環を形成していてもよい、炭素数1〜20のアルキル基および炭素数1〜20のアルキレン基であることが好ましい。このような架橋メタロセン化合物(以下「架橋メタロセン化合物(a−5)」ともいう。)は、R6およびR11が炭素数1〜20のアルキル基および炭素数1〜20のアルキレン基以外の置換基で置換された化合物に比べ、製造工程が簡素化され、製造コストが低減され、ひいてはこの架橋メタロセン化合物(a−5)を用いることでエチレン−α−オレフィン共重合体(C)の製造コストが低減されるという利点が得られる。
上記一般式[I]で表される架橋メタロセン化合物(a)、上記一般式[II]で表される架橋メタロセン化合物(a−1)、上記一般式[III]で表される架橋メタロセン化合物(a−2)、ならびに上記架橋メタロセン化合物(a−3)、(a−4)および(a−5)において、Mはジルコニウム原子であることがさらに好ましい。Mがジルコニウム原子である上記架橋メタロセン化合物を含むオレフィン重合触媒の存在下でエチレンと炭素数3〜20のα−オレフィンから選ばれる1種以上のモノマーとを共重合する場合、Mがチタン原子またはハフニウム原子である場合に比べ重合活性が高く、エチレン−α−オレフィン共重合体(C)の製造コストが低減されるという利点が得られる。
このような架橋メタロセン化合物(a)としては、
[ジメチルメチレン(η5−シクロペンタジエニル)(η5−フルオレニル)]ジルコニウムジクロリド、[ジメチルメチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ジメチルメチレン(η5−シクロペンタジエニル)(η5−3,6−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ジメチルメチレン(η5−シクロペンタジエニル)(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、[ジメチルメチレン(η5−シクロペンタジエニル)(η5−テトラメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、
[シクロヘキシリデン(η5−シクロペンタジエニル)(η5−フルオレニル)]ジルコニウムジクロリド、[シクロヘキシリデン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[シクロヘキシリデン(η5−シクロペンタジエニル)(η5−3,6−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[シクロヘキシリデン(η5−シクロペンタジエニル)(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、[シクロヘキシリデン(η5−シクロペンタジエニル)(η5−テトラメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、
[ジフェニルメチレン(η5−シクロペンタジエニル)(η5−フルオレニル)]ジルコニウムジクロリド、[ジフェニルメチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン(η5−2−メチル−4−t−ブチルシクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ジフェニルメチレン(η5−シクロペンタジエニル)(η5−3,6−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ジフェニルメチレン(η5−シクロペンタジエニル)(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン{η5−(2−メチル−4−i−プロピルシクロペンタジエニル)}(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、[ジフェニルメチレン(η5−シクロペンタジエニル)(η5−テトラメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、
[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−フルオレニル)]ジルコニウムジクロリド、[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−3,6−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−テトラメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、
[メチル(3−メチルフェニル)メチレン(η5−シクロペンタジエニル)(η5−フルオレニル)]ジルコニウムジクロリド、[メチル(3−メチルフェニル)メチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[メチル(3−メチルフェニル)メチレン(η5−シクロペンタジエニル)(η5−3,6−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[メチル(3−メチルフェニル)メチレン(η5−シクロペンタジエニル)(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、[メチル(3−メチルフェニル)メチレン(η5−シクロペンタジエニル)(η5−テトラメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、
[ジフェニルシリレン(η5−シクロペンタジエニル)(η5−フルオレニル)]ジルコニウムジクロリド、[ジフェニルシリレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ジフェニルシリレン(η5−シクロペンタジエニル)(η5−3,6−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ジフェニルシリレン(η5−シクロペンタジエニル)(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、[ジフェニルシリレン(η5−シクロペンタジエニル)(η5−テトラメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、
[ビス(3−メチルフェニル)シリレン(η5−シクロペンタジエニル)(η5−フルオレニル)]ジルコニウムジクロリド、[ビス(3−メチルフェニル)シリレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ビス(3−メチルフェニル)シリレン(η5−シクロペンタジエニル)(η5−3,6−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ビス(3−メチルフェニル)シリレン(η5−シクロペンタジエニル)(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、[ビス(3−メチルフェニル)シリレン(η5−シクロペンタジエニル)(η5−テトラメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、
[ジシクロヘキシルシリレン(η5−シクロペンタジエニル)(η5−フルオレニル)]ジルコニウムジクロリド、[ジシクロヘキシルシリレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ジシクロヘキシルシリレン(η5−シクロペンタジエニル)(η5−3,6−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ジシクロヘキシルシリレン(η5−シクロペンタジエニル)(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、[ジシクロヘキシルシリレン(η5−シクロペンタジエニル)(η5−テトラメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、
[エチレン(η5−シクロペンタジエニル)(η5−フルオレニル)]ジルコニウムジクロリド、[エチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[エチレン(η5−シクロペンタジエニル)(η5−3,6−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[エチレン(η5−シクロペンタジエニル)(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、[エチレン(η5−シクロペンタジエニル)(η5−テトラメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、等が挙げられる。
これらの化合物のジルコニウム原子をハフニウム原子に置き換えた化合物またはクロロ配位子をメチル基に置き換えた化合物などが例示されるが、架橋メタロセン化合物(a)はこれらの例示に限定されない。尚、例示した架橋メタロセン化合物(a)の構成部分であるη5−テトラメチルオクタヒドロジベンゾフルオレニルは4,4,7,7−テトラメチル−(5a,5b,11a,12,12a−η5)−1,2,3,4,7,8,9,10−オクタヒドロジベンゾ[b,H]フルオレニル基、η5−オクタメチルオクタヒドロジベンゾフルオレニルは1,1,4,4,7,7,10,10−オクタメチル−(5a,5b,11a,12,12a−η5)−1,2,3,4,7,8,9,10−オクタヒドロジベンゾ[b,H]フルオレニル基をそれぞれ表わす。
<化合物(b)>
本発明で使用される重合触媒は、上記の架橋メタロセン化合物(a)、ならびに有機金属化合物(b−1)、有機アルミニウムオキシ化合物(b−2)および架橋メタロセン化合物(a)と反応してイオン対を形成する化合物(b−3)からなる群より選ばれる少なくとも1種の化合物(b)を含む。
有機金属化合物(b−1)として、具体的には下記のような周期律表第1、2族および第12、13族の有機金属化合物が用いられる。
(b−1a)一般式 Ra mAl(ORbnpq
(式中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素数1〜15、好ましくは1〜4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である)
で表される有機アルミニウム化合物。
このような化合物として、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−ブチルアルミニウム、トリ−n−ヘキシルアルミニウム、トリ−n−オクチルアルミニウムなどのトリ−n−アルキルアルミニウム、トリイソプロピルアルミニウム、トリイソブチルアルミニウム、トリsec−ブチルアルミニウム、トリ−t−ブチルアルミニウム、トリ−2−メチルブチルアルミニウム、トリ−3−メチルヘキシルアルミニウム、トリ−2−エチルヘキシルアルミニウムなどのトリ分岐状アルキルアルミニウム、トリシクロヘキシルアルミニウム、トリシクロオクチルアルミニウムなどのトリシクロアルキルアルミニウム、トリフェニルアルミニウム、トリ(4−メチルフェニル)アルミニウムなどのトリアリールアルミニウム、ジイソプロピルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライドなどのジアルキルアルミニウムハイドライド、一般式(i−C49xAly(C510z(式中、x、y、zは正の数であり、z≦2xである。)で表されるイソプレニルアルミニウムなどのアルケニルアルミニウム、イソブチルアルミニウムメトキシド、イソブチルアルミニウムエトキシドなどのアルキルアルミニウムアルコキシド、ジメチルアルミニウムメトキシド、ジエチルアルミニウムエトキシド、ジブチルアルミニウムブトキシドなどのジアルキルアルミニウムアルコキシド、エチルアルミニウムセスキエトキシド、ブチルアルミニウムセスキブトキシドなどのアルキルアルミニウムセスキアルコキシド、一般式Ra 2.5Al(ORb0.5などで表される平均組成を有する部分的にアルコキシ化されたアルキルアルミニウム、ジエチルアルミニウムフェノキシド、ジエチルアルミニウム(2,6−ジ−t−ブチル−4−メチルフェノキシド)などのアルキルアルミニウムアリーロキシド、ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、ジブチルアルミニウムクロリド、ジエチルアルミニウムブロミド、ジイソブチルアルミニウムクロリドなどのジアルキルアルミニウムハライド、エチルアルミニウムセスキクロリド、ブチルアルミニウムセスキクロリド、エチルアルミニウムセスキブロミドなどのアルキルアルミニウムセスキハライド、エチルアルミニウムジクロリドなどのアルキルアルミニウムジハライドなどの部分的にハロゲン化されたアルキルアルミニウム、ジエチルアルミニウムヒドリド、ジブチルアルミニウムヒドリドなどのジアルキルアルミニウムヒドリド、エチルアルミニウムジヒドリド、プロピルアルミニウムジヒドリドなどのアルキルアルミニウムジヒドリドおよびその他の部分的に水素化されたアルキルアルミニウム、エチルアルミニウムエトキシクロリド、ブチルアルミニウムブトキシクロリド、エチルアルミニウムエトキシブロミドなどの部分的にアルコキシ化およびハロゲン化されたアルキルアルミニウムなどを例示することができる。また、上記一般式Ra mAl(ORbnpqで表される化合物に類似する化合物も使用することができ、例えば窒素原子を介して2以上のアルミニウム化合物が結合した有機アルミニウム化合物を挙げることができる。このような化合物として具体的には、(C252AlN(C25)Al(C252などを挙げることができる。
(b−1b)一般式 M2AlRa 4(式中、M2はLi、NaまたはKを示し、Raは炭素数1〜15、好ましくは1〜4の炭化水素基を示す。)で表される周期律表第1族金属とアルミニウムとの錯アルキル化物。
このような化合物として、LiAl(C254、LiAl(C7154などを例示することができる。
(b−1c)一般式 Rab3(式中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素数1〜15、好ましくは1〜4の炭化水素基を示し、M3はMg、ZnまたはCdである。)で表される周期律表第2族または第12族金属のジアルキル化合物。
有機アルミニウムオキシ化合物(b−2)としては、従来公知のアルミノキサンをそのまま使用することができる。具体的には、下記一般式[IV]で表わされる化合物および下記一般式[V]で表わされる化合物を挙げることができる。
Figure 2016069405
式[IV]および[V]中、Rは炭素数1〜10の炭化水素基、nは2以上の整数を示す。
特にRがメチル基であるメチルアルミノキサンであってnが3以上、好ましくは10以上のものが利用される。これらアルミノキサン類に若干の有機アルミニウム化合物が混入していても差し支えない。
本発明においてエチレンと炭素数が3以上のα−オレフィンとの共重合を高温で行う場合には、特開平2−78687号公報に例示されているようなベンゼン不溶性の有機アルミニウムオキシ化合物も適用することができる。また、特開平2−167305号公報に記載されている有機アルミニウムオキシ化合物、特開平2−24701号公報、特開平3−103407号公報に記載されている二種類以上のアルキル基を有するアルミノキサンなども好適に利用できる。なお、本発明で用いられることのある「ベンゼン不溶性の有機アルミニウムオキシ化合物」とは、60℃のベンゼンに溶解するAl成分がAl原子換算で通常10%以下、好ましくは5%以下、特に好ましくは2%以下であり、ベンゼンに対して不溶性または難溶性である化合物である。
また、有機アルミニウムオキシ化合物(b−2)として、下記一般式[VI]で表されるような修飾メチルアルミノキサン等も挙げることができる。
Figure 2016069405
式[VI]中、Rは炭素数1〜10の炭化水素基、mおよびnはそれぞれ独立に2以上の整数を示す。
この修飾メチルアルミノキサンはトリメチルアルミニウムとトリメチルアルミニウム以外のアルキルアルミニウムを用いて調製されるものである。このような化合物は一般にMMAOと呼ばれている。このようなMMAOは米国特許4960878号公報および米国特許5041584号公報で挙げられている方法で調製することができる。また、東ソー・ファインケム社等からもトリメチルアルミニウムとトリイソブチルアルミニウムを用いて調製した、Rがイソブチル基であるものがMMAOやTMAOといった名称で市販されている。このようなMMAOは各種溶媒への溶解性および保存安定性を改良したアルミノキサンであり、具体的には上記式[IV]で表わされる化合物および[V]で表わされる化合物のうちのベンゼンに対して不溶性または難溶性の化合物とは違い、脂肪族炭化水素や脂環族炭化水素に溶解する。
さらに、有機アルミニウムオキシ化合物(b−2)として、下記一般式[VII]で表されるボロンを含んだ有機アルミニウムオキシ化合物も挙げることができる。
Figure 2016069405
式[VII]中、Rcは炭素数1〜10の炭化水素基を示す。Rdは、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子または炭素数1〜10の炭化水素基を示す。
架橋メタロセン化合物(a)と反応してイオン対を形成する化合物(b−3)(以下、「イオン化イオン性化合物」または単に「イオン性化合物」と略称する場合がある。)としては、特開平1−501950号公報、特開平1−502036号公報、特開平3−179005号公報、特開平3−179006号公報、特開平3−207703号公報、特開平3−207704号公報、米国特許5321106号公報などに記載されたルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物などを挙げることができる。さらに、ヘテロポリ化合物およびイソポリ化合物も挙げることができる。
本発明において好ましく使用されるイオン化イオン性化合物は、下記一般式[VIII]で表されるホウ素化合物である。
Figure 2016069405
式[VIII]中、Re+としては、H+、カルベニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオン、遷移金属を有するフェロセニウムカチオンなどが挙げられる。Rf〜Riは、互いに同一でも異なっていてもよく、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる置換基であり、好ましくは置換アリール基である。
上記カルベニウムカチオンとして具体的には、トリフェニルカルベニウムカチオン、トリス(4−メチルフェニル)カルベニウムカチオン、トリス(3,5−ジメチルフェニル)カルベニウムカチオンなどの三置換カルベニウムカチオンなどが挙げられる。
上記アンモニウムカチオンとして具体的には、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリ(n−プロピル)アンモニウムカチオン、トリイソプロピルアンモニウムカチオン、トリ(n−ブチル)アンモニウムカチオン、トリイソブチルアンモニウムカチオンなどのトリアルキル置換アンモニウムカチオン、N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオンなどのN,N−ジアルキルアニリニウムカチオン、ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオンなどのジアルキルアンモニウムカチオンなどが挙げられる。
上記ホスホニウムカチオンとして具体的には、トリフェニルホスホニウムカチオン、トリス(4−メチルフェニル)ホスホニウムカチオン、トリス(3,5−ジメチルフェニル)ホスホニウムカチオンなどのトリアリールホスホニウムカチオンなどが挙げられる。
e+としては、上記具体例のうち、カルベニウムカチオン、アンモニウムカチオンなどが好ましく、特にトリフェニルカルベニウムカチオン、N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオンが好ましい。
本発明において好ましく使用されるイオン化イオン性化合物のうち、カルベニウムカチオンを含む化合物として、トリフェニルカルベニウムテトラフェニルボレート、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムテトラキス{3,5−ジ−(トリフルオロメチル)フェニル}ボレート、トリス(4−メチルフェニル)カルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリス(3,5−ジメチルフェニル)カルベニウムテトラキス(ペンタフルオロフェニル)ボレートなどを例示することができる。
本発明において好ましく使用されるイオン化イオン性化合物のうち、トリアルキル置換アンモニウムカチオンを含む化合物として、トリエチルアンモニウムテトラフェニルボレート、トリプロピルアンモニウムテトラフェニルボレート、トリ(n−ブチル)アンモニウムテトラフェニルボレート、トリメチルアンモニウムテトラキス(4−メチルフェニル)ボレート、トリメチルアンモニウムテトラキス(2−メチルフェニル)ボレート、トリ(n−ブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリエチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(2,4−ジメチルフェニル)ボレート、トリ(n−ブチル)アンモニウムテトラキス(3,5−ジメチルフェニル)ボレート、トリ(n−ブチル)アンモニウムテトラキス{4−(トリフルオロメチル)フェニル}ボレート、トリ(n−ブチル)アンモニウムテトラキス{3,5−ジ(トリフルオロメチル)フェニル}ボレート、トリ(n−ブチル)アンモニウムテトラキス(2−メチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラフェニルボレート、ジオクタデシルメチルアンモニウムテトラキス(4−メチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(4−メチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(2,4−ジメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(3,5−ジメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス{4−(トリフルオロメチル)フェニル}ボレート、ジオクタデシルメチルアンモニウムテトラキス{3,5−ジ(トリフルオロメチル)フェニル}ボレート、ジオクタデシルメチルアンモニウムなどを例示することができる。
本発明において好ましく使用されるイオン化イオン性化合物のうち、N,N−ジアルキルアニリニウムカチオンを含む化合物として、N,N−ジメチルアニリニウムテトラフェニルボレート、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N−ジメチルアニリニウムテトラキス{3,5−ジ(トリフルオロメチル)フェニル}ボレート、N,N−ジエチルアニリニウムテトラフェニルボレート、N,N−ジエチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N−ジエチルアニリニウムテトラキス{3,5−ジ(トリフルオロメチル)フェニル}ボレート、N,N−2,4,6−ペンタメチルアニリニウムテトラフェニルボレート、N,N−2,4,6−ペンタメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートなどを例示することができる。
本発明において好ましく使用されるイオン化イオン性化合物のうち、ジアルキルアンモニウムカチオンを含む化合物として、ジ−n−プロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジシクロヘキシルアンモニウムテトラフェニルボレートなどを例示することができる。
その他、特開2004−51676号公報によって例示されているイオン性化合物も制限無く使用が可能である。
上記のイオン性化合物(b−3)は、1種単独で用いてもよく2種以上を混合して用いでもよい。
有機金属化合物(b−1)としては、市販品のために入手が容易なトリメチルアルミニウム、トリエチルアルミニウムおよびトリイソブチルアルミニウムが好ましい。このうち、取り扱いが容易なトリイソブチルアルミニウムが特に好ましい。
有機アルミニウムオキシ化合物(b−2)としては、市販品のために入手が容易なメチルアルミノキサン、およびトリメチルアルミニウムとトリイソブチルアルミニウムを用いて調製したMMAOが好ましい。このうち、各種溶媒への溶解性および保存安定性が改良されたMMAOが特に好ましい。
イオン性化合物(b−3)としては、市販品として入手が容易であり、かつ重合活性向上への寄与が大きいことから、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートおよびN,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートが好ましい。
化合物(b)としては、重合活性が大きく向上することから、トリイソブチルアルミニウムとトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートとの組合せ、およびトリイソブチルアルミニウムとN,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートとの組合せが特に好ましい。
<担体(c)>
本発明では、オレフィン重合触媒の構成成分として、必要に応じて担体(c)を用いてもよい。
本発明で用いてもよい担体(c)は、無機または有機の化合物であって、顆粒状ないしは微粒子状の固体である。このうち無機化合物としては、多孔質酸化物、無機塩化物、粘土、粘土鉱物またはイオン交換性層状化合物が好ましい。
多孔質酸化物として、具体的にはSiO2、Al23、MgO、ZrO、TiO2、B23、CaO、ZnO、BaO、THO2など、またはこれらを含む複合物または混合物、例えば天然または合成ゼオライト、SiO2−MgO、SiO2−Al23、SiO2−TiO2、SiO2−V25、SiO2−Cr23、SiO2−TiO2−MgOなどを使用することができる。これらのうち、SiO2および/またはAl23を主成分とするものが好ましい。このような多孔質酸化物は、種類および製法によりその性状は異なるが、本発明に好ましく用いられる担体は、粒径が0.5〜300μm、好ましくは1.0〜200μmであって、比表面積が50〜1000m2/g、好ましくは100〜700m2/gの範囲にあり、細孔容積が0.3〜3.0cm3/gの範囲にある。このような担体は、必要に応じて100〜1000℃、好ましくは150〜700℃で焼成してから使用される。
無機塩化物としては、MgCl2、MgBr2、MnCl2、MnBr2等が用いられる。無機塩化物は、そのまま用いてもよいし、ボールミル、振動ミルにより粉砕した後に用いてもよい。また、アルコールなどの溶媒に無機塩化物を溶解させた後、析出剤によって微粒子状に析出させたものを用いてもよい。
粘土は、通常粘土鉱物を主成分として構成される。また、イオン交換性層状化合物は、イオン結合などによって、構成される面が互いに弱い結合力で平行に積み重なった結晶構造を有する化合物であり、含まれるイオンが交換可能なものである。大部分の粘土鉱物はイオン交換性層状化合物である。また、これらの粘土、粘土鉱物、イオン交換性層状化合物としては、天然産のものに限らず、人工合成物を使用することもできる。また、粘土、粘土鉱物またはイオン交換性層状化合物として、粘土、粘土鉱物、また、六方細密パッキング型、アンチモン型、CdCl2型、CdI2型などの層状の結晶構造を有するイオン結晶性化合物などを例示することができる。このような粘土、粘土鉱物としては、カオリン、ベントナイト、木節粘土、ガイロメ粘土、アロフェン、ヒシンゲル石、パイロフィライト、ウンモ群、モンモリロナイト群、バーミキュライト、リョクデイ石群、パリゴルスカイト、カオリナイト、ナクライト、ディッカイト、ハロイサイトなどが挙げられ、イオン交換性層状化合物としては、α−Zr(HAsO42・H2O、α−Zr(HPO42、α−Zr(KPO42・3H2O、α−Ti(HPO42、α−Ti(HAsO42・H2O、α−Sn(HPO42・H2O、γ−Zr(HPO42、γ−Ti(HPO42、γ−Ti(NH4PO42・H2Oなどの多価金属の結晶性酸性塩などが挙げられる。本発明で用いられる粘土、粘土鉱物には、化学処理を施すことも好ましい。化学処理としては、表面に付着している不純物を除去する表面処理、粘土の結晶構造に影響を与える処理など、何れも使用できる。化学処理として、具体的には、酸処理、アルカリ処理、塩類処理、有機物処理などが挙げられる。
イオン交換性層状化合物は、イオン交換性を利用し、層間の交換性イオンを別の大きな嵩高いイオンと交換することにより、層間が拡大した状態の層状化合物であってもよい。このような嵩高いイオンは、層状構造を支える支柱的な役割を担っており、通常、ピラーと呼ばれる。また、このように層状化合物の層間に別の物質(ゲスト化合物)を導入することをインターカレーションという。ゲスト化合物としては、TiCl4、ZrCl4などの陽イオン性無機化合物、Ti(OR)4、Zr(OR)4、PO(OR)3、B(OR)3などの金属アルコキシド(Rは炭化水素基など)、[Al134(OH)247+、[Zr4(OH)142+、[Fe3O(OCOCH36+などの金属水酸化物イオンなどが挙げられる。これらの化合物は1種単独でまたは2種以上組み合わせて用いられる。また、これらの化合物をインターカレーションする際に、Si(OR)4、Al(OR)3、Ge(OR)4などの金属アルコキシド(Rは炭化水素基など)などを加水分解重縮合して得た重合物、SiO2などのコロイド状無機化合物などを共存させることもできる。また、ピラーとしては、上記金属水酸化物イオンを層間にインターカレーションした後に加熱脱水することにより生成する酸化物などが挙げられる。
これらのうち、好ましいものは粘土または粘土鉱物であり、特に好ましいものはモンモリロナイト、バーミキュライト、ペクトライト、テニオライトおよび合成雲母である。
担体(c)としての有機化合物としては、粒径が0.5〜300μmの範囲にある顆粒状ないしは微粒子状固体を挙げることができる。具体的には、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテンなどの炭素原子数が2〜14のα−オレフィンを主成分として生成される(共)重合体またはビニルシクロヘキサン、スチレンを主成分として生成される(共)重合体、およびそれらの変成体を例示することができる。
ランダム性の高いエチレン−α−オレフィン共重合体(C)を生成可能なオレフィン重合触媒を使用する重合方法により、高温重合が可能となる。すなわち、該オレフィン重合触媒を使用することにより、高温重合時に生成するエチレン−α−オレフィン共重合体(C)のランダム性の低下を抑制することができる。溶液重合においては、生成したエチレン−α−オレフィン共重合体(C)を含む重合溶液の粘度が高温で低下するため、低温重合時に比べて重合器内のエチレン−α−オレフィン共重合体(C)の濃度を上げることが可能となり、結果として重合器当りの生産性が向上する。本発明におけるエチレンおよびα−オレフィンの共重合は、溶液重合、懸濁重合(スラリー重合)などの液相重合法または気相重合法のいずれにおいても実施できるが、このように、本発明の効果を最大限享受し得るという観点からは溶液重合が特に好ましい。
オレフィン重合触媒の各成分の使用法、添加順序は任意に選ばれる。また、触媒中の各成分の少なくとも2つ以上は予め接触されていてもよい。
架橋メタロセン化合物(a)(以下「成分(a)」ともいう。)は、反応容積1リットル当り、通常10-9〜10-1モル、好ましくは10-8〜10-2モルになるような量で用いられる。
有機金属化合物(b−1)(以下「成分(b−1)」ともいう。)は、成分(b−1)と、成分(a)中の遷移金属原子(M)とのモル比[(b−1)/M]が、通常0.01〜50,000、好ましくは0.05〜10,000となるような量で用いられる。
有機アルミニウムオキシ化合物(b−2)(以下「成分(b−2)」ともいう。)は、成分(b−2)中のアルミニウム原子と、成分(a)中の遷移金属原子(M)とのモル比[(b−2)/M]が、通常10〜5,000、好ましくは20〜2,000となるような量で用いられる。
イオン性化合物(b−3)(以下「成分(b−3)」ともいう。)は、成分(b−3)と、成分(a)中の遷移金属原子(M)とのモル比[(b−3)/M]が、通常1〜10,000、好ましくは1〜5,000となるような量で用いられる。
重合温度は、通常−50℃〜300℃であり、好ましくは30〜250℃、より好ましくは100℃〜250℃、さらに好ましくは130℃〜200℃である。前記範囲の重合温度領域では温度が高くなるに従い、重合時の溶液粘度が低下し、重合熱の除熱も容易となる。重合圧力は、通常、常圧〜10MPaゲージ圧(MPa−G)、好ましくは常圧〜8MPa−Gである。
重合反応は、回分式、半連続式、連続式のいずれの方法においても行うことができる。さらに、重合を反応条件の異なる二つ以上の重合器で連続的に行うことも可能である。
得られる共重合体の分子量は、重合系中の水素濃度や重合温度を変化させることによって調節することができる。さらに、使用する成分(b)の量により調節することもできる。水素を添加する場合、その量は生成する共重合体1kgあたり0.001〜5,000NL程度が適当である。
液相重合法において用いられる重合溶媒は、通常、不活性炭化水素溶媒であり、好ましくは常圧下における沸点が50℃〜200℃の飽和炭化水素である。重合溶媒としては、具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素が挙げられ、特に好ましくは、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサンが挙げられる。重合対象であるα−オレフィン自身を重合溶媒として用いることもできる。尚、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類やエチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素も重合溶媒として使用することができるが、環境への負荷軽減の視点および人体健康への影響の最少化の視点からは、これらの使用は好ましくない。
オレフィン重合体の100℃における動粘度は重合体の分子量に依存する。すなわち高分子量であれば高粘度となり、低分子量であれば低粘度となるため、上述の分子量調整により100℃における動粘度を調整する。また、減圧蒸留のような従来公知の方法により得られた重合体の低分子量成分を除去することで、得られる重合体の分子量分布(Mw/Mn)を調整することができる。さらに得られた重合体について、従来公知の方法により水素添加(以下水添ともいう。)を行ってもよい。水添により得られた重合体の2重結合が低減されれば、酸化安定性および耐熱性が向上する。
得られたエチレン−α−オレフィン共重合体(C)は、1種単独で用いてもよく、また、異なる分子量のものや異なるモノマー組成のものを2種類以上組み合わせてもよい。
また、エチレン−α−オレフィン共重合体(C)は、官能基をグラフト変性させてもよく、また、これらをさらに2次変性してもよい。例えば、特開昭61−126120号公報や特許第2593264号公報などに記載される方法など、2次変性としては特表2008−508402号公報などに記載される方法などが挙げられる。
<自動車変速機用潤滑油組成物>
本発明に係る自動車変速機用潤滑油組成物は、前記鉱物油(A)および/または合成油(B)からなる潤滑油基油ならびに前記エチレン−α−オレフィン共重合体(C)を含有する。
本発明に係る自動車ギア用潤滑油組成物は100℃における動粘度が4.0〜7.5mm2/sである。この動粘度の値は、JIS K2283に記載の方法により測定した場合のものである。自動車ギア用潤滑油組成物の100℃における動粘度が7.5mm2/sを過度に超えると潤滑油のギア、もしくは金属チェーン等への撹拌抵抗が増加し、省燃費性能が劣る。100℃における動粘度が4.0mm2/sよりも過度に小さいとギア、もしくは金属チェーン間での金属接触が生じる可能性がある。100℃における動粘度は好ましくは4.0〜7.0mm2/sであり、より好ましくは4.2〜6.5mm2/s、さらに好ましくは4.2〜6.0mm2/sである。この範囲において高い省燃費性能と極めて優れた剪断安定性が得られる。
また、本発明の自動車変速機用潤滑油組成物の−40℃におけるブルックフィールド粘度は20,000mPa・s以下、好ましくは15,000mPa・s以下、より好ましくは10,000mPa・s以下、さらに好ましくは8,000mPa・s以下である。この−40℃におけるブルックフィールド粘度の値は、ASTM D2983に準拠し、−40℃でブルックフィールド粘度計によって測定した場合のものである。この粘度がこの範囲にある自動車変速機用潤滑油組成物を用いた自動車は、低温環境下において自動車始動時の燃費性能が優れる。
さらに、本発明の自動車変速機用潤滑油組成物のJASO M347に準拠した60分の超音波照射による超音波剪断試験での100℃における動粘度の低下率は、好ましくは1.0%未満である。すなわち、本発明の自動車変速機用潤滑油組成物は極めて高い剪断安定性を有する。本試験での粘度低下率が1.0%未満であれば、変速機油の無交換化要求に対応するのみならず、更なる低粘度化、すなわち省燃費化が実現できる可能性がある。
本発明の自動車変速機用潤滑油組成物において、前記鉱物油(A)、および/または合成油(B)からなる潤滑油基油と前記エチレン−α−オレフィン共重合体(C)との配合割合は、目的とする用途における要求特性を満たせば特に制限されるものではないが、通常、前記潤滑油基油と前記エチレン−α−オレフィン共重合体(C)との質量比(潤滑油基油の質量/共重合体(C)の質量)は99/1〜50/50である。
また、本発明の自動車変速機用潤滑油組成物は、極圧剤、清浄分散剤、粘度指数向上剤、酸化防止剤、腐食防止剤、耐摩耗剤、摩擦調整剤、流動点降下剤、防錆剤および消泡剤等の添加剤を含んでいてもよい。
本発明の潤滑油組成物に用いられる添加剤としては下記のものを例示することができ、これらを1種単独でまたは2種以上組み合わせて用いることができる。
極圧剤は、自動車ギアが高負荷状態に晒された場合に、焼付け防止の効果を有するものの総称であり、特に限定されないが、スルフィド類、スルホキシド類、スルホン類、チオホスフィネート類、チオカーボネート類、硫化油脂、硫化オレフィンなどのイオウ系極圧剤;リン酸エステル、亜リン酸エステル、リン酸エステルアミン塩、亜リン酸エステルアミン類などのリン酸類;塩素化炭化水素などのハロゲン系化合物などを例示することができる。また、これらの化合物を2種類以上併用してもよい。
なお、極圧潤滑条件に至るまでに、炭化水素、または潤滑油組成物を構成する他の有機成分が、加熱、せん断により極圧潤滑条件以前に炭化してしまい、金属表面に炭化物被膜を形成する可能性がある。このため、極圧剤単独の使用では、炭化物被膜により極圧剤と金属表面の接触が阻害され、極圧剤の十分な効果が期待できないおそれがある。
極圧剤は単独で添加してもよいが、本発明における自動車用ギア油は共重合体といった飽和炭化水素を主成分とするため、予め使用する他の添加剤とともに、鉱物油もしくは合成炭化水素油等の潤滑油基油に溶解させた状態で添加した方が、分散性の観点から好ましい。具体的には、極圧剤成分などの諸成分をあらかじめ配合し、更に鉱物油もしくは合成炭化水素油等の潤滑油基油に溶解させた、いわゆる極圧剤パッケージを選択して潤滑油組成物に添加する方法がより好ましい。
好ましい極圧剤(パッケージ)としては、LUBRIZOL社製Anglamol−98A、LUBRIZOL社製Anglamol−6043、AFTON CHEMICAL社製HITEC1532、AFTON CHEMICAL社製HITEC307、AFTON CHEMICAL社製HITEC3339、RHEIN CHEMIE社製Additin RC 9410等が挙げられる。
極圧剤は、必要に応じて潤滑油組成物100質量%に対して0〜10質量%の範囲で用いられる。
耐摩耗剤としては、二硫化モリブデンなどの無機または有機モリブデン化合物、グラファイト、硫化アンチモン、ポリテトラフルオロエチレンなどを例示することができる。耐摩耗剤は、必要に応じて潤滑油組成物100質量%に対して0〜3質量%の範囲で用いられる。
摩擦調整剤としては、炭素数6〜30のアルキル基又はアルケニル基、特に炭素数6〜30の直鎖アルキル基又は直鎖アルケニル基を分子中に少なくとも1個有する、アミン化合物、イミド化合物、脂肪酸エステル、脂肪酸アミド、脂肪酸金属塩等を例示することができる。
アミン化合物としては、炭素数6〜30の直鎖状若しくは分枝状、好ましくは直鎖状の脂肪族モノアミン、直鎖状若しくは分枝状、好ましくは直鎖状の脂肪族ポリアミン、又はこれら脂肪族アミンのアルキレンオキシド付加物等が例示できる。イミド化合物としては、炭素数6〜30の直鎖状若しくは分岐状のアルキル基又はアルケニル基を有するコハク酸イミド及び/又はそのカルボン酸、ホウ酸、リン酸、硫酸等による変性化合物等が挙げられる。脂肪酸エステルとしては、炭素数7〜31の直鎖状又は分枝状、好ましくは直鎖状の脂肪酸と、脂肪族1価アルコール又は脂肪族多価アルコールとのエステル等が例示できる。脂肪酸アミドとしては、炭素数7〜31の直鎖状又は分枝状、好ましくは直鎖状の脂肪酸と、脂肪族モノアミン又は脂肪族ポリアミンとのアミド等が例示できる。脂肪酸金属塩としては、炭素数7〜31の直鎖状又は分枝状、好ましくは直鎖状の脂肪酸の、アルカリ土類金属塩(マグネシウム塩、カルシウム塩等)や亜鉛塩等が挙げられる。
摩擦調整剤は、必要に応じて潤滑油組成物100質量%に対して0〜5.0質量%の範囲で用いられる。
清浄分散剤としては、金属スルホネート、金属フェネート、金属フォスファネート、コハク酸イミドなどを例示することができる。清浄分散剤は、必要に応じて潤滑油組成物100質量%に対して0〜15質量%の範囲で用いられる。
粘度指数向上剤としては、エチレン−α−オレフィン共重合体(エチレン−α−オレフィン共重合体(C)を除く。)の他に、分子量が50,000を超えるようなオレフィンコポリマー、メタクリレート系共重合体、液状ポリブテン等の既知の粘度指数向上剤を併用することができる。粘度指数向上剤は、必要に応じて潤滑油組成物100質量%に対して0〜50質量%の範囲で用いられる。
酸化防止剤としては、2,6−ジ−t−ブチル−4−メチルフェノールなどのフェノール系やアミン系の化合物が挙げられる。酸化防止剤は、必要に応じて潤滑油組成物100質量%に対して0〜3質量%の範囲で用いられる。
腐食防止剤としては、ベンゾトリアゾール、ベンゾイミダゾール、チアジアゾール等の化合物が挙げられる。腐食防止剤は、必要に応じてグリース組成物100質量%に対して0〜3質量%の範囲で用いられる。
防錆剤としては、各種アミン化合物、カルボン酸金属塩、多価アルコールエステル、リン化合物、スルホネートなどの化合物が挙げられる。防錆剤は、必要に応じて潤滑油組成物100質量%に対して0〜3質量%の範囲で用いられる。
消泡剤としては、ジメチルシロキサン、シリカゲル分散体などのシリコーン系化合物、アルコール系またはエステル系の化合物などを例示することができる。消泡剤は、必要に応じて潤滑油組成物100質量%に対して0〜0.2質量%の範囲で用いられる。
流動点降下剤としては、種々公知の流動点降下剤を使用し得る。具体的には、有機酸エステル基を含有する高分子化合物が用いられ、有機酸エステル基を含有するビニル重合体が特に好適に用いられる。有機酸エステル基を含有するビニル重合体としては例えばメタクリル酸アルキルの(共)重合体、アクリル酸アルキルの(共)重合体、フマル酸アルキルの(共)重合体、マレイン酸アルキルの(共)重合体、アルキル化ナフタレン等が挙げられる。
このような流動点降下剤は、融点が−13℃以下であり、好ましくは−15℃、さらに好ましくは−17℃以下である。流動点降下剤の融点は、示差走査型熱量計(DSC)を用いて測定される。具体的には、試料約5mgをアルミパンに詰めて200℃まで昇温し、200℃で5分間保持した後、10℃/分で−40℃まで冷却し、−40℃で5分保持した後、10℃/分で昇温する際の吸熱曲線から求める。
上記流動点降下剤はさらに、ゲルパーミエーションクロマトグラフィーによって得られるポリスチレン換算重量平均分子量が20,000〜400,000の範囲にあり、好ましくは30,000〜300,000、より好ましくは40,000〜200,000の範囲にある。
流動点降下剤は、必要に応じて潤滑油組成物100質量%に対して0〜2質量%の範囲で用いられる。
上記の添加剤以外にも、抗乳化剤、着色剤、油性剤(油性向上剤)などを必要に応じて用いることができる。
自動変速機油や無段変速機油においては、この用途のために各種必要添加剤を配合し、鉱物油もしくは合成炭化水素油等の潤滑油に濃縮溶解させた、いわゆるDIパッケージが工業的に供給されており、例えば自動変速機油用DIパッケージとしてはAFTON CHEMICAL社製HITEC3419D、AFTON CHEMICAL社製HITEC2426等が挙げられ、無段変速機油用DIパッケージとしてはLUBRIZOL社製Lubrizol6373等が挙げられるが、これらのDIパッケージを本発明の潤滑油組成物に適用することもできる。
<用途>
本発明の潤滑油組成物は、手動変速機油、自動変速機油、無段変速機油、デュアルクラッチ変速機油のような自動車変速機油に好適に使用でき、極めて優れた剪断安定性を有し、かつ温度粘度特性、低温粘度特性および油膜保持性能が高い水準でバランス良く優れており、自動車の省燃費性能に大きく寄与できる。特に変速機油に高い剪断応力が掛かり、かつ変速機油による撹拌抵抗の影響が大きいデュアルクラッチ変速機油に好適に用いることができる。
以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。
[評価方法]
下記実施例および比較例等において、エチレン−α−オレフィン共重合体および自動車変速機油用潤滑油組成物の物性等は以下の方法で測定した。
<エチレン含有量(mol%)>
日本分光社製フーリエ変換赤外分光光度計FT/IR−610またはFT/IR−6100を用い、長鎖メチレン基の横揺れ振動に基づく721cm-1付近の吸収とプロピレンの骨格振動に基づく1155cm-1付近の吸収との吸光度比(D1155cm-1/D721cm-1)を算出し、予め作成しておいた検量線(ASTM D3900での標準試料を使って作成)よりエチレン含有量(重量%)を求めた。次に、得られたエチレン含有量(重量%)を用い、下記式に従ってエチレン含有量(mol%)を求めた。
Figure 2016069405
<B値>
o−ジクロロベンゼン/ベンゼン−d6(4/1[vol/vol%])を測定溶媒とし、測定温度120℃、スペクトル幅250ppm、パルス繰り返し時間5.5秒、かつパルス幅4.7・sec(45oパルス)の測定条件下(100MHz、日本電子ECX400P)、または測定温度120℃、スペクトル幅250ppm、パルス繰り返し時間5.5秒、かつパルス幅5.0・sec(45oパルス)の測定条件下(125 MHz、ブルカー・バイオスピンAVANCEIIIcryo−500)にて13C−NMRスペクトルを測定し、下記式[1]に基づきB値を算出した。
Figure 2016069405
式[1]中、PEはエチレン成分の含有モル分率を示し、POはα−オレフィン成分の含有モル分率を示し、POEは全dyad連鎖のエチレン−α−オレフィン連鎖のモル分率を示す。
<分子量分布>
分子量分布は、東ソー株式会社HLC−8320GPCを用いて以下のようにして測定した。分離カラムとして、TSKgel SuperMultiporeHZ−M(4本)を用い、カラム温度を40℃とし、移動相にはテトラヒドロフラン(和光純薬社製)を用い、展開速度を0.35ml/分とし、試料濃度を5.5g/Lとし、試料注入量を20マイクロリットルとし、検出器として示差屈折計を用いた。標準ポリスチレンとしては、東ソー社製(PStQuick MP−M)のものを用いた。汎用校正の手順に従い、ポリスチレン分子量換算として重量平均分子量(Mw)並びに数平均分子量(Mn)を算出し、これらの値から分子量分布(Mw/Mn)を算出した。
<不飽和結合量>
o−ジクロロベンゼン−d4を測定溶媒とし、測定温度120℃、スペクトル幅20ppm、パルス繰り返し時間7.0秒、かつパルス幅6.15μsec(45oパルス)の測定条件下にて、1H−NMRスペクトル(400 MHz、日本電子ECX400P)を測定した。ケミカルシフト基準には、溶媒ピーク(オルトジクロロベンゼン 7.1ppm)を用い、0〜3ppmに観測されるメインピークと、4〜6ppmに観測されるビニル、ビニリデン、二置換オレフィンおよび三置換オレフィンに由来するピークの積分値の比率より、炭素原子1000個当たりの不飽和結合量(個/1000C)を算出した。
<融点>
セイコーインスツルメント社X−DSC−7000を用い、簡易密閉できるアルミサンプルパンに約8mgのエチレン−α−オレフィン共重合体を入れてDSCセルに配置し、DSCセルを窒素雰囲気下にて室温から150℃まで10℃/分で昇温し、次いで、150℃で5分間保持した後、10℃/分で降温し、DSCセルを−100℃まで冷却した(降温過程)。次いで、100℃で5分間保持した後、10℃/分で昇温し、昇温過程で得られるエンタルピー曲線が極大値を示す温度を融点(Tm)とし、融解に伴う吸熱量の総和を融解熱量(ΔH)とした。ピークが観測されないか、融解熱量(ΔH)の値が1J/g以下の場合、融点(Tm)は観測されないとみなした。融点(Tm)、および融解熱量(ΔH)の求め方はJIS K7121に基づいた。
<含有塩素量>
サーモフィッシャーサイエンティフィック社ICS−1600を用い、エチレン−α−オレフィン共重合体を、試料ボートに入れてAr/O2気流中、燃焼炉設定温度900℃にて燃焼分解した。このときの発生ガスを吸収液に吸収させ、イオンクロマトグラフ法にて定量した。
<粘度特性>
100℃動粘度、40℃動粘度、および粘度指数は、JIS K2283に記載の方法により、測定、算出した。
<−40℃粘度>
低温粘度特性として、ASTM D2983に準拠し、−40℃にてブルックフィールド粘度計により−40℃粘度を測定した。
<流動点>
流動点はASTM D97に記載の方法により測定した。なお、流動点が−60℃を下回る場合は、−60℃以下と記載した。
<剪断試験(1)>
潤滑油組成物に対して、自動変速機油剪断安定性試験方法であるJASO M347に準拠し、60分の超音波照射を行い、下式で表される照射による100℃での動粘度の低下率(剪断試験(1)粘度低下率)を評価した。
剪断試験(1)粘度低下率(%)=(照射前の100℃動粘度−照射後の100℃動粘度)/照射前の100℃動粘度×100
<剪断試験(2)>
潤滑油組成物に対して、CRC L−45−T−93に記載の方法に準拠し、KRL剪断試験機を用いて、試験時間20時間、試験温度60℃、ベアリング回転数1450rpmの剪断条件下にて剪断を行い、下式で表される剪断による100℃動粘度の低下率(剪断試験(2)粘度低下率)を評価した。
剪断試験(2)粘度低下率(%)=(剪断前の100℃動粘度−剪断後の100℃動粘度)/剪断前の100℃動粘度×100
<油膜厚さ>
Plint Tribology社TE71 Optival Viscometerを用い、設定荷重5N、測定速度1.0m/sの条件にて80℃における油膜厚さを測定した。
[エチレン−α−オレフィン共重合体(C)の製造]
エチレン−α−オレフィン共重合体(C)は以下の重合例に従い製造した。なお、得られたエチレン−α−オレフィン共重合体(C)について、必要に応じて、下記方法で水添操作を実施した。
<水添操作>
内容積1Lのステンレス製オートクレーブに0.5質量%Pd/アルミナ触媒のヘキサン溶液100mLおよびエチレン−α−オレフィン共重合体の30質量%ヘキサン溶液500mLを加え、オートクレーブを密閉した後、窒素置換を行なった。次いで、撹拌をしながら140℃まで昇温し、系内を水素置換した後、水素で1.5MPaまで昇圧して15分間水添反応を実施した。
<メタロセン化合物の合成>
〔合成例1〕
[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリドの合成
(i)6−メチル−6−フェニルフルベンの合成
窒素雰囲気下、200mL三口フラスコにリチウムシクロペンタジエン7.3g (101.6mmol)および脱水テトラヒドロフラン100mLを加えて攪拌した。溶液をアイスバスで冷却し、アセトフェノン15.0g(111.8mmol)を滴下した。その後、室温で20時間攪拌し、得られた溶液を希塩酸水溶液でクエンチした。ヘキサン100mLを加えて可溶分を抽出し、この有機層を水、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。その後、溶媒を留去し、得られた粘性液体をカラムクロマトグラフィー(ヘキサン)で分離し、目的物(赤色粘性液体)を得た。
(ii)メチル(シクロペンタジエニル)(2,7−ジ−t−ブチルフルオレニル)(フェニル)メタンの合成
窒素雰囲気下、100mL三口フラスコに2,7−ジ−t−ブチルフルオレン2.01g(7.20mmol)および脱水t−ブチルメチルエーテル50mLを添加した。氷浴で冷却しながらn−ブチルリチウム/ヘキサン溶液(1.65M)4.60mL(7.59mmol)を徐々に添加し、室温で16時間攪拌した。6−メチル−6−フェニルフルベン1.66g(9.85mmol)を添加した後、加熱還流下で1時間攪拌した。氷浴で冷却しながら水50mLを徐々に添加し、得られた二層の溶液を200mL分液漏斗に移した。ジエチルエーテル50mLを加えて数回振った後水層を除き、有機層を水50mLで3回、飽和食塩水50mLで1回洗浄した。無水硫酸マグネシウムで30分間乾燥した後、減圧下で溶媒を留去した。少量のヘキサンを加えて得た溶液に超音波を当てたところ固体が析出したので、これを採取して少量のヘキサンで洗浄した。減圧下で乾燥し、白色固体としてメチル(シクロペンタジエニル)(2,7−ジ−t−ブチルフルオレニル)(フェニル)メタン2.83gを得た。
(iii)[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリドの合成
窒素雰囲気下、100mLシュレンク管にメチル(シクロペンタジエニル)(2,7−ジ−t−ブチルフルオレニル)(フェニル)メタン1.50g(3.36mmol)、脱水トルエン50mLおよびTHF 570μL(7.03mmol)を順次添加した。氷浴で冷却しながらn−ブチルリチウム/ヘキサン溶液(1.65M)4.20mL(6.93mmol)を徐々に添加し、45℃で5時間攪拌した。減圧下で溶媒を留去し、脱水ジエチルエーテル40mLを添加して赤色溶液とした。メタノール/ドライアイス浴で冷却しながら四塩化ジルコニウム 728mg(3.12mmol)を添加し、室温まで徐々に昇温しながら16時間攪拌したところ、赤橙色スラリーが得られた。減圧下で溶媒を留去して得られた固体をグローブボックス内に持ち込み、ヘキサンで洗浄した後、ジクロロメタンで抽出した。減圧下で溶媒を留去して濃縮した後、少量のヘキサンを加え、−20℃で放置したところ赤橙色固体が析出した。この固体を少量のヘキサンで洗浄した後、減圧下で乾燥することにより、赤橙色固体として[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド1.20gを得た。
〔合成例2〕
[エチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリドの合成
[エチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリドは、特許第4367687号公報に記載の方法で合成した。
<重合例1>
充分に窒素置換した内容積1Lのガラス製重合器にデカン250mLを装入し、系内の温度を130℃に昇温した後、エチレンを25L/hr、プロピレンを75L/hr、水素を100L/hrの流量で連続的に重合器内に供給し、撹拌回転数600rpmで撹拌した。次にトリイソブチルアルミニウム0.2mmolを重合器に装入し、次いでMMAO1.213mmolと[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド0.00402mmolをトルエン中で15分以上予備混合したものを重合器に装入することにより重合を開始した。その後、エチレン、プロピレン、水素の連続的供給を継続し、130℃で15分間重合を行った。少量のイソブチルアルコールを系内に添加することにより重合を停止した後、未反応のモノマーをパージした。得られたポリマー溶液を、0.2mol/lの塩酸100mLで3回、次いで蒸留水100mLで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーを80℃の減圧下で一晩乾燥し、エチレン−プロピレン共重合体0.77gを得た。さらに、このエチレン−プロピレン共重合体に対して水添操作を施した。
以上の操作により得られたポリマーの不飽和結合量は0.1個/1000C未満、塩素含量は0.1ppm未満、エチレン含有量は48.8mol%、Mwは4,172、Mw/Mnは1.7、B値は1.2、100℃動粘度は102mm2/sであり、融点(融解ピーク)は観測されなかった。
<重合例2>
充分に窒素置換した内容積2Lのステンレス製オートクレーブにヘプタン710mLおよびプロピレン145gを装入し、系内の温度を150℃に昇温した後、水素0.40MPa、エチレン0.27MPaを供給することにより全圧を3MPaGとした。次にトリイソブチルアルミニウム0.4mmol、[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド 0.0001mmolおよびN,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート0.001mmolを窒素で圧入し、攪拌回転数を400rpmにすることにより重合を開始した。その後、エチレンのみを連続的に供給することにより全圧を3MPaGに保ち、150℃で5分間重合を行った。少量のエタノールを系内に添加することにより重合を停止した後、未反応のエチレン、プロピレン、水素をパージした。得られたポリマー溶液を、0.2mol/lの塩酸1000mLで3回、次いで蒸留水1000mLで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーを80℃の減圧下で一晩乾燥し、エチレン−プロピレン共重合体52.2gを得た。さらに、このエチレン−プロピレン共重合体に対して水添操作を施した。
以上の操作により得られたポリマーの不飽和結合量は0.1個/1000C未満、塩素含量は0.1ppm未満、エチレン含有量は53.1mol%、Mwは8,559、Mw/Mnは1.8、B値は1.2、100℃動粘度は608mm2/sであり、融点(融解ピーク)は観測されなかった。
<重合例3>
充分に窒素置換した内容積1Lのガラス製重合器にヘプタン250mLを装入し、系内の温度を50℃に昇温した後、エチレンを25L/hr、プロピレンを75L/hr、水素を100L/hrの流量で連続的に重合器内に供給し、撹拌回転数600rpmで撹拌した。次にトリイソブチルアルミニウム0.2mmolを重合器に装入し、次いでMMAO0.688mmolと[エチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド0.00230mmolをトルエン中で15分以上予備混合したものを重合器に装入することにより重合を開始した。その後、エチレン、プロピレン、水素の連続的供給を継続し、50℃で15分間重合を行った。少量のイソブチルアルコールを系内に添加することにより重合を停止した後、未反応のモノマーをパージした。得られたポリマー溶液を、0.2mol/lの塩酸100mLで3回、次いで蒸留水100mLで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーを80℃の減圧下で一晩乾燥し、エチレン−プロピレン共重合体1.43gを得た。さらに、このエチレン−プロピレン共重合体に対して水添操作を施した。
以上の操作により得られたポリマーの不飽和結合量は0.1個/1000C未満、塩素含量は0.1ppm未満、エチレン含有量は48.4mol%、Mwは13,628、Mw/Mnは1.9、B値は1.2、100℃動粘度は2,040mm2/sであり、融点(融解ピーク)は観測されなかった。
<重合例4>
充分窒素置換した容量2リットルの攪拌翼付連続重合反応器に、脱水精製したヘキサン1リットルを張り、96mmol/Lに調整した、エチルアルミニウムセスキクロリド(Al(C251.5・Cl1.5)のヘキサン溶液を500ml/hの量で連続的に1時間供給した後、更に触媒として16mmol/lに調整したVO(OC25)Cl2のヘキサン溶液を500ml/hの量で、ヘキサンを500ml/hの量で連続的に供給した。一方重合器上部から、重合液器内の重合液が常に1リットルになるように重合液を連続的に抜き出した。次にバブリング管を用いてエチレンガスを36L/hの量で、プロピレンガスを36L/hの量で水素ガスを30L/hの量で供給した。共重合反応は、重合器外部に取り付けられたジャケットに冷媒を循環させることにより35℃で行った。
上記条件にて得られたエチレン−プロピレン共重合体を含む重合溶液を、0.2mol/lの塩酸100mLで3回、次いで蒸留水100mLで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーを130℃の減圧下で一晩乾燥した。得られたエチレン−プロピレン共重合体のエチレン含有量は53.9mol%、Mwは8,736、Mw/Mnは1.9、B値は1.2、100℃動粘度は612mm2/sであった。また、不飽和結合量は0.1個/1000Cであり、塩素含量は8ppmであり、融点(融解ピーク)は観測されなかった。
<重合例5>
充分窒素置換した容量2リットルの攪拌翼付連続重合反応器に、脱水精製したヘキサン1リットルを張り、96mmol/Lに調整した、エチルアルミニウムセスキクロリド(Al(C251.5・Cl1.5)のヘキサン溶液を500ml/hの量で連続的に1時間供給した後、更に触媒として16mmol/lに調整したVO(OC25)Cl2のヘキサン溶液を500ml/hの量で、ヘキサンを500ml/hの量で連続的に供給した。一方重合器上部から、重合液器内の重合液が常に1リットルになるように重合液を連続的に抜き出した。次にバブリング管を用いてエチレンガスを47L/hの量で、プロピレンガスを47L/hの量で水素ガスを20L/hの量で供給した。共重合反応は、重合器外部に取り付けられたジャケットに冷媒を循環させることにより35℃で行った。
上記条件にて得られたエチレン−プロピレン共重合体を含む重合溶液を、0.2mol/lの塩酸100mLで3回、次いで蒸留水100mLで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーを130℃の減圧下で一晩乾燥した。得られたエチレン−プロピレン共重合体のエチレン含有量は54.9mol%、Mwは14,036、Mw/Mnは2.0、B値は1.2、100℃動粘度は2,100mm2/sであった。また、不飽和結合量は0.1個/1000Cであり、塩素含量は20ppmであり、融点(融解ピーク)は観測されなかった。
<重合例6>
充分に窒素置換した内容積1Lのガラス製重合器にデカン250mLを装入し、系内の温度を130℃に昇温した後、エチレンを25L/hr、プロピレンを75L/hr、水素を100L/hrの流量で連続的に重合器内に供給し、撹拌回転数600rpmで撹拌した。次にトリイソブチルアルミニウム0.2mmolを重合器に装入し、次いでMMAO1.213mmolと[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド0.00402mmolをトルエン中で15分以上予備混合したものを重合器に装入することにより重合を開始した。その後、エチレン、プロピレン、水素の連続的供給を継続し、130℃で15分間重合を行った。少量のイソブチルアルコールを系内に添加することにより重合を停止した後、未反応のモノマーをパージした。得られたポリマー溶液を、0.2mol/lの塩酸100mLで3回、次いで蒸留水100mLで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーを80℃の減圧下で一晩乾燥し、エチレン−プロピレン共重合体0.77gを得た。さらに、このエチレン−プロピレン共重合体に対して水添操作を施した。
以上の操作により得られたポリマーの不飽和結合量は0.1個/1000C未満、塩素含量は0.1ppm未満、エチレン含有量は48.8mol%、Mwは4,172、Mw/Mnは1.7、B値は1.2、100℃動粘度は102mm2/sであり、融点(融解ピーク)は観測されなかった。
[自動車変速機用潤滑油組成物の調製]
以下の潤滑油組成物の調製において用いられたエチレン−α−オレフィン共重合体(C)以外の成分は以下のとおりである。
潤滑油基油;鉱物油(A)として以下の潤滑油基油を用いた。
鉱物油−A:100℃動粘度が3.0mm2/s、粘度指数が106、流動点が−30℃であるAPI(American Petroleum Institute)Group II鉱物油(Neste社製Nexbase3030)
鉱物油−B:100℃動粘度が3.1mm2/s、粘度指数が105、流動点が−40℃であるAPI Group II鉱物油(SK Lubricants社製Yubase−L3)
鉱物油−C:100℃動粘度が4.2mm2/s、粘度指数が122、流動点が−15℃であるAPI Group III鉱物油(SK Lubricants社製Yubase−4)
合成油(B);合成油(B)としては、100℃動粘度が4.0mm2/s、粘度指数が123、流動点が−60℃以下である合成油ポリ−α−オレフィン(Neste社製NEXBASE2004、合成油−A)を用いた。
DIパッケージ;Lubrizol社製Lubrizol−6373(DI−A)、並びにAfton Chemical社製HITEC−3419D(DI−B)
極圧剤パッケージ;Lubrizol社製Anglamol−6043(EP)
流動点降下剤;BASF社製IRGAFLO 720P(PPD)
ポリメタクリレート;Mwが約41,800である高分子量ポリメタクリレート(Evonik Industries社製Viscoplex 0−220、PMA−A)。このポリメタクリレートは流動点降下能を有する。
ポリブテン;Mwが約8,300である高分子量液状ポリブテン(JX日鉱日石エネルギー社製日石ポリブテンHV−1900、PIB)
<自動車変速機用潤滑油組成物>
[実施例1]
潤滑油基油として鉱物油(A)である鉱物油−Aおよび鉱物油−Cを、エチレン−α−オレフィン共重合体(C)として重合例1で得られた共重合体(重合体1)を、DIパッケージとしてDI−Aを用い、これらと流動点降下剤とを合わせて100質量%となるよう自動車変速機油用潤滑油組成物を配合調整した。それぞれの成分の添加量は表2に示す通りである。
[実施例2]
重合体1を、表2に記載の添加量にて重合例2で得られた共重合体(重合体2)に置き換え、鉱物油−Aおよび鉱物油−Cの添加量を表2に記載のとおり変更した以外は、実施例1と同様に潤滑油組成物を配合調製した。
[実施例3]
重合体1を、表2に記載の添加量にて重合例3で得られた共重合体(重合体3)に置き換え、鉱物油−Aおよび鉱物油−Cの添加量を表2に記載のとおり変更した以外は、実施例1と同様に潤滑油組成物を配合調製した。
[実施例4]
潤滑油基油として合成油(B)である合成油−Aを、エチレン−α−オレフィン共重合体(C)として重合体2を、DIパッケージとしてDI−Bを用い、これらを合わせて100質量%となるよう自動車変速機油用潤滑油組成物を配合調整した。それぞれの成分の添加量は表2に示す通りである。
[実施例5]
重合体2を、表2に記載の添加量にて重合体3に置き換え、合成油−Aの添加量を表2に記載のとおり変更した以外は、実施例4と同様に潤滑油組成物を配合調製した。
[実施例6]
重合体2を、表2に記載の添加量にて重合例4で得られた共重合体(重合体4)に置き換え、合成油−Aの添加量を表2に記載のとおり変更した以外は、実施例4と同様に潤滑油組成物を配合調製した。
[実施例7]
重合体2を、表2に記載の添加量にて重合例5で得られた共重合体(重合体5)に置き換え、合成油−Aの添加量を表2に記載のとおり変更した以外は、実施例4と同様に潤滑油組成物を配合調製した。
[比較例1]
潤滑油基油として鉱物油(A)である鉱物油−Aおよび鉱物油−Cを用い、エチレン−α−オレフィン共重合体(C)を用いずPMA−Aを用い、DIパッケージとしてDI−Aを用い、これらを合わせて100質量%となるように自動車変速機油用潤滑油組成物を配合調整した。流動点降下剤は用いなかった。それぞれの成分の添加量は表2に示す通りである。
[比較例2]
潤滑油基油として鉱物油(A)である鉱物油−Aおよび鉱物油−Cを用い、エチレン−α−オレフィン共重合体(C)を用いずPIBを用い、DIパッケージとしてDI−Aを用い、これらと流動点降下剤とを合わせて100質量%となるように自動車変速機油用潤滑油組成物を配合調整した。それぞれの成分の添加量は表2に示す通りである。
[比較例3]
市販の無段変速機油である日産自動車CVTフルード NS−2(市販油−A)について100℃動粘度、粘度指数、−40℃粘度、剪断試験粘度低下率を測定した。この結果を表2に示す。
Figure 2016069405
実施例1〜7、および比較例1〜3では、100℃動粘度が約7.0〜7.3mm2/sとなるよう自動車変速機油の配合調整を行った。得られた潤滑油組成物の潤滑油特性を併せて表2に示す。
実施例1〜7の潤滑油組成物は、いずれも剪断試験(1)粘度低下率がいずれも1.0%を下回っており、実質的に剪断試験による粘度低下は生じなかった。一方で、ポリメタクリレートを用いた比較例1の潤滑油組成物、並びに比較例3の市販油−Aでは剪断試験により粘度低下が生じている。本発明の潤滑油組成物は、潤滑油の交換頻度を下げられるとともに、製造時の初期粘度が低くても使用・劣化後の市販油と同等以上の粘度を維持することが可能となるため、自動車の省燃費化に寄与できる。
また、比較例2に示す通り、従来よりギア油、グリース等の粘度調整剤として用いられている液状ポリブテンを用いると、剪断安定性は非常に優れるものの、温度粘度特性が本発明の潤滑油組成物、並びに比較例1に劣る。特に比較例2は低温粘度特性が著しく劣るため、低温環境下における始動時に著しく燃費が悪化するのみならず、自動変速機、無段変速機等の場合トルクコンバータに著しい負荷が掛かる虞があり、機械の損傷につながる可能性がある。
以上のことからも、本発明の潤滑油組成物は極めて高い剪断安定性を有し、併せて同一の潤滑油基油を含む従来の潤滑油に比べて、温度粘度特性と低温粘度特性とが高い水準でバランス良く優れていることがわかる。
[実施例8]
潤滑油基油として鉱物油(A)である鉱物油−Bを、エチレン−α−オレフィン共重合体(C)として重合体2を、DIパッケージとしてDI−Bを用い、これらと流動点降下剤とを合わせて100質量%となるよう自動車変速機油用潤滑油組成物を配合調整した。それぞれの成分の添加量は表3に示す通りである。
[実施例9]
重合体2を、表3に記載の添加量にて重合体3に置き換え、鉱物油−Bの添加量を表3に記載のとおり変更した以外は、実施例8と同様に潤滑油組成物を配合調製した。
[比較例4]
エチレン−α−オレフィン共重合体(C)を、表3に記載の添加量にてPMA−Aに置き換え、鉱物油−Bの添加量を表3に記載のとおり変更し、流動点降下剤は用いなかった以外は、実施例8と同様に潤滑油組成物を配合調製した。
[比較例5]
市販の自動変速機油であるDaimler社製ATF 134FE(市販油−B)について100℃動粘度、粘度指数、−40℃粘度、剪断試験粘度低下率を測定した。この結果を表3に示す。
Figure 2016069405
実施例8、実施例9、および比較例4、比較例5では、100℃動粘度が約4.0〜4.5mm2/sとなるよう自動車変速機油用潤滑油組成物の配合調整を行った。得られた潤滑油組成物の潤滑油特性を併せて表3に示す。
近年、省燃費化を目的とし、変速機油による撹拌抵抗を低減するため、変速機油の低粘度化が進んでいるが、そのような低粘度変速機油においても本発明の潤滑油組成物は優れた剪断安定性を示すため、ギア、金属ベルト等の金属間の接触リスクを低減することができる。
[実施例10]
実施例2の自動変速機油用潤滑油組成物について、潤滑油基油とエチレン−α−オレフィン共重合体(C)との混合物の剪断安定性を測定するため、DIパッケージを除き実施例2と同様の配合比にて配合調製を行った。このようにして調製された潤滑油組成物について剪断試験(2)を行い、剪断による100℃動粘度の低下率(剪断試験(2)粘度低下率)を測定した。この結果、100℃動粘度の粘度低下率は1.0%であった。この粘度低下率から剪断試験(2)後の100℃動粘度が6.1mm2/sとなるよう、すなわち配合調製後の100℃動粘度が6.15mm2/s近傍となるよう、潤滑油基油として鉱物油(A)である鉱物油−Aおよび鉱物油−Cを、エチレン−α−オレフィン共重合(C)として重合体2を、DIパッケージとしてDI−Aを用い、これらと流動点降下剤とを合わせて100質量%となるよう自動車変速機油用潤滑油組成物を配合調整した。それぞれの添加量は表4に示す通りである。表4に示す100℃動粘度は実測値である。
[実施例11]
実施例10と同様、実施例3の自動変速機油用潤滑油組成物について、潤滑油基油とエチレン−α−オレフィン共重合体(C)との混合物の剪断安定性を測定するため、DIパッケージを除き実施例3と同様の配合比にて配合調製を行った。このようにして調製された潤滑油組成物について、剪断試験(2)を行ったところ、100℃動粘度の粘度低下率(剪断試験(2)粘度低下率)は2.5%であった。この粘度低下率から剪断試験(2)の後の100℃動粘度が6.1mm2/sとなるよう、すなわち配合調製後の100℃動粘度が6.25mm2/s近傍となるよう、重合体2を、表4に記載の添加量にて重合体3に置き換え、鉱物油−Aおよび鉱物油−Cの添加量を表4に記載のとおり変更した以外は、実施例10と同様に自動車変速機油用潤滑油組成物を配合調整した。表4に示す100℃動粘度は実測値である。
[比較例6]
実施例10と同様、比較例1の自動変速機油用潤滑油組成物について、潤滑油基油とポリメタクリレートとの混合物の剪断安定性を測定するため、DIパッケージを除き比較例1と同様の配合比にて配合調製を行った。このようにして調製された潤滑油組成物について、剪断試験(2)を行ったところ、100℃動粘度の粘度低下率(剪断試験(2)粘度低下率)は13.0%であった。この粘度低下率から剪断試験(2)の後の100℃動粘度が6.1mm2/sとなるよう、すなわち配合調製後の100℃動粘度が7.00mm2/s近傍となるよう、(C)エチレン−α−オレフィン共重合体を、表4に記載の添加量にてPMA−Aに置き換え、鉱物油−Aおよび鉱物油−Cの添加量を表4に記載のとおり変更し、流動点降下剤は用いなかった以外は、実施例10と同様に潤滑油組成物を配合調製した。表4に示す100℃動粘度は実測値である。
Figure 2016069405
実施例10、実施例11、比較例6では、近年変速機油においても自動車ギア油についてのSAE粘度規格(J306)に規定されるStay−in−grade規格が求められてきていることから、使用・劣化後の100℃動粘度を6.1mm2/sとした場合の初期粘度評価を行った。得られた潤滑油組成物の潤滑油特性を表4に示す。
潤滑油の40℃粘度は夏季における自動車始動時の燃費性能に大きな影響を及ぼすため、潤滑油の燃費性能指標として用いられる。剪断安定性の優れる、エチレン−α−オレフィン共重合体(C)を用いた実施例10、実施例11の自動車変速機油用潤滑油組成物は、いずれもポリメタクリレートを用いた比較例6の自動車変速機油用潤滑油組成物に対し、40℃動粘度、並びに−40℃粘度が低く、本発明によれば従来の変速機油に対し大幅な省燃費化が図れる。
[実施例12]
潤滑油基油として鉱物油(A)である鉱物油−Aおよび鉱物油−Cを、エチレン−α−オレフィン共重合体(C)として重合体2を、DIパッケージとしてDI−Aを用い、これらと流動点降下剤とを合わせて100質量%となるよう自動車変速機油用潤滑油組成物を配合調整した。それぞれ成分の添加量は表5に示す通りである。
[実施例13]
重合体2を、表5に記載の添加量にて重合体3に置き換え、鉱物油−Bおよび鉱物油−Cの添加量を表5に記載のとおり変更した以外は、実施例12と同様に潤滑油組成物を配合調製した。
[比較例7]
(C)エチレン−α−オレフィン共重合体を、表5に記載の添加量にてPMA−Aに置き換え、鉱物油−Bおよび鉱物油−Cの添加量を表5に記載のとおり変更し、流動点降下剤は用いなかった以外は、実施例12と同様に潤滑油組成物を配合調製した。
Figure 2016069405
実施例12、実施例13、比較例7では40℃動粘度を29.5〜30.5mm2/sとなるよう自動車変速機油用潤滑油組成物の配合調整を行った。得られた潤滑油組成物の潤滑油特性を併せて表5に示す。
実施例12、実施例13、比較例7の潤滑油組成物は40℃動粘度が同水準にあり、これは夏季始動時の燃費性能が同水準にあるということを表している。
一方で、省燃費化を目的とした低粘度変速機油は100℃近傍の高温下においてギアの金属接触リスクが非常に高まるため、高い油膜保持性能を維持する必要がある。このため、一般的には100℃近傍の粘度を上げることにより油膜保持性能を向上させることが必要となる。しかしながら、燃費性能を鑑みた場合、高粘度化は燃費を悪化させてしまうため、金属接触リスクと燃費性能とを両立するよう慎重に粘度を設定しなければならない。実施例12、および実施例13と比較例7との対比により示される通り、本発明によれば、エチレン−α−オレフィン共重合体(C)の高い油膜保持性能により、従来のポリメタクリレートを用いた変速機油よりも100℃動粘度が低いにも拘らず高い油膜厚さを実現するため、さらに低粘度化しても油膜保持性能は維持され、結果、より高い燃費性能を発現することができる。
[実施例14]
潤滑油基油として鉱物油(A)である鉱物油−Aを、エチレン−α−オレフィン共重合体(C)として重合体2を、極圧剤パッケージとしてEPを用い、これらと流動点降下剤とを合わせて100質量%となるよう自動車変速機油用潤滑油組成物を配合調整した。それぞれの成分の添加量は表6に示す通りである。
[実施例15]
重合体2を、表6に記載の添加量にて重合体3に置き換え、鉱物油−Aの添加量を表6に記載のとおり変更した以外は、実施例14と同様に潤滑油組成物を配合調製した。
[実施例16]
重合体2を、表6に記載の添加量にて重合体6に置き換え、鉱物油−Aの添加量を表6に記載のとおり変更した以外は、実施例14と同様に潤滑油組成物を配合調製した。
[比較例8]
(C)エチレン−α−オレフィン共重合体を、表6に記載の添加量にてPMA−Aに置き換え、鉱物油−Aの添加量を表6に記載のとおり変更し、流動点降下剤は用いなかった以外は、実施例14と同様に潤滑油組成物を配合調製した。
Figure 2016069405
実施例14〜16、および比較例8では100℃動粘度を6.3〜6.5mm2/sとなるよう自動車変速機油用潤滑油組成物の配合調整を行った。得られた潤滑油組成物の潤滑油特性を併せて表6に示す。
実施例14〜16、および比較例8ではDIパッケージに代わり極圧剤パッケージを用いたことで、省燃費手動変速機油、もしくは乾式クラッチ型デュアルクラッチ変速機油に好適に用いることが可能な変速機油である。
このような変速機油においても本発明の潤滑油組成物はいずれも10,000mPa・s以下であり、良好な温度粘度特性と低温粘度特性を示す。また、手動変速機油、もしくは乾式クラッチ型デュアルクラッチ変速機油では、CRC L−45−T−93に記載の方法に準拠したKRL剪断試験にて潤滑油の剪断安定性が評価されるが、この試験は剪断試験(1)に記載した超音波剪断試験と比較すると、潤滑油に対しより大きな剪断応力を与えており、したがって剪断試験による潤滑油の粘度低下率も大きくなる。このような試験方法において、実施例14〜16と比較例8とを比較してもわかるとおり、本発明の潤滑油組成物は極めて優れた剪断安定性を示す。

Claims (5)

  1. 潤滑油基油と、以下の(C1)〜(C5)の特徴を有するエチレン−α−オレフィン共重合体(C)とを含有し、100℃における動粘度が4.0〜7.5mm2/sであり、−40℃におけるブルックフィールド粘度が20,000mPa・s以下であり、
    前記潤滑油基油が、以下の(A1)〜(A3)の特徴を有する鉱物油(A)、および/または(B1)〜(B3)の特徴を有する合成油(B)からなる
    自動車変速機用潤滑油組成物。
    (A1)100℃における動粘度が2〜10mm2/sであること
    (A2)粘度指数が105以上であること
    (A3)流動点が−10℃以下であること
    (B1)100℃における動粘度が1〜10mm2/sであること
    (B2)粘度指数が120以上であること
    (B3)流動点が−30℃以下であること
    (C1)エチレン含有率が30〜85モル%の範囲にあること
    (C2)100℃における動粘度が10〜5,000mm2/sであること
    (C3)ゲルパーミエーションクロマトグラフィー(GPC)により測定し、ポリスチレン換算により得られた分子量において、分子量分布(Mw/Mn)が2.5以下であること
    (C4)下記式[1]
    Figure 2016069405
    (式中、PEはエチレン成分の含有モル分率を示し、POはα−オレフィン成分の含有モル分率を示し、POEは全dyad連鎖のエチレン−α−オレフィン連鎖のモル分率を示す。)
    で表されるB値が、1.1以上であること
    (C5)1H−NMRにより測定した不飽和結合量が炭素原子1000個あたり0.5個未満であること
  2. 前記エチレン−α−オレフィン共重合体(C)のエチレン含有率が40〜70モル%の範囲にある請求項1に記載の自動車変速機用潤滑油組成物。
  3. 前記エチレン−α−オレフィン共重合体(C)の100℃における動粘度が20〜2,500mm2/sである請求項1または請求項2に記載の自動車変速機用潤滑油組成物。
  4. 前記エチレン−α−オレフィン共重合体(C)のα−オレフィンがプロピレンである請求項1〜3のいずれかに記載の自動車変速機用潤滑油組成物。
  5. 請求項1〜4のいずれかに記載の自動車変速機用潤滑油組成物からなるデュアルクラッチ変速機油。
JP2014197123A 2014-09-26 2014-09-26 潤滑油組成物 Active JP6320262B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014197123A JP6320262B2 (ja) 2014-09-26 2014-09-26 潤滑油組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014197123A JP6320262B2 (ja) 2014-09-26 2014-09-26 潤滑油組成物

Publications (2)

Publication Number Publication Date
JP2016069405A true JP2016069405A (ja) 2016-05-09
JP6320262B2 JP6320262B2 (ja) 2018-05-09

Family

ID=55864028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014197123A Active JP6320262B2 (ja) 2014-09-26 2014-09-26 潤滑油組成物

Country Status (1)

Country Link
JP (1) JP6320262B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131543A1 (ja) 2017-01-16 2018-07-19 三井化学株式会社 自動車ギア用潤滑油組成物
JP2018115229A (ja) * 2017-01-16 2018-07-26 三井化学株式会社 自動車ギア用潤滑油組成物
WO2020095905A1 (ja) * 2018-11-08 2020-05-14 パナソニック株式会社 冷媒圧縮機及びこれを用いた機器
WO2020194547A1 (ja) 2019-03-26 2020-10-01 三井化学株式会社 自動車変速機油用潤滑油組成物およびその製造方法
WO2020218367A1 (ja) * 2019-04-26 2020-10-29 出光興産株式会社 変速機用潤滑油組成物、その製造方法、変速機用潤滑油組成物を用いた潤滑方法及び変速機
US20220169939A1 (en) * 2019-03-26 2022-06-02 Mitsui Chemicals, Inc. Lubricating oil and method for producing the same
US20220186133A1 (en) * 2019-03-26 2022-06-16 Mitsui Chemicals, Inc. Lubricating oil composition for industrial gears and method for producing the same
WO2023167307A1 (ja) * 2022-03-03 2023-09-07 三井化学株式会社 潤滑油組成物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121710A (ja) * 1985-11-21 1987-06-03 Mitsui Petrochem Ind Ltd 液状エチレン系ランダム共重合体およびその用途
US4704491A (en) * 1985-03-26 1987-11-03 Mitsui Petrochemical Industries, Ltd. Liquid ethylene-alpha-olefin random copolymer, process for production thereof, and use thereof
JP2000351813A (ja) * 1999-04-09 2000-12-19 Mitsui Chemicals Inc エチレン・α−オレフィン共重合体およびその製造方法ならびにその用途
JP2010070591A (ja) * 2008-09-16 2010-04-02 Mitsui Chemicals Inc 自動変速機用潤滑油組成物
WO2015147215A1 (ja) * 2014-03-28 2015-10-01 三井化学株式会社 エチレン/α-オレフィン共重合体および潤滑油

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4704491A (en) * 1985-03-26 1987-11-03 Mitsui Petrochemical Industries, Ltd. Liquid ethylene-alpha-olefin random copolymer, process for production thereof, and use thereof
JPS62121710A (ja) * 1985-11-21 1987-06-03 Mitsui Petrochem Ind Ltd 液状エチレン系ランダム共重合体およびその用途
JP2000351813A (ja) * 1999-04-09 2000-12-19 Mitsui Chemicals Inc エチレン・α−オレフィン共重合体およびその製造方法ならびにその用途
EP1876189A2 (en) * 1999-04-09 2008-01-09 Mitsui Chemicals, Inc. Ethylene/alpha-olefin copolymer, method for producing the same, and use thereof
JP2010070591A (ja) * 2008-09-16 2010-04-02 Mitsui Chemicals Inc 自動変速機用潤滑油組成物
WO2015147215A1 (ja) * 2014-03-28 2015-10-01 三井化学株式会社 エチレン/α-オレフィン共重合体および潤滑油

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11155768B2 (en) 2017-01-16 2021-10-26 Mitsui Chemicals, Inc. Lubricant oil compositions for automotive gears
JP2018115229A (ja) * 2017-01-16 2018-07-26 三井化学株式会社 自動車ギア用潤滑油組成物
KR20190077086A (ko) 2017-01-16 2019-07-02 미쓰이 가가쿠 가부시키가이샤 자동차 기어용 윤활유 조성물
CN110072981A (zh) * 2017-01-16 2019-07-30 三井化学株式会社 汽车齿轮用润滑油组合物
JPWO2018131543A1 (ja) * 2017-01-16 2019-11-07 三井化学株式会社 自動車ギア用潤滑油組成物
WO2018131543A1 (ja) 2017-01-16 2018-07-19 三井化学株式会社 自動車ギア用潤滑油組成物
EP3569678A4 (en) * 2017-01-16 2020-10-07 Mitsui Chemicals, Inc. LUBRICATING OIL COMPOSITION FOR MOTOR VEHICLE TRANSMISSIONS
CN110072981B (zh) * 2017-01-16 2022-02-25 三井化学株式会社 汽车齿轮用润滑油组合物
KR102208021B1 (ko) * 2017-01-16 2021-01-26 미쓰이 가가쿠 가부시키가이샤 자동차 기어용 윤활유 조성물
WO2020095905A1 (ja) * 2018-11-08 2020-05-14 パナソニック株式会社 冷媒圧縮機及びこれを用いた機器
JP7348203B2 (ja) 2018-11-08 2023-09-20 パナソニックホールディングス株式会社 冷媒圧縮機及びこれを用いた機器
JPWO2020095905A1 (ja) * 2018-11-08 2021-09-02 パナソニック株式会社 冷媒圧縮機及びこれを用いた機器
WO2020194547A1 (ja) 2019-03-26 2020-10-01 三井化学株式会社 自動車変速機油用潤滑油組成物およびその製造方法
KR20210141610A (ko) 2019-03-26 2021-11-23 미쓰이 가가쿠 가부시키가이샤 자동차 변속기유용 윤활유 조성물 및 그의 제조 방법
US20220169939A1 (en) * 2019-03-26 2022-06-02 Mitsui Chemicals, Inc. Lubricating oil and method for producing the same
US20220186133A1 (en) * 2019-03-26 2022-06-16 Mitsui Chemicals, Inc. Lubricating oil composition for industrial gears and method for producing the same
EP3950902A4 (en) * 2019-03-26 2022-08-10 Mitsui Chemicals, Inc. LUBRICATION OIL COMPOSITION FOR AUTOMOTIVE GEAR FLUID AND METHOD OF MANUFACTURE THEREOF
CN113748189A (zh) * 2019-04-26 2021-12-03 出光兴产株式会社 变速器用润滑油组合物、其制造方法、使用了变速器用润滑油组合物的润滑方法及变速器
JP2020180266A (ja) * 2019-04-26 2020-11-05 出光興産株式会社 変速機用潤滑油組成物、その製造方法、変速機用潤滑油組成物を用いた潤滑方法及び変速機
WO2020218367A1 (ja) * 2019-04-26 2020-10-29 出光興産株式会社 変速機用潤滑油組成物、その製造方法、変速機用潤滑油組成物を用いた潤滑方法及び変速機
JP7348747B2 (ja) 2019-04-26 2023-09-21 出光興産株式会社 変速機用潤滑油組成物、その製造方法、変速機用潤滑油組成物を用いた潤滑方法及び変速機
US11820954B2 (en) 2019-04-26 2023-11-21 Idemitsu Kosan Co., Ltd. Lubricant composition for transmission, production method thereof, lubricating method using lubricant composition for transmission, and transmission
CN113748189B (zh) * 2019-04-26 2024-02-27 出光兴产株式会社 变速器用润滑油组合物、其制造方法、使用了变速器用润滑油组合物的润滑方法及变速器
WO2023167307A1 (ja) * 2022-03-03 2023-09-07 三井化学株式会社 潤滑油組成物

Also Published As

Publication number Publication date
JP6320262B2 (ja) 2018-05-09

Similar Documents

Publication Publication Date Title
JP6618891B2 (ja) エチレン/α−オレフィン共重合体および潤滑油
JP6320262B2 (ja) 潤滑油組成物
JP6326355B2 (ja) 潤滑油組成物
JP6741790B2 (ja) 自動車ギア用潤滑油組成物
JP6326337B2 (ja) 工業ギア用潤滑油組成物
JP6326340B2 (ja) グリース組成物
JP6392055B2 (ja) 潤滑油組成物
JP6326339B2 (ja) 作動油用潤滑油組成物
JP6490086B2 (ja) 潤滑油組成物
JP6326354B2 (ja) 潤滑油組成物
JP6326338B2 (ja) 圧縮機油用潤滑油組成物
JP6773567B2 (ja) 自動車ギア用潤滑油組成物
JP6496523B2 (ja) 潤滑油組成物およびその用途
JP6840544B2 (ja) 自動車変速機用潤滑油組成物
JP6773566B2 (ja) 自動車ギア用潤滑油組成物
JP2023096880A (ja) 自動車変速機用潤滑油組成物
WO2023167307A1 (ja) 潤滑油組成物
WO2023002947A1 (ja) 潤滑油用粘度調整剤および作動油用潤滑油組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180403

R150 Certificate of patent or registration of utility model

Ref document number: 6320262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250