JP6490086B2 - 潤滑油組成物 - Google Patents

潤滑油組成物 Download PDF

Info

Publication number
JP6490086B2
JP6490086B2 JP2016547432A JP2016547432A JP6490086B2 JP 6490086 B2 JP6490086 B2 JP 6490086B2 JP 2016547432 A JP2016547432 A JP 2016547432A JP 2016547432 A JP2016547432 A JP 2016547432A JP 6490086 B2 JP6490086 B2 JP 6490086B2
Authority
JP
Japan
Prior art keywords
group
ethylene
molecular weight
lubricating oil
oil composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016547432A
Other languages
English (en)
Other versions
JPWO2016039295A1 (ja
Inventor
昌太 阿部
昌太 阿部
良輔 金重
良輔 金重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Publication of JPWO2016039295A1 publication Critical patent/JPWO2016039295A1/ja
Application granted granted Critical
Publication of JP6490086B2 publication Critical patent/JP6490086B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • C10M143/04Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation containing propene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • C10M107/06Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation containing propene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/041Mixtures of base-materials and additives the additives being macromolecular compounds only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/022Ethene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/024Propene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • C10M2207/2825Esters of (cyclo)aliphatic oolycarboxylic acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/019Shear stability
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/68Shear stability
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/042Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for automatic transmissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/044Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for manual transmissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/045Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for continuous variable transmission [CVT]

Description

本発明は、温度粘度特性と低温粘度特性に優れ、かつ極めて優れた剪断安定性を有する潤滑油組成物に関するものである。
ギア油、変速機油、作動油、グリースといった潤滑油には、内燃機関や工作機械の保護、放熱といった性能に加え、耐摩耗性、耐熱性、耐スラッジ性、潤滑油消費特性、省燃費性など多様な性能が要求される。しかも近年、使用される内燃機関や工業機械の高性能化、高出力化、運転条件の過酷化などに伴い、各要求性能が益々高度化されてきている。特に最近では、潤滑油の使用環境が苛酷化する一方で、環境問題への配慮から長寿命化が求められる傾向にあり、耐熱性の向上、酸化安定性の向上に加え、機関、機械からの剪断応力に起因する低粘度化の抑制、すなわち潤滑油の剪断安定性の向上が求められている。また一方では、機関のエネルギー変換効率の向上、もしくは極低温環境下における機関の良好な潤滑性を確保するため、高温下では潤滑油の油膜を保持し、低温下ではより流動性を保持するといった温度粘度特性が重要視されている。ここで述べる温度粘度特性は、一つの指標として、JIS K2283に記載の方法によって算出される粘度指数によって数値化することが可能であり、より高い粘度指数を示す潤滑油がより優れた温度粘度特性を有する。
従って、潤滑油には、耐熱性、酸化安定性、および剪断安定性に優れ、かつ良好な温度粘度特性を有する材料が求められている。
特に、自動車に使用される潤滑油、すなわちディファレンシャルギア油のような自動車用ギア油や変速機油に代表される駆動油などにおいては、これまで以上の優れた温度粘度特性、さらには−40℃といった極低温下での高流動性、すなわち優れた低温粘度特性が求められてきている。これらの粘度特性は自動車の燃費性能に直結するものであるが、この性能向上要求は、1997年に京都議定書が採択されて以降、近年世界各国の政府にて乗用車に対する二酸化炭素排出規制や燃費規制、もしくは将来的な目標が定められたことによるものである。
これに基づき、燃費目標達成を目指し、燃費向上のため乗用車機関各部は小型化が進み、使用される潤滑油量も減少してきている。このため、潤滑油に掛かる負荷が増大してきており、潤滑油の更なる長寿命化が求められてきている。
自動車用ギア油、または変速機油は、ギア、または金属ベルト等より剪断応力を受けるため、使用経過に伴い潤滑油中に用いられる基材の分子が切断されることにより潤滑油粘度が低下する。潤滑油粘度が低下するとギア同士、金属間の接触が生じ、ギアに著しい損傷が与えられる。このため、予め使用期間の粘度低下を予想し、潤滑油製造時の粘度(初期粘度)を上げておくことで、使用に伴う劣化後の潤滑油が理想的な潤滑を行えるように備える必要がある。Sciety of Automobile Engineers(SAE)による自動車ギア油の粘度規格であるJ306では、CRC L−45−T−93にて規定される剪断試験(method C, 20時間)後の最低粘度が定められている。
当然、潤滑油中に用いられる基材の剪断安定性が優れれば、潤滑油の寿命を長くでき、潤滑油の初期粘度を上げる必要がなくなり、結果ギアに対する潤滑油の撹拌抵抗を下げることができるため、燃費向上を図ることができる。
また、温度粘度特性、すなわち潤滑油粘度の温度依存性が低ければ、低温環境下においても潤滑油の粘度上昇が抑えられ、結果潤滑油によるギア抵抗が従来技術に対し相対的に低くなり、燃費向上を図ることができる。
更には、近年の燃費向上策として、ディファレンシャルギア油、または変速機油の粘度を従来よりも下げることによって、潤滑油による撹拌抵抗の低減が実現されており、益々ギアにおける金属接触の危険性が高まっているため、粘度低下を生じさせない極めて剪断安定性の高い材料が求められている。
この性能向上要求に基づき、通常20時間の試験時間にて行われるCRC L−45−T−93剪断試験について、通常の5倍にあたる試験時間100時間においてもJ306同様、駆動油毎に試験後の最低粘度を規定し、これを維持することが求められ始めている。
上述のような要求を満足する潤滑油基油として、合成潤滑油であるポリ−α−オレフィン(PAO)が広く工業的に使用されている。このようなPAOは、特許文献1〜3等に記載のように、酸触媒により高級α−オレフィンをオリゴメリゼーションすることにより得ることができる。
一方、特許文献4に記載されているようにエチレン−α−オレフィン共重合体もPAOと同様、粘度指数、酸化安定性、剪断安定性、耐熱性に優れる合成潤滑油として使用可能であることが知られている。
合成潤滑油として使用されるエチレン−α−オレフィン共重合体の製造方法としては従来、特許文献5および特許文献6に記載されているようなバナジウム化合物と有機アルミニウム化合物とからなるバナジウム系触媒による方法が採用されてきた。このようなエチレン−α−オレフィン共重合体としては特にエチレン−プロピレン共重合体が主に使用されている。
また、高い重合活性で共重合体を製造する方法として特許文献7、特許文献8に記載されているようなジルコノセンなどのメタロセン化合物と有機アルミニウムオキシ化合物(アルミノキサン)からなる触媒系を用いる方法等が知られており、特許文献9には特定のメタロセン触媒とアルミノキサンを組み合わせた触媒系を用いることにより得られるエチレン−α−オレフィン共重合体からなる合成潤滑油の製造方法が開示されている。
近年、低温粘度特性および耐熱・酸化安定性に優れる合成潤滑油基材であるPAO或いはエチレン−プロピレン共重合体等の需要は増大する傾向にあるが、省燃費化・省エネルギーの観点から、粘度指数、低温粘度特性の更なる改善が求められている。
この要求に基づき、特許文献10〜13に記載のようなジルコノセンなどのメタロセン化合物と有機アルミニウムオキシ化合物(アルミノキサン)からなる触媒系を用いる方法等によって得られたPAOが発明されている。
しかしながら、従来、潤滑油組成物の剪断安定性は、含有する成分の分子量に依存することが知られている。すなわち、より分子量の高い成分を含有する潤滑油組成物は剪断応力による粘度低下が生じやすく、この粘度低下率は含有成分の分子量に相関するというものである。
一方で、潤滑油組成物の温度粘度特性や低温粘度特性はより高分子量成分を含有することにより向上する。すなわち、潤滑油組成物に使用するPAO或いはエチレン−プロピレン共重合体等は、分子量が高くなるにつれ温度粘度特性は向上するものの、剪断安定性が低下していくといった二律背反の関係にある。この点について、剪断安定性と温度粘度特性の両立といった観点から改良の余地がある。
米国特許第3,780,128号明細書 米国特許第4,032,591号明細書 特開平1−163136号公報 特開昭57−117595号公報 特公平2−1163号公報 特公平2−7998号公報 特開昭61−221207号公報 特公平7−121969号公報 特許第2796376号公報 特開2001−335607号公報 特表2004−506758号公報 特表2009−503147号公報 特表2009−514991号公報
このような従来技術における問題点に鑑みて本発明が解決しようとする課題は、自動車や工業用機械の省燃費化および省エネルギー化の観点から、極めて優れた剪断安定性と低温粘度特性を併せ持つ潤滑油を提供することにある。
本発明者らは、優れた性能を有する潤滑油組成物を開発すべく鋭意検討をした結果、特定の潤滑油基油と、特定のα−オレフィン(共)重合体を含有し、特定の条件を満足する潤滑油組成物が、上記課題を解決できることを見いだし、本発明を完成するに至った。
本発明者らは、CRC L−45−T−93に記載の方法に準拠し試験時間を100時間とした剪断試験によって、潤滑油組成物の特定の分子量領域が影響を受けていることを発見した。これに基づき潤滑油組成物を最適化することで高い剪断安定性と温度粘度特性、低温粘度特性を兼ね備える潤滑油組成物の発明に至った。具体的には、以下の態様が挙げられる。
〔1〕(A)100℃における動粘度が1〜10mm2/sである潤滑油基油と、(B)以下の(B1)〜(B4)の特徴を有するエチレン−α−オレフィン共重合体を含有し、
100℃における動粘度が20mm2/s以下であり、
ゲルパーミエーションクロマトグラフィー(GPC)にて、標準ポリスチレン換算により得られた分子量3,000〜10,000の範囲にピークトップを有し、
このピークトップを与える分子量以上の高い分子量を有する成分において、標準ポリスチレン換算により得られた分子量20,000以上の成分の重量分率が1〜10%である潤滑油組成物。
(B1)ゲルパーミエーションクロマトグラフィー(GPC)によって測定した分子量において、標準ポリスチレン換算により得られたピークトップ分子量が3,000〜10,000である。
(B2)示差熱熱量計(DSC)による融解ピークを有さない。
(B3)下記式[1]
(式中、PEはエチレン成分の含有モル分率を示し、POはα−オレフィン成分の含有モル分率を示し、POEは全dyad連鎖のエチレン−α−オレフィン連鎖のモル分率を示す。)
で表されるB値が、1.1以上である。
(B4)100℃における動粘度が140〜500mm2/sである。
〔2〕前記エチレン−α−オレフィン共重合体(B)のエチレンモル含有率が30〜70mol%の範囲にある項〔1〕に記載の潤滑油組成物。
〔3〕前記エチレン−α−オレフィン共重合体(B)のα−オレフィンがプロピレンである項〔1〕または項〔2〕に記載の潤滑油組成物。
〔4〕自動車用潤滑油組成物である項〔1〕〜〔3〕のいずれかに記載の潤滑油組成物。
〔5〕100℃動粘度が7.5mm2/s以下である項〔4〕に記載の潤滑油組成物からなる自動車用変速機油。
本発明の潤滑油組成物は、従来の潤滑油に比べて極めて優れた剪断安定性と高い温度粘度特性、さらには優れた低温粘度特性を併せ持つ潤滑油組成物であり、自動車用潤滑油、自動車用変速機油、特に自動車用ギア油、および自動車用低粘度変速機油に好適に適用できる。
実施例2と比較例3における潤滑油組成物の剪断試験前(実線)と剪断試験後(破線)におけるGPCチャートの比較である。 図1におけるGPCチャートの分子量10,000付近の拡大図である。
以下、本発明に係る潤滑油組成物について詳細に説明する。
<(A)潤滑油基油>
潤滑油基油(A)としては、100℃における動粘度が1〜10mm2/sである以外は特に制限はなく、通常の潤滑油に使用される鉱油系潤滑油基油及び/又は合成系潤滑油基油(以下「合成炭化水素油」ともいう。)が用いられる。
鉱油系潤滑油基油としては、精製の仕方により幾つかの等級があるが、具体的には、原油を常圧蒸留して得られる常圧残油を減圧蒸留して得られた潤滑油留分を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、水素化精製等の処理を1つ以上行って精製したもの、あるいはワックス異性化鉱油等の潤滑油基油が例示できる。
また、フィッシャー・トロプシュ法によって得られたガス・トゥー・リキッド(GTL)基油も好適に用いることのできる潤滑油基油である。このようなGTL基油は、例えば、EP0776959、EP0668342、WO97/21788、WO00/15736、WO00/14188、WO00/14187、WO00/14183、WO00/14179、WO00/08115、WO99/41332、EP1029029、WO01/18156およびWO01/57166に記載されている。
合成炭化水素油としては、例えばα−オレフィンオリゴマー、アルキルベンゼン類、アルキルナフタレン類、イソブテンオリゴマーまたはその水素化物、パラフィン類、ポリオキシアルキレングリコール、ジアルキルジフェニルエーテル、ポリフェニルエーテル、脂肪酸エステル等が挙げられる。
このうちα−オレフィンオリゴマーとしては、炭素原子数8〜12のオレフィンから選ばれる少なくとも1種のオレフィンの低分子量オリゴマー(エチレン−α−オレフィン共重合体(B)を除く。)が使用できる。本発明の潤滑油組成物にα−オレフィンオリゴマーを用いると、極めて温度粘度特性、低温粘度特性、さらには耐熱性に優れた潤滑油組成物が得られる。このようなα−オレフィンオリゴマーは、チーグラー触媒、ルイス酸を触媒としたカチオン重合、熱重合、ラジカル重合によって製造することができる。工業的にも入手可能であり、100℃動粘度2mm2/s〜100mm2/sのものが市販されている。例えば、NESTE社製NEXBASE、ExxonMobil Chemical社製Spectrasyn、Ineos Oligmers社製Durasyn、Chevron Phillips Chemical社製Synfluidなどが挙げられる。
アルキルベンゼン類、アルキルナフタレン類の大部分は、通常アルキル鎖長が炭素原子数6〜14のジアルキルベンゼンまたはジアルキルナフタレンであり、このようなアルキルベンゼン類またはアルキルナフタレン類は、ベンゼンまたはナフタレンとオレフィンとのフリーデルクラフトアルキル化反応によって製造される。アルキルベンゼン類またはアルキルナフタレン類の製造において使用されるアルキル化オレフィンは、線状もしくは枝分かれ状のオレフィンまたはこれらの組み合わせでもよい。これらの製造方法は、例えば、米国特許第3,909,432号明細書に記載されている。
脂肪酸エステルとしては特に限定されないが、以下のような炭素、酸素、水素のみからなる脂肪酸エステルが挙げられる。
一塩基酸とアルコールから製造されるモノエステル;二塩基酸とアルコールとから、またはジオールと一塩基酸または酸混合物とから製造されるジエステル;ジオール、トリオール(たとえばトリメチロールプロパン)、テトラオール(たとえばペンタエリスリトール)、ヘキサオール(たとえばジペンタエリスリトール)などと一塩基酸または酸混合物とを反応させて製造したポリオールエステルなどが挙げられる。これらのエステルの例としては、ジトリデシルグルタレート、ジ−2−エチルヘキシルアジペート、ジイソデシルアジペート、ジトリデシルアジペート、ジ−2−エチルヘキシルセバケート、トリデシルペラルゴネート、ジ−2−エチルヘキシルアジペート、ジ−2−エチルヘキシルアゼレート、トリメチロールプロパンカプリレート、トリメチロールプロパンペラルゴネート、トリメチロールプロパントリヘプタノエート、ペンタエリスリトール−2−エチルヘキサノエート、ペンタエリスリトールペラルゴネート、ペンタエリスリトールテトラヘプタノエートなどがエステルとして挙げられる。
具体的には、後記共重合体(B)との相溶性の観点から、エステルを構成するアルコール部位は水酸基が2官能以上のアルコールが好ましく、脂肪酸部位は炭素数が8以上の脂肪酸が好ましい。ただし、脂肪酸については製造コストの点において、工業的に入手が容易である炭素数が20以下の脂肪酸が優位である。エステルを構成する脂肪酸は1種でも、2種以上の酸混合物でも、本発明で開示される性能が十分に発揮される。前記エステルとしてより具体的には、トリメチロールプロパンラウリン酸ステアリン酸混合トリエステルやジイソデシルアジペートなどが挙げられ、これらは共重合体(B)のような飽和炭化水素成分と、後述する極性基を有する酸化防止剤、腐食防止剤、耐摩耗剤、摩擦調整剤、流動点降下剤、防錆剤および消泡剤等の安定剤との相溶性の点から好ましい。
本発明の潤滑油組成物は、潤滑油基油(A)として合成炭化水素油を用いる場合、潤滑油組成物全体を100質量%としたときに、脂肪酸エステルを5〜20質量%の量で含むことが好ましい。5質量%以上の脂肪酸エステルを含有することにより、各種内燃機関、工業機械内部における樹脂やエラストマーといった潤滑油封止材に対し、良好な適合性が得られる。具体的には、潤滑油封止材の膨潤を抑制できる。酸化安定性または耐熱性の観点から、エステルの量は20質量%以下であることが好ましい。潤滑油組成物に鉱物油が含まれる場合、鉱物油そのものが潤滑油封止材の膨潤抑制効果を有するため、脂肪酸エステルは必ずしも必要ではない。
本発明の潤滑油組成物においては、潤滑油基油(A)として鉱油系潤滑油基油または合成系潤滑油基油を1種単独で用いてもよく、また、鉱油系潤滑油基油、合成系潤滑油基油の中から選ばれる2種以上の潤滑油の任意混合物等を使用してもよい。
潤滑油基油(A)の100℃における動粘度はJIS K2283に記載の方法に従い測定された場合に、1〜10mm2/sであり、好ましくは2〜7mm2/sである。これよりも高粘度であると潤滑油組成物の温度粘度特性が劣り、低粘度であると潤滑油組成物の高温下における蒸発減量が増加する。
<(B)エチレン−α−オレフィン共重合体>
エチレン−α−オレフィン共重合体(B)は下記(B1)、(B2)、(B3)および(B4)の特性を有する、エチレンとα-オレフィンとの共重合体である。
(B1)分子量
エチレン−α−オレフィン共重合体(B)は、ゲルパーミエーションクロマトグラフィー(GPC)によって後述する方法に従い測定し、標準ポリスチレン換算により得られたピークトップ分子量が3,000〜10,000であり、好ましくは5,000〜9,000、さらに好ましくは6,000〜8,000である。ここでピークトップ分子量とは、分子量分布曲線におけるdw/dLog(M)(Mは分子量、wは対応する分子量を有する成分の重量分率である。)の最も高い極大値を与える分子量を指す。当該分子量が複数存在する場合は、より大きい分子量をピークトップ分子量とする。ピークトップ分子量がこの範囲よりも低いと後述する潤滑油組成物の粘度温度特性、並びに低温粘度特性が悪化し、この範囲よりも高いと潤滑油組成物の剪断安定性が悪化する。
なお、本明細書において、「分子量分布曲線」あるいは「GPCチャート」とは、微分分子量分布曲線を指す。
(B2)融点
エチレン−α−オレフィン共重合体(B)は示差熱熱量計(DSC)による融解ピークを有さない。融解ピークを有さないとは、DSC測定において融解熱量ΔHが実質的に観測されず、共重合体が融点を有さないことを意味し、すなわち共重合体が非晶質の重合体であることを意味する。融解熱量(ΔH)が実質的に計測されないとは、DSC測定においてピークが観測されないか、あるいは観測された融解熱量が1J/g以下であることである。エチレン−α−オレフィン共重合体が結晶性を有すると、潤滑油組成物の低温粘度特性が悪化する。DSCの測定条件は実施例に記載した通りである。
(B3)B値
エチレン−α−オレフィン共重合体(B)は下記式[1]で表されるB値が、1.1以上、好ましくは1.2以上である。
式[1]中、PEはエチレン成分の含有モル分率を示し、POはα−オレフィン成分の含有モル分率を示し、POEは全dyad連鎖のエチレン−α−オレフィン連鎖のモル分率を示す。
上記B値が大きいほど、ブロック的な連鎖が少なく、エチレンおよびα−オレフィンの分布が一様であり、組成分布の狭い共重合体であることを示している。このブロック的連鎖の長さが共重合体の物性面における特性に影響を及ぼすことになり、B値が大きいほどブロック的連鎖が短く、流動点が低くなって良好な低温粘度特性を示す。
B値は、共重合体中における共重合モノマー連鎖分布のランダム性を示す指標であり、上記式[1]中のPE、POおよびPOEは、13C−NMRスペクトルを測定し、J. C. Randall [Macromolecules, 15, 353 (1982)]、J. Ray [Macromolecules, 10, 773 (1977)]らの報告に基づいて求めることができる。
B値の測定条件は実施例に記載した通りである。
(B4)100℃動粘度
エチレン−α−オレフィン共重合体(B)は、JIS K2283に記載の方法により測定した100℃における動粘度が140〜500mm2/sであり、好ましくは250〜450mm2/s、より好ましくは250〜380mm2/sである。エチレン−α−オレフィン共重合体(B)の100℃における動粘度が上記範囲内であると、潤滑油組成物の低温粘度特性の点で好ましい。
エチレン−α−オレフィン共重合体(B)は、エチレン含量が、通常30〜70モル%の範囲にあり、好ましくは40〜70モル%、特に好ましくは45〜65モル%の範囲にある。これよりも低いと粘度温度特性が悪化し、これよりも高いと分子内のエチレン連鎖が伸びることにより結晶性が発現する場合があり、低温粘度特性が悪化する。
なお、エチレン含量は、「高分子分析ハンドブック」(朝倉書店 発行 P163〜170)に記載の方法に従って13C−NMRで測定される。また、この方法により求められた試料を既知試料として、フーリエ変換赤外分光(FT−IR)を用いて測定することも可能である。
さらに、エチレン−α−オレフィン共重合体(B)は、1H−NMRで測定される、ビニル、ビニリデン、二置換オレフィンおよび三置換オレフィンに由来する分子鎖二重結合の合計個数が、1000個の炭素原子に対し0.5個未満、好ましくは0.3個未満、より好ましくは0.2個未満、さらに好ましくは0.1個未満である。分子鎖二重結合量が当該範囲内にあると、潤滑油組成物の耐熱性が良好となる。
エチレン−α−オレフィン共重合体(B)に用いられるα−オレフィンとしては、プロピレン、1−ブテン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3−メチル−1−ペンテン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセン、ビニルシクロヘキサンなどの炭素数3〜20の直鎖状または分岐状のα−オレフィンを例示することができる。α−オレフィンとしては、炭素数3〜10の直鎖状または分岐状のα−オレフィンが好ましく、プロピレン、1−ブテン、1−ヘキセンおよび1−オクテンがより好ましく、得られる共重合体を用いた潤滑油組成物の剪断安定性の点からプロピレンが最も好ましい。これらのα−オレフィンは1種単独で、または2種以上組み合わせて用いることができる。
また、極性基含有モノマー、芳香族ビニル化合物、および環状オレフィンから選択される少なくとも1種を反応系に共存させて重合を進めることもできる。エチレンおよび炭素数が3〜20のα−オレフィンとの合計100質量部に対して、他のモノマーは、例えば20質量部以下、好ましくは10質量部以下の量で用いることができる。
極性基含有モノマーとしては、アクリル酸、メタクリル酸、フマル酸、無水マレイン酸などのα,β−不飽和カルボン酸類、およびこれらのナトリウム塩等の金属塩類、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、メタクリル酸メチル、メタクリル酸エチルなどのα,β−不飽和カルボン酸エステル類、酢酸ビニル、プロピオン酸ビニルなどのビニルエステル類、アクリル酸グリシジル、メタクリル酸グリシジルなどの不飽和グリシジル類などを例示することができる。
芳香族ビニル化合物としては、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、o,p−ジメチルスチレン、メトキシスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルベンジルアセテート、ヒドロキシスチレン、p−クロロスチレン、ジビニルベンゼン、α−メチルスチレン、アリルベンゼンなどを例示することができる。
環状オレフィンとしては、シクロペンテン、シクロヘプテン、ノルボルネン、5−メチル−2−ノルボルネン、テトラシクロドデセンなどの炭素数3〜30、好ましくは3〜20の環状オレフィン類を例示することができる。
エチレン−α−オレフィン共重合体(B)の製造方法としては、特に限定されないが、特許文献5および特許文献6に記載されているようなバナジウム化合物と有機アルミニウム化合物とからなるバナジウム系触媒による方法が挙げられる。また、高い重合活性で共重合体を製造する方法として特許文献7〜9に記載されているようなジルコノセンなどのメタロセン化合物と有機アルミニウムオキシ化合物(アルミノキサン)からなる触媒系を用いる方法等を用いてもよく、これらの方法は、得られる共重合体の塩素含量、およびプロピレンの2,1−挿入が低減できるため、より好ましい。バナジウム系触媒による方法では、メタロセン系触媒を用いる方法と比べて、助触媒に塩素化合物をより多く使用するため、得られるエチレン−α−オレフィン共重合体(B)中に微量の塩素が残存する可能性がある。
一方、メタロセン系触媒を用いる方法では、実質的に塩素を残存させないため、内燃機関、機械等における金属部分の腐食の可能性を考慮する必要がなくなる。また、プロピレンの2,1−挿入低減は、共重合体分子内のエチレン連鎖をより低減することが可能になり、粘度温度特性、低温粘度特性を向上させることができる。
特に以下のような方法を用いることにより、分子量制御、分子量分布、非晶性、B値の点において良好な性能バランスを有するエチレン−α−オレフィン共重合体(B)が得られる。
エチレン−α−オレフィン共重合体(B)は、下記一般式[I]で表される架橋メタロセン化合物(a)、ならびに、有機金属化合物(b−1)、有機アルミニウムオキシ化合物(b−2)および前記架橋メタロセン化合物(a)と反応してイオン対を形成する化合物(b−3)からなる群より選ばれる少なくとも1種の化合物(b)を含むオレフィン重合触媒の存在下で、エチレンと炭素数が3〜20のα−オレフィンとを共重合することにより製造することができる。
<架橋メタロセン化合物>
架橋メタロセン化合物(a)は、上記式[I]で表される。上記式[I]で表される架橋メタロセン化合物は、ブロック的連鎖の短い、すなわちB値の大きな共重合体を与える。式[I]中のY、M、R1〜R14、Q、nおよびjを以下に説明する。
(Y、M、R1〜R12、Q、nおよびj)
Yは、第14族原子であり、例えば、炭素原子、ケイ素原子、ゲルマニウム原子およびスズ原子が挙げられ、好ましくは炭素原子またはケイ素原子であり、より好ましくは炭素原子である。
Mは、チタン原子、ジルコニウム原子またはハフニウム原子であり、好ましくはジルコニウム原子である。
1〜R12は、水素原子、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基からなる群より選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよい。また、R1からR12までの隣接した置換基は互いに結合して環を形成していてもよく、互いに結合していなくてもよい。
ここで、炭素数1〜20の炭化水素基としては、炭素数1〜20のアルキル基、炭素数3〜20の環状飽和炭化水素基、炭素数2〜20の鎖状不飽和炭化水素基、炭素数3〜20の環状不飽和炭化水素基、炭素数1〜20のアルキレン基、炭素数6〜20のアリーレン基等が例示される。
炭素数1〜20のアルキル基としては、直鎖状飽和炭化水素基であるメチル基、エチル基、n−プロピル基、アリル(allyl)基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デカニル基など、分岐状飽和炭化水素基であるイソプロピル基、イソブチル基、s−ブチル基、t−ブチル基、t−アミル基、ネオペンチル基、3−メチルペンチル基、1,1−ジエチルプロピル基、1,1−ジメチルブチル基、1−メチル−1−プロピルブチル基、1,1−プロピルブチル基、1,1−ジメチル−2−メチルプロピル基、1−メチル−1−イソプロピル−2−メチルプロピル基、シクロプロピルメチル基などが例示される。アルキル基の炭素数は好ましくは1〜6である。
炭素数3〜20の環状飽和炭化水素基としては、環状飽和炭化水素基であるシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルネニル基、1−アダマンチル基、2−アダマンチル基など、環状飽和炭化水素基の水素原子が炭素数1〜17の炭化水素基で置き換えられた基である3−メチルシクロペンチル基、3−メチルシクロヘキシル基、4−メチルシクロヘキシル基、4−シクロヘキシルシクロヘキシル基、4−フェニルシクロヘキシル基などが例示される。環状飽和炭化水素基の炭素数は好ましくは5〜11である。
炭素数2〜20の鎖状不飽和炭化水素基としては、アルケニル基であるエテニル基(ビニル基)、1−プロペニル基、2−プロペニル基(アリル基)、1−メチルエテニル基(イソプロペニル基)など、アルキニル基であるエチニル基、1−プロピニル基、2−プロピニル基(プロパルギル基)などが例示される。鎖状不飽和炭化水素基の炭素数は好ましくは2〜4である。
炭素数3〜20の環状不飽和炭化水素基としては、環状不飽和炭化水素基であるシクロペンタジエニル基、ノルボルニル基、フェニル基、ナフチル基、インデニル基、アズレニル基、フェナントリル基、アントラセニル基など、環状不飽和炭化水素基の水素原子が炭素数1〜15の炭化水素基で置き換えられた基である3−メチルフェニル基(m−トリル基)、4−メチルフェニル基(p−トリル基)、4−エチルフェニル基、4−t−ブチルフェニル基、4−シクロヘキシルフェニル基、ビフェニリル基、3,4−ジメチルフェニル基、3,5−ジメチルフェニル基、2,4,6−トリメチルフェニル基(メシチル基)など、直鎖状炭化水素基または分岐状飽和炭化水素基の水素原子が炭素数3〜19の環状飽和炭化水素基または環状不飽和炭化水素基で置き換えられた基であるベンジル基、クミル基などが例示される。環状不飽和炭化水素基の炭素数は好ましくは6〜10である。
炭素数1〜20のアルキレン基としては、メチレン基、エチレン基、ジメチルメチレン基(イソプロピリデン基)、エチルメチレン基、メチルエチレン基、n−プロピレン基などが例示される。アルキレン基の炭素数は好ましくは1〜6である。
炭素数6〜20のアリーレン基としては、o−フェニレン基、m−フェニレン基、p−フェニレン基、4,4'−ビフェニリレン基などが例示される。アリ−レン基の炭素数は好ましくは6〜12である。
ケイ素含有基としては、炭素数1〜20の炭化水素基において、炭素原子がケイ素原子で置き換えられた基であるトリメチルシリル基、トリエチルシリル基、t−ブチルジメチルシリル基、トリイソプロピルシリル基等のアルキルシリル基、ジメチルフェニルシリル基、メチルジフェニルシリル基、t−ブチルジフェニルシリル基等のアリールシリル基、ペンタメチルジシラニル基、トリメチルシリルメチル基などが例示される。アルキルシリル基の炭素数は1〜10が好ましく、アリールシリル基の炭素数は6〜18が好ましい。
窒素含有基としては、アミノ基や、上述した炭素数1〜20の炭化水素基またはケイ素含有基において、=CH−構造単位が窒素原子で置き換えられた基、−CH2−構造単位が炭素数1〜20の炭化水素基が結合した窒素原子で置き換えられた基、または−CH3構造単位が炭素数1〜20の炭化水素基が結合した窒素原子またはニトリル基で置き換えられた基であるジメチルアミノ基、ジエチルアミノ基、N−モルフォリニル基、ジメチルアミノメチル基、シアノ基、ピロリジニル基、ピペリジニル基、ピリジニル基など、N−モルフォリニル基およびニトロ基などが例示される。窒素含有基としては、ジメチルアミノ基、N−モルフォリニル基が好ましい。
酸素含有基としては、水酸基や、上述した炭素数1〜20の炭化水素基、ケイ素含有基または窒素含有基において、−CH2−構造単位が酸素原子またはカルボニル基で置き換えられた基、または−CH3構造単位が炭素数1〜20の炭化水素基が結合した酸素原子で置き換えられた基であるメトキシ基、エトキシ基、t−ブトキシ基、フェノキシ基、トリメチルシロキシ基、メトキシエトキシ基、ヒドロキシメチル基、メトキシメチル基、エトキシメチル基、t−ブトキシメチル基、1−ヒドロキシエチル基、1−メトキシエチル基、1−エトキシエチル基、2−ヒドロキシエチル基、2−メトキシエチル基、2−エトキシエチル基、n−2−オキサブチレン基、n−2−オキサペンチレン基、n−3−オキサペンチレン基、アルデヒド基、アセチル基、プロピオニル基、ベンゾイル基、トリメチルシリルカルボニル基、カルバモイル基、メチルアミノカルボニル基、カルボキシ基、メトキシカルボニル基、カルボキシメチル基、エトカルボキシメチル基、カルバモイルメチル基、フラニル基、ピラニル基などが例示される。酸素含有基としては、メトキシ基が好ましい。
ハロゲン原子としては、第17族元素であるフッ素、塩素、臭素、ヨウ素などが例示される。
ハロゲン含有基としては、上述した炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基または酸素含有基において、水素原子がハロゲン原子によって置換された基であるトリフルオロメチル基、トリブロモメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基などが例示される。
Qは、ハロゲン原子、炭素数1〜20の炭化水素基、アニオン配位子および孤立電子対で配位可能な中性配位子から、同一のまたは異なる組合せで選ばれる。
ハロゲン原子および炭素数1〜20の炭化水素基の詳細は、上述のとおりである。Qがハロゲン原子である場合は、塩素原子が好ましい。Qが炭素数1〜20の炭化水素基である場合は、該炭化水素基の炭素数は1〜7であることが好ましい。
アニオン配位子としては、メトキシ基、t−ブトキシ基、フェノキシ基などのアルコキシ基、アセテート、ベンゾエートなどのカルボキシレート基、メシレート、トシレートなどのスルホネート基などを例示することができる。
孤立電子対で配位可能な中性配位子としては、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン、ジフェニルメチルホスフィンなどの有機リン化合物、テトラヒドロフラン、ジエチルエーテル、ジオキサン、1,2−ジメトキシエタンなどのエーテル化合物などを例示することができる。
jは1〜4の整数であり、好ましくは2である。
nは1〜4の整数であり、好ましくは1または2であり、さらに好ましくは1である。
13およびR14は水素原子、炭素数1〜20の炭化水素基、アリール基、置換アリール基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基からなる群より選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよい。また、R13およびR14は互いに結合して環を形成していてもよく、互いに結合していなくてもよい。
炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基の詳細については、上述の通りである。
アリール基としては、前述した炭素数3〜20の環状不飽和炭化水素基の例と一部重複するが、芳香族化合物から誘導された置換基であるフェニル基、1−ナフチル基、2−ナフチル基、アントラセニル基、フェナントレニル基、テトラセニル基、クリセニル基、ピレニル基、インデニル基、アズレニル基、ピロリル基、ピリジル基、フラニル基、チオフェニル基などが例示される。アリール基としては、フェニル基または2−ナフチル基が好ましい。
前記芳香族化合物としては、芳香族炭化水素および複素環式芳香族化合物であるベンゼン、ナフタレン、アントラセン、フェナントレン、テトラセン、クリセン、ピレン、インデン、アズレン、ピロール、ピリジン、フラン、チオフェンなどが例示される。
置換アリール基としては、前述した炭素数3〜20の環状不飽和炭化水素基の例と一部重複するが、前記アリール基が有する1以上の水素原子が炭素数1〜20の炭化水素基、アリール基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基からなる群より選ばれる少なくとも1種の置換基により置換されてなる基が挙げられ、具体的には3−メチルフェニル基(m−トリル基)、4−メチルフェニル基(p−トリル基)、3−エチルフェニル基、4−エチルフェニル基、3,4−ジメチルフェニル基、3,5−ジメチルフェニル基、ビフェニリル基、4−(トリメチルシリル)フェニル基、4−アミノフェニル基、4−(ジメチルアミノ)フェニル基、4−(ジエチルアミノ)フェニル基、4−モルフォリニルフェニル基、4−メトキシフェニル基、4−エトキシフェニル基、4−フェノキシフェニル基、3,4−ジメトキシフェニル基、3,5−ジメトキシフェニル基、3−メチル−4−メトキシフェニル基、3,5−ジメチル−4−メトキシフェニル基、3−(トリフルオロメチル)フェニル基、4−(トリフルオロメチル)フェニル基、3−クロロフェニル基、4−クロロフェニル基、3−フルオロフェニル基、4−フルオロフェニル基、5−メチルナフチル基、2−(6−メチル)ピリジル基などが例示される。
上記式[I]で表される架橋メタロセン化合物(a)において、nは1であることが好ましい。このような架橋メタロセン化合物(以下「架橋メタロセン化合物(a−1)」ともいう。)は、下記一般式[II]で表わされる。
式[II]において、Y、M、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14、Qおよびjの定義等は、上述のとおりである。
架橋メタロセン化合物(a−1)は、上記式[I]におけるnが2〜4の整数である化合物に比べ、製造工程が簡素化され、製造コストが低減され、ひいてはこの架橋メタロセン化合物(a−1)を用いることでエチレン−α−オレフィン共重合体(B)の製造コストが低減されるという利点が得られる。
上記式[II]で表される架橋メタロセン化合物(a−1)において、R1、R2、R3およびR4は全て水素であることが好ましい。このような架橋メタロセン化合物(以下「架橋メタロセン化合物(a−2)」ともいう。)は、下記一般式[III]で表わされる。
式[III]において、Y、M、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14、Qおよびjの定義等は、上述のとおりである。
架橋メタロセン化合物(a−2)は、上記式[I]におけるR1、R2、R3およびR4のいずれか一つ以上が水素原子以外の置換基で置換された化合物に比べ、製造工程が簡素化され、製造コストが低減され、ひいてはこの架橋メタロセン化合物(a−2)を用いることでエチレン−α−オレフィン共重合体(B)の製造コストが低減されるという利点が得られる。また、一般に高温重合を行うことにより、エチレン−α−オレフィン共重合体(B)のランダム性は低下することが知られているが、該架橋メタロセン化合物(a−2)を含むオレフィン重合触媒の存在下でエチレンと炭素数3〜20のα−オレフィンから選ばれる1種以上のモノマーとを共重合する場合、高温重合であっても、得られるエチレン−α−オレフィン共重合体(B)のランダム性が高いという利点も得られる。
上記式[III]で表される架橋メタロセン化合物(a−2)において、R13およびR14のいずれか一方が、アリール基または置換アリール基であることが好ましい。このような架橋メタロセン化合物(a−3)は、R13およびR14がいずれもアリール基および置換アリール基以外の置換基である場合に比べ、生成するエチレン−α−オレフィン共重合体(B)中の二重結合量が少ないという利点が得られる。
架橋メタロセン化合物(a−3)において、R13およびR14のいずれか一方が、アリール基または置換アリール基であり、他方が炭素数1〜20のアルキル基であることがさらに好ましく、R13およびR14のいずれか一方が、アリール基または置換アリール基であり、他方がメチル基であることが特に好ましい。このような架橋メタロセン化合物(以下「架橋メタロセン化合物(a−4)」ともいう。)は、R13およびR14がいずれもアリール基または置換アリール基である場合に比べ、生成するエチレン−α−オレフィン共重合体(B)中の二重結合量と重合活性とのバランスに優れ、この架橋メタロセン化合物を用いることでエチレン−α−オレフィン共重合体(B)の製造コストが低減されるという利点が得られる。
ある一定の重合器内全圧および温度の条件下で重合を実施する場合において、水素導入による水素分圧の上昇は重合モノマーであるオレフィンの分圧の低下を引き起こし、とりわけ水素分圧が高い領域において重合速度を低下させるという問題を生じる。重合反応器はその設計上許容される内部全圧が制限されているため、特に低分子量のオレフィン重合体を製造する際に過度な水素導入を必要とすると、オレフィン分圧が著しく低下するため、重合活性が低下する場合がある。しかしながら、架橋メタロセン化合物(a−4)を用いてエチレン−α−オレフィン共重合体(B)を製造する場合、上記架橋メタロセン化合物(a−3)を用いる場合に比べ、重合反応器に導入する水素量が低減され、重合活性が向上し、エチレン−α−オレフィン共重合体(B)の製造コストが低減されるという利点が得られる。
上記架橋メタロセン化合物(a−4)において、R6およびR11は隣接した置換基と互いに結合して環を形成していてもよい、炭素数1〜20のアルキル基および炭素数1〜20のアルキレン基であることが好ましい。このような架橋メタロセン化合物(以下「架橋メタロセン化合物(a−5)」ともいう。)は、R6およびR11が炭素数1〜20のアルキル基および炭素数1〜20のアルキレン基以外の置換基で置換された化合物に比べ、製造工程が簡素化され、製造コストが低減され、ひいてはこの架橋メタロセン化合物(a−5)を用いることでエチレン−α−オレフィン共重合体(B)の製造コストが低減されるという利点が得られる。
上記一般式[I]で表される架橋メタロセン化合物(a)、上記一般式[II]で表される架橋メタロセン化合物(a−1)、上記一般式[III]で表される架橋メタロセン化合物(a−2)、ならびに上記架橋メタロセン化合物(a−3)、(a−4)および(a−5)において、Mはジルコニウム原子であることがさらに好ましい。Mがジルコニウム原子である上記架橋メタロセン化合物を含むオレフィン重合触媒の存在下でエチレンと炭素数3〜20のα−オレフィンから選ばれる1種以上のモノマーとを共重合する場合、Mがチタン原子またはハフニウム原子である場合に比べ重合活性が高く、エチレン−α−オレフィン共重合体(B)の製造コストが低減されるという利点が得られる。
このような架橋メタロセン化合物(a)としては、
[ジメチルメチレン(η5−シクロペンタジエニル)(η5−フルオレニル)]ジルコニウムジクロリド、[ジメチルメチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ジメチルメチレン(η5−シクロペンタジエニル)(η5−3,6−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ジメチルメチレン(η5−シクロペンタジエニル)(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、[ジメチルメチレン(η5−シクロペンタジエニル)(η5−テトラメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、
[シクロヘキシリデン(η5−シクロペンタジエニル)(η5−フルオレニル)]ジルコニウムジクロリド、[シクロヘキシリデン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[シクロヘキシリデン(η5−シクロペンタジエニル)(η5−3,6−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[シクロヘキシリデン(η5−シクロペンタジエニル)(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、[シクロヘキシリデン(η5−シクロペンタジエニル)(η5−テトラメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、
[ジフェニルメチレン(η5−シクロペンタジエニル)(η5−フルオレニル)]ジルコニウムジクロリド、[ジフェニルメチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン(η5−2−メチル−4−t−ブチルシクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ジフェニルメチレン(η5−シクロペンタジエニル)(η5−3,6−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ジフェニルメチレン(η5−シクロペンタジエニル)(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、[ジフェニルメチレン(η5−シクロペンタジエニル)(η5−テトラメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、
[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−フルオレニル)]ジルコニウムジクロリド、[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−3,6−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−テトラメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、
[メチル(3−メチルフェニル)メチレン(η5−シクロペンタジエニル)(η5−フルオレニル)]ジルコニウムジクロリド、[メチル(3−メチルフェニル)メチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[メチル(3−メチルフェニル)メチレン(η5−シクロペンタジエニル)(η5−3,6−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[メチル(3−メチルフェニル)メチレン(η5−シクロペンタジエニル)(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、[メチル(3−メチルフェニル)メチレン(η5−シクロペンタジエニル)(η5−テトラメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、
[ジフェニルシリレン(η5−シクロペンタジエニル)(η5−フルオレニル)]ジルコニウムジクロリド、[ジフェニルシリレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ジフェニルシリレン(η5−シクロペンタジエニル)(η5−3,6−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ジフェニルシリレン(η5−シクロペンタジエニル)(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、[ジフェニルシリレン(η5−シクロペンタジエニル)(η5−テトラメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、
[ビス(3−メチルフェニル)シリレン(η5−シクロペンタジエニル)(η5−フルオレニル)]ジルコニウムジクロリド、[ビス(3−メチルフェニル)シリレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ビス(3−メチルフェニル)シリレン(η5−シクロペンタジエニル)(η5−3,6−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ビス(3−メチルフェニル)シリレン(η5−シクロペンタジエニル)(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、[ビス(3−メチルフェニル)シリレン(η5−シクロペンタジエニル)(η5−テトラメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、
[ジシクロヘキシルシリレン(η5−シクロペンタジエニル)(η5−フルオレニル)]ジルコニウムジクロリド、[ジシクロヘキシルシリレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ジシクロヘキシルシリレン(η5−シクロペンタジエニル)(η5−3,6−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ジシクロヘキシルシリレン(η5−シクロペンタジエニル)(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、[ジシクロヘキシルシリレン(η5−シクロペンタジエニル)(η5−テトラメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、
[エチレン(η5−シクロペンタジエニル)(η5−フルオレニル)]ジルコニウムジクロリド、[エチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[エチレン(η5−シクロペンタジエニル)(η5−3,6−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[エチレン(η5−シクロペンタジエニル)(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、[エチレン(η5シクロペンタジエニル)(η5−テトラメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、
等が挙げられる。
これらの化合物のジルコニウム原子をハフニウム原子に置き換えた化合物またはクロロ配位子をメチル基に置き換えた化合物などが例示されるが、架橋メタロセン化合物(a)はこれらの例示に限定されない。尚、例示した架橋メタロセン化合物(a)の構成部分であるη5−テトラメチルオクタヒドロジベンゾフルオレニルは4,4,7,7−テトラメチル−(5a,5b,11a,12,12a−η5)−1,2,3,4,7,8,9,10−オクタヒドロジベンゾ[b,H]フルオレニル基、η5−オクタメチルオクタヒドロジベンゾフルオレニルは1,1,4,4,7,7,10,10−オクタメチル−(5a,5b,11a,12,12a−η5)−1,2,3,4,7,8,9,10−オクタヒドロジベンゾ[b,H]フルオレニル基をそれぞれ表わす。
<化合物(b)>
本発明で使用される重合触媒は、上記の架橋メタロセン化合物(a)、ならびに有機金属化合物(b−1)、有機アルミニウムオキシ化合物(b−2)および架橋メタロセン化合物(a)と反応してイオン対を形成する化合物(b−3)からなる群より選ばれる少なくとも1種の化合物(b)を含む。
有機金属化合物(b−1)として、具体的には下記のような周期律表第1、2族および第12、13族の有機金属化合物が用いられる。
(b−1a)一般式 Ra mAl(ORbnpq
(式中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素数1〜15、好ましくは1〜4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である)で表される有機アルミニウム化合物。
このような化合物として、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−ブチルアルミニウム、トリ−n−ヘキシルアルミニウム、トリ−n−オクチルアルミニウムなどのトリ−n−アルキルアルミニウム、トリイソプロピルアルミニウム、トリイソブチルアルミニウム、トリsec−ブチルアルミニウム、トリ−t−ブチルアルミニウム、トリ−2−メチルブチルアルミニウム、トリ−3−メチルヘキシルアルミニウム、トリ−2−エチルヘキシルアルミニウムなどのトリ分岐状アルキルアルミニウム、トリシクロヘキシルアルミニウム、トリシクロオクチルアルミニウムなどのトリシクロアルキルアルミニウム、トリフェニルアルミニウム、トリ(4−メチルフェニル)アルミニウムなどのトリアリールアルミニウム、ジイソプロピルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライドなどのジアルキルアルミニウムハイドライド、一般式(i−C49xAly(C510z(式中、x、y、zは正の数であり、z≦2xである。)で表されるイソプレニルアルミニウムなどのアルケニルアルミニウム、イソブチルアルミニウムメトキシド、イソブチルアルミニウムエトキシドなどのアルキルアルミニウムアルコキシド、ジメチルアルミニウムメトキシド、ジエチルアルミニウムエトキシド、ジブチルアルミニウムブトキシドなどのジアルキルアルミニウムアルコキシド、エチルアルミニウムセスキエトキシド、ブチルアルミニウムセスキブトキシドなどのアルキルアルミニウムセスキアルコキシド、一般式Ra 2.5Al(ORb0.5などで表される平均組成を有する部分的にアルコキシ化されたアルキルアルミニウム、ジエチルアルミニウムフェノキシド、ジエチルアルミニウム(2,6−ジ−t−ブチル−4−メチルフェノキシド)などのアルキルアルミニウムアリーロキシド、ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、ジブチルアルミニウムクロリド、ジエチルアルミニウムブロミド、ジイソブチルアルミニウムクロリドなどのジアルキルアルミニウムハライド、エチルアルミニウムセスキクロリド、ブチルアルミニウムセスキクロリド、エチルアルミニウムセスキブロミドなどのアルキルアルミニウムセスキハライド、エチルアルミニウムジクロリドなどのアルキルアルミニウムジハライドなどの部分的にハロゲン化されたアルキルアルミニウム、ジエチルアルミニウムヒドリド、ジブチルアルミニウムヒドリドなどのジアルキルアルミニウムヒドリド、エチルアルミニウムジヒドリド、プロピルアルミニウムジヒドリドなどのアルキルアルミニウムジヒドリドおよびその他の部分的に水素化されたアルキルアルミニウム、エチルアルミニウムエトキシクロリド、ブチルアルミニウムブトキシクロリド、エチルアルミニウムエトキシブロミドなどの部分的にアルコキシ化およびハロゲン化されたアルキルアルミニウムなどを例示することができる。また、上記一般式Ra mAl(ORbnpqで表される化合物に類似する化合物も使用することができ、例えば窒素原子を介して2以上のアルミニウム化合物が結合した有機アルミニウム化合物を挙げることができる。このような化合物として具体的には、(C252AlN(C25)Al(C252などを挙げることができる。
(b−1b)一般式 M2AlRa 4(式中、M2はLi、NaまたはKを示し、Raは炭素数1〜15、好ましくは1〜4の炭化水素基を示す。)で表される周期律表第1族金属とアルミニウムとの錯アルキル化物。
このような化合物として、LiAl(C254、LiAl(C7154などを例示することができる。
(b−1c)一般式 Rab3(式中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素数1〜15、好ましくは1〜4の炭化水素基を示し、M3はMg、ZnまたはCdである。)で表される周期律表第2族または第12族金属のジアルキル化合物。
有機アルミニウムオキシ化合物(b−2)としては、従来公知のアルミノキサンをそのまま使用することができる。具体的には、下記一般式[IV]で表わされる化合物および下記一般式[V]で表わされる化合物を挙げることができる。
式[IV]および[V]中、Rは炭素数1〜10の炭化水素基、nは2以上の整数を示す。
特にRがメチル基であるメチルアルミノキサンであってnが3以上、好ましくは10以上のものが利用される。これらアルミノキサン類に若干の有機アルミニウム化合物が混入していても差し支えない。
本発明においてエチレンと炭素数が3以上のα−オレフィンとの共重合を高温で行う場合には、特開平2−78687号公報に例示されているようなベンゼン不溶性の有機アルミニウムオキシ化合物も適用することができる。また、特開平2−167305号公報に記載されている有機アルミニウムオキシ化合物、特開平2−24701号公報、特開平3−103407号公報に記載されている二種類以上のアルキル基を有するアルミノキサンなども好適に利用できる。なお、本発明で用いられることのある「ベンゼン不溶性の有機アルミニウムオキシ化合物」とは、60℃のベンゼンに溶解するAl成分がAl原子換算で通常10%以下、好ましくは5%以下、特に好ましくは2%以下であり、ベンゼンに対して不溶性または難溶性である化合物である。
また、有機アルミニウムオキシ化合物(b−2)として、下記一般式[VI]で表されるような修飾メチルアルミノキサン等も挙げることができる。
式[VI]中、Rは炭素数1〜10の炭化水素基、mおよびnはそれぞれ独立に2以上の整数を示す。
この修飾メチルアルミノキサンはトリメチルアルミニウムとトリメチルアルミニウム以外のアルキルアルミニウムを用いて調製されるものである。このような化合物は一般にMMAOと呼ばれている。このようなMMAOは米国特許4960878号明細書および米国特許5041584号明細書で挙げられている方法で調製することができる。また、東ソー・ファインケム社等からもトリメチルアルミニウムとトリイソブチルアルミニウムを用いて調製した、Rがイソブチル基であるものがMMAOやTMAOといった名称で市販されている。このようなMMAOは各種溶媒への溶解性および保存安定性を改良したアルミノキサンであり、具体的には上記式[IV]で表わされる化合物および[V]で表わされる化合物のうちのベンゼンに対して不溶性または難溶性の化合物とは違い、脂肪族炭化水素や脂環族炭化水素に溶解する。
さらに、有機アルミニウムオキシ化合物(b−2)として、下記一般式[VII]で表されるボロンを含んだ有機アルミニウムオキシ化合物も挙げることができる。
式[VII]中、Rcは炭素数1〜10の炭化水素基を示す。Rdは、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子または炭素数1〜10の炭化水素基を示す。
架橋メタロセン化合物(a)と反応してイオン対を形成する化合物(b−3)(以下、「イオン化イオン性化合物」または単に「イオン性化合物」と略称する場合がある。)としては、特開平1−501950号公報、特開平1−502036号公報、特開平3−179005号公報、特開平3−179006号公報、特開平3−207703号公報、特開平3−207704号公報、米国特許5321106号明細書などに記載されたルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物などを挙げることができる。さらに、ヘテロポリ化合物およびイソポリ化合物も挙げることができる。
本発明において好ましく使用されるイオン化イオン性化合物は、下記一般式[VIII]で表されるホウ素化合物である。
式[VIII]中、Re+としては、H+、カルベニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオン、遷移金属を有するフェロセニウムカチオンなどが挙げられる。Rf〜Riは、互いに同一でも異なっていてもよく、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる置換基であり、好ましくは置換アリール基である。
上記カルベニウムカチオンとして具体的には、トリフェニルカルベニウムカチオン、トリス(4−メチルフェニル)カルベニウムカチオン、トリス(3,5−ジメチルフェニル)カルベニウムカチオンなどの三置換カルベニウムカチオンなどが挙げられる。
上記アンモニウムカチオンとして具体的には、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリ(n−プロピル)アンモニウムカチオン、トリイソプロピルアンモニウムカチオン、トリ(n−ブチル)アンモニウムカチオン、トリイソブチルアンモニウムカチオンなどのトリアルキル置換アンモニウムカチオン、N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオンなどのN,N−ジアルキルアニリニウムカチオン、ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオンなどのジアルキルアンモニウムカチオンなどが挙げられる。
上記ホスホニウムカチオンとして具体的には、トリフェニルホスホニウムカチオン、トリス(4−メチルフェニル)ホスホニウムカチオン、トリス(3,5−ジメチルフェニル)ホスホニウムカチオンなどのトリアリールホスホニウムカチオンなどが挙げられる。
e+としては、上記具体例のうち、カルベニウムカチオン、アンモニウムカチオンなどが好ましく、特にトリフェニルカルベニウムカチオン、N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオンが好ましい。
本発明において好ましく使用されるイオン化イオン性化合物のうち、カルベニウムカチオンを含む化合物として、トリフェニルカルベニウムテトラフェニルボレート、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムテトラキス{3,5−ジ−(トリフルオロメチル)フェニル}ボレート、トリス(4−メチルフェニル)カルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリス(3,5−ジメチルフェニル)カルベニウムテトラキス(ペンタフルオロフェニル)ボレートなどを例示することができる。
本発明において好ましく使用されるイオン化イオン性化合物のうち、トリアルキル置換アンモニウムカチオンを含む化合物として、トリエチルアンモニウムテトラフェニルボレート、トリプロピルアンモニウムテトラフェニルボレート、トリ(n−ブチル)アンモニウムテトラフェニルボレート、トリメチルアンモニウムテトラキス(4−メチルフェニル)ボレート、トリメチルアンモニウムテトラキス(2−メチルフェニル)ボレート、トリ(n−ブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリエチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(2,4−ジメチルフェニル)ボレート、トリ(n−ブチル)アンモニウムテトラキス(3,5−ジメチルフェニル)ボレート、トリ(n−ブチル)アンモニウムテトラキス{4−(トリフルオロメチル)フェニル}ボレート、トリ(n−ブチル)アンモニウムテトラキス{3,5−ジ(トリフルオロメチル)フェニル}ボレート、トリ(n−ブチル)アンモニウムテトラキス(2−メチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラフェニルボレート、ジオクタデシルメチルアンモニウムテトラキス(4−メチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(4−メチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(2,4−ジメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(3,5−ジメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス{4−(トリフルオロメチル)フェニル}ボレート、ジオクタデシルメチルアンモニウムテトラキス{3,5−ジ(トリフルオロメチル)フェニル}ボレート、ジオクタデシルメチルアンモニウムなどを例示することができる。
本発明において好ましく使用されるイオン化イオン性化合物のうち、N,N−ジアルキルアニリニウムカチオンを含む化合物として、N,N−ジメチルアニリニウムテトラフェニルボレート、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N−ジメチルアニリニウムテトラキス{3,5−ジ(トリフルオロメチル)フェニル}ボレート、N,N−ジエチルアニリニウムテトラフェニルボレート、N,N−ジエチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N−ジエチルアニリニウムテトラキス{3,5−ジ(トリフルオロメチル)フェニル}ボレート、N,N−2,4,6−ペンタメチルアニリニウムテトラフェニルボレート、N,N−2,4,6−ペンタメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートなどを例示することができる。
本発明において好ましく使用されるイオン化イオン性化合物のうち、ジアルキルアンモニウムカチオンを含む化合物として、ジ−n−プロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジシクロヘキシルアンモニウムテトラフェニルボレートなどを例示することができる。
その他、特開2004−51676号公報によって例示されているイオン性化合物も制限無く使用が可能である。
上記のイオン性化合物(b−3)は、1種単独で用いてもよく2種以上を混合して用いでもよい。
有機金属化合物(b−1)としては、市販品のために入手が容易なトリメチルアルミニウム、トリエチルアルミニウムおよびトリイソブチルアルミニウムが好ましい。このうち、取り扱いが容易なトリイソブチルアルミニウムが特に好ましい。
有機アルミニウムオキシ化合物(b−2)としては、市販品のために入手が容易なメチルアルミノキサン、およびトリメチルアルミニウムとトリイソブチルアルミニウムを用いて調製したMMAOが好ましい。このうち、各種溶媒への溶解性および保存安定性が改良されたMMAOが特に好ましい。
イオン性化合物(b−3)としては、市販品として入手が容易であり、かつ重合活性向上への寄与が大きいことから、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートおよびN,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートが好ましい。
化合物(b)としては、重合活性が大きく向上することから、トリイソブチルアルミニウムとトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートとの組合せ、およびトリイソブチルアルミニウムとN,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートとの組合せが特に好ましい。
<担体(c)>
本発明では、オレフィン重合触媒の構成成分として、必要に応じて担体(c)を用いてもよい。
本発明で用いてもよい担体(c)は、無機または有機の化合物であって、顆粒状ないしは微粒子状の固体である。このうち無機化合物としては、多孔質酸化物、無機塩化物、粘土、粘土鉱物またはイオン交換性層状化合物が好ましい。
多孔質酸化物として、具体的にはSiO2、Al23、MgO、ZrO、TiO2、B23、CaO、ZnO、BaO、ThO2など、またはこれらを含む複合物または混合物、例えば天然または合成ゼオライト、SiO2−MgO、SiO2−Al23、SiO2−TiO2、SiO2−V25、SiO2−Cr23、SiO2−TiO2−MgOなどを使用することができる。これらのうち、SiO2および/またはAl23を主成分とするものが好ましい。このような多孔質酸化物は、種類および製法によりその性状は異なるが、本発明に好ましく用いられる担体は、粒径が0.5〜300μm、好ましくは1.0〜200μmであって、比表面積が50〜1000m2/g、好ましくは100〜700m2/gの範囲にあり、細孔容積が0.3〜3.0cm3/gの範囲にある。このような担体は、必要に応じて100〜1000℃、好ましくは150〜700℃で焼成してから使用される。
無機塩化物としては、MgCl2、MgBr2、MnCl2、MnBr2等が用いられる。無機塩化物は、そのまま用いてもよいし、ボールミル、振動ミルにより粉砕した後に用いてもよい。また、アルコールなどの溶媒に無機塩化物を溶解させた後、析出剤によって微粒子状に析出させたものを用いてもよい。
粘土は、通常粘土鉱物を主成分として構成される。また、イオン交換性層状化合物は、イオン結合などによって、構成される面が互いに弱い結合力で平行に積み重なった結晶構造を有する化合物であり、含まれるイオンが交換可能なものである。大部分の粘土鉱物はイオン交換性層状化合物である。また、これらの粘土、粘土鉱物、イオン交換性層状化合物としては、天然産のものに限らず、人工合成物を使用することもできる。また、粘土、粘土鉱物またはイオン交換性層状化合物として、粘土、粘土鉱物、また、六方細密パッキング型、アンチモン型、CdCl2型、CdI2型などの層状の結晶構造を有するイオン結晶性化合物などを例示することができる。このような粘土、粘土鉱物としては、カオリン、ベントナイト、木節粘土、ガイロメ粘土、アロフェン、ヒシンゲル石、パイロフィライト、ウンモ群、モンモリロナイト群、バーミキュライト、リョクデイ石群、パリゴルスカイト、カオリナイト、ナクライト、ディッカイト、ハロイサイトなどが挙げられ、イオン交換性層状化合物としては、α−Zr(HAsO42・H2O、α−Zr(HPO42、α−Zr(KPO42・3H2O、α−Ti(HPO42、α−Ti(HAsO42・H2O、α−Sn(HPO42・H2O、γ−Zr(HPO42、γ−Ti(HPO42、γ−Ti(NH4PO42・H2Oなどの多価金属の結晶性酸性塩などが挙げられる。本発明で用いられる粘土、粘土鉱物には、化学処理を施すことも好ましい。化学処理としては、表面に付着している不純物を除去する表面処理、粘土の結晶構造に影響を与える処理など、何れも使用できる。化学処理として、具体的には、酸処理、アルカリ処理、塩類処理、有機物処理などが挙げられる。
イオン交換性層状化合物は、イオン交換性を利用し、層間の交換性イオンを別の大きな嵩高いイオンと交換することにより、層間が拡大した状態の層状化合物であってもよい。このような嵩高いイオンは、層状構造を支える支柱的な役割を担っており、通常、ピラーと呼ばれる。また、このように層状化合物の層間に別の物質(ゲスト化合物)を導入することをインターカレーションという。ゲスト化合物としては、TiCl4、ZrCl4などの陽イオン性無機化合物、Ti(OR)4、Zr(OR)4、PO(OR)3、B(OR)3などの金属アルコキシド(Rは炭化水素基など)、[Al134(OH)247+、[Zr4(OH)142+、[Fe3O(OCOCH36+などの金属水酸化物イオンなどが挙げられる。これらの化合物は1種単独でまたは2種以上組み合わせて用いられる。また、これらの化合物をインターカレーションする際に、Si(OR)4、Al(OR)3、Ge(OR)4などの金属アルコキシド(Rは炭化水素基など)などを加水分解重縮合して得た重合物、SiO2などのコロイド状無機化合物などを共存させることもできる。また、ピラーとしては、上記金属水酸化物イオンを層間にインターカレーションした後に加熱脱水することにより生成する酸化物などが挙げられる。
これらのうち、好ましいものは粘土または粘土鉱物であり、特に好ましいものはモンモリロナイト、バーミキュライト、ペクトライト、テニオライトおよび合成雲母である。
担体(c)としての有機化合物としては、粒径が0.5〜300μmの範囲にある顆粒状ないしは微粒子状固体を挙げることができる。具体的には、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテンなどの炭素原子数が2〜14のα−オレフィンを主成分として生成される(共)重合体またはビニルシクロヘキサン、スチレンを主成分として生成される(共)重合体、およびそれらの変成体を例示することができる。
本明細書に開示しているようなブロック的連鎖の短いエチレン−α−オレフィン共重合体(B)を生成可能なオレフィン重合触媒を使用する重合方法により、高温重合が可能となる。すなわち、該オレフィン重合触媒を使用することにより、高温重合により伸長するエチレン−α−オレフィン共重合体(B)のブロック的連鎖を抑制することができる。
溶液重合においては、生成したエチレン−α−オレフィン共重合体(B)を含む重合溶液の粘度が高温で低下するため、低温重合時に比べて重合器内のエチレン−α−オレフィン共重合体(B)の濃度を上げることが可能となり、結果として重合器当りの生産性が向上する。本発明におけるエチレンおよびα−オレフィンの共重合は、溶液重合、懸濁重合(スラリー重合)などの液相重合法または気相重合法のいずれにおいても実施できるが、このように、本発明の効果を最大限享受し得るという観点からは溶液重合が特に好ましい。
オレフィン重合触媒の各成分の使用法、添加順序は任意に選ばれる。また、触媒中の各成分の少なくとも2つ以上は予め接触されていてもよい。
架橋メタロセン化合物(a)(以下「成分(a)」ともいう。)は、反応容積1リットル当り、通常10-9〜10-1モル、好ましくは10-8〜10-2モルになるような量で用いられる。
有機金属化合物(b−1)(以下「成分(b−1)」ともいう。)は、成分(b−1)と、成分(a)中の遷移金属原子(M)とのモル比[(b−1)/M]が、通常0.01〜50,000、好ましくは0.05〜10,000となるような量で用いられる。
有機アルミニウムオキシ化合物(b−2)(以下「成分(b−2)」ともいう。)は、成分(b−2)中のアルミニウム原子と、成分(a)中の遷移金属原子(M)とのモル比[(b−2)/M]が、通常10〜5,000、好ましくは20〜2,000となるような量で用いられる。
イオン性化合物(b−3)(以下「成分(b−3)」ともいう。)は、成分(b−3)と、成分(a)中の遷移金属原子(M)とのモル比[(b−3)/M]が、通常1〜10,000、好ましくは1〜5,000となるような量で用いられる。
重合温度は、通常−50℃〜300℃であり、好ましくは100℃〜250℃、さらに好ましくは130℃〜200℃である。前記範囲の重合温度領域では温度が高くなるに従い、重合時の溶液粘度が低下し、重合熱の除熱も容易となる。重合圧力は、通常、常圧〜10MPaゲージ圧(MPa−G)、好ましくは常圧〜8MPa−Gである。
重合反応は、回分式、半連続式、連続式のいずれの方法においても行うことができる。さらに、重合を反応条件の異なる二つ以上の重合器で連続的に行うことも可能である。
得られる共重合体の分子量は、重合系中の水素濃度や重合温度を変化させることによって調節することができる。さらに、使用する成分(b)の量により調節することもできる。水素を添加する場合、その量は生成する共重合体1kgあたり0.001〜5,000NL程度が適当である。
また、共重合体(B)の分子量分布(Mw/Mn)は用いる触媒の構造により異なる。上記式[I]のような架橋メタロセン化合物の場合、R1〜R14の置換基を適宜変更することにより前記分子量分布を調整できる。さらに、減圧蒸留のような従来公知の方法により得られた重合体の低分子量成分を除去することでも分子量分布を調整することができる。
共重合体(B)の分子量と分子量分布を調整することにより、共重合体(B)のピークトップ分子量とピークトップ分子量以上の高い分子量を有する成分における分子量20,000以上の成分の重量分率(すなわち、前記「ピークトップ分子量以上の高い分子量を有する成分」の重量に対する前記「分子量20,000以上の成分」の重量の割合。)を調整することができる。また、分子量あるいは分子量分布の異なる複数の共重合体を組み合わせることによってもこの重量分率を調整することができる。
液相重合法において用いられる重合溶媒は、通常、不活性炭化水素溶媒であり、好ましくは常圧下における沸点が50℃〜200℃の飽和炭化水素である。重合溶媒としては、具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素が挙げられ、特に好ましくは、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサンが挙げられる。重合対象であるα−オレフィン自身を重合溶媒として用いることもできる。尚、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類やエチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素も重合溶媒として使用することができるが、環境への負荷軽減の視点および人体健康への影響の最少化の視点からは、これらの使用は好ましくない。
オレフィン重合体の100℃における動粘度は重合体の分子量に依存する。すなわち高分子量であれば高粘度となり、低分子量であれば低粘度となるため、上述の分子量調整により100℃における動粘度を調整することができる。さらに得られた重合体に対して、従来公知の方法により水素添加(以下水添ともいう。)を行ってもよい。水添により、得られた重合体の二重結合が低減されれば、酸化安定性および耐熱性が向上する。
また、共重合体(B)を、エチレン由来の構成単位とα−オレフィン由来の構成単位との合計を100モル%とした場合のエチレンモル含有率が30〜70モル%の範囲になるように製造する場合、共重合するエチレンおよび炭素数3〜20のα−オレフィンの仕込みモル比は、通常、エチレン:α−オレフィン = 10:90〜99.9:0.1、好ましくはエチレン:α−オレフィン = 30:70〜99.9:0.1、さらに好ましくはエチレン:α−オレフィン = 50:50〜99.9:0.1である。
得られたエチレン−α−オレフィン共重合体(B)は、1種単独で用いてもよく、また、分子量や分子量分布の異なるものや異なるモノマー組成のものを2種類以上組み合わせてもよい。
また、エチレン−α−オレフィン共重合体(B)の官能基をグラフト変性してもよく、また、これらをさらに2次変性してもよい。例えば、特開昭61−126120号公報や特許第2593264号公報などに記載される方法など、2次変性としては特表2008−508402号公報などに記載される方法などが挙げられる。
<潤滑油組成物>
本発明の潤滑油組成物は、前記潤滑油基油(A)および前記エチレン−α−オレフィン共重合体(B)を含有する。
本発明の潤滑油組成物は100℃における動粘度が20mm2/s以下である。潤滑油組成物の100℃における動粘度が20mm2/sを超えると潤滑油そのものの油膜保持性能が向上するため、本発明により得られる効果が十分に発揮されず、また、省燃費性能が劣る。100℃における動粘度はより好ましくは16mm2/s以下であり、さらに好ましくは10mm2/s以下である。特に7.5mm2/s以下において高い省燃費性能と極めて優れた剪断安定性が得られる。この動粘度の値は、JIS K2283に記載の方法で測定した場合のものである。
また、本発明の潤滑油組成物は、ゲルパーミエーションクロマトグラフィー(GPC)によって後述する方法に従い測定した標準ポリスチレン換算の分子量において、分子量3,000〜10,000の範囲にピークトップを有し、このピークトップを与える分子量以上の高い分子量を有する成分における分子量20,000以上の成分の重量分率(すなわち、前記「ピークトップを与える分子量以上の高い分子量を有する成分」の重量に対する前記「分子量20,000以上の成分」の重量の割合。以下、単に「分子量20,000以上の成分の重量分率」ともいう。)が1〜10%である。この分子量3,000〜10,000におけるピークの主成分はエチレン−α−オレフィン共重合体(B)である。エチレン−α−オレフィン共重合体(B)の分子量20,000以上の成分の重量分率を調整することにより、潤滑油組成物における上述した重量分率を調整することが可能である。
なお、「潤滑油組成物(またはある成分)が特定の分子量の範囲にピークトップを有する」とは、潤滑油組成物(またはある成分)を測定して得られた分子量分布曲線における当該範囲にdw/dLog(M)(Mは分子量、wは対応する分子量を有する成分の重量分率である。)の極大値が存在することを意味する。この極大値を与える分子量(以下「ピークトップを与える分子量」ともいう。)は、ピークトップ分子量(すなわち、分子量分布曲線全体におけるdw/dLog(M)の最も高い極大値を与える分子量)と一致するとは限らない。
本発明の潤滑油組成物は、分子量20,000以上の成分の重量分率が10%を超えると剪断安定性が急激に著しく劣る。前記重量分率は、好ましくは6%以下、さらに好ましくは5%以下であり、前記重量分率がこの範囲にあると極めて優れた剪断安定性が得られる。
一方で、分子量20,000以上の成分の重量分率が1%を下回ると、十分な低温粘度特性が得られなくなる。温度粘度特性の観点からは、分子量20,000以上の成分の重量分率が好ましくは2%以上、さらに好ましくは2.5%以上である。
本発明の潤滑油組成物において、前記潤滑油基油(A)と前記エチレン−α−オレフィン共重合体(B)との配合割合は、目的とする用途における要求特性を満たせば特に制限されるものではないが、本発明の潤滑油組成物は、通常、前記潤滑油基油(A)と前記エチレン−α−オレフィン共重合体(B)を、重量比((A)/(B))で99/1〜50/50の割合で含む。
また、本発明の潤滑油組成物は、極圧剤、清浄分散剤、粘度指数向上剤、酸化防止剤、腐食防止剤、耐摩耗剤、摩擦調整剤、流動点降下剤、防錆剤および消泡剤等の添加剤を含んでいてもよい。
本発明の潤滑油組成物に用いられる添加剤としては下記のものを例示することができ、これらを1種単独でまたは2種以上組み合わせて用いることができる。
極圧剤は、各種内燃機関、工業機械が高負荷状態に晒された場合に、焼付け防止の効果を有するものの総称であり、特に限定されないが、スルフィド類、スルホキシド類、スルホン類、チオホスフィネート類、チオカーボネート類、硫化油脂、硫化オレフィンなどのイオウ系極圧剤;リン酸エステル、亜リン酸エステル、リン酸エステルアミン塩、亜リン酸エステルアミン類などのリン酸類;塩素化炭化水素などのハロゲン系化合物などを例示することができる。また、これらの化合物を2種類以上併用してもよい。
なお、極圧潤滑条件に至るまでに、炭化水素、または潤滑油組成物を構成する他の有機成分が、加熱、せん断により極圧潤滑条件以前に炭化してしまい、金属表面に炭化物被膜を形成する可能性がある。このため、極圧剤単独の使用では、炭化物被膜により極圧剤と金属表面の接触が阻害され、極圧剤の十分な効果が期待できないおそれがある。
極圧剤は単独で添加してもよいが、本発明における潤滑油組成物は共重合体といった飽和炭化水素を主成分とするため、予め使用する他の添加剤とともに、鉱物油もしくは合成炭化水素油等の潤滑油基油に溶解させた状態で添加した方が、分散性の観点から好ましい。具体的には、極圧剤成分などの諸成分をあらかじめ配合し、更に鉱物油もしくは合成炭化水素油等の潤滑油基油に溶解させた、いわゆる極圧剤パッケージを選択して潤滑油組成物に添加する方法がより好ましい。
好ましい極圧剤(パッケージ)としては、LUBRIZOL社製Anglamol−98A、LUBRIZOL社製Anglamol−6043、AFTON CHEMICAL社製HITEC1532、AFTON CHEMICAL社製HITEC307、AFTON CHEMICAL社製HITEC3339、RHEIN CHEMIE社製Additin RC 9410等が挙げられる。
極圧剤は、必要に応じて潤滑油組成物100質量%に対して0〜10質量%の範囲で用いられる。
清浄分散剤としては、金属スルホネート、金属フェネート、金属フォスファネート、コハク酸イミドなどを例示することができる。清浄分散剤は、必要に応じて潤滑油組成物100質量%に対して0〜15質量%の範囲で用いられる。
これもいわゆる他の添加剤と配合し、鉱物油もしくは合成炭化水素油等の潤滑油に溶解させたDIパッケージとして工業的に入手可能であり、例えばAFTON CHEMICAL社製HITEC3419D、AFTON CHEMICAL社製HITEC2426等が挙げられる。
耐摩耗剤としては、二硫化モリブデンなどの無機または有機モリブデン化合物、グラファイト、硫化アンチモン、ポリテトラフルオロエチレンなどを例示することができる。耐摩耗剤は、必要に応じて潤滑油組成物100質量%に対して0〜3質量%の範囲で用いられる。
酸化防止剤としては、2,6−ジ−t−ブチル−4−メチルフェノールなどのフェノール系やアミン系の化合物が挙げられる。酸化防止剤は、必要に応じて潤滑油組成物100質量%に対して0〜3質量%の範囲で用いられる。
防錆剤としては、各種アミン化合物、カルボン酸金属塩、多価アルコールエステル、リン化合物、スルホネートなどの化合物が挙げられる。防錆剤は、必要に応じて潤滑油組成物100質量%に対して0〜3質量%の範囲で用いられる。
消泡剤としては、ジメチルシロキサン、シリカゲル分散体などのシリコーン系化合物、アルコール系またはエステル系の化合物などを例示することができる。消泡剤は、必要に応じて潤滑油組成物100質量%に対して0〜0.2質量%の範囲で用いられる。
流動点降下剤としては、種々公知の流動点降下剤を使用し得る。具体的には、有機酸エステル基を含有する高分子化合物が用いられ、有機酸エステル基を含有するビニル重合体が特に好適に用いられる。有機酸エステル基を含有するビニル重合体としては例えばメタクリル酸アルキルの(共)重合体、アクリル酸アルキルの(共)重合体、フマル酸アルキルの(共)重合体、マレイン酸アルキルの(共)重合体、アルキル化ナフタレン等が挙げられる。
このような流動点降下剤は、融点が−13℃以下であり、好ましくは−15℃、さらに好ましくは−17℃以下である。流動点降下剤の融点は、示差走査型熱量計(DSC)を用いて測定される。具体的には、試料約5mgをアルミパンに詰めて200℃まで昇温し、200℃で5分間保持した後、10℃/分で−40℃まで冷却し、−40℃で5分保持した後、10℃/分で昇温する際の吸熱曲線から求める。
上記流動点降下剤はさらに、ゲルパーミエーションクロマトグラフィーによって得られる標準ポリスチレン換算重量平均分子量が20,000〜400,000の範囲にあり、好ましくは30,000〜300,000、より好ましくは40,000〜200,000の範囲にある。
流動点降下剤は、通常、潤滑油組成物100質量%に対して0〜2質量%の範囲で用いられる。
上記の添加剤以外にも、抗乳化剤、着色剤、油性剤(油性向上剤)などを必要に応じて用いることができる。
<用途>
本発明の潤滑油組成物は、工業用潤滑油(ギア油、作動油)およびグリース用基油として用いることが可能であり、自動車用潤滑油として好適である。また、ディファレンシャルギア油のような自動車用ギア油、または手動変速機油、自動変速機油、無段変速機油、デュアルクラッチ変速機油などのような自動車用駆動油にも好適に使用できる。さらには自動車エンジン油、船舶シリンダ油にも使用することができる。本発明の潤滑油組成物は、特に自動車用低粘度変速機油として、100℃における動粘度を7.5mm2/s以下に調整することが可能である。この動粘度を、さらに6.5mm2/s以下、さらに好ましくは5.5mm2/s以下に調整した場合、優れた省燃費性能を発揮することも可能である。
以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。
[評価方法]
下記実施例および比較例等において、エチレン−α−オレフィン共重合体および潤滑油組成物の物性等は以下の方法で測定した。
<エチレン含有量(mol%)>
日本分光社製フーリエ変換赤外分光光度計FT/IR−610またはFT/IR−6100を用い、長鎖メチレン基の横揺れ振動に基づく721cm-1付近の吸収とプロピレンの骨格振動に基づく1155cm-1付近の吸収との吸光度比(D1155cm-1/D721cm-1)を算出し、予め作成しておいた検量線(ASTM D3900での標準試料を使って作成)よりエチレン含有量(重量%)を求めた。次に、得られたエチレン含有量(重量%)を用い、下記式に従ってエチレン含有量(mol%)を求めた。
<B値>
o−ジクロロベンゼン/ベンゼン−d6(4/1[vol/vol%])を測定溶媒とし、測定温度120℃、スペクトル幅250ppm、パルス繰り返し時間5.5秒、パルス幅4.7・sec(45°パルス)測定条件下(100MHz、日本電子ECX400P)、または測定温度120℃、スペクトル幅250ppm、パルス繰り返し時間5.5秒、パルス幅5.0・sec(45°パルス)測定条件下(125 MHz、ブルカー・バイオスピンAVANCEIIIcryo−500)にて13C−NMRスペクトルを測定し、下記式[1]に基づき算出した。
式[1]中、PEはエチレン成分の含有モル分率を示し、POはα−オレフィン成分の含有モル分率を示し、POEは全dyad連鎖のエチレン−α−オレフィン連鎖のモル分率を示す。
<GPC測定>
GPC測定は、東ソー株式会社HLC−8320GPCを用いて以下のようにして測定した。分離カラムとして、TSKgel SuperMultiporeHZ−M(4本)を用い、カラム温度を40℃とし、移動相にはテトラヒドロフラン(和光純薬社製)を用い、展開速度を0.35ml/分とし、試料濃度を5.5g/Lとし、試料注入量を20マイクロリットルとし、検出器として示差屈折計を用いた。標準ポリスチレンとしては、東ソー社製(PStQuick MP−M)のものを用いた。汎用校正の手順に従い、標準ポリスチレン分子量換算として得られた分子量分布曲線(GPCチャートともいう)から、エチレン−α−オレフィン共重合体のピークトップ分子量、および潤滑油組成物の、分子量3,000〜10,000の範囲にピークトップを与える分子量を算出した。
また、(B)エチレン−α−オレフィン共重合体、ポリ−α−オレフィン、および潤滑油組成物における分子量20,000以上の成分の重量分率については、得られたGPCチャートとベースラインとの間に形成される領域を分画することにより、分画された領域の面積に基づいて、検出した分子量3,000〜10,000におけるピークトップを与える分子量以上の高い分子量を有する成分における分子量20,000以上の成分の重量分率を算出した。
<分子鎖二重結合量>
o−ジクロロベンゼン−d4を測定溶媒とし、測定温度120℃、スペクトル幅20ppm、パルス繰り返し時間7.0秒、パルス幅6.15μsec(45°パルス)測定条件下にて、1H−NMRスペクトル(400 MHz、日本電子ECX400P)を測定し、ケミカルシフト基準には、溶媒ピーク(オルトジクロロベンゼン 7.1ppm)を用い、0〜3ppmに観測されるメインピークと、4〜6ppmに観測される二重結合由来のピークの積分値の比率より、炭素原子1000個当たりの二重結合量(本明細書において「分子鎖二重結合量」という。)(個/1000C)を算出した。
<融点>
セイコーインスツルメント社X−DSC−7000を用い、簡易密閉できるアルミサンプルパンに約8mgのエチレン−α−オレフィン共重合体を入れてDSCセルに配置し、DSCセルを窒素雰囲気下にて室温から150℃まで10℃/分で昇温し、次いで、150℃で5分間保持した後、10℃/分で降温し、DSCセルを−100℃まで冷却した(降温過程)。次いで、100℃で5分間保持した後、10℃/分で昇温し、双方の過程で得られるエンタルピー曲線から、吸熱または発熱ピークの有無を確認した。ピークが観測されないか、融解熱量(ΔH)の値が1J/g以下の場合、融点(Tm)は観測されないとみなした。融点(Tm)、および融解熱量(ΔH)の求め方はJIS K7121に基づいた。
<含有塩素量>
サーモフィッシャーサイエンティフィック社ICS−1600を用い、試料ボートにエチレン−α−オレフィン共重合体を入れてAr/O2気流中、燃焼炉設定温度900℃にて燃焼分解した。このときの発生ガスを吸収液に吸収させ、イオンクロマトグラフ法にて定量した。
<粘度特性>
100℃動粘度、および粘度指数は、JIS K2283に記載の方法により、測定、算出した。
<剪断試験>
潤滑油組成物の剪断安定性は、CRC L−45−T−93に記載の方法に準拠し、KRL剪断試験機を用いて評価した。ただし、試験時間は記載の20時間ではなく100時間とし、試験温度60℃、ベアリング回転数1450rpmの剪断条件下にて、下式で表される剪断試験粘度低下率を評価した。
剪断試験粘度低下率(%)=(剪断前の100℃動粘度−剪断後の100℃動粘度)/剪断前の100℃動粘度×100
<−40℃粘度>
低温粘度特性として、ASTM D2983に準拠し、−40℃にてブルックフィールド粘度計により−40℃粘度を測定した。
[エチレン−α−オレフィン共重合体(B)の製造]
エチレン−α−オレフィン共重合体(B)は以下の重合例に従い製造した。なお、得られたエチレン−α−オレフィン共重合体(B)について、必要に応じて、下記方法で水添操作を実施した。
<水添操作>
内容積1Lのステンレス製オートクレーブに0.5質量%Pd/アルミナ触媒のヘキサン溶液100mLおよびエチレン−α−オレフィン共重合体の30質量%ヘキサン溶液500mLを加え、オートクレーブを密閉した後、窒素置換を行なった。次いで、撹拌をしながら140℃まで昇温し、系内を水素置換した後、水素で1.5MPaまで昇圧して15分間水添反応を実施した。
<メタロセン化合物の合成>
ビス(η5−1,3−ジメチルシクロペンタジエニル)ジルコニウムジクロリドは、特公平6−62642号公報に記載の方法で合成した。
<合成例1>[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリドの合成
(i)6−メチル−6−フェニルフルベンの合成
窒素雰囲気下、200mL三口フラスコにリチウムシクロペンタジエン7.3g (101.6mmol)および脱水テトラヒドロフラン100mLを加えて攪拌した。溶液をアイスバスで冷却し、アセトフェノン15.0g(111.8mmol)を滴下した。その後、室温で20時間攪拌し、得られた溶液を希塩酸水溶液でクエンチした。ヘキサン100mLを加えて可溶分を抽出し、この有機層を水、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。その後、溶媒を留去し、得られた粘性液体をカラムクロマトグラフィー(ヘキサン)で分離し、目的物(赤色粘性液体)を得た。
(ii)メチル(シクロペンタジエニル)(2,7−ジ−t−ブチルフルオレニル)(フェニル)メタンの合成
窒素雰囲気下、100mL三口フラスコに2,7−ジ−t−ブチルフルオレン2.01g(7.20mmol)および脱水t−ブチルメチルエーテル50mLを添加した。氷浴で冷却しながらn−ブチルリチウム/ヘキサン溶液 (1.65 M) 4.60mL(7.59mmol)を徐々に添加し、室温で16時間攪拌した。6−メチル−6−フェニルフルベン1.66g(9.85mmol)を添加した後、加熱還流下で1時間攪拌した。氷浴で冷却しながら水50mLを徐々に添加し、得られた二層の溶液を200mL分液漏斗に移した。ジエチルエーテル50mLを加えて数回振った後水層を除き、有機層を水50mLで3回、飽和食塩水50mLで1回洗った。無水硫酸マグネシウムで30分間乾燥した後、減圧下で溶媒を留去した。少量のヘキサンを加えて得た溶液に超音波を当てたところ固体が析出したので、これを採取して少量のヘキサンで洗浄した。減圧下で乾燥し、白色固体としてメチル(シクロペンタジエニル)(2,7−ジ−t−ブチルフルオレニル)(フェニル)メタン2.83gを得た。
(iii)[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリドの合成
窒素雰囲気下、100mLシュレンク管にメチル(シクロペンタジエニル)(2,7−ジ−t−ブチルフルオレニル)(フェニル)メタン1.50g(3.36mmol)、脱水トルエン50mLおよびTHF 570μL(7.03mmol)を順次添加した。氷浴で冷却しながらn−ブチルリチウム/ヘキサン溶液(1.65M)4.20mL(6.93mmol)を徐々に添加し、45℃で5時間攪拌した。減圧下で溶媒を留去し、脱水ジエチルエーテル40mLを添加して赤色溶液とした。メタノール/ドライアイス浴で冷却 しながら四塩化ジルコニウム 728mg(3.12mmol)を添加し、室温まで徐々に昇温しながら16時間攪拌したところ、赤橙色スラリーが得られた。減圧下で溶媒を留去して得られた固体をグローブボックス内に持ち込み、ヘキサンで洗浄した後、ジクロロメタンで抽出した。減圧下で溶媒を留去して濃縮した後、少量のヘキサンを加え、−20℃で放置したところ赤橙色固体が析出した。この固体を少量のヘキサンで洗浄した後、減圧下で乾燥することにより、赤橙色固体として[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド1.20 gを得た。
<重合例1>
充分に窒素置換した内容積2Lのステンレス製オートクレーブにヘプタン760ml、プロピレン120gを装入し、系内の温度を150℃に昇温した後、水素0.85MPa、エチレン0.19MPaを供給することにより全圧を3MPaGとした。次に、トリイソブチルアルミニウム0.4mmol、[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド0.0002mmol、及びN,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート0.002mmolを窒素で圧入し、撹拌回転数を400rpmにすることにより重合を開始した。その後、エチレンを連続的に供給することにより全圧を3MPaGに保ち、150℃で5分間重合を行った。少量のエタノールを系内に添加することにより重合を停止した後、未反応のエチレン、プロピレン、水素をパージした。得られたポリマー溶液は、0.2mol/Lの塩酸1000mlで3回、次いで蒸留水1000mlで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーは80℃の減圧下で10時間乾燥した。次いで、水添操作により、重合体1が得られた。
重合体1の分子鎖二重結合量は0.1個/1000C未満、塩素含量は0.1ppm未満であった。重合体1のエチレン含有量は48.5mol%、ピークトップ分子量は5,218、ピークトップ分子量以上の高い分子量を有する成分における分子量20,000以上の成分の重量分率は1.22%、B値は1.2、100℃動粘度は155mm2/sであり、融点(融解ピーク)は観測されなかった。
<重合例2>
充分に窒素置換した内容積2Lのステンレス製オートクレーブにヘプタン750mLおよびプロピレン125gを装入し、系内の温度を150℃に昇温した後、水素0.69MPa、エチレン0.23MPaを供給することにより全圧を3MPaGとした。次にトリイソブチルアルミニウム0.4mmol、[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド 0.0001mmolおよびN,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート0.001mmolを窒素で圧入し、攪拌回転数を400rpmにすることにより重合を開始した。その後、エチレンのみを連続的に供給することにより全圧を3MPaGに保ち、150℃で5分間重合を行った。少量のエタノールを系内に添加することにより重合を停止した後、未反応のエチレン、プロピレン、水素をパージした。得られたポリマー溶液を、0.2mol/lの塩酸1000mLで3回、次いで蒸留水1000mLで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーを80℃の減圧下で一晩乾燥し、エチレン−プロピレン共重合体52.2gを得た。次いで、水添操作により、重合体2が得られた。
重合体2の分子鎖二重結合量は0.1個/1000C未満、塩素含量は0.1ppm未満であった。重合体2のエチレン含有量は49.7mol%、ピークトップ分子量は6,186、ピークトップ分子量以上の高い分子量を有する成分における分子量20,000以上の成分の重量分率は2.92%、B値は1.2、100℃動粘度は281mm2/sであり、融点(融解ピーク)は観測されなかった。
<重合例3>
充分に窒素置換した内容積2Lのステンレス製オートクレーブにヘプタン710ml、プロピレン145gを装入し、系内の温度を150℃に昇温した後、水素0.43MPa、エチレン0.26MPaを供給することにより全圧を3MPaGとした。次に、トリイソブチルアルミニウム0.4mmol、[メチルフェニルメチレン(η5−シクロペンタジエニル)( η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド0.0001mmol、及びN,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート0.001mmolを窒素で圧入し、撹拌回転数を400rpmにすることにより重合を開始した。その後、エチレンを連続的に供給することにより全圧を3MPaGに保ち、150℃で5分間重合を行った。少量のエタノールを系内に添加することにより重合を停止した後、未反応のエチレン、プロピレン、水素をパージした。得られたポリマー溶液は、0.2mol/Lの塩酸1000mlで3回、次いで蒸留水1000mlで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーは80℃の減圧下で10時間乾燥した。次いで、水添操作により、重合体3が得られた。
重合体3の分子鎖二重結合量は0.1個/1000C未満、塩素含量は0.1ppm未満であった。重合体3のエチレン含有量は50.4mol%、ピークトップ分子量は7,015、ピークトップ分子量以上の高い分子量を有する成分における分子量20,000以上の成分の重量分率は5.24%、B値は1.2、100℃動粘度は411mm2/sであり、融点(融解ピーク)は観測されなかった。
<重合例4>
充分に窒素置換した内容積2Lのステンレス製オートクレーブにヘプタン910mLおよびプロピレン45gを装入し、系内の温度を130℃に昇温した後、水素2.24MPa、エチレン0.09MPaを供給することにより全圧を3MPaGとした。次にトリイソブチルアルミニウム0.4mmol、[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド 0.0006mmolおよびN,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート0.006mmolを窒素で圧入し、攪拌回転数を400rpmにすることにより重合を開始した。その後、エチレンのみを連続的に供給することにより全圧を3MPaGに保ち、130℃で5分間重合を行った。少量のエタノールを系内に添加することにより重合を停止した後、未反応のエチレン、プロピレン、水素をパージした。得られたポリマー溶液を、0.2mol/lの塩酸1000mLで3回、次いで蒸留水1000mLで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーを80℃の減圧下で一晩乾燥した後、さらに神鋼パンテック製2−03型薄膜蒸留装置を用いて、減圧度を400Paに保持し、設定温度180℃、流量3.1ml/minにて薄膜蒸留を行い、エチレン−プロピレン共重合体22.2gを得た。次いで、水添操作により、重合体4が得られた。
重合体4の分子鎖二重結合量は0.1個/1000C未満、塩素含量は0.1ppm未満であった。重合体4のエチレン含有量は51.9mol%、ピークトップ分子量は2,572、ピークトップ分子量以上の高い分子量を有する成分における分子量20,000以上の成分の重量分率は0.05%、B値は1.2、100℃動粘度は40mm2/sであり、融点(融解ピーク)は観測されなかった。
<重合例5>
充分窒素置換した容量2リットルの攪拌翼付連続重合反応器に、脱水精製したヘキサン1リットルを張り、96mmol/Lに調整した、エチルアルミニウムセスキクロリド(Al(C251.5・Cl1.5)のヘキサン溶液を500ml/hの量で連続的に1時間供給した後、更に触媒として16mmol/lに調整したVO(OC25)Cl2のヘキサン溶液を500ml/hの量で、ヘキサンを500ml/hの量で連続的に供給した。一方重合器上部から、重合液器内の重合液が常に1リットルになるように重合液を連続的に抜き出した。次にバブリング管を用いてエチレンガスを35L/hの量で、プロピレンガスを35L/hの量で水素ガスを80L/hの量で供給した。共重合反応は、重合器外部に取り付けられたジャケットに冷媒を循環させることにより35℃で行った。上記条件にて得られたエチレン−プロピレン共重合体を含む重合溶液を、0.2mol/lの塩酸100mLで3回、次いで蒸留水100mLで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーを130℃の減圧下で一晩乾燥した。
以上の操作により得られた重合体5(エチレン−プロピレン共重合体)のエチレン含有量は54.9mol%、ピークトップ分子量は4,031、ピークトップ分子量以上の高い分子量を有する成分における分子量20,000以上の成分の重量分率は0.32%、B値は1.2、100℃動粘度は102mm2/sであり、融点(融解ピーク)は観測されなかった。また、分子鎖二重結合量は0.1個/1000Cであり、塩素含量は15ppmであった。
<重合例6>
充分に窒素置換した内容積2Lのステンレス製オートクレーブにヘプタン710mLおよびプロピレン145gを装入し、系内の温度を150℃に昇温した後、水素0.40MPa、エチレン0.27MPaを供給することにより全圧を3MPaGとした。次にトリイソブチルアルミニウム0.4mmol、[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド 0.0001mmolおよびN,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート0.001mmolを窒素で圧入し、攪拌回転数を400rpmにすることにより重合を開始した。その後、エチレンのみを連続的に供給することにより全圧を3MPaGに保ち、150℃で5分間重合を行った。少量のエタノールを系内に添加することにより重合を停止した後、未反応のエチレン、プロピレン、水素をパージした。得られたポリマー溶液を、0.2mol/lの塩酸1000mLで3回、次いで蒸留水1000mLで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーを80℃の減圧下で一晩乾燥し、エチレン−プロピレン共重合体52.2gを得た。次いで、水添操作により、重合体6が得られた。
重合体6の分子鎖二重結合量は0.1個/1000C未満、塩素含量は0.1ppm未満であった。重合体6のエチレン含有量は53.1mol%、ピークトップ分子量は8,250、ピークトップ分子量以上の高い分子量を有する成分における分子量20,000以上の成分の重量分率は12.90%、B値は1.2、100℃動粘度は608mm2/sであり、融点(融解ピーク)は観測されなかった。
<重合例7>
充分窒素置換した容量2リットルの攪拌翼付連続重合反応器に、脱水精製したヘキサン1リットルを張り、96mmol/Lに調整した、エチルアルミニウムセスキクロリド(Al(C251.5・Cl1.5)のヘキサン溶液を500ml/hの量で連続的に1時間供給した後、更に触媒として16mmol/lに調整したVO(OC25)Cl2のヘキサン溶液を500ml/hの量で、ヘキサンを500ml/hの量で連続的に供給した。一方重合器上部から、重合液器内の重合液が常に1リットルになるように重合液を連続的に抜き出した。次にバブリング管を用いてエチレンガスを47L/hの量で、プロピレンガスを47L/hの量で水素ガスを20L/hの量で供給した。共重合反応は、重合器外部に取り付けられたジャケットに冷媒を循環させることにより35℃で行った。上記条件にて得られたエチレン−プロピレン共重合体を含む重合溶液を、0.2mol/lの塩酸100mLで3回、次いで蒸留水100mLで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーを130℃の減圧下で一晩乾燥した。
以上の操作により得られた重合体7(エチレン−プロピレン共重合体)のエチレン含有量は54.9mol%、ピークトップ分子量は12,564、ピークトップ分子量以上の高い分子量を有する成分における分子量20,000以上の成分の重量分率は44.15%、B値は1.2、100℃動粘度は2,040mm2/sであり、融点(融解ピーク)は観測されなかった。また、分子鎖二重結合量は0.1個/1000Cであり、塩素含量は8ppmであった。
<重合例8>
充分に窒素置換した内容積2Lのステンレス製オートクレーブにヘプタン190ml、プロピレン405gを装入し、系内の温度を80℃に昇温した後、水素100Nml、エチレン0.20MPaを供給することにより全圧を3MPaGとした。次に、トリイソブチルアルミニウム0.4mmol、ビス(η5−1,3−ジメチルシクロペンタジエニル)ジルコニウムジクロリド0.0003mmol、及びN,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート0.003mmolを窒素で圧入し、撹拌回転数を400rpmにすることにより重合を開始した。その後、エチレンを連続的に供給することにより全圧を3MPaGに保ち、80℃で5分間重合を行った。少量のエタノールを系内に添加することにより重合を停止した後、未反応のエチレン、プロピレン、水素をパージした。得られたポリマー溶液は、0.2mol/Lの塩酸1000mlで3回、次いで蒸留水1000mlで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーは80℃の減圧下で10時間乾燥した。次いで、水添操作により、重合体8が得られた。
重合体8の分子鎖二重結合量は0.1個/1000C未満、塩素含量は0.1ppm未満であった。重合体8のエチレン含有量は52.2mol%、ピークトップ分子量は6,401、ピークトップ分子量以上の高い分子量を有する成分における分子量20,000以上の成分の重量分率は12.97%、B値は1.2、100℃動粘度は408mm2/sであり、融点(融解ピーク)は観測されなかった。
[潤滑油組成物の調製]
以下の潤滑油組成物の調製において用いられたエチレン−α−オレフィン共重合体(B)以外の成分は以下のとおりである。
潤滑油基油;
100℃動粘度が5.8mm2/sである合成炭化水素油PAO(NESTE社製NEXBASE2006、PAO−6)、
100℃動粘度が3.0mm2/sであるAPI(American Petroleum Institute)Group II鉱油(NESTE社製NEXBASE3030、鉱油−A)、ならびに
脂肪酸エステルである大八化学社製ジイソデシルアジペート(DIDA)。
極圧剤パッケージ;LUBRIZOL社製ANGLAMOL−98A(EP)。
流動点降下剤;BASF社製IRGAFLO 720P(PPD)。
ポリ−α−オレフィンとして以下のものを用いた。
PAO−100:炭素数6以上のα−オレフィンをモノマーとし、100℃動粘度が100mm2/s、ピークトップ分子量は4,325、ピークトップ以上の高分子量成分における分子量20,000以上の重量分率は0.20%である、酸触媒を用いて得られたPAO(ExxonMobil Chemical社製Spectrasyn 100)。
mPAO−100:1−デセンをモノマーとし、100℃動粘度が100mm2/s、ピークトップ分子量は5,202、ピークトップ以上の高分子量成分における分子量20,000以上の重量分率は0.22%である、メタロセン系触媒を用いて得られたPAO(Ineos Oligmers社製Durasyn 180R)。
mPAO−300:1−オクテンをモノマーとし、100℃動粘度が302mm2/s、ピークトップ分子量は7,229、ピークトップ以上の高分子量成分における分子量20,000以上の重量分率は5.45%である、メタロセン系触媒を用いて得られたPAO。WO2011/142345号パンフレットの重合例1に記載の方法に従って得た。融点(融解ピーク)は観測されなかった。
<自動車用ギア油>
実施例1〜3では、Sciety of Automobile Engineers(SAE)によるギア油粘度規格90に合わせ、100℃動粘度が約14mm2/sとなるよう配合調整を行った。下記実施例および比較例で得られた潤滑油組成物の配合および潤滑油特性を表2に示す。この粘度規格は自動車用ディファレンシャルギア油、並びにトラック、バス用手動変速機油等に好適に用いられる粘度規格である。
[実施例1]
エチレン−α−オレフィン共重合体(B)として重合例1で得られた共重合体を28.0質量%、潤滑油基油(A)としてDIDAを15.0質量%、極圧剤パッケージ(EP)を6.5質量%となるように配合し、これにさらに潤滑油基油(A)としてPAO−6を、潤滑油組成物の全体が100質量%となるように加え、潤滑油組成物を調製した。
[実施例2]
重合体1を18.4質量%の重合体2に置き換えた以外は、実施例1と同様に潤滑油組成物を調製した。
[実施例3]
重合体1を17.0質量%の重合体3に置き換えた以外は、実施例1と同様に潤滑油組成物を調製した。
[比較例1]
重合体1を44.7質量%の重合体4に置き換えた以外は、実施例1と同様に潤滑油組成物を調製した。得られた潤滑油組成物の分子量を測定したところ、GPCチャートには分子量3,000〜10,000の範囲にピークは存在しなかった。なお、分子量2,670の重合体4に由来すると推定される極大値が認められ、分子量2,670以上の高い分子量を有する成分において分子量20,000以上の成分の重量分率0.06%を表2の「分子量20,000以上の成分の重量分率」の欄に示した。
[比較例2]
重合体1を29.8質量%の重合体5に置き換えた以外は、実施例1と同様に潤滑油組成物を調製した。
[比較例3]
重合体1を14.2質量%の重合体6に置き換えた以外は、実施例1と同様に潤滑油組成物を調製した。
[比較例4]
重合体1を10.7質量%の重合体7に置き換えた以外は、実施例1と同様に潤滑油組成物を調製した。得られた潤滑油組成物の分子量を測定したところ、分子量3,000〜10,000の範囲にピークは存在せず、分子量13,030に重合体7に基づくと推定される極大値を有していた。分子量13,030以上の高い分子量を有する成分において分子量20,000以上の成分の重量分率44.07%を表2の「分子量20,000以上の成分の重量分率」の欄に示した。
[比較例5]
重合体1を17.2質量%の重合体8に置き換えた以外は、実施例1と同様に潤滑油組成物を調製した。
[比較例6]
エチレン−α−オレフィン共重合体(B)である重合体1の代わりにPAO−100を30.7質量%配合した以外は実施例1と同様に潤滑油組成物を調製した。
[比較例7]
エチレン−α−オレフィン共重合体(B)である重合体1の代わりにmPAO−100を35.6質量%配合した以外は実施例1と同様に潤滑油組成物を調製した。
[比較例8]
エチレン−α−オレフィン共重合体(B)である重合体(1)の代わりにmPAO−300を24.7質量%配合した以外は、実施例1と同様に潤滑油組成物を調製した。
実施例1〜3は、いずれも−40℃におけるブルックフィールド粘度が40,000mPa・sを下回っており、エチレン−α−オレフィン共重合体のピークトップ分子量が3,000を下回る比較例1、エチレン−α−オレフィン共重合体のピークトップ分子量が3,000〜10,000にあるものの潤滑油組成物における分子量20,000以上の成分の重量分率が1%を下回る比較例2と比較すると低温粘度特性が優れる。
また、実施例1〜3は、試験時間100時間における剪断試験粘度低下率がいずれも3%を下回っており、エチレン−α−オレフィン共重合体のピークトップ分子量が10,000を超える比較例4、ならびにエチレン−α−オレフィン共重合体のピークトップ分子量が3,000〜10,000にあるものの潤滑油組成物における分子量20,000以上の成分の重量分率が10%を超える比較例3および比較例5と比較すると剪断安定性が大きく優れる。特に実施例3と比較例5を比較すると、エチレン−α−オレフィン共重合体の100℃動粘度がほぼ等しいにも拘らず、分子量20,000以上の成分の重量分率が異なるため剪断安定性が大きく異なることがわかる。
さらに、エチレン−α−オレフィン共重合体(B)に代わり、ポリ−α−オレフィンを用いると、α−オレフィン側鎖が剪断応力の影響を大きく受け、剪断安定性が著しく劣る。
図1および図2に示す実施例2と比較例3における潤滑油組成物の剪断試験前(実線)と剪断試験後(破線または点線)におけるGPCチャートの比較から、剪断試験により、分子量20,000以上の成分が選択的に剪断応力を受け、分子切断が生じていることがわかる。
比較例3〜7の潤滑油組成物は、いずれも剪断試験後にはギア油粘度規格SAE 90を満足しておらず、剪断試験後に該規格を満足させるためには、配合調製時にはそれぞれの粘度低下率に見合う分だけの粘度を増加させなければならず、この粘度の増加は低温粘度特性の悪化につながる。この粘度の増加を必要としない本発明の潤滑油組成物は、省燃費の点において非常に優れることがわかる。
<自動車用低粘度変速機油>
実施例4〜6では、100℃動粘度を約6mm2/sとなるよう配合調製を行った。下記実施例および比較例で得られた潤滑油組成物の潤滑油特性を表3に示す。本配合は自動車用手動変速機油、自動変速機油、無段変速機油、並びにデュアルクラッチ変速機油等に好適に用いられる粘度範囲内の配合である。
[実施例4]
エチレン−α−オレフィン共重合体(B)として重合体1を13.5質量%、流動点降下剤(PPD)を0.5質量%、これに潤滑油基油(A)として鉱油−Aを、潤滑油組成物全体が100質量%となるように加え、潤滑油組成物を調整した。
[実施例5]
重合体1を11.6質量%の重合体2に置き換えた以外は、実施例4と同様に潤滑油組成物を配合調製した。
[実施例6]
重合体1を10.4質量%の重合体3に置き換えた以外は、実施例4と同様に潤滑油組成物を配合調製した。
[比較例9]
重合体1を16.1質量%の重合体5に置き換えた以外は、実施例4と同様に潤滑油組成物を配合調製した。
[比較例10]
重合体1を9.3質量%の重合体6に置き換えた以外は、実施例4と同様に潤滑油組成物を配合調製した。
[比較例11]
エチレン−α−オレフィン共重合体(B)である重合体1の代わりにPAO−100を18.4質量%配合した以外は実施例4と同様に潤滑油組成物を配合調製した。
[比較例12]
エチレン−α−オレフィン共重合体(B)である重合体1の代わりにmPAO−100を21.4質量%配合した以外は実施例4と同様に潤滑油組成物を配合調製した。
実施例4〜6は、いずれも−40℃におけるブルックフィールド粘度が10,000mPa・sを下回っており、エチレン−α−オレフィン共重合体(B)のピークトップ分子量が3,000〜10,000にあるものの潤滑油組成物における分子量20,000以上の重量分率が1%を下回る比較例9と比較すると低温粘度特性が優れる。
また、100℃動粘度が7.5mm2/s以下の潤滑油組成物においては、実施例4〜6は、試験時間100時間における剪断試験粘度低下率がいずれも1%を下回っており、エチレン−α−オレフィン共重合体(B)のピークトップ分子量が3,000〜10,000にあるものの潤滑油組成物における分子量20,000以上の重量分率が10%を超える比較例10と比較すると剪断安定性が大きく優れる。すなわち、本発明により剪断応力下においてほぼ粘度低下の生じない潤滑油が実現できる。
さらに、エチレン−α−オレフィン共重合体(B)に代わり、ポリ−α−オレフィンを用いると、α−オレフィン側鎖が剪断応力の影響を大きく受け、剪断安定性が著しく劣る。
また、本発明の潤滑油組成物は、従来技術の潤滑油と比べて、製造時の粘度(初期粘度)をさらに下げることができるので、省燃費の観点からも優れている。
また、本発明の潤滑油組成物は、実施例1で使用された極圧剤パッケージを種々の添加剤、例えば分子量20,000以上の成分を含まない自動変速機油用添加剤パッケージや無段変速機油用添加剤パッケージに代えることにより、自動変速機油や無段変速機油として使用しても、実施例1の潤滑油組成物と同様の効果が得られる。

Claims (5)

  1. (A)100℃における動粘度が1〜10mm2/sである潤滑油基油と、(B)以下の(B1)〜(B4)の特徴を有するエチレン−α−オレフィン共重合体を含有し、
    100℃における動粘度が20mm2/s以下であり、
    ゲルパーミエーションクロマトグラフィー(GPC)にて、標準ポリスチレン換算により得られた分子量が3,000〜10,000の範囲にピークトップを有し、
    このピークトップを与える分子量以上の高い分子量を有する成分において、標準ポリスチレン換算により得られた分子量20,000以上の成分の重量分率が1〜10%である潤滑油組成物。
    (B1)ゲルパーミエーションクロマトグラフィー(GPC)によって測定した分子量において、標準ポリスチレン換算により得られたピークトップ分子量が3,000〜10,000である。
    (B2)示差熱熱量計(DSC)による融解ピークを有さない。
    (B3)下記式[1]
    (式中、PEはエチレン成分の含有モル分率を示し、POはα−オレフィン成分の含有モル分率を示し、POEは全dyad連鎖のエチレン−α−オレフィン連鎖のモル分率を示す。)
    で表されるB値が、1.1以上である。
    (B4)100℃における動粘度が140〜500mm2/sである。
  2. 前記エチレン−α−オレフィン共重合体(B)のエチレンモル含有率が30〜70mol%の範囲にある請求項1に記載の潤滑油組成物。
  3. 前記エチレン−α−オレフィン共重合体(B)のα−オレフィンがプロピレンである請求項1または請求項2に記載の潤滑油組成物。
  4. 自動車用潤滑油組成物である請求項1〜3のいずれかに記載の潤滑油組成物。
  5. 100℃動粘度が7.5mm2/s以下である請求項4に記載の潤滑油組成物からなる自動車用変速機油。
JP2016547432A 2014-09-10 2015-09-07 潤滑油組成物 Active JP6490086B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014184149 2014-09-10
JP2014184149 2014-09-10
PCT/JP2015/075338 WO2016039295A1 (ja) 2014-09-10 2015-09-07 潤滑油組成物

Publications (2)

Publication Number Publication Date
JPWO2016039295A1 JPWO2016039295A1 (ja) 2017-06-29
JP6490086B2 true JP6490086B2 (ja) 2019-03-27

Family

ID=55459043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016547432A Active JP6490086B2 (ja) 2014-09-10 2015-09-07 潤滑油組成物

Country Status (6)

Country Link
US (1) US10227543B2 (ja)
EP (1) EP3192856B1 (ja)
JP (1) JP6490086B2 (ja)
KR (1) KR101970078B1 (ja)
CN (1) CN106795449B (ja)
WO (1) WO2016039295A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10144894B2 (en) * 2016-07-20 2018-12-04 Exxonmobil Chemical Patents Inc. Shear-stable oil compositions and processes for making the same
JP6741790B2 (ja) * 2017-01-16 2020-08-19 三井化学株式会社 自動車ギア用潤滑油組成物
JP6810657B2 (ja) * 2017-05-30 2021-01-06 シェルルブリカンツジャパン株式会社 自動変速機用潤滑油組成物

Family Cites Families (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3780128A (en) 1971-11-03 1973-12-18 Ethyl Corp Synthetic lubricants by oligomerization and hydrogenation
US3909432A (en) 1973-11-26 1975-09-30 Continental Oil Co Preparation of synthetic hydrocarbon lubricants
US4032591A (en) 1975-11-24 1977-06-28 Gulf Research & Development Company Preparation of alpha-olefin oligomer synthetic lubricant
JPS57123205A (en) 1981-01-13 1982-07-31 Mitsui Petrochem Ind Ltd Production of low-molecular weight copolymer
DE3270823D1 (en) 1981-01-13 1986-06-05 Mitsui Petrochemical Ind Novel ethylene/alpha-olefin copolymer
JPS57117595A (en) 1981-01-13 1982-07-22 Mitsui Petrochem Ind Ltd Synthetic lubricating oil
JPS61126120A (ja) 1984-11-22 1986-06-13 Mitsui Petrochem Ind Ltd 液状変性エチレン系ランダム共重合体
CA1261499A (en) 1984-11-22 1989-09-26 Tatsuo Kinoshita Modified ethylenic random copolymer
US4704491A (en) * 1985-03-26 1987-11-03 Mitsui Petrochemical Industries, Ltd. Liquid ethylene-alpha-olefin random copolymer, process for production thereof, and use thereof
JP2500262B2 (ja) 1985-03-26 1996-05-29 三井石油化学工業 株式会社 液状α−オレフイン共重合体の製法
JPH06821B2 (ja) * 1985-11-21 1994-01-05 三井石油化学工業株式会社 液状エチレン系ランダム共重合体およびその用途
US4668834B1 (en) 1985-10-16 1996-05-07 Uniroyal Chem Co Inc Low molecular weight ethylene-alphaolefin copolymer intermediates
US7163907B1 (en) 1987-01-30 2007-01-16 Exxonmobil Chemical Patents Inc. Aluminum-free monocyclopentadienyl metallocene catalysts for olefin polymerization
US5096867A (en) 1990-06-04 1992-03-17 Exxon Chemical Patents Inc. Monocyclopentadienyl transition metal olefin polymerization catalysts
US5264405A (en) 1989-09-13 1993-11-23 Exxon Chemical Patents Inc. Monocyclopentadienyl titanium metal compounds for ethylene-α-olefin-copolymer production catalysts
US5408017A (en) 1987-01-30 1995-04-18 Exxon Chemical Patents Inc. High temperature polymerization process using ionic catalysts to produce polyolefins
US5391629A (en) 1987-01-30 1995-02-21 Exxon Chemical Patents Inc. Block copolymers from ionic catalysts
US5153157A (en) 1987-01-30 1992-10-06 Exxon Chemical Patents Inc. Catalyst system of enhanced productivity
US5384299A (en) 1987-01-30 1995-01-24 Exxon Chemical Patents Inc. Ionic metallocene catalyst compositions
US5621126A (en) 1987-01-30 1997-04-15 Exxon Chemical Patents Inc. Monocyclopentadienyl metal compounds for ethylene-α-olefin-copolymer production catalysts
IL85097A (en) 1987-01-30 1992-02-16 Exxon Chemical Patents Inc Catalysts based on derivatives of a bis(cyclopentadienyl)group ivb metal compound,their preparation and their use in polymerization processes
PL276385A1 (en) 1987-01-30 1989-07-24 Exxon Chemical Patents Inc Method for polymerization of olefines,diolefins and acetylene unsaturated compounds
US5055438A (en) 1989-09-13 1991-10-08 Exxon Chemical Patents, Inc. Olefin polymerization catalysts
US5241025A (en) 1987-01-30 1993-08-31 Exxon Chemical Patents Inc. Catalyst system of enhanced productivity
JPH0662642B2 (ja) 1987-03-10 1994-08-17 チッソ株式会社 ビス(2置換シクロペンタジエニル)ジルコニウムジハライド
US4874880A (en) 1987-03-10 1989-10-17 Chisso Corporation Bis(di-, tri- or tetra-substituted-cyclopentadienyl)-zirconium dihalides
JP2555284B2 (ja) * 1987-05-14 1996-11-20 出光興産株式会社 温度特性改良潤滑油組成物
JPH0791338B2 (ja) * 1987-06-08 1995-10-04 三井石油化学工業株式会社 液状エポキシ化変性エチレン系ランダム共重合体およびその用途
JPH07103181B2 (ja) * 1987-06-08 1995-11-08 三井石油化学工業株式会社 液状ヒドロキシル化変性エチレン系ランダム共重合体およびその用途
FI80891C (fi) 1987-11-12 1990-08-10 Neste Oy Foerfarande foer framstaellning av smoerjmedel av poly- -olefintyp.
JPH0224701A (ja) 1988-07-13 1990-01-26 Sekisui Chem Co Ltd 電気機器の駆動制御装置
US5292838A (en) 1988-07-15 1994-03-08 Fina Technology, Inc. Process and catalyst for producing syndiotactic polymers
US5223468A (en) 1988-07-15 1993-06-29 Fina Technology, Inc. Process and catalyst for producing syndiotactic polymers
US5155080A (en) 1988-07-15 1992-10-13 Fina Technology, Inc. Process and catalyst for producing syndiotactic polyolefins
US5225500A (en) 1988-07-15 1993-07-06 Fina Technology, Inc. Process and catalyst for producing syndiotactic polyolefins
US5304523A (en) 1988-07-15 1994-04-19 Fina Technology, Inc. Process and catalyst for producing crystalline polyolefins
US4892851A (en) 1988-07-15 1990-01-09 Fina Technology, Inc. Process and catalyst for producing syndiotactic polyolefins
US5243002A (en) 1988-07-15 1993-09-07 Fina Technology, Inc. Process and catalyst for producing syndiotactic polymers
US5223467A (en) 1988-07-15 1993-06-29 Fina Technology, Inc. Process and catalyst for producing syndiotactic polymers
US5158920A (en) 1988-07-15 1992-10-27 Fina Technology, Inc. Process for producing stereospecific polymers
US5162278A (en) 1988-07-15 1992-11-10 Fina Technology, Inc. Non-bridged syndiospecific metallocene catalysts and polymerization process
KR930002411B1 (ko) 1988-09-14 1993-03-30 미쓰이세끼유 가가꾸고오교오 가부시끼가이샤 벤젠불용성 유기알루미늄 옥시화합물 및 그 제조방법
JP2693517B2 (ja) 1988-09-14 1997-12-24 三井石油化学工業株式会社 ベンゼン不溶性の有機アルミニウムオキシ化合物の製造方法
JP2741893B2 (ja) 1988-09-14 1998-04-22 三井化学株式会社 ベンゼン不溶性の有機アルミニウムオキシ化合物の製造方法
US5041584A (en) 1988-12-02 1991-08-20 Texas Alkyls, Inc. Modified methylaluminoxane
US4960878A (en) 1988-12-02 1990-10-02 Texas Alkyls, Inc. Synthesis of methylaluminoxanes
US5026798A (en) 1989-09-13 1991-06-25 Exxon Chemical Patents Inc. Process for producing crystalline poly-α-olefins with a monocyclopentadienyl transition metal catalyst system
US5420217A (en) 1989-09-13 1995-05-30 Exxon Chemical Patents Inc. Process for producing amorphous poly-α-olefins with a monocyclopentadienyl transition metal catalyst system
US7041841B1 (en) 1989-09-13 2006-05-09 Exxonmobil Chemical Patents Inc. Process for producing crystalline poly-α-olefins with a monocyclopentadienyl transition metal catalyst system
US5227440A (en) 1989-09-13 1993-07-13 Exxon Chemical Patents Inc. Mono-Cp heteroatom containing Group IVB transition metal complexes with MAO: supported catalysts for olefin polymerization
US5057475A (en) 1989-09-13 1991-10-15 Exxon Chemical Patents Inc. Mono-Cp heteroatom containing group IVB transition metal complexes with MAO: supported catalyst for olefin polymerization
US6265338B1 (en) 1989-09-13 2001-07-24 Exxon Chemical Patents, Inc. Monocyclopentadienyl titanium metal compounds for ethylene-α-olefin copolymer production catalysts
US5504169A (en) 1989-09-13 1996-04-02 Exxon Chemical Patents Inc. Process for producing amorphous poly-α-olefins with a monocyclopentadienyl transition metal catalyst system
US5547675A (en) 1989-09-13 1996-08-20 Exxon Chemical Patents Inc. Modified monocyclopentadienyl transition metal/alumoxane catalyst system for polymerization of olefins
JPH03103407A (ja) 1989-09-18 1991-04-30 Idemitsu Kosan Co Ltd オレフィン系重合体の製造法
EP0427697B1 (en) 1989-10-10 1996-05-08 Fina Technology, Inc. Metallocene catalysts with Lewis acids and aluminum alkyls
US5763549A (en) 1989-10-10 1998-06-09 Fina Technology, Inc. Cationic metallocene catalysts based on organoaluminum anions
JP2796376B2 (ja) 1989-10-18 1998-09-10 出光興産株式会社 合成潤滑油の製造法
US5387568A (en) 1989-10-30 1995-02-07 Fina Technology, Inc. Preparation of metallocene catalysts for polymerization of olefins
ATE137247T1 (de) 1989-10-30 1996-05-15 Fina Technology Addition von alkylaluminium zum verbessern eines metallocenkatalysators
DE69018376T3 (de) 1989-10-30 2002-05-16 Fina Technology Herstellung von Metallocenkatalysatoren für Olefinpolymerisation.
US6294625B1 (en) 1990-03-20 2001-09-25 Exxonmobil Chemical Patents Inc. Catalyst system of enhanced productivity and its use in polymerization process
FR2662756B1 (fr) 1990-06-05 1992-08-14 Snecma Dispositif de transmission etanche entre deux arbres coaxiaux montes dans des boitiers fixes l'un a l'autre, autorisant une intervention rapide notamment en cas de fuite.
US5801113A (en) 1990-06-22 1998-09-01 Exxon Chemical Patents, Inc. Polymerization catalyst systems, their production and use
JP2545006B2 (ja) 1990-07-03 1996-10-16 ザ ダウ ケミカル カンパニー 付加重合触媒
JP2593264B2 (ja) 1990-12-14 1997-03-26 三井石油化学工業株式会社 イミド基含有低分子量エチレン共重合体、その製造方法およびその利用
JPH07121969A (ja) 1993-10-22 1995-05-12 Funai Techno Syst Kk ディスク再生装置
EP0668342B1 (en) 1994-02-08 1999-08-04 Shell Internationale Researchmaatschappij B.V. Lubricating base oil preparation process
EP0776959B1 (en) 1995-11-28 2004-10-06 Shell Internationale Researchmaatschappij B.V. Process for producing lubricating base oils
CN1181166C (zh) 1995-12-08 2004-12-22 埃克森研究工程公司 可生物降解的高性能烃类基础油
US6090989A (en) 1997-10-20 2000-07-18 Mobil Oil Corporation Isoparaffinic lube basestock compositions
US6059955A (en) 1998-02-13 2000-05-09 Exxon Research And Engineering Co. Low viscosity lube basestock
US6008164A (en) 1998-08-04 1999-12-28 Exxon Research And Engineering Company Lubricant base oil having improved oxidative stability
US6103099A (en) 1998-09-04 2000-08-15 Exxon Research And Engineering Company Production of synthetic lubricant and lubricant base stock without dewaxing
US6165949A (en) 1998-09-04 2000-12-26 Exxon Research And Engineering Company Premium wear resistant lubricant
US6475960B1 (en) 1998-09-04 2002-11-05 Exxonmobil Research And Engineering Co. Premium synthetic lubricants
US6080301A (en) 1998-09-04 2000-06-27 Exxonmobil Research And Engineering Company Premium synthetic lubricant base stock having at least 95% non-cyclic isoparaffins
US6332974B1 (en) 1998-09-11 2001-12-25 Exxon Research And Engineering Co. Wide-cut synthetic isoparaffinic lubricating oils
US6417120B1 (en) 1998-12-31 2002-07-09 Kimberly-Clark Worldwide, Inc. Particle-containing meltblown webs
JP2000351813A (ja) * 1999-04-09 2000-12-19 Mitsui Chemicals Inc エチレン・α−オレフィン共重合体およびその製造方法ならびにその用途
FR2798136B1 (fr) 1999-09-08 2001-11-16 Total Raffinage Distribution Nouvelle huile de base hydrocarbonee pour lubrifiants a indice de viscosite tres eleve
US20020155776A1 (en) 1999-10-15 2002-10-24 Mitchler Patricia Ann Particle-containing meltblown webs
US7067049B1 (en) 2000-02-04 2006-06-27 Exxonmobil Oil Corporation Formulated lubricant oils containing high-performance base oils derived from highly paraffinic hydrocarbons
JP4931269B2 (ja) 2000-05-30 2012-05-16 出光興産株式会社 α−オレフィン重合体の製造方法及び潤滑油
US6858767B1 (en) 2000-08-11 2005-02-22 Uniroyal Chemical Company, Inc. Process for producing liquid polyalphaolefin polymer, metallocene catalyst therefor, the resulting polymer and lubricant containing same
US20030013623A1 (en) * 2001-05-01 2003-01-16 Kwok-Leung Tse Olefin copolymer viscocity index improvers
JP4606644B2 (ja) * 2001-05-29 2011-01-05 三井化学株式会社 潤滑油用粘度調整剤および潤滑油組成物
US20030236177A1 (en) * 2002-03-05 2003-12-25 Wu Margaret May-Som Novel lubricant blend composition
US20050159566A1 (en) * 2002-04-23 2005-07-21 Idemitsu Kosan Co., Ltd Process for producing highly flowable propylene polymer and highly flowable propylene polymer
JP2004051676A (ja) 2002-07-16 2004-02-19 Mitsui Chemicals Inc エチレン系共重合体の製造方法
US7795366B2 (en) * 2002-08-12 2010-09-14 Exxonmobil Chemical Patents Inc. Modified polyethylene compositions
ES2257710T5 (es) * 2002-10-02 2011-11-22 Dow Global Technologies Llc Polímeros de etileno de bajo peso molecular líquidos y de tipo gel.
US7790661B2 (en) 2004-07-30 2010-09-07 The Lubrizol Corporation Dispersant viscosity modifiers containing aromatic amines
JP5506985B2 (ja) * 2005-03-18 2014-05-28 三井化学株式会社 プロピレン系重合体組成物、該組成物からなる成形体、プロピレン系重合体組成物の製造方法
CA2615982C (en) 2005-07-19 2012-02-21 Exxonmobil Chemical Patents Inc. Polyalpha-olefin compositions and processes to produce the same
WO2007011462A1 (en) 2005-07-19 2007-01-25 Exxonmobil Chemical Patents Inc. Lubricants from mixed alpha-olefin feeds
US7989670B2 (en) 2005-07-19 2011-08-02 Exxonmobil Chemical Patents Inc. Process to produce high viscosity fluids
US8101684B2 (en) * 2006-07-31 2012-01-24 Mitsui Chemicals, Inc. Thermoplastic resin composition for sealing solar cell, sheet for sealing solar cell and solar cell
EP2075268B1 (en) * 2006-10-20 2015-07-08 Mitsui Chemicals, Inc. Copolymer, lubricating oil viscosity modifier, and lubricating oil composition
US8716418B2 (en) * 2009-12-21 2014-05-06 Mitsui Chemicals, Inc. Process for producing syndiotactic α-olefin polymer
US20120135903A1 (en) 2010-05-11 2012-05-31 Mitsui Chemicals, Inc. Lubricating oil composition
JPWO2012070240A1 (ja) * 2010-11-26 2014-05-19 出光興産株式会社 α−オレフィン重合体及びその製造方法

Also Published As

Publication number Publication date
KR20170027863A (ko) 2017-03-10
CN106795449B (zh) 2020-08-07
US20170253827A1 (en) 2017-09-07
EP3192856A4 (en) 2018-04-11
US10227543B2 (en) 2019-03-12
CN106795449A (zh) 2017-05-31
KR101970078B1 (ko) 2019-04-17
EP3192856A1 (en) 2017-07-19
EP3192856B1 (en) 2020-12-23
WO2016039295A1 (ja) 2016-03-17
JPWO2016039295A1 (ja) 2017-06-29

Similar Documents

Publication Publication Date Title
JP6618891B2 (ja) エチレン/α−オレフィン共重合体および潤滑油
JP6320262B2 (ja) 潤滑油組成物
JP6326355B2 (ja) 潤滑油組成物
JP6741790B2 (ja) 自動車ギア用潤滑油組成物
JP6326340B2 (ja) グリース組成物
JP6326337B2 (ja) 工業ギア用潤滑油組成物
JP6392055B2 (ja) 潤滑油組成物
JP6326339B2 (ja) 作動油用潤滑油組成物
JP6490086B2 (ja) 潤滑油組成物
JP6326354B2 (ja) 潤滑油組成物
JP6326338B2 (ja) 圧縮機油用潤滑油組成物
JP6773567B2 (ja) 自動車ギア用潤滑油組成物
JP6496523B2 (ja) 潤滑油組成物およびその用途
JP6840544B2 (ja) 自動車変速機用潤滑油組成物
JP6773566B2 (ja) 自動車ギア用潤滑油組成物
JP2023096880A (ja) 自動車変速機用潤滑油組成物
WO2023167307A1 (ja) 潤滑油組成物
WO2023002947A1 (ja) 潤滑油用粘度調整剤および作動油用潤滑油組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190226

R150 Certificate of patent or registration of utility model

Ref document number: 6490086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250