WO2020216097A1 - 柔性透明电极、柔性显示面板、相关制备方法及显示装置 - Google Patents

柔性透明电极、柔性显示面板、相关制备方法及显示装置 Download PDF

Info

Publication number
WO2020216097A1
WO2020216097A1 PCT/CN2020/084613 CN2020084613W WO2020216097A1 WO 2020216097 A1 WO2020216097 A1 WO 2020216097A1 CN 2020084613 W CN2020084613 W CN 2020084613W WO 2020216097 A1 WO2020216097 A1 WO 2020216097A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
transparent electrode
flexible transparent
flexible
present disclosure
Prior art date
Application number
PCT/CN2020/084613
Other languages
English (en)
French (fr)
Inventor
张昭
张小凤
刘瑞超
陈凯
李艳云
李泽亮
王学路
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/042,487 priority Critical patent/US11374192B2/en
Publication of WO2020216097A1 publication Critical patent/WO2020216097A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates

Definitions

  • the present disclosure relates to a flexible transparent electrode, a flexible display panel, a related preparation method and a display device.
  • Transparent conductive film is an important part of many optoelectronic devices, such as flat panel displays, organic light-emitting diodes, smart windows and other devices.
  • Indium tin oxide such as indium tin oxide (ITO) has high conductivity and high light transmittance, and therefore, has become the main material of transparent conductive films.
  • the embodiments of the present disclosure provide a flexible transparent electrode, a flexible display panel, a related manufacturing method, and a display device.
  • the embodiment of the present disclosure provides a flexible transparent electrode, including a graphene body and a metal nanowire. At least a part of the metal nanowire is inserted into the graphene body to form an inserted body structure.
  • the graphene body has at least one hole-shaped defect structure, and at least part of the metal nanowire is inserted into the hole-shaped defect structure.
  • the portions of the metal nanowires located outside the hole-shaped defect structure are arranged to form a network structure in a crossed manner.
  • the metal nanowires include copper nanowires or silver nanowires.
  • the pore diameter of the at least one hole-shaped defect structure is 1-10 microns.
  • Another embodiment of the present disclosure provides a method for preparing the above flexible transparent electrode, including: preparing graphene; providing a precursor for forming the metal nanowire, providing an alkaline solution and a reducing agent solution; and combining the graphene, The precursor, the alkaline solution, and the reducing agent solution are mixed to form the interpenetrated structure.
  • providing a precursor for forming the metal nanowire includes: preparing a mixed solution of each precursor of the metal nanowire; combining the graphene, the precursor, and the alkaline
  • the mixing of the solution and the reducing agent solution includes: mixing the graphene, the mixed solution, the alkaline solution, and the reducing agent solution and reacting for a certain period of time to obtain the metal nanowire and the graphene body.
  • the product of the interpenetrating structure; after the interpenetrating structure is formed, the preparation method further includes: washing and drying the product to form the flexible transparent electrode.
  • mixing the graphene, the precursor, the alkaline solution, and the reducing agent solution includes: adding the precursor to the graphene and reacting for a certain period of time , And then the alkaline solution and the reducing agent solution in sequence.
  • the method further includes: heat-treating the obtained graphene to make the graphene The oxygen-containing groups on the surface of the graphene disappear, thereby forming a porous defect structure at the positions of the disappeared oxygen-containing groups.
  • the oxygen element in the graphene is reduced by 90%-95%.
  • the heat treatment process of the obtained graphene includes: heat treatment of the graphene in an argon atmosphere with a temperature in the range of 550°C to 650°C.
  • Another embodiment of the present disclosure provides a flexible display panel including a plurality of anodes.
  • the anode is a flexible transparent electrode provided in any of the above embodiments.
  • a flexible display panel including: a base substrate; and a plurality of pixel units located on the base substrate.
  • Each pixel unit includes a driving circuit located on the base substrate and a light-emitting element located on the side of the driving circuit away from the base substrate, and each of the light-emitting elements includes a first electrode, a light-emitting layer, and a first electrode, a light-emitting layer, and a first electrode that are stacked.
  • Two electrodes, the second electrode is located on the side of the light-emitting layer facing the driving circuit and is electrically connected to the driving circuit.
  • the second electrode is a flexible transparent electrode provided in any of the above embodiments.
  • Another embodiment of the present disclosure provides a display device including the above-mentioned flexible display panel.
  • Another embodiment of the present disclosure provides a method for manufacturing a flexible display panel, including: forming a driving circuit on a base substrate; and forming a plurality of independently arranged anodes on the driving circuit.
  • the anode is a flexible transparent electrode provided in any of the above embodiments.
  • the anode before forming the anode, it further includes: forming a pixel defining layer on a side of the driving circuit away from the base substrate.
  • Figure 1 is a schematic diagram of the morphology of metal nanowires
  • FIG. 2 is a schematic diagram of the structure of a flexible transparent electrode provided by an embodiment of the disclosure.
  • 3A is a schematic flowchart of a method for preparing a flexible transparent electrode provided by an example of an embodiment of the disclosure
  • FIG. 3B is a schematic flowchart of a method for preparing a flexible transparent electrode according to another example of an embodiment of the disclosure
  • FIG. 4A is a schematic flowchart of a method for preparing a flexible transparent electrode according to another example of an embodiment of the disclosure.
  • FIG. 4B is a schematic flowchart of a method for preparing a flexible transparent electrode according to another example of an embodiment of the disclosure.
  • FIG. 5 is a schematic flowchart of a method for manufacturing a flexible display panel provided by an embodiment of the disclosure
  • FIG. 6 is a schematic flow chart of a method for manufacturing a flexible display panel provided by an embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of a partial cross-sectional structure of a flexible display panel provided by an embodiment of the disclosure.
  • the inventor of the present application found that the indium tin oxide material used as the transparent electrode of the organic light emitting diode device has some disadvantages, such as the continuous increase in the price of the raw material indium, and the expensive preparation of indium tin oxide.
  • the indium tin oxide material is prone to break or fall off during the bending process, resulting in a significant decrease in the conductivity of indium tin oxide.
  • Metal nanowires are one-dimensional nanostructures with an aspect ratio (the ratio of the length to the diameter of the metal nanowires) greater than 1000. Its morphology is shown in Figure 1. The film formed by overlapping the nanowires has excellent electrical conductivity and permeability. Overrate. Silver nanowires and copper nanowires have certain advantages in terms of electrical conductivity. The square resistance of the transparent conductive electrode made of silver nanowires can be as low as 30 ⁇ / ⁇ , and the transmittance of the transparent conductive electrode can reach 90%. However, because silver is a precious metal, its large-scale application is restricted.
  • the advantages of copper nanowires include: the intrinsic conductivity of copper is very high, only about 6% lower than that of silver; copper is more expensive than silver and indium tin oxide The price is nearly 100 times cheaper, and the reserve is almost 1000 times that of the two; the prepared copper nanowire transparent conductive film is similar to indium tin oxide in conductivity and light transmittance.
  • copper nanowires are easily oxidized during preparation, post-storage and processing. Its sheet resistance will increase with the exposure time in the air, and accordingly its conductivity will also increase with the exposure time in the air. Increases and becomes smaller.
  • the mesh structure formed by the copper nanowires has a weak bonding force with a flexible substrate, such as a transparent insulating layer, which easily affects device stability.
  • Graphene has extremely high light transmittance and electrical conductivity, and has broad prospects in the field of flexible transparent electrodes.
  • the highest transmittance of single-layer graphene can reach 97.7%, which has exceeded most conductive materials, and the stability of graphene is relatively high.
  • the unmodified graphene prepared by the traditional method has a high square resistance due to the presence of many oxygen-containing groups on the edge; at the same time, the graphene work function is relatively low, only 4.4 eV, which is not conducive to hole injection, which also limits Its development and application in flexible transparent electrodes.
  • Fig. 2 is a flexible transparent electrode provided according to an embodiment of the present disclosure.
  • the flexible transparent electrode includes a graphene body 1 and a metal nanowire 2, and at least part of the metal nanowire 2 is inserted into the graphene body 1 to form an interposing structure.
  • the graphene body 1 and the metal nanowires 2 may be located on the flexible substrate 10.
  • the above-mentioned flexible transparent electrode provided by the embodiment of the present disclosure includes a graphene body and a metal nanowire, and the metal nanowire and the graphene body form an interpenetrating structure.
  • the flexible transparent electrode with a penetrating body structure provided by the present disclosure can solve the problems of poor stability, easy oxidation, large roughness, and poor bonding force of the metal nanowire with the flexible substrate on the one hand; on the other hand, it can also solve the square resistance of graphene High and low work function is not conducive to the problem of hole injection.
  • the interposer structure formed by combining the metal nanowire and the graphene body can make the metal nanowire and the graphene body compensate each other for their respective defects to form a flexible transparent electrode for replacing ITO materials; and the interposer structure has high conductivity Rate and transmittance, strong bonding force with the flexible substrate, high stability, and can improve the life of the device when applied to the device.
  • the graphene body 1 has at least one hole-shaped defect structure 01, and at least part of the metal nanowire 2 is inserted into the hole-shaped defect structure 01.
  • the number of metal nanowires 2 is multiple, and the graphene body 1 has multiple hole-shaped defect structures 01 as an example.
  • the hole diameter of each hole-shaped defect structure 01 may be 1-10 microns, and each hole-shaped defect structure 01 may be interspersed with at least one metal nanowire.
  • graphene can be produced by reduction of graphene oxide, but under the influence of redox reaction, some oxygen-containing groups will remain in the produced graphene, that is, the surface of unmodified graphene has many oxygen-containing groups, The presence of oxygen groups has a certain effect on its conductivity.
  • the obtained graphene is subjected to heat treatment, such as heat treatment in an argon atmosphere at a temperature ranging from 550°C to 650°C (for example, 600°C), so that oxygen-containing groups can be combined with carbon atoms of graphene.
  • the formation of gas is released, so the above-mentioned porous defect structure is formed at the oxygen-containing group.
  • the oxygen element in the graphene is reduced by 90%-95%, so that most of the oxygen-containing groups will disappear and leave a porous defect structure.
  • the metal nanowire Due to the high activity of the remaining groups at the position of the defect structure and the low chemical barrier, when the precursor of the metal nanowire is mixed with the graphene with the defect structure under certain conditions, the metal nanowire is very easy to be The defect structure grows. Since the graphene surface has many defect structures, the metal nanowires grow at the multiple defect structures to form an interposer structure in which the metal nanowires 2 are inserted into the hole-shaped defect structure 01.
  • the portions of the metal nanowires 2 located outside the hole-shaped defect structure 01 are arranged crosswise to form a network structure.
  • the metal nanowires 2 that are not inserted into the hole-shaped defect structure 01 in the metal nanowires 2 can be arranged in a cross-arrangement with the metal nanowires 2 inserted into the hole-shaped defect structure 01 to form a network structure.
  • the mesh structure can reduce the resistance of the metal nanowire 2 and improve the stability of the metal nanowire 2.
  • the metal nanowire 2 is a copper nanowire.
  • the embodiments of the present disclosure are not limited to this, and the metal nanowires 2 may also be silver nanowires to have higher conductivity.
  • the embodiments of the present disclosure also provide a method for preparing a flexible transparent electrode, as shown in FIG. 3A, including:
  • the Hummers method can be used to prepare graphene.
  • each precursor includes copper nitrate trihydrate, deionized water, and ethylenediamine analytical grade.
  • the alkaline solution may be sodium oxide solution
  • the reducing agent solution may be hydrazine hydrate.
  • the product can be washed with water and alcohol.
  • the method for preparing the above-mentioned flexible transparent electrode can prepare a flexible transparent electrode with a metal nanowire and a graphene body forming an interleaving structure.
  • the flexible transparent electrode of the interleaving structure can solve the stability of the metal nanowire.
  • the problem of poor performance, large roughness and poor bonding force with the flexible substrate solves the problem of high square resistance of graphene and low work function, which is not conducive to hole injection.
  • the metal nanowire and the graphene body are formed into an interpenetrating structure, which can compensate each other for their respective defects, thereby forming a flexible transparent electrode for replacing ITO materials.
  • the flexible transparent electrode has high conductivity and transmittance, and has a strong bonding force with a flexible substrate, and has high stability, and the application in a device can increase the life of the device.
  • the method further includes :
  • the present disclosure uses heat treatment of the obtained graphene, such as argon at a temperature of 600°C. Heat treatment in a gas atmosphere can combine oxygen-containing groups with carbon atoms of graphene to form a gas release. Therefore, a hole-shaped defect structure is formed at the oxygen-containing group. Due to the higher activity of the defect structure and lower chemical barrier, when the precursor of the metal nanowire is mixed with graphene under certain conditions, the metal nanowire is extremely Easy to grow on defective structures. Since the graphene surface has many defect structures, the metal nanowires grow along the multiple defect structures to form an interposer structure in which the metal nanowires penetrate the hole-shaped defect structure.
  • FIG. 3B Another example of the embodiments of the present disclosure also provides a method for preparing a flexible transparent electrode, as shown in FIG. 3B, including:
  • the Hummers method can be used to prepare graphene oxide, and then a portion of the prepared graphene oxide is dried and dispersed in an aqueous solution to obtain a suspension. After the suspension is dispersed under ultrasonic conditions, the temperature is raised and hydrazine hydrate is added dropwise for reduction reaction filtration. Get graphene.
  • the precursor refers to a raw material or precursor for synthesizing metal nanowires.
  • the precursor may include copper nitrate trihydrate and ethylenediamine analytical grade.
  • the precursor may also include deionized water.
  • the alkaline solution may be sodium hydroxide solution
  • the reducing agent solution may be hydrazine hydrate to generate a reduction reaction to generate metal nanowires.
  • the product after forming a combination product of metal nanowires and graphene, the product can be washed and dried to form a flexible transparent electrode; or, after forming a combination product of metal nanowires and graphene, the aforementioned combination product can also be combined Coating on the substrate and applying pressure to the above-mentioned combined product to form a flexible transparent electrode.
  • the product can be washed with water and alcohol.
  • the method for preparing the flexible transparent electrode can prepare a flexible transparent electrode in which a metal nanowire and a graphene body constitute an interpenetrating structure.
  • the flexible transparent electrode with a penetrating body structure can solve the problems of poor stability, easy oxidation, large roughness, and poor bonding force with the flexible substrate of the metal nanowires on the one hand; on the other hand, it can also solve the problems of high square resistance and high power of graphene.
  • the function is low, which is not conducive to the problem of hole injection.
  • the interposer structure formed by combining the metal nanowire and the graphene body can make the metal nanowire and the graphene body compensate each other for their respective defects to form a flexible transparent electrode for replacing ITO materials; and the interposer structure has high conductivity Rate and transmittance, strong bonding force with the flexible substrate, high stability, and can improve the life of the device when applied to the device.
  • the method further includes:
  • graphene can be produced by reduction of graphene oxide, but under the influence of oxidation-reduction reaction, some oxygen-containing groups will remain in the produced graphene, and the presence of oxygen-containing groups has a certain influence on its conductivity.
  • the obtained graphene is subjected to heat treatment, such as heat treatment in an argon atmosphere at a temperature of 550°C to 650°C (for example, 600°C), so that oxygen-containing groups can be combined with the carbon atoms of the graphene.
  • the gas is released, so the above-mentioned porous defect structure is formed at the oxygen-containing group.
  • the oxygen element in the graphene is reduced by 90%-95%, so that most of the oxygen-containing groups will disappear and leave a porous defect structure.
  • the metal nanowire Due to the high activity of the defect structure and the low chemical barrier, when the precursor to form the metal nanowire is mixed with graphene under certain conditions, the metal nanowire is very easy to grow on the defect structure. Since the graphene surface has many defect structures, the metal nanomaterial grows along the multiple defect structures to form an interposer structure in which the metal nanowire is inserted into the hole-shaped defect structure.
  • Step 1 Preparation of graphene.
  • the Hummers method can be used to prepare graphene.
  • Step 2 Heat treatment of the obtained graphene to form a plurality of porous defect structures in the graphene.
  • the graphene is heat-treated in an argon atmosphere at a temperature of 600° C. to produce defect structures on the surface of the graphene.
  • Step 3 Prepare a mixed solution of the precursors of the metal nanowires. For example, weigh 2.42 g of copper nitrate trihydrate, measure 100 mL of deionized water and 10 mL of ethylenediamine analytical grade, mix and stir for 24 hours to prepare a mixed solution.
  • Step 4 The graphene, the mixed solution, the alkaline solution and the reducing agent solution are mixed and reacted for a certain period of time to obtain a product with an interpenetrating structure formed by the metal nanowire and the graphene body.
  • a product with an interpenetrating structure formed by the metal nanowire and the graphene body For example, weigh 500g of graphene, the above mixed solution, weigh an appropriate amount of sodium hydroxide and dissolve in 1L of water, transfer it to a flask and heat it to 80°C, then mix and react with 0.5mL of hydrazine hydrate for 1 hour to obtain a metal nanowire and graphene
  • the body constitutes the product of the interspersed structure.
  • Step 5 Wash and dry the product to form a flexible transparent electrode.
  • the prepared product can be washed with water and alcohol, and dried for later use.
  • the flexible transparent electrode provided in FIG. 2 of the embodiment of the present disclosure can be prepared.
  • Step 1 Preparation of graphene.
  • Step 2 Heat treatment of the obtained graphene to form a plurality of porous defect structures in the graphene.
  • the graphene is heat-treated in an argon atmosphere at a temperature of 600°C, so that a porous defect structure is generated on the surface of the graphene.
  • Step 3 Provide a precursor of the metal nanowire, provide an alkaline solution and a reducing agent solution, and mix the graphene, the precursor, the alkaline solution and the reducing agent solution to form an interleaving structure.
  • 100 mg of graphene is uniformly dispersed in a container filled with 100 mL of deionized water, and 2.42 g of copper nitrate trihydrate is added to the container and stirred for 24 hours. Then take 10mL of ethylenediamine analytical grade and add it to the above container, and stir evenly. Next, weigh 500g of sodium hydroxide dissolved in 1L of water and transfer it to the above container and heat it to 80°C. Finally, add 0.5mL of hydrazine hydrate analytical grade to the above container and mix and react for 1 hour to obtain a metal nanowire and graphene
  • the body is composed of a penetrating body structure.
  • embodiments of the present disclosure also provide a method for manufacturing a flexible display panel, as shown in FIG. 5, including:
  • anodes are the above-mentioned flexible transparent electrodes.
  • the product prepared in the method for preparing the flexible transparent electrode provided by the embodiment of the present disclosure composed of the metal nanowire and the graphene body constituting the interpenetrating body structure is dissolved, and the above-mentioned product is evaporated by the physical vapor deposition method to form a plurality of Independently set anode.
  • a metal mask can be used to evaporate the anode.
  • the vapor deposition method of the anode is a technique well known to those skilled in the art, and will not be detailed here.
  • the method further includes:
  • the pixel defining layer is used to define the pixel area. Because each film layer of the pixel defining layer and the driving circuit is formed by a photolithography process, and the anode is formed by an evaporation process. The photolithography process and the evaporation process use different chambers. In order to reduce the manufacturing process, the pixel defining layer can be formed before the anode is formed, so that the pixel defining layer and the film layers of the driving circuit can be formed in the same chamber. Reduce the production process.
  • embodiments of the present disclosure also provide a flexible display panel, including a plurality of independently arranged anodes, and the anodes are the above-mentioned flexible transparent electrodes provided by the embodiments of the present disclosure. Since the principle of solving the problem of the flexible display panel is similar to the aforementioned flexible transparent electrode, the implementation of the flexible display panel can refer to the implementation of the aforementioned flexible transparent electrode, and the repetition will not be repeated.
  • FIG. 7 is a schematic diagram of a partial cross-sectional structure of a flexible display panel provided by an embodiment of the disclosure.
  • the flexible display panel includes: a base substrate 100; and a plurality of pixel units 200 located on the base substrate 100.
  • FIG. 7 schematically shows one pixel unit 200 among the plurality of pixel units 200.
  • each pixel unit 200 includes a driving circuit 210 located on a base substrate 100 and a light emitting element 220 located on a side of the driving circuit 210 away from the base substrate 100.
  • Each light-emitting element 220 includes a first electrode 221, a light-emitting layer 222, and a second electrode 223 that are stacked.
  • the second electrode 223 is located on the side of the light-emitting layer 222 facing the driving circuit 210 and is electrically connected to the driving circuit 210.
  • the second electrode 223 is the flexible transparent electrode described in the above embodiment.
  • the driving circuit 210 may include a driving transistor, and the driving transistor may include a control terminal, a first terminal, and a second terminal, and is configured to be electrically connected to the second electrode 223 (ie, flexible transparent electrode) of the light emitting element 200 to emit light.
  • the element 220 provides a driving current for driving the light-emitting element 220 to emit light.
  • the driving circuit 210 and the side facing the light emitting element 220 are provided with a transparent insulating layer 400 to insulate the second electrode 223 from the driving circuit 210.
  • the flexible display panel further includes a pixel defining layer 300, and the pixel defining layer 300 includes a plurality of openings for defining light-emitting regions of sub-pixels.
  • a plurality of openings expose the second electrode 223.
  • the subsequent light-emitting layer 222 is formed in the opening of the pixel defining layer 300, the light-emitting layer 222 contacts the second electrode 223, so that this part can drive the light-emitting layer 222 to emit light.
  • the flexible display panel provided by the embodiments of the present disclosure adopts a penetrating body structure including metal nanowires and a graphene body, which is beneficial to improve the display effect and service life.
  • embodiments of the present disclosure also provide a display device, including the above-mentioned flexible display panel provided by the embodiments of the present disclosure. Since the principle of solving the problem of the display device is similar to the aforementioned flexible transparent electrode, the implementation of the display device can refer to the implementation of the aforementioned flexible transparent electrode, and the repetition will not be repeated.
  • the above-mentioned display device provided by the embodiment of the present disclosure may be any product or component with a display function, such as a tablet computer, a television, a display, a notebook computer, a digital photo frame, and a navigator.
  • a display function such as a tablet computer, a television, a display, a notebook computer, a digital photo frame, and a navigator.
  • the other indispensable components of the display device are understood by those of ordinary skill in the art, and will not be repeated here, nor should they be used as a limitation to the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Non-Insulated Conductors (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种柔性透明电极、柔性显示面板、相关制备方法及显示装置,该柔性透明电极包括石墨烯本体(1)和金属纳米线(2),金属纳米线(2)的至少部分穿插于石墨烯本体(1)内以构成穿插体结构。所述穿插体结构的柔性透明电极,一方面可以解决金属纳米线稳定性差、粗糙度大和与衬底基板结合力差的问题;另一方面解决石墨烯方阻高、功函数低,不利于空穴注入的问题。从而,将金属纳米线和石墨烯本体结合形成的穿插体结构可以使得金属纳米线和石墨烯本体相互弥补各自的缺陷,以形成用于替代氧化铟锡的柔性透明电极。

Description

柔性透明电极、柔性显示面板、相关制备方法及显示装置
本申请要求于2019年4月26日递交的中国专利申请第201910344220.9号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及一种柔性透明电极、柔性显示面板、相关制备方法及显示装置。
背景技术
透明导电薄膜是许多光电子器件,例如平板显示器,有机发光二极管,智能窗等器件的重要组成部分。铟锡氧化物如氧化铟锡(ITO)具有高导电率和高透光率,因此,已经成为透明导电薄膜的主要材料。
发明内容
本公开实施例提供了一种柔性透明电极、柔性显示面板、相关制备方法及显示装置。
本公开实施例提供了一种柔性透明电极,包括:石墨烯本体和金属纳米线。所述金属纳米线的至少部分穿插于所述石墨烯本体内以构成穿插体结构。
例如,在本公开的实施例中,所述石墨烯本体具有至少一个孔状缺陷结构,所述金属纳米线的至少部分穿插于所述孔状缺陷结构内。
例如,在本公开的实施例中,所述金属纳米线位于所述孔状缺陷结构外部的部分交叉排列形成网状结构。
例如,在本公开的实施例中,所述金属纳米线包括铜纳米线或银纳米线。
例如,在本公开的实施例中,所述至少一个孔状缺陷结构的孔径为1~10微米。
本公开另一实施例提供一种上述柔性透明电极的制备方法,包括:制备石墨烯;提供形成所述金属纳米线的前驱物,提供碱性溶液以及还原剂溶液;以及将所述石墨烯、所述前驱物、所述碱性溶液和所述还原剂溶液混合以形成所述穿插体结构。
例如,在本公开的实施例中,提供形成所述金属纳米线的前驱物包括:制 备所述金属纳米线的各前驱物混合溶液;将所述石墨烯、所述前驱物、所述碱性溶液和所述还原剂溶液混合包括:将所述石墨烯、所述混合溶液、碱性溶液和还原剂溶液混合并反应一定时间,得到由所述金属纳米线和所述石墨烯本体构成的所述穿插体结构的产物;在形成所述穿插结构体以后,所述制备方法还包括:将所述产物进行洗涤和烘干,形成所述柔性透明电极。
例如,在本公开的实施例中,将所述石墨烯、所述前驱物、所述碱性溶液和所述还原剂溶液混合包括:在所述石墨烯中加入所述前驱物反应一定时间后,再依次所述碱性溶液以及所述还原剂溶液。
例如,在本公开的实施例中,在所述制备石墨烯之后,且在将所述石墨烯与所述前驱物混合之前,还包括:对制得的所述石墨烯进行热处理,以使所述石墨烯表面的含氧基团消失,从而在消失的所述含氧基团位置处形成孔状缺陷结构。
例如,在本公开的实施例中,在进行所述热处理过程中,所述石墨烯中的氧元素减少90%~95%。
例如,在本公开的实施例中,对制得的所述石墨烯进行热处理过程包括:在温度为550℃~650℃范围内的氩气氛围下对所述石墨烯进行热处理。
本公开另一实施例提供一种柔性显示面板,包括多个阳极。所述阳极为上述任一实施例提供的柔性透明电极。
本公开另一实施例提供一种柔性显示面板,包括:衬底基板;以及位于所述衬底基板上的多个像素单元。各像素单元包括位于所述衬底基板上的驱动电路以及位于所述驱动电路远离所述衬底基板的一侧的发光元件,各所述发光元件包括层叠设置的第一电极、发光层以及第二电极,所述第二电极位于所述发光层面向所述驱动电路的一侧,且与所述驱动电路电连接。所述第二电极为上述任一实施例提供的柔性透明电极。
本公开另一实施例提供一种显示装置,包括上述柔性显示面板。
本公开另一实施例提供一种柔性显示面板的制备方法,包括:在衬底基板上形成驱动电路;在所述驱动电路上形成多个独立设置的阳极。所述阳极为上述任一实施例提供的柔性透明电极。
例如,在本公开的实施例中,在形成所述阳极之前,还包括:在所述驱动电路远离所述衬底基板的一侧形成像素界定层。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为金属纳米线的形貌示意图;
图2为本公开实施例提供的柔性透明电极的结构示意图;
图3A为本公开实施例的一示例提供的柔性透明电极的制备方法的流程示意图;
图3B为本公开实施例的另一示例提供的柔性透明电极的制备方法的流程示意图;
图4A为本公开实施例的另一示例提供的柔性透明电极的制备方法的流程示意图;
图4B为本公开实施例的另一示例提供的柔性透明电极的制备方法的流程示意图;
图5为本公开实施例提供的柔性显示面板的制备方法的流程示意图;
图6为本公开实施例提供的柔性显示面板的制备方法的流程示意图;
图7为本公开实施例提供的一种柔性显示面板的局部截面结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
在研究中,本申请的发明人发现:作为有机发光二极管器件的透明电极的 氧化铟锡材料存在着一些缺点,例如原材料铟的价格的不断上涨,制备氧化铟锡的费用昂贵等。此外,氧化铟锡材料在发生弯曲的过程中极易发生断裂或脱落,导致氧化铟锡的导电性能大幅下降。
目前,以导电聚合物、金属纳米材料、碳纳米管和石墨烯为代表的新材料展现出良好的发展潜力。金属纳米线为长径比(金属纳米线的长度与直径的比值)大于1000的一维纳米结构,其形貌如图1所示,纳米线相互搭覆形成的薄膜拥有优异的电导性和透过率。银纳米线和铜纳米线在导电特性方面具有一定优势。以银纳米线制备的透明导电电极的方阻可低至30Ω/□,同时该透明导电电极的透过率可达90%。然而由于银为贵金属,因此制约了其大规模应用。近年来随着人们对铜纳米线的研究越来越深入,发现铜纳米线的优势包括:铜的本征导电性很高,仅比银低约6%;铜的价格比银和氧化铟锡的价格便宜近100倍,且储量差不多是二者的1000倍;制备的铜纳米线透明导电薄膜在电导率和透光率方面都与氧化铟锡相近。但是,铜纳米线在制备、后期保存和加工过程中容易被氧化,它的薄膜电阻会随着在空气中暴露时间的增加而增加,相应地它的导电率也会随着在空气中暴露时间的增加而变小。此外,铜纳米线形成的网格结构与柔性衬底,例如透明绝缘层等膜层的结合力较弱,容易影响器件稳定性。
石墨烯拥有极高的透光率和导电特性,在柔性透明电极领域有着广阔的前景。单层石墨烯最高透过率可达97.7%,这一数值已经超过了绝大多数导电材料,并且石墨烯的稳定性较高。然而传统方法制备的未经修饰的石墨烯由于边缘存在诸多含氧基团,导致其方阻偏高;同时石墨烯功函数较低,仅为4.4eV,不利于空穴注入,这也限制了其在柔性透明电极的发展和应用。
下面结合附图对本公开实施例提供的柔性透明电极及其制备方法、柔性显示面板及其制备方法以及显示装置进行描述。
图2为根据本公开实施例提供的一种柔性透明电极。如图2所示,柔性透明电极包括石墨烯本体1和金属纳米线2,金属纳米线2的至少部分穿插于石墨烯本体1内以构成穿插体结构。例如,石墨烯本体1和金属纳米线2可以位于柔性衬底10上。
本公开实施例提供的上述柔性透明电极包括石墨烯本体和金属纳米线,金属纳米线和石墨烯本体构成穿插体结构。本公开提供的穿插体结构式的柔性透明电极,一方面可以解决金属纳米线稳定性差、易被氧化、粗糙度大以及与柔 性衬底结合力差的问题;另一方面还可以解决石墨烯方阻高、功函数低,不利于空穴注入的问题。从而,将金属纳米线和石墨烯本体结合形成的穿插体结构可以使得金属纳米线和石墨烯本体相互弥补各自的缺陷以形成用于替代ITO材料的柔性透明电极;并且穿插体结构具有高的导电率和透过率,与柔性衬底的结合力较强,稳定性较高,在应用于器件中时可以提高器件的寿命。
例如,在本公开实施例提供的上述柔性透明电极中,如图2所示,石墨烯本体1具有至少一个孔状缺陷结构01,金属纳米线2的至少部分穿插于孔状缺陷结构01内。本公开实施例以金属纳米线2的数量为多个,石墨烯本体1具有多个孔状缺陷结构01为例,则当孔状缺陷结构01的数量少于金属纳米线2的数量时,一部分金属纳米线2可以穿插于孔状缺陷结构内,另一部分没有穿插于孔状缺陷内。例如,每个孔状缺陷结构01的孔径可以为1~10微米,且每个孔状缺陷结构01内可以穿插至少一条金属纳米线。
例如,石墨烯可以由氧化石墨烯还原生成,但是受到氧化还原反应的影响,生成的石墨烯中会存留部分含氧基团,即未经修饰的石墨烯的表面具有很多含氧基团,含氧基团的存在对其导电性有一定影响。本公开实施例通过将制得的石墨烯进行热处理,如在温度范围为550℃~650℃(例如600℃)的氩气氛围下进行热处理,可以使含氧基团与石墨烯的碳原子结合形成气体释放,因此在含氧基团处形成上述孔状缺陷结构。例如,在进行所述热处理过程中,石墨烯中的氧元素减少90%~95%,由此,含氧基团中的大部分将会消失而留下孔状缺陷结构。
由于缺陷结构位置处剩余的基团活性较高、且化学势垒较低,当将形成金属纳米线的前驱物与具有缺陷结构的石墨烯在一定条件下混合时,金属纳米线极易于在缺陷结构处生长。由于石墨烯表面具有很多缺陷结构,因此金属纳米线在多个缺陷结构处生长,可以形成金属纳米线2穿插于孔状缺陷结构01内的穿插体结构。
例如,在本公开实施例提供的上述柔性透明电极中,如图2所示,金属纳米线2位于孔状缺陷结构01外部的部分交叉排列形成网状结构。例如,金属纳米线2中没有穿插于孔状缺陷结构01内的金属纳米线2可以与穿插于孔状缺陷结构01内的金属纳米线2交叉排列形成网状结构。网状结构可以降低金属纳米线2的电阻,提高金属纳米线2的稳定性。
例如,为了降低制作成本,在本公开实施例提供的上述柔性透明电极中, 如图2所示,金属纳米线2为铜纳米线。但本公开实施例不限于此,金属纳米线2也可以为银纳米线,以具有更高的导电率。
基于同一发明构思,本公开实施例还提供了一种柔性透明电极的制备方法,如图3A所示,包括:
S301、制备石墨烯。
例如,可以采用Hummers法制备石墨烯。
S302、制备金属纳米线的各前驱物混合溶液。
例如,各前驱物包括三水合硝酸铜、去离子水和乙二胺分析纯。
S303、将石墨烯、混合溶液、碱性溶液和还原剂溶液混合并反应一定时间,得到由金属纳米线和石墨烯本体构成穿插体结构的产物。
例如,碱性溶液可以为氧化钠溶液,还原剂溶液可以为水合肼。
S304、将产物进行洗涤和烘干,形成柔性透明电极。
例如,可以将产物进行水洗和醇洗。
本公开实施例提供的上述柔性透明电极的制备方法可以制备出具有金属纳米线和石墨烯本体构成穿插体结构的柔性透明电极,该穿插体结构的柔性透明电极,一方面可以解决金属纳米线稳定性差、粗糙度大和与柔性衬底结合力差的问题,另一方面解决石墨烯方阻高、功函数低,不利于空穴注入的问题。将金属纳米线和石墨烯本体构成穿插体结构,可以相互弥补各自的缺陷,从而形成用于替代ITO材料的柔性透明电极。并且该柔性透明电极具有高的导电率和透过率,并且与柔性衬底的结合力较强,稳定性较高,进而应用在器件中可以提高器件的寿命。
例如,在本公开实施例提供的上述柔性透明电极的制备方法中,如图4A所示,在制备石墨烯之后,且在石墨烯、混合溶液、碱性溶液和还原剂溶液混合之前,还包括:
S301’、对制得的石墨烯进行热处理,以在石墨烯内形成多个孔状缺陷结构。
由于未经修饰的石墨烯的表面具有很多含氧基团,含氧基团的存在对其导电性有一定影响,本公开通过将制得的石墨烯进行热处理,如在温度为600℃的氩气氛围下进行热处理,可以使含氧基团与石墨烯的碳原子结合形成气体释放。因此在含氧基团处形成孔状缺陷结构,由于缺陷结构的活性较高、且化学势垒较低,当将金属纳米线的前驱物与石墨烯在一定条件下混合时,金属纳米 线极易于在缺陷结构处生长。由于石墨烯表面具有很多缺陷结构,因此金属纳米线沿着多个缺陷结构生长,可以形成金属纳米线穿插于孔状缺陷结构内的穿插体结构。
本公开实施例的另一示例还提供了一种柔性透明电极的制备方法,如图3B所示,包括:
S301、制备石墨烯。
例如,可以采用Hummers法制备氧化石墨烯,然后将制备的氧化石墨烯干燥后取出一部分分散于水溶液中以得到悬浮液,悬浮液经超声波条件分散后升温并滴加水合肼进行还原反应过滤后,得到石墨烯。
S302、提供形成金属纳米线的前驱物,提供碱性溶液以及还原剂溶液。
例如,前驱物指合成金属纳米线的原料或前体。例如,前驱物可以包括三水合硝酸铜和乙二胺分析纯。例如,前驱物还可以包括去离子水。
S303、将石墨烯、前驱物、碱性溶液和还原剂溶液混合以形成穿插体结构。
例如,碱性溶液可以为氢氧化钠溶液,还原剂溶液可以为水合肼以产生还原反应生成金属纳米线。
例如,将石墨烯均匀分散在去离子水中,然后在分散有石墨烯的去离子水中加入三水合硝酸铜搅拌后,再加入乙二胺分析纯搅拌,可以生成氢氧化铜、氢氧化亚铜等产物。然后将碱性溶液加入上述产物中后生成的最终产物中包括一价铜和二价铜的混合物以利于后续形成铜纳米线。
例如,在形成金属纳米线和石墨烯的结合产物后,可以将产物进行洗涤和烘干,形成柔性透明电极;或者,在形成金属纳米线和石墨烯的结合产物后,也可以将上述结合产物涂敷在衬底上,并对上述结合产物施加压力以形成柔性透明电极。
例如,可以将产物进行水洗和醇洗。
本公开实施例提供的上述柔性透明电极的制备方法可以制备出金属纳米线和石墨烯本体构成穿插体结构的柔性透明电极。该穿插体结构式的柔性透明电极,一方面可以解决金属纳米线稳定性差、易被氧化、粗糙度大以及与柔性衬底结合力差的问题;另一方面还可以解决石墨烯方阻高、功函数低,不利于空穴注入的问题。从而,将金属纳米线和石墨烯本体结合形成的穿插体结构可以使得金属纳米线和石墨烯本体相互弥补各自的缺陷以形成用于替代ITO材料的柔性透明电极;并且穿插体结构具有高的导电率和透过率,与柔性衬底的 结合力较强,稳定性较高,在应用于器件中时可以提高器件的寿命。
例如,在本公开实施例的另一示例提供的上述柔性透明电极的制备方法中,如图4B所示,在制备石墨烯之后,且在将石墨烯与前驱物混合之前,还包括:
S301’、对制得的石墨烯进行热处理,以使石墨烯表面的含氧基团消失,从而在消失的含氧基团位置处形成孔状缺陷结构。
例如,石墨烯可以由氧化石墨烯还原生成,但是受到氧化还原反应的影响,生成的石墨烯中会存留部分含氧基团,含氧基团的存在对其导电性有一定影响。本公开实施例通过将制得的石墨烯进行热处理,如在温度为550℃~650℃(例如600℃)的氩气氛围下进行热处理,可以使含氧基团与石墨烯的碳原子结合形成气体释放,因此在含氧基团处形成上述孔状缺陷结构。例如,在进行所述热处理过程中,石墨烯中的氧元素减少90%~95%,由此,含氧基团中的大部分将会消失而留下孔状缺陷结构。
由于缺陷结构的活性较高、且化学势垒较低,当将形成金属纳米线的前驱物与石墨烯在一定条件下混合时,金属纳米线极易于在缺陷结构处生长。由于石墨烯表面具有很多缺陷结构,因此金属纳米材料沿着多个缺陷结构生长,可以形成金属纳米线穿插于孔状缺陷结构内的穿插体结构。
下面通过具体实施例对本公开实施例图2提供的柔性透明电极的制备方法进行详细说明:
步骤一:制备石墨烯。例如,可以采用Hummers法制备石墨烯。
步骤二:对制得的石墨烯进行热处理,以在石墨烯内形成多个孔状缺陷结构。例如将石墨烯在温度为600℃的氩气氛围下进行热处理,在石墨烯表面产生缺陷结构。
步骤三:制备金属纳米线的各前驱物混合溶液。例如,称取2.42g三水合硝酸铜、量取100mL去离子水和10mL乙二胺分析纯混合搅拌24h,制得混合溶液。
步骤四:将石墨烯、混合溶液、碱性溶液和还原剂溶液混合并反应一定时间,得到由金属纳米线和石墨烯本体构成穿插体结构的产物。例如,称取500g石墨烯、上述混合溶液、称取适量氢氧化钠溶于1L水后转移至烧瓶加热至80℃,然后与0.5mL水合肼混合反应1小时,得到由金属纳米线和石墨烯本体构成穿插体结构的产物。
步骤五:将产物进行洗涤和烘干,形成柔性透明电极。例如,可以将制备得到的产物进行水洗和醇洗,并烘干后备用。
通过上述步骤一至步骤五即可以制备得到本公开实施例图2提供的柔性透明电极。
例如,下面通过另一示例对本公开实施例图2提供的柔性透明电极的制备方法进行详细说明:
步骤一:制备石墨烯。
步骤二:对制得的石墨烯进行热处理,以在石墨烯内形成多个孔状缺陷结构。
例如,将石墨烯在温度为600℃的氩气氛围下进行热处理,从而使得石墨烯表面产生孔状缺陷结构。
步骤三:提供金属纳米线的前驱物,提供碱性溶液以及还原剂溶液,并将石墨烯、前驱物、碱性溶液和还原剂溶液混合以形成穿插体结构。
例如,取100mg石墨烯均匀分散在装有100mL去离子水的容器中,在上述容器中加入2.42g三水合硝酸铜搅拌24小时。然后取10mL乙二胺分析纯加入上述容器中,并搅拌均匀。接下来,称取500g氢氧化钠溶于1L水后转移至上述容器中加热至80℃,最后加入0.5mL水合肼分析纯至上述容器中混合反应1小时,以得到由金属纳米线和石墨烯本体构成的穿插体结构。
基于同一发明构思,本公开实施例还提供了一种柔性显示面板的制备方法,如图5所示,包括:
S501、在衬底基板上形成驱动电路;
S502、在驱动电路上形成多个独立设置的阳极;阳极为上述柔性透明电极。
例如,将本公开实施例提供的柔性透明电极的制备方法中制备得到的由金属纳米线和石墨烯本体构成穿插体结构的产物进行溶解,采用物理气相沉积的方法蒸镀上述产物以形成多个独立设置的阳极。例如,可以采用金属掩模板蒸镀阳极。阳极的蒸镀方法为本领域技术人员公知的技术,在此不做详述。
例如,在本公开实施例提供的上述柔性显示面板的制备方法中,如图6所示,在形成阳极之前,还包括:
S501’、形成像素界定层。
像素界定层用于限定像素区域。由于像素界定层和驱动电路的各膜层均是采用光刻工艺形成的,而阳极是采用蒸镀工艺形成的。光刻工艺和蒸镀工艺所 采用的腔室不同,为了减少制作工艺,可以在形成阳极之前,形成像素界定层,这样可以将像素界定层和驱动电路的各膜层在同一腔室中形成,降低制作工艺。
基于同一发明构思,本公开实施例还提供了一种柔性显示面板,包括多个独立设置的阳极,阳极为本公开实施例提供的上述柔性透明电极。由于该柔性显示面板解决问题的原理与前述一种柔性透明电极相似,因此该柔性显示面板的实施可以参见前述柔性透明电极的实施,重复之处不再赘述。
图7为本公开实施例提供的一种柔性显示面板的局部截面结构示意图。如图7所示,该柔性显示面板包括:衬底基板100;以及位于衬底基板100上的多个像素单元200。图7示意性的示出多个像素单元200中的一个像素单元200。如图7所示,各像素单元200包括位于衬底基板100上的驱动电路210以及位于驱动电路210远离衬底基板100的一侧的发光元件220。各发光元件220包括层叠设置的第一电极221、发光层222以及第二电极223,第二电极223位于发光层222面向驱动电路210的一侧,且与驱动电路210电连接,该第二电极223为上述实施例所述的柔性透明电极。
例如,驱动电路210可以包括驱动晶体管,驱动晶体管可以包括控制端、第一端和第二端,且被配置为与发光元件200的第二电极223(即柔性透明电极)电连接,以对发光元件220提供驱动发光元件220发光的驱动电流。
例如,如图7所示,驱动电路210与面向发光元件220的一侧设置有透明绝缘层400以将第二电极223与驱动电路210绝缘。
例如,如图7所示,柔性显示面板还包括像素界定层300,像素界定层300包括用于限定子像素的发光区的多个开口。多个开口暴露第二电极223,当后续的发光层222形成在上述像素限定层300的开口中时,发光层222与第二电极223接触,从而这部分能够驱动发光层222进行发光。
本公开实施例提供的柔性显示面板采用包括金属纳米线和石墨烯本体构成的穿插体结构,有利于提高显示效果以及使用寿命。
基于同一发明构思,本公开实施例还提供了一种显示装置,包括本公开实施例提供的上述柔性显示面板。由于该显示装置解决问题的原理与前述一种柔性透明电极相似,因此该显示装置的实施可以参见前述柔性透明电极的实施,重复之处不再赘述。
本公开实施例提供的上述显示装置可以为平板电脑、电视机、显示器、笔 记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。对于该显示装置的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。
有以下几点需要说明:
(1)本公开的实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的同一实施例及不同实施例中的特征可以相互组合。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (16)

  1. 一种柔性透明电极,包括:
    石墨烯本体和金属纳米线,
    其中,所述金属纳米线的至少部分穿插于所述石墨烯本体内以构成穿插体结构。
  2. 如权利要求1所述的柔性透明电极,其中,所述石墨烯本体具有至少一个孔状缺陷结构,所述金属纳米线的至少部分穿插于所述孔状缺陷结构内。
  3. 如权利要求2所述的柔性透明电极,其中,所述金属纳米线位于所述孔状缺陷结构外部的部分交叉排列形成网状结构。
  4. 如权利要求1-3任一项所述的柔性透明电极,其中,所述金属纳米线包括铜纳米线或银纳米线。
  5. 如权利要求1-4任一项所述的柔性透明电极,其中,所述至少一个孔状缺陷结构的孔径为1~10微米。
  6. 一种如权利要求1-5任一项所述的柔性透明电极的制备方法,包括:
    制备石墨烯;
    提供形成所述金属纳米线的前驱物,提供碱性溶液以及还原剂溶液;
    将所述石墨烯、所述前驱物、所述碱性溶液和所述还原剂溶液混合以形成所述穿插体结构。
  7. 如权利要求6所述的制备方法,其中,提供形成所述金属纳米线的前驱物包括:制备所述金属纳米线的各前驱物混合溶液;
    将所述石墨烯、所述前驱物、所述碱性溶液和所述还原剂溶液混合包括:将所述石墨烯、所述混合溶液、碱性溶液和还原剂溶液混合并反应一定时间,得到由所述金属纳米线和所述石墨烯本体构成的所述穿插体结构的产物;
    在形成所述穿插结构体以后,所述制备方法还包括:
    将所述产物进行洗涤和烘干,形成所述柔性透明电极。
  8. 如权利要求6所述的制备方法,其中,将所述石墨烯、所述前驱物、所述碱性溶液和所述还原剂溶液混合包括:
    在所述石墨烯中加入所述前驱物反应一定时间后,再依次所述碱性溶液以及所述还原剂溶液。
  9. 如权利要求6-8任一项所述的制备方法,其中,在所述制备石墨烯之 后,且在将所述石墨烯与所述前驱物混合之前,还包括:
    对制得的所述石墨烯进行热处理,以使所述石墨烯表面的含氧基团消失,从而在消失的所述含氧基团位置处形成孔状缺陷结构。
  10. 如权利要求9所述的制备方法,其中,在进行所述热处理过程中,所述石墨烯中的氧元素减少90%~95%。
  11. 如权利要求9或10所述的制备方法,其中,对制得的所述石墨烯进行热处理过程包括:在温度为550℃~650℃范围内的氩气氛围下对所述石墨烯进行热处理。
  12. 一种柔性显示面板,包括多个阳极,其中,所述阳极为如权利要求1-5任一项所述的柔性透明电极。
  13. 一种柔性显示面板,包括:
    衬底基板;以及
    位于所述衬底基板上的多个像素单元,其中,各像素单元包括位于所述衬底基板上的驱动电路以及位于所述驱动电路远离所述衬底基板的一侧的发光元件,各所述发光元件包括层叠设置的第一电极、发光层以及第二电极,所述第二电极位于所述发光层面向所述驱动电路的一侧,且与所述驱动电路电连接,
    其中,所述第二电极为如权利要求1-5任一项所述的柔性透明电极。
  14. 一种显示装置,包括如权利要求12或13所述的柔性显示面板。
  15. 一种如权利要求12所述的柔性显示面板的制备方法,包括:
    在衬底基板上形成驱动电路;
    在所述驱动电路上形成多个独立设置的阳极;其中,所述阳极为如权利要求1-5任一项所述的柔性透明电极。
  16. 如权利要求15所述的柔性显示面板的制备方法,其中,在形成所述阳极之前,还包括:在所述驱动电路远离所述衬底基板的一侧形成像素界定层。
PCT/CN2020/084613 2019-04-26 2020-04-14 柔性透明电极、柔性显示面板、相关制备方法及显示装置 WO2020216097A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/042,487 US11374192B2 (en) 2019-04-26 2020-04-14 Flexible transparent electrode, flexible display panel, manufacture method, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910344220.9A CN110085763A (zh) 2019-04-26 2019-04-26 柔性透明电极、柔性显示面板、相关制备方法及显示装置
CN201910344220.9 2019-04-26

Publications (1)

Publication Number Publication Date
WO2020216097A1 true WO2020216097A1 (zh) 2020-10-29

Family

ID=67417030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084613 WO2020216097A1 (zh) 2019-04-26 2020-04-14 柔性透明电极、柔性显示面板、相关制备方法及显示装置

Country Status (3)

Country Link
US (1) US11374192B2 (zh)
CN (1) CN110085763A (zh)
WO (1) WO2020216097A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085763A (zh) 2019-04-26 2019-08-02 京东方科技集团股份有限公司 柔性透明电极、柔性显示面板、相关制备方法及显示装置
CN110993820B (zh) * 2019-12-05 2022-08-09 京东方科技集团股份有限公司 一种显示面板及其制作方法、电极的制作方法
CN115678393B (zh) * 2022-11-07 2024-01-19 江南大学 一种具有电磁屏蔽效能的聚吡咯/聚脲的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120112346A1 (en) * 2010-11-04 2012-05-10 Ning Hong Long Thin-film transistor substrate and method of manufacturing the same
US20130200421A1 (en) * 2012-02-07 2013-08-08 Changwook Jeong Hybrid Transparent Conducting Materials
US20140231718A1 (en) * 2013-02-21 2014-08-21 Yi-Jun Lin Process for Producing Highly conducting and Transparent Films From Graphene Oxide-Metal Nanowire Hybrid Materials
CN104934109A (zh) * 2015-06-03 2015-09-23 林州市清华·红旗渠新材料产业化发展中心 玻璃基底石墨烯/银纳米线透明导电薄膜的制备方法
CN104934108A (zh) * 2014-12-31 2015-09-23 重庆元石石墨烯技术开发有限责任公司 金属纳米线—石墨烯桥架结构复合材料及其制备方法
CN107025953A (zh) * 2015-11-11 2017-08-08 三星电子株式会社 透明电极和包括其的电子器件
CN110085763A (zh) * 2019-04-26 2019-08-02 京东方科技集团股份有限公司 柔性透明电极、柔性显示面板、相关制备方法及显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101519519B1 (ko) * 2013-09-17 2015-05-12 국립대학법인 울산과학기술대학교 산학협력단 신축성 배선을 이용하여 형성된 무 베젤 디스플레이 장치 및 그 제조 방법
CN107039122B (zh) * 2017-04-09 2019-04-30 北京工业大学 一种石墨烯/超长银纳米线柔性透明导电薄膜的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120112346A1 (en) * 2010-11-04 2012-05-10 Ning Hong Long Thin-film transistor substrate and method of manufacturing the same
US20130200421A1 (en) * 2012-02-07 2013-08-08 Changwook Jeong Hybrid Transparent Conducting Materials
US20140231718A1 (en) * 2013-02-21 2014-08-21 Yi-Jun Lin Process for Producing Highly conducting and Transparent Films From Graphene Oxide-Metal Nanowire Hybrid Materials
CN104934108A (zh) * 2014-12-31 2015-09-23 重庆元石石墨烯技术开发有限责任公司 金属纳米线—石墨烯桥架结构复合材料及其制备方法
CN104934109A (zh) * 2015-06-03 2015-09-23 林州市清华·红旗渠新材料产业化发展中心 玻璃基底石墨烯/银纳米线透明导电薄膜的制备方法
CN107025953A (zh) * 2015-11-11 2017-08-08 三星电子株式会社 透明电极和包括其的电子器件
CN110085763A (zh) * 2019-04-26 2019-08-02 京东方科技集团股份有限公司 柔性透明电极、柔性显示面板、相关制备方法及显示装置

Also Published As

Publication number Publication date
CN110085763A (zh) 2019-08-02
US11374192B2 (en) 2022-06-28
US20210159443A1 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
WO2020216097A1 (zh) 柔性透明电极、柔性显示面板、相关制备方法及显示装置
JP5399004B2 (ja) 伝導性の改善されたカーボンナノチューブ、その製造方法および該カーボンナノチューブを含有する電極
KR101435999B1 (ko) 도펀트로 도핑된 산화그라펜의 환원물, 이를 포함하는 박막및 투명전극
KR101160909B1 (ko) 환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막의 제조방법 및 이에 의해 제조된 전도성 박막을 포함하는 투명전극
JP5679565B2 (ja) 透明導電膜、透明導電膜付き基材、及びそれを用いた有機エレクトロルミネッセンス素子
WO2017059658A1 (zh) 一种长径比均匀的银纳米线的制备方法
JP2015508556A (ja) メタルナノワイヤー及び炭素ナノチューブを含む積層形透明電極
KR20130122429A (ko) 은 나노와이어 및 그라핀을 이용한 하이브리드 전극 및 이의 제조방법
JP2013073748A (ja) 透明電極積層体およびその製造方法
WO2012079360A1 (zh) 一种透明电极材料及其制备方法
KR101391158B1 (ko) 환원그래핀 복합체를 포함하는 복합막의 제조방법 및 이를 이용한 전도성필름
KR102522012B1 (ko) 전도성 소자 및 이를 포함하는 전자 소자
KR101802374B1 (ko) 도핑된 그래핀 함유 투명전극, 그의 제조방법, 및 이를 구비하는 표시소자와 태양전지
JP2017092031A (ja) 透明電極およびこれを含む素子
CN110644003B (zh) 银薄膜蚀刻液组合物及利用其的蚀刻方法和金属图案的形成方法
KR20240060767A (ko) 도전체, 그 제조 방법, 및 이를 포함하는 전자 소자
CN103838448B (zh) 一种基于石墨烯的集成oled触摸屏显示器
CN110364429A (zh) 金属纳米线薄膜及其制备方法以及薄膜晶体管阵列
KR101536627B1 (ko) 표면조도가 낮은 은 나노와이어 - 그라핀 하이브리드 전극 제조 방법
KR20170067204A (ko) 금속 나노선 전극의 제조 방법
CN110993820B (zh) 一种显示面板及其制作方法、电极的制作方法
WO2010095546A1 (ja) 透明導電性フィルム及び透明電極
JP2018060787A (ja) 電極及びこれを含む有機発光素子、液晶表示装置及び有機発光表示装置
Sun et al. Synchronously improved reliability, figure of merit and adhesion of flexible copper nanowire networks by chitosan transition
KR20180007209A (ko) 전도성 투명전극 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20793983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20793983

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20793983

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/06/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20793983

Country of ref document: EP

Kind code of ref document: A1