WO2020215601A1 - Matériau d'électrode positive ternaire recouvert de matériau de structure organométallique et son procédé de préparation - Google Patents

Matériau d'électrode positive ternaire recouvert de matériau de structure organométallique et son procédé de préparation Download PDF

Info

Publication number
WO2020215601A1
WO2020215601A1 PCT/CN2019/106539 CN2019106539W WO2020215601A1 WO 2020215601 A1 WO2020215601 A1 WO 2020215601A1 CN 2019106539 W CN2019106539 W CN 2019106539W WO 2020215601 A1 WO2020215601 A1 WO 2020215601A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
positive electrode
electrode material
organic
organic frame
Prior art date
Application number
PCT/CN2019/106539
Other languages
English (en)
Chinese (zh)
Inventor
吴浩斌
赵博
刘倩倩
许亦非
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2020215601A1 publication Critical patent/WO2020215601A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of new energy materials, and specifically relates to a metal-organic frame material coated ternary cathode material and a preparation method thereof
  • Lithium-ion batteries have a series of excellent properties such as high working voltage, large specific energy, long cycle life, green pollution-free and no memory effect, which also makes lithium-ion batteries widely used as power sources for various electronic products.
  • the electrode material As one of the core components of the battery, the electrode material has a significant impact on the overall performance of the battery.
  • the positive electrode material series that show great advantages are nickel-cobalt-manganese ternary positive electrode materials, which have great advantages in terms of high energy, long cycle life and high safety.
  • irreversible side reactions occur at the interface between the electrode material and the electrolyte, leading to corrosion of the electrode material, reducing battery charge and discharge efficiency, and affecting battery capacity and cycle life.
  • the coating materials of ternary cathode materials for lithium-ion batteries include B 2 O 3 , Al 2 O 3 , AlPO 4 , LiAlO 2 , AlF 3 , TiO 2 , V 2 O 5 , and carbon. There are pros and cons.
  • the coating methods used include precipitation, ball milling, and vapor deposition.
  • the ball milling method is more widely used due to its low technical requirements, but the coating layer thickness distribution after this method is not uniform, which affects the performance of the electrode material; the meteorological deposition method is usually used for the coating of carbon materials, and for metal salts or metals Oxides are used less frequently.
  • the purpose of the present invention is to solve the problem that the surface of the battery cathode material in the prior art is prone to irreversible side reactions with the electrolyte, thereby causing corrosion, and to provide a novel metal-organic framework material-coated ternary cathode material preparation method,
  • the material adopts the solvent thermal precipitation method, the thickness of the coating layer is uniform, the process is simple, the cost is low, and it is convenient for industrial production. The most important thing is that the cycle stability of the battery is excellent after coating modification.
  • a method for preparing a metal-organic frame material coated ternary cathode material includes the following steps:
  • the zirconium salt and organic ligands are benzoic acid and terephthalic acid;
  • the volume ratio of absolute ethanol and N,N-dimethylformamide is 1:10-1:100.
  • the chemical formula of the ternary cathode material described in step (1) is LiNi x Co y Mn 1-xy O, wherein 1>x>0, 1>y>0, and 1>x+y.
  • the ternary cathode material includes LiNi 0.8 Co 0.1 Mn 0.1 O, LiNi 0.6 Co 0.2 Mn 0.2 O, LiNi 0.5 Co 0.2 Mn 0.3 O, LiNi 1/3 Co 1/3 Mn 1/3 O.
  • the uniform dispersion mode is stirring for 1-5 h.
  • the zirconium salt is one or more of zirconium acetate, hydrochloride, and organic salt.
  • the feeding amount of the zirconium salt and the organic ligand satisfies: the molar ratio of zirconium atom, benzoic acid, and terephthalic acid is 1:5:1-1:15:5. .
  • the reaction kettle is preferably a reaction kettle with a polytetrafluoroethylene liner.
  • step (3) the solvothermal co-precipitation method is used for coating, and the reaction conditions are 80-180°C for 4-24 hours.
  • the reaction kettle is placed in an oven to naturally cool down to 40°C.
  • the drying method described in step (4) is: placing the product after centrifugation in a vacuum drying oven, and vacuum drying at 50-90° C. for 6-12 hours.
  • Another object of the present invention is to provide a metal-organic framework material coated ternary cathode material prepared by the method described in any of the above solutions.
  • the ternary cathode material is dispersed in a mixed solution of absolute ethanol and N,N-dimethylformamide, and zirconium salt is added and stirred uniformly, so that zirconium ions can be adsorbed on the surface of the ternary cathode material particles. Furthermore, during the solvothermal reaction with the organic ligands, it grows epitaxially along the surface of the ternary cathode material to form an organic frame coating layer of metal zirconium.
  • the zirconium atom is the center of the site, and the organic ligands are connected to each other and uniformly coated
  • the surface of the ternary cathode material, and the coating thickness is controllable, effectively preventing the non-aqueous liquid organic electrolyte from contacting the cathode material, reducing the irreversible side reaction between the electrolyte and the electrode material, increasing the electrode material capacity, and showing excellent performance ⁇ cyclic stability.
  • the site center of metal zirconium can adsorb the anion of the lithium salt in the electrolyte, promote the dissociation of lithium ions and anions in the lithium salt, and produce more lithium ions, while the organic Many micropores are distributed inside the frame structure, which can conduct lithium ions quickly and conveniently, which is beneficial to improve the mobility of lithium ions, thereby improving the electrochemical performance of the ternary cathode material.
  • FIG. 1 is an SEM picture of the ternary cathode material LiNi 0.6 Co 0.2 Mn 0.2 O material of Example 1.
  • Example 2 is a SEM image of a ternary cathode material LiNi 0.6 Co 0.2 Mn 0.2 O coated with an organic frame material of metal zirconium in Example 1.
  • FIG. 3 is an SEM picture of the reaction of zirconium n-butoxide and benzoic acid as a precursor to coat the ternary cathode material LiNi 0.6 Co 0.2 Mn 0.2 O in Example 1.
  • Fig. 4 is an SEM picture of the reaction of zirconium n-butoxide and terephthalic acid as a precursor to coat the ternary cathode material LiNi 0.6 Co 0.2 Mn 0.2 O in Example 1.
  • Example 5 is an XRD data diagram of the organic frame material of metal zirconium coated with a ternary cathode material LiNi 0.6 Co 0.2 Mn 0.2 O in Example 1.
  • FIG. 6 is a comparison diagram of the cycle performance data of a lithium-ion button half-cell using a metal zirconium organic frame material coated ternary positive electrode material and original LiNi 0.6 Co 0.2 Mn 0.2 O as the positive electrode material in Example 1.
  • the method for preparing the metal-organic frame material coated ternary cathode material includes the following steps:
  • this embodiment sets two sets of controls ( Figure 3, Figure 4), the difference is that the organic ligand only adds benzoic acid and only terephthalic acid, and the rest are the same as the embodiment.
  • the scanning electron microscope picture of the original ternary cathode material LiNi 0.6 Co 0.2 Mn 0.2 O is shown in FIG. 1.
  • the SEM picture of the surface wrapped with zirconium metal-organic frame material is shown in Figure 2. It can be seen from the scanning electron microscope picture in Figure 2 that the surface of LiNi 0.6 Co 0.2 Mn 0.2 O is evenly coated with a layer of zirconium metal-organic frame material. Due to the small thickness of the surface coating layer and low crystallinity, the XRD data ( Figure 5) only shows obvious peaks of LiNi 0.6 Co 0.2 Mn 0.2 O, and no diffraction peaks of surface zirconium metal-organic framework materials are observed. On the surface of the ternary positive electrode material of the two control groups, there was no corresponding metal zirconium organic framework material, indicating that the benzoic acid and terephthalic acid in the organic ligands must be added at the same time.
  • the ternary positive electrode material coated with the metal-organic frame material obtained in this embodiment was subjected to the cycle performance test of the button half-cell.
  • the result ( Figure 6) shows that the LiNi 0.6 Co 0.2 Mn 0.2 O cathode material coated with metal zirconium-organic framework material (UIO-66) has a specific discharge capacity of 160mAh g -1 at a current density of 100mA g -1 .
  • the charge-discharge efficiency of the coil is 83%, and the capacity retention rate after 100 cycles is 72%;
  • the original LiNi 0.6 Co 0.2 Mn 0.2 O cathode material has a discharge point specific capacity of 157 mA g -1 when the current density is 100 mA g -1 .
  • the loop charge and discharge efficiency was 79%, and the capacity retention rate was 54% after 100 cycles. .
  • the surface of the ternary cathode material of this example is also evenly coated with a layer of zirconium metal-organic frame material, which can reduce the irreversible side reaction between the electrolyte and the electrode material, increase the electrode material capacity, and make it Has better cycle stability.
  • a method for preparing a metal-organic frame material coated ternary cathode material includes the following steps:
  • the surface of the ternary cathode material of this example is also evenly coated with a layer of zirconium metal-organic frame material, which can reduce the irreversible side reaction between the electrolyte and the electrode material, increase the electrode material capacity, and make it Has better cycle stability.
  • a method for preparing a metal-organic frame material coated ternary cathode material includes the following steps:
  • the surface of the ternary cathode material of this example is also evenly coated with a layer of zirconium metal-organic frame material, which can reduce the irreversible side reaction between the electrolyte and the electrode material, increase the electrode material capacity, and make it Has better cycle stability.
  • a method for preparing a metal-organic frame material coated ternary cathode material includes the following steps:
  • the surface of the ternary cathode material of this example is also evenly coated with a layer of zirconium metal-organic frame material, which can reduce the irreversible side reaction between the electrolyte and the electrode material, increase the electrode material capacity, and make it Has better cycle stability.
  • a method for preparing a metal-organic frame material coated ternary cathode material includes the following steps:
  • the surface of the ternary cathode material of this example is also evenly coated with a layer of zirconium metal-organic frame material, which can reduce the irreversible side reaction between the electrolyte and the electrode material, increase the electrode material capacity, and make it Has better cycle stability.
  • zirconium salts can also be zirconium acetates, hydrochlorides, organic salts, and the like.
  • the specific methods of dispersion, drying, centrifugation, etc. in the preparation process can also be adjusted as needed, and are not limited. Therefore, all technical solutions obtained by equivalent substitutions or equivalent transformations fall within the protection scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

L'invention concerne un matériau d'électrode positive ternaire revêtu d'un matériau de structure organométallique et son procédé de préparation. Le procédé de préparation comprend les étapes suivantes : (1) disperser uniformément un matériau d'électrode positive ternaire dans une solution mixte d'éthanol absolu et de N, N-diméthyl sulfoxyde ; (2) ajouter séquentiellement, sous agitation, un sel de zirconium et un ligand organique à la dispersion, et agiter complètement la dispersion ; (3) transférer la dispersion uniforme obtenue dans (2) à une cuve de réaction pour une réaction solvothermale ; (4) retirer la cuve de réaction, collecter le produit au fond, laver par centrifugation le produit, et sécher le produit centrifugé pour obtenir un matériau d'électrode positive ternaire revêtu d'un matériau de structure organométallique. Le procédé peut revêtir uniformément une couche de matériau de structure organométallique sur la surface du matériau d'électrode positive ternaire, et l'épaisseur de revêtement peut être commandée. Le matériau d'électrode positive ternaire modifié en surface par le matériau de structure organométallique peut réduire efficacement la décomposition de corrosion du matériau d'électrode positive ternaire dans un électrolyte, ce qui permet d'améliorer la stabilité de cyclage de la batterie.
PCT/CN2019/106539 2019-04-26 2019-09-18 Matériau d'électrode positive ternaire recouvert de matériau de structure organométallique et son procédé de préparation WO2020215601A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910345453.0 2019-04-26
CN201910345453.0A CN110165204B (zh) 2019-04-26 2019-04-26 一种金属-有机框架材料包覆三元正极材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2020215601A1 true WO2020215601A1 (fr) 2020-10-29

Family

ID=67638772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106539 WO2020215601A1 (fr) 2019-04-26 2019-09-18 Matériau d'électrode positive ternaire recouvert de matériau de structure organométallique et son procédé de préparation

Country Status (2)

Country Link
CN (1) CN110165204B (fr)
WO (1) WO2020215601A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165204B (zh) * 2019-04-26 2020-12-01 浙江大学 一种金属-有机框架材料包覆三元正极材料及其制备方法
CN113611856B (zh) * 2021-06-08 2022-08-05 贝特瑞(江苏)新材料科技有限公司 正极材料及其制备方法、锂离子电池
CN114583120B (zh) * 2021-12-27 2023-05-16 武汉理工大学 富锂材料表面设计和构筑具有金属离子成分梯度结构的方法
CN114497491B (zh) * 2022-01-20 2024-01-26 山东大学 共价有机框架包覆的钠离子电池正极材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110260100A1 (en) * 2010-04-21 2011-10-27 Basf Se Novel Metal-Organic Frameworks as Electrode Material for Lithium Ion Accumulators
CN106099047A (zh) * 2016-08-25 2016-11-09 深圳市贝特瑞纳米科技有限公司 一种电极材料的表面包覆方法及其用途
CN107887599A (zh) * 2017-11-01 2018-04-06 上海纳米技术及应用国家工程研究中心有限公司 Mof表面改性纳米片结构三元正极材料的制备方法及其产品和应用
CN107910529A (zh) * 2017-11-18 2018-04-13 桂林电子科技大学 一种锰基金属有机框架化合物包覆的锂离子电池三元正极材料及其制备方法
CN109256543A (zh) * 2018-08-28 2019-01-22 凤凰新能源(惠州)有限公司 一种改性镍钴锰铝酸锂正极材料及其制备方法
CN110165204A (zh) * 2019-04-26 2019-08-23 浙江大学 一种金属-有机框架材料包覆三元正极材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201615268D0 (en) * 2016-09-08 2016-10-26 Univ I Oslo And Christian-Albrechts-Universit�T Zu Kiel Process
KR102448302B1 (ko) * 2017-04-28 2022-09-29 삼성전자주식회사 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
CN107722290B (zh) * 2017-11-02 2021-03-09 中国科学技术大学 一种双有机配体mof及其制备方法、双有机配体荷电型mof及其制备方法
CN108390022B (zh) * 2017-12-29 2020-12-25 桑德新能源技术开发有限公司 碳-金属氧化物复合包覆的锂电池三元正极材料、其制备方法及锂电池
CN109126877A (zh) * 2018-09-20 2019-01-04 西北师范大学 一种铁(iii)四羧基苯基卟啉植入金属有机框架的制备和应用
CN109354696A (zh) * 2018-10-08 2019-02-19 浙江大学 一种Zr-MOFs材料UiO-66(nN)(n=1~4)的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110260100A1 (en) * 2010-04-21 2011-10-27 Basf Se Novel Metal-Organic Frameworks as Electrode Material for Lithium Ion Accumulators
CN106099047A (zh) * 2016-08-25 2016-11-09 深圳市贝特瑞纳米科技有限公司 一种电极材料的表面包覆方法及其用途
CN107887599A (zh) * 2017-11-01 2018-04-06 上海纳米技术及应用国家工程研究中心有限公司 Mof表面改性纳米片结构三元正极材料的制备方法及其产品和应用
CN107910529A (zh) * 2017-11-18 2018-04-13 桂林电子科技大学 一种锰基金属有机框架化合物包覆的锂离子电池三元正极材料及其制备方法
CN109256543A (zh) * 2018-08-28 2019-01-22 凤凰新能源(惠州)有限公司 一种改性镍钴锰铝酸锂正极材料及其制备方法
CN110165204A (zh) * 2019-04-26 2019-08-23 浙江大学 一种金属-有机框架材料包覆三元正极材料及其制备方法

Also Published As

Publication number Publication date
CN110165204B (zh) 2020-12-01
CN110165204A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
WO2020215601A1 (fr) Matériau d'électrode positive ternaire recouvert de matériau de structure organométallique et son procédé de préparation
CN107968198B (zh) 一种核壳结构的镍钴锰酸锂前驱体、其制备方法及在锂离子电池的用途
CN109119611B (zh) 一种一步法实现离子掺杂和表面包覆共同修饰三元正极材料的方法
WO2022267187A1 (fr) Matériau d'électrode positive en nca à haute teneur en nickel modifié revêtu d'un composite et son procédé de préparation
CN110492095B (zh) 一种锡掺杂的富锂锰基正极材料及其制备方法
CN110890541A (zh) 一种表面改性富锂锰基正极材料的制备方法和锂离子电池
CN109411735A (zh) 一种正极材料及其制备方法和锂离子电池
CN111029552B (zh) 一种高电压高倍率钴酸锂正极材料及其制备方法
CN110112388A (zh) 多孔三氧化钨包覆改性的正极材料及其制备方法
WO2023001213A1 (fr) Matériau composite de sio@mg/c, son procédé de préparation et son application
CN112038614B (zh) 一种钠离子电池用负极材料及其制备方法
CN111477857A (zh) 一种中空核壳结构FeS2@C纳米复合材料的制备方法及其应用
CN106784748A (zh) 一种硅基镍钴锰锂三元锂电池电极材料及其制备方法
WO2023097983A1 (fr) Matériau composite blanc de prusse, son procédé de préparation et son utilisation
CN109755530A (zh) 一种高压钴酸锂正极材料的钛钡双金属氧化物表面包覆方法
WO2023226550A1 (fr) Procédé de préparation de lithium-fer-phosphate à haute conductivité et son utilisation
CN110364708B (zh) 四氧化三锰-二氧化锡/四氧化三钴复合材料的制备方法
WO2024066173A1 (fr) Matériau d'électrode positive à base de manganèse riche en lithium doté d'une surface revêtue à double couche, procédé de préparation associé et utilisation associée
CN114824243B (zh) 可快充的Co掺杂铌氧化物负极材料的制备方法及其深海储能电池
WO2023179613A1 (fr) Matériau d'électrode positive composite, son procédé de préparation et son application
CN106532036A (zh) 锂离子电池正极材料富镍层状氧化物及其制备方法
CN107394188B (zh) 一种锂离子电池用镂空球状氧化铌电极材料的制备方法
CN108199034A (zh) 锂离子电池用硫化锌/硫化亚铁负极复合材料及制备方法
Sun et al. Preparation of CeO2-coated Li1. 2Mn0. 54Co0. 13Ni0. 13O2 as cathode materials for Lithium Ion Batteries
CN113200571A (zh) 一种锑化合物表面包覆的锂过渡金属氧化物层状正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926708

Country of ref document: EP

Kind code of ref document: A1