WO2020215399A1 - 用于金属基板的树脂组合物、包含其的树脂胶液以及金属基覆铜箔层压板 - Google Patents

用于金属基板的树脂组合物、包含其的树脂胶液以及金属基覆铜箔层压板 Download PDF

Info

Publication number
WO2020215399A1
WO2020215399A1 PCT/CN2019/086833 CN2019086833W WO2020215399A1 WO 2020215399 A1 WO2020215399 A1 WO 2020215399A1 CN 2019086833 W CN2019086833 W CN 2019086833W WO 2020215399 A1 WO2020215399 A1 WO 2020215399A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
metal
metal substrate
copper foil
Prior art date
Application number
PCT/CN2019/086833
Other languages
English (en)
French (fr)
Inventor
佘乃东
黄增彪
Original Assignee
广东生益科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东生益科技股份有限公司 filed Critical 广东生益科技股份有限公司
Publication of WO2020215399A1 publication Critical patent/WO2020215399A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5006Amines aliphatic
    • C08G59/502Polyalkylene polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/56Polyhydroxyethers, e.g. phenoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • the invention belongs to the field of laminates, and relates to a resin composition for a metal substrate, a resin glue containing the same, and a metal-based copper-clad laminate.
  • the printed circuit board as the main support of electronic components has also been continuously improved to provide high-density wiring, thin, fine aperture, and high-density wiring.
  • Thermal performance In this context, a metal-based copper clad laminate with high heat dissipation was born.
  • the metal-based copper clad laminate is applied to high-power LED lighting, since the thermal expansion coefficient of the high-power chip is much smaller than that of the metal substrate, the difference in the stress that needs to be released after the thermal shock is large, which causes the weakest There are cracks in the solder joints or copper foil circuit, which affects reliability.
  • the general metal-based copper clad laminate is composed of a metal substrate, a thermally conductive and insulating adhesive layer and a copper foil bond.
  • a thermally conductive and insulating adhesive layer is present, the stress caused by thermal shock can be relieved to a certain extent, but it is still not enough The need for reliability.
  • CN104708869A discloses a high thermal conductivity aluminum-based copper clad laminate and a preparation method thereof, comprising a copper foil layer, a high thermal conductivity insulating layer and an aluminum plate sequentially arranged from the inside to the outside.
  • the high thermal conductivity insulating layer is filled with alumina fibers, and the oxidation
  • the aluminum fiber is made by micro-arc oxidation; the patent improves the heat dissipation capacity of aluminum-based copper clad laminates and improves the reliability of aluminum-based copper clad laminates, but it does not involve how to solve the stress caused by thermal shock to solder joints or copper foil The problem of the destruction of the circuit.
  • CN103468188A discloses a magnetic composite glue.
  • the composite glue includes 1-200 parts by weight of magnetically conductive powder, 10 parts by weight of resin, 1 part by weight of calcium carbonate, 0.1-1 parts by weight of active dispersant and other additives, and 0.1-1 parts by weight.
  • latent curing accelerator or including 1000-2000 parts by weight of magnetic powder, 10 parts by weight of rubber, 1 part by weight of calcium carbonate, 1-5 parts by weight of active dispersant and other additives, and 1-5 Parts by weight of a latent curing accelerator.
  • the patent will cause little stress on the contact material during the thermal shock cycle of -40°C-125°C after curing, and will not cause the 1.5N sheet material to crack and solidify The strength can withstand a destructive force above 50N after 200 cycles of thermal shock at -40°C-85°C. But whether it can be applied to the laminate field remains to be studied.
  • thermoplastic resin rubber toughened epoxy resin or other toughened modified epoxy resin
  • the resin composition has low thermal conductivity. , Poor resistance to cold and thermal shock, and cannot be used as a thermally conductive and insulating adhesive layer for metal-based copper clad laminates.
  • the object of the present invention is to provide a resin composition for a metal substrate, a resin glue solution containing the same, and a metal-based copper clad laminate.
  • the resin composition provided by the present invention can withstand cold and thermal shock changes, and because of its low modulus, it can avoid the problem of cracks in solder joints or copper foil circuits caused by mismatch of thermal expansion coefficients of chips and substrates.
  • the present invention adopts the following technical solutions:
  • the present invention provides a resin composition for a metal substrate.
  • the total weight of the resin composition is 100% and includes the following components: 5-40% of the main body resin and 60-95% of the thermally conductive filler.
  • the main resin includes 60-90% of flexible epoxy resin and 10-40% of phenolic resin.
  • the flexible epoxy resin has a structure as shown in formula I:
  • R is selected from C2-C20 linear or branched alkylene, -CO-R 1 -CO- or -R 2 -OR 3 -OR 4 -;
  • R 1 is selected from C2-C20 linear or branched alkylene
  • R 2 and R 4 are each independently selected from C1-C10 linear or branched alkylene
  • R 3 is selected from C2-C15 Straight or branched chain alkylene
  • C6-C17 cycloalkyl or R 5 is selected from a C1-C10 linear or branched alkylene group
  • m is an integer of 1-10, such as 2, 3, 4, 5, 6, 7, 8, 9 and the like.
  • n 1 means that the average repeating unit is 4-10, such as 5, 6, 7, 8, 9, etc.
  • the C2-C20 may be C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, etc.
  • the C1-C10 may be C2, C3, C4, C5, C6, C7, C8, C9, etc.
  • the C2-C15 may be C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, etc.
  • the C6-C17 may be C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, etc.
  • the main resin includes a flexible epoxy resin with a specific structure.
  • the flexible epoxy resin provided by the present invention can ensure that the final obtained resin composition has a lower modulus, and a lower modulus can be well alleviated
  • the stress generated by the thermal shock can avoid the problem of cracks in the solder joints or copper foil circuits caused by the mismatch of the thermal expansion coefficient of the chip and the substrate.
  • the main resin includes phenolic resin
  • phenolic resin can avoid the problem of stickiness of the resulting adhesive film or RCC (resin-coated copper foil) when the addition amount of the flexible epoxy resin is too high.
  • adding phenolic resin to flexible epoxy resin can avoid greatly increasing the modulus of the composition, and the composition has a lower modulus because the composition can well alleviate the thermal shock. Guarantee of the stress generated.
  • metal-based copper clad laminates in the prior art are used (such as LED lighting), if they are at room temperature, the chips, solder joints, copper foil circuits, thermally conductive insulating adhesive layers, and metal substrates are all in normal condition. However, once subjected to thermal expansion, the metal substrate, the thermally conductive insulating bonding layer and the copper foil circuit will all be deformed. After the thermal expansion and cooling, it is easy to cause cracks in the solder joints or the copper foil circuit.
  • the invention provides for metal
  • the resin composition of the substrate can be used as a thermally conductive and insulating adhesive layer.
  • the main resin is 5-40%, such as 8%, 10%, 12%, 15%, 18%, 20%, 22%, 25%, 28%, 30%, 32%, 35%, 38%, etc.
  • the R 3 is selected from C2-C15 linear or branched alkylene, C6-C17 aliphatic cycloalkyl, ethyleneoxyethylene, bis(ethyleneoxy ) Ethylene, tris(ethyleneoxy)ethylene, propyleneoxypropylene, di(propyleneoxy)propylene, tri(propyleneoxy)propylene, Tetra(propyleneoxy)propylene, butyleneoxybutylene, di(butyleneoxy)butylene, tri(butyleneoxy)butylene or tetra(butyleneoxy)butylene.
  • the host resin further includes biphenyl epoxy resin.
  • the added amount of the biphenyl epoxy resin is 1-20%, such as 2%, 5%, 8%, 10%, 12%, 15%, 18% Wait.
  • biphenyl epoxy resin can increase the heat resistance of the resin composition.
  • the resin composition further includes a curing agent.
  • the added amount of the curing agent is 1-10%, such as 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% Wait.
  • the curing agent is an amine curing agent.
  • the curing agent includes ethylene diamine, diethylene triamine, triethylene tetraamine, tetraethylene pentamine, isophorone diamine, m-phenylenediamine, m-aminomethylamine, diaminodiphenyl sulfone, Any one or a combination of at least two of dicyandiamide, diaminodicyclohexylmethane, methylcyclopentanediamine, diaminomethylcyclohexanediamine, or diaminodiphenylmethane.
  • the flexible epoxy resin is 60-90%, such as 62%, 65%, 68%, 70%, 72%, 75%, 78%, 80%, 82%, 85%, 88%, etc.
  • the epoxy equivalent of the flexible epoxy resin is 300-500g/eq, such as 320g/eq, 340g/eq, 360g/eq, 380g/eq, 400g/eq, 410g/eq, 420g/eq, 430g /eq, 44g/eq, 450g/eq, 560g/eq, 470g/eq, 480g/eq, 490g/eq, etc.
  • the phenolic resin is 10-40%, such as 12%, 15%, 18%, 20%, 22%, 25%, 28%, 30%, 32%, 35%, 38%, etc.
  • the phenolic resin content is too low, it will not prevent the adhesive film or RCC (resin coated copper foil) from sticking. If the phenolic resin content is too high, during the drying process, a dense protective film will be formed on the surface of the resin composition, which will hinder the volatilization of the solvent, resulting in bubbling on the surface of the adhesive film or RCC (resin coated copper foil), affecting the layer The electrical insulation of the pressure plate.
  • the weight average molecular weight of the phenolic resin is 30,000-65,000, such as 35,000, 40,000, 45,000, 50,000, 55,000, 60,000, etc.
  • the thermally conductive filler is 60-95%, such as 62%, 65%, 68%, 70%, 72%, 75%, 78%, 80%, 82%, 85%, 88%, 90%, 92%, etc.
  • the content of the thermally conductive filler will affect the thermal conductivity and modulus of the resin composition. Decreasing the thermally conductive filler will simultaneously reduce the thermal conductivity and modulus; increasing the thermally conductive filler will also increase the thermal conductivity and modulus. In order to ensure suitable thermal conductivity and lower modulus of the resin composition, the content of the thermally conductive filler is 60-95%.
  • the thermally conductive filler includes any one or a combination of at least two of aluminum nitride, boron nitride, aluminum oxide, silicon carbide, zinc oxide, or carbon nanotubes, and more preferably boron nitride, aluminum oxide or carbonized Any one or a combination of at least two of silicon.
  • the resin composition further includes a curing accelerator.
  • the amount of the curing accelerator added is 0.1-2%, such as 0.2%, 0.5%, 0.8%, 1.0%, 1.2%, 1.5%, 1.7%, etc.
  • auxiliary agents such as defoamers, dispersants, anti-aging agents, etc., can be added without departing from the purpose of the present invention.
  • the present invention provides a resin glue solution, which is obtained by dissolving or dispersing the resin composition for metal substrates as described in the first aspect in a solvent.
  • the solvents that can be used in the present invention include any one or a combination of at least two of dimethylformamide, methyl ethyl ketone, acetone, cyclohexanone or toluene solvents.
  • the present invention provides an adhesive film, which includes the resin composition for metal substrates described in the first aspect.
  • the present invention provides a metal-based copper-clad laminate, comprising a metal substrate pressed together from bottom to top, and a thermally conductive insulation prepared from the resin composition for metal substrates described in the first aspect Adhesive layer and copper foil.
  • the resin composition for the metal substrate provided by the present invention is used as a thermally conductive and insulating adhesive layer, which is located between the metal substrate and the copper foil, and can well buffer the stress caused by the metal substrate due to thermal shock, and avoid the chip and the substrate.
  • the metal substrate includes any one of an aluminum substrate, a copper substrate, an iron substrate, or a steel substrate.
  • the thickness of the metal substrate is 0.3-5.0mm, such as 0.5mm, 1.0mm, 1.5mm, 2mm, 2.5mm, 3mm, 3.5mm, 4.0mm, 4.5mm, etc.
  • the thickness of the thermally conductive insulating adhesive layer is 0.04-0.20 mm, for example, 0.05 mm, 0.08 mm, 0.10 mm, 0.12 mm, 0.15 mm, 0.18 mm, etc.
  • the thickness of the thermally conductive insulating adhesive layer is too thin, the stress caused by the thermal shock may not be well alleviated.
  • the copper foil is electrolytic copper foil or rolled copper foil.
  • the thickness of the copper foil is 0.012-0.210 mm, such as 0.018 mm, 0.035 mm, 0.070 mm, 0.105 mm, 0.140 mm, 0.175 mm, etc.
  • the metal-based copper-clad laminate is not limited. It can be prepared by the following preparation method as an example: the resin composition is dissolved or dispersed in a solvent to obtain a resin glue solution with a certain solid content, and then coated Place it on the base film (for example, release film), dry to obtain a semi-cured thermally conductive insulating film, then remove the base film, and then combine with copper foil and metal substrate for high-temperature compression to obtain metal-based copper-clad foil Laminate.
  • the following preparation method can also be used: coating a certain solid content of resin glue on the copper foil, drying to obtain a copper foil with a semi-cured thermally conductive and insulating adhesive layer, and then pressing it with the metal substrate to obtain a metal Base copper clad laminate.
  • the present invention has the following beneficial effects:
  • the main resin includes a flexible epoxy resin.
  • the flexible epoxy resin can ensure that the final resin composition has a lower modulus, and a lower modulus can well alleviate the thermal shock. Stress, thereby avoiding the problem of cracks in solder joints or copper foil circuits caused by the mismatch of thermal expansion coefficients of the chip and the substrate;
  • the main resin includes phenolic resin.
  • phenolic resin can avoid the problem of stickiness of the resulting adhesive film or RCC (Resin Coated Copper Foil) when the added amount of flexible epoxy resin is too high; and Different from other epoxy resins, adding phenolic resin to the flexible epoxy resin can avoid greatly increasing the modulus of the composition, and the composition has a lower modulus because the composition can well alleviate the thermal shock. Stress protection;
  • the modulus of the resin composition for the metal substrate provided by the present invention is low, below 1500MPa, and the lowest can reach 300MPa; the metal-based copper clad laminate prepared by the resin composition has good heat resistance and resistance to cold and heat The impact resistance is good and the maneuverability is high.
  • the heat resistance at 288°C is above 6min, the highest is above 10min, and the number of heat and cold resistance cycles is above 1000, and the highest is 1500.
  • Figure 1 is a schematic cross-sectional view of a metal-based copper-clad laminate and a chip at room temperature.
  • Fig. 2 is a schematic cross-sectional view of a metal-based copper clad laminate and a chip in a state of thermal expansion in the prior art.
  • Fig. 3 is a schematic cross-sectional view of the solder joints of the metal-based copper-clad laminate and the chip after thermal expansion and cooling in the prior art.
  • Fig. 4 is a schematic cross-sectional view of the metal-based copper-clad laminate and chip of the present invention under thermal expansion.
  • 1-chip 1-chip; 2- solder joints; 3- copper foil circuit; 4- thermally conductive insulating bonding layer; 5- metal substrate.
  • the resin composition for a metal substrate provided by the present invention can be used as a thermally conductive and insulating adhesive layer, it can be seen from Figure 4 that when subjected to thermal expansion, due to its low modulus, only the metal substrate and the thermally conductive and insulating adhesive layer The deformation of the layer will basically not cause the deformation of the copper foil layer. Therefore, it will not cause solder joints or cracks in the copper foil circuit after thermal expansion and cooling.
  • A-1 Product model EXA-4850-150, epoxy equivalent 450g/eq, manufactured by Dainippon Ink Co., Ltd.;
  • A-2 Product model EXA-4850-1000, epoxy equivalent 350g/eq, manufactured by Dainippon Ink Co., Ltd.;
  • A-3 Product model EXA-4816, epoxy equivalent 403g/eq, manufactured by Dainippon Ink Co., Ltd., its structural formula is as follows:
  • R is an aliphatic segment, and m is 0.5-3;
  • A-4 Product model DX7160, epoxy equivalent 430g/eq, manufactured by Hunan Jiashengde Material Technology Co., Ltd., its structure is as follows:
  • R is an aliphatic segment, and m is 0.5-3;
  • B-1 Product model EPONOL Resin53-BH-35, weight average molecular weight 55,000, manufactured by Momentiye;
  • B-5 Product model YP-50, weight average molecular weight 70,000, manufactured by Dongdu Chemical;
  • C-2 Product model YX-4000, epoxy equivalent 185g/eq, manufactured by Mitsubishi Chemical Corporation;
  • D-3 Active ester, product model HPC-8000-651, manufactured by Dainippon Ink Co., Ltd.;
  • E-1 Alumina, Sumitomo Japan
  • F-1 2-Methylimidazole.
  • the copper foil (thickness 35 ⁇ m) of the bonding layer (thickness 100 ⁇ m) is then laminated with the surface-treated aluminum plate (thickness 1.0 mm) to obtain an aluminum-based copper-clad laminate.
  • a resin composition was prepared according to the components shown in Tables 3 and 4, and a metal-based copper clad laminate sample was prepared according to the preparation method described in the examples.
  • Comparative example 1 Comparative example 2 Comparative example 3 Comparative example 4 Comparative example 5 A-1 To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To
  • thermo conductivity/thermal resistance According to ASTM D5470 test method, the metal substrate is prepared into a sample of 25.4mm ⁇ 25.4mm to test the thermal conductivity/thermal resistance of the plate;
  • Modulus Refer to the experimental conditions in IPC-TM-650 2.4.24.4 method to test the modulus of the insulating adhesive layer;
  • Weight average molecular weight According to the test method specified in GB/T 21863-2008 Gel Permeation Chromatography (GPC) using tetrahydrofuran as eluent. (Using the weight average molecular weight test to determine the molecular weight of the phenolic resin).
  • Comparative example 1 Comparative example 2 Comparative example 3 Comparative example 4 Comparative example 5 Thermal conductivity (W/m ⁇ K) 2.0 2.0 2.0 2.0 2.0 2.0 288°C heat resistance (min) 5 5 5 5 5 Modulus at 50°C (MPa) 900 850 10500 250 2100 Number of hot and cold cycles (times) 900 850 500 1000 800 Operability excellent excellent excellent difference excellent Withstand voltage (V) 4000 4000 5000 4000 5000
  • the metal-based laminate prepared by the present invention has better overall performance.
  • the heat resistance at 288°C is more than 6 min
  • the number of cooling and heating cycles is more than 1200
  • the operability is excellent, which can satisfy the application. Claim.
  • Example 1 and Examples 3-6 From the comparison of Example 1 and Examples 3-6, it can be seen that when the weight average molecular weight of the phenolic resin is not within the range of 30,000-65,000, the weight average molecular weight of the phenolic resin of Example 5 is less than 30,000, and the laminate sample is cold. The number of thermal cycles is 1300; the weight average molecular weight of the phenolic resin of Example 6 is higher than 65000, which has a certain influence on the operability. From the comparison of Example 1 and Examples 9-11, it can be seen that when no biphenyl epoxy resin is added, the heat resistance of the laminate sample at 288° C. is poor, which is 9 minutes.
  • Example 1 and Examples 13-14 From the comparison of Example 1 and Examples 13-14, when the main resin accounts for 40% of the total weight of the resin composition, the 50°C modulus of the laminate sample is lower, but the thermal conductivity is 1.5W/m ⁇ K , And the heat resistance at 288°C is 6min; when the thermally conductive filler accounts for 95% of the total weight of the resin composition, the thermal conductivity of the laminate sample is significantly increased, the modulus at 50°C reaches 1500MPa, and the heat resistance at 288°C For 6min. It can be seen from the comparison between Example 1 and Example 15 that the use of an active ester curing agent will greatly increase the modulus of the laminate sample, and its 288°C heat resistance is 6 minutes, and the withstand voltage value is as low as 4000V.
  • Example 1 and Comparative Examples 1-3 it can be seen from the comparison between Example 1 and Comparative Examples 1-3 that, because the flexible epoxy used in Comparative Example 1-2 contains a hydroxyl structure, although its laminate samples can also obtain a lower modulus, it has heat resistance and cold resistance at 288°C. The thermal cycleability is poor; because the comparative example 3 uses ordinary bisphenol A epoxy resin, its 50°C modulus is as high as 10500MPa, and its 288°C heat resistance and thermal cycleability are also very poor. It can be seen from the comparison between Example 1 and Comparative Example 4 that when only flexible epoxy resin is used as the main resin, the finally obtained laminate sample has poor heat resistance and operability.
  • Example 1 and Comparative Example 5 From the comparison of Example 1 and Comparative Example 5, it can be seen that when only phenolic resin is used as the main resin, the finally obtained laminate sample has poor heat resistance at 288°C, poor thermal cycling performance, and a modulus of 2100MPa. From the comparison of Example 1 and Comparative Examples 6 and 7, when the addition amount of the main resin is not in the range of 5-40%, when the addition amount is too small, the modulus is higher, and the heat resistance and thermal cycleability are poor; When the amount is too large, the thermal conductivity will be reduced, and the heat resistance will also be poor, which will also have a certain impact on the operability.
  • Example 1 From the comparison of Example 1 with Comparative Example 8 and Comparative Example 11, it can be seen that when the addition amount of flexible oxygen resin in the main resin is too small and the addition amount of phenolic resin is too large, the modulus is higher and the heat resistance is slightly worse. And the cold and heat cycle is poor; when the addition amount of the flexible oxygen resin in the main resin is too large, and the addition amount of the phenol oxygen resin is too small, the heat resistance is slightly poor and the operability is poor.
  • Example 1 From the comparison of Example 1 and Comparative Examples 9-10, it can be seen that when the addition amount of phenolic resin in the main resin is too small, the heat resistance is slightly worse and the operability is poor; when the addition amount of the flexible epoxy resin in the main resin is too much When it is small, its modulus is higher, and its heat resistance and thermal cycling performance are poor.
  • Example 16 The difference from Example 1 is that the resin composition provided in Example 1 is kept unchanged, and the thickness of the thermally conductive and insulating adhesive layer is changed.
  • the thickness of the thermally conductive and insulating adhesive layer in the finally prepared aluminum-based copper-clad laminate is 40 ⁇ m (Example 16), 200 ⁇ m (Example 17), 30 ⁇ m (Example 18), and 220 ⁇ m (Example 19).
  • Example 16 Example 17
  • Example 18 Example 19 Thermal resistance (°C ⁇ cm 2 /W) 0.2 1.0 0.15 1.1 288°C heat resistance (min) 10 10 10 10 Modulus at 50°C (MPa) 420 420 420 420 Number of hot and cold cycles (times) 1200 1500 1000 1500 Operability excellent excellent excellent excellent excellent Withstand voltage (V) 3000 8000 2000 8000
  • the thickness of the thermally conductive and insulating adhesive layer of the present invention is preferably 0.04-0.20 mm.
  • the overall performance of the metal-based copper clad laminate prepared by the present invention is It is better. If the thickness of the thermally conductive and insulating adhesive layer is too thin, it will not be able to fully buffer the stress caused by the thermal shock, and the withstand voltage will be low; if the thickness of the thermally conductive and insulating adhesive layer is too thick, it can fully function In order to buffer the stress generated by the thermal shock, the thermal resistance becomes larger, which is not conducive to the rapid heat dissipation of the metal substrate.
  • the present invention uses the above-mentioned embodiments to illustrate the resin composition for metal substrates, the resin glue containing the same, and the metal-based copper clad laminate, but the present invention is not limited to the above-mentioned process steps. That does not mean that the present invention must rely on the above process steps to be implemented.
  • any improvement to the present invention, the equivalent replacement of the raw materials selected in the present invention, the addition of auxiliary components, the selection of specific methods, etc. fall within the scope of protection and disclosure of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)
  • Epoxy Resins (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种用于金属基板的树脂组合物、包含其的树脂胶液以及金属基覆铜箔层压板,以树脂组合物总重量为100%计,包括如下组分:主体树脂5-40%和导热填料60-95%;以主体树脂总重量为100%计,所述主体树脂包括柔性环氧树脂60-90%以及酚氧树脂10-40%,所述柔性环氧树脂具有如式I所示结构。所述树脂组合物的模量低,可以使冷热冲击产生的应力得到缓和,可以承受超过1000次的冷热循环实验。

Description

[根据细则37.2由ISA制定的发明名称] 用于金属基板的树脂组合物、包含其的树脂胶液以及金属基覆铜箔层压板 技术领域
本发明属于层压板领域,涉及一种用于金属基板的树脂组合物、包含其的树脂胶液以及金属基覆铜箔层压板。
背景技术
随着电子信息产品大量生产,并且逐渐朝向轻薄短小、多功能的设计趋势,作为电子组件主要支撑的印制电路基板,也随着不断提高,以提供高密度布线、薄形、微细孔径、高散热性的性能。在此背景下诞生了高散热的金属基覆铜箔层压板。金属基覆铜箔层压板应用于大功率的LED照明时,由于大功率芯片的热膨胀系数远远小于金属基板的热膨胀系数,经过冷热冲击两者需要释放的应力差异大,从而引起了最薄弱的焊点或铜箔电路出现裂纹,影响可靠性。一般的金属基覆铜箔层压板由金属基板、导热绝缘粘结层和铜箔粘结组成,当存在导热绝缘粘结层时,一定程度上可以缓解冷热冲击产生的应力,但仍然不能满足可靠性的需求。CN104708869A公开了一种高导热铝基覆铜板及其制备方法,包括由内向外依次设置的铜箔层、高导热绝缘层及铝板,所述高导热绝缘层中填充有氧化铝纤维,所述氧化铝纤维由微弧氧化制成;该专利提升了铝基覆铜板的散热能力,提高了铝基覆铜板的可靠性,但是其中并未涉及如何解决冷热冲击产生的应力对焊点或铜箔电路的破坏的问题。CN103468188A公开一种磁性复合胶水,复合胶水包括1-200重量份的导磁粉末、10重量份的树脂、1重量份的碳酸钙、0.1-1重量份的活性分散剂和其他添加剂以及0.1-1重量份的潜伏性固化促进剂,或包括1000-2000重量份的导磁粉末、10重量份的橡胶、1重量份的碳酸钙、1-5重量份的活性分散剂和其他添加剂以及1-5重量份的潜伏 性固化促进剂,该专利在固化后在-40℃-125℃的冷热冲击循环时对接触物所产生的应力很小,不会致使强度1.5N的片状物质开裂,固化强度可在-40℃-85℃200个冷热冲击循环后,仍能够承受50N以上的破坏力。但是其是否能应用于层压板领域有待研究。
为了改善胶膜材料的柔韧性和挠曲性,会在其主体树脂中添加少量的热塑性树脂、橡胶增韧环氧树脂或其他增韧改性环氧树脂,树脂组合物由于其热导率低、耐冷热冲击效果差,不能用作金属基覆铜箔层压板的导热绝缘粘结层。
因此,需要开发一种可以很好的耐冷热冲击的导热树脂组合物以应用于金属基板中。
发明内容
本发明的目的在于提供一种用于金属基板的树脂组合物、包含其的树脂胶液以及金属基覆铜箔层压板。本发明提供的树脂组合物可以耐冷热冲击变化,且由于其模量低,可以避免芯片和基板热膨胀系数不匹配而导致的焊点或铜箔电路出现裂痕的问题。
为达此目的,本发明采用以下技术方案:
第一方面,本发明提供了一种用于金属基板的树脂组合物,以树脂组合物总重量为100%计,包括如下组分:主体树脂5-40%和导热填料60-95%。
其中,以主体树脂总重量为100%计,所述主体树脂包括柔性环氧树脂60-90%以及酚氧树脂10-40%。
其中,所述柔性环氧树脂具有如式I所示结构:
Figure PCTCN2019086833-appb-000001
其中,R选自C2-C20的直链或支链亚烷基、-CO-R 1-CO-或-R 2-O-R 3-O-R 4-;
其中,R 1选自C2-C20的直链或支链亚烷基,R 2、R 4各自独立地选自C1-C10的直链或支链亚烷基,R 3选自C2-C15的直链或支链亚烷基、C6-C17的环烷基或
Figure PCTCN2019086833-appb-000002
R 5选自C1-C10的直链或支链亚烷基,m为1-10的整数,例如2、3、4、5、6、7、8、9等。
n 1表示平均重复单元为4-10,例如5、6、7、8、9等。
所述C2-C20可以是C3、C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17、C18、C19等。
所述C1-C10可以是C2、C3、C4、C5、C6、C7、C8、C9等。
所述C2-C15可以是C3、C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14等。
所述C6-C17可以是C7、C8、C9、C10、C11、C12、C13、C14、C15、C16等。
在本发明中,主体树脂中包括具有特定结构的柔性环氧树脂,本发明提供的柔性环氧树脂可以保证最后得到的树脂组合物模量较低,而较低的模量可以很好的缓和冷热冲击产生的应力,进而避免芯片和基板热膨胀系数不匹配而导致的焊点或铜箔电路出现裂痕的问题。
同时,主体树脂中包括酚氧树脂,酚氧树脂的使用,可以避免当柔性环氧树脂的添加量过高时,最后得到的胶膜或者RCC(涂覆树脂铜箔)发粘的问题。并且,区别于其他环氧树脂,在柔性环氧树脂中添加酚氧树脂可以避免大幅度提升组合物的模量,而组合物具有较低的模量是组合物可以很好的缓和冷热冲击产生的应力的保障。
在目前现有技术中的金属基覆铜箔层压板进行应用时(例如LED照明灯),若在常温状态下,芯片、焊点、铜箔电路、导热绝缘粘结层以及金属基板均处于正常位置,但是一旦受到热膨胀,则金属基板、导热绝缘粘结层和铜箔电路均会产生形变,热膨胀冷却过后,则容易引起焊点或铜箔电路中出现裂纹,而本发明提供的用于金属基板的树脂组合物可以作为导热绝缘粘结层使用,在受到热膨胀时,由于其模量较小,则只会有金属基板和导热绝缘粘结层产生形变,基本不会导致铜箔层产生形变,因此,在热膨胀冷却后不会引起焊点或铜箔电路开裂。
所述主体树脂5-40%,例如8%、10%、12%、15%、18%、20%、22%、25%、28%、30%、32%、35%、38%等。
在本发明中,所述R 3选自C2-C15的直链或支链亚烷基、C6-C17的脂肪族环烷基、亚乙基氧基亚乙基、二(亚乙基氧基)亚乙基、三(亚乙基氧基)亚乙基、亚丙基氧基亚丙基、二(亚丙基氧基)亚丙基、三(亚丙基氧基)亚丙基、四(亚丙基氧基)亚丙基、亚丁基氧基亚丁基、二(亚丁基氧基)亚丁基、三(亚丁基氧基)亚丁基或四(亚丁基氧基)亚丁基。
优选地,所述主体树脂还包括联苯环氧树脂。
优选地,以主体树脂总重量为100%计,所述联苯环氧树脂的添加量为1-20%,例如2%、5%、8%、10%、12%、15%、18%等。
在主体树脂中添加联苯环氧树脂,联苯环氧树脂的使用,可以增加树脂组合物的耐热性。
优选地,所述树脂组合物还包括固化剂。
优选地,以主体树脂总重量为100%计,所述固化剂的添加量为1-10%,例如2%、3%、4%、5%、6%、7%、8%、9%等。
优选地,所述固化剂为胺类固化剂。
优选地,所述固化剂包括乙二胺、二乙烯三胺、三乙烯四胺、四乙烯五胺、异佛尔酮二胺、间苯二胺、间氨基甲胺、二氨基二苯砜、双氰胺、二氨基二环己基甲烷、甲基环戊二胺、双胺甲基环己二胺或二氨基二苯甲烷中的任意一种或至少两种的组合。
所述柔性环氧树脂60-90%,例如62%、65%、68%、70%、72%、75%、78%、80%、82%、85%、88%等。
优选地,所述柔性环氧树脂的环氧当量为300-500g/eq,例如320g/eq、340g/eq、360g/eq、380g/eq、400g/eq、410g/eq、420g/eq、430g/eq、44g/eq、450g/eq、560g/eq、470g/eq、480g/eq、490g/eq等。
所述酚氧树脂10-40%,例如12%、15%、18%、20%、22%、25%、28%、30%、32%、35%、38%等。
若酚氧树脂含量过低时,则无法起到防止胶膜或者RCC(涂覆树脂铜箔)发粘的问题。若酚氧树脂含量过高时,干燥过程中,树脂组合物的表面会形成一层致密的保护膜,阻碍溶剂的挥发,导致胶膜或者RCC(涂覆树脂铜箔)表面鼓泡,影响层压板的电绝缘性。
优选地,所述酚氧树脂的重均分子量为30000-65000,例如35000、40000、45000、50000、55000、60000等。
当酚氧树脂的重均分子量过小时,则层压后导热绝缘粘结层中有裂纹,会影响金属基覆铜箔层压板的使用,而当重均分子量过大时,则无法起到防止胶膜或者RCC(涂覆树脂铜箔)发粘的问题。
所述导热填料60-95%,例如62%、65%、68%、70%、72%、75%、78%、80%、82%、85%、88%、90%、92%等。
导热填料的含量会影响树脂组合物的热导率和模量,减少导热填料会同时降低热导率和模量;增加导热填料也会同时提升热导率和模量。为了保证树脂组合物合适的热导率和较低的模量,因此,导热填料的含量为60-95%。
优选地,所述导热填料包括氮化铝、氮化硼、氧化铝、碳化硅、氧化锌或纳米碳管中的任意一种或至少两种的组合,进一步优选氮化硼、氧化铝或碳化硅中的任意一种或至少两种的组合。
优选地,所述树脂组合物还包括固化促进剂。
优选地,以主体树脂总重量为100%计,所述固化促进剂的添加量为0.1-2%,例如0.2%、0.5%、0.8%、1.0%、1.2%、1.5%、1.7%等。
本发明配方中,除了上述组分外,可在不背离本发明宗旨的范围内增加一些助剂,如消泡剂、分散剂、防老剂等。
第二方面,本发明提供了一种树脂胶液,所述树脂胶液是将如第一方面所述的用于金属基板的树脂组合物溶解或分散在溶剂中得到。
本发明可以选用的溶剂包括二甲基甲酰胺、丁酮、丙酮、环己酮或甲苯溶剂中的任意一种或至少两种的组合。
第三方面,本发明提供了一种胶膜,所述胶膜包括第一方面所述的用于金属基板的树脂组合物。
第四方面,本发明提供了一种金属基覆铜箔层压板,包括从下到上压合在一起的金属基板、由第一方面所述的用于金属基板的树脂组合物制备得到导热绝缘粘结层和铜箔。
本发明提供的用于金属基板的树脂组合物作为导热绝缘粘结层使用,其位于金属基板和铜箔之间,可以很好的缓冲金属基板由于冷热冲击产生的应力作用,避免芯片和基板热膨胀系数不匹配而导致的焊点或铜箔电路出现裂痕的问 题。
优选地,所述金属基板包括铝基板、铜基板、铁基板或钢基板中的任意一种。
优选地,所述金属基板的厚度为0.3-5.0mm,例如0.5mm、1.0mm、1.5mm、2mm、2.5mm、3mm、3.5mm、4.0mm、4.5mm等。
优选地,所述导热绝缘粘结层的厚度为0.04-0.20mm,例如0.05mm、0.08mm、0.10mm、0.12mm、0.15mm、0.18mm等。
若导热绝缘粘结层的厚度过薄,则可能无法很好地缓和冷热冲击产生的应力。
优选地,所述铜箔为电解铜箔或压延铜箔。
优选地,所述铜箔的厚度为0.012-0.210mm,例如0.018mm、0.035mm、0.070mm、0.105mm、0.140mm、0.175mm等。
在本发明中,所述金属基覆铜箔层压板不限,示例性的,可以按下列制备方法制备得到:将树脂组合物溶解或分散在溶剂中得到一定固含量的树脂胶液,然后涂布在基膜(例如离型膜)上,干燥后得到半固化态的导热绝缘胶膜,然后去除基膜,之后与铜箔以及金属基板组合进行高温压合,即可得到金属基覆铜箔层压板。
也可以采用如下制备方法:将一定固含量的树脂胶液涂布在铜箔上,经干燥得到带有半固化的导热绝缘粘结层的铜箔,然后再与金属基板进行压合,得到金属基覆铜箔层压板。
相对于现有技术,本发明具有以下有益效果:
(1)在本发明中,主体树脂中包括柔性环氧树脂,柔性环氧树脂可以保证最后得到的树脂组合物模量较低,而较低的模量可以很好的缓和冷热冲击产生 的应力,进而避免芯片和基板热膨胀系数不匹配而导致的焊点或铜箔电路出现裂痕的问题;
(2)主体树脂中包括酚氧树脂,酚氧树脂的使用可以避免当柔性环氧树脂的添加量过高时,最后得到的胶膜或者RCC(涂覆树脂铜箔)发粘的问题;并且区别于其他环氧树脂,在柔性环氧树脂中添加酚氧树脂可以避免大幅度提升组合物的模量,而组合物具有较低的模量是组合物可以很好的缓和冷热冲击产生的应力的保障;
(3)本发明提供的用于金属基板的树脂组合物模量较低,在1500MPa以下,最低可达到300MPa;采用树脂组合物制备的金属基覆铜箔层压板耐热性良好,耐冷热冲击性好,可操作性高,其中,288℃耐热性在6min以上,最高可达10min以上,耐冷热循环次数在1000次以上,最高可达1500次以上。
附图说明
图1是金属基覆铜箔层压板和芯片在常温状态下的示意性剖面图。
图2是现有技术中金属基覆铜箔层压板和芯片在受到热膨胀状态下的示意性剖面图。
图3是现有技术中金属基覆铜箔层压板和芯片热膨胀冷却后焊点拉裂的示意性剖面图。
图4是本发明的金属基覆铜箔层压板和芯片热膨胀状态下的示意性剖面图。
其中,1-芯片;2-焊点;3-铜箔电路;4-导热绝缘粘结层;5-金属基板。
具体实施方式
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
由图1-3可知,在目前现有技术中的金属基覆铜箔层压板进行应用时(例如LED照明灯),若在常温状态下,芯片、焊点、铜箔电路、导热绝缘粘结层以及金属基板均处于正常位置,但是一旦受到热膨胀,则金属基板、导热绝缘粘结层和铜箔电路均会产生形变,热膨胀冷却过后,则容易引起焊点或铜箔电路中出现裂纹。本发明提供的用于金属基板的树脂组合物可以作为导热绝缘粘结层使用时,由图4可知,在受到热膨胀时,由于其模量较小,则只会有金属基板和导热绝缘粘结层产生形变,基本不会导致铜箔层产生形变,因此,在热膨胀冷却后不会引起焊点或铜箔电路开裂。
下述实施例和对比例所涉及的材料及牌号信息如下:
(A)柔性环氧树脂
A-1:商品型号EXA-4850-150,环氧当量450g/eq,大日本油墨株式会社制造;
A-2:商品型号EXA-4850-1000,环氧当量350g/eq,大日本油墨株式会社制造;
A-3:商品型号EXA-4816,环氧当量403g/eq,大日本油墨株式会社制造,其结构式如下:
Figure PCTCN2019086833-appb-000003
其中,R为脂肪族链段,m为0.5-3;
A-4:商品型号DX7160,环氧当量430g/eq,湖南嘉盛德材料科技有限公司制造,其结构是如下:
Figure PCTCN2019086833-appb-000004
其中,R为脂肪族链段,m为0.5-3;
A-5:普通双酚A型环氧树脂,商品型号NPES-901,环氧当量475g/eq,南亚电子材料公司制造;
(B)酚氧树脂
B-1:商品型号EPONOL Resin53-BH-35,重均分子量55000,Momenti ye公司制造;
B-2:商品型号PKHH,重均分子量50000,Inchem制造;
B-3:商品型号ERF-001,重均分子量40000,新日铁化学制造;
B-4:商品型号YP-50SB,重均分子量25000,东都化成制造;
B-5:商品型号YP-50,重均分子量70000,东都化成制造;
(C)联苯环氧树脂
C-1:商品型号NC-3000H,环氧当量285g/eq,日本化药株式会社制造;
C-2:商品型号YX-4000,环氧当量185g/eq,三菱化学株式会社制造;
(D)固化剂
D-1:三乙烯四胺;
D-2:二氨基二苯砜;
D-3:活性酯,商品型号HPC-8000-651,大日本油墨株式会社制造;
(E)导热填料
E-1:氧化铝,日本住友;
E-2:氮化硼,美国迈图;
(F)固化促进剂
F-1:2-甲基咪唑。
实施例1-15
按表1-2所示组分配制树脂组合物,并按照如下制作方法制作金属基覆铜箔层压板样品:
将配方量的各组分在溶剂中混合均匀,控制胶液固含量为75%,将胶液涂覆于厚度为35μm铜箔上,经155℃干燥5min后,得到带有半固化的导热绝缘粘结层(厚度100μm)的铜箔(厚度35μm),然后再与经过表面处理的铝板(厚度1.0mm)进行压合,得到铝基覆铜箔层压板。
对比例1-11
按表3和4所示组分配制树脂组合物,按照实施例中所述制作方法制作金属基覆铜箔层压板样品。
表1
Figure PCTCN2019086833-appb-000005
Figure PCTCN2019086833-appb-000006
表2
Figure PCTCN2019086833-appb-000007
Figure PCTCN2019086833-appb-000008
表3
  对比例1 对比例2 对比例3 对比例4 对比例5
A-1       20  
A-2          
A-3 16        
A-4   16      
A-5     16    
B-1 3 3 3   20
B-2          
B-3          
B-4          
B-5          
C-1 1 1 1    
C-2          
D-1 0.2 0.2 0.2 0.2 0.2
D-2 0.8 0.8 0.8 0.8 0.8
D-3          
E-1 80 80 80 80 80
E-2          
F-1 0.1 0.1 0.1 0.1 0.1
表4
  对比例6 对比例7 对比例8 对比例9 对比例10 对比例11
A-1 3.2 40 10 18 11 18.5
A-2            
A-3            
A-4            
A-5            
B-1 0.6 7.5 9 1 8 0.5
B-2            
B-3            
B-4            
B-5            
C-1 0.2 2.5 1 1 1 1
C-2            
D-1 0.05 0.2 0.2 0.2 0.2 0.2
D-2 0.2 0.8 0.8 0.8 0.8 0.8
D-3            
E-1 96 50 80 80 80 80
E-2            
F-1 0.1 0.1 0.1 0.1 0.1 0.1
性能测试1
对实施例1-15和对比例1-11提供的金属基覆铜箔层压板进行性能测试,方法如下:
(1)热导率/热阻:参照ASTM D5470测试方法,将金属基板制备成25.4mm×25.4mm的样品测试板材的热导率/热阻;
(2)耐热性(288℃):参照IPC-TM-650 2.4.13方法中实验条件,测试板材的耐热性;
(3)模量:参照IPC-TM-650 2.4.24.4方法中实验条件,测试绝缘粘结层的模量;
(4)冷热循环次数:通过在-50℃到150℃之间进行若干次冷热循环后,切片分析板材每层的结合情况,是否有出现分层;
(5)操作性:通过实际使用方便性,进行评估:完全不发粘评价为“优”,有一点发粘评价为“良”,发粘评价为“差”;
(6)耐电压测试:按照T/CPCA 4105-2016中的方法,测试导热绝缘层的耐电压,取5个点的平均值;
(7)重均分子量:按照GB/T 21863-2008凝胶渗透色谱法(GPC)用四氢呋 喃做淋洗液所规定的测试方法。(利用重均分子量的测试确定酚氧树脂的分子量)。
对于测试结果见表5-8:
表5
Figure PCTCN2019086833-appb-000009
表6
Figure PCTCN2019086833-appb-000010
Figure PCTCN2019086833-appb-000011
表7
  对比例1 对比例2 对比例3 对比例4 对比例5
热导率(W/m·K) 2.0 2.0 2.0 2.0 2.0
288℃耐热性(min) 5 5 5 5 5
50℃模量(MPa) 900 850 10500 250 2100
冷热循环次数(次) 900 850 500 1000 800
操作性
耐电压(V) 4000 4000 5000 4000 5000
表8
Figure PCTCN2019086833-appb-000012
Figure PCTCN2019086833-appb-000013
由实施例和性能测试可知,本发明制备得到的金属基层压板综合性能较优,其中,288℃耐热性在6min以上,冷热循环次数在1200次以上,可操作性优异,均能满足应用要求。
由实施例1和实施例3-6的对比可知,当酚氧树脂的重均分子量不在30000-65000范围内时,实施例5的酚氧树脂的重均分子量低于30000,其层压板样品冷热循环次数为1300;实施例6的酚氧树脂的重均分子量高于65000,对可操作性有一定的影响。由实施例1和实施例9-11的对比可知,当不添加联苯环氧树脂时,其层压板样品的288℃耐热性较差,为9min。由实施例1和实施例13-14对比可知,当主体树脂占树脂组合物总重量的40%时,其层压板样品的50℃模量较低,但热导率为1.5W/m·K,且288℃耐热性为6min;而当导热填料占树脂组合物总重量的95%时,其层压板样品的导热率明显增高,50℃模量却达到了1500MPa,且288℃耐热性为6min。由实施例1与实施例15对比可知,使用活性酯固化剂会大幅度增加层压板样品的模量,并且其288℃耐热性为6min、耐电压值也低至4000V。
由实施例1和对比例1-3对比可知,由于对比例1-2使用的柔性环氧含有羟基结构,虽然其层压板样品也能获得较低的模量,但288℃耐热性和冷热循环性较差;由于对比例3使用的是普通双酚A型环氧树脂,其50℃模量高达 10500MPa,而且其288℃耐热性和冷热循环性也很差。由实施例1和对比例4的对比可知,当主体树脂仅使用柔性环氧树脂时,最后得到的层压板样品耐热性和可操作性差。由实施例1和对比例5的对比可知,当主体树脂仅使用酚氧树脂时,最后得到的层压板样品288℃耐热性、冷热循环性较差,且模量达到了2100MPa。由实施例1和对比例6和7的对比可知,当主体树脂的添加量不在5-40%范围内时,当添加量过小时,其模量较高,耐热性、冷热循环性差;当添加量过多时,会导致热导率降低,同时耐热性也差,对操作性也有一定的影响。由实施例1和对比例8、对比例11的对比可知,当主体树脂中柔性氧树脂的添加量过小,酚氧树脂添加量过大时,其模量较高,耐热性稍差,且冷热循环性较差;当主体树脂中柔性氧树脂的添加量过大,酚氧树脂添加量过小时,耐热性稍差,可操作性差。由实施例1和对比例9-10的对比可知,当主体树脂中酚氧树脂的添加量过小时,其耐热性稍差,可操作性差;当主体树脂中柔性环氧树脂的添加量过小时,其模量较高,耐热性、冷热循环性较差。
实施例16-19
与实施例1的区别在于,保持实施例1提供的树脂组合物不变,改变导热绝缘粘结层的厚度。使得最后制备得到的铝基覆铜箔层压板中导热绝缘粘结层的厚度为40μm(实施例16)、200μm(实施例17)、30μm(实施例18)、220μm(实施例19)。
性能测试2
对实施例16-19提供的金属基覆铜箔层压板进行性能测试,方法参照性能测试1,测试结果见表9:
表9
  实施例16 实施例17 实施例18 实施例19
热阻(℃·cm 2/W) 0.2 1.0 0.15 1.1
288℃耐热性(min) 10 10 10 10
50℃模量(MPa) 420 420 420 420
冷热循环次数(次) 1200 1500 1000 1500
操作性
耐电压(V) 3000 8000 2000 8000
由实施例1、实施例16-17和实施例18-19的对比可知,本发明优选导热绝缘粘结层的厚度为0.04-0.20mm,此时,本发明制备得到的金属基覆铜板综合性能较优,若导热绝缘粘结层的厚度过薄,则不能充分起到缓冲冷热冲击产生的应力的作用,同时耐电压较低;若导热绝缘粘结层的厚度过厚,虽然可以充分起到缓冲冷热冲击产生的应力的作用,但热阻变大,不利于金属基板的快速散热。
申请人声明,本发明通过上述实施例来说明本发明的用于金属基板的树脂组合物、包含其的树脂胶液以及金属基覆铜箔层压板,但本发明并不局限于上述工艺步骤,即不意味着本发明必须依赖上述工艺步骤才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明所选用原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (11)

  1. 一种用于金属基板的树脂组合物,其特征在于,以树脂组合物总重量为100%计,包括如下组分:主体树脂5-40%和导热填料60-95%;
    其中,以主体树脂总重量为100%计,所述主体树脂包括柔性环氧树脂60-90%以及酚氧树脂10-40%;
    其中,所述柔性环氧树脂具有如式I所示结构:
    Figure PCTCN2019086833-appb-100001
    其中,R选自C2-C20的直链或支链亚烷基、-CO-R 1-CO-或-R 2-O-R 3-O-R 4-;
    其中,R 1选自C2-C20的直链或支链亚烷基,R 2、R 4各自独立地选自C1-C10的直链或支链亚烷基,R 3选自C2-C15的直链或支链亚烷基、C6-C17的环烷基或
    Figure PCTCN2019086833-appb-100002
    R 5选自C1-C10的直链或支链亚烷基,m为1-10的整数;
    n 1表示平均重复单元为4-10。
  2. 根据权利要求1所述的用于金属基板的树脂组合物,其特征在于,所述R 3选自C2-C15的直链或支链亚烷基、C6-C17的脂肪族环烷基、亚乙基氧基亚乙基、二(亚乙基氧基)亚乙基、三(亚乙基氧基)亚乙基、亚丙基氧基亚丙基、二(亚丙基氧基)亚丙基、三(亚丙基氧基)亚丙基、四(亚丙基氧基)亚丙基、亚丁基氧基亚丁基、二(亚丁基氧基)亚丁基、三(亚丁基氧基)亚丁基或四(亚丁基氧基)亚丁基。
  3. 根据权利要求1所述的用于金属基板的树脂组合物,其特征在于,所述主体树脂还包括联苯环氧树脂。
  4. 根据权利要求3所述的用于金属基板的树脂组合物,其特征在于,以主 体树脂总重量为100%计,所述联苯环氧树脂的添加量为1-20%。
  5. 根据权利要求1-4中的任一项所述的用于金属基板的树脂组合物,其特征在于,所述树脂组合物还包括固化剂;
    优选地,以主体树脂总重量为100%计,所述固化剂的添加量为1-10%;
    优选地,所述固化剂为胺类固化剂;
    优选地,所述固化剂包括乙二胺、二乙烯三胺、三乙烯四胺、四乙烯五胺、异佛尔酮二胺、间苯二胺、间氨基甲胺、二氨基二苯砜、双氰胺、二氨基二环己基甲烷、甲基环戊二胺、双胺甲基环己二胺或二氨基二苯甲烷中的任意一种或至少两种的组合;
    优选地,所述酚氧树脂的重均分子量为30000-65000。
  6. 根据权利要求1-5中的任一项所述的用于金属基板的树脂组合物,其特征在于,所述导热填料包括氮化铝、氮化硼、氧化铝、碳化硅、氧化锌或纳米碳管中的任意一种或至少两种的组合,进一步优选氮化硼、氧化铝或碳化硅中的任意一种或至少两种的组合。
  7. 根据权利要求1-6中的任一项所述的用于金属基板的树脂组合物,其特征在于,所述树脂组合物还包括固化促进剂;
    优选地,以主体树脂总重量为100%计,所述固化促进剂的添加量为0.1-2%。
  8. 一种树脂胶液,其特征在于,所述树脂胶液是将如权利要求1-7任一项所述的用于金属基板的树脂组合物溶解或分散在溶剂中得到。
  9. 一种胶膜,其特征在于,所述胶膜包括权利要求1-7中的任一项所述的用于金属基板的树脂组合物。
  10. 一种金属基覆铜箔层压板,其特征在于,包括从下到上压合在一起的金属基板、由权利要求1-7中的任一项所述的用于金属基板的树脂组合物制备 得到导热绝缘粘结层和铜箔。
  11. 根据权利要求10所述的金属基覆铜箔层压板,其特征在于,所述金属基板包括铝基板、铜基板、铁基板或钢基板中的任意一种;
    优选地,所述金属基板的厚度为0.3-5.0mm;
    优选地,所述导热绝缘粘结层的厚度为0.04-0.20mm;
    优选地,所述铜箔为电解铜箔或压延铜箔;
    优选地,所述铜箔的厚度为0.012-0.210mm。
PCT/CN2019/086833 2019-04-22 2019-05-14 用于金属基板的树脂组合物、包含其的树脂胶液以及金属基覆铜箔层压板 WO2020215399A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910323656.XA CN111825947B (zh) 2019-04-22 2019-04-22 一种用于金属基板的树脂组合物、包含其的树脂胶液以及金属基覆铜箔层压板
CN201910323656.X 2019-04-22

Publications (1)

Publication Number Publication Date
WO2020215399A1 true WO2020215399A1 (zh) 2020-10-29

Family

ID=70294936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086833 WO2020215399A1 (zh) 2019-04-22 2019-05-14 用于金属基板的树脂组合物、包含其的树脂胶液以及金属基覆铜箔层压板

Country Status (7)

Country Link
US (1) US11649351B2 (zh)
EP (1) EP3730532B1 (zh)
JP (1) JP6832987B2 (zh)
CN (1) CN111825947B (zh)
ES (1) ES2910180T3 (zh)
TW (1) TWI715043B (zh)
WO (1) WO2020215399A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113621332B (zh) * 2021-10-09 2022-01-18 武汉市三选科技有限公司 芯片封装用模封胶及封装结构
CN115260963B (zh) * 2022-09-27 2022-12-27 武汉市三选科技有限公司 低模量垂直堆叠封装用薄膜黏晶胶、其制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101974208A (zh) * 2010-08-20 2011-02-16 广东生益科技股份有限公司 高导热树脂组合物及使用其制作的高导热覆金属箔板
JP2013194094A (ja) * 2012-03-16 2013-09-30 Nippon Steel & Sumikin Chemical Co Ltd 樹脂組成物、樹脂フィルム、及び硬化物
JP2016155946A (ja) * 2015-02-25 2016-09-01 三菱電機株式会社 熱硬化性樹脂組成物、熱伝導性樹脂シート、回路基板及びパワーモジュール
CN107849351A (zh) * 2015-07-21 2018-03-27 住友电木株式会社 导热性树脂组合物、导热片和半导体装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1132961B1 (en) * 1991-07-24 2011-01-05 Denki Kagaku Kogyo Kabushiki Kaisha Method for producing a circuit substrate having a mounted semiconductor element
JP4846406B2 (ja) * 2006-03-28 2011-12-28 リンテック株式会社 チップ用保護膜形成用シート
JP5465453B2 (ja) * 2009-03-26 2014-04-09 パナソニック株式会社 光導波路形成用エポキシ樹脂組成物、光導波路形成用硬化性フィルム、光伝送用フレキシブルプリント配線板、及び電子情報機器
JP5486891B2 (ja) * 2009-10-08 2014-05-07 三菱レイヨン株式会社 連鎖硬化性樹脂組成物および繊維強化複合材料
JP5171798B2 (ja) * 2009-12-07 2013-03-27 三菱電機株式会社 熱硬化性樹脂組成物、熱伝導性樹脂シート及びその製造方法、並びにパワーモジュール
WO2012102336A1 (ja) * 2011-01-28 2012-08-02 住友ベークライト株式会社 封止用エポキシ樹脂組成物及び電子部品装置
CN102304273B (zh) * 2011-04-03 2013-06-12 广东生益科技股份有限公司 热固性环氧树脂组合物及使用其制作的环氧玻纤布基覆铜板
JP2013176981A (ja) * 2012-02-08 2013-09-09 Nitto Denko Corp 熱伝導性シートの製造方法
JP5571730B2 (ja) * 2012-04-11 2014-08-13 パナソニック株式会社 熱硬化性樹脂組成物および半導体装置
TWI468482B (zh) * 2013-06-19 2015-01-11 Polytronics Technology Corp 黏合材料
CN103351581B (zh) * 2013-07-19 2015-11-25 广东生益科技股份有限公司 一种高介电常数树脂组合物及其用途
CN103468188B (zh) 2013-09-26 2015-11-25 深圳市麦捷微电子科技股份有限公司 磁性复合胶水
CN105009692A (zh) * 2013-10-24 2015-10-28 住友电气工业株式会社 散热电路板及其制造方法
KR102217397B1 (ko) * 2013-10-25 2021-02-22 아지노모토 가부시키가이샤 유연성 에폭시 수지 조성물
CN103923590B (zh) * 2014-04-08 2016-06-08 广东生益科技股份有限公司 一种黑色树脂组合物及用该树脂组合物制备黑色胶膜的方法
CN104610707A (zh) * 2015-01-19 2015-05-13 珠海全宝电子科技有限公司 一种用高性能rcc制造的大功率led用金属基覆铜板
CN104708869A (zh) 2015-03-25 2015-06-17 广东美的制冷设备有限公司 一种高导热铝基覆铜板及其制造方法
KR102539141B1 (ko) * 2015-08-31 2023-05-31 니폰 제온 가부시키가이샤 수지 조성물
JP6690356B2 (ja) * 2016-03-29 2020-04-28 味の素株式会社 熱硬化性樹脂組成物
CN106633646B (zh) * 2016-12-01 2019-05-31 陕西生益科技有限公司 一种树脂组合物及其应用
CN110612205B (zh) * 2017-03-07 2022-05-03 塞特工业公司 具有结构和阻燃能力的复合材料
CN108995346A (zh) * 2018-08-17 2018-12-14 咸阳华电电子材料科技有限公司 一种树脂胶液及其制备方法及其应用
CN109627687B (zh) * 2018-11-06 2021-02-12 深圳烯湾科技有限公司 包覆膜材料及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101974208A (zh) * 2010-08-20 2011-02-16 广东生益科技股份有限公司 高导热树脂组合物及使用其制作的高导热覆金属箔板
JP2013194094A (ja) * 2012-03-16 2013-09-30 Nippon Steel & Sumikin Chemical Co Ltd 樹脂組成物、樹脂フィルム、及び硬化物
JP2016155946A (ja) * 2015-02-25 2016-09-01 三菱電機株式会社 熱硬化性樹脂組成物、熱伝導性樹脂シート、回路基板及びパワーモジュール
CN107849351A (zh) * 2015-07-21 2018-03-27 住友电木株式会社 导热性树脂组合物、导热片和半导体装置

Also Published As

Publication number Publication date
EP3730532A1 (en) 2020-10-28
CN111825947A (zh) 2020-10-27
JP6832987B2 (ja) 2021-02-24
US11649351B2 (en) 2023-05-16
ES2910180T3 (es) 2022-05-11
EP3730532B1 (en) 2022-02-23
JP2020176251A (ja) 2020-10-29
TWI715043B (zh) 2021-01-01
US20200332109A1 (en) 2020-10-22
CN111825947B (zh) 2021-08-27
TW202039686A (zh) 2020-11-01

Similar Documents

Publication Publication Date Title
KR101936449B1 (ko) 다층 수지 시트, 수지 시트 적층체, 다층 수지 시트 경화물 및 그 제조 방법, 금속박이 형성된 다층 수지 시트, 그리고 반도체 장치
KR101131369B1 (ko) 절연 시트 및 적층 구조체
US8604352B2 (en) Multilayer circuit board, insulating sheet, and semiconductor package using multilayer circuit board
JP2008037957A (ja) 熱硬化性樹脂組成物、bステージ化した樹脂フィルムおよび多層ビルドアップ基板
JP2014167053A (ja) 高熱伝導性プリプレグ、プリプレグを用いた配線板および多層配線板、ならびに多層配線板を用いた半導体装置
WO2020215399A1 (zh) 用于金属基板的树脂组合物、包含其的树脂胶液以及金属基覆铜箔层压板
JP2011178883A (ja) プリプレグ、積層板、多層プリント配線板、及び、半導体装置
WO2015056555A1 (ja) 金属基板、金属ベース回路基板、電子装置および金属ベース回路基板の製造方法
CN104610709A (zh) 用于汽车引擎散热器的高Tg、高散热铝基覆铜板
JP2010218975A (ja) 絶縁シート、積層板及び多層積層板
JP6927717B2 (ja) 絶縁材料及び電子部品
TW201236518A (en) Multilayer resin sheet and resin sheet laminate
WO2020137339A1 (ja) 樹脂組成物および金属ベース銅張積層板
KR101254035B1 (ko) 고효율 방열 인쇄회로기판용 금속베이스 동박적층판 접착제 조성물
JP2013206902A (ja) パワー半導体モジュール用部品の製造方法
JP2020102556A (ja) 積層体、電子部品、及びインバータ
JP2014185330A (ja) 樹脂組成物、めっきプロセス用プライマー層、支持体付きめっきプロセス用プライマー層、硬化後めっきプロセス用プライマー層、配線板用積層板、配線板用積層板の製造方法、多層配線板、及び多層配線板の製造方法
JP2006328233A (ja) 樹脂組成物、それを用いたプリプレグ、積層板および印刷配線板
TW201309115A (zh) 基板、金屬膜、基板之製造方法及金屬膜之製造方法
KR20130015695A (ko) 성형성이 우수한 에폭시 수지 조성물 및 이를 포함한 금속 베이스 인쇄회로기판용 적층체
WO2022176448A1 (ja) 熱硬化性樹脂組成物、パワーモジュール用基板およびパワーモジュール
JP4892817B2 (ja) 絶縁樹脂層、キャリア付き絶縁樹脂層および多層プリント配線板
JP5276193B1 (ja) 積層体の製造方法
CN117777573A (zh) 一种树脂组合物、金属基覆铜箔层压板及其应用
CN115122721A (zh) 一种高导热铝基覆铜板及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926003

Country of ref document: EP

Kind code of ref document: A1