WO2020213715A1 - チタン板および銅箔製造ドラム - Google Patents

チタン板および銅箔製造ドラム Download PDF

Info

Publication number
WO2020213715A1
WO2020213715A1 PCT/JP2020/016888 JP2020016888W WO2020213715A1 WO 2020213715 A1 WO2020213715 A1 WO 2020213715A1 JP 2020016888 W JP2020016888 W JP 2020016888W WO 2020213715 A1 WO2020213715 A1 WO 2020213715A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
titanium plate
titanium
crystal
drum
Prior art date
Application number
PCT/JP2020/016888
Other languages
English (en)
French (fr)
Inventor
知徳 國枝
後藤 守
黒田 篤彦
克彦 竹津
彰夫 唐戸
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2020549828A priority Critical patent/JP6863531B2/ja
Priority to CN202080007717.2A priority patent/CN113260727B/zh
Priority to KR1020217019441A priority patent/KR102569909B1/ko
Publication of WO2020213715A1 publication Critical patent/WO2020213715A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D33/00Special measures in connection with working metal foils, e.g. gold foils
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a titanium plate and a copper foil manufacturing drum.
  • the present application claims priority based on Japanese Patent Application No. 2019-07882 filed in Japan on April 17, 2019, the contents of which are incorporated herein by reference.
  • Copper foil is often used as a raw material for wiring of wiring boards such as multi-layer wiring boards and flexible wiring boards, and for conductive parts of electronic components such as current collectors of lithium ion batteries.
  • FIG. 4 is a schematic view of a copper foil manufacturing apparatus.
  • the copper foil manufacturing apparatus 1 is, for example, as shown in FIG. 4, an electrolytic cell 10 in which a copper sulfate solution is stored, and an electric electrode provided in the electrolytic cell 10 so that a part of the copper sulfate solution is immersed in the copper sulfate solution.
  • It includes a landing drum 2 and an electrode plate 30 which is immersed in a copper sulfate solution in an electrolytic cell 10 and is provided so as to face the outer peripheral surface of the electrodeposition drum 2 at predetermined intervals.
  • the copper foil A is electrodeposited on the outer peripheral surface of the electrodeposition drum 2 to be generated.
  • the copper foil A having a predetermined thickness is peeled off from the electrodeposition drum 2 by the take-up portion 40, and is taken up by the take-up roll 60 while being guided by the guide roll 50.
  • titanium As a material for a drum (electrodeposition drum), titanium is generally used for its surface (outer peripheral surface) from the viewpoints of excellent corrosion resistance and excellent peelability of copper foil.
  • the surface of titanium constituting the drum is gradually corroded in the copper sulfate solution. Then, the state of the corroded drum surface is transferred to the copper foil during the production of the copper foil.
  • Corrosion of a metal material may vary depending on various internal factors caused by the metal structure, such as the crystal structure, crystal orientation, defects, segregation, processing strain, and residual strain of the metal material.
  • the homogeneous surface state of the drum cannot be maintained, and a heterogeneous surface is generated on the drum surface.
  • the inhomogeneous surface generated on the drum surface can be identified as a pattern.
  • a pattern caused by a macrostructure having a relatively large area and which can be discriminated with the naked eye is called a "macro pattern”.
  • the macro pattern generated on the drum surface can also be transferred to the copper foil during the production of the copper foil.
  • the macrostructure of the titanium plate constituting the drum is homogenized, and the corrosion on the surface of the drum is homogenized, so that the macrostructure is inhomogeneous. It is important to reduce the macro pattern caused by.
  • Patent Document 1 contains Cu: 0.15% or more and less than 0.5%, oxygen: more than 0.05%, 0.20% or less, Fe: 0.04% or less in mass%, and the balance of titanium.
  • a titanium plate for an electrolytic Cu foil manufacturing drum has been proposed, which is composed of unavoidable impurities and has an ⁇ -phase homogeneous fine recrystallization structure having an average crystal grain size of less than 35 ⁇ m.
  • Patent Document 2 contains Cu: 0.3 to 1.1%, Fe: 0.04% or less, oxygen: 0.1% or less, hydrogen: 0.006% or less in mass%, and has an average crystal grain size. Is 8.2 or more, and the Vickers hardness is 115 or more and 145 or less, and at a portion parallel to the plate surface, the texture is ⁇ -phase (0001) from the normal direction (ND axis) from the rolled surface. In the plane pole diagram, the tilt angle of the normal of the (0001) plane is within the range of an ellipse with ⁇ 45 ° in the rolling width direction TD direction as the major axis and ⁇ 25 ° in the final rolling direction RD direction as the minor axis.
  • a titanium plate for an electrolytic Cu foil manufacturing drum is proposed, wherein the total area of existing crystal grains is A, the total area of other crystal grains is B, and the area ratio A / B is 3.0 or more. Has been done.
  • Patent Document 3 contains Al: 0.4 to 1.8%, and has an average crystal grain size of 8.2 at a plate thickness of 4 mm or more, 1.0 mm below the surface, and a portion parallel to the plate surface of 1/2 plate thickness.
  • the texture is the normal rolling direction of the RD rolling surface and the normal ND rolling width direction of the TD (0001) plane.
  • the tilt angle of the c-axis in the TD direction is -45 to 45 ° in the (0001) plane pole diagram of the ⁇ phase from the normal direction from the rolled surface, and the c-axis is in the RD direction.
  • the total area of crystal grains having a c-axis in the elliptical region where the tilt angle is -25 to 25 ° is A, the total area of other crystal grains is B, and the area ratio A / B is 3.0 or more. Titanium alloy planks have been proposed.
  • the present invention has been made in view of the above problems, and an object of the present invention is a titanium plate capable of suppressing the generation of macro patterns when used in a copper foil manufacturing drum (drum provided in a copper foil manufacturing apparatus).
  • An object of the present invention is to provide a copper foil manufacturing drum (manufactured using the titanium plate) using the titanium plate as a member.
  • the present inventors have diligently studied to solve the above-mentioned problems. As a result, although it is effective to reduce the crystal grain size of the texture in the titanium plate and to bring the normal (c-axis) of the (0001) plane of the crystal having the hcp structure closer to the rolling plane. , It was found that the occurrence of macro patterns cannot be suppressed to the level required this time.
  • the crystal grains are not only fine but also have a uniform size, and the c-axis (crystal having an hcp structure (0001)) is at an angle within 40 ° from the normal direction of the plate surface.
  • the area ratio of crystal grains whose surface normal ([0001] direction) is tilted is 70% or more of the area ratio of all crystal grains, and the chemical composition is a chemical composition in which precipitation of ⁇ phase is suppressed.
  • the gist of the present invention completed based on the above findings is as follows.
  • the titanium plate according to one aspect of the present invention has O: 0% or more, 0.400% or less, Cu: 0% or more, 1.50% or less, Fe: 0% or more, 0. It contains 500% or less, N: 0.100% or less, C: 0.080% or less, and H: 0.0150% or less, and has a chemical composition in which the balance contains Ti and impurities, and the metal structure is crystallized.
  • the average crystal grain size is 40 ⁇ m or less, and the normal line of the (0001) plane of the crystal having the hexagonal close-packed structure is taken as the c-axis, the plate surface
  • the area ratio of the crystal grains whose c-axis is tilted at an angle within 40 ° from the normal direction of the above to all the crystal grains is 70% or more, and the particle size distribution based on the logarithmic grain size in the unit ⁇ m.
  • the standard deviation is 0.80 or less.
  • the expansion index of the pole diagram using the spherical harmonic method of the electron backscatter diffraction method is 16
  • the standard deviation of the particle size distribution is (0.35 ⁇ lnD-0. 42) It may be less than or equal to.
  • the total grain boundary length at a position 1/4 of the plate thickness from the surface is obtained.
  • the ratio of twin grain boundary lengths may be 5.0% or less.
  • the chemical composition may contain Cu: 0.10% or more and 1.50% or less in mass%.
  • the titanium plate according to any one of (1) to (5) above may be a titanium plate for a copper foil manufacturing drum.
  • the titanium according to any one of claims 1 to 6, wherein the copper foil manufacturing drum according to another aspect of the present invention has a cylindrical inner drum and titanium adhered to the outer peripheral surface of the inner drum. It has a plate and a welded portion provided at a butt portion of the titanium plate.
  • a titanium plate capable of suppressing the generation of macro patterns when used in a drum for producing copper foil and a copper foil manufacturing drum manufactured by using the titanium plate. Can be provided.
  • titanium plate according to an embodiment of the present invention (titanium plate according to the present embodiment) will be described.
  • the titanium plate according to the present embodiment is assumed to be used as a material for a copper foil manufacturing drum. Therefore, it can be said that the titanium plate according to the present embodiment is a titanium plate for a copper foil manufacturing drum.
  • one side of the titanium plate constitutes the cylindrical surface of the drum.
  • the chemical composition of the titanium plate according to this embodiment will be described.
  • the titanium plate according to the present embodiment has a chemical composition of titanium alloy containing 1.50% by mass or less of Cu instead of industrial pure titanium or a part of Ti in the industrial pure titanium.
  • the titanium plate according to the present embodiment has Cu: 0% or more and 1.50% or less, Fe: 0% or more and 0.500% or less, O: 0% or more and 0.400% or less in mass%.
  • N 0.100% or less
  • C 0.080% or less
  • H 0.0150% or less
  • the balance has a chemical composition containing Ti and impurities.
  • Industrial pure titanium contains an extremely small amount of additive elements, and when this is used, the titanium plate is substantially composed of ⁇ -phase and single-phase.
  • the phase constituting the titanium plate is substantially composed of ⁇ -phase and single-phase.
  • industrial pure titanium has excellent hot workability, the plate shape after hot rolling becomes flat, and it is possible to reduce the subsequent straightening. Therefore, the application of strain due to correction and the accompanying introduction of dislocations and twins are suppressed.
  • a pattern may be generated starting from the dislocations and twins, or corrosion may occur when immersed in a copper sulfate solution.
  • the titanium plate contains an ⁇ -stabilizing element such as Al.
  • Al has an effect of suppressing crystal grain growth by heat treatment in the ⁇ single-phase region.
  • ⁇ -stabilizing elements such as Al greatly improve the high-temperature strength of the titanium plate.
  • hot rolling is carried out to a relatively low temperature for the purpose of controlling the texture. Therefore, if the high-temperature strength becomes too high, the reaction force during hot rolling becomes too large, the shape of the titanium plate after hot rolling is greatly distorted, and the titanium plate becomes wavy.
  • Cu has a larger solid solution limit in the ⁇ phase than other elements, and a relatively large content can be contained in the titanium plate without precipitating the ⁇ phase. is there. Further, since Cu has a relatively large solid solution strengthening ability, it is also effective for increasing the surface hardness described later. As a result of the examination by the present inventors, it was found that Cu can be contained in the titanium plate in the range of 1.50% by mass or less. Hereinafter, a specific description will be given.
  • Examples of pure titanium for industrial use include types 1 to 4 specified in JIS H 4600: 2012, grades 1 to 4 specified in ASTM B348, F67, and the like.
  • industrial pure titanium an industrial pure titanium that does not conform to the above-mentioned standards or an industrial pure titanium that conforms to a standard other than the above-mentioned standards, those skilled in the art recognize it as "industrial pure titanium" in consideration of common general technical knowledge. It can be used as a material for the titanium plate according to the present embodiment within the range to be desired. Then, the above-mentioned pure titanium for industrial use can be appropriately selected according to the specific use and specifications of the drum in which the titanium plate according to the present embodiment is used.
  • the titanium plate according to the present embodiment has Cu: 0% or more and 1.50% or less, Fe: 0% or more and 0.500% or less, O: 0% or more and 0.400 in mass%. % Or less, N: 0.100% or less, C: 0.080% or less, and H: 0.0150% or less, and the balance can have a chemical composition containing Ti and impurities.
  • O 0% or more and 0.400% or less
  • O is an element that contributes to the improvement of the strength of the titanium plate and the increase of the surface hardness.
  • the O content is set to 0.400% or less.
  • the O content is preferably 0.150% or less, more preferably 0.120% or less. Since O is not essential in the titanium plate according to the present embodiment, the lower limit of its content is 0%. However, it is difficult to prevent contamination from titanium sponge, which is a dissolving raw material, and additive elements, and the practical lower limit is 0.020%.
  • the O content is preferably 0.030% or more.
  • Cu 0% or more and 1.50% or less
  • Cu is an element that stabilizes the ⁇ phase and also dissolves in the ⁇ phase to strengthen the ⁇ phase, thereby contributing to the improvement of polishability.
  • Cu is an element that can be combined with Ti to form Ti 2 Cu. From the viewpoint of abrasive, Ti 2 Cu is better not precipitated, because Ti 2 Cu is suppressed grain growth and deposit a Ti 2 Cu to the extent that does not affect the abrasive, and uniform in a titanium plate It becomes easy to obtain a fine crystal grain size.
  • the Cu content is preferably 0.10% or more, more preferably 0.20% or more, and further preferably 0.40% or more.
  • the Cu content is set to 1.50% or less.
  • the Cu content is preferably 1.30% or less, more preferably 1.20% or less.
  • Fe 0% or more and 0.500% or less Fe is an element that stabilizes the ⁇ phase.
  • the Fe content is preferably 0.100% or less, more preferably 0.080% or less. Since Fe is not essential in the titanium plate according to the present embodiment, the lower limit of its content is 0%. However, it is difficult to prevent contamination from sponge titanium, which is a dissolving raw material, and additive elements, and the practical lower limit is 0.001%.
  • Fe is an element that contributes to the suppression of crystal grain growth by pinning the ⁇ phase. Further, Fe is an element that suppresses grain growth due to the solution drug effect even when it is solid-solved in Ti. When these effects are obtained, the Fe content is preferably 0.020% or more, more preferably 0.025% or more.
  • N 0.100% or less C: 0.080% or less H: 0.0150% or less If any of N, C, and H is contained in a large amount, ductility and workability deteriorate. Therefore, the N content is limited to 0.100% or less, the C content is limited to 0.080% or less, and the H content is limited to 0.0150% or less.
  • the balance of the chemical composition of the titanium plate according to the present embodiment contains Ti and impurities, and may consist of Ti and impurities.
  • impurities include Cl, Na, Mg, Si, Ca mixed in the refining process, Al, Zr, Sn, Mo, Nb, Ta, V and the like mixed in from scrap, in addition to the above-mentioned elements. Is.
  • the content thereof is, for example, 0.10% or less, respectively, and if the total amount is 0.50% or less, there is no problem.
  • the lower limit of the content of each element other than Ti described above is 0%, and the titanium plate does not have to contain each of the above elements.
  • the chemical composition is determined by the following method. ⁇ -stabilizing elements such as Cu and Fe are measured by IPC emission spectroscopic analysis. O and N are measured by the inert gas melting, thermal conductivity / infrared absorption method using an oxygen / nitrogen simultaneous analyzer. C is measured by an infrared absorption method using a carbon-sulfur simultaneous analyzer. H is measured by the melting of an inert gas and the infrared absorption method.
  • the metal structure of the titanium plate according to this embodiment includes an ⁇ phase having a hexagonal close-packed structure, the average crystal grain size is 40 ⁇ m or less, and the grain size distribution is based on the logarithm of the crystal grain size ( ⁇ m).
  • the standard deviation of is 0.80 or less, and the c-axis (the normal of the (0001) plane of the crystal having a hexagonal close-packed structure) is tilted within 40 ° from the normal direction of the plate surface.
  • the area ratio to all crystal grains is 70% or more.
  • the metal structure of the titanium plate according to the present embodiment will be described in detail step by step.
  • the metallographic structure of the titanium plate according to the present embodiment mainly contains an ⁇ phase.
  • the ⁇ phase has a hexagonal close-packed structure (hcp).
  • the ⁇ phase corrodes in preference to the ⁇ phase. Therefore, from the viewpoint of achieving uniform corrosion and suppressing the generation of macro patterns, it is preferable that the ⁇ phase is small. Therefore, the volume fraction of the ⁇ phase in the metal structure of the titanium plate according to the present embodiment is preferably 98.0% or more, more preferably 99.0% or more, and further preferably 100%. That is, it is substantially ⁇ -phase and single-phase.
  • a substantial ⁇ -phase single-phase metallographic structure can be achieved by the chemical composition of the titanium plate as described above.
  • the metal structure of titanium plates, beta phase may comprise Ti 2 Cu but, beta phase, the volume ratio of Ti 2 Cu is preferably 2.0% or less in total.
  • the volume fractions of ⁇ phase and Ti 2 Cu are preferably 1.0% or less, respectively.
  • the metal structure of the titanium plate preferably does not contain unrecrystallized parts.
  • the unrecrystallized portion is generally coarse and can cause a macro pattern.
  • the metal structure of the titanium plate is preferably a completely recrystallized structure.
  • the recrystallized structure is a structure composed of crystal grains having an aspect ratio of less than 2.0. The presence or absence of unrecrystallized grains can be confirmed by the following method. That is, the crystal grains having an aspect ratio of 2.0 or more are regarded as unrecrystallized grains, and the presence or absence thereof is confirmed.
  • the cross section of the cut titanium plate is chemically polished, and an electron backscatter diffraction method; EBSD (Electron Back Scattering Diffraction Pattern) is used to cover a region of 1 to 2 mm ⁇ 1 to 2 mm in a region of 1 to 2 ⁇ m.
  • EBSD Electro Back Scattering Diffraction Pattern
  • steps measure about 2 to 10 fields.
  • the azimuth difference boundary of 5 ° or more measured by EBSD is defined as the crystal grain boundary
  • the range surrounded by the crystal grain boundary is defined as the crystal grain
  • the major axis and the minor axis of the crystal grain are obtained, and the major axis is the minor axis.
  • the value divided by (major axis / minor axis) is calculated as the aspect ratio.
  • the long axis is the line segment connecting any two points on the grain boundary of the ⁇ phase with the maximum length
  • the short axis is orthogonal to the long axis and on the grain boundary. The line segment
  • the volume ratio of each phase constituting the metal structure of the titanium plate can be easily measured and calculated by an EPMA (Electron Probe Microprobe) (SEM / EPMA) attached to a SEM (Scanning Electron Microscopy).
  • EPMA Electro Probe Microprobe
  • SEM / EPMA Surface Electron Microscopy
  • the titanium plate is polished to a mirror surface on an arbitrary cross section, and at a magnification of 100 times, a 1 mm ⁇ 1 mm region at a position 1/4 of the plate thickness from the surface is formed in steps of 1 to 2 ⁇ m.
  • the concentration distribution of Fe and Cu is measured using SEM / EPMA in about 2 to 5 fields of view.
  • the ⁇ phase and Cu concentration are at points where the Fe concentration is 1% by mass or more higher than the average concentration in the measurement range (concentration part).
  • a point (concentrated portion) higher than the average concentration in the measurement range by 1% by mass or more is defined as Ti 2 Cu, and the area ratio of each phase is obtained. Assuming that the area fraction and the volume fraction are equal, the obtained area fraction is defined as the volume fraction of ⁇ phase and Ti 2 Cu. Then, the area ratio of the unconcentrated portion (other than the concentrated portion) is defined as the volume fraction of the ⁇ phase.
  • the average particle size and the particle size distribution of the crystal grains contained in the metal structure of the titanium plate according to the present embodiment will be described.
  • the grain size (crystal grain size) of the crystal grain of the metal structure of the titanium plate is coarse, the crystal grain itself becomes a pattern and the pattern is transferred to the copper foil. Therefore, the crystal grain size should be fine.
  • the average crystal grain size of the crystal grains of the metal structure of the titanium plate exceeds 40 ⁇ m, the crystal grains themselves become a pattern and the pattern is transferred to the copper foil. Therefore, the average crystal grain size of the crystal grains of the metal structure of the titanium plate is set to 40 ⁇ m or less.
  • the average crystal grain size of the crystal grains of the metal structure of the titanium plate is preferably 38 ⁇ m or less, more preferably 35 ⁇ m or less.
  • the lower limit of the average crystal grain size of the metal structure of the titanium plate is not particularly limited. However, if the crystal grains are very small, unrecrystallized portions may be generated during the heat treatment. Therefore, the average crystal grain size of the crystal grains is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more.
  • the present inventors have found that the macro pattern cannot be sufficiently suppressed only by the crystal grains of the metal structure of the titanium plate being simply fine. That is, even if the average crystal grain size of the metal structure of the titanium plate is fine, if the particle size distribution is wide, coarse crystal grains are present. If there is a portion where such coarse crystal grains and fine crystal grains coexist, a macro pattern may occur due to the difference in particle size. Therefore, it is important that the crystal grains of the metal structure of the titanium plate are not only fine but also have a narrow particle size distribution, that is, a uniform grain size is important for suppressing the occurrence of macro patterns. The present inventors have found.
  • the standard deviation of the particle size distribution based on the logarithm of each crystal grain size ( ⁇ m) is 0.80 or less.
  • the standard deviation of the particle size distribution based on the logarithm of the crystal grain size ( ⁇ m) exceeds 0.80, coarse crystal grains are produced even when the above-mentioned average crystal grain size is satisfied.
  • the standard deviation of the particle size distribution based on the logarithm of the crystal particle size ( ⁇ m) is preferably (0.35 ⁇ lnD ⁇ 0.42) or less when the average crystal particle size is D ( ⁇ m).
  • the average crystal grain size and standard deviation of the particle size distribution of the crystals of the metal structure of the titanium plate can be measured and calculated as follows. Specifically, a cross section obtained by cutting a titanium plate is chemically polished, and an electron backscatter diffraction method; EBSD (Electron Back Scattering Diffraction Pattern) is used to perform 1 to 2 mm at a position 1/4 of the plate thickness from the surface. A region of ⁇ 1 to 2 mm is measured in steps of 1 to 2 ⁇ m for about 2 to 10 fields.
  • EBSD Electrode Back Scattering Diffraction Pattern
  • the standard deviation ⁇ in the lognormal distribution is calculated from the crystal particle size distribution. It is generally known that the grain size distribution of a metal material follows a lognormal distribution. Therefore, in calculating the standard deviation of the particle size distribution as described above, the obtained particle size distribution may be standardized to a lognormal distribution, and the standard deviation may be calculated from the standardized lognormal distribution.
  • the titanium plate is substantially ⁇ -phase single-phase due to the above-mentioned chemical composition, and the crystal structure of ⁇ -phase has a hexagonal close-packed structure (hcp) as shown in FIG. Take.
  • the hcp structure has a large anisotropy of physical properties depending on the crystal orientation. Specifically, the strength is high in the direction parallel to the normal direction (c-axis direction: [0001] direction) of the (0001) plane of the crystal having a hexagonal close-packed structure, and approaches the direction perpendicular to the c-axis direction. The strength is low.
  • the titanium plate satisfies the particle size distribution of the crystal grains as described above, if aggregates of crystals having different crystal orientations are generated, the processability differs between the two aggregates, and the copper foil manufacturing drum is manufactured. In, a difference occurs in the processing at the time of polishing. As a result, the resulting drum is recognized as a pattern having a size close to that of crystal grains.
  • the present inventors have found that the occurrence of the above pattern can be suppressed by accumulating the crystal orientations of the texture of the titanium plate as much as possible.
  • the titanium plate has high strength in the direction parallel to the c-axis direction. Therefore, when the surface perpendicular to the c-axis is polished, the pattern after polishing is unlikely to occur. From this point of view, the present inventors have made the crystal orientation of the texture of the titanium plate perpendicular to the polished surface, that is, the thickness direction perpendicular to the surface of the titanium plate (normal direction of the rolled surface). It was found that it is preferable to arrange the c-axis of the crystal lattice of the titanium plate so as to be parallel to).
  • the ratio (area ratio) of the area of the crystal grains existing in the dotted line b to the area of all the crystal grains in the polar diagram is 70% or more.
  • the area ratio of the crystal grains having the c-axis at an angle within 40 ° from the normal direction of the rolled surface to all the crystal grains is preferably 72% or more.
  • the fact that the c-axis is tilted at an angle within 40 ° from the normal direction of the plate surface means that the angle ⁇ formed by the ND of the titanium plate and the c-axis of the crystal grains is within 40 °, as shown in FIG. It means that there is.
  • the (0001) pole diagram is obtained by chemically polishing the observation surface of the sample of the titanium plate and analyzing the crystal orientation using an electron backscatter diffraction method (EBSD, Electron Backscattering Diffraction Pattern). More specifically, for example, a region of 1 to 2 mm ⁇ 1 to 2 mm can be scanned at intervals (steps) of 1 to 2 ⁇ m, and a (0001) pole figure can be drawn.
  • EBSD electron backscattering Diffraction Pattern
  • the area ratio of crystal grains whose c-axis is tilted within 40 ° from the normal direction of the plate surface is as follows. Measure by method. The cross section of the cut titanium plate is chemically polished, and an electron backscatter diffraction method; EBSD (Electron Backscattering Diffraction Pattern) is used to cover a region of 1 to 2 mm ⁇ 1 to 2 mm in steps of 1 to 2 ⁇ m. Measure about 10 fields. Using the OIM Analysis software manufactured by TSL Solutions, the area ratio of the crystal grains whose c-axis inclination is within 40 ° from the normal direction of the plate surface with respect to the total crystal grains is obtained.
  • the peak of the degree of accumulation of crystal grains is 30 ° from the normal direction of the plate surface in the (0001) pole diagram from the normal direction (ND) of the plate surface (rolled material in the case of a rolled material). It is preferable to have a texture that exists within and has a maximum degree of integration of 4.0 or more. As a result, the c-axis of the crystal grains can be accumulated closer to the thickness direction (ND) of the titanium plate, and when the titanium plate is used for the copper foil manufacturing drum, the pattern is caused by the difference in crystal orientation. Occurrence is more suppressed.
  • the peak of the degree of accumulation of crystal grains tends to be inclined in the direction perpendicular to the final rolling direction (final rolling width direction (TD)). Therefore, when the final rolling direction is clear, the peak of the degree of accumulation of crystal grains is the final from the normal direction (ND) of the rolled surface in the (0001) pole diagram from the normal direction (ND) of the rolled surface. It may exist within 30 ° in the rolling width direction (TD).
  • FIG. 1 shows a (0001) pole figure from the normal direction (ND) of the rolled surface for explaining the texture of the titanium plates according to the present embodiment.
  • the detected pole points are accumulated according to the inclinations in the final rolling direction (RD) and the final rolling width direction (TD), and contour lines of the degree of integration are drawn in the (0001) pole figure.
  • the position with the highest contour line is the peak position of the degree of integration
  • the value with the highest degree of integration among the peak positions is the maximum degree of integration.
  • the sites where the contour lines are highest are the peaks P1 and P2 of the degree of accumulation of crystal grains.
  • the peaks P1 and P2 of the crystal grains are present within 30 ° from the ND (center) with respect to the TD, respectively.
  • a in the figure is within 30 ° (as in P1 in FIG. 1, the peak position may deviate slightly from the TD direction, but deviation within 10 ° is allowed, and a is 30. It should be within °).
  • the maximum degree of integration is 4.0 or more. Usually, the maximum degree of accumulation is one of the peaks P1 and P2 of the crystal grains.
  • the degree of integration is usually at a portion where the c-axis of the hcp structure is tilted by about 35 to 40 ° in the final rolling width direction (TD) with respect to ND.
  • a peak texture is formed.
  • the crystal orientation is further distributed to a position tilted by 15 to 20 °, so that crystal grains having different crystal orientations may be adjacent to each other, and a macro pattern is likely to occur.
  • the maximum degree of integration is preferably 4.0 or more. As a result, the crystal orientations are sufficiently accumulated, and the difference in crystal orientations between adjacent crystals can be reduced.
  • the maximum degree of integration is preferably 4.0 or more, but more preferably 5.0 or more, still more preferably 6.0 or more, for the purpose of further suppressing the generation of macro patterns.
  • the degree of accumulation of a specific orientation in the pole figure indicates how many times the frequency of existence of crystal grains having that orientation is higher than that of a structure having a completely random orientation distribution (degree of integration 1). ..
  • EBSD Electrodetattering Diffraction Pattern
  • the data is calculated by Texture analysis of the pole figure using the spherical harmonic method using OIM Analysis software manufactured by TSL Solutions.
  • twins Titanium plates may undergo twinning deformation during plastic deformation. Twin deformation depends on the crystal grain size as well as the chemical composition, and the larger the grain size, the more likely it is to occur. Therefore, the apparent crystal grain size distribution may become uniform due to the formation of twins. On the other hand, when twinning deformation occurs, the difference in crystal orientation becomes large, and crystal grains having significantly different crystal orientations are adjacent to each other, and the abrasiveness changes at the boundary, and the crystal is recognized as a pattern. Therefore, it is preferable to suppress twins as much as possible.
  • the titanium plate according to the present embodiment has twin grain boundaries with respect to the total grain boundary length of the plate thickness cross section at a position of 1/4 of the plate thickness from the surface when observing the cross section in the plate thickness direction.
  • the length ratio is preferably 5.0% or less.
  • the ratio of the twin grain boundary length to the total grain boundary length is more preferably 3.0% or less, still more preferably 1.0% or less.
  • the lower limit of the above ratio may be 0%, but it is difficult to completely eliminate twins because twins are inevitably deformed by processing such as straightening of the titanium plate. Therefore, the lower limit of the ratio of twin grain boundaries may be 0.01%. In order to reduce twins, it is important to reduce the amount of correction. For example, it is effective to make the finished plate shape as flat as possible.
  • the total grain boundary length and the twin grain boundary length of the plate thickness cross section can be obtained as follows.
  • the observed cross section (thickness direction cross section) of the sample of the titanium plate is chemically polished, and the crystal orientation is analyzed using an electron backscatter diffraction method (EBSD, Electron Back Scattering Diffraction Pattern).
  • EBSD electron backscatter diffraction method
  • a region of 1 to 2 mm x 1 to 2 mm is scanned at intervals (steps) of 1 to 2 ⁇ m at a position 1/4 of the thickness of the titanium plate of the sample, and the reverse pole point is scanned using OIM Analysis software manufactured by TSL Solutions. Create a diagram map (IPF: analyze sample figure).
  • the rotation axis and crystal orientation difference (rotation angle) of (10-12) twins, (10-11) twins, (11-21) twins, and (11-22) twins generated in titanium Within 2 ° from the theoretical value is regarded as the twin interface (for example, in the case of (10-12) twin, the theoretical values of the rotation axis and the crystal orientation difference (rotation angle) are ⁇ 11-20> and 85 °, respectively).
  • the grain boundary having a crystal orientation difference (rotation angle) of 2 ° or more is defined as the total grain boundary length, and the ratio of the twin grain boundary length to the total crystal grain boundary length is calculated.
  • the twin grain boundaries are observed at a position of 1/4 of the plate thickness from the surface because the position can sufficiently represent the structure of the titanium plate. Further, the surface of the titanium plate may not sufficiently represent the structure due to polishing or the like.
  • the surface hardness (Vickers hardness) of the surface of the titanium plate to be the drum surface is not particularly limited, but is preferably HV110 or higher. As a result, when a drum is manufactured using a titanium plate and the surface is polished, uniform polishing becomes possible, and macro patterns can be further suppressed.
  • the surface hardness (Vickers hardness) of the titanium plate is more preferably HV112 or higher, and even more preferably HV115 or higher.
  • the surface hardness (Vickers hardness) of the surface of the titanium plate to be the drum surface is preferably HV160 or less.
  • the surface hardness (Vickers hardness) of the titanium plate is more preferably HV155 or less, still more preferably HV150 or less.
  • the surface hardness of the titanium plate is measured at 3 to 5 points with a load of 1 kg using a Vickers hardness tester in accordance with JIS Z 2244: 2009 after polishing the surface of the titanium plate until it becomes a mirror surface. can do.
  • the thickness of the titanium plate according to the present embodiment is not particularly limited, and can be appropriately set according to the application, specifications, and the like of the drum to be manufactured. When used as a material for a copper foil manufacturing drum, the thickness of the titanium plate decreases with the use of the copper foil manufacturing drum. Therefore, the thickness of the titanium plate is preferably 4.0 mm or more, preferably 6.0 mm or more. May be good. The upper limit of the thickness of the titanium plate is not particularly limited, but is, for example, 15.0 mm.
  • the chemical composition of the titanium plate is a chemical composition in which the precipitation of ⁇ phase is suppressed, the crystal grains are fine and have a uniform size within a predetermined standard deviation, and further, the plate surface.
  • the area ratio of the crystal grains whose c-axis is tilted at an angle within 40 ° from the normal direction of the above to all the crystal grains is 70% or more. Therefore, it is possible to sufficiently suppress the occurrence of macro patterns when used in a drum for producing copper foil.
  • the titanium plate according to the present embodiment described above can sufficiently suppress the occurrence of macro patterns when used for a drum for copper foil production, and is suitable as a material for a drum for copper foil production.
  • FIG. 2 shows a photograph of a macro pattern on the surface of a titanium plate as an example.
  • the “macro pattern” refers to a pattern in which parts having different colors occur in a streak shape with a length of several mm parallel to the rolling direction (for reference, the macro pattern in FIG. 3 and FIG. 2). The figure that emphasizes the macro pattern is shown so that the position of can be seen).
  • the pattern is transferred to the copper foil finally produced.
  • Macro patterns occur in the copper foil manufacturing process, but for the susceptibility of macro patterns to occur on titanium plates (the rate of occurrence of macro patterns under the same conditions), the surface of the titanium plate is polished with # 800 emery paper. It can be evaluated by corroding the surface with a solution of 10% nitric acid and 5% hydrofluoric acid and observing it.
  • the copper foil manufacturing drum 20 according to the present embodiment is a part of the electrodeposition drum, and is a cylindrical inner drum 21 and a titanium plate 22 adhered to the outer peripheral surface of the inner drum 21. And the welded portion 23 provided at the butt portion of the titanium plate 22, and the titanium plate 22 is the titanium plate according to the present embodiment described above. That is, the copper foil manufacturing drum 20 according to the present embodiment is a copper foil manufacturing drum manufactured by using the titanium plate according to the present embodiment. Since the copper foil manufacturing drum 20 according to the present embodiment uses the titanium plate according to the present embodiment on the surface of the drum on which the copper foil is deposited, the occurrence of macro patterns is suppressed and high quality copper foil is manufactured. can do.
  • the size of the copper foil manufacturing drum according to the present embodiment is not particularly limited, but the diameter of the drum is, for example, 1 to 5 m.
  • the inner drum 21 may be a known one, and the material thereof may not be a titanium plate, for example, mild steel or stainless steel.
  • the titanium plate 22 is wound around the outer peripheral surface of the cylindrical inner drum 21, and the butt portion is welded using a known welding wire to be adhered to the inner drum 21. Therefore, the welded portion 23 exists in the butt portion.
  • the welded portion 23 refers to the solidified structure of the welded wire.
  • Titanium plate manufacturing method> Next, a method for manufacturing a titanium plate according to this embodiment will be described.
  • the titanium plate according to the present embodiment may be produced by any method, and for example, it may be produced by the method for producing a titanium plate according to the present embodiment described below.
  • a preferred method for producing a titanium plate according to this embodiment is A titanium material having the above-mentioned chemical composition (a titanium alloy material containing 1.50% by mass or less of Cu instead of industrial pure titanium or a part of Ti in the industrial pure titanium) is 750 ° C. or higher and 880 ° C. or lower.
  • the total reduction rate is 85% or more, and the ratio of the rolling reduction rate at 200 ° C. or higher and 650 ° C. or lower to the total reduction rate is 5% or more and 70% or less. is there.
  • each step will be described.
  • a titanium plate material (titanium material) is prepared prior to each of the above-mentioned steps.
  • the material those having the above-mentioned chemical composition can be used, and those produced by a known method can be used.
  • an ingot is produced from titanium sponge by various melting methods such as a consumable electrode type vacuum arc melting method, an electron beam melting method, or a hearth melting method such as a plasma melting method.
  • a material can be obtained by hot forging the obtained ingot at a temperature in the ⁇ -phase high temperature region or the ⁇ single-phase region.
  • the material may be subjected to pretreatment such as cleaning treatment and cutting, if necessary.
  • a rectangular slab shape that can be hot-rolled is manufactured by the hearth melting method, it can be directly subjected to the following first step and second step (heating, hot rolling) without hot forging. good.
  • This step is a heating step for the second step described later.
  • the material of the titanium plate is heated to a temperature of 750 ° C. or higher and 880 ° C. or lower. If the heating temperature is less than 750 ° C., for example, when coarse particles are generated in hot forging, casting, etc., cracks occur in the titanium plate starting from the coarse particles in the hot rolling in the second step. In some cases.
  • the heating temperature is 750 ° C. or higher, it is possible to prevent the titanium plate from cracking in the hot rolling in the second step.
  • a coarse texture in which the c-axis of the hcp structure is oriented in the plate width direction is generated in the hot rolling in the second step.
  • a structure in which the area ratio of the crystal grains whose c-axis is tilted at an angle within 40 ° from the normal direction of the plate surface as described above with respect to all the crystal grains is 70% or more is obtained.
  • the heating temperature is preferably 870 ° C. or lower. When the heating temperature is 870 ° C. or lower, the formation of T-texture can be prevented more reliably.
  • the heated titanium material is rolled (hot rolling).
  • the total reduction rate is 85% or more, and the ratio of the rolling reduction rate at 200 ° C. or higher and 650 ° C. or lower to the total reduction rate is 5% or more and 70% or less.
  • the hot rolling start temperature in this step is basically the above heating temperature.
  • the total reduction rate is 85% or more, the coarse particles generated in hot forging, casting, etc. can be sufficiently finely divided, and T-texture can be prevented from occurring. If the total reduction rate is less than 85%, the structure generated in hot forging, casting, etc. may remain, and coarse grains may be formed or T-texture may occur. When such a structure occurs, a macro pattern is generated in the produced drum. The higher the total reduction rate in this step, the better the structure, so it may be determined according to the required product size and the characteristics of the manufacturing mill.
  • the ratio of the rolling reduction rate of the titanium plate at 200 ° C. or higher and 650 ° C. or lower to the total reduction rate is 5% or more and 70% or less. If the ratio of the reduction rate at 200 ° C or higher and 650 ° C or lower is less than 5%, such as when all rolling is performed at over 650 ° C, the amount of reduction in this temperature range is insufficient, and recovery occurs during subsequent cooling, resulting in strain. A small amount occurs. Therefore, the heat treatment after hot spreading increases the variation in crystal grain size.
  • the degree of aggregation of the texture is reduced, and in the (0001) pole diagram from the normal direction of the plate surface as described above, the crystal grains whose c-axis is tilted within 40 ° from the normal direction of the plate surface.
  • the area ratio with respect to all the crystal grains is 70% or more.
  • the plate shape becomes unstable.
  • the ratio of the rolling reduction of the titanium plate to the total reduction ratio of 200 ° C. or higher and 650 ° C. or lower is preferably 10% or more, more preferably 15% or more. Further, the ratio of the reduction rate at 200 to 600 ° C. is preferably 5 to 70%, and more preferably the ratio of the reduction rate at 200 to 550 ° C. is 5 to 70%.
  • the ratio of the rolling reduction ratio at 200 ° C. or higher and 650 ° C. or lower is more than 70%, such as when the total rolling is performed at 650 ° C. or lower, the plate shape becomes unstable. In this case, the amount of processing in the subsequent straightening becomes large, strain is introduced, the difference in the amount of strain becomes large between the straightened portion and the other portion, and the variation in crystal grain size becomes large in the subsequent heat treatment. Furthermore, if correction is performed after heat treatment, strain affects and only that portion is likely to be corroded, which may cause a macro pattern.
  • the ratio of the rolling reduction of the titanium plate at 200 ° C. or higher and 650 ° C. or lower to the total reduction ratio is preferably 65% or less, more preferably 60% or less.
  • the rolling may be unidirectional rolling in which the titanium plate is stretched in the longitudinal direction, but in addition to rolling in the longitudinal direction, rolling may be performed in a direction orthogonal to the longitudinal direction. ..
  • the peak of the degree of accumulation of crystal grains can be present within 30 ° from the normal direction of the plate surface, and the degree of aggregation of the texture can be increased.
  • the rolling reduction rate in the final rolling direction is L (%) and the rolling reduction rate in the direction orthogonal to the final rolling direction is T (%)
  • the L / T is 1.0. It is preferably 5.0 or more.
  • the peak position of the degree of accumulation of crystal grains calculated by Texture analysis can be controlled, and the degree of aggregation of texture can be increased.
  • the L / T is more preferably 1.0 or more and 4.0 or less.
  • the titanium plate When rolling at 200 ° C. or higher and 650 ° C. or lower, the titanium plate may be held for a certain period of time and waited for cooling.
  • the titanium plate manufacturing method it is preferable not to reheat after heating in the first step.
  • the strain generated in rolling is prevented from being released by reheating, and the strain can be stably applied to the titanium plate.
  • the degree of integration of the texture of the titanium plate can be increased, and partial abnormal grain growth during heat treatment, which will be described later, can be suppressed.
  • the titanium plate is heat-treated (annealed) at a temperature of 600 ° C. or higher and 750 ° C. or lower for a time of 20 minutes or more and 90 minutes or less.
  • the unrecrystallized grains can be precipitated as fine recrystallized grains, and the crystals in the metal structure of the obtained titanium plate can be made uniform and fine.
  • the occurrence of macro patterns can be suppressed.
  • the titanium plate by heat-treating the titanium plate at a temperature of 600 ° C. or higher for 20 minutes or longer, unrecrystallized grains can be sufficiently precipitated as recrystallized grains. If the annealing temperature is less than 600 ° C. or less than 20 minutes, the area ratio of crystal grains whose c-axis is tilted within 40 ° from the normal direction of the plate surface cannot be sufficiently increased. Further, when the annealing temperature of the titanium plate exceeds 750 ° C. or the annealing time exceeds 90 minutes, the crystal grains become coarse. By heat-treating the titanium plate at a temperature of 750 ° C. or lower for 90 minutes or less, it is possible to prevent some crystal grains from becoming coarse. The heat treatment may be performed in an atmospheric atmosphere, an inert atmosphere or a vacuum atmosphere.
  • the titanium plate according to the present embodiment can be obtained by the manufacturing method including the above steps, but the following post-treatment steps may be further performed if necessary.
  • post-treatment process examples include removal of oxide scale and the like by pickling and cutting, cleaning treatment, and the like, which can be appropriately applied as needed.
  • the titanium plate may be straightened.
  • twins are generated, it is preferable not to perform cold rolling.
  • Copper foil manufacturing drum manufacturing method The method for producing the copper foil production drum is not particularly limited, and a known method can be used.
  • the titanium plate according to the present embodiment is wound around the outer peripheral surface of a cylindrical inner drum, and the abutted ends are welded using a known welding wire.
  • the welding wire is preferably made of industrial pure titanium (for example, JIS 1 to 4 types).
  • ratio of rolling reduction rate of 200 to 650 ° C. (%) refers to the ratio of rolling reduction rate of titanium plate at 200 ° C. or higher and 650 ° C. or lower to the total rolling reduction ratio, and is "rolling ratio (L / L /)”.
  • T) indicates the value of L / T when the rolling reduction ratio in the final rolling direction is L (%) and the rolling reduction ratio in the direction orthogonal to the final rolling direction is T (%).
  • hot rolling is temporarily stopped and cooled to 650 ° C. or lower. After waiting, hot rolling was restarted.
  • Standard deviation of average crystal grain size and particle size distribution The standard deviation of average crystal grain size and particle size distribution of crystals of the metal structure of the titanium plate according to each invention example and comparative example was measured and calculated as follows. ..
  • the cross section of the titanium plate is chemically polished, and an electron backscatter diffraction method; EBSD (Electron Backscattering Diffraction Pattern) is used to step 1 ⁇ m in a 1 mm ⁇ 1 mm region at a position 1/4 of the plate thickness from the surface. 10 fields were measured with.
  • EBSD Electro Backscattering Diffraction Pattern
  • Occurrence rate is 1.0 pieces / sheet or less (very good, 1.0 pieces or less in 50 x 100 mm)
  • Table 2 shows the obtained analysis results and evaluation results.
  • the present invention it is possible to provide a titanium plate capable of suppressing the generation of macro patterns when used in a drum for producing copper foil, and a copper foil manufacturing drum manufactured using the titanium plate. Therefore, it has high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)

Abstract

このチタン板は、質量%で、O:0%以上、0.400%以下、Cu:0%以上、1.50%以下、Fe:0%以上、0.500%以下、N:0.100%以下、C:0.080%以下、及びH:0.0150%以下、を含み、残部がTiおよび不純物を含む化学組成を有し、金属組織が、結晶構造が六方最密充填構造であるα相を含み、平均結晶粒径が40μm以下であり、前記六方最密充填構造を有する結晶の(0001)面の法線をc軸としたとき、板面の法線方向から40°以内の角度に前記c軸が傾いた結晶粒の、すべての結晶粒に対する面積率が、70%以上であり、単位μmでの結晶粒径の対数に基づく粒度分布の標準偏差が0.80以下である。

Description

チタン板および銅箔製造ドラム
 本発明は、チタン板および銅箔製造ドラムに関する。
 本願は、2019年04月17日に、日本に出願された特願2019-078825号に基づき優先権を主張し、その内容をここに援用する。
 多層配線基板、フレキシブル配線板等の配線基板の配線やリチウムイオン電池の集電体等の電子部品の導電部位には、多くの場合、銅箔が原料として利用されている。
 このような用途に利用される銅箔は、銅箔製造ドラムを備える銅箔製造装置によって、製造される。図4は、銅箔製造装置の模式図である。銅箔製造装置1は、例えば、図4に示すように、硫酸銅溶液が溜められている電解槽10と、一部が硫酸銅溶液に浸漬されるように電解槽10内に設けられた電着ドラム2と、電解槽10内で硫酸銅溶液に浸漬され、電着ドラム2の外周面と所定間隔で対向するように設けられた電極板30と、を備える。電着ドラム2と電極板30との間に電圧を印加することで、電着ドラム2の外周面に銅箔Aが電着して生成する。所定厚さとなった銅箔Aは、巻取部40により電着ドラム2から剥離され、ガイドロール50でガイドされながら巻取ロール60に巻き取られる。
 ドラム(電着ドラム)の材料としては、耐食性に優れること、銅箔の剥離性に優れること、などの観点から、その表面(外周面)にはチタンが一般に使用されている。しかしながら、耐食性に優れたチタンを用いた場合であっても、銅箔の製造を長期間にわたり行うと、硫酸銅溶液中でドラムを構成するチタンの表面が徐々に腐食を受ける。そして、腐食を受けたドラム表面の状態は、銅箔の製造時に銅箔に転写される。
 金属材料の腐食は、その金属材料の有する結晶組織、結晶方位、欠陥、偏析、加工歪み、残留歪みなど、金属組織に起因する様々な内質要因によって、腐食状態や腐食の程度が異なることが知られている。部位間で金属組織が不均質な金属材料を用いたドラムが、銅箔の製造に伴い腐食を受けた場合、ドラムの均質な面状態が維持できなくなり、ドラム表面に不均質な面が生じる。ドラム表面に生じた不均質な面は模様として識別できる。このような不均質な金属組織に起因する模様のうち、比較的面積の大きなマクロ組織に起因し、肉眼で判別できる模様を「マクロ模様」という。そして、ドラム表面に生じたマクロ模様も、銅箔の製造時に銅箔に転写され得る。
 したがって、高精度かつ均質な厚さの銅箔を製造するためには、ドラムを構成するチタン板のマクロ組織を均質にして、ドラムの表面の腐食を均質にすることにより、不均質なマクロ組織に起因したマクロ模様を低減することが、重要である。
 特許文献1には、質量%で、Cu:0.15%以上、0.5%未満、酸素:0.05%超、0.20%以下、Fe:0.04%以下を含み、残部チタンと不可避不純物からなり、平均結晶粒径が35μm未満のα相均質微細再結晶組織からなることを特徴とする、電解Cu箔製造ドラム用チタン板が提案されている。
 特許文献2には、質量%で、Cu:0.3~1.1%、Fe:0.04%以下、酸素:0.1%以下、水素:0.006%以下を含み、平均結晶粒度が8.2以上であり、かつビッカース硬度が115以上、145以下であり、板面に平行な部位において、集合組織が、圧延面より法線方向(ND軸)からのα相の(0001)面極点図において、(0001)面の法線の倒れの角度が、圧延幅方向TD方向に±45°を長軸、最終圧延方向RD方向に±25°を短軸とする楕円の範囲内に存在する結晶粒の総面積をA、それ以外の結晶粒の総面積をBとし、面積比A/Bが3.0以上であることを特徴とする、電解Cu箔製造ドラム用チタン板が提案されている。
 特許文献3には、Al:0.4~1.8%を含み、板厚4mm以上、表面下1.0mmおよび1/2板厚部の板面に平行な部位において平均結晶粒度8.2以上、ビッカース硬度115以上145以下、表面下1mmから1/2板厚部にわたる板面に平行な部位において集合組織が最終圧延方向RD圧延面の法線ND圧延幅方向をTD(0001)面の法線をc軸としたとき圧延面より法線方向からのα相の(0001)面極点図においてc軸のTD方向への倒れの角度が-45~45°、c軸のRD方向への倒れの角度が-25~25°である楕円の領域にc軸が存在する結晶粒の総面積をA、それ以外の結晶粒の総面積をBとし、面積比A/Bが3.0以上であるチタン合金厚板が提案されている。
日本国特開2009-41064号公報 日本国特開2012-112017号公報 日本国特開2013-7063号公報
 しかしながら、今般の電子部品の小型化および高密度化に伴い、銅箔には、さらなる薄肉化および表面品質の向上が求められている。このような状況下、上述したマクロ模様についても更なる低減が求められている。しかしながら、特許文献1~3に記載されるような従来の技術では十分にはマクロ模様を低減することができなかった。
 本発明は、上記問題に鑑みてなされたものであり、本発明の目的は、銅箔製造ドラム(銅箔製造装置が備えるドラム)に使用した際にマクロ模様の発生を抑制可能なチタン板および同チタン板を部材として用いた(同チタン板を用いて製造された)銅箔製造ドラムを提供することにある。
 本発明者らは、上述した問題を解決すべく鋭意検討した。その結果、チタン板中の集合組織の結晶粒径を小さくしたり、hcp構造を有する結晶の(0001)面の法線(c軸)を圧延面と垂直に近づけたりすることは有効であるものの、それらのみでは、今般求められる水準までマクロ模様の発生を抑制できないことを知見した。
 本発明者らがさらに検討した結果、組織において、結晶粒を微細のみならず均一の大きさとし、板面の法線方向から40°以内の角度にc軸(hcp構造を有する結晶の(0001)面の法線([0001]方向))が傾いた結晶粒の面積率を、すべての結晶粒の面積率に対し70%以上とし、かつ、化学組成をβ相の析出が抑制される化学組成とすることにより、マクロ模様の発生を抑制できることを見出した。そして、このような化学組成および集合組織を同時に達成可能なチタン板の製造方法を見出し、本発明に至った。
 上記知見に基づき完成された本発明の要旨は、以下の通りである。
(1)本発明の一態様に係るチタン板は、質量%で、O:0%以上、0.400%以下、Cu:0%以上、1.50%以下、Fe:0%以上、0.500%以下、N:0.100%以下、C:0.080%以下、及びH:0.0150%以下、を含み、残部がTiおよび不純物を含む化学組成を有し、金属組織が、結晶構造が六方最密充填構造であるα相を含み、平均結晶粒径が40μm以下であり、前記六方最密充填構造を有する結晶の(0001)面の法線をc軸としたとき、板面の法線方向から40°以内の角度に前記c軸が傾いた結晶粒の、すべての結晶粒に対する面積率が、70%以上であり、単位μmでの結晶粒径の対数に基づく粒度分布の標準偏差が0.80以下である。
(2)上記(1)のチタン板では、前記板面の前記法線方向からの(0001)極点図において、電子線後方散乱回折法の球面調和関数法を用いた極点図の展開指数を16、ガウス半値幅を5°としたときのTexture解析により算出される結晶粒の集積度のピークが、前記板面の前記法線方向から30°以内に存在し、かつ、最大集積度が4.0以上である、集合組織を有してもよい。
(3)上記(1)または(2)に記載のチタン板では、前記平均結晶粒径を単位μmでDとした際に、前記粒度分布の標準偏差が、(0.35×lnD-0.42)以下であってもよい。
(4)上記(1)~(3)のいずれかに記載のチタン板では、板厚方向断面を観察した際に、表面から板厚の1/4の位置における、全結晶粒界長さに対する双晶粒界長さの割合が、5.0%以下であってもよい。
(5)上記(1)~(4)のいずれかに記載のチタン板では、前記化学組成が、質量%で、Cu:0.10%以上1.50%以下を含んでもよい。
(6)上記(1)~(5)のいずれかに記載のチタン板は、銅箔製造ドラム用チタン板であってもよい。
(7)本発明の別の態様に係る銅箔製造ドラムは、円筒状のインナードラムと、前記インナードラムの外周面に被着された、請求項1~6のいずれか一項に記載のチタン板と、前記チタン板の突合せ部に設けられた溶接部と、を有する。
 以上説明したように、本発明の上記態様によれば、銅箔製造用のドラムに使用した際にマクロ模様の発生を抑制可能なチタン板および同チタン板を用いて製造される銅箔製造ドラムを提供することが可能となる。
本発明の一実施形態に係るチタン板の集合組織を説明するための、圧延面の法線方向(ND)からの(0001)極点図である。 腐食後のチタン板の表面に観察されるマクロ模様の一例を示す顕微鏡写真である。 マクロ模様の位置を示すため、マクロ模様を強調した参考図である。 銅箔製造装置の模式図である。 本実施形態に係る銅箔製造ドラムの模式図である。 六方最密充填構造を有する結晶粒を示す図である。 α相の結晶方位を説明するための説明図である。
 以下、本発明の好適な実施の形態について詳細に説明する。
<1.チタン板>
 まず、本発明の一実施形態に係るチタン板(本実施形態に係るチタン板)について説明する。本実施形態に係るチタン板は、銅箔製造ドラムの材料として利用されることを想定している。したがって、本実施形態に係るチタン板は、銅箔製造ドラム用チタン板であるともいえる。銅箔製造ドラムにおいて使用される場合、チタン板の一方の面が、ドラムの円筒表面を構成する。
(1.1 化学組成)
 本実施形態に係るチタン板の化学組成について説明する。本実施形態に係るチタン板は、工業用純チタンまたは前記工業用純チタン中のTiの一部に代え1.50質量%以下のCuを含むチタン合金の化学組成を有する。具体的には、本実施形態に係るチタン板は、質量%で、Cu:0%以上1.50%以下、Fe:0%以上0.500%以下、O:0%以上0.400%以下、N:0.100%以下、C:0.080%以下、及びH:0.0150%以下、を含み、残部がTiおよび不純物を含む化学組成を有する。
 工業用純チタンは、添加元素が極めて少量であり、これを用いた場合、チタン板において実質的にα相単相からなる。このように、チタン板を構成する相をα相単相とすることにより、チタン板をドラムに用い、当該ドラムを硫酸銅溶液に浸漬した際に、ドラムが均一に腐食される。これにより、α相、β相の腐食速度の違いによるマクロ模様の発生が抑制される。
 さらには、工業用純チタンは、熱間加工性に優れ、熱間圧延後の板形状が平坦になり、その後の矯正を少なくすることが可能である。このため、矯正によるひずみの付与およびこれに伴う転位や双晶の導入が抑制される。チタン板に転位や双晶が多く存在する場合、転位や双晶を起点として模様が発生したり、硫酸銅溶液に浸漬した際に腐食が発生したりする。工業用純チタンをチタン板の材料として用いることにより、このような問題が予め防止されるので、この観点からもマクロ模様の発生が抑制される。
 これに対し、チタン板にAl等のα安定化元素を含有させることも考えられる。例えば、Alは、α単相域での熱処理により結晶粒成長を抑制する効果がある。しかしながら、Al等のα安定化元素はチタン板の高温強度を大きく向上させる。後述するように本実施形態に係るチタン板を製造する際には、集合組織制御を目的として、熱間圧延を比較的低い温度まで実施する。そのため、高温強度が高くなりすぎると、熱間圧延時の反力が大きくなりすぎ、熱延後のチタン板の形状が大きく歪み、チタン板が波形状になる。この場合、チタン板に対しその後の矯正が多く必要となるが、多くの矯正を行うと、その際にひずみが付与されると転位や双晶が多く導入されてしまう。この結果、上述したように、チタン板をドラムに用いた際に、マクロ模様が発生しやすくなる。
 他方、チタン板の結晶粒径を制御するために、β安定化元素を含有させ、β相を生成させることでピン止め効果を活用する方法が考えられる。しかしながら、β相はα相に比べ腐食されやすいので、仮にβ相が集合してしまった場合、その部分でのみ腐食が進行し、銅箔に転写される可能性がある。そのため、β安定化元素をチタン板に含有させた場合、基本的にはマクロ模様の発生の抑制は困難である。
 ただし、β安定化元素の中でもCuは他の元素に比べてα相中の固溶限が大きく、比較的多くの含有量を、β相を析出させずにチタン板に含有させることが可能である。さらに、Cuは固溶強化能が比較的大きいので、後述する表面硬さを高くするのにも有効である。本発明者らが検討した結果、Cuは、チタン板中に1.50質量%以下の範囲で含有させることが可能であることが分かった。
 以下、具体的に説明する。
 工業用純チタンとしては、例えば、JIS H 4600:2012に規定される1~4種およびASTM B348に規定されるGrade 1~4、F67等が挙げられる。また、上述した規格に準拠していない工業用純チタンや、上述した以外の規格に準拠した工業用純チタンであっても、当業者が技術常識を考慮して「工業用純チタン」と認識すべき範囲内で、本実施形態に係るチタン板の材料として使用できる。そして、上述した工業用純チタンを、本実施形態に係るチタン板が使用されるドラムの具体的な用途や仕様に合わせて適宜選択することができる。また、上述した工業用純チタン中のTiの一部に代え1.5質量%以下のCuを含むチタン合金であることもできる。したがって、具体的には、本実施形態に係るチタン板は、質量%で、Cu:0%以上1.50%以下、Fe:0%以上0.500%以下、O:0%以上0.400%以下、N:0.100%以下、C:0.080%以下、及びH:0.0150%以下、を含み、残部がTiおよび不純物を含む化学組成を有することができる。
 以下、各元素の含有量の限定理由について説明する。各元素の含有量の%は、断りがない限り、質量%である。
 O :0%以上0.400%以下
 Oは、チタン板の強度の向上に寄与し、表面硬度の増大に寄与する元素である。しかしながら、チタン板の強度が高くなりすぎると、矯正時に比較的大きな加工が必要となり、ドラムを製造し難くなる。また、表面硬度が大きくなりすぎると、チタン板をドラムとした際に研磨が困難となる。したがって、O含有量を0.400%以下とする。O含有量は、好ましくは0.150%以下、より好ましくは0.120%以下である。Oは、本実施形態に係るチタン板において必須ではないことから、その含有量の下限は0%である。しかしながら、溶解原料であるスポンジチタンや添加元素からの混入を防ぐことは難しく、実質的な下限は0.020%である。
 O含有量により強度向上効果を得る場合、O含有量は好ましくは、0.030%以上である。
 Cu:0%以上1.50%以下
 Cuは、β相を安定化させるとともに、α相にも固溶し、α相を強化することで、研磨性の向上に寄与する元素である。さらに、CuはTiと結合してTiCuを形成し得る元素である。研磨性の観点からは、TiCuは析出させない方がよいが、TiCuは結晶粒成長を抑制するので、研磨性に影響しない程度でTiCuを析出させると、チタン板において均一かつ微細な結晶粒径が得られやすくなる。このような効果を得る場合、Cu含有量を、0.10%以上とすることが好ましく、0.20%以上とすることがより好ましく、0.40%以上とすることがさらに好ましい。
 一方、Cu含有量が1.50%超であると、TiCuが過度に析出し、研磨性が低下するとともに表面性状が劣化する(マクロ模様が形成される)懸念がある。そのため、Cu含有量を1.50%以下とする。Cu含有量は、好ましくは1.30%以下、さらに好ましくは1.20%以下である。
 Fe:0%以上0.500%以下
 Feは、β相を安定化する元素である。チタン板においてはβ相の析出量が多くなるとマクロ模様が生成しやすくなる。そのため、Fe含有量を0.500%以下とする。Fe含有量は、好ましくは0.100%以下、より好ましくは0.080%以下である。Feは、本実施形態に係るチタン板において必須ではないことから、その含有量の下限は0%である。しかしながら、溶解原料であるスポンジチタンや添加元素からの混入を防ぐことは難しく、実質的な下限は0.001%である。
 また、Feはβ相のピン止めによる結晶粒成長抑制に寄与する元素である。また、FeはTi中に固溶した状態でもソリュートドラッグ効果により粒成長を抑制する元素である。これらの効果を得る場合、Fe含有量は、0.020%以上が好ましく、0.025%以上がさらに好ましい。
 N :0.100%以下
 C :0.080%以下
 H :0.0150%以下
 N、C、Hは、いずれも多量に含有すると、延性、加工性が低下する。そのため、N含有量は0.100%以下、C含有量は0.080%以下、H含有量は0.0150%以下にそれぞれ制限する。
 一方、N、C、Hの含有量はそれぞれ低いほど好ましいが、N、C、Hは、不可避的に混入する不純物である。そのため、実質的な含有量の下限は、通常、Nで0.0001%、Cで0.0005%、Hで0.0005%である。
 本実施形態に係るチタン板の化学組成の残部は、Ti及び不純物を含み、Ti及び不純物からなってもよい。不純物とは、具体的に例示すれば、上述の元素以外に、精錬工程で混入するCl、Na、Mg、Si、Caおよびスクラップから混入するAl、Zr、Sn、Mo、Nb、Ta、Vなどである。これらの不純物元素が含有される場合、その含有量は、例えば、それぞれ0.10%以下であり、総量で0.50%以下であれば問題無いレベルである。
 上記にて説明したTi以外の各元素の含有量の下限値は0%であり、チタン板は、上記の各元素を含まなくてもよい。
 化学組成は、以下の方法で求める。
 Cu、Fe等のβ安定化元素はIPC発光分光分析により測定する。OおよびNについては、酸素・窒素同時分析装置を用い、不活性ガス溶融、熱伝導度・赤外線吸収法により測定する。Cについては、炭素硫黄同時分析装置を用い、赤外線吸収法により測定する。Hについては、不活性ガス溶融、赤外線吸収法により測定する。
(1.2 金属組織)
 次に、本実施形態に係るチタン板の金属組織について説明する。本実施形態に係るチタン板は、金属組織が、結晶構造が六方最密充填構造であるα相を含み、平均結晶粒径が40μm以下であり、結晶粒径(μm)の対数に基づく粒度分布の標準偏差が0.80以下であり、板面の法線方向から40°以内の角度にc軸(六方最密充填構造を有する結晶の(0001)面の法線)が傾いた結晶粒の、すべての結晶粒に対する面積率が、70%以上である。以下、本実施形態に係るチタン板の金属組織について、順を追って詳細に説明する。
(1.2.1 金属組織の相構成)
 本実施形態に係るチタン板の金属組織は、主としてα相を含む。α相は、六方最密充填構造(hexagonal close-packed、hcp)を有する。
 β相は、α相よりも優先して腐食する。このため、均一な腐食を達成し、マクロ模様の発生を抑制する観点からは、β相は少ないほうが好ましい。そのため、本実施形態に係るチタン板の金属組織におけるα相の体積率は、好ましくは98.0%以上、より好ましくは99.0%以上、さらに好ましくは100%である。すなわち、実質的にα相単相である。実質的なα相単相の金属組織は、上述したようなチタン板の化学組成により達成することができる。
 一方で、β相が少量存在する場合、熱処理時の結晶粒成長を抑制できるので、均一かつ微細な結晶粒径を得ることができる。また、チタン板がCuを含有する場合、生成するTiCuは粒成長を抑制できる。しかしながら、TiCuが析出し過ぎると研磨性が変化する恐れがある。このような観点から、チタン板の金属組織は、β相、TiCuを含んでもよいが、β相、TiCuの体積率は、合計で2.0%以下であることが望ましい。β相、TiCuの体積率は好ましくはそれぞれ1.0%以下である。
 チタン板の金属組織は、未再結晶部が含まれないことが好ましい。未再結晶部は、一般に、粗大であり、マクロ模様の原因となりうる。チタン板の金属組織は、好ましくは完全再結晶組織である。再結晶組織とはアスペクト比が2.0未満の結晶粒から成る組織である。未再結晶粒の有無は、以下の方法で確認することができる。すなわち、アスペクト比が2.0以上である結晶粒を未再結晶粒とし、その有無を確認する。具体的には、チタン板を切断した断面を化学研磨し、電子線後方散乱回折法;EBSD(Electron Back Scattering Diffraction Pattern)を用いて、1~2mm×1~2mmの領域を、1~2μmのステップで、2~10視野程度測定する。その後、EBSDにより測定された5°以上の方位差境界を結晶粒界とし、この結晶粒界で囲まれた範囲を結晶粒とし、結晶粒の長軸および短軸を求め、長軸を短軸で除した値(長軸/短軸)をアスペクト比とし算出する。長軸とは、α相の粒界上の任意の2点を結ぶ線分のうちで、長さが最大になるものをいい、短軸とは、長軸に直交し、かつ粒界上の任意の2点を結ぶ線分のうちで、長さが最大になるものをいう。
 チタン板の金属組織を構成する各相の体積率は、SEM(Scanning Electron Microscopy)に付属のEPMA(Electron Probe Microanalyzer)(SEM/EPMA)により容易に測定・算出できる。具体的には、チタン板の任意の断面に対し、鏡面まで研磨し、100倍の倍率で、表面から板厚の1/4の位置の、1mm×1mmの領域を、1~2μmのステップで2~5視野程度、SEM/EPMAを用いて、FeおよびCuの濃度分布を測定する。FeやCuはβ相もしくはTiCu部で濃化するので、各点のうち、Fe濃度が測定範囲の平均濃度よりも1質量%以上高い点(濃化部)をβ相、Cu濃度が測定範囲の平均濃度よりも1質量%以上高い点(濃化部)をTiCuと定義し、各相の面積率を求める。面積率と体積率とは等しいとして、得られた面積率をβ相及びTiCuの体積率とする。そして、濃化していない部分(濃化部以外)の面積率をα相の体積率とする。
(1.2.2 結晶粒の平均粒径及び粒度分布)
 次に、本実施形態に係るチタン板の金属組織に含まれる結晶粒の平均粒径及び粒度分布について説明する。
 チタン板の金属組織の結晶粒の粒径(結晶粒径)が粗大であると、その結晶粒そのものが模様となり、銅箔に模様が転写されるので、結晶粒径は微細な方が良い。チタン板の金属組織の結晶粒の平均結晶粒径が40μmを超えると、その結晶粒そのものが模様となり、銅箔に模様が転写されてしまう。このため、チタン板の金属組織の結晶粒の平均結晶粒径は、40μm以下とする。これにより、結晶粒が十分に微細となり、マクロ模様の発生が抑制される。チタン板の金属組織の結晶粒の平均結晶粒径は、好ましくは38μm以下、より好ましくは35μm以下である。
 チタン板の金属組織の平均結晶粒径の下限値は特に限定されない。しかしながら、結晶粒が非常に小さい場合には、熱処理時に未再結晶部が発生する恐れがある。このため、結晶粒の平均結晶粒径は、好ましくは5μm以上、より好ましくは10μm以上である。
 ところで、本発明者らは、チタン板の金属組織の結晶粒が単に微細であるのみでは、十分にマクロ模様を抑制できないことを知見した。すなわち、チタン板の金属組織の平均結晶粒径が微細であっても、粒度分布が広い場合、粗大な結晶粒が存在してしまう。このような粗大な結晶粒と微細な結晶粒とが混在した部位が存在すると、粒径の差によりマクロ模様が発生し得る。このため、チタン板の金属組織の結晶粒は、微細であるのみならず、粒度分布が狭い、すなわち結晶粒の粒径が均一であることがマクロ模様の発生の抑制に重要であることを、本発明者らは見出した。
 具体的には、本実施形態に係るチタン板において、各々の結晶粒径(μm)の対数に基づく粒度分布の標準偏差は0.80以下である。結晶粒が上述したような平均結晶粒径であるとともに、このような粒度分布の標準偏差を満足することにより、金属組織中の結晶粒が十分に微細かつ均一となる。この場合、チタン板を銅箔製造ドラムに用いた際に、マクロ模様の発生が抑制される。
 これに対し、結晶粒径(μm)の対数に基づく粒度分布の標準偏差が、0.80を超えると、上述したような平均結晶粒径を満足した場合であっても、粗大な結晶粒が発生してしまい、チタン板をドラムに用いた際に、マクロ模様が発生しやすくなる。
 結晶粒径(μm)の対数に基づく粒度分布の標準偏差は、平均結晶粒径をD(μm)とした際に、(0.35×lnD-0.42)以下であることが好ましい。
 チタン板の金属組織の結晶の平均結晶粒径および粒度分布の標準偏差は、以下のようにして測定、算出することができる。具体的には、チタン板を切断した断面を化学研磨し、電子線後方散乱回折法;EBSD(Electron Back Scattering Diffraction Pattern)を用いて、表面から板厚の1/4の位置の、1~2mm×1~2mmの領域を、1~2μmのステップで、2~10視野程度測定する。結晶粒径についてはEBSDにより測定された5°以上の方位差の粒界を粒界とし、この粒界で囲まれた範囲を結晶粒とし、結晶粒の面積から円相当粒径(面積A=π×(粒径D/2))を求め、この個数基準の平均値を平均結晶粒径とする。
 また、結晶粒径分布より対数正規分布(各結晶粒の円相当粒径Dを自然対数LnDに変換した変換値の分布)における標準偏差σを算出する。
 一般に金属材料の結晶粒径分布は対数正規分布に従うことが知られている。したがって、上述したような粒度分布の標準偏差の算出に当たっては、得られた粒度分布を対数正規分布に規格化し、規格化した対数正規分布より標準偏差を算出してもよい。
(1.2.3 集合組織)
 次に、チタン板の集合組織の結晶方位について説明する。チタン板は、上述した化学組成に起因して、実質的にα相単相であり、α相の結晶構造は、図6に示すような六方最密充填構造(hexagonal close-packed、hcp)をとる。hcp構造は、結晶方位による物性の異方性が大きい。具体的には、六方最密充填構造を有する結晶の(0001)面の法線方向(c軸方向:[0001]方向)に平行な方向では強度が高く、c軸方向と垂直な方向に近づくほど強度が低い。このため、チタン板が上述したような結晶粒の粒度分布を満足しても、結晶方位の異なる結晶の集合体が発生すると、両集合体間での加工性が異なり、銅箔製造ドラム製造時において、研磨時の加工で差が発生する。この結果、得られるドラムにおいて結晶粒に近いサイズでの模様として認識されてしまう。本発明者らは、チタン板の集合組織の結晶方位をできる限り集積させることにより、上記の模様の発生を抑制できることを知見した。
 さらに、チタン板は、c軸方向に平行な方向では強度が高い。そのため、c軸に対し垂直な面を研磨すると、研磨後の模様が発生しにくい。このような観点から、本発明者らは、チタン板の集合組織の結晶方位について、研磨面と垂直となるように、すなわち、チタン板の表面と垂直な厚さ方向(圧延面の法線方向)と並行となるように、チタン板の結晶格子のc軸を配置することが好ましいことを見出した。
 以上の知見に基づき、本実施形態においては、板面の法線方向から40°以内の角度にc軸が傾いた結晶粒の面積(図1に示す板面の法線方向(ND)からの(0001)極点図における、点線b内に存在する結晶粒の面積)の、すべての結晶粒の面積に対する割合(面積率)が、70%以上である。これにより、結晶方位が集積し、隣接する結晶間の結晶方位の差を小さくすることができ、マクロ模様を抑制できる。圧延面の法線方向から40°以内の角度にc軸が存在する結晶粒のすべての結晶粒に対する面積率は、好ましくは72%以上である。一方、上記面積率は高ければ高いほど良いため特に上限は定めないが、実質的に製造可能なのが95%程度までである。
 ここで、板面の法線方向から40°以内の角度にc軸が傾いたとは、図7に示すように、チタン板のNDと結晶粒のc軸とがなす角θが40°以内であることを意味する。
 (0001)極点図は、チタン板の試料の観察表面を化学研磨し、電子線後方散乱回折法(EBSD、Electron Back Scattering Diffraction Pattern)を用いて結晶方位解析することにより得られる。より具体的には、例えば1~2mm×1~2mmの領域を、1~2μmの間隔(ステップ)でスキャンし、(0001)極点図を作図することができる。
 板面の法線方向から40°以内の角度にc軸が傾いた結晶粒(c軸と板面の法線方向とがなす角が40°以内である結晶粒)の面積率は、以下の方法で測定する。
 チタン板を切断した断面を化学研磨し、電子線後方散乱回折法;EBSD(Electron Back Scattering Diffraction Pattern)を用いて、1~2mm×1~2mmの領域を、1~2μmのステップで、2~10視野程度測定する。そのデータをTSLソリューションズ製のOIM Analysisソフトウェアを用いて、c軸の傾きが板面の法線方向から40°以内の角度の結晶粒の、全体の結晶粒に対する面積率を求める。
 チタン板は、さらに、板面(圧延材であれば圧延面)の法線方向(ND)からの(0001)極点図において、結晶粒の集積度のピークが板面の法線方向から30°以内に存在し、かつ、最大集積度が4.0以上である、集合組織を有することが好ましい。これにより、より結晶粒のc軸をチタン板の厚さ方向(ND)に近い部分により集積させることができ、チタン板を銅箔製造ドラムに用いた際に結晶方位の差に起因する模様の発生がより抑制される。
 圧延等によれば、結晶粒の集積度のピークは、最終圧延方向と直角な方向(最終圧延幅方向(TD))に傾きやすい。そのため、最終圧延方向が明確な場合には、圧延面の法線方向(ND)からの(0001)極点図において、結晶粒の集積度のピークが、圧延面の法線方向(ND)から最終圧延幅方向(TD)に30°以内に存在すればよい。
 図1に、本実施形態に係るチタン板の集合組織を説明するための、圧延面の法線方向(ND)からの(0001)極点図を示す。図1においては、検出された極点が、最終圧延方向(RD)および最終圧延幅方向(TD)への傾きに応じて集積され、(0001)極点図に集積度の等高線が描かれている。この際の、最も等高線が高い位置が集積度のピーク位置であり、ピーク位置のうち最も集積度の大きな値を最大集積度とする。例えば、図1中、等高線が最も高くなる部位が結晶粒の集積度のピークP1、P2となる。したがって、本実施形態においては、結晶粒のピークP1、P2が、それぞれTDに対しND(中心)から30°以内に存在する。たとえば、ピークP1の場合、図中aが30°以内となる(図1のP1のように、TD方向からピーク位置が少しずれる場合があるが、10°以内のずれは許容し、aが30°以内であればよい)。さらに、最大集積度が4.0以上である。通常、最大集積度は、結晶粒のピークP1、P2の集積度のいずれかとなる。
 これに対し、(0001)極点図において、結晶粒の集積度のピークが、ND(中心)から30°以内に存在しない場合(最終圧延方向が明確な場合には、最終圧延幅方向(TD)に対し、NDから30°以内に存在しない場合)、結晶方位が異なる結晶粒が隣接しやすくなり、視認可能なマクロ模様が発生しやすくなる。具体的には、例えば通常の一軸圧延のチタン熱間圧延板では、通常、NDに対してhcp構造のc軸が最終圧延幅方向(TD)に35~40°程度傾いた部位において集積度がピークとなる集合組織が形成される。しかしながら、ピークがこの位置の場合、さらに15~20°傾いた位置まで結晶方位が分布するため、結晶方位が異なる結晶粒が隣接する場合があり、マクロ模様を生じやすくなる。
 また、最大集積度は、4.0以上であることが好ましい。これにより、結晶方位が十分に集積し、隣接する結晶間の結晶方位の差を小さくすることができる。最大集積度は、4.0以上であることが好ましいが、マクロ模様の発生のより一層の抑制を目的として、より好ましくは5.0以上、さらに好ましくは6.0以上である。
 最大集積度は、大きい程好ましく、したがって上限は限定されないが、例えば熱間圧延により結晶方位を制御する場合、15~20程度が上限となりうる。
 (0001)極点図における特定の方位の集積度は、その方位をもつ結晶粒の存在頻度が、完全にランダムな方位分布をもつ組織(集積度1)に対して、何倍であるかを示す。この集積度は、電子線後方散乱回折(EBSD)法の球面調和関数法を用いた極点図のTexture解析を用いて算出できる(展開指数=16、ガウス半値幅=5°)。具体的には、チタン板を切断した断面を化学研磨し、電子線後方散乱回折法;EBSD(Electron Back Scattering Diffraction Pattern)を用いて、1~2mm×1~2mmの領域を、1~2μmのステップで、2~10視野程度測定する。そのデータをTSLソリューションズ製のOIM Analysisソフトウェアを用いて球面調和関数法を用いた極点図のTexture解析により算出する。
(1.2.4 双晶)
 チタン板は塑性変形時に双晶変形を生じることがある。双晶変形は化学組成以外にも結晶粒径にも依存し、粒径が大きいほど発生し易い。そのため、双晶が生じることにより、見た目の結晶粒径分布は均一になる場合がある。
 一方で、双晶変形を生じると結晶方位差が大きくなり、結晶方位が大きく異なる結晶粒が隣接してしまい、その境界で研磨性が変化し模様として認識されるようになる。そのため、双晶は可能な限り抑制することが好ましい。
 具体的には、本実施形態に係るチタン板は、板厚方向断面を観察した際に、表面から板厚1/4の位置における、板厚断面の全結晶粒界長さに対する双晶粒界長さの割合が、5.0%以下であることが好ましい。これにより、双晶に起因するマクロ模様を認識不可能な水準まで低減できる。全結晶粒界長さに対する双晶粒界長さの割合は、より好ましくは3.0%以下であり、さらに好ましくは1.0%以下である。上記割合の下限値は0%であってもよいが、チタン板の矯正等の加工により双晶変形が不可避的に生じるので、完全に双晶を排除することは困難である。そのため、双晶粒界の割合の下限を0.01%としてもよい。双晶を減らすためには、矯正量を減らすことが重要であり、例えば、仕上がりの板形状をできる限り平らにすることが有効である。
 また、上記の割合の算出に当たり、板厚断面の全結晶粒界長さおよび双晶粒界長さは、以下のようにして求めることができる。まず、チタン板の試料の観察断面(厚さ方向断面)を化学研磨し、電子線後方散乱回折法(EBSD、Electron Back Scattering Diffraction Pattern)を用いて結晶方位解析する。試料のチタン板表面から板厚の1/4の位置において、1~2mm×1~2mmの領域を、1~2μmの間隔(ステップ)でスキャンし、TSLソリューションズ製のOIM Analysisソフトウェアを用い逆極点図マップ(IPF:inverse pole figure)を作成する。その際、チタンで発生する(10-12)双晶、(10-11)双晶、(11-21)双晶、(11-22)双晶の回転軸および結晶方位差(回転角)の理論値から2°以内を双晶界面とみなす(例えば、(10-12)双晶の場合、回転軸および結晶方位差(回転角)の理論値はそれぞれ<11-20>および85°)。そして、結晶方位差(回転角)が2°以上の粒界を全結晶粒界長さとし、全結晶粒界長さに対する双晶粒界長さの割合を算出する。表面から板厚の1/4の位置における双晶粒界を観察するのは、当該位置がチタン板の組織を十分に代表することができるためである。また、チタン板の表面は、研磨等により組織を十分に代表できない可能性があるからである。
(1.3 表面硬度)
 チタン板のドラム表面となる面の表面硬度(ビッカース硬さ)は、特に限定されないが、HV110以上であることが好ましい。これにより、チタン板を用いてドラムを製造し、表面を研磨する際に、均一な研磨が可能となり、マクロ模様をより一層抑制することができる。チタン板の表面硬度(ビッカース硬さ)は、より好ましくはHV112以上、さらに好ましくはHV115以上である。
 また、チタン板のドラム表面となる面の表面硬度(ビッカース硬さ)は、HV160以下であることが好ましい。これにより、チタン板の矯正時に必要な加工量を十分に小さくすることができ、さらに表面硬度が適度であるため、研磨性が良好となる。チタン板の表面硬度(ビッカース硬さ)は、より好ましくはHV155以下、さらに好ましくはHV150以下である。
 チタン板の表面硬度は、チタン板表面を鏡面となるまで研磨した後、JIS Z 2244:2009に準拠してビッカース硬さ試験機を用いて荷重1kgで3~5点測定し、その平均値とすることができる。
(1.4 厚さ)
 本実施形態に係るチタン板の厚さは、特に限定されず、製造されるドラムの用途、仕様等に合わせて適宜設定することができる。銅箔製造ドラムの材料として用いられる場合、銅箔製造ドラムの使用に伴い、板厚が減少するため、チタン板の厚さは4.0mm以上とすることが好ましく、6.0mm以上であってもよい。チタン板の厚さの上限は、特に限定されないが、例えば、15.0mmである。
 以上説明した本実施形態においては、チタン板の化学組成をβ相の析出が抑制された化学組成とするともに、結晶粒を微細かつ所定の標準偏差内に収まる均一の大きさとし、さらには板面の法線方向から40°以内の角度にc軸が傾いた結晶粒の、すべての結晶粒に対する面積率が、70%以上としている。したがって、銅箔製造用のドラムに使用した際にマクロ模様の発生を十分に抑制可能である。
 以上説明した本実施形態に係るチタン板は、銅箔製造用のドラムに使用した際にマクロ模様の発生を十分に抑制可能であり、銅箔製造用のドラムの材料として適している。
 図2に一例としてチタン板の表面のマクロ模様の写真を示す。「マクロ模様」とは図2に示すように圧延方向に平行に、数mm長さのスジ状に色の異なる部位が発生するものを指す(参考のため、図3に、図2のマクロ模様の位置が分かるようにマクロ模様を強調した図を示す)。このような模様が多量に発生すると、最終的に製造する銅箔に模様が転写されてしまう。
 マクロ模様については、銅箔の製造工程で生じるが、チタン板におけるマクロ模様の生じやすさ(同一の条件でのマクロ模様の発生割合)については、チタン板の表面を#800のエメリー紙により研磨し、硝酸10%、ふっ酸5%溶液を用い表面を腐食させ、観察することで、評価できる。
<2.銅箔製造ドラム>
 図5を参照し、本実施形態に係る銅箔製造ドラム20は、電着ドラムの一部であり、円筒状のインナードラム21と、前記インナードラム21の外周面に被着されたチタン板22と、前記チタン板22の突合せ部に設けられた溶接部23とを有し、前記チタン板22が、上述した本実施形態に係るチタン板である。
 すなわち、本実施形態に係る銅箔製造ドラム20は、本実施形態に係るチタン板を用いて製造された銅箔製造ドラムである。本実施形態に係る銅箔製造ドラム20は、銅箔が析出するドラムの表面に、本実施形態に係るチタン板を用いているので、マクロ模様の発生が抑制され、高品質の銅箔を製造することができる。
 本実施形態に係る銅箔製造ドラムのサイズは特段制限されないが、ドラムの直径は、例えば1~5mである。
 インナードラム21は公知のものでよく、その素材は、チタン板でなくてもよく、例えば軟鋼やステンレス鋼でもよい。
 チタン板22は、円筒状のインナードラム21の外周面に巻き付けられ、突合せ部を公知の溶接ワイヤを用いて溶接されることで、インナードラム21に被着される。そのため、突合せ部には溶接部23が存在する。溶接部23とは、溶接ワイヤの凝固組織をいう。
<3.チタン板の製造方法>
 次に、本実施形態に係るチタン板の製造方法について説明する。本実施形態に係るチタン板は、いかなる方法によって製造されてもよいが、例えば以下に説明する本実施形態に係るチタン板の製造方法により製造することもできる。
 本実施形態に係るチタン板の好ましい製造方法は、
 上述した化学組成を有するチタン素材(工業用純チタンまたは前記工業用純チタン中のTiの一部に代え1.50質量%以下のCuを含むチタン合金の素材)を750℃以上880℃以下の温度に加熱する第1の工程と、
 前記第1工程後に前記チタン素材を圧延してチタン板を得る第2の工程と、
を有し、
 前記第2の工程において、合計の圧下率が85%以上であり、かつ、前記合計の圧下率のうち200℃以上650℃以下における圧延の圧下率の占める割合が、5%以上70%以下である。
 以下、各工程について説明する。
(3.1 チタン素材の準備)
 まず、上述した各工程に先立ち、チタン板の素材(チタン素材)を準備する。
 素材としては、上述した化学組成のものを用いることができ、公知の方法により製造されたものを用いることができる。例えば、素材は、スポンジチタンから消耗電極式真空アーク溶解法や電子ビーム溶解法またはプラズマ溶解法等のハース溶解法等の各種溶解法によりインゴットを作製する。次に、得られたインゴットをα相高温域やβ単相域の温度で熱間鍛造することにより、素材を得ることができる。素材には、必要に応じて洗浄処理、切削等の前処理が施されていてもよい。また、ハース溶解法で熱延可能な矩形のスラブ形状を製造した場合は、熱間鍛造などを行わず直接下記の第1の工程および第2の工程(加熱、熱間圧延)に供しても良い。
(3.2 第1の工程)
 本工程は、後述する第2の工程のための加熱工程である。本工程においては、チタン板の素材を750℃以上880℃以下の温度に加熱する。加熱温度が750℃未満であると、例えば熱間鍛造、鋳造等において粗大粒子が生じている場合、第2の工程の熱間圧延において当該粗大粒子を起点としてチタン板に割れが発生してしまう場合がある。加熱温度が750℃以上であることにより、第2の工程の熱間圧延においてチタン板の割れが発生することを防止できる。
 また、加熱温度が880℃を超えると、第2の工程の熱間圧延においてhcp構造のc軸が板幅方向に配向する粗大な集合組織(T-texture)が生成してしまう。この場合、上述したような板面の法線方向から40°以内の角度にc軸が傾いた結晶粒の、すべての結晶粒に対する、面積率が70%以上である組織(集合組織)を得ることができない。加熱温度が880℃以下であることにより、第2の工程の熱間圧延において、板面の法線方向に対するhcp構造のc軸の傾きの大きい結晶粒が、生成することを防止できる。
 加熱温度は、好ましくは870℃以下である。加熱温度が870℃以下であることにより、T-textureの生成をより確実に防止できる。
(3.3 第2の工程)
 本工程では、加熱されたチタン素材を圧延(熱間圧延)する。本工程では、合計の圧下率を85%以上とし、かつ、合計の圧下率のうち200℃以上650℃以下における圧延の圧下率の占める割合を、5%以上70%以下とする。これにより、結晶粒が上述したように均一に微細化され、また、hcp構造のc軸の傾きが小さい結晶粒の面積率の多い組織が得られる。本工程における熱間圧延開始温度は、基本的には上記加熱温度となる。
 合計の圧下率が85%以上であることにより、熱間鍛造、鋳造等において生じた粗大粒を十分に微細化できるとともに、T-textureが発生することを防止することができる。合計の圧下率が85%未満であると、熱間鍛造、鋳造等において生じた組織が残存し、粗大粒を形成したり、T-textureが発生したりする場合がある。このような組織が生じた場合、製造されるドラムにおいてマクロ模様が発生してしまう。
 本工程における合計の圧下率は、高ければ高いほど組織が良くなるので、必要とされる製品サイズおよび製造ミルの特性に合わせて定めればよい。
 また、本実施形態においては、合計の圧下率のうち200℃以上650℃以下におけるチタン板の圧延の圧下率の占める割合が、5%以上70%以下である。
 全圧延を650℃超で行うなど、200℃以上650℃以下における圧下率の占める割合が5%未満である場合、この温度域での圧下量が足りず、その後の冷却時に回復を生じ、ひずみ量が少ない部分が発生する。そのため、熱延後の熱処理により結晶粒径のバラつきが大きくなる。さらに、集合組織の集積度が低下し、上述したような板面の法線方向からの(0001)極点図において、板面の法線方向から40°以内の角度にc軸が傾いた結晶粒の、すべての結晶粒に対する面積率が、70%以上である組織を得ることができない。
 一方、全圧延を200℃未満で行うなどで、200℃以上650℃以下における圧下率の占める割合が5%未満である場合、板形状が不安定となる。この場合、その後の矯正における加工量が大きくなり、ひずみが導入され、矯正部とそれ以外の部分とでひずみ量の差が大きくなり、その後の熱処理で結晶粒径のばらつきが大きくなる。さらに、また、熱処理後に矯正すると、ひずみが影響し、その部分のみが腐食され易くなり、マクロ模様の原因となる恐れがある。
 合計の圧下率のうち200℃以上650℃以下におけるチタン板の圧延の圧下率の占める割合は、好ましくは10%以上、より好ましくは15%以上である。
 また、好ましくは200~600℃の圧下率の占める割合を5~70%とし、さらに好ましくは200~550℃の圧下率の占める割合を5~70%とする。
 また、全圧延を650℃以下で行うなど、200℃以上650℃以下における圧下率の占める割合が70%超である場合、板形状が不安定となる。この場合、その後の矯正における加工量が大きくなり、ひずみが導入され、矯正部とそれ以外の部分とでひずみ量の差が大きくなり、その後の熱処理で結晶粒径のばらつきが大きくなる。さらに、また、熱処理後に矯正すると、ひずみが影響し、その部分のみが腐食され易くなり、マクロ模様の原因となる恐れがある。合計の圧下率のうち200℃以上650℃以下におけるチタン板の圧延の圧下率の占める割合は、好ましくは65%以下、より好ましくは60%以下である。
 本工程では、650℃以上での圧延と、200~650℃での圧延は連続して行う。すなわち、間に再加熱を行わない。
 再加熱を行うと、再加熱時に再結晶してしまい、その後の圧延でひずみ量が少なくなる。その結果、最終焼鈍前のひずみ量が少なくなり、結晶粒のばらつきが大きくなる。さらに、再加熱後の圧延時に双晶が発生し、結晶方位のばらつきが大きくなることで、板面の法線方向から40°以内の角度にc軸が傾いた結晶粒の面積率が低くなる。
 また、本工程において、圧延は、チタン板の長手方向に延伸する一方向圧延であってもよいが、長手方向での圧延に加え、当該長手方向と直交する方向での圧延を行ってもよい。これにより、得られるチタン板において、結晶粒の集積度のピークを板面の法線方向から30°以内に存在させるとともに、集合組織の集積度を高めることができる。
 具体的には、最終圧延方向での圧延による圧下率をL(%)、最終圧延方向と直交する方向での圧延による圧下率をT(%)とした際に、L/Tが1.0以上5.0以下であることが好ましい。これにより、得られるチタン板において、Texture解析により算出される結晶粒の集積度のピーク位置を制御するとともに、集合組織の集積度を高めることができる。L/Tは、より好ましくは1.0以上4.0以下である。
 200℃以上650℃以下における圧延を実施するにあたり、一定時間保持してチタン板が冷却されるのを待ってもよい。
 本実施形態に係るチタン板の製造方法では、第1の工程の加熱後に、再加熱を行わないことが好ましい。これにより、圧延において生じたひずみを再加熱により解放することが防止され、安定してチタン板にひずみを付与することができる。この結果、チタン板の集合組織の集積度を高くできるとともに、後述する熱処理時の部分的な異常粒成長を抑制することができる。
(3.4 第3の工程)
 本工程では、チタン板を600℃以上750℃以下の温度で20分以上90分以下の時間、熱処理(焼鈍)する。これにより、未再結晶粒を微細な再結晶粒として析出させることができ、得られるチタン板の金属組織中の結晶を均一かつ微細にすることができる。この結果、マクロ模様の発生を抑制できる。
 具体的には、チタン板を600℃以上の温度で20分以上熱処理することにより、未再結晶粒を十分に再結晶粒として析出させることができる。焼鈍温度が600℃未満、または20分未満では、板面の法線方向から40°以内の角度にc軸が傾いた結晶粒の面積率を十分に高めることができない。
 また、チタン板の焼鈍温度が750℃超、または焼鈍時間が90分超では、結晶粒が粗大化する。チタン板を750℃以下の温度で90分以下の時間熱処理することにより、一部の結晶粒が粗大になることを防止することができる。
 熱処理は、大気雰囲気、不活性雰囲気もしくは真空雰囲気のいずれで行っても良い。
 以上の工程を含む製造方法により、本実施形態に係るチタン板を得ることができるが、必要に応じて、さらに、以下の後処理工程を施してもよい。
(3.5 後処理工程)
 後処理としては、酸洗や切削による酸化スケール等の除去や、洗浄処理等が挙げられ、必要に応じて適宜適用することができる。
 あるいは、後処理として、チタン板の矯正加工を行ってもよい。但し、双晶が生成することから、冷間圧延は行わないことが好ましい。
<4.銅箔製造ドラムの製造方法>
 銅箔製造ドラムの製造方法は、特に限定されず、公知の方法とすることができる。例えば、本実施形態に係るチタン板を円筒状のインナードラムの外周面に巻き付け、突き合わされた端部を公知の溶接ワイヤを用いて溶接して製造される。溶接ワイヤとしては、工業用純チタン(例えば、JIS1~4種)製が好ましい。
 以下に、実施例を示しながら、本発明の実施形態について、具体的に説明する。以下に示す実施例は、本発明のあくまでも一例であって、本発明が、下記の例に限定されるものではない。
1.チタン板の製造
 まず、消耗電極式真空アーク溶解法により表1の化学組成を有するインゴットを作製し、これを熱間鍛造することにより、所定の化学組成のチタンの素材を得た。発明例13~15、比較例3、比較例5については、純Tiの範囲を超えて、表1の含有量となるようにCuを添加した。
 次に、得られたチタンの素材を表1に示す温度まで加熱し(第1の工程)、表1に示す条件で熱間圧延を行った(第2の工程)。表中「200~650℃の圧下率の割合(%)」は、合計の圧下率のうち200℃以上650℃以下におけるチタン板の圧延の圧下率の占める割合をいい、「圧延比(L/T)」は、最終圧延方向での圧延による圧下率をL(%)、最終圧延方向と直交する方向での圧延による圧下率をT(%)とした際のL/Tの値を示す。また、発明例1~20、比較例2~5においては、200℃以上650℃以下におけるチタン板の圧延を行うために、熱間圧延を一旦停止して、650℃以下に冷却されるのを待って、熱間圧延を再開した。
 次に、大気雰囲気下、表1に記載される温度、時間にて、熱処理を行い、厚さ8.0mmのチタン板を得た(第3の工程)。
Figure JPOXMLDOC01-appb-T000001
2. 分析・評価
 各発明例および比較例に係るチタン板について、以下の項目について分析および評価を行った。
2.1 平均結晶粒径及び粒度分布の標準偏差
 各発明例および比較例に係るチタン板の金属組織の結晶の平均結晶粒径および粒度分布の標準偏差は、以下のようにして測定、算出した。チタン板を切断した断面を化学研磨し、電子線後方散乱回折法;EBSD(Electron Back Scattering Diffraction Pattern)を用いて、表面から板厚の1/4の位置の1mm×1mmの領域を1μmのステップで10視野測定した。その後、結晶粒径についてはEBSDにより測定した結晶粒面積より円相当粒径(面積A=π×(粒径D/2))を求め、この個数基準の平均値を平均結晶粒径とし、さらに、結晶粒径分布より対数正規分布における標準偏差σを算出した。
2.2 集合組織
 上述した方法で、OIM Analysisソフトウェアを用いて板面の法線方向から40°以内の角度にc軸が傾いた結晶粒の面積率を求めた。
 また、上述した方法で、TSLソリューションズ製のOIM Analysisソフトウェアを用い(0001)極点図を作図し、(0001)極点図の、最も等高線が高い位置を集積度のピーク位置とし、ピーク位置の内、最も集積度が大きいものをND方向からの角度とした。また、ピーク位置のうち最も集積度の大きな値を最大集積度とした。最大集積度は、球面調和関数法を用いた極点図のTexture解析を用いて算出した(展開指数=16、ガウス半値幅=5°)。
2.3 双晶
 各発明例および比較例に係るチタン板の試料の厚さ方向断面を化学研磨し、電子線後方散乱回折法(EBSD)を用いて結晶方位解析した。具体的には、試料のチタン板表面から板厚の1/4の位置において1mm×1mmの領域を、1μm間隔でスキャンし、逆極点図マップ(IPF:inverse pole figure)を作成した。その際、発生する(10-12)双晶、(10-11)双晶、(11-21)双晶、(11-22)双晶の回転軸および結晶方位差(回転角)の理論値から2°以内を双晶界面とみなした。そして、結晶方位差(回転角)が2°以上の粒界を全結晶粒界長さとし、全結晶粒界長さに対する双晶粒界長さの割合を算出した。
2.4 α相の面積率
 各発明例および比較例に係るチタン板の試料の厚さ方向断面を鏡面研磨し、上述の方法で、SEM/EPMAにより、同断面における表面から板厚の1/4の位置のFeおよびCuの濃度分布を測定し、Fe及びCuが濃化していない部分の面積をα相の面積率として算出した。
2.5 表面硬度
 各発明例および比較例に係るチタン板の表面硬度については、チタン板表面を鏡面となるまで研磨した後、JIS Z 2244:2009に準拠してビッカース硬さ試験機を用いて荷重1kgで3~5点測定し、得られた値を平均して、表面硬度とした。
2.6 マクロ模様
 マクロ模様については、それぞれ5~10枚程度の50×100mmサイズの各実施例および比較例に係るチタン板の表面を#800のエメリー紙により研磨し、硝酸10%、ふっ酸5%溶液を用い表面を腐食させることで観察した。次いで、3mm以上の長さ発生したスジ状の模様をマクロ模様とし、発生割合の平均に応じて下記のように評価を行った。
A:発生割合が1.0個/枚以下(非常に良好、50×100mmの中に1.0個以下)
B:発生割合が1.0個/枚超、10.0個/枚以下(良好、50×100mmの中に1.0個超10.0個以下)
C:発生割合が10.0個/枚超(不合格、50×100mmの中に10.0個超)
 得られた分析結果・評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように発明例1~20に係るチタン板は、マクロ模様が抑制されていた。これに対し、比較例1~5に係るチタン板は、マクロ模様が多く発生した。
 以上、本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 本発明によれば、銅箔製造用のドラムに使用した際にマクロ模様の発生を抑制可能なチタン板および同チタン板を用いて製造される銅箔製造ドラムを提供することが可能となる。そのため、産業上の利用可能性が高い。
 1  銅箔製造装置
 2  電着ドラム
 10  電解槽
 30  電極板
 40  巻取部
 50  ガイドロール
 60  巻取ロール
 A  銅箔
 20  銅箔製造ドラム
 21  インナードラム
 22  チタン板
 23  溶接部

Claims (7)

  1.  質量%で、
     O :0%以上、0.400%以下、
     Cu:0%以上、1.50%以下、
     Fe:0%以上、0.500%以下、
     N :0.100%以下、
     C :0.080%以下、及び
     H :0.0150%以下、を含み、
    残部がTiおよび不純物を含む化学組成を有し、
     金属組織が、結晶構造が六方最密充填構造であるα相を含み、
     平均結晶粒径が40μm以下であり、
     前記六方最密充填構造を有する結晶の(0001)面の法線をc軸としたとき、板面の法線方向から40°以内の角度に前記c軸が傾いた結晶粒の、すべての結晶粒に対する面積率が、70%以上であり、
     単位μmでの結晶粒径の対数に基づく粒度分布の標準偏差が0.80以下である、
    チタン板。
  2.  前記板面の前記法線方向からの(0001)極点図において、電子線後方散乱回折法の球面調和関数法を用いた極点図の展開指数を16、ガウス半値幅を5°としたときのTexture解析により算出される結晶粒の集積度のピークが、前記板面の前記法線方向から30°以内に存在し、かつ、最大集積度が4.0以上である、集合組織を有する、
    請求項1に記載のチタン板。
  3.  前記平均結晶粒径を単位μmでDとした際に、前記粒度分布の標準偏差が、(0.35×lnD-0.42)以下である、請求項1または2に記載のチタン板。
  4.  板厚方向断面を観察した際に、表面から板厚の1/4の位置における、全結晶粒界長さに対する双晶粒界長さの割合が、5.0%以下である、請求項1~3のいずれか一項に記載のチタン板。
  5.  前記化学組成が、質量%で、
     Cu:0.10%以上1.50%以下を含む、
     請求項1~4のいずれか一項に記載のチタン板。
  6.  銅箔製造ドラム用チタン板である、請求項1~5のいずれか一項に記載のチタン板。
  7.  円筒状のインナードラムと、
     前記インナードラムの外周面に被着された、請求項1~6のいずれか一項に記載のチタン板と、
     前記チタン板の突合せ部に設けられた溶接部と、
    を有する、
    銅箔製造ドラム。
PCT/JP2020/016888 2019-04-17 2020-04-17 チタン板および銅箔製造ドラム WO2020213715A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020549828A JP6863531B2 (ja) 2019-04-17 2020-04-17 チタン板および銅箔製造ドラム
CN202080007717.2A CN113260727B (zh) 2019-04-17 2020-04-17 钛板和铜箔制造滚筒
KR1020217019441A KR102569909B1 (ko) 2019-04-17 2020-04-17 티타늄판 및 구리박 제조 드럼

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-078825 2019-04-17
JP2019078825 2019-04-17

Publications (1)

Publication Number Publication Date
WO2020213715A1 true WO2020213715A1 (ja) 2020-10-22

Family

ID=72837334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016888 WO2020213715A1 (ja) 2019-04-17 2020-04-17 チタン板および銅箔製造ドラム

Country Status (5)

Country Link
JP (1) JP6863531B2 (ja)
KR (1) KR102569909B1 (ja)
CN (1) CN113260727B (ja)
TW (1) TWI739398B (ja)
WO (1) WO2020213715A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022162816A1 (ja) * 2021-01-28 2022-08-04 日本製鉄株式会社 チタン合金板およびチタン合金コイルならびにチタン合金板の製造方法およびチタン合金コイルの製造方法
WO2022162814A1 (ja) * 2021-01-28 2022-08-04 日本製鉄株式会社 チタン合金薄板およびチタン合金薄板の製造方法
WO2022239886A1 (ko) * 2021-05-13 2022-11-17 한국재료연구원 고강도 및 고연성을 갖는 순수 타이타늄 및 그 제조 방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115572860B (zh) * 2022-11-02 2023-09-08 西安庄信新材料科技有限公司 一种钛合金板、钛合金板制备方法及炊具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202952A (ja) * 2009-03-05 2010-09-16 Nippon Steel Corp プレス成形性に優れたチタン合金薄板およびその製造方法
JP2012112017A (ja) * 2010-11-26 2012-06-14 Nippon Steel Corp 板面集合組織の発達した電解Cu箔製造ドラム用チタン合金板とその製造方法
JP2013001973A (ja) * 2011-06-17 2013-01-07 Nippon Steel & Sumitomo Metal Corp 耐水素吸収性ならびに造管性に優れるチタン合金溶接管および溶接管用フープ製品とそれらの製造方法
WO2016140231A1 (ja) * 2015-03-02 2016-09-09 新日鐵住金株式会社 チタン薄板およびその製造方法
WO2018003098A1 (ja) * 2016-06-30 2018-01-04 新日鐵住金株式会社 チタン薄板及びその製造方法
WO2019043882A1 (ja) * 2017-08-31 2019-03-07 新日鐵住金株式会社 チタン板

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3500072B2 (ja) * 1998-07-27 2004-02-23 新日本製鐵株式会社 電解金属箔製造ドラム用チタン材およびその製造方法
JP4441642B2 (ja) * 2000-12-27 2010-03-31 三井金属鉱業株式会社 電解銅箔製造用のチタン製カソード電極、そのチタン製カソード電極を用いた回転陰極ドラム、チタン製カソード電極に用いるチタン材の製造方法及びチタン製カソード電極用チタン材の矯正加工方法
JP3967897B2 (ja) * 2001-02-23 2007-08-29 新日本製鐵株式会社 均一な金属組織を有する銅箔製造ドラム用チタンおよびその製造方法
JP4061211B2 (ja) * 2003-02-20 2008-03-12 新日本製鐵株式会社 電解銅箔製造用カソード電極に用いるチタン合金及びその製造方法
JP4987614B2 (ja) 2007-08-08 2012-07-25 新日本製鐵株式会社 電解Cu箔製造ドラム用チタン板およびその製造方法
WO2012115243A1 (ja) * 2011-02-24 2012-08-30 新日本製鐵株式会社 冷間でのコイル取扱性に優れた高強度α+β型チタン合金熱延板及びその製造方法
JP5609784B2 (ja) * 2011-06-22 2014-10-22 新日鐵住金株式会社 電解Cu箔製造ドラム用チタン合金厚板とその製造方法
CN103484805B (zh) * 2012-06-07 2015-09-09 株式会社神户制钢所 钛板及其制造方法
CN104520455B (zh) * 2012-08-14 2017-02-22 新日铁住金株式会社 钛薄板
KR20190019615A (ko) * 2017-08-18 2019-02-27 포항공과대학교 산학협력단 Nmd 활성을 이용한 노화 조절 관련 물질의 스크리닝 방법
TWI650427B (zh) * 2017-09-01 2019-02-11 日商新日鐵住金股份有限公司 鈦板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202952A (ja) * 2009-03-05 2010-09-16 Nippon Steel Corp プレス成形性に優れたチタン合金薄板およびその製造方法
JP2012112017A (ja) * 2010-11-26 2012-06-14 Nippon Steel Corp 板面集合組織の発達した電解Cu箔製造ドラム用チタン合金板とその製造方法
JP2013001973A (ja) * 2011-06-17 2013-01-07 Nippon Steel & Sumitomo Metal Corp 耐水素吸収性ならびに造管性に優れるチタン合金溶接管および溶接管用フープ製品とそれらの製造方法
WO2016140231A1 (ja) * 2015-03-02 2016-09-09 新日鐵住金株式会社 チタン薄板およびその製造方法
WO2018003098A1 (ja) * 2016-06-30 2018-01-04 新日鐵住金株式会社 チタン薄板及びその製造方法
WO2019043882A1 (ja) * 2017-08-31 2019-03-07 新日鐵住金株式会社 チタン板

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022162816A1 (ja) * 2021-01-28 2022-08-04 日本製鉄株式会社 チタン合金板およびチタン合金コイルならびにチタン合金板の製造方法およびチタン合金コイルの製造方法
WO2022162814A1 (ja) * 2021-01-28 2022-08-04 日本製鉄株式会社 チタン合金薄板およびチタン合金薄板の製造方法
WO2022239886A1 (ko) * 2021-05-13 2022-11-17 한국재료연구원 고강도 및 고연성을 갖는 순수 타이타늄 및 그 제조 방법

Also Published As

Publication number Publication date
CN113260727B (zh) 2022-06-28
KR20210094026A (ko) 2021-07-28
CN113260727A (zh) 2021-08-13
KR102569909B1 (ko) 2023-08-24
JP6863531B2 (ja) 2021-04-21
JPWO2020213715A1 (ja) 2021-05-06
TWI739398B (zh) 2021-09-11
TW202102693A (zh) 2021-01-16

Similar Documents

Publication Publication Date Title
WO2020213715A1 (ja) チタン板および銅箔製造ドラム
WO2020213719A1 (ja) チタン合金板、チタン合金板の製造方法、銅箔製造ドラム及び銅箔製造ドラムの製造方法
WO2022062335A1 (zh) 一种铜铬合金带材及其制备方法
WO2020075667A1 (ja) α+β型チタン合金線材及びα+β型チタン合金線材の製造方法
JP6190574B2 (ja) 二次電池集電体用圧延銅箔およびその製造方法
WO2020213713A1 (ja) チタン板、チタン圧延コイル及び銅箔製造ドラム
JP5531931B2 (ja) 板面集合組織の発達した電解Cu箔製造ドラム用チタン合金板とその製造方法
JP5609784B2 (ja) 電解Cu箔製造ドラム用チタン合金厚板とその製造方法
JP4094395B2 (ja) 電解Cu箔製造ドラム用チタン板およびその製造方法
JP4061211B2 (ja) 電解銅箔製造用カソード電極に用いるチタン合金及びその製造方法
JP2017190480A (ja) チタン板
JP2017186672A (ja) チタン板、熱交換器用プレートおよび燃料電池用セパレータ
TWI796118B (zh) 鈦合金板及鈦合金捲材暨鈦合金板之製造方法及鈦合金捲材之製造方法
JP6537131B2 (ja) 鉄板およびその製造方法
JP2021066899A (ja) チタン銅板、プレス加工品およびプレス加工品の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020549828

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20790480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217019441

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20790480

Country of ref document: EP

Kind code of ref document: A1