WO2018003098A1 - チタン薄板及びその製造方法 - Google Patents

チタン薄板及びその製造方法 Download PDF

Info

Publication number
WO2018003098A1
WO2018003098A1 PCT/JP2016/069543 JP2016069543W WO2018003098A1 WO 2018003098 A1 WO2018003098 A1 WO 2018003098A1 JP 2016069543 W JP2016069543 W JP 2016069543W WO 2018003098 A1 WO2018003098 A1 WO 2018003098A1
Authority
WO
WIPO (PCT)
Prior art keywords
grain size
crystal grain
annealing
titanium
ave
Prior art date
Application number
PCT/JP2016/069543
Other languages
English (en)
French (fr)
Inventor
秀徳 岳辺
麗太 千田
松本 啓
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to CN201680087313.2A priority Critical patent/CN109477168A/zh
Priority to JP2016568082A priority patent/JP6156597B1/ja
Priority to US16/314,323 priority patent/US20190226073A1/en
Priority to PCT/JP2016/069543 priority patent/WO2018003098A1/ja
Publication of WO2018003098A1 publication Critical patent/WO2018003098A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to a titanium thin plate and a manufacturing method thereof.
  • the titanium thin plate is, for example, a titanium plate having a thickness of 0.2 mm or less.
  • Titanium materials have high specific strength and excellent corrosion resistance. They are widely used as chemical plants, building materials, and many other industrial materials, and as materials for consumer products such as camera bodies, watches, and sports equipment. in use. Thin plates having a thickness of 0.2 mm or less such as foil are used for acoustic parts (speaker diaphragms, etc.), anticorrosion films and sheets, and the like.
  • metal materials tend to require high strength, and in addition, workability is also required. Titanium materials are no exception. However, in general, workability decreases when the strength is increased. For titanium materials, attempts are made to optimize the balance between strength and workability by controlling the oxygen content, iron content, crystal grain size, and the like. I have been. As the amount of oxygen increases, the strength increases due to solid solution strengthening. When the amount of iron, which is a ⁇ -phase stabilizing element, increases, grain growth at the ⁇ -phase grain boundary is suppressed, the grain size is reduced, and the strength is also increased. In any case, the ductility is impaired as the strength increases, and the moldability deteriorates accordingly.
  • Patent Document 1 a titanium foil having a thickness of 25 ⁇ m is rolled under predetermined rolling conditions, and the crystal grain size is ASTM No. It is said that a good Erichsen value is ensured by controlling so as to be 12 to 14.
  • a titanium foil having a thickness of 0.2 mm or less is required to have good shape retention after forming.
  • good shape retainability can be ensured, but on the other hand, as described above, there is a problem that good workability cannot be obtained due to a decrease in moldability.
  • Patent Document 2 is a titanium thin plate having a thickness of 0.2 mm or less, and Fe of bulk is 0.1 mass% or less and O (oxygen) is 0.1 mass% or less.
  • a titanium thin plate excellent in shape retention and workability is disclosed.
  • Patent Document 3 describes a hot-rolled titanium plate for a surface member of an electrolytic deposition drum, which avoids coarse particles for improving the polishing properties. It is not intended for thin plates having a thickness of 0.2 mm or less, and does not mention anything about the relationship between coarse grains and workability.
  • Patent Document 4 describes rather setting a lower limit of the number of coarse crystal grains.
  • Patent Document 5 defines the upper limit of the existence ratio of a region having a crystal grain size of 1.25 times or more of the minimum average crystal grain size, but reduces the macro pattern on the surface. Therefore, it is intended to improve surface properties and does not mention improvement of workability.
  • Patent Document 2 makes it possible to produce a high-strength titanium thin plate with excellent workability in a titanium thin plate having a thickness of 0.2 mm or less.
  • the conventional titanium thin plate there is a variation in the elongation value that is an index of workability, the balance between elongation and strength is reduced, and the elongation value is not sufficient when a predetermined strength is obtained Turned out to be. If the elongation is not sufficient, it cannot be processed into the desired shape, and at least the average value of the elongation needs to be at a level that can be processed in order to produce a processed product. However, if the variation is large, it may be below the level that can be processed. Therefore, when the variation is large, the yield of the processed product is reduced as compared with the case where the variation is small.
  • An object of the present invention is to provide a titanium thin plate having sufficient strength and excellent workability, and a method for producing the same.
  • the gist of the present invention is as follows.
  • the crystal grain size satisfies the following formulas (1) to (3):
  • the cured layer has a thickness of 0.1 to 2.0 ⁇ m;
  • t means the plate thickness ( ⁇ m)
  • d ave means the average crystal grain size ( ⁇ m)
  • d max means the maximum crystal grain size ( ⁇ m).
  • a method of repeatedly performing cold rolling and annealing on a titanium material a plurality of times to produce a titanium thin plate The titanium material whose average crystal grain size is adjusted to 2.0 ⁇ m or less is subjected to finish cold rolling at a rolling rate of 50 to 80% and then finish annealing at 570 to 750 ° C. in an inert atmosphere (1) Or the manufacturing method of the titanium thin plate of (2).
  • variation in elongation of the titanium thin plate can be reduced.
  • a titanium thin plate having sufficient strength and excellent workability can be obtained, so that the yield of processed products can be improved.
  • a pure titanium thin plate having a thickness of 0.2 mm or less is targeted.
  • the plate thickness is 0.2 mm or less because the crystal grain size acts to achieve a balance between strength and workability at a plate thickness of 0.2 mm or less, and the effect of applying the present invention is Because it is big.
  • the strength of the titanium thin plate is evaluated by 0.2% proof stress, and the workability is evaluated by uniform elongation.
  • the value of uniform elongation decreases as the strength (0.2% yield strength) increases.
  • the target lower limit value of the uniform elongation changes depending on the 0.2% proof stress level.
  • the uniform elongation target lower limit value is defined as a function of 0.2% proof stress by the following equation [4].
  • the higher the oxygen concentration and the smaller the crystal grain size the 0.2% yield strength increases.
  • the crystal grain size becomes larger mainly as the annealing temperature is higher and the annealing time is longer.
  • the crystal grain size decreases as the iron content increases. Therefore, in order to set the 0.2% proof stress to the target value, it is important to manage the oxygen concentration and the iron concentration in titanium, and the conditions of intermediate annealing and finish annealing.
  • the 0.2% yield strength can be improved by controlling the average crystal grain size regardless of whether the crystal grain size distribution is uniform or non-uniform.
  • the average crystal grain size d ave ( ⁇ m) is set to 2.5 ⁇ m or more.
  • FIG. 1 shows a chart in which the relationship between uniform elongation (%) and t / d ave is arranged.
  • d max means the maximum crystal grain size ( ⁇ m) of crystals existing in the titanium plate
  • t means the plate thickness ( ⁇ m).
  • d max means the maximum crystal grain size ( ⁇ m) of crystals existing in the titanium plate
  • t means the plate thickness ( ⁇ m).
  • FIG. 2 is a photograph showing the structure of a cross section of a titanium plate having a thickness of 0.03 mm.
  • d ave exceeds about 65 ⁇ m, t / d ave ⁇ 3.0, and characteristic deterioration occurs.
  • d ave may be about 100 ⁇ m, and when the plate thickness is 0.2 mm or less, t / d ave must be managed. This also applies to t / d max . Therefore, even when the thin plate and the general thin plate have the same particle size distribution, the thin plate has a characteristic deterioration.
  • the average crystal grain size d ave is controlled to 2.5 or more, and the generation of coarse grains in the titanium plate is suppressed, and t / d ave ⁇ 3.0 and t / d max ⁇ 1. 5 was satisfied.
  • variation in the elongation of a titanium plate can be reduced and favorable workability can be realized.
  • the coarse grain ratio (%)
  • the horizontal axis represents the coarse grain ratio
  • the vertical axis represents the “uniform elongation reduction (%)” in FIG. It was.
  • All the data in FIG. 5 satisfy t / d max ⁇ 1.5.
  • the coarse grain ratio is preferably 15% or less.
  • the crystal grain size distribution was determined by observing the L section at the maximum magnification at which the entire plate thickness can be confirmed with an optical microscope. This observation is carried out at random in 10 fields of view, and in each field of view, the area of each crystal grain is determined from image analysis for a region of (plate thickness) ⁇ (length of 10 times or more of the plate thickness), and each square approximation is performed. The diameter of the crystal grain was determined. From this, the average crystal grain size d ave and the maximum crystal grain size d max are obtained. The coarse grain ratio is obtained as the ratio of the number of crystal grains having a grain size of plate thickness (t) / 2 or more in the obtained crystal grain size distribution.
  • a hardened layer is formed on the surface after annealing, carbon caused by lubricating oil during rolling is present, and a hardened layer is formed. Since this depends on the amount of elements adhering to the surface, the only way to remove it completely is to remove the surface layer. However, since the plate thickness is thin and the yield reduction is large, it is preferable to utilize this hardened layer. By forming a hardened layer on the surface layer within a range that does not reduce workability, it is possible to impart wrinkle resistance and shape retention. The thickness is 2.0 ⁇ m or less in order not to deteriorate the workability, and 100 nm or more is necessary in order to obtain effects such as scratch resistance.
  • the maximum height Rz (JIS B0601: 2001) needs to be 3.0 ⁇ m or less.
  • the maximum height Rz exceeds 3.0 ⁇ m, fine cracks on the surface cannot be prevented, and the balance between 0.2% proof stress and uniform elongation is deteriorated.
  • JIS type 1 or type 2 pure titanium can be used for the titanium thin plate of the present invention.
  • the titanium thin plate of the present invention has the following chemical composition.
  • the required strength and excellent ductility are generally achieved by adjusting the oxygen content and iron content.
  • Oxygen contains 0.03 mass% or more as a lower limit considering industrially, and makes an upper limit 0.08 mass%.
  • the lower limit is set to 0.001% by mass, and the upper limit is set to 0.08% by mass for industrial consideration.
  • Titanium thin plate with the required strength and excellent workability by adjusting the oxygen concentration, iron concentration, and average crystal grain size according to the required strength level, with the oxygen and iron content range as this range It can be.
  • titanium and inevitable impurities are included.
  • Pure titanium contains nitrogen and carbon as impurities. If it is in the range of nitrogen: 0.001 to 0.08% by mass and carbon: 0.001 to 0.05% by mass, which are inevitable impurity levels usually included, the quality of the titanium thin plate of the present invention is adversely affected. There is nothing.
  • annealing performed during cold rolling is referred to as “intermediate annealing”, the last cold rolling is referred to as “finish cold rolling”, and annealing after finish cold rolling is referred to as finishing annealing.
  • Intermediate annealing is a process for recrystallizing the titanium material after cold rolling.
  • Finishing cold rolling rolling ratio 50% -80% It is known that the higher the rolling ratio of finish cold rolling, the smaller the average crystal grain size after annealing, and the closer it can be to a uniform grain size distribution. Therefore, generally, finish cold rolling is often performed at a rolling rate of at least 50% or more. However, even if finish cold rolling of 50% or more is performed on a thin plate of 0.2 mm or less, the crystal grain size distribution may be non-uniform. This is because, as described above, the number of crystal grains in the plate thickness direction varies greatly even with the same crystal grain size distribution. When the rolling rate is increased in order to obtain a more uniform crystal grain distribution, fine cracks are generated on the surface.
  • the rolling rate at the time of one cold rolling cannot be enlarged.
  • carbon caused by rolling oil during cold rolling is attached, and the surface layer becomes hard and easily cracked by annealing, and the maximum height Rz cannot be made 3.0 ⁇ m or less.
  • the rolling rate of finish cold rolling needs to be 80% or less. However, it is not sufficient to control the rolling rate of finish cold rolling to 50 to 80%, and preparation for obtaining a more uniform structure before finishing cold rolling is necessary.
  • Rolling ratio of cold rolling immediately before finish cold rolling 30% to 80%
  • the influence of fine cracks cannot be ignored in a titanium thin plate of 0.2 mm or less. Therefore, by forming a fine-grained structure in the titanium material before finish cold rolling, the strain during finish cold rolling can easily enter. This is because, in titanium having a coarse structure, the strain introduced by rolling is handled by twin deformation, so that it becomes difficult to form dislocation cells serving as nuclei for recrystallization.
  • deformation occurs in units of crystal grains, non-uniform distribution of strain is less likely to occur when the deformation unit is small, and uniform recrystallization nuclei are easily formed.
  • FIG. 6 shows the relationship between the rolling ratio of the immediately preceding cold rolling and the maximum crystal grain size d max / average crystal grain size d ave .
  • d max / d ave is a value indicating the uniformity of strain introduced in finish cold rolling. In general, since the maximum crystal grain size tends to be large in a portion where the introduction of strain is small, it indicates that the strain is uniformly introduced as d max / d ave is low.
  • d max / d ave becomes smaller as the rolling rate of the previous cold rolling is higher, the strain introduced in the finish cold rolling is uniformly introduced, and the generation of coarse grains can be suppressed.
  • the rolling rate of the immediately preceding cold rolling is 30% or more, more preferably 40% or more, and even more preferably 50% or more.
  • the content is set to 80% or less.
  • the maximum height Rz can be set to 3.0 ⁇ m or less.
  • the structure immediately before the finish cold rolling the average crystal grain size is 2.0 ⁇ m or less
  • the strain introduced by the cold working can introduce many dislocations in the smaller process in the fine grain, so that the structure before the finish cold rolling becomes fine grain, specifically, It is effective to have a structure having an average crystal grain size of 2.0 ⁇ m or less.
  • the structure having an average crystal grain size of 2.0 ⁇ m or less is a mixed grain structure composed of recrystallized grains and non-recrystallized grains, or a non-recrystallized structure.
  • the unrecrystallized structure is a stage before recrystallization, and can be considered to be smaller than the recrystallization nucleus.
  • the recrystallized nucleus is naturally smaller than the recrystallized grain. Therefore, in the case of a mixed structure of recrystallized grains and non-recrystallized grains, if the average grain size of the recrystallized grains is 2 ⁇ m or less, the non-recrystallized structure is necessarily smaller than that. Even in the case of all of the unrecrystallized structure, since the recrystallized nuclei and recrystallized grains generated from the unrecrystallized structure are 2 ⁇ m or less in manufacturing within the scope of the present invention, it can be regarded as a size smaller than this. .
  • the thin plate needs to be limited in rolling rate and uniformity of the crystal grain size distribution, but the general thin plate does not need the uniformity so far, and some surface cracks are not a problem. . For this reason, it is possible to increase the rolling rate of finish cold rolling, and in particular, for the purpose of reducing the manufacturing process, it is common to increase the rolling rate of finishing cold rolling by sufficiently recrystallizing. It is.
  • Intermediate annealing temperature 500-800 ° C
  • the intermediate annealing is preferably performed at a low temperature at which a fine structure can be easily obtained as in the case of the previous annealing. Although it is not always necessary to make it fine at this stage, it is desirable to carry out at 500 to 700 ° C. in order to stably obtain a fine structure immediately before finish cold rolling. However, it may be carried out at a higher temperature, in which case it must be carried out in less than 1 minute. More desirably, it takes less than 30 seconds. In this way, there is no problem even if intermediate annealing is performed at 700 to 800 ° C.
  • Temperature of annealing (immediately before annealing) just before finish cold rolling: 400-700 ° C
  • the temperature of the last annealing differs depending on the difference in the annealing method. In continuous annealing, 500 to 600 ° C. is desirable to obtain an unrecrystallized structure. When a fine structure is obtained, the temperature may be 600 to 700 ° C. However, if the temperature is higher than that, a coarse structure is formed by recrystallization and growth. If the holding time is shorter, a fine structure can be obtained, but if it is too short, the strain accumulated by cold rolling will not be sufficiently reduced, and sufficient ductility cannot be obtained. It is better to adjust in consideration of time required for temperature and temperature stability.
  • the temperature is preferably 400 to 550 ° C. for about 1 hour. If the temperature is too low, the ductility cannot be sufficiently recovered, and if it is too high, it becomes coarse and non-uniform.
  • Finish annealing temperature 500-750 ° C
  • the average crystal grain size d ave is mainly affected by the temperature and time of finish annealing and the iron concentration and oxygen concentration in the titanium material.
  • the upper limit of d ave differs depending on the plate thickness, and the upper temperature limit of finish annealing for setting t / d ave ⁇ 3 also differs. If finish annealing is performed at 750 ° C. or less in an inert atmosphere, excessive coarsening of crystal grains can be prevented.
  • a hardened layer can be formed by carbon derived from rolling oil adhering to the surface.
  • nitrogen is introduced into the atmosphere, or the atmosphere and Ar
  • the hardened layer can also be formed by using a mixed gas such as a gas.
  • a hardened layer formed by diffusing carbon from the rolling oil adhering to the surface for stable production Is better.
  • the annealing time varies depending on the temperature and the target particle size, for example, recrystallization was performed at 570 ° C. for 5 minutes. In order to further improve the productivity, it is desirable that the annealing temperature is 600 to 750 ° C. In this case, recrystallization can be performed even for about 1 minute.
  • the yield cannot be largely controlled because a part of the coil cannot be controlled to a predetermined structure.
  • the hardened layer is formed thick during low-temperature and long-time annealing, it is preferable to adjust the holding time according to the equipment on the basis of 15 hours or less. Therefore, it is desirable to use continuous annealing for productivity.
  • JIS type 1 pure titanium material was subjected to one cold rolling and annealing to produce a titanium thin plate.
  • Table 1 shows the chemical composition and production conditions of each titanium thin plate.
  • “immediately cold rolling” means cold rolling performed immediately before finish cold rolling
  • “initial cold rolling” means cold rolling performed before that “cold rolling”.
  • “Previous annealing” means annealing performed immediately before the finish cold rolling
  • “initial annealing” means intermediate annealing performed before the “immediate annealing”.
  • An example in which the annealing time is 1 min is an example in which continuous annealing is simulated, and an example in which the annealing time is 1 h or longer is an example in which batch annealing is simulated.
  • the annealing atmosphere is no. Except for 23 to 26 (Comparative Examples 10 and 11, Examples 14 and 15), the test was performed in Ar gas. Nos. 24 and 25 are Nos. In nitrogen gas. 23 and 26 were performed in the atmosphere. The thickness of the material was adjusted by cutting or polishing according to the thickness after the finish cold rolling and annealing.
  • the crystal grain size distribution after finish annealing was determined by observing the L cross section with the optical microscope at the maximum magnification at which the entire plate thickness could be confirmed. This observation is carried out at random in 10 fields of view, and in each field of view, the area of each crystal grain is determined from image analysis for a region of (plate thickness) ⁇ (length of 10 times or more of the plate thickness), and each square approximation is performed. The diameter of the crystal grain was determined. From this, the average crystal grain size d ave and the maximum crystal grain size d max were determined. The coarse grain ratio was determined as the ratio of the number of crystal grains having a grain size (t) / 2 or more in the obtained crystal grain size distribution.
  • the microstructure after the last annealing was measured using EBSD, and the average grain size of the recrystallized grains was measured with an orientation difference of 5 ° or more as the grain boundary.
  • the measurement was performed at a magnification capable of confirming the entire plate thickness in a field of view of 500 times or more, and 5 fields were randomly measured at intervals of 0.2 ⁇ m and the length of the plate thickness ⁇ 100 to 200 ⁇ m.
  • Uniform elongation is determined using the ASTM 1/2 tensile test specimen collected in the L direction, and a tensile test is performed until the fracture occurs at a strain rate of 12% / min. The amount of strain up to the maximum load point of the obtained nominal stress-nominal strain curve is calculated. The uniform elongation was evaluated.
  • the thickness of the hardened layer was determined by analyzing the depth direction of oxygen, nitrogen, carbon, titanium, and iron by Ar ion sputtering in an area of 4 mm in diameter on the sample surface using GDS, and the total concentration of oxygen, nitrogen, and carbon was 0. It was set as the thickness used as 0.5 mass% or more.
  • oxygen is zinc oxide (oxygen is 19.8 mass%)
  • nitrogen is austenitic stainless steel (containing 0.3 mass% nitrogen)
  • carbon is a titanium alloy (containing carbon is 0.12 mass%).
  • the depth was converted to pure titanium (JIS type 1).
  • the average crystal grain size was changed by changing the finish annealing temperature within the range of the present invention, and various strengths were obtained as 0.2% proof stress.
  • Invention Examples 1 to 4 (plate thickness 0.03 mm), Invention Examples 5 to 8 (plate thickness 0.1 mm), and Inventions 9 to 20 (plate thickness 0.2 mm) all have chemical compositions and production conditions. It is within the range specified by the present invention, and d ave ⁇ 2.5 ⁇ m, t / d ave ⁇ 3, t / d max ⁇ 1.5, and the thickness of the cured layer: 0.1 to 2.0 ⁇ m is satisfied. ing. As a result, the relationship between the 0.2% proof stress and the uniform elongation satisfied the formula [4], and good uniform elongation corresponding to the strength level could be obtained.
  • Comparative Example 1 the rolling ratio of the finish cold rolling is as high as 90% and the index regarding the crystal grain size distribution is satisfied, but the maximum height Rz exceeds 3.0 ⁇ m, and the formula [ 4] was not satisfied.
  • Comparative Example 2 the final intermediate rolling rate was 90%, the maximum height Rz exceeded 3.0 ⁇ m, and the formula [4] was not satisfied due to fine cracks on the surface.
  • Comparative Examples 3 to 6, 8 since the final intermediate rolling rate was small or became coarse due to final intermediate annealing, the structure before the finish cold rolling was coarse, so the coarse grain rate, t / d max ⁇ 1. 5 was not satisfied and the formula [4] was not satisfied. Moreover, the comparative examples 5 and 6 are also due to the fact that the finish annealing temperature is high and the particles are easily coarsened.
  • Comparative Example 7 since the finish annealing temperature was high, it was easy to be coarsened and the formula [4] could not be satisfied.
  • Comparative Example 9 the structure before finish cold rolling was coarse, and the rolling ratio of finish cold rolling was low, so the uniformity of crystal grains was insufficient, and the formula [4] could not be satisfied.
  • the cured layer was intentionally formed by annealing in Comparative Example 10 and Invention Example 15 in the air, and in Comparative Example 11 and Invention Example 14 in a nitrogen atmosphere.
  • Comparative Example 13 annealing was performed for a long time in a vacuum, and the hardened layer was formed by diffusing carbon derived from the rolling oil remaining on the surface.
  • the cured layer thickness was 2 ⁇ m or more, the elongation was inferior to Invention Examples 14 and 15, and the formula [4] could not be satisfied.
  • Comparative Example 12 the finish annealing time was long and the hardened layer was formed thick. In annealing at this temperature, it is necessary to perform annealing in a shorter time. In Comparative Example 13, the finish annealing temperature was low, and the crystal grain size became smaller than 2.5 ⁇ m even after annealing for 20 hours.
  • Comparative Examples 14 and 15 are both manufactured under the same conditions and have different thicknesses. Since Comparative Example 14 had a plate thickness of 0.2 mm, the production method did not satisfy the scope of the present invention and did not satisfy the formula [4]. However, since the comparative example 15 has a plate thickness of 0.4 mm, the characteristics do not deteriorate even if the manufacturing range of the present invention is not satisfied. Similarly, in Comparative Example 16, even if the manufacturing method is outside the scope of the present invention, the characteristics are not deteriorated because the plate thickness is thick.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

板厚が0.2mm以下であり、表面に硬化層を備えるチタン薄板であって、質量%で、Fe:0.001~0.08%、O:0.03~0.08%を含む化学組成であり、結晶粒径が、下記の(1)~(3)式を満足し、前記硬化層の厚さが、0.1~2.0μmである、チタン薄板。このチタン薄板は、十分な強度と優れた加工性を兼ね備えている。 dave≧2.5 (1) t/dave≧3.0 (2) t/dmax≧1.5 (3) ただし、(1)~(3)式において、tは板厚(μm)、daveは平均結晶粒径(μm)、dmaxは最大結晶粒径(μm)をそれぞれ意味する。

Description

チタン薄板及びその製造方法
 本発明は、チタン薄板及びその製造方法に関するものである。チタン薄板とは、例えば、板厚が0.2mm以下のチタン板である。
 チタン材料は、比強度が高く、優れた耐食性を有しており、化学プラント、建築資材、その他多くの産業用素材として、また、カメラボディー、時計、スポーツ用品などの民生用品の素材として、幅広く使用されている。箔など、厚さ0.2mm以下の薄板は、音響部品(スピーカー振動板など)、防食フィルム・シートなどに用いられている。
 一般に、金属材料では高強度が要求される傾向にあり、それに加えて加工性も要求される。チタン材料においても例外ではない。しかしながら、一般的には高強度化すると加工性が低下するため、チタン材料においては、酸素量、鉄量、結晶粒径等を制御することにより強度と加工性のバランスを最適化する試みが行われてきた。酸素量が増えると、固溶強化で強度が増大する。β相安定化元素である鉄量が増えると、α相結晶粒界での粒成長が抑制されて、細粒化され、同じく強度が増大する。いずれの場合も、強度の増加とともに延性が損なわれ、それに伴い成形性が劣化する。
 特許第2616181号公報(特許文献1)には、25μm厚のチタン箔に関して、所定の圧延条件で圧延し、結晶粒度をASTM No.で12~14となるように制御することにより、良好なエリクセン値が確保されるとしている。
 一方、0.2mm厚以下のチタン箔においては、成形加工後の良好な形状保持性が求められる。一般的に、材料の強度を向上させることによって、良好な形状保持性は確保できるが、反面上述のとおり成形性が低下して良好な加工性が得られなくなる問題がある。
 国際公開第2014/027657号(特許文献2)には、板厚0.2mm以下のチタン薄板であって、バルクのFeが0.1質量%以下、O(酸素)が0.1質量%以下であり、板厚/粒径≧3で、かつ粒径≧2.5μmを満たし、表面に硬化層を有し、硬化層の領域が表面から深さ200nm以上2μm以下であるチタン薄板とすることにより、形状保持性と加工性に優れたチタン薄板が開示されている。
 チタン板の最大結晶粒径について言及している文献として、以下の文献が挙げられる。特開2002-012931号公報(特許文献3)には、電解析出ドラムの表面部材用熱延チタン板であって、研磨性の向上のために粗大粒を回避することが記載されているが、板厚0.2mm以下の薄板を対象としたものではなく、また粗大粒と加工性との関係については何ら触れていない。特開2013-095964号公報(特許文献4)には、むしろ粗大結晶粒個数の下限を定めることが記載されている。特開2005-105387号公報(特許文献5)では、最小平均結晶粒径の1.25倍以上の結晶粒径を有する領域の存在比率上限を規定しているが、表面のマクロ模様を低減して表面性状を改善するものであって、加工性の向上には言及していない。
特許第2616181号公報 国際公開第2014/027657号 特開2002-012931号公報 特開2013-095964号公報 特開2005-105387号公報
 特許文献2に記載の発明によって、板厚が0.2mm以下のチタン薄板において、加工性に優れた高強度のチタン薄板を製造することが可能となった。一方、従来のチタン薄板においては、加工性の指標である伸びの値にばらつきが存在し、伸びと強度のバランスが低下して、所定の強度を得た場合に伸びの値が十分ではない場合があることが判明した。伸びが十分でない場合には目的の形状に加工することができず、加工製品を生産する上では、少なくとも伸びの平均値が加工可能なレベルにある必要がある。しかし、ばらつきが大きい場合には、加工可能なレベルを下回ることがある。そのため、ばらつきが小さい場合と比較して、ばらつきが大きい場合には加工製品の歩留まりが低下する。
 本発明は、十分な強度と優れた加工性を兼ね備えたチタン薄板及びその製造方法を提供することを目的とする。
 本発明の要旨は、下記のとおりである。
 (1)板厚が0.2mm以下であり、表面に硬化層を備えるチタン薄板であって、
 質量%で、
Fe:0.001~0.08%、
O:0.03~0.08%を含む化学組成であり、
 結晶粒径が、下記の(1)~(3)式を満足し、
 前記硬化層の厚さが、0.1~2.0μmであり、
最大高さRzが3.0μm以下である、チタン薄板。
  dave≧2.5    (1)
  t/dave≧3.0    (2)
  t/dmax≧1.5  (3)
 ただし、(1)~(3)式において、tは板厚(μm)、daveは平均結晶粒径(μm)、dmaxは最大結晶粒径(μm)をそれぞれ意味する。
 (2)結晶粒径がt/2以上である結晶粒の割合が、個数比で、15%以下である、請求項1に記載のチタン薄板。
 (3)チタン材に冷間圧延と焼鈍とを複数回繰り返し行い、チタン薄板を製造する方法であって、
 平均結晶粒径を2.0μm以下に調整したチタン材に、圧延率50~80%の仕上冷間圧延を行った後、不活性雰囲気で570~750℃の仕上焼鈍を行う、上記(1)または(2)のチタン薄板の製造方法。
 本発明によれば、チタン薄板の伸びのばらつきを低減することができる。その結果、十分な強度と優れた加工性を兼ね備えたチタン薄板を得ることができるので、加工製品の歩留まりを向上することができる。
板厚t/平均結晶粒径daveと均一伸びの関係を示す図である。 チタン薄板の断面結晶組織を示す図であり、(a)は粗粒あり、(b)は粗粒なしの場合である。 板厚t/最大結晶粒径dmaxと均一伸び低下量の関係を示す図である。 均一伸び低下あり/なしの材料について、結晶粒径分布を比較した図である。 粗粒率と均一伸び低下量の関係を示す図である。 直前冷間圧延の圧延率と最大結晶粒径dmax/平均結晶粒径daveの関係を示す図である。
 本発明では、板厚0.2mm以下の純チタン薄板を対象とする。板厚を0.2mm以下とするのは、0.2mm以下の板厚において、強度と加工性のバランスを実現する上で結晶粒径が作用しており、本発明を適用することによる効果が大きいからである。
 以下、本発明において、チタン薄板の強度は0.2%耐力で評価し、加工性は均一伸びで評価する。純チタンでは、強度(0.2%耐力)が高くなるほど、均一伸びの値は低下する。本発明においても、0.2%耐力のレベルに応じて、目標とする均一伸びの下限値も変化することとなる。具体的には、下記式[4]によって、均一伸び目標下限値を0.2%耐力の関数として定める。
 0.2%耐力≦185MPa
   均一伸び(%)≧-0.4×0.2%耐力(MPa)+85
 0.2%耐力>185MPa
   均一伸び(%)≧-0.03×0.2%耐力(MPa)+16.5  [4]
 純チタンでは、酸素濃度が高いほど、また結晶粒径が小さいほど、0.2%耐力が増大する。結晶粒径は、主に焼鈍温度が高いほど、また焼鈍時間が長いほど、大きくなる。一方、結晶粒径は、鉄含有量が高いほど、小さくなる。従って、0.2%耐力を目標値にするためには、チタン中の酸素濃度および鉄濃度の管理、ならびに、中間焼鈍および仕上焼鈍の条件の管理が重要となる。なお、0.2%耐力は、結晶の粒度分布が均一であっても、不均一であっても平均結晶粒径を制御することにより向上できる。
 板厚0.2mm以下のチタン薄板であっても、一般的な知見と同様に、結晶粒を微細化することで伸びが低下する。一方で、特許文献2から明らかなように、結晶粒が粗大化しすぎても、伸びが低下する場合がある。特に、板厚t(μm)と平均結晶粒径dave(μm)のt/daveが3.0未満の場合に伸びの低下が発生する。従って、製品板厚tに応じて、t/dave≧3.0となる範囲で結晶粒を粗大化させることにより、板厚0.2mm以下のチタン薄板の加工性を最大限に引き出すことが可能となる。
 一方、平均結晶粒径が2.5μmを下回ると未再結晶組織となりやすく、安定的な製造が難しくなるため、平均結晶粒径dave(μm)は2.5μm以上とする。
 酸素濃度、鉄濃度、結晶粒径を調整して、板厚0.2mm以下の純チタン薄板を製造したところ、前述のように、伸びの値にばらつきが存在し、伸びと強度のバランスが低下して、所定の強度を得た場合に伸びの値が十分ではない場合があることが判明した。
 そこで、結晶粒径がほぼ同一の条件の材料について詳細に調査したところ、伸びの値が良好であるチタン板においては、粗大粒の発生が見られないのに対し、伸びの値が低下したチタン板においては、チタン板断面で観察したときに粒径の大きな粗大粒が混在している傾向があった。次に、板厚0.1mmと0.03mmのJIS1種純チタン薄板の冷延焼鈍板について引張試験を行い、均一伸びの評価を行った。図1には、均一伸び(%)とt/daveとの関係を整理した図を示す。なお、dmaxはチタン板に存在する結晶の最大結晶粒径(μm)を、tは板厚(μm)をそれぞれ意味する。t/dmaxが1.5以上(dmaxが小さい)のものについては、板厚が0.1mmのものを○、板厚が0.03mmのものを●で表示し、t/dmaxが1.5未満(dmaxが大きい)のものについては、板厚が0.1mmのものを△、板厚が0.03mmのものを▲で表示した。
 まず、最大結晶粒径dmaxが小さい○、●に着目する。図1の○、●については、横軸のt/daveが3以上において、t/daveが増大するほど(daveが小さくなるほど)均一伸びが低下する線上に乗っている。平均結晶粒径daveが小さくなるほど、強度が増大し、それに対応して伸びが低下するためである。t/dave<3.0において伸びが低下する現象が見られることから、本発明においても、t/dave≧3.0と規定することとした。
 同じ図1において、最大結晶粒径dmaxが大きい△、▲については、最大結晶粒径dmaxが小さい○、●に比較し、同じ平均結晶粒径daveであっても伸びが低下していることがわかる。即ち、板厚0.2mm以下のチタン薄板において結晶粒径のばらつきによって伸びが低下する傾向が見られた原因は、t/dmax<1.5となる最大結晶粒径dmaxを有する粗大粒の存在が原因であることが判明した。図2は、板厚0.03mmのチタン板断面の組織を示す写真であり、(a)は粗大粒が存在する場合、(b)は粗大粒が存在しない場合を示す。さらに、図1において○と●それぞれのプロットの軌跡を実線で表示した。次に△と▲のデータについて、同一のt/daveの値において実線との差異を評価し、この差異を「均一伸び低下量(%)」と定義した。図3には、横軸をt/dmaxとし、縦軸を均一伸び低下量として図示した。図3に示すように、t/dmaxが1.5以上の場合、伸びの低下が見られないのに対し、t/dmax<1.5の場合、t/dmaxが小さくなるほど均一伸びが低下しやすくなることが判明した。即ち、t/dmax≧1.5であれば伸びが低下しないことがわかった。
 これは、板厚方向の結晶粒数が少ないと、1個あたりの変形に寄与する割合が大きくなり、1個の結晶粒の変形に左右されてしまうためである。チタンは異方性が大きく、変形を受ける方向によって特性が異なるため、特性の劣る粗大な結晶粒に変形が集中しやすくなる。このような板厚と結晶粒径の関係は板厚に関係なく発生する現象である。たとえば、板厚が0.5mmの場合、t/dave<3.0となるのはdaveが160μmを超える場合であるが、通常の製造条件では、daveが100μm程度以下であり、このような粗大な組織が現れることはない。しかし、たとえば、板厚0.2mmの場合、daveが約65μmを超えると、t/dave<3.0となり、特性劣化が生じる。前述のように、通常の製造条件では、daveが100μm程度になる場合があり、板厚が0.2mm以下の場合には、t/daveを管理しなければならないことわかる。この点、t/dmaxについても同様である。そのため、薄板と一般的な薄板が同じ粒度分布を有する場合でも、薄板では特性の劣化が生じるのである。
 よって、本発明では、平均結晶粒径daveを2.5以上に管理するとともに、チタン板中の粗大粒の発生を抑制し、t/dave≧3.0およびt/dmax≧1.5を満足する範囲にすることとした。これにより、チタン板の伸びのばらつきを低減し、良好な加工性を実現できる。
 本発明はt/dmax≧1.5とすることにより、上述のとおり良好な伸びを実現するこ
とができる。さらに、結晶粒度分布について詳細に検討した。板厚0.03mmのチタン板について、2例の結晶粒度分布を評価し、図4の●と○に示す。どちらもt/dmax≧1.5を満足している。○は均一伸びの値が図1の実線上にあって伸びの低下が見られなかったのに対し、●は若干の伸びの低下が見られた。結晶粒度分布における両者の相違点として、結晶粒径15μm以上(t/2以上)において、●は高い頻度を有している。そこで、t/2以上の大きさの結晶粒の割合を粗粒率(%)と定義し、横軸に粗粒率、縦軸に前記「均一伸び低下量(%)」として図5に示した。図5のデータはすべてt/dmax≧1.5を満足している。図5から明らかなように、粗粒率を15%以下とすることにより、より安定して良好な伸びを実現できることが判明した。そこで本発明では、好ましくは粗粒率を15%以下とする。
 本発明において、結晶粒径分布は、L断面を光学顕微鏡で板厚全体を確認できる最大の倍率で観察して求めた。この観察はランダムに10視野で実施し、各視野において(板厚)×(板厚の10倍以上の長さ)の領域について各結晶粒の面積を画像解析から求め、正方形近似することで各結晶粒の径を求めた。ここから、平均結晶粒径daveと最大結晶粒径dmaxを求める。粗粒率は求めた結晶粒径分布において、粒径が板厚(t)/2以上である結晶粒の個数割合として求める。
 焼鈍後の表面には圧延時の潤滑油起因の炭素などが存在しており、硬化層が形成される。これは表面に付着する元素の量によって左右されるため、完全に除去するには表層を除去するしかない。しかし、板厚が薄く、歩留まり低下が大きいために、この硬化層をむしろ活用する方が望ましい。加工性を低下させない範囲で表層に硬化層を形成させることで耐疵つき性や形状保持性などを付与できる。その厚さは加工性を低下させないためには2.0μm以下であり、耐疵つき性などの効果を得るためには100nm以上が必要である。
 本発明において、最大高さRz(JIS B 0601:2001)が3.0μm以下であることが必要である。最大高さRzが、3.0μmを超えると、表面の微細な割れを防止することができず、0.2%耐力と均一伸びとのバランスが悪くなる。
 本発明のチタン薄板には、JIS1種または2種の純チタンを用いることができる。具体的には、本発明のチタン薄板は、下記の化学組成を有する。
 純チタンにおいて、一般には酸素含有量と鉄含有量を調整することにより、必要な強度と優れた延性を実現している。酸素は工業的に考慮すると下限値として0.03質量%以上を含有し、上限を0.08質量%とする。鉄は工業的に勘案して下限を0.001質量%とし、上限は0.08質量%とする。酸素と鉄の含有量範囲をこの範囲として、必要な強度レベルに応じて酸素濃度、鉄濃度、そして平均結晶粒径を調整することにより、必要な強度を有しつつ、加工性に優れるチタン薄板とすることができる。なお、酸素と鉄以外はチタン及び不可避的不純物が含まれる。
 純チタンは不純物として窒素、炭素を含有する。通常含まれる不可避的不純物レベルである、窒素:0.001~0.08質量%、炭素:0.001~0.05質量%の範囲であれば、本発明のチタン薄板の品質に悪影響を及ぼすことがない。
 次に、本発明のチタン薄板の製造方法について説明する。
 一般的なチタン薄板の製造工程では、チタン材に冷間圧延と焼鈍とが複数回繰り返し行われる。特に、冷間圧延の間で行う焼鈍を「中間焼鈍」、最後の冷間圧延を「仕上冷間圧延」、仕上冷間圧延後の焼鈍を仕上焼鈍と呼ぶ。中間焼鈍は、冷間圧延後のチタン材を再結晶化するための工程である。以下、各工程における好ましい条件について説明する。
 仕上冷間圧延の圧延率:50%~80%
 仕上冷間圧延の圧延率が高いほど、焼鈍後の平均結晶粒径を小さく、均一な粒度分布に近づけることができることが知られている。そのため、一般的には、少なくとも50%以上の圧延率で仕上冷間圧延が行われることが多い。しかしながら、0.2mm以下の薄板に50%以上の仕上冷間圧延を行っても、結晶粒径分布が不均一となる場合がある。これは前述したとおり、同じ結晶粒径分布であっても、板厚方向の結晶粒数は大きく異なるためである。より均一な結晶粒分布を得るために、圧延率を増加させると、表面に微細な亀裂が発生する。板厚が厚い場合には、微細な亀裂は板厚に対して非常に小さく、特性を劣化させることはない。しかし、板厚が薄くなると、その影響を無視することができなくなる。そのため、1回の冷間圧延時の圧延率を大きくすることはできない。また、冷延時の圧延油など起因の炭素などが付着しており、焼鈍によって表層は硬質になり、割れやすくなり、最大高さRzを3.0μm以下にすることができなくなるため、1回の仕上冷間圧延の圧延率は80%以下とする必要がある。しかし、仕上冷間圧延の圧延率を50~80%に制御するだけでは不十分であり、仕上冷間圧延前により均一な組織を得るための準備が必要である。
 仕上冷間圧延直前の冷間圧延(直前冷間圧延)の圧延率:30%~80%
 前述のように、0.2mm以下のチタン薄板においては微細亀裂の影響を無視できない。よって、仕上冷間圧延前のチタン材に細粒組織を形成しておくことにより、仕上冷間圧延時のひずみが均一に入りやすくなる。これは粗大な組織のチタンでは圧延によって導入されるひずみが双晶変形によって受け持たれるため、再結晶の核となる転位セルが形成されにくくなるためである。そのほかにも、結晶粒単位で変形が生じるため、変形単位が小さいことでひずみの不均一分布が生じにくくなり、均一な再結晶核の形成がしやすくなる。
 このことを確認するべく、JIS1種純チタンに冷間圧延と焼鈍を繰り返してチタン薄板を製造する実験を行った。このとき、仕上冷間圧延の圧延率は50%とし、直前冷間圧延の圧延率は種々変更した。また、仕上焼鈍および仕上冷間圧延直前の中間焼鈍(直前焼鈍)は、Arガス中で670℃で10minの条件で行った。図6には、直前冷間圧延の圧延率と最大結晶粒径dmax/平均結晶粒径daveの関係を示す。dmax/daveは、仕上冷間圧延で導入されたひずみの均一性を示す値である。なお、一般的にひずみの導入が少ない部分は最大結晶粒径が大きくなりやすいことから、dmax/daveが低いほど均一にひずみが導入されたことを示している。
 図6に示すように、直前冷間圧延の圧延率が高いほどdmax/daveは小さくなり、仕上冷間圧延で導入したひずみが均一に導入され、粗大粒の発生を抑制することができる。この結果から、直前冷間圧延の圧延率は30%以上、より望ましくは40%以上、さらに望ましくは50%以上とする。なお、直前冷間圧延においても表面の割れを生じないように80%以下とする。これにより、最大高さRzを3.0μm以下にすることが可能となる。
 仕上冷間圧延直前の組織:平均結晶粒径を2.0μm以下
 前述のように、冷間圧延の圧延率を制御すれば、均一な結晶粒径分布を得やすくなる。しかし、これだけでは、安定した加工性が得られないことがある。そのために、冷間加工によって導入される歪は、微細粒の方が小さな加工で多くの転位を導入することができるため、仕上冷間圧延前の組織を微細粒にする、具体的には、平均結晶粒径が2.0μm以下の組織とすることが効果的である。平均結晶粒径が2.0μm以下の組織は、再結晶粒および未再結晶粒で構成された混粒組織、または、未再結晶組織である。未再結晶組織は再結晶する前の段階であり、再結晶核よりも小さいとみなすことができる。再結晶核は当然ながら再結晶粒よりも小さい。そのため、再結晶粒と未再結晶粒の混合組織の場合、再結晶粒の平均粒径が2μm以下であれば、未再結晶組織は必然とそれよりも小さい。すべてが未再結晶組織の場合も、本発明の範囲内で製造する上では未再結晶組織から生じる再結晶核および再結晶粒は2μm以下であることから、これ以下の大きさとみなすことができる。これによって、仕上冷間圧延が可能であるとともに、限られた圧延率でも多くの転位(ひずみ)を与えることができ、仕上焼鈍においてより均一性の高い結晶粒を得ることができる。その結果、チタン薄板に安定した加工性を与えることができる。
 薄板は、前述のように、圧延率の制限と結晶粒径分布の均一性を要するが、一般的な薄板ではここまでの均一性が必要とされず、また、多少の表面割れは問題とならない。このため、仕上冷間圧延の圧延率を高く大きくすることが可能であり、特に、製造工程削減などの目的から、十分に再結晶させて仕上冷間圧延の圧延率を大きくするのが一般的である。
 中間焼鈍の温度:500~800℃
中間焼鈍は、直前焼鈍と同様に微細組織を得やすい低い温度で行うのがよい。この段階で必ずしも微細にしなくてもよいが、仕上冷間圧延直前において安定的に微細組織を得るためには、500~700℃で実施することが望ましい。しかし、それよりも高い温度で実施してもよく、その場合は1分未満で行う必要がある。より望ましくは30秒未満であり、このようにすれば700~800℃で中間焼鈍を行っても問題ない。
 仕上冷間圧延直前の焼鈍(直前焼鈍)の温度:400~700℃
直前焼鈍の温度は、焼鈍方式の違いによって異なる。連続式の焼鈍では未再結晶組織を得る場合には500~600℃が望ましい。微細組織を得る場合には、600~700℃でもよい。ただし、それよりも高温になると再結晶および成長によって粗大な組織を形成してしまうため、500~700℃で行う。保持時間は短い方が微細組織を得られるが、短すぎると冷延で蓄積されたひずみの低減が不十分となり、十分な延性を得ることができなくなるため、1分程度を目安に行い、昇温に要する時間や温度の安定性などを考慮して調整するのが良い。バッチ式ではコイル内に温度分布ができるため不均一になり易く、低温で長時間の焼鈍を必要とする。そのため、温度は400~550℃で1時間程度を目安に行うとよい。温度は低すぎると延性を十分に回復させられず、高すぎると粗大化するとともに不均一になってしまう。
 仕上焼鈍の温度:500~750℃
平均結晶粒径daveは、主に仕上焼鈍の温度と時間、ならびに、チタン材中の鉄濃度と酸素濃度の影響を受ける。本発明では、t/dave≧3と規定していることから、板厚によってdaveの上限が異なり、t/dave≧3とするための仕上焼鈍の温度上限も相違する。仕上焼鈍を不活性雰囲気で750℃以下で行うこととすれば、過度な結晶粒の粗大化を防止できる。
 この焼鈍は焼鈍方式によって、生産性が異なる。連続式はコイル全長にわたって安定した焼鈍を施すことができる。また、表面に付着した圧延油起因の炭素によって硬化層を形成することができ、表面の炭素の付着量が少なく硬化層が不十分である場合には窒素を雰囲気に導入したり、大気とArガスなどの混合ガスを用いたりすることで硬化層を形成することもできる。ただし、大気中や窒素雰囲気中での焼鈍では変色や過度の硬化層形成などが起こり易くなるため、安定的な生産には表面に付着する圧延油起因の炭素を拡散させることで形成する硬化層の方が良い。焼鈍時間は温度や狙いの粒径によって異なるが、たとえば570℃では5minで再結晶した。より生産性を向上させるためには焼鈍温度を600~750℃で行うことが望ましい。この場合、1min程度でも再結晶させることが可能である。
 バッチ式では、コイル全長を均一に焼鈍することが難しいため、500~570℃の低温で長時間焼鈍するとともに、昇温速度や冷却速度も可能な限り遅くする必要があり、生産性が低い。温度は高くするとコイル内で均一な組織にならず、低すぎると再結晶させるためにはより一層の時間を要するとともに、再結晶しない場合もある。バッチ式での仕上焼鈍の場合、たとえば、500℃まで10時間以上かけて昇温し、10時間以上の保持後に15時間以上かけて冷却するなどのプロセスとなってしまう。さらには、低温長時間のプロセスであってもコイルの一部で所定の組織に制御できずに歩留まりを大きく損なう懸念もある。また、低温長時間の焼鈍では硬化層を厚く形成してしまうため、15h以下を基準として、設備に応じて保持時間を調整すると良い。そのため、生産性は連続式での焼鈍を用いることが望ましい。
 JIS1種純チタン材に1回の冷間圧延と焼鈍を繰り返して、チタン薄板を作製した。表1には、それぞれのチタン薄板の化学組成および製造条件を示す。
 なお、表中、「直前冷延」は、仕上冷延の直前に行った冷間圧延を意味し、「初期冷延」は、その「直前冷延」より前に行った冷間圧延を意味する。「直前焼鈍」は、仕上冷間圧延の直前に行った焼鈍を意味し、「初期焼鈍」は、その「直前焼鈍」より前に行った中間焼鈍を意味する。焼鈍時間が1minの例は、連続焼鈍を模擬した例であり、焼鈍時間が1h以上の例は、バッチ式焼鈍を模擬した例である。焼鈍雰囲気はNo.23~26(比較例10,11、実施例14,15)以外はArガス中で行い、No.24,25は窒素ガス中、No.23,26は大気中で行った。素材の板厚は仕上冷間圧延および焼鈍後の板厚に応じて切削や研磨などによって調整した。
 仕上げ焼鈍後の結晶粒径分布は、L断面を光学顕微鏡で板厚全体を確認できる最大の倍率で観察して求めた。この観察はランダムに10視野で実施し、各視野において(板厚)×(板厚の10倍以上の長さ)の領域について各結晶粒の面積を画像解析から求め、正方形近似することで各結晶粒の径を求めた。ここから、平均結晶粒径daveと最大結晶粒径dmaxを求めた。粗粒率は求めた結晶粒径分布において、粒径が板厚(t)/2以上である結晶粒の個数割合として求めた。直前焼鈍後の組織観察はEBSDを用いて、方位差5°以上を粒界として再結晶粒の平均粒径を測定した。測定は500倍以上の視野に板厚全体を確認できる倍率で、0.2μm間隔で板厚×100~200μmの長さの領域をランダムに5視野測定した。
 均一伸びはL方向に採取したASTM1/2引張試験片を用いて、歪速度12%/分で破断まで引張試験を行い、得られた公称応力-公称ひずみ曲線の最大荷重点までのひずみ量を均一伸びとして評価した。
 硬化層厚さは、GDSを用い、試料表面の直径4mmの領域において、Arイオンスパッタにより酸素、窒素、炭素、チタン、鉄の深さ方向分析を行い、酸素、窒素および炭素の合計濃度が0.5mass%以上となる厚さとした。このときの、定量化には酸素は酸化亜鉛(酸素を19.8mass%)、窒素はオーステナイト系ステンレス鋼(窒素を0.3mass%含有)、炭素はチタン合金(炭素を0.12mass%含有)を用いて、深さは純チタン(JIS1種)換算とした。これらの結果を表2に示す。本発明範囲から外れる数値にアンダーラインを付している。0.2%耐力と均一伸びの関係が式[4]を外れた場合、合否判定を×とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明例、比較例とも、仕上焼鈍温度を本発明範囲内で変化させることによって平均結晶粒径を変化させ、0.2%耐力として種々の強度を得た。仕上焼鈍温度が高いほど平均結晶粒径が大きくなり、0.2%耐力が低下するとともに、均一伸びの値が上昇している。
 本発明例1~4(板厚0.03mm)、本発明例5~8(板厚0.1mm)、本発明9~20(板厚0.2mm)のいずれも、化学組成および製造条件が本発明で規定される範囲内であり、dave≧2.5μm、t/dave≧3、t/dmax≧1.5、硬化層の厚さ:0.1~2.0μmを満足している。その結果、0.2%耐力と均一伸びの関係がいずれも式[4]を満足しており、強度レベルに応じた良好な均一伸びを得ることができた。
 比較例1は、仕上冷間圧延の圧延率が90%と高く、結晶粒径分布に関する指標は満足しているが、最大高さRzが3.0μmを超え、表面の微細な割れによって式[4]を満足しなかった。比較例2は最終中間圧延率が90%であり、最大高さRzが3.0μmを超え、表面の微細な割れによって式[4]を満たさなかった。
 比較例3~6,8は、最終中間圧延率が小さいもしくは最終中間焼鈍によって粗大になったために、仕上冷間圧延前の組織が粗大であるため、粗粒率、t/dmax≧1.5を満たせず、[4]式を満足しなかった。また、比較例5,6は、仕上焼鈍温度が高く、粗粒化しやすかったことも原因である。
 比較例7は仕上焼鈍温度が高かったために、粗大化しやすく、[4]式を満たせなかった。比較例9は仕上冷間圧延前組織が粗大であるとともに、仕上冷間圧延の圧延率が低かったために結晶粒の均一性が不十分となり、[4]式を満たせなかった。
比較例10、本発明例15は大気中、比較例11、発明例14は窒素雰囲気で焼鈍することで意図的に硬化層を形成させた。比較例13は真空で長時間焼鈍を行い、表面に残存する圧延油起因の炭素を拡散させて硬化層を形成させた。比較例10~12は硬化層厚さが2μm以上あり、発明例14,15よりも伸びが劣り、[4]式を満たせなかった。
比較例12は仕上焼鈍時間が長く、硬化層が厚く形成された。この温度での焼鈍ではより短時間での焼鈍を行う必要がある。比較例13は仕上焼鈍温度が低く、20時間の焼鈍を行っても結晶粒径が2.5μmよりも小さくなった。
 比較例14、15はともに同じ条件で製造しており、板厚が異なる。比較例14は板厚が0.2mmのため、製造方法が本発明範囲を満たさず、[4]式を満たさなかった。しかし、比較例15は板厚が0.4mmのため、本発明の製造範囲を満たさなくても特性が劣化することは無い。比較例16も同様に、本発明の範囲外の製造方法であっても、板厚が厚いために特性が劣化しない。

Claims (3)

  1.  板厚が0.2mm以下であり、表面に硬化層を備えるチタン薄板であって、
     質量%で、
    Fe:0.001~0.08%、
    O:0.03~0.08%を含む化学組成であり、
     結晶粒径が、下記の(1)~(3)式を満足し、
     前記硬化層の厚さが、0.1~2.0μmであり、
    最大高さRzが3.0μm以下である、チタン薄板。
      dave≧2.5    (1)
      t/dave≧3.0    (2)
      t/dmax≧1.5  (3)
     ただし、(1)~(3)式において、tは板厚(μm)、daveは平均結晶粒径(μm)、dmaxは最大結晶粒径(μm)をそれぞれ意味する。
  2.  結晶粒径がt/2以上である結晶粒の割合が、個数比で、15%以下である、請求項1に記載のチタン薄板。
  3.  チタン材に冷間圧延と焼鈍とを複数回繰り返し行い、チタン薄板を製造する方法であって、
     平均結晶粒径を2.0μm以下に調整したチタン材に、圧延率50~80%の仕上冷間圧延を行った後、不活性雰囲気で570~750℃の仕上焼鈍を行う、請求項1または2に記載のチタン薄板の製造方法。
PCT/JP2016/069543 2016-06-30 2016-06-30 チタン薄板及びその製造方法 WO2018003098A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680087313.2A CN109477168A (zh) 2016-06-30 2016-06-30 钛薄板及其制造方法
JP2016568082A JP6156597B1 (ja) 2016-06-30 2016-06-30 チタン薄板及びその製造方法
US16/314,323 US20190226073A1 (en) 2016-06-30 2016-06-30 Titanium sheet and method for producing the same
PCT/JP2016/069543 WO2018003098A1 (ja) 2016-06-30 2016-06-30 チタン薄板及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/069543 WO2018003098A1 (ja) 2016-06-30 2016-06-30 チタン薄板及びその製造方法

Publications (1)

Publication Number Publication Date
WO2018003098A1 true WO2018003098A1 (ja) 2018-01-04

Family

ID=59272948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069543 WO2018003098A1 (ja) 2016-06-30 2016-06-30 チタン薄板及びその製造方法

Country Status (4)

Country Link
US (1) US20190226073A1 (ja)
JP (1) JP6156597B1 (ja)
CN (1) CN109477168A (ja)
WO (1) WO2018003098A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213715A1 (ja) * 2019-04-17 2020-10-22 日本製鉄株式会社 チタン板および銅箔製造ドラム
CN111902222A (zh) * 2018-04-03 2020-11-06 日本制铁株式会社 钛板
JPWO2020213713A1 (ja) * 2019-04-17 2021-11-11 日本製鉄株式会社 チタン板、チタン圧延コイル及び銅箔製造ドラム
JP7518462B1 (ja) 2023-01-23 2024-07-18 日本製鉄株式会社 チタン材およびその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021038662A1 (ja) * 2019-08-23 2021-03-04 国立大学法人東京海洋大学 チタン材、該チタン材を加工してなるチタン製品及び該チタン材の製造方法
CN113265603A (zh) * 2021-05-24 2021-08-17 宝鸡市烨盛钛业有限公司 一种可用于深冲压钛板的制备方法
CN114309116B (zh) * 2021-11-18 2023-10-24 洛阳双瑞精铸钛业有限公司 一种宽幅超薄钛箔带材的制备方法
CN114871274B (zh) * 2022-05-11 2023-03-28 西北工业大学 一种精准调控近α型高温钛合金箔材织构的轧制工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303223A (ja) * 2000-04-24 2001-10-31 Sumitomo Metal Ind Ltd 成形性に優れたチタン板の製造方法
WO2011007738A1 (ja) * 2009-07-15 2011-01-20 株式会社神戸製鋼所 チタン板及びチタン板の製造方法
WO2014027657A1 (ja) * 2012-08-14 2014-02-20 新日鐵住金株式会社 チタン薄板
WO2014148211A1 (ja) * 2013-03-19 2014-09-25 株式会社神戸製鋼所 チタン板
JP2016068145A (ja) * 2014-10-01 2016-05-09 新日鐵住金株式会社 チタン板およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4605514B2 (ja) * 2008-03-25 2011-01-05 住友金属工業株式会社 チタン板ならびにチタン板製造方法
JP4584341B2 (ja) * 2009-04-28 2010-11-17 株式会社神戸製鋼所 チタン板及びチタン板の製造方法
JP5700650B2 (ja) * 2011-01-28 2015-04-15 株式会社神戸製鋼所 プレス成形性と強度のバランスに優れた純チタン板
JP5937865B2 (ja) * 2011-05-30 2016-06-22 株式会社神戸製鋼所 プレス成形性と強度のバランス、及び耐食性に優れた純チタン板の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303223A (ja) * 2000-04-24 2001-10-31 Sumitomo Metal Ind Ltd 成形性に優れたチタン板の製造方法
WO2011007738A1 (ja) * 2009-07-15 2011-01-20 株式会社神戸製鋼所 チタン板及びチタン板の製造方法
WO2014027657A1 (ja) * 2012-08-14 2014-02-20 新日鐵住金株式会社 チタン薄板
WO2014148211A1 (ja) * 2013-03-19 2014-09-25 株式会社神戸製鋼所 チタン板
JP2016068145A (ja) * 2014-10-01 2016-05-09 新日鐵住金株式会社 チタン板およびその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111902222A (zh) * 2018-04-03 2020-11-06 日本制铁株式会社 钛板
CN111902222B (zh) * 2018-04-03 2022-07-26 日本制铁株式会社 钛板
WO2020213715A1 (ja) * 2019-04-17 2020-10-22 日本製鉄株式会社 チタン板および銅箔製造ドラム
JPWO2020213715A1 (ja) * 2019-04-17 2021-05-06 日本製鉄株式会社 チタン板および銅箔製造ドラム
CN113260727A (zh) * 2019-04-17 2021-08-13 日本制铁株式会社 钛板和铜箔制造滚筒
JPWO2020213713A1 (ja) * 2019-04-17 2021-11-11 日本製鉄株式会社 チタン板、チタン圧延コイル及び銅箔製造ドラム
JP7140275B2 (ja) 2019-04-17 2022-09-21 日本製鉄株式会社 チタン板、チタン圧延コイル及び銅箔製造ドラム
JP7518462B1 (ja) 2023-01-23 2024-07-18 日本製鉄株式会社 チタン材およびその製造方法

Also Published As

Publication number Publication date
CN109477168A (zh) 2019-03-15
JP6156597B1 (ja) 2017-07-05
JPWO2018003098A1 (ja) 2018-06-28
US20190226073A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
JP6156597B1 (ja) チタン薄板及びその製造方法
US20160201154A1 (en) Cold-rolled steel sheet for vitreous enameling, method for producing the same, and enameled product
JP2008208412A (ja) 加工肌荒れの小さい成形性に優れたフェライト系ステンレス鋼板およびその製造方法
JP5363922B2 (ja) 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板
WO2012032610A1 (ja) チタン材
JP2008179877A (ja) イヤリング性に優れた冷延鋼板およびその製造方法
JP2010255091A (ja) 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板およびその製造方法
JP5247010B2 (ja) 高強度で曲げ加工性に優れたCu−Zn系合金
WO2018143318A1 (ja) 溶融亜鉛めっき鋼板およびその製造方法
JPWO2016035235A1 (ja) ステンレス冷延鋼板用素材
JP5776850B2 (ja) チタン薄板
JP4818765B2 (ja) 低温焼付硬化性と常温非時効性に優れた深絞り用鋼板及びその製造方法
WO2016060248A1 (ja) 絞り缶用鋼板及びその製造方法
CN109440004B (zh) 罐用钢板及其制造方法
WO2016140231A1 (ja) チタン薄板およびその製造方法
US7501029B2 (en) High-strength, high-permeability steel sheet for picture tube band and method of producing the same
JP6137436B2 (ja) 缶用鋼板およびその製造方法
KR101736634B1 (ko) 연성과 구멍가공성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
US20090120544A1 (en) Strengthened Alpha Brass and Method for Manufacturing the Same
US20210189524A1 (en) Aluminum alloy sheet having excellent formability, strength, and exterior quality, and method of manufacturing same
EP2431490B1 (en) Cold-rolled steel sheet with excellent formability, shape retentivity, and surface appearance and process for producing same
JPH07166285A (ja) 焼付硬化型Al合金板及びその製造方法
JP5382518B2 (ja) チタン材
JP2007239035A (ja) 耐ひずみ時効性および耐肌荒れ性に優れ、面内異方性の小さい冷延鋼板およびその製造方法
WO2013084458A1 (ja) 冷間圧延の素材用の熱延鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016568082

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16907331

Country of ref document: EP

Kind code of ref document: A1