WO2020213361A1 - 触媒、触媒の製造方法、アクリロニトリルの製造方法 - Google Patents
触媒、触媒の製造方法、アクリロニトリルの製造方法 Download PDFInfo
- Publication number
- WO2020213361A1 WO2020213361A1 PCT/JP2020/013730 JP2020013730W WO2020213361A1 WO 2020213361 A1 WO2020213361 A1 WO 2020213361A1 JP 2020013730 W JP2020013730 W JP 2020013730W WO 2020213361 A1 WO2020213361 A1 WO 2020213361A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- concentration
- oxygen
- catalyst according
- propylene
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 149
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 title claims description 35
- 238000004519 manufacturing process Methods 0.000 title claims description 31
- 238000000034 method Methods 0.000 title description 25
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 158
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 67
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 54
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 41
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 41
- 239000011733 molybdenum Substances 0.000 claims abstract description 41
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 19
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052742 iron Inorganic materials 0.000 claims abstract description 19
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 90
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 90
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 89
- 239000001301 oxygen Substances 0.000 claims description 89
- 229910052760 oxygen Inorganic materials 0.000 claims description 89
- 239000002245 particle Substances 0.000 claims description 68
- 239000007789 gas Substances 0.000 claims description 43
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 38
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 35
- 229910017052 cobalt Inorganic materials 0.000 claims description 30
- 239000010941 cobalt Substances 0.000 claims description 30
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 30
- 239000000203 mixture Substances 0.000 claims description 30
- 229910021529 ammonia Inorganic materials 0.000 claims description 19
- 239000002002 slurry Substances 0.000 claims description 18
- 239000000377 silicon dioxide Substances 0.000 claims description 17
- 239000011777 magnesium Substances 0.000 claims description 15
- 229910044991 metal oxide Inorganic materials 0.000 claims description 15
- 150000004706 metal oxides Chemical class 0.000 claims description 15
- 239000011651 chromium Substances 0.000 claims description 9
- 238000009826 distribution Methods 0.000 claims description 9
- 229910052684 Cerium Inorganic materials 0.000 claims description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 8
- 229910052749 magnesium Inorganic materials 0.000 claims description 8
- 229910052700 potassium Inorganic materials 0.000 claims description 8
- 229910052701 rubidium Inorganic materials 0.000 claims description 8
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 7
- 229910052792 caesium Inorganic materials 0.000 claims description 7
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 7
- 230000005484 gravity Effects 0.000 claims description 7
- 239000011591 potassium Substances 0.000 claims description 7
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 claims description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 6
- 239000011701 zinc Substances 0.000 claims description 6
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 5
- 229910052779 Neodymium Inorganic materials 0.000 claims description 5
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 5
- 229910052772 Samarium Inorganic materials 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 238000001354 calcination Methods 0.000 claims description 5
- 229910052733 gallium Inorganic materials 0.000 claims description 5
- 229910052738 indium Inorganic materials 0.000 claims description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 5
- 229910052746 lanthanum Inorganic materials 0.000 claims description 5
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 5
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 5
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 claims description 5
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 claims description 5
- 238000001694 spray drying Methods 0.000 claims description 5
- 229910052727 yttrium Inorganic materials 0.000 claims description 5
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 4
- 229910052788 barium Inorganic materials 0.000 claims description 4
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 239000011575 calcium Substances 0.000 claims description 4
- 229910001882 dioxygen Inorganic materials 0.000 claims description 4
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- 239000011734 sodium Substances 0.000 claims description 4
- 229910052712 strontium Inorganic materials 0.000 claims description 4
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims 1
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 54
- 238000006243 chemical reaction Methods 0.000 description 42
- 239000002994 raw material Substances 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 229910004298 SiO 2 Inorganic materials 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 9
- 125000004429 atom Chemical group 0.000 description 8
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 6
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- 239000011164 primary particle Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 5
- 238000010304 firing Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000005078 molybdenum compound Substances 0.000 description 5
- 150000002752 molybdenum compounds Chemical class 0.000 description 5
- 229910052762 osmium Inorganic materials 0.000 description 5
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000012018 catalyst precursor Substances 0.000 description 4
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 229910003208 (NH4)6Mo7O24·4H2O Inorganic materials 0.000 description 3
- 229910002492 Ce(NO3)3·6H2O Inorganic materials 0.000 description 3
- 229910002554 Fe(NO3)3·9H2O Inorganic materials 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 150000003863 ammonium salts Chemical class 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- RXPAJWPEYBDXOG-UHFFFAOYSA-N hydron;methyl 4-methoxypyridine-2-carboxylate;chloride Chemical compound Cl.COC(=O)C1=CC(OC)=CC=N1 RXPAJWPEYBDXOG-UHFFFAOYSA-N 0.000 description 3
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 3
- 229910000489 osmium tetroxide Inorganic materials 0.000 description 3
- 239000012285 osmium tetroxide Substances 0.000 description 3
- RTHYXYOJKHGZJT-UHFFFAOYSA-N rubidium nitrate Inorganic materials [Rb+].[O-][N+]([O-])=O RTHYXYOJKHGZJT-UHFFFAOYSA-N 0.000 description 3
- KHAUBYTYGDOYRU-IRXASZMISA-N trospectomycin Chemical compound CN[C@H]([C@H]1O2)[C@@H](O)[C@@H](NC)[C@H](O)[C@H]1O[C@H]1[C@]2(O)C(=O)C[C@@H](CCCC)O1 KHAUBYTYGDOYRU-IRXASZMISA-N 0.000 description 3
- 238000001132 ultrasonic dispersion Methods 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 2
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 235000010333 potassium nitrate Nutrition 0.000 description 2
- 239000004323 potassium nitrate Substances 0.000 description 2
- 239000005297 pyrex Substances 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 206010021143 Hypoxia Diseases 0.000 description 1
- 229910018493 Ni—K Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- KXZJHVJKXJLBKO-UHFFFAOYSA-N chembl1408157 Chemical compound N=1C2=CC=CC=C2C(C(=O)O)=CC=1C1=CC=C(O)C=C1 KXZJHVJKXJLBKO-UHFFFAOYSA-N 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- -1 organic acid salts Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- GEVPUGOOGXGPIO-UHFFFAOYSA-N oxalic acid;dihydrate Chemical compound O.O.OC(=O)C(O)=O GEVPUGOOGXGPIO-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/883—Molybdenum and nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/887—Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/396—Distribution of the active metal ingredient
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/887—Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/8876—Arsenic, antimony or bismuth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/887—Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/8878—Chromium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/613—10-100 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0027—Powdering
- B01J37/0045—Drying a slurry, e.g. spray drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/16—Reducing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/16—Reducing
- B01J37/18—Reducing with gases containing free hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J6/00—Heat treatments such as Calcining; Fusing ; Pyrolysis
- B01J6/001—Calcining
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B61/00—Other general methods
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C253/00—Preparation of carboxylic acid nitriles
- C07C253/18—Preparation of carboxylic acid nitriles by reaction of ammonia or amines with compounds containing carbon-to-carbon multiple bonds other than in six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C253/00—Preparation of carboxylic acid nitriles
- C07C253/24—Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
- C07C253/26—Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing carbon-to-carbon multiple bonds, e.g. unsaturated aldehydes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C255/00—Carboxylic acid nitriles
- C07C255/01—Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
- C07C255/06—Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and unsaturated carbon skeleton
- C07C255/07—Mononitriles
- C07C255/08—Acrylonitrile; Methacrylonitrile
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
- C07C2523/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- C07C2523/85—Chromium, molybdenum or tungsten
- C07C2523/88—Molybdenum
- C07C2523/882—Molybdenum and cobalt
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- the present invention relates to a catalyst, a method for producing a catalyst, and a method for producing acrylonitrile.
- an oxide catalyst containing molybdenum, bismuth and iron, and an oxide catalyst containing antimony and iron are used, and an ammoxidation reaction is carried out with a catalyst having these basic compositions.
- Various improvements have been made with the aim of improving the efficiency of the.
- the fluidized bed ammoxidation reaction catalyst described in Patent Document 1 represented by the following general formula (1) can produce acrylonitrile in a high yield and without using an excessive amount of ammonia in the ammoxidation of propylene. It is said that it can be produced stably for a long period of time.
- Mo 12 Bi a Fe b Ni c Co d Ce e Cr f X g O h / (SiO 2) A ⁇ (1)
- Mo represents molybdenum
- Bi represents bismuth
- Fe represents iron
- Ni nickel
- Co represents cobalt
- Ce represents cerium
- Cr represents chromium
- X represents at least one element selected from the group consisting of potassium, rubidium and cesium
- SiO 2 represents silica
- a, b, c, d, e, f, g and h represent the atomic ratios of the respective elements.
- h is the atomic ratio of oxygen atoms satisfying the atomic value of each constituent element other than silica
- A represents the content (mass%) of silica in the complex, which is 35. Satisfying ⁇ A ⁇ 48, the values of ⁇ , ⁇ and ⁇ calculated from the following formulas (2), (3) and (4) from the atomic ratio of each element are 0.03 ⁇ ⁇ ⁇ 0.08,0.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a catalyst capable of improving the yield of hydrogen cyanide while maintaining a high yield of acrylonitrile in ammoxidation of propylene.
- the present inventors have described the above by using a catalyst containing a specific metal species and in which the ratio of the surface nickel concentration to the bulk nickel concentration is in a specific range. We have found that the problem can be solved and have completed the present invention. That is, the present invention is as follows.
- a catalyst containing molybdenum, bismuth, iron, and nickel A catalyst in which the ratio of surface nickel concentration to bulk nickel concentration is 0.60 to 1.20.
- [4] Contains more cobalt The catalyst according to any one of [1] to [3], wherein the ratio of the surface cobalt concentration to the surface molybdenum concentration is 0.15 to 0.40.
- X represents one or more elements selected from the group consisting of cobalt, magnesium, calcium, zinc, strontium, barium, and tungsten.
- Y represents one or more elements selected from the group consisting of cerium, chromium, lanthanum, neodymium, yttrium, praseodymium, samarium, aluminum, boron, gallium, and indium.
- Z represents one or more elements selected from the group consisting of sodium, potassium, rubidium, and cesium.
- a, b, c, d, e, and f are 0.1 ⁇ a ⁇ 2.0, 0.1 ⁇ b ⁇ 3.0, 0.1 ⁇ c ⁇ 10.0, 0 ⁇ d ⁇ 10. Satisfy 0, 0.1 ⁇ e ⁇ 3.0, and 0.01 ⁇ f ⁇ 2.0, respectively.
- g is the number of oxygen atoms required to satisfy the valence requirements of other existing elements.
- Molybdenum is further added in the step of reducing treatment in the presence of reducing gas and oxygen.
- a method for producing acrylonitrile which comprises a step of reacting propylene, molecular oxygen, and ammonia in the presence of the catalyst according to any one of [1] to [11].
- the production method including the step of ammoxidating propylene in the presence of the catalyst of the present invention can increase the productivity of acrylonitrile and hydrogen cyanide, and can efficiently supply acrylonitrile and hydrogen cyanide.
- Hydrogen cyanide is a compound that is widely used industrially as a raw material for chemical products such as sodium cyanide. Hydrogen cyanide can be produced using methane and ammonia as raw materials using a platinum catalyst. However, in the above method, the reaction temperature needs to be around 900 ° C., which is a reaction with a large energy loss. On the other hand, hydrogen cyanide can also be produced as a by-product of the ammoxidation reaction of propylene. In this case, the reaction can be carried out at a relatively low temperature of 400 to 500 ° C., and energy loss is suppressed. Therefore, improving the yield of hydrogen cyanide in the ammoxidation reaction of propylene is useful from an industrial and environmental point of view. Is.
- the present embodiment is not limited to the following embodiments, and can be variously modified and implemented within the scope of the gist thereof.
- a numerical value or a physical property value is put before and after using "-”, it is used as including the value before and after that.
- the notation of the numerical range of "1 to 100" includes both the upper limit value "100” and the lower limit value "1". The same applies to the notation of other numerical ranges.
- the catalyst of this embodiment contains molybdenum, bismuth, iron, and nickel, and may contain cobalt and other elements, if necessary. Further, in the catalyst of the present embodiment, the ratio of the nickel concentration on the surface to the nickel concentration in the bulk is 0.60 to 1.20. By using the catalyst of the present embodiment for ammoxidation of propylene, the yield of hydrogen cyanide can be improved while maintaining a high yield of acrylonitrile.
- One aspect of the catalyst of this embodiment is a catalyst for use in ammoxidation.
- the ratio of the surface nickel concentration to the bulk nickel concentration (surface Ni concentration / bulk Ni concentration ratio) of the catalyst of the present embodiment is 0.60 to 1.20, preferably 0.70 to 1.20. Yes, more preferably 0.80 to 1.15.
- the "bulk nickel concentration" in the present embodiment is a value calculated from the elemental composition of the raw material charged at the time of catalyst preparation, and is a nickel concentration obtained on the assumption that the entire catalyst is uniform.
- the "surface nickel concentration” in the present embodiment is a nickel concentration obtained by analyzing the metal composition of the surface of the catalyst (the surface of the catalyst particles). The surface nickel concentration relative to the bulk nickel concentration can be specifically measured by the method described in Examples.
- the yield of hydrogen cyanide can be improved while maintaining a high yield of acrylonitrile in ammoxidation of propylene.
- a reduction treatment is performed at the time of catalyst preparation, and this reduction is performed.
- Examples thereof include a method of controlling the oxygen deficiency in the system in the treatment.
- the ratio of the surface nickel concentration to the surface molybdenum concentration (surface Ni concentration / surface Mo concentration ratio) of the catalyst of the present embodiment is not particularly limited, but is preferably 0.15 to 0.40.
- the ratio of the surface nickel concentration to the surface molybdenum concentration is not particularly limited, but is preferably 0.15 to 0.40.
- the ratio of the surface cobalt concentration to the bulk cobalt concentration is not particularly limited, but may be 0.80 to 1.40. preferable.
- the ratio of the surface cobalt concentration to the bulk cobalt concentration is not particularly limited, but may be 0.80 to 1.40. preferable.
- the ratio of the surface cobalt concentration to the surface molybdenum concentration is not particularly limited, but may be 0.15 to 0.40. preferable. By setting the ratio of the surface cobalt concentration to the surface molybdenum concentration to 0.15 to 0.40, the yield of hydrogen cyanide can be improved while maintaining a high yield of acrylonitrile in ammoxidation of propylene.
- Cobalt or a composite oxide of nickel and molybdenum plays a role in decomposing acrylonitrile and producing hydrogen cyanide. By increasing the concentration of these oxides on the catalyst surface, the yield of hydrogen cyanide can be efficiently improved.
- the catalyst of the present embodiment is not particularly limited as long as it contains at least molybdenum (Mo), bismuth (Bi), iron (Fe) and nickel (Ni), and may contain other elements.
- other elements include cobalt, magnesium and the like, alkali metals and the like.
- magnesium the crystal phase can be stabilized, and there is a tendency to suppress pregelatinization of the crystal phase, which leads to performance deterioration when subjected to a fluidized bed reaction.
- an alkali metal there is a tendency to suppress the formation of by-products and keep the firing temperature of the catalyst in a preferable range.
- the catalyst of the present embodiment preferably contains a metal oxide having a composition represented by the formula (1).
- Mo 12 Bi a Fe b Ni c X d Y e Z f O g (1)
- X represents one or more elements selected from the group consisting of cobalt, magnesium, calcium, zinc, strontium, barium, and tungsten.
- Y represents one or more elements selected from the group consisting of cerium, chromium, lanthanum, neodymium, yttrium, praseodymium, samarium, aluminum, boron, gallium, and indium.
- Z represents one or more elements selected from the group consisting of sodium, potassium, rubidium, and cesium.
- a, b, c, d, e, and f are 0.1 ⁇ a ⁇ 2.0, 0.1 ⁇ b ⁇ 3.0, 0.1 ⁇ c ⁇ 10.0, 0 ⁇ d ⁇ 10. Satisfy 0, 0.1 ⁇ e ⁇ 3.0, and 0.01 ⁇ f ⁇ 2.0, respectively.
- g is the number of oxygen atoms required to satisfy the valence requirements of other existing elements.
- the atomic ratio a of bismuth to 12 atoms of molybdenum is 0.1 ⁇ a ⁇ 2.0, preferably 0.2 ⁇ a ⁇ 1.8.
- a is 0.1 or more and 2.0 or less, the yield at the initial stage of the reaction for producing acrylonitrile and hydrogen cyanide tends to be high, and the stability of the reaction tends to be excellent.
- the atomic ratio b of iron to 12 atoms of molybdenum is 0.1 ⁇ b ⁇ 3.0, preferably 0.2 ⁇ b ⁇ 2.6.
- the atomic ratio c of nickel to 12 atoms of molybdenum is 0.1 ⁇ c ⁇ 10.0, preferably 0.2 ⁇ c ⁇ 9.6.
- the atomic ratio d of the element X to 12 atoms of molybdenum is 0 ⁇ d ⁇ 10.0, preferably 0.2 ⁇ d ⁇ 9.6.
- the element X is one or more selected from the group consisting of cobalt, magnesium, calcium, zinc, strontium, barium and tungsten.
- the atomic ratio e of the element Y to 12 atoms of molybdenum is 0.1 ⁇ e ⁇ 3.0, preferably 0.2 ⁇ e ⁇ 2.8.
- the element Y is one or more selected from the group consisting of cerium, chromium, lanthanum, neodymium, yttrium, praseodymium, samarium, aluminum, boron, gallium and indium.
- the element Y preferably contains at least cerium, and may further contain one or more elements selected from the group consisting of chromium, lanthanum, neodymium, yttrium, praseodymium, samarium, aluminum, gallium and indium.
- the atomic ratio f of the element Z to 12 atoms of molybdenum is 0.01 ⁇ f ⁇ 2.0, preferably 0.03 ⁇ f ⁇ 1.8.
- the element Z is one or more selected from the group consisting of sodium, potassium, rubidium and cesium.
- the atomic ratio g of oxygen to 12 atoms of molybdenum may be any number of atoms of oxygen required to satisfy the valence requirements of other existing elements.
- the catalyst of the present embodiment may be one in which the above metal oxide is supported on a carrier. That is, the catalyst of the present embodiment may be a catalyst containing the above-mentioned metal oxide and carrier. Oxides such as silica, alumina, titania, and zirconia are used as the carrier, but silica is used from the viewpoint of reducing the decrease in selectivity of the target product and improving the wear resistance and particle strength of the formed catalyst particles. Suitable. That is, one of the preferred embodiments of the catalyst of this embodiment is a catalyst further containing a carrier containing silica.
- the amount of the silica carrier is 20% by mass to 80% by mass, preferably 30% by mass to 70% by mass, and more preferably 40% by mass to 60% by mass with respect to the total mass of the silica carrier and the composite metal oxide. Used in the range.
- the specific surface area of the catalyst of the present embodiment is not particularly limited, but is preferably 10 to 70 m 2 / g.
- the specific surface area of the catalyst of the present embodiment is determined by pre-drying the sample at 300 ° C. for 15 minutes under helium flow using an automatic specific surface area measuring device Gemini V manufactured by Micromeritics, and then nitrogen as an adsorbed gas. Can be measured by the BET 1-point method.
- the proportion of particles having a particle size of 45 ⁇ m or less in the volume-based particle size distribution of the catalyst of the present embodiment is not particularly limited, but is preferably 5 to 45% (cumulative 45 ⁇ m in the volume-based distribution is 5 to 45%).
- the dispersion medium is water, 0.6 g of the catalyst is placed in 250 ml of water, ultrasonic dispersion treatment is performed for 1 minute, and then relative refraction is performed using a laser diffraction / scattering particle size distribution measuring device LA-300 manufactured by HORIBA, Ltd. By measuring under the condition of a rate of 1.40, it can be obtained from the obtained volume-based particle size distribution as a proportion of particles having a particle size of 45 ⁇ m or less (cumulative 45 ⁇ m in the volume-based distribution).
- the shape of the catalyst of the present embodiment is not particularly limited, but when used as a fluidized bed catalyst, a spherical shape is preferable from the viewpoint of fluidity.
- the median diameter of the catalyst of the present embodiment is not particularly limited, but is preferably 10 to 180 ⁇ m, and more preferably 20 to 150 ⁇ m.
- the dispersion medium is water, 0.6 g of the catalyst is placed in 250 ml of water, ultrasonic dispersion treatment is performed for 1 minute, and then laser diffraction / scattering particle size distribution measurement manufactured by HORIBA, Ltd. is performed. It can be obtained by measuring under the condition of a relative refractive index of 1.40 using the apparatus LA-300.
- the apparent specific gravity of the catalyst of the present embodiment is not particularly limited, but is preferably 0.8 to 1.2 g / cc.
- FIG. 1 shows a schematic diagram showing a method for measuring the apparent specific gravity of the catalyst of the present embodiment.
- drop the catalyst from the funnel to the graduated cylinder scrape off the catalyst on the top of the graduated cylinder with a metal ruler, etc., weigh the graduated cylinder, and weigh the graduated cylinder tare. Subtract to get the weight of the catalyst.
- the apparent specific gravity can be calculated by the following formula.
- Apparent specific gravity catalyst weight (g) / 25 (cc)
- the catalyst of the present embodiment is a step of obtaining dry particles by spray-drying a slurry containing molybdenum, bismuth, iron, and nickel, and calcining the dry particles in the air to obtain calcined particles (hereinafter, step I). It is also produced by a production method including a step of reducing the calcined particles in the presence of reducing gas and oxygen (hereinafter, also referred to as step II).
- step I in the method for producing a catalyst of the present embodiment, dry particles are obtained by spray-drying a slurry containing molybdenum, bismuth, iron, and nickel, and the dried particles are calcined in air to obtain calcined particles. It is a process.
- the calcined particles are also referred to as catalyst precursors.
- the fired particles can be produced by referring to a known method, for example, the production method described in International Publication No. 2018/211858.
- the fired product may contain a metal contained in the composition represented by the formula (1) in addition to molybdenum, bismuth, iron, and nickel.
- the calcined particles containing molybdenum, bismuth, iron, and nickel are preferably metal oxides having a composition represented by the formula (1).
- a slurry containing molybdenum, bismuth, iron, and nickel can be obtained by mixing a catalyst raw material and a solvent.
- the solvent is preferably water, and the slurry is preferably an aqueous slurry.
- an aqueous solution containing molybdenum is mixed and stirred with respect to the aqueous solution containing silica, and then a solution containing bismuth, iron, nickel and other metals is mixed and stirred.
- the method is preferably used.
- Silica sol is preferable as a raw material for silica.
- the preferable concentration of the silica sol in the state of the raw material in which other metal components are not mixed is 10 to 50% by mass.
- the raw materials for each element constituting the catalyst are salt soluble in water or nitric acid. It may be sufficient, and examples thereof include ammonium salts, nitrates, hydrochlorides, sulfates, and organic acid salts of each metal. Ammonium salts are preferably used as raw materials containing molybdenum, and nitrates are preferably used as raw materials containing bismuth, cerium, iron, nickel, magnesium, zinc, potassium, rubidium, and cesium.
- the slurry containing molybdenum, bismuth, iron, and nickel is spray-dried to prepare dry particles.
- spray drying the slurry is spray-dried to obtain spherical particles.
- the spraying of the aqueous slurry can be carried out by a method such as a centrifugal method, a two-fluid nozzle method, or a high-pressure nozzle method, which are usually used industrially, and is preferably performed by a centrifugal method.
- heated air for drying and examples of the heat source for drying include steam and an electric heater.
- the inlet temperature of the dryer is preferably 100 ° C. to 400 ° C., more preferably 150 ° C. to 300 ° C.
- the outlet temperature of the dryer is preferably 100 ° C. to 180 ° C., more preferably 120 ° C. to 170 ° C.
- the dried particles obtained as described above are calcined in air to obtain calcined particles. Firing is performed using a normal tunnel type or rotary type kiln.
- the firing temperature is preferably in the range of 500 to 750 ° C, more preferably 500 to 680 ° C.
- the firing time may be appropriately adjusted depending on the firing temperature, and is preferably in the range of 1 to 20 hours.
- the shape of the fired particles is not particularly limited, but a spherical shape is preferable.
- the median diameter of the fired particles is not particularly limited, but is preferably 10 to 180 ⁇ m.
- the dispersion medium is water, 0.6 g of the calcined particles is placed in 250 ml of water, ultrasonic dispersion treatment is performed for 1 minute, and then a laser diffraction / scattering particle size distribution measuring device manufactured by HORIBA, Ltd. It can be obtained by measuring with LA-300 under the condition of a relative refractive index of 1.40.
- Step II in the method for producing a catalyst of the present embodiment is a step of reducing the calcined particles obtained in Step I in the presence of reducing gas and oxygen.
- Step II can be preferably carried out using a fluidized bed reactor as the reactor.
- the fluidized bed reactor is not particularly limited, and is preferably a vertical cylindrical type, and a reactor provided with an air dispersion plate, a raw material gas dispersion pipe for supplying propylene and ammonia, a reactor outlet, and the like is preferable. Can be used for.
- the calcined particles obtained in step I are filled in a reactor and, if necessary, first brought into contact with a mixed gas containing propylene, ammonia, oxygen and helium.
- a mixed gas containing propylene, ammonia, oxygen and helium a mixed gas containing propylene, ammonia, oxygen and helium.
- the treatment subjected to this state is also referred to as a reduction pretreatment.
- oxygen refers to molecular oxygen
- the oxygen source is air.
- the contact time between the mixed gas and the calcined particles is not particularly limited, but is usually 0.5 to 30 seconds, preferably 1 to 10 seconds.
- the contact time is the contact time obtained by the method described in the examples.
- the temperature of the reduction pretreatment is preferably 400 to 500 ° C, more preferably 420 to 480 ° C.
- the molar ratio of ammonia / propylene is preferably set to 1.0 to 5.0.
- the oxygen / propylene molar ratio should be set so that the oxygen concentration detected at the outlet of the reactor (hereinafter, also referred to as the oxygen concentration of the reactor outlet gas) is 0.18 to 0.22% by volume. Is preferable.
- the conversion rate of propylene is preferably 98% or more, and more preferably 99% or more.
- a molybdenum compound may be added in the method for producing a catalyst of the present embodiment.
- the molybdenum compound is added to the calcined particles obtained in step I in the step of reducing the calcined particles obtained in step I in the presence of reducing gas and oxygen, or in the above-mentioned pretreatment for reduction.
- the amount of molybdenum compound added is an amount equivalent to 0.05 to 3.0 based on the amount of substance of molybdenum contained in the calcined particles obtained in step I as 12 and the value of this amount of substance (quantity of substance 12).
- the amount is preferably 0.1 to 1.0, and more preferably 0.1 to 1.0.
- the method for producing a catalyst of the present embodiment it is preferable to control the state in which oxygen in the reactor is insufficient as the reduction treatment.
- Specific methods of the reduction treatment include, for example, a method of reducing the amount of oxygen in the reactor by adjusting the molar ratio of oxygen / propylene. By significantly reducing the oxygen / propylene molar ratio, the surface nickel concentration / bulk nickel concentration ratio is controlled to be high.
- the reduction in the amount of oxygen can be confirmed by detecting the oxygen concentration in the reactor outlet gas.
- the fact that the oxygen / propylene molar ratio is greatly reduced and the oxygen in the reactor is insufficient can be confirmed by measuring the oxygen concentration of the reactor outlet gas to be 0% by volume. Therefore, it is preferable to control the oxygen flow rate into the reactor so that the oxygen concentration of the reactor outlet gas becomes 0% by volume. Further, it can be confirmed from the fact that the conversion rate of propylene is in the range of 89 to 96% that the oxygen in the reactor is insufficient. It can be confirmed from the fact that the propylene conversion rate is in the range of 90 to 95% that the state in which the oxygen in the reactor is deficient is more preferable.
- the time for continuing the oxygen-deficient state in the reactor is preferably 10 minutes to less than 5 hours, and more preferably 30 minutes to 2 hours.
- the surface nickel concentration / bulk nickel concentration ratio tends to be controlled to 0.60 to 1.20, and the high yield of acrylonitrile, which is a product of propylene ammoxidation, tends to be high.
- the high yield of acrylonitrile which is a product of propylene ammoxidation
- the molar ratio of oxygen / propylene in the reduction treatment is preferably 0.10 or more and 0.50 or less, and 0.20 or more and 0.40 or less, from the molar ratio of oxygen / propylene in the reduction pretreatment. It is more preferable to reduce it.
- the molar ratio of oxygen / propylene in the reduction pretreatment is specified based on the oxygen flow rate and the propylene flow rate to the reactor when the oxygen concentration of the reactor outlet gas is 0.18 to 0.22% by volume. To.
- the oxygen concentration in the reactor can be sufficiently reduced, and the yield of hydrogen cyanide can be increased. There is a tendency to obtain a catalyst that can be improved. Further, by reducing the molar ratio of oxygen / propylene in the reduction treatment to 0.50 or less from the molar ratio of oxygen / propylene in the reduction pretreatment, there is a tendency to obtain a catalyst capable of maintaining a high yield of acrylonitrile.
- the temperature of the reduction treatment is preferably 400 to 500 ° C, more preferably 420 to 480 ° C.
- the oxygen concentration may be adjusted to increase to the oxygen concentration in the reduction pretreatment in order to stop the reduction treatment. At this time, it is preferable to gradually increase the oxygen concentration in order to gently stop the reduction treatment.
- the sulfuric acid intensity defined in the examples is 10 to 30 kg / T-AN, and the reactor outlet gas is used. It is preferable to control the oxygen concentration to exceed 0% by volume and the conversion rate of propylene to be 97% or more and 100% or less.
- the above gas conditions preferably last for 30 minutes or more and 5 hours or less.
- the temperature of the post-reduction treatment is preferably 300 to 500 ° C, more preferably 400 to 480 ° C.
- the molar ratio of oxygen / propylene it is preferable to further adjust the molar ratio of oxygen / propylene to control the oxygen concentration of the reactor outlet gas to be the oxygen concentration at the time of the reduction pretreatment.
- the method for producing acrylonitrile of the present embodiment uses the catalyst of the present embodiment. That is, the method for producing acrylonitrile of the present embodiment includes a step of reacting propylene with oxygen and ammonia in the presence of the catalyst of the present embodiment.
- the production method of the present embodiment is preferably carried out by a fluidized bed ammoxidation reaction. Further, the production of acrylonitrile of the present embodiment can be carried out in the same reactor as the fluidized bed reactor used in the production of the catalyst described above. Acrylonitrile and hydrogen cyanide can be produced by the production method of the present embodiment.
- the method for producing acrylonitrile of the present embodiment may be carried out, for example, in a normally used fluidized bed reactor.
- the raw materials propylene and ammonia do not necessarily have to be of high purity, and industrial grade ones can be used.
- the molecular oxygen source it is usually preferable to use air, but a gas having an increased oxygen concentration such as by mixing oxygen with air can also be used.
- the composition of the raw material gas is preferably 1 / (0.8 to 2. It is in the range of 5) / (7.0 to 12.0), more preferably in the range of 1 / (0.9 to 1.3) / (8.0 to 11.0).
- the reaction temperature in the method for producing acrylonitrile of the present embodiment is preferably in the range of 300 to 500 ° C, more preferably in the range of 400 to 480 ° C.
- the reaction pressure is preferably in the range of normal pressure to 0.3 MPa.
- the contact time between the raw material gas and the catalyst is preferably 0.5 to 20 (sec ⁇ g / cc), more preferably 1 to 10 (sec ⁇ g / cc).
- the nickel concentration in the bulk was calculated from the elemental composition of the raw material charged at the time of catalyst preparation, and was calculated on the assumption that the entire catalyst was uniform. Specifically, the elements other than oxygen constituting the catalyst were set to 100%, and the weight concentration of nickel was set to the bulk nickel concentration.
- the elements other than oxygen constituting the catalyst also include elements other than oxygen in the carrier, for example, silicon of SiO 2 .
- "Surface nickel concentration” is a catalyst obtained by measuring the surface of the catalyst by energy dispersive X-ray spectroscopy (EDX) using an electron microscope (SEM). It is the weight concentration of nickel when the weight of the element other than oxygen constituting the above is 100%. The specific measurement method is described below.
- a 10 mm square carbon tape was attached on a carbon sample table having a diameter of 15 mm, and catalyst particles were spread and fixed on the carbon tape. Then, osmium tetroxide was coated on the surface of the catalyst particles to form a metal osmium layer, which was subjected to conductive treatment and used for measurement.
- osmium tetroxide coating 1 g of osmium acid (manufactured by Nissin EM Co., Ltd.) was used as the osmium tetroxide source, and the osmium coater HPC-1SW manufactured by Vacuum Device Co., Ltd. was used, and the coating time was set to 5 seconds.
- osmium coater HPC-1SW catalog it is presumed that a 1.5 nm metal osmium layer was formed on the surface of the catalyst particles.
- SEM Hitachi's SU-70 equipped with a Schottky type electron gun was used.
- EDX detector EMAX X-max manufactured by HORIBA, Ltd. was used.
- the accelerating voltage of the SEM was set to 10 kV, and the working distance from the objective lens was set to 15 mm.
- the K line was used to quantify Ni.
- the intensity of the Ni—K wire becomes weak, so the spectrum acquisition time was set to 300 seconds.
- the following excitation lines CoK line, MgK line, SiK line, FeK line, MoL line, CeL line, Bi-M line and Cr-K line were used.
- the peak intensity was obtained as the integrated area of the peaks, and the element quantification values were determined by the XPP method for the elements other than oxygen constituting the catalyst by the measurement software provided in the EDX detector.
- the X-ray intensity of each element used in the quantitative calculation was determined by removing the continuous X-ray component and performing peak separation when there was peak overlap.
- the ratio of the surface nickel concentration to the surface molybdenum concentration was obtained in the same manner as in the above method for calculating the ratio of the surface nickel concentration to the bulk nickel concentration. Similarly, the ratio of the surface cobalt concentration to the bulk cobalt concentration was obtained. Further, in the same manner, the ratio of the surface cobalt concentration to the surface molybdenum concentration was obtained.
- the content of propylene in the mixed gas is 9% by volume, and the molar ratio of propylene / ammonia / air is 1 / (0.7 to 2.5) / (8.0 to 13.5).
- the ammonia flow rate is adjusted so that the sulfate intensity defined by the following formula is 20 ⁇ 2 kg / T-AN, and the oxygen concentration of the reactor outlet gas is 0.2 ⁇ 0.02% by volume.
- the air flow rate was changed as appropriate. Further, by changing the flow velocity of the entire mixed gas, the contact time defined by the following formula was changed, and the propylene conversion rate defined by the following formula was set to be 99.3 ⁇ 0.2%.
- the yield of acrylonitrile and the yield of hydrogen cyanide produced by the reaction were set to the values defined by the following formulas.
- the amount of substance of the product was defined based on the carbon number of propylene, which is the raw material.
- Example 1 (Preparation of catalyst precursor) First, a metal oxide whose composition is prepared by adjusting the charge mass of a raw material such as a Mo 12 Bi 0.40 Fe 1.70 Ni 5.30 Mg 2.10 Ce 0.80 Rb 0.11 O g 60 A catalyst in which mass% was supported on 40% by mass of silica (SiO 2 ) was produced by the following procedure. An aqueous silica sol 666.7g containing SiO 2 30 wt% average particle diameter of the primary particles is 12 nm, the average particle diameter of primary particles were mixed with an aqueous silica sol 666.7g containing SiO 2 is 41 nm 30 wt% A mixed solution of two kinds of silica was obtained.
- a raw material such as a Mo 12 Bi 0.40 Fe 1.70 Ni 5.30 Mg 2.10 Ce 0.80 Rb 0.11 O g 60
- silica silica
- the above-mentioned aqueous raw material mixture was spray-dried under the conditions of an inlet temperature of about 230 ° C. and an outlet temperature of about 110 ° C. using a spray device equipped with a dish-shaped rotor installed in the center of the upper part of the dryer.
- the rotation speed of the disk was set to 12500 rotations / minute.
- the obtained dried product was held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at 2.5 ° C./min, and held at 450 ° C. for 20 minutes to denitrate.
- the obtained denitration powder was calcined at 580 ° C. for 2 hours to obtain a catalyst precursor.
- Reduction process (1) Reduction pretreatment Further, using a Pyrex (registered trademark) glass tube having an inner diameter of 25 mm containing 16 10-mesh wire meshes at 1 cm intervals, 0.82 g of ammonium paramolybdate for 50 cc of the catalyst precursor [(). NH 4) 6 Mo 7 O 24 ⁇ 4H 2 O ] (a mixture of 0.4 equivalent) to the molybdenum 12 reference, temperature 460 ° C., set at a pressure 0.17 MPa, propylene 9 volume% of the gas mixture (propylene , Ammonia, oxygen, helium). The gas flow rate was set so that the contact time defined by the following formula was 3.5 seconds.
- the molar ratio of ammonia / propylene was set to 1.7, and the molar ratio of oxygen / propylene was set so that the oxygen concentration of the reactor outlet gas was 0.2 ⁇ 0.02% by volume.
- (2) Reduction Treatment After setting the gas conditions, an operation was performed to reduce the oxygen / propylene molar ratio (O / C) by 0.28. At this time, analysis by gas chromalography was performed, and the oxygen concentration of the reactor outlet gas was 0% by volume, and the conversion rate of propylene was 91%.
- Post-reduction treatment After 75 minutes had passed from the above operation, the oxygen / propylene molar ratio was increased by 0.28 to return to the level before the reduction treatment.
- the sulfate intensity defined by the above formula is 20 ⁇ 2 kg / T-AN
- the oxygen concentration of the reactor outlet gas is 0.05 ⁇ 0.01 by volume
- the conversion rate of propylene is The gas conditions; the molar ratio of ammonia / propylene, the molar ratio of oxygen / propylene, and the contact time were set so as to be 99.3 ⁇ 0.2%. After 90 minutes had passed after setting the gas conditions, the gas conditions of the molar ratio of oxygen / propylene were set so that the oxygen concentration of the reactor outlet gas was 1.0 ⁇ 0.1% by volume.
- the molar ratio of oxygen / propylene is set so that the oxygen concentration of the reactor outlet gas is 0.2 ⁇ 0.02% by volume, and after 20 minutes, all Gas supply was stopped to obtain a catalyst.
- the surface nickel concentration / bulk nickel concentration ratio calculated from the surface nickel concentration obtained by measuring SEM / EDX of the obtained catalyst and the bulk nickel concentration obtained from the charged composition was 0.83.
- Example 2 A catalyst was obtained by the same operation as in Example 1 except that the amount of reduction in the oxygen / propylene molar ratio in the reduction treatment (2) was 0.25 and the conversion rate of propylene was 96%.
- Example 3 A catalyst was obtained by the same operation as in Example 1 except that the reduction amount of the oxygen / propylene molar ratio in the reduction treatment (2) was 0.36 and the conversion rate of propylene was 89%.
- Example 4 A catalyst was obtained by the same operation as in Example 1 except that the mixing ratio of ammonium paramolybdate in the above (1) reduction pretreatment was 0.2 and the conversion rate of propylene was 92%.
- Example 5 A catalyst was obtained by the same operation as in Example 1 except that ammonium paramolybdate was not mixed in the above (1) reduction pretreatment and the conversion rate of propylene was set to 92%.
- Example 1 A catalyst was obtained by the same operation as in Example 1 except that the above (reduction treatment) was not performed.
- Example 2 A catalyst was obtained by the same operation as in Example 1 except that the reduction amount of the oxygen / propylene molar ratio in the reduction treatment (2) was 0.53 and the conversion rate of propylene was 85%.
- Example 6 Metal oxides the composition was produced by adjusting the charge mass of a raw material such as a Mo 12 Bi 0.35 Fe 1.61 Ni 3.60 C O3.90 Ce 0.84 Rb 0.14 O g 60 wt%
- a raw material such as a Mo 12 Bi 0.35 Fe 1.61 Ni 3.60 C O3.90 Ce 0.84 Rb 0.14 O g 60 wt%
- the catalyst was obtained by the same operation as in Example 1 except that the reduction amount of the oxygen / propylene molar ratio in the above (2) reduction treatment was 0.29 and the conversion rate of propylene was 93%. It was.
- Example 7 A catalyst was obtained by the same operation as in Example 6 except that the reduction amount of the oxygen / propylene molar ratio in the reduction treatment (2) was 0.23 and the conversion rate of propylene was 96%.
- Example 8 A catalyst was obtained by the same operation as in Example 6 except that the amount of reduction in the oxygen / propylene molar ratio in the reduction treatment (2) was 0.38 and the conversion rate of propylene was 89%.
- Example 9 Metal oxide whose composition is prepared by adjusting the charge mass of a raw material such as a Mo 12 Bi 0.50 Fe 1.31 Ni 3.10 C O4.05 Ce 0.87 Rb 0.10 K 0.08 O g The same operation as in Example 1 except that 60% by mass of the product was used, the amount of reduction in the oxygen / propylene molar ratio in the above (2) reduction treatment was 0.27, and the conversion rate of propylene was 93%. Obtained a catalyst.
- a raw material such as a Mo 12 Bi 0.50 Fe 1.31 Ni 3.10 C O4.05 Ce 0.87 Rb 0.10 K 0.08 O g
- Example 10 Metal oxides the composition was produced by adjusting the charge mass of a raw material such as a Mo 12 Bi 0.39 Fe 1.60 Ni 6.97 Mg 0.77 Ce 0.63 Rb 0.17 O g 60 wt%
- the catalyst was obtained by the same operation as in Example 1 except that the reduction amount of the oxygen / propylene molar ratio in the above (2) reduction treatment was 0.32 and the conversion rate of propylene was 91%. It was.
- Example 11 Metal oxide whose composition is prepared by adjusting the charge mass of a raw material such as a Mo 12 Bi 0.57 Fe 1.01 Ni 0.98 C O6.83 Mg 0.98 Ce 0.38 Rb 0.12 O g The same operation as in Example 1 except that 60% by mass of the product was used, the amount of reduction in the oxygen / propylene molar ratio in the above (2) reduction treatment was 0.29, and the conversion rate of propylene was 92%. Obtained a catalyst.
- a raw material such as a Mo 12 Bi 0.57 Fe 1.01 Ni 0.98 C O6.83 Mg 0.98 Ce 0.38 Rb 0.12 O g
- Example 12 Its composition Mo 12 Bi 0.27 Fe 0.95 Ni 2.95 C O6.69 Ce 0.18 Rb 0.13 metal oxides were charged mass of material so as to be O g were prepared by adjusting 60% The catalyst was obtained by the same operation as in Example 1 except that the reduction amount of the oxygen / propylene molar ratio in the above (2) reduction treatment was 0.35 and the conversion rate of propylene was 90%. It was.
- Example 13 Its composition Mo 12 Bi 0.27 Fe 0.95 Ni 1.48 C O8.16 Ce 0.18 Rb 0.13 metal oxides were charged mass of material so as to be O g were prepared by adjusting 60% The catalyst was obtained by the same operation as in Example 1 except that the reduction amount of the oxygen / propylene molar ratio in the above (2) reduction treatment was 0.24 and the conversion rate of propylene was 94%. It was.
- Example 14 That the composition using Mo 12 Bi 1.20 Fe 0.60 Ni 7.80 Cr 1.20 K 0.48 metal oxides were charged mass of material so as to be O g were prepared by adjusting 60% A catalyst was obtained by the same operation as in Example 1 except that the conversion rate of propylene was set to 92%.
- Example 15 An oxide having a composition represented by Mo 12 Bi 0.45 Ce 0.90 Co 3.00 Fe 1.70 K 0.09 Ni 2.00 Mg 2.00 Rb 0.04 O g, the total amount of the catalyst An oxide catalyst supported on 50% by mass of silica was prepared as follows.
- Example 1 the same operation as in Example 1 was carried out except that the reduction amount of the oxygen / propylene molar ratio in the reduction treatment (2) was 0.31 and the conversion rate of propylene was 92%. Obtained a catalyst.
- the catalyst of the present invention has industrial applicability in the production of acrylonitrile and hydrogen cyanide, which comprises the step of ammoxidating propylene.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
(式(1)中、Moはモリブデンを表し、Biはビスマスを表し、Feは鉄を表し、Niはニッケルを表し、Coはコバルトを表し、Ceはセリウムを表し、Crはクロムを表し、Xはカリウム、ルビジウム及びセシウムからなる群より選ばれる少なくとも1つの元素を表し、SiO2はシリカを表し、a、b、c、d、e、f、g及びhは、それぞれの元素の原子比を表し、0.1≦a≦1、1≦b≦3、1≦c≦6.5、1≦d≦6.5、0.2≦e≦1.2、f≦0.05、及び0.05≦g≦1を満たし、hはシリカを除く各構成元素の原子価を満足する酸素原子の原子比であり、Aは前記複合体中のシリカの含有量(質量%)を表し、35≦A≦48を満たし、各元素の原子比から下記式(2)、(3)及び(4)より算出されるα、β及びγの値が、0.03≦α≦0.08、0.2≦β≦0.4及び0.5≦γ≦2を満たす。)
α=1.5a/(1.5(b+f)+c+d)・・・(2)
β=1.5(b+f)/(c+d)・・・・・・・・(3)
γ=d/c・・・・・・・・・・・・・・・・・・・(4)
すなわち、本発明は以下のとおりである。
モリブデン、ビスマス、鉄、及びニッケルを含む触媒であって、
バルクのニッケル濃度に対する、表面のニッケル濃度の割合が、0.60~1.20である、触媒。
[2]
表面のモリブデン濃度に対する、表面のニッケル濃度の割合が、0.15~0.40である、[1]に記載の触媒。
[3]
コバルトをさらに含み、
バルクのコバルト濃度に対する、表面のコバルト濃度の割合が、0.80~1.40である、[1]又は[2]に記載の触媒。
[4]
コバルトをさらに含み、
表面のモリブデン濃度に対する、表面のコバルト濃度の割合が、0.15~0.40である、[1]~[3]のいずれか一項に記載の触媒。
[5]
比表面積が10~70m2/gである、[1]~[4]のいずれか一項に記載の触媒。
[6]
体積基準の粒度分布における粒径45μm以下の粒子の割合が5~45%である、[1]~[5]のいずれかに記載の触媒。
[7]
メジアン径が10~180μmである、[1]~[6]のいずれか一項に記載の触媒。
[8]
見かけ比重が0.8~1.2g/ccである、[1]~[7]のいずれか一項に記載の触媒
[9]
下記式(1)で表される組成を有する金属酸化物を含む、
[1]~[8]のいずれか一項に記載の触媒。
Mo12BiaFebNicXdYeZfOg (1)
(式(1)中、
Xは、コバルト、マグネシウム、カルシウム、亜鉛、ストロンチウム、バリウム、及びタングステンからなる群より選ばれる1種以上の元素を示し、
Yは、セリウム、クロム、ランタン、ネオジム、イットリウム、プラセオジム、サマリウム、アルミニウム、ホウ素、ガリウム、及びインジウムからなる群より選ばれる1種以上の元素を示し、
Zは、ナトリウム、カリウム、ルビジウム、及びセシウムからなる群より選ばれる1種以上の元素を示し、
a、b、c、d、e、及びfは、0.1≦a≦2.0、0.1≦b≦3.0、0.1≦c≦10.0、0≦d≦10.0、0.1≦e≦3.0、及び0.01≦f≦2.0をそれぞれ満たし、
gは、存在する他の元素の原子価要求を満足させるのに必要な酸素の原子数である。)
[10]
シリカを含有する担体をさらに含む、[1]~[9]のいずれか一項に記載の触媒。
[11]
アンモ酸化に用いるための、[1]~[10]のいずれか一項に記載の触媒。
[12]
モリブデン、ビスマス、鉄、及びニッケルを含むスラリーを噴霧乾燥することにより、乾燥粒子を得て、前記乾燥粒子を空気中で焼成し、焼成粒子を得る工程と、
前記焼成粒子を還元ガス及び酸素存在下で還元処理する工程と、を含む、
[1]~[11]のいずれか一項に記載の触媒の製造方法。
[13]
還元ガス及び酸素存在下で還元処理する前記工程において、モリブデンをさらに添加する、
[12]に記載の触媒の製造方法。
[14]
[1]~[11]のいずれか一項に記載の触媒の存在下、プロピレンと、分子状酸素と、アンモニアと、を反応させる工程を含む、アクロニトリルの製造方法。
Mo12BiaFebNicXdYeZfOg (1)
(式(1)中、
Xは、コバルト、マグネシウム、カルシウム、亜鉛、ストロンチウム、バリウム、及びタングステンからなる群より選ばれる1種以上の元素を示し、
Yは、セリウム、クロム、ランタン、ネオジム、イットリウム、プラセオジム、サマリウム、アルミニウム、ホウ素、ガリウム、及びインジウムからなる群より選ばれる1種以上の元素を示し、
Zは、ナトリウム、カリウム、ルビジウム、及びセシウムからなる群より選ばれる1種以上の元素を示し、
a、b、c、d、e、及びfは、0.1≦a≦2.0、0.1≦b≦3.0、0.1≦c≦10.0、0≦d≦10.0、0.1≦e≦3.0、及び0.01≦f≦2.0をそれぞれ満たし、
gは、存在する他の元素の原子価要求を満足させるのに必要な酸素の原子数である。)
見かけ比重=触媒の重量(g)/25(cc)
本実施形態の触媒は、モリブデン、ビスマス、鉄、及びニッケルを含むスラリーを噴霧乾燥することにより、乾燥粒子を得て、乾燥粒子を空気中で焼成し、焼成粒子を得る工程(以下、工程Iともいう)と、焼成粒子を還元ガス及び酸素存在下で還元処理する工程(以下、工程IIともいう)と、を含む、製造方法により製造される。
本実施形態の触媒の製造方法における工程Iは、モリブデン、ビスマス、鉄、及びニッケルを含むスラリーを噴霧乾燥することにより、乾燥粒子を得て、乾燥粒子を空気中で焼成し、焼成粒子を得る工程である。焼成粒子は、触媒前駆体ともいう。
本実施形態の触媒の製造方法における工程IIは、工程Iにより得られた焼成粒子を還元ガス及び酸素存在下で還元処理する工程である。工程IIは、反応器として流動層反応器を好適に用い行うことができる。流動層反応器としては、特に制限されず、好ましくは縦型円筒型であり、空気分散板、その上にプロピレン及びアンモニア供給用の原料ガス分散管、及び反応器出口等を備える反応器を好適に用いることができる。
酸素モル比=空気モル比×0.21
ここで、還元前処理における酸素/プロピレンのモル比は、反応器出口ガスの酸素濃度が0.18~0.22容積%となった際の反応器へ酸素流量及びプロピレン流量に基づいて特定される。
還元処理における酸素/プロピレンのモル比を還元前処理における酸素/プロピレンのモル比から0.10以上低減することにより、反応器内の酸素濃度を十分に低下させることができ、シアン化水素の収率を向上できる触媒を得られる傾向にある。また、還元処理における酸素/プロピレンのモル比を還元前処理における酸素/プロピレンのモル比から0.50以下低減することにより、アクリロニトリルの高い収率を維持できる触媒を得られる傾向にある。
還元処理の温度は、好ましくは400~500℃であり、より好ましくは420~480℃である。
本実施形態のアクリロニトリルの製造方法は、本実施形態の触媒を用いるものである。すなわち、本実施形態のアクリロニトリルの製造方法は、本実施形態の触媒の存在下、プロピレンと、酸素と、アンモニアと、を反応させる工程を含む。本実施形態の製造方法は、流動床アンモ酸化反応により行うことが好ましい。また、本実施形態のアクリロニトリルの製造は、上述した触媒の製造に用いた流動層反応器と同じ反応器にて行うことができる。本実施形態の製造方法によって、アクリロニトリル及びシアン化水素を製造することができる。
バルクのニッケル濃度を、触媒調製時の原料の仕込みの元素組成から算出し、触媒全体が均一であると仮定して求めた。具体的には、触媒を構成する酸素以外の元素を100%とし、ニッケルの重量濃度をバルクのニッケル濃度とした。なお、触媒を構成する酸素以外の元素には、担体中の酸素以外の元素、例えば、SiO2のケイ素も含まれる。
「表面のニッケル濃度」とは、触媒表面を電子顕微鏡(SEM:scanning electron microscopy)を用いたエネルギー分散型X線分光法(EDX:energy dispersive X-ray spectrometry)によって測定することで得られる、触媒を構成する酸素以外の元素の重量を100%とした際の、ニッケルの重量濃度である。下記に具体的な測定方法を記載する。
まず、試料の前処理として、φ15mmのカーボン試料台の上に10mm角のカーボンテープを張り付け、その上に触媒粒子を敷き詰め固定を行った。その後、四酸化オスミウムを触媒粒子の表面にコーティングし金属オスミウム層を形成することにより、導電処理を行い測定に供した。四酸化オスミウムコーティングには、四酸化オスミウム源にオスミウム酸1g(日新EM株式会社製)を用い、株式会社真空デバイス社製のオスミウムコーター HPC-1SWを用い、コーティング時間は5秒とした。オスミウムコーター HPC-1SWのカタログによれば、1.5nmの金属オスミウム層が前記触媒粒子表面に形成されたものと推測される。
SEMはショットキー型電子銃を備えた日立製のSU-70を用いた。EDX検出器には、堀場製作所製のEMAX X-maxを用いた。SEMの加速電圧は、10kVに設定し、対物レンズからの作動距離は15mmとした。EDXの分析範囲を2mm×2mm四方で、500粒以上が観察される広い範囲とすることで、粒子間の組成ばらつきの影響を小さくした。Niの定量には、K線を用いた。本条件の加速電圧では、Ni-K線の強度が弱くなるため、スペクトルの収集時間は、300秒とした。また、Ni以外の触媒を構成する元素の定量には、以下の励起線;Co-K線、Mg-K線、Si-K線、Fe-K線、Mo-L線、Ce-L線、Bi-M線、Cr-K線を用いた。
ピーク強度を、ピークを積分した面積として取得し、触媒を構成する酸素以外の元素に対して、上記EDX検出器に備えられた測定ソフトを用いてXPP法にて元素定量値を求めた。定量計算に使用される各元素のX線強度は、連続X線成分を除去し、さらにピーク重複がある場合にはピーク分離を実施して求めた。Rb、K等の微量のアルカリ金属については定量できないため、計算から除外した。XPP法については、文献Quantitative Analysis of Homogeneous or Stratified Microvolumes Applying the Model "PAP" Electron Probe Quantitation pp 31-75 Jean-Louis PouchouFrancoise Pichoir (1991)を参考にした。バルクのニッケル濃度に対する表面のニッケル濃度の割合は、表面のニッケル濃度/バルクのニッケル濃度から得た。
実施例及び比較例で得られた触媒を用いて、プロピレンのアンモ酸化反応によりアクリロニトリル及びシアン化水素を製造した。その際に使用する反応管としては、10メッシュの金網を1cm間隔で16枚内蔵した内径25mmのパイレックス(登録商標)ガラス管を使用した。
触媒量50cc、反応温度430℃、反応圧力0.17MPaに設定し、プロピレン/アンモニア/空気の混合ガスを全ガス流量として250~450cc/sec(NTP換算)で供給して反応を実施した。その際、混合ガス中のプロピレンの含有量は9容積%とし、プロピレン/アンモニア/空気のモル比は1/(0.7~2.5)/(8.0~13.5)として、その範囲内で、下記式で定義される硫酸原単位が20±2kg/T-ANとなるようにアンモニア流量を、また、反応器出口ガスの酸素濃度が0.2±0.02容積%になるように空気流量を、適宜変更した。また、混合ガス全体の流速を変更することにより、下記式で定義される接触時間を変更し、下記式で定義されるプロピレン転化率が99.3±0.2%となるように設定した。
反応によって生成するアクリロニトリル収率及びシアン化水素の収率は、下記式のように定義される値とした。生成物の物質量については原料であるプロピレンの炭素数を基準として定義した。
(触媒前駆体の調製)
まず、その組成がMo12Bi0.40Fe1.70Ni5.30Mg2.10Ce0.80Rb0.11Ogとなるよう原料の仕込み質量を調整して製造した金属酸化物60質量%を、40質量%のシリカ(SiO2)に担持した触媒を、以下の手順で製造した。
一次粒子の平均粒子直径が12nmであるSiO2を30質量%含む水性シリカゾル666.7gと、一次粒子の平均粒子直径が41nmであるSiO2を30質量%含む水性シリカゾル666.7gとを混合して、2種シリカの混合液を得た。
次に水200gに溶解させたシュウ酸二水和物25.0gを上記シリカ混合液に加えた。
次に、水886gに493gのパラモリブデン酸アンモニウム〔(NH4)6Mo7O24・4H2O〕を溶解させた液を上記シリカゾルとシュウ酸の混合液に加えた。
次いで、16.6質量%濃度の硝酸液399gに、45.2gの硝酸ビスマス〔Bi(NO3)3・5H2O〕、160gの硝酸鉄〔Fe(NO3)3・9H2O〕、359gの硝酸ニッケル〔Ni(NO3)2・6H2O〕、80.8gの硝酸セリウム〔Ce(NO3)3・6H2O〕、3.78gの硝酸ルビジウム〔RbNO3〕を溶解させて得られた液を、上記の混合液に加えて水性原料混合物(原料スラリー)を得た。次に、乾燥器上部中央に設置された皿型回転子を備えた噴霧装置を用い、入口温度約230℃、出口温度約110℃の条件で上記水性原料混合物の噴霧乾燥を行った。また、円盤の回転数は12500回転/分に設定した。得られた乾燥体を200℃で5分間保持し、200℃から450℃まで2.5℃/分で昇温し、450℃で20分間保持することで脱硝した。得られた脱硝粉を580℃で2時間焼成して、触媒前駆体を得た。
(還元処理)
(1)還元前処理
さらに10メッシュの金網を1cm間隔で16枚内蔵した内径25mmのパイレックス(登録商標)ガラス管を使用して、触媒前駆体50ccについて、0.82gのパラモリブデン酸アンモニウム〔(NH4)6Mo7O24・4H2O〕(モリブデン12基準に対して0.4相当)を混合し、温度460℃、圧力0.17MPaに設定し、プロピレン9容積%の混合ガス(プロピレン、アンモニア、酸素、ヘリウム)を通過させた。ガス流量は下記式で定義される接触時間が3.5秒となるように設定した。アンモニア/プロピレンのモル比は1.7に設定し、酸素/プロピレンモル比は、反応器出口ガスの酸素濃度が0.2±0.02容積%になるように設定した。
(2)還元処理
前記ガス条件に設定したのち、酸素/プロピレンモル比(O/C)を0.28低減する操作をした。このときガスクロマログラフィーによる分析を行い、反応器出口ガスの酸素濃度は0容積%であり、プロピレンの転化率が91%であった。
(3)還元後処理
前記操作から75分経過後、酸素/プロピレンモル比を0.28増加させて還元処理前の水準に戻した。温度を430℃に降温したのち、上記式で定義される硫酸原単位が20±2kg/T-AN、反応器出口ガスの酸素濃度が0.05±0.01容積%、プロピレンの転化率が99.3±0.2%になるように、ガス条件;アンモニア/プロピレンのモル比、酸素/プロピレンのモル比、及び接触時間を設定した。
前記ガス条件に設定して90分経過したのち、反応器出口ガスの酸素濃度が1.0±0.1容積%になるように酸素/プロピレンのモル比のガス条件を設定した。前記ガス条件に設定して10分経過したのち、反応器出口ガスの酸素濃度が0.2±0.02容積%になるように酸素/プロピレンのモル比を設定し、20分経過後、全てのガスの供給を停止して触媒を得た。
得られた触媒についてSEM/EDXを測定して得られた表面ニッケル濃度、仕込み組成から得られるバルクのニッケル濃度から計算される表面ニッケル濃度/バルクニッケル濃度比は0.83であった。
上記(2)還元処理における酸素/プロピレンモル比の低減量を0.25とし、プロピレンの転化率を96%としたこと以外は、実施例1と同様の操作により触媒を得た。
上記(2)還元処理における酸素/プロピレンモル比の低減量を0.36とし、プロピレンの転化率を89%としたこと以外は、実施例1と同様の操作により触媒を得た。
上記(1)還元前処理におけるパラモリブデン酸アンモニウムの混合比を0.2とし、プロピレンの転化率を92%としたこと以外は、実施例1と同様の操作により触媒を得た。
上記(1)還元前処理におけるパラモリブデン酸アンモニウムを混合しなかったこと、プロピレンの転化率を92%としたこと以外は、実施例1と同様の操作により触媒を得た。
上記の(還元処理)を行わなかったこと以外は、実施例1と同様の操作により触媒を得た。
上記(2)還元処理における酸素/プロピレンモル比の低減量を0.53とし、プロピレンの転化率を85%としたこと以外は、実施例1と同様の操作により触媒を得た。
その組成がMo12Bi0.35Fe1.61Ni3.60CO3.90Ce0.84Rb0.14Ogとなるよう原料の仕込み質量を調整して製造した金属酸化物60質量%を用い、且つ、上記(2)還元処理における酸素/プロピレンモル比の低減量を0.29とし、プロピレンの転化率を93%としたこと以外は、実施例1と同様の操作により触媒を得た。
上記(2)還元処理における酸素/プロピレンモル比の低減量を0.23とし、プロピレンの転化率を96%としたこと以外は、実施例6と同様の操作により触媒を得た。
上記(2)還元処理における酸素/プロピレンモル比の低減量を0.38とし、プロピレンの転化率を89%としたこと以外は、実施例6と同様の操作により触媒を得た。
上記の(還元処理)を行わなかったこと以外は、実施例6と同様の操作により触媒を得た。
その組成がMo12Bi0.50Fe1.31Ni3.10CO4.05Ce0.87Rb0.10K0.08Ogとなるよう原料の仕込み質量を調整して製造した金属酸化物60質量%を用い、且つ、上記(2)還元処理における酸素/プロピレンモル比の低減量を0.27とし、プロピレンの転化率を93%としたこと以外は、実施例1と同様の操作により触媒を得た。
上記の(還元処理)を行わなかったこと以外は、実施例9と同様の操作により触媒を得た。
その組成がMo12Bi0.39Fe1.60Ni6.97Mg0.77Ce0.63Rb0.17Ogとなるよう原料の仕込み質量を調整して製造した金属酸化物60質量%を用い、且つ、上記(2)還元処理における酸素/プロピレンモル比の低減量を0.32とし、プロピレンの転化率を91%としたこと以外は、実施例1と同様の操作により触媒を得た。
上記の(還元処理)を行わなかったこと以外は、実施例10と同様の操作により触媒を得た。
その組成がMo12Bi0.57Fe1.01Ni0.98CO6.83Mg0.98Ce0.38Rb0.12Ogとなるよう原料の仕込み質量を調整して製造した金属酸化物60質量%を用い、且つ、上記(2)還元処理における酸素/プロピレンモル比の低減量を0.29とし、プロピレンの転化率を92%としたこと以外は、実施例1と同様の操作により触媒を得た。
上記の(還元処理)を行わなかったこと以外は、実施例11と同様の操作により触媒を得た。
その組成がMo12Bi0.27Fe0.95Ni2.95CO6.69Ce0.18Rb0.13Ogとなるよう原料の仕込み質量を調整して製造した金属酸化物60質量%を用い、且つ、上記(2)還元処理における酸素/プロピレンモル比の低減量を0.35とし、プロピレンの転化率を90%としたこと以外は、実施例1と同様の操作により触媒を得た。
上記の(還元処理)を行わなかったこと以外は、実施例12と同様の操作により触媒を得た。
その組成がMo12Bi0.27Fe0.95Ni1.48CO8.16Ce0.18Rb0.13Ogとなるよう原料の仕込み質量を調整して製造した金属酸化物60質量%を用い、且つ、上記(2)還元処理における酸素/プロピレンモル比の低減量を0.24とし、プロピレンの転化率を94%としたこと以外は、実施例1と同様の操作により触媒を得た。
上記の(還元処理)を行わなかったこと以外は、実施例13と同様の操作により触媒を得た。
その組成がMo12Bi1.20Fe0.60Ni7.80Cr1.20K0.48Ogとなるよう原料の仕込み質量を調整して製造した金属酸化物60質量%を用いたこと、プロピレンの転化率を92%としたこと以外は、実施例1と同様の操作により触媒を得た。
上記の(還元処理)を行わなかったこと以外は、実施例14と同様の操作により触媒を得た。
Mo12Bi0.45Ce0.90Co3.00Fe1.70K0.09Ni2.00Mg2.00Rb0.04Ogで表される組成を有する酸化物を、触媒の総量に対して50質量%のシリカに担持した酸化物触媒を下記のようにして調製した。
16.6質量%濃度の硝酸水溶液395.1gに43.1gの硝酸ビスマス〔Bi(NO3)3・5H2O〕、76.2gの硝酸セリウム〔Ce(NO3)3・6H2O〕、133.9gの硝酸鉄〔Fe(NO3)3・9H2O〕、114.6gの硝酸ニッケル〔Ni(NO3)2・6H2O〕、171.8gの硝酸コバルト〔Co(NO3)2・6H2O〕、101.4gの硝酸マグネシウム〔Mg(NO3)2・6H2O〕、1.77gの硝酸カリウム〔KNO3〕及び1.15gの硝酸ルビジウム〔RbNO3〕を溶解させた液を一次粒子の平均粒子径が12nmのSiO2を30質量%含む水性シリカゾル833.3gと一次粒子の平均粒子径が41nmのSiO2を30質量%含む水性シリカゾル833.3gとの混合物に添加した。そこに、水738.7gに413.8gのパラモリブデン酸アンモニウム〔(NH4)6Mo7O24・4H2O〕を溶解させた液を添加し混合撹拌して、前駆体スラリーを得た。次いで、得られた前駆体スラリーを、乾燥器上部の中央に設置された、皿型回転子を備えた遠心式噴霧化装置を用いて噴霧乾燥した。乾燥器の入口空気温度を240℃に、出口温度を140℃に保持して前駆体スラリーを噴霧乾燥した。こうして得られた乾燥粒子をキルンに移し、空気雰囲気下で焼成した。具体的には、まず、室温から320℃まで2時間かけて昇温し、320℃で2時間保持して仮焼成し、仮焼成粒子を得た。続けて、580℃まで3時間かけて昇温し、仮焼成粒子を580℃で2時間本焼成して、酸化物触媒を得た。得られた酸化物触媒について、上記(2)還元処理における酸素/プロピレンモル比の低減量を0.31とし、プロピレンの転化率を92%としたこと以外は、実施例1と同様の操作により触媒を得た。
Mo12Bi0.45Ce0.90Co3.00Fe1.70K0.09Ni2.00Mg2.00Rb0.04Ogで表される組成を有する酸化物を、触媒の総量に対して50質量%のシリカに担持した酸化物触媒を下記のようにして調製した。
16.6質量%濃度の硝酸水溶液395.1gに43.1gの硝酸ビスマス〔Bi(NO3)3・5H2O〕、76.2gの硝酸セリウム〔Ce(NO3)3・6H2O〕、133.9gの硝酸鉄〔Fe(NO3)3・9H2O〕、114.6gの硝酸ニッケル〔Ni(NO3)2・6H2O〕、171.8gの硝酸コバルト〔Co(NO3)2・6H2O〕、101.4gの硝酸マグネシウム〔Mg(NO3)2・6H2O〕、1.77gの硝酸カリウム〔KNO3〕及び1.15gの硝酸ルビジウム〔RbNO3〕を溶解させた液を一次粒子の平均粒子径が12nmのSiO2を30質量%含む水性シリカゾル833.3gと一次粒子の平均粒子径が41nmのSiO2を30質量%含む水性シリカゾル833.3gとの混合物に添加した。そこに、水738.7gに413.8gのパラモリブデン酸アンモニウム〔(NH4)6Mo7O24・4H2O〕を溶解させた液を添加し混合撹拌して、前駆体スラリーを得た。次いで、得られた前駆体スラリーを、乾燥器上部の中央に設置された、皿型回転子を備えた遠心式噴霧化装置を用いて噴霧乾燥した。乾燥器の入口空気温度を240℃に、出口温度を140℃に保持して前駆体スラリーを噴霧乾燥した。こうして得られた乾燥粒子をキルンに移し、空気雰囲気下で焼成した。具体的には、まず、室温から320℃まで2時間かけて昇温し、320℃で2時間保持して仮焼成し、仮焼成粒子を得た。続けて、580℃まで3時間かけて昇温し、仮焼成粒子を580℃で2時間本焼成して、酸化物触媒を得た。
Claims (14)
- モリブデン、ビスマス、鉄、及びニッケルを含む触媒であって、
バルクのニッケル濃度に対する、表面のニッケル濃度の割合が、0.60~1.20である、触媒。 - 表面のモリブデン濃度に対する、表面のニッケル濃度の割合が、0.15~0.40である、請求項1に記載の触媒。
- コバルトをさらに含み、
バルクのコバルト濃度に対する、表面のコバルト濃度の割合が、0.80~1.40である、請求項1又は2に記載の触媒。 - コバルトをさらに含み、
表面のモリブデン濃度に対する、表面のコバルト濃度の割合が、0.15~0.40である、請求項1~3のいずれか一項に記載の触媒。 - 比表面積が10~70m2/gである、請求項1~4のいずれか一項に記載の触媒。
- 体積基準の粒度分布における粒径45μm以下の粒子の割合が5~45%である、請求項1~5のいずれか一項に記載の触媒。
- メジアン径が10~180μmである、請求項1~6のいずれか一項に記載の触媒。
- 見かけ比重が0.8~1.2g/ccである、請求項1~7のいずれか一項に記載の触媒。
- 下記式(1)で表される組成を有する金属酸化物を含む、
請求項1~8のいずれか一項に記載の触媒。
Mo12BiaFebNicXdYeZfOg (1)
(式(1)中、
Xは、コバルト、マグネシウム、カルシウム、亜鉛、ストロンチウム、バリウム、及びタングステンからなる群より選ばれる1種以上の元素を示し、
Yは、セリウム、クロム、ランタン、ネオジム、イットリウム、プラセオジム、サマリウム、アルミニウム、ホウ素、ガリウム、及びインジウムからなる群より選ばれる1種以上の元素を示し、
Zは、ナトリウム、カリウム、ルビジウム、及びセシウムからなる群より選ばれる1種以上の元素を示し、
a、b、c、d、e、及びfは、0.1≦a≦2.0、0.1≦b≦3.0、0.1≦c≦10.0、0≦d≦10.0、0.1≦e≦3.0、及び0.01≦f≦2.0をそれぞれ満たし、
gは、存在する他の元素の原子価要求を満足させるのに必要な酸素の原子数である。) - シリカを含有する担体をさらに含む、請求項1~9のいずれか一項に記載の触媒。
- アンモ酸化に用いるための、請求項1~10のいずれか一項に記載の触媒。
- モリブデン、ビスマス、鉄、及びニッケルを含むスラリーを噴霧乾燥することにより、乾燥粒子を得て、前記乾燥粒子を空気中で焼成し、焼成粒子を得る工程と、
前記焼成粒子を還元ガス及び酸素存在下で還元処理する工程と、を含む、
請求項1~11のいずれか一項に記載の触媒の製造方法。 - 還元ガス及び酸素存在下で還元処理する前記工程において、モリブデンをさらに添加する、
請求項12に記載の触媒の製造方法。 - 請求項1~11のいずれか一項に記載の触媒の存在下、プロピレンと、分子状酸素と、アンモニアと、を反応させる工程を含む、アクロニトリルの製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217028447A KR102605977B1 (ko) | 2019-04-15 | 2020-03-26 | 촉매, 촉매의 제조 방법, 아크릴로니트릴의 제조 방법 |
EP20792163.6A EP3957395A4 (en) | 2019-04-15 | 2020-03-26 | CATALYST, METHOD FOR MAKING A CATALYST AND METHOD FOR MAKING ACRYLONITRILE |
CN202080028687.3A CN113727778B (zh) | 2019-04-15 | 2020-03-26 | 催化剂、催化剂的制造方法、丙烯腈的制造方法 |
BR112021014691-1A BR112021014691B1 (pt) | 2019-04-15 | 2020-03-26 | Catalisador, método para fabricar catalisador, e método para fabricar acrilonitrila |
US17/436,787 US11772080B2 (en) | 2019-04-15 | 2020-03-26 | Catalyst, method for producing catalyst, and method for producing acrylonitrile |
JP2021514847A JP7101310B2 (ja) | 2019-04-15 | 2020-03-26 | 触媒、触媒の製造方法、アクリロニトリルの製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-077367 | 2019-04-15 | ||
JP2019077367 | 2019-04-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020213361A1 true WO2020213361A1 (ja) | 2020-10-22 |
Family
ID=72837313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/013730 WO2020213361A1 (ja) | 2019-04-15 | 2020-03-26 | 触媒、触媒の製造方法、アクリロニトリルの製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11772080B2 (ja) |
EP (1) | EP3957395A4 (ja) |
JP (1) | JP7101310B2 (ja) |
KR (1) | KR102605977B1 (ja) |
CN (1) | CN113727778B (ja) |
TW (1) | TWI757721B (ja) |
WO (1) | WO2020213361A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002502699A (ja) * | 1998-02-13 | 2002-01-29 | コリア リサーチ インスティチュート オブ ケミカル テクノロジイ | コアー殻触媒相の固形触媒とその製造方法 |
KR20110130130A (ko) * | 2010-05-27 | 2011-12-05 | 금호석유화학 주식회사 | BiPO4를 포함하는 다성분계 금속산화물 촉매와 그의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법 |
JP2015157243A (ja) * | 2014-02-21 | 2015-09-03 | 旭化成ケミカルズ株式会社 | 酸化物触媒及びその製造方法、酸化物触媒を用いた不飽和ニトリルの製造方法 |
WO2017069119A1 (ja) * | 2015-10-19 | 2017-04-27 | 日本化薬株式会社 | 共役ジオレフィン製造用触媒と、その製造方法 |
WO2017130906A1 (ja) | 2016-01-25 | 2017-08-03 | 旭化成株式会社 | 流動床アンモ酸化反応触媒及びアクリロニトリルの製造方法 |
WO2018211858A1 (ja) | 2017-05-19 | 2018-11-22 | 旭化成株式会社 | アンモ酸化用触媒、及び、その製造方法、並びにアクリロニトリルの製造方法 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4040978A (en) * | 1975-11-28 | 1977-08-09 | Monsanto Company | Production of (amm)oxidation catalyst |
US4335264A (en) * | 1976-07-07 | 1982-06-15 | E. I. Du Pont De Nemours And Company | High yield, low byproduct α, β-unsaturated aldehydes from olefins |
US4212766A (en) * | 1978-04-21 | 1980-07-15 | Standard Oil Company | Process for forming multi-component oxide complex catalysts |
JPS5756044A (en) | 1980-09-20 | 1982-04-03 | Mitsui Toatsu Chem Inc | Method for reactivation of catalyst |
US5134105A (en) | 1990-03-19 | 1992-07-28 | The Standard Oil Company | Catalyst for propylene ammoxidation to acrylonitrile |
US5169822A (en) * | 1991-06-17 | 1992-12-08 | Texaco Inc. | Catalysts for removal of impurities by the hydroprocessing of hydrocarbons |
KR100247552B1 (ko) * | 1998-03-31 | 2000-03-15 | 김충섭 | 코아-쉘 구조를 갖는 고체촉매 |
KR100247556B1 (ko) * | 1998-02-13 | 2000-03-15 | 김충섭 | 코아-쉘 구조를 갖는 고체촉매 |
KR100280372B1 (ko) * | 1998-07-03 | 2001-03-02 | 김충섭 | 다성분계 복합산화물 촉매와 이의 제조방법 |
KR100293331B1 (ko) * | 1998-10-14 | 2001-10-26 | 김충섭 | 복합산화물촉매와이의제조방법 |
JP3790080B2 (ja) | 2000-01-25 | 2006-06-28 | 三菱レイヨン株式会社 | メタクロレインおよびメタクリル酸合成用触媒、ならびにメタクロレインおよびメタクリル酸の製造方法 |
DE10023279A1 (de) * | 2000-05-08 | 2001-11-29 | Inst Angewandte Chemie Berlin | Neuer Katalysator zur Aromatisierung von aliphatischen und alicyclischen Kohlenwasserstoffen |
JP4242197B2 (ja) | 2003-04-18 | 2009-03-18 | ダイヤニトリックス株式会社 | アクリロニトリル合成用触媒 |
BRPI0415989B1 (pt) | 2003-10-31 | 2016-03-29 | Basf Ag | processo para operação a longo prazo de uma oxidação parcial em fase gasosa heterogeneamente catalisada de propeno a ácido acrílico |
US20060199730A1 (en) | 2005-03-02 | 2006-09-07 | Seely Michael J | Composition and method for improving density and hardness of fluid bed catalysts |
EP2550097B1 (en) * | 2010-03-23 | 2020-11-11 | INEOS Europe AG | High efficiency ammoxidation process and mixed metal oxide catalysts |
WO2014039735A2 (en) * | 2012-09-05 | 2014-03-13 | Chevron U.S.A. Inc. | Hydroconversion multi-metallic catalyst and method for making thereof |
RU2615762C2 (ru) * | 2012-09-28 | 2017-04-11 | Асахи Касеи Кемикалз Корпорейшн | Оксидный катализатор и способ его получения, а также способы получения ненасыщенного альдегида, диолефина и ненасыщенного нитрила |
JP6247561B2 (ja) | 2014-02-21 | 2017-12-13 | 旭化成株式会社 | 酸化物触媒及びその製造方法、並びに、酸化物触媒を用いた不飽和ニトリルの製造方法 |
JP6271317B2 (ja) * | 2014-03-27 | 2018-01-31 | 旭化成株式会社 | 酸化物触媒及びその製造方法、並びにアクリロニトリルの製造方法 |
JP2016120468A (ja) * | 2014-12-25 | 2016-07-07 | 旭化成ケミカルズ株式会社 | アンモ酸化用触媒及びその製造方法、並びに、アクリロニトリルの製造方法 |
KR101892566B1 (ko) | 2016-05-20 | 2018-08-28 | 주식회사 크레펀 | 지역기반 실감미디어 콘텐츠의 제공방법 및 시스템 |
EP3508272B1 (en) | 2016-08-31 | 2024-09-04 | Asahi Kasei Kabushiki Kaisha | Method for producing catalyst, catalyst and method for producing acrylonitrile |
JP6467115B2 (ja) * | 2016-08-31 | 2019-02-06 | 旭化成株式会社 | 触媒の製造方法、及びアクリロニトリルの製造方法 |
JP6914114B2 (ja) | 2017-06-23 | 2021-08-04 | 旭化成株式会社 | 金属酸化物触媒及びその製造方法ならびにそれを用いたアクリロニトリルの製造方法 |
WO2020213362A1 (ja) * | 2019-04-16 | 2020-10-22 | 旭化成株式会社 | 触媒、触媒の製造方法、アクリロニトリルの製造方法 |
-
2020
- 2020-03-26 US US17/436,787 patent/US11772080B2/en active Active
- 2020-03-26 EP EP20792163.6A patent/EP3957395A4/en active Pending
- 2020-03-26 JP JP2021514847A patent/JP7101310B2/ja active Active
- 2020-03-26 KR KR1020217028447A patent/KR102605977B1/ko active IP Right Grant
- 2020-03-26 CN CN202080028687.3A patent/CN113727778B/zh active Active
- 2020-03-26 WO PCT/JP2020/013730 patent/WO2020213361A1/ja active Application Filing
- 2020-04-09 TW TW109111956A patent/TWI757721B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002502699A (ja) * | 1998-02-13 | 2002-01-29 | コリア リサーチ インスティチュート オブ ケミカル テクノロジイ | コアー殻触媒相の固形触媒とその製造方法 |
KR20110130130A (ko) * | 2010-05-27 | 2011-12-05 | 금호석유화학 주식회사 | BiPO4를 포함하는 다성분계 금속산화물 촉매와 그의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법 |
JP2015157243A (ja) * | 2014-02-21 | 2015-09-03 | 旭化成ケミカルズ株式会社 | 酸化物触媒及びその製造方法、酸化物触媒を用いた不飽和ニトリルの製造方法 |
WO2017069119A1 (ja) * | 2015-10-19 | 2017-04-27 | 日本化薬株式会社 | 共役ジオレフィン製造用触媒と、その製造方法 |
WO2017130906A1 (ja) | 2016-01-25 | 2017-08-03 | 旭化成株式会社 | 流動床アンモ酸化反応触媒及びアクリロニトリルの製造方法 |
WO2018211858A1 (ja) | 2017-05-19 | 2018-11-22 | 旭化成株式会社 | アンモ酸化用触媒、及び、その製造方法、並びにアクリロニトリルの製造方法 |
Non-Patent Citations (1)
Title |
---|
JEAN-LOUIS POUCHOUFRANCOISE PICHOIR, QUANTITATIVE ANALYSIS OF HOMOGENEOUS OR STRATIFIED MICROVOLUMES APPLYING THE MODEL ''PAP'' ELECTRON PROBE QUANTITATION, 1991, pages 31 - 75 |
Also Published As
Publication number | Publication date |
---|---|
CN113727778B (zh) | 2024-02-06 |
US11772080B2 (en) | 2023-10-03 |
JPWO2020213361A1 (ja) | 2021-11-11 |
TWI757721B (zh) | 2022-03-11 |
TW202042904A (zh) | 2020-12-01 |
KR20210122834A (ko) | 2021-10-12 |
US20220168711A1 (en) | 2022-06-02 |
KR102605977B1 (ko) | 2023-11-23 |
EP3957395A1 (en) | 2022-02-23 |
CN113727778A (zh) | 2021-11-30 |
EP3957395A4 (en) | 2022-06-08 |
JP7101310B2 (ja) | 2022-07-14 |
BR112021014691A2 (pt) | 2021-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5458088B2 (ja) | ナノ結晶ビスマス−モリブデン混合酸化物の製造方法 | |
RU2709012C1 (ru) | Способ получения катализатора и способ получения акрилонитрила | |
JP4242197B2 (ja) | アクリロニトリル合成用触媒 | |
KR101795095B1 (ko) | 중공 원통형 지지체 및 지지체의 외부 표면에 적용된 촉매 활성 산화물 물질로 이루어진 쉘 촉매 전환제 | |
JP5361034B2 (ja) | 流動床用アンモ酸化触媒及びそれを用いたアクリロニトリル又はメタクリロニトリルの製造方法 | |
RU2729070C2 (ru) | Способ получения катализатора аммоксидирования и способ получения акрилонитрила | |
JP2016120468A (ja) | アンモ酸化用触媒及びその製造方法、並びに、アクリロニトリルの製造方法 | |
JP5210834B2 (ja) | アクリロニトリル合成用触媒の製造方法およびアクリロニトリルの製造方法 | |
JP6914114B2 (ja) | 金属酸化物触媒及びその製造方法ならびにそれを用いたアクリロニトリルの製造方法 | |
JP6758514B2 (ja) | 触媒、触媒の製造方法、アクリロニトリルの製造方法 | |
JP2009220052A (ja) | アクリロニトリル合成用触媒の製造方法およびアクリロニトリルの製造方法 | |
JPH0134222B2 (ja) | ||
WO2020213361A1 (ja) | 触媒、触媒の製造方法、アクリロニトリルの製造方法 | |
JP2010131576A (ja) | アクリロニトリル合成用触媒の製造方法およびアクリロニトリルの製造方法 | |
JPS582232B2 (ja) | アクリロニトリルの製造方法 | |
RU2781388C1 (ru) | Катализатор, способ производства катализатора и способ производства акрилонитрила | |
JP5020514B2 (ja) | 流動層用触媒の製造方法およびニトリル類の製造方法 | |
JPS6041665B2 (ja) | メタクリロニトリルの製造方法 | |
CN113692315A (zh) | 催化剂、催化剂的制造方法、丙烯腈的制造方法 | |
JP5011177B2 (ja) | アクリロニトリル合成用触媒の製造方法およびアクリロニトリルの製造方法 | |
WO2013129385A1 (ja) | アクリロニトリルの製造方法 | |
JPS6041666B2 (ja) | メタクリロニトリルを製造する方法 | |
KR20230099704A (ko) | 기상 접촉 암모산화 반응용 촉매 및 기상 접촉 암모산화 반응용 촉매의 제조 방법 | |
BR112021014691B1 (pt) | Catalisador, método para fabricar catalisador, e método para fabricar acrilonitrila |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20792163 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021514847 Country of ref document: JP Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112021014691 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20217028447 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 112021014691 Country of ref document: BR Kind code of ref document: A2 Effective date: 20210726 |
|
ENP | Entry into the national phase |
Ref document number: 2020792163 Country of ref document: EP Effective date: 20211115 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 521430577 Country of ref document: SA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 521430577 Country of ref document: SA |