WO2020213361A1 - 触媒、触媒の製造方法、アクリロニトリルの製造方法 - Google Patents

触媒、触媒の製造方法、アクリロニトリルの製造方法 Download PDF

Info

Publication number
WO2020213361A1
WO2020213361A1 PCT/JP2020/013730 JP2020013730W WO2020213361A1 WO 2020213361 A1 WO2020213361 A1 WO 2020213361A1 JP 2020013730 W JP2020013730 W JP 2020013730W WO 2020213361 A1 WO2020213361 A1 WO 2020213361A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
concentration
oxygen
catalyst according
propylene
Prior art date
Application number
PCT/JP2020/013730
Other languages
English (en)
French (fr)
Inventor
彰太 相木
章喜 福澤
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to KR1020217028447A priority Critical patent/KR102605977B1/ko
Priority to EP20792163.6A priority patent/EP3957395A4/en
Priority to CN202080028687.3A priority patent/CN113727778B/zh
Priority to BR112021014691-1A priority patent/BR112021014691B1/pt
Priority to US17/436,787 priority patent/US11772080B2/en
Priority to JP2021514847A priority patent/JP7101310B2/ja
Publication of WO2020213361A1 publication Critical patent/WO2020213361A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8878Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/001Calcining
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/18Preparation of carboxylic acid nitriles by reaction of ammonia or amines with compounds containing carbon-to-carbon multiple bonds other than in six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • C07C253/26Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing carbon-to-carbon multiple bonds, e.g. unsaturated aldehydes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/06Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and unsaturated carbon skeleton
    • C07C255/07Mononitriles
    • C07C255/08Acrylonitrile; Methacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/85Chromium, molybdenum or tungsten
    • C07C2523/88Molybdenum
    • C07C2523/882Molybdenum and cobalt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a catalyst, a method for producing a catalyst, and a method for producing acrylonitrile.
  • an oxide catalyst containing molybdenum, bismuth and iron, and an oxide catalyst containing antimony and iron are used, and an ammoxidation reaction is carried out with a catalyst having these basic compositions.
  • Various improvements have been made with the aim of improving the efficiency of the.
  • the fluidized bed ammoxidation reaction catalyst described in Patent Document 1 represented by the following general formula (1) can produce acrylonitrile in a high yield and without using an excessive amount of ammonia in the ammoxidation of propylene. It is said that it can be produced stably for a long period of time.
  • Mo 12 Bi a Fe b Ni c Co d Ce e Cr f X g O h / (SiO 2) A ⁇ (1)
  • Mo represents molybdenum
  • Bi represents bismuth
  • Fe represents iron
  • Ni nickel
  • Co represents cobalt
  • Ce represents cerium
  • Cr represents chromium
  • X represents at least one element selected from the group consisting of potassium, rubidium and cesium
  • SiO 2 represents silica
  • a, b, c, d, e, f, g and h represent the atomic ratios of the respective elements.
  • h is the atomic ratio of oxygen atoms satisfying the atomic value of each constituent element other than silica
  • A represents the content (mass%) of silica in the complex, which is 35. Satisfying ⁇ A ⁇ 48, the values of ⁇ , ⁇ and ⁇ calculated from the following formulas (2), (3) and (4) from the atomic ratio of each element are 0.03 ⁇ ⁇ ⁇ 0.08,0.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a catalyst capable of improving the yield of hydrogen cyanide while maintaining a high yield of acrylonitrile in ammoxidation of propylene.
  • the present inventors have described the above by using a catalyst containing a specific metal species and in which the ratio of the surface nickel concentration to the bulk nickel concentration is in a specific range. We have found that the problem can be solved and have completed the present invention. That is, the present invention is as follows.
  • a catalyst containing molybdenum, bismuth, iron, and nickel A catalyst in which the ratio of surface nickel concentration to bulk nickel concentration is 0.60 to 1.20.
  • [4] Contains more cobalt The catalyst according to any one of [1] to [3], wherein the ratio of the surface cobalt concentration to the surface molybdenum concentration is 0.15 to 0.40.
  • X represents one or more elements selected from the group consisting of cobalt, magnesium, calcium, zinc, strontium, barium, and tungsten.
  • Y represents one or more elements selected from the group consisting of cerium, chromium, lanthanum, neodymium, yttrium, praseodymium, samarium, aluminum, boron, gallium, and indium.
  • Z represents one or more elements selected from the group consisting of sodium, potassium, rubidium, and cesium.
  • a, b, c, d, e, and f are 0.1 ⁇ a ⁇ 2.0, 0.1 ⁇ b ⁇ 3.0, 0.1 ⁇ c ⁇ 10.0, 0 ⁇ d ⁇ 10. Satisfy 0, 0.1 ⁇ e ⁇ 3.0, and 0.01 ⁇ f ⁇ 2.0, respectively.
  • g is the number of oxygen atoms required to satisfy the valence requirements of other existing elements.
  • Molybdenum is further added in the step of reducing treatment in the presence of reducing gas and oxygen.
  • a method for producing acrylonitrile which comprises a step of reacting propylene, molecular oxygen, and ammonia in the presence of the catalyst according to any one of [1] to [11].
  • the production method including the step of ammoxidating propylene in the presence of the catalyst of the present invention can increase the productivity of acrylonitrile and hydrogen cyanide, and can efficiently supply acrylonitrile and hydrogen cyanide.
  • Hydrogen cyanide is a compound that is widely used industrially as a raw material for chemical products such as sodium cyanide. Hydrogen cyanide can be produced using methane and ammonia as raw materials using a platinum catalyst. However, in the above method, the reaction temperature needs to be around 900 ° C., which is a reaction with a large energy loss. On the other hand, hydrogen cyanide can also be produced as a by-product of the ammoxidation reaction of propylene. In this case, the reaction can be carried out at a relatively low temperature of 400 to 500 ° C., and energy loss is suppressed. Therefore, improving the yield of hydrogen cyanide in the ammoxidation reaction of propylene is useful from an industrial and environmental point of view. Is.
  • the present embodiment is not limited to the following embodiments, and can be variously modified and implemented within the scope of the gist thereof.
  • a numerical value or a physical property value is put before and after using "-”, it is used as including the value before and after that.
  • the notation of the numerical range of "1 to 100" includes both the upper limit value "100” and the lower limit value "1". The same applies to the notation of other numerical ranges.
  • the catalyst of this embodiment contains molybdenum, bismuth, iron, and nickel, and may contain cobalt and other elements, if necessary. Further, in the catalyst of the present embodiment, the ratio of the nickel concentration on the surface to the nickel concentration in the bulk is 0.60 to 1.20. By using the catalyst of the present embodiment for ammoxidation of propylene, the yield of hydrogen cyanide can be improved while maintaining a high yield of acrylonitrile.
  • One aspect of the catalyst of this embodiment is a catalyst for use in ammoxidation.
  • the ratio of the surface nickel concentration to the bulk nickel concentration (surface Ni concentration / bulk Ni concentration ratio) of the catalyst of the present embodiment is 0.60 to 1.20, preferably 0.70 to 1.20. Yes, more preferably 0.80 to 1.15.
  • the "bulk nickel concentration" in the present embodiment is a value calculated from the elemental composition of the raw material charged at the time of catalyst preparation, and is a nickel concentration obtained on the assumption that the entire catalyst is uniform.
  • the "surface nickel concentration” in the present embodiment is a nickel concentration obtained by analyzing the metal composition of the surface of the catalyst (the surface of the catalyst particles). The surface nickel concentration relative to the bulk nickel concentration can be specifically measured by the method described in Examples.
  • the yield of hydrogen cyanide can be improved while maintaining a high yield of acrylonitrile in ammoxidation of propylene.
  • a reduction treatment is performed at the time of catalyst preparation, and this reduction is performed.
  • Examples thereof include a method of controlling the oxygen deficiency in the system in the treatment.
  • the ratio of the surface nickel concentration to the surface molybdenum concentration (surface Ni concentration / surface Mo concentration ratio) of the catalyst of the present embodiment is not particularly limited, but is preferably 0.15 to 0.40.
  • the ratio of the surface nickel concentration to the surface molybdenum concentration is not particularly limited, but is preferably 0.15 to 0.40.
  • the ratio of the surface cobalt concentration to the bulk cobalt concentration is not particularly limited, but may be 0.80 to 1.40. preferable.
  • the ratio of the surface cobalt concentration to the bulk cobalt concentration is not particularly limited, but may be 0.80 to 1.40. preferable.
  • the ratio of the surface cobalt concentration to the surface molybdenum concentration is not particularly limited, but may be 0.15 to 0.40. preferable. By setting the ratio of the surface cobalt concentration to the surface molybdenum concentration to 0.15 to 0.40, the yield of hydrogen cyanide can be improved while maintaining a high yield of acrylonitrile in ammoxidation of propylene.
  • Cobalt or a composite oxide of nickel and molybdenum plays a role in decomposing acrylonitrile and producing hydrogen cyanide. By increasing the concentration of these oxides on the catalyst surface, the yield of hydrogen cyanide can be efficiently improved.
  • the catalyst of the present embodiment is not particularly limited as long as it contains at least molybdenum (Mo), bismuth (Bi), iron (Fe) and nickel (Ni), and may contain other elements.
  • other elements include cobalt, magnesium and the like, alkali metals and the like.
  • magnesium the crystal phase can be stabilized, and there is a tendency to suppress pregelatinization of the crystal phase, which leads to performance deterioration when subjected to a fluidized bed reaction.
  • an alkali metal there is a tendency to suppress the formation of by-products and keep the firing temperature of the catalyst in a preferable range.
  • the catalyst of the present embodiment preferably contains a metal oxide having a composition represented by the formula (1).
  • Mo 12 Bi a Fe b Ni c X d Y e Z f O g (1)
  • X represents one or more elements selected from the group consisting of cobalt, magnesium, calcium, zinc, strontium, barium, and tungsten.
  • Y represents one or more elements selected from the group consisting of cerium, chromium, lanthanum, neodymium, yttrium, praseodymium, samarium, aluminum, boron, gallium, and indium.
  • Z represents one or more elements selected from the group consisting of sodium, potassium, rubidium, and cesium.
  • a, b, c, d, e, and f are 0.1 ⁇ a ⁇ 2.0, 0.1 ⁇ b ⁇ 3.0, 0.1 ⁇ c ⁇ 10.0, 0 ⁇ d ⁇ 10. Satisfy 0, 0.1 ⁇ e ⁇ 3.0, and 0.01 ⁇ f ⁇ 2.0, respectively.
  • g is the number of oxygen atoms required to satisfy the valence requirements of other existing elements.
  • the atomic ratio a of bismuth to 12 atoms of molybdenum is 0.1 ⁇ a ⁇ 2.0, preferably 0.2 ⁇ a ⁇ 1.8.
  • a is 0.1 or more and 2.0 or less, the yield at the initial stage of the reaction for producing acrylonitrile and hydrogen cyanide tends to be high, and the stability of the reaction tends to be excellent.
  • the atomic ratio b of iron to 12 atoms of molybdenum is 0.1 ⁇ b ⁇ 3.0, preferably 0.2 ⁇ b ⁇ 2.6.
  • the atomic ratio c of nickel to 12 atoms of molybdenum is 0.1 ⁇ c ⁇ 10.0, preferably 0.2 ⁇ c ⁇ 9.6.
  • the atomic ratio d of the element X to 12 atoms of molybdenum is 0 ⁇ d ⁇ 10.0, preferably 0.2 ⁇ d ⁇ 9.6.
  • the element X is one or more selected from the group consisting of cobalt, magnesium, calcium, zinc, strontium, barium and tungsten.
  • the atomic ratio e of the element Y to 12 atoms of molybdenum is 0.1 ⁇ e ⁇ 3.0, preferably 0.2 ⁇ e ⁇ 2.8.
  • the element Y is one or more selected from the group consisting of cerium, chromium, lanthanum, neodymium, yttrium, praseodymium, samarium, aluminum, boron, gallium and indium.
  • the element Y preferably contains at least cerium, and may further contain one or more elements selected from the group consisting of chromium, lanthanum, neodymium, yttrium, praseodymium, samarium, aluminum, gallium and indium.
  • the atomic ratio f of the element Z to 12 atoms of molybdenum is 0.01 ⁇ f ⁇ 2.0, preferably 0.03 ⁇ f ⁇ 1.8.
  • the element Z is one or more selected from the group consisting of sodium, potassium, rubidium and cesium.
  • the atomic ratio g of oxygen to 12 atoms of molybdenum may be any number of atoms of oxygen required to satisfy the valence requirements of other existing elements.
  • the catalyst of the present embodiment may be one in which the above metal oxide is supported on a carrier. That is, the catalyst of the present embodiment may be a catalyst containing the above-mentioned metal oxide and carrier. Oxides such as silica, alumina, titania, and zirconia are used as the carrier, but silica is used from the viewpoint of reducing the decrease in selectivity of the target product and improving the wear resistance and particle strength of the formed catalyst particles. Suitable. That is, one of the preferred embodiments of the catalyst of this embodiment is a catalyst further containing a carrier containing silica.
  • the amount of the silica carrier is 20% by mass to 80% by mass, preferably 30% by mass to 70% by mass, and more preferably 40% by mass to 60% by mass with respect to the total mass of the silica carrier and the composite metal oxide. Used in the range.
  • the specific surface area of the catalyst of the present embodiment is not particularly limited, but is preferably 10 to 70 m 2 / g.
  • the specific surface area of the catalyst of the present embodiment is determined by pre-drying the sample at 300 ° C. for 15 minutes under helium flow using an automatic specific surface area measuring device Gemini V manufactured by Micromeritics, and then nitrogen as an adsorbed gas. Can be measured by the BET 1-point method.
  • the proportion of particles having a particle size of 45 ⁇ m or less in the volume-based particle size distribution of the catalyst of the present embodiment is not particularly limited, but is preferably 5 to 45% (cumulative 45 ⁇ m in the volume-based distribution is 5 to 45%).
  • the dispersion medium is water, 0.6 g of the catalyst is placed in 250 ml of water, ultrasonic dispersion treatment is performed for 1 minute, and then relative refraction is performed using a laser diffraction / scattering particle size distribution measuring device LA-300 manufactured by HORIBA, Ltd. By measuring under the condition of a rate of 1.40, it can be obtained from the obtained volume-based particle size distribution as a proportion of particles having a particle size of 45 ⁇ m or less (cumulative 45 ⁇ m in the volume-based distribution).
  • the shape of the catalyst of the present embodiment is not particularly limited, but when used as a fluidized bed catalyst, a spherical shape is preferable from the viewpoint of fluidity.
  • the median diameter of the catalyst of the present embodiment is not particularly limited, but is preferably 10 to 180 ⁇ m, and more preferably 20 to 150 ⁇ m.
  • the dispersion medium is water, 0.6 g of the catalyst is placed in 250 ml of water, ultrasonic dispersion treatment is performed for 1 minute, and then laser diffraction / scattering particle size distribution measurement manufactured by HORIBA, Ltd. is performed. It can be obtained by measuring under the condition of a relative refractive index of 1.40 using the apparatus LA-300.
  • the apparent specific gravity of the catalyst of the present embodiment is not particularly limited, but is preferably 0.8 to 1.2 g / cc.
  • FIG. 1 shows a schematic diagram showing a method for measuring the apparent specific gravity of the catalyst of the present embodiment.
  • drop the catalyst from the funnel to the graduated cylinder scrape off the catalyst on the top of the graduated cylinder with a metal ruler, etc., weigh the graduated cylinder, and weigh the graduated cylinder tare. Subtract to get the weight of the catalyst.
  • the apparent specific gravity can be calculated by the following formula.
  • Apparent specific gravity catalyst weight (g) / 25 (cc)
  • the catalyst of the present embodiment is a step of obtaining dry particles by spray-drying a slurry containing molybdenum, bismuth, iron, and nickel, and calcining the dry particles in the air to obtain calcined particles (hereinafter, step I). It is also produced by a production method including a step of reducing the calcined particles in the presence of reducing gas and oxygen (hereinafter, also referred to as step II).
  • step I in the method for producing a catalyst of the present embodiment, dry particles are obtained by spray-drying a slurry containing molybdenum, bismuth, iron, and nickel, and the dried particles are calcined in air to obtain calcined particles. It is a process.
  • the calcined particles are also referred to as catalyst precursors.
  • the fired particles can be produced by referring to a known method, for example, the production method described in International Publication No. 2018/211858.
  • the fired product may contain a metal contained in the composition represented by the formula (1) in addition to molybdenum, bismuth, iron, and nickel.
  • the calcined particles containing molybdenum, bismuth, iron, and nickel are preferably metal oxides having a composition represented by the formula (1).
  • a slurry containing molybdenum, bismuth, iron, and nickel can be obtained by mixing a catalyst raw material and a solvent.
  • the solvent is preferably water, and the slurry is preferably an aqueous slurry.
  • an aqueous solution containing molybdenum is mixed and stirred with respect to the aqueous solution containing silica, and then a solution containing bismuth, iron, nickel and other metals is mixed and stirred.
  • the method is preferably used.
  • Silica sol is preferable as a raw material for silica.
  • the preferable concentration of the silica sol in the state of the raw material in which other metal components are not mixed is 10 to 50% by mass.
  • the raw materials for each element constituting the catalyst are salt soluble in water or nitric acid. It may be sufficient, and examples thereof include ammonium salts, nitrates, hydrochlorides, sulfates, and organic acid salts of each metal. Ammonium salts are preferably used as raw materials containing molybdenum, and nitrates are preferably used as raw materials containing bismuth, cerium, iron, nickel, magnesium, zinc, potassium, rubidium, and cesium.
  • the slurry containing molybdenum, bismuth, iron, and nickel is spray-dried to prepare dry particles.
  • spray drying the slurry is spray-dried to obtain spherical particles.
  • the spraying of the aqueous slurry can be carried out by a method such as a centrifugal method, a two-fluid nozzle method, or a high-pressure nozzle method, which are usually used industrially, and is preferably performed by a centrifugal method.
  • heated air for drying and examples of the heat source for drying include steam and an electric heater.
  • the inlet temperature of the dryer is preferably 100 ° C. to 400 ° C., more preferably 150 ° C. to 300 ° C.
  • the outlet temperature of the dryer is preferably 100 ° C. to 180 ° C., more preferably 120 ° C. to 170 ° C.
  • the dried particles obtained as described above are calcined in air to obtain calcined particles. Firing is performed using a normal tunnel type or rotary type kiln.
  • the firing temperature is preferably in the range of 500 to 750 ° C, more preferably 500 to 680 ° C.
  • the firing time may be appropriately adjusted depending on the firing temperature, and is preferably in the range of 1 to 20 hours.
  • the shape of the fired particles is not particularly limited, but a spherical shape is preferable.
  • the median diameter of the fired particles is not particularly limited, but is preferably 10 to 180 ⁇ m.
  • the dispersion medium is water, 0.6 g of the calcined particles is placed in 250 ml of water, ultrasonic dispersion treatment is performed for 1 minute, and then a laser diffraction / scattering particle size distribution measuring device manufactured by HORIBA, Ltd. It can be obtained by measuring with LA-300 under the condition of a relative refractive index of 1.40.
  • Step II in the method for producing a catalyst of the present embodiment is a step of reducing the calcined particles obtained in Step I in the presence of reducing gas and oxygen.
  • Step II can be preferably carried out using a fluidized bed reactor as the reactor.
  • the fluidized bed reactor is not particularly limited, and is preferably a vertical cylindrical type, and a reactor provided with an air dispersion plate, a raw material gas dispersion pipe for supplying propylene and ammonia, a reactor outlet, and the like is preferable. Can be used for.
  • the calcined particles obtained in step I are filled in a reactor and, if necessary, first brought into contact with a mixed gas containing propylene, ammonia, oxygen and helium.
  • a mixed gas containing propylene, ammonia, oxygen and helium a mixed gas containing propylene, ammonia, oxygen and helium.
  • the treatment subjected to this state is also referred to as a reduction pretreatment.
  • oxygen refers to molecular oxygen
  • the oxygen source is air.
  • the contact time between the mixed gas and the calcined particles is not particularly limited, but is usually 0.5 to 30 seconds, preferably 1 to 10 seconds.
  • the contact time is the contact time obtained by the method described in the examples.
  • the temperature of the reduction pretreatment is preferably 400 to 500 ° C, more preferably 420 to 480 ° C.
  • the molar ratio of ammonia / propylene is preferably set to 1.0 to 5.0.
  • the oxygen / propylene molar ratio should be set so that the oxygen concentration detected at the outlet of the reactor (hereinafter, also referred to as the oxygen concentration of the reactor outlet gas) is 0.18 to 0.22% by volume. Is preferable.
  • the conversion rate of propylene is preferably 98% or more, and more preferably 99% or more.
  • a molybdenum compound may be added in the method for producing a catalyst of the present embodiment.
  • the molybdenum compound is added to the calcined particles obtained in step I in the step of reducing the calcined particles obtained in step I in the presence of reducing gas and oxygen, or in the above-mentioned pretreatment for reduction.
  • the amount of molybdenum compound added is an amount equivalent to 0.05 to 3.0 based on the amount of substance of molybdenum contained in the calcined particles obtained in step I as 12 and the value of this amount of substance (quantity of substance 12).
  • the amount is preferably 0.1 to 1.0, and more preferably 0.1 to 1.0.
  • the method for producing a catalyst of the present embodiment it is preferable to control the state in which oxygen in the reactor is insufficient as the reduction treatment.
  • Specific methods of the reduction treatment include, for example, a method of reducing the amount of oxygen in the reactor by adjusting the molar ratio of oxygen / propylene. By significantly reducing the oxygen / propylene molar ratio, the surface nickel concentration / bulk nickel concentration ratio is controlled to be high.
  • the reduction in the amount of oxygen can be confirmed by detecting the oxygen concentration in the reactor outlet gas.
  • the fact that the oxygen / propylene molar ratio is greatly reduced and the oxygen in the reactor is insufficient can be confirmed by measuring the oxygen concentration of the reactor outlet gas to be 0% by volume. Therefore, it is preferable to control the oxygen flow rate into the reactor so that the oxygen concentration of the reactor outlet gas becomes 0% by volume. Further, it can be confirmed from the fact that the conversion rate of propylene is in the range of 89 to 96% that the oxygen in the reactor is insufficient. It can be confirmed from the fact that the propylene conversion rate is in the range of 90 to 95% that the state in which the oxygen in the reactor is deficient is more preferable.
  • the time for continuing the oxygen-deficient state in the reactor is preferably 10 minutes to less than 5 hours, and more preferably 30 minutes to 2 hours.
  • the surface nickel concentration / bulk nickel concentration ratio tends to be controlled to 0.60 to 1.20, and the high yield of acrylonitrile, which is a product of propylene ammoxidation, tends to be high.
  • the high yield of acrylonitrile which is a product of propylene ammoxidation
  • the molar ratio of oxygen / propylene in the reduction treatment is preferably 0.10 or more and 0.50 or less, and 0.20 or more and 0.40 or less, from the molar ratio of oxygen / propylene in the reduction pretreatment. It is more preferable to reduce it.
  • the molar ratio of oxygen / propylene in the reduction pretreatment is specified based on the oxygen flow rate and the propylene flow rate to the reactor when the oxygen concentration of the reactor outlet gas is 0.18 to 0.22% by volume. To.
  • the oxygen concentration in the reactor can be sufficiently reduced, and the yield of hydrogen cyanide can be increased. There is a tendency to obtain a catalyst that can be improved. Further, by reducing the molar ratio of oxygen / propylene in the reduction treatment to 0.50 or less from the molar ratio of oxygen / propylene in the reduction pretreatment, there is a tendency to obtain a catalyst capable of maintaining a high yield of acrylonitrile.
  • the temperature of the reduction treatment is preferably 400 to 500 ° C, more preferably 420 to 480 ° C.
  • the oxygen concentration may be adjusted to increase to the oxygen concentration in the reduction pretreatment in order to stop the reduction treatment. At this time, it is preferable to gradually increase the oxygen concentration in order to gently stop the reduction treatment.
  • the sulfuric acid intensity defined in the examples is 10 to 30 kg / T-AN, and the reactor outlet gas is used. It is preferable to control the oxygen concentration to exceed 0% by volume and the conversion rate of propylene to be 97% or more and 100% or less.
  • the above gas conditions preferably last for 30 minutes or more and 5 hours or less.
  • the temperature of the post-reduction treatment is preferably 300 to 500 ° C, more preferably 400 to 480 ° C.
  • the molar ratio of oxygen / propylene it is preferable to further adjust the molar ratio of oxygen / propylene to control the oxygen concentration of the reactor outlet gas to be the oxygen concentration at the time of the reduction pretreatment.
  • the method for producing acrylonitrile of the present embodiment uses the catalyst of the present embodiment. That is, the method for producing acrylonitrile of the present embodiment includes a step of reacting propylene with oxygen and ammonia in the presence of the catalyst of the present embodiment.
  • the production method of the present embodiment is preferably carried out by a fluidized bed ammoxidation reaction. Further, the production of acrylonitrile of the present embodiment can be carried out in the same reactor as the fluidized bed reactor used in the production of the catalyst described above. Acrylonitrile and hydrogen cyanide can be produced by the production method of the present embodiment.
  • the method for producing acrylonitrile of the present embodiment may be carried out, for example, in a normally used fluidized bed reactor.
  • the raw materials propylene and ammonia do not necessarily have to be of high purity, and industrial grade ones can be used.
  • the molecular oxygen source it is usually preferable to use air, but a gas having an increased oxygen concentration such as by mixing oxygen with air can also be used.
  • the composition of the raw material gas is preferably 1 / (0.8 to 2. It is in the range of 5) / (7.0 to 12.0), more preferably in the range of 1 / (0.9 to 1.3) / (8.0 to 11.0).
  • the reaction temperature in the method for producing acrylonitrile of the present embodiment is preferably in the range of 300 to 500 ° C, more preferably in the range of 400 to 480 ° C.
  • the reaction pressure is preferably in the range of normal pressure to 0.3 MPa.
  • the contact time between the raw material gas and the catalyst is preferably 0.5 to 20 (sec ⁇ g / cc), more preferably 1 to 10 (sec ⁇ g / cc).
  • the nickel concentration in the bulk was calculated from the elemental composition of the raw material charged at the time of catalyst preparation, and was calculated on the assumption that the entire catalyst was uniform. Specifically, the elements other than oxygen constituting the catalyst were set to 100%, and the weight concentration of nickel was set to the bulk nickel concentration.
  • the elements other than oxygen constituting the catalyst also include elements other than oxygen in the carrier, for example, silicon of SiO 2 .
  • "Surface nickel concentration” is a catalyst obtained by measuring the surface of the catalyst by energy dispersive X-ray spectroscopy (EDX) using an electron microscope (SEM). It is the weight concentration of nickel when the weight of the element other than oxygen constituting the above is 100%. The specific measurement method is described below.
  • a 10 mm square carbon tape was attached on a carbon sample table having a diameter of 15 mm, and catalyst particles were spread and fixed on the carbon tape. Then, osmium tetroxide was coated on the surface of the catalyst particles to form a metal osmium layer, which was subjected to conductive treatment and used for measurement.
  • osmium tetroxide coating 1 g of osmium acid (manufactured by Nissin EM Co., Ltd.) was used as the osmium tetroxide source, and the osmium coater HPC-1SW manufactured by Vacuum Device Co., Ltd. was used, and the coating time was set to 5 seconds.
  • osmium coater HPC-1SW catalog it is presumed that a 1.5 nm metal osmium layer was formed on the surface of the catalyst particles.
  • SEM Hitachi's SU-70 equipped with a Schottky type electron gun was used.
  • EDX detector EMAX X-max manufactured by HORIBA, Ltd. was used.
  • the accelerating voltage of the SEM was set to 10 kV, and the working distance from the objective lens was set to 15 mm.
  • the K line was used to quantify Ni.
  • the intensity of the Ni—K wire becomes weak, so the spectrum acquisition time was set to 300 seconds.
  • the following excitation lines CoK line, MgK line, SiK line, FeK line, MoL line, CeL line, Bi-M line and Cr-K line were used.
  • the peak intensity was obtained as the integrated area of the peaks, and the element quantification values were determined by the XPP method for the elements other than oxygen constituting the catalyst by the measurement software provided in the EDX detector.
  • the X-ray intensity of each element used in the quantitative calculation was determined by removing the continuous X-ray component and performing peak separation when there was peak overlap.
  • the ratio of the surface nickel concentration to the surface molybdenum concentration was obtained in the same manner as in the above method for calculating the ratio of the surface nickel concentration to the bulk nickel concentration. Similarly, the ratio of the surface cobalt concentration to the bulk cobalt concentration was obtained. Further, in the same manner, the ratio of the surface cobalt concentration to the surface molybdenum concentration was obtained.
  • the content of propylene in the mixed gas is 9% by volume, and the molar ratio of propylene / ammonia / air is 1 / (0.7 to 2.5) / (8.0 to 13.5).
  • the ammonia flow rate is adjusted so that the sulfate intensity defined by the following formula is 20 ⁇ 2 kg / T-AN, and the oxygen concentration of the reactor outlet gas is 0.2 ⁇ 0.02% by volume.
  • the air flow rate was changed as appropriate. Further, by changing the flow velocity of the entire mixed gas, the contact time defined by the following formula was changed, and the propylene conversion rate defined by the following formula was set to be 99.3 ⁇ 0.2%.
  • the yield of acrylonitrile and the yield of hydrogen cyanide produced by the reaction were set to the values defined by the following formulas.
  • the amount of substance of the product was defined based on the carbon number of propylene, which is the raw material.
  • Example 1 (Preparation of catalyst precursor) First, a metal oxide whose composition is prepared by adjusting the charge mass of a raw material such as a Mo 12 Bi 0.40 Fe 1.70 Ni 5.30 Mg 2.10 Ce 0.80 Rb 0.11 O g 60 A catalyst in which mass% was supported on 40% by mass of silica (SiO 2 ) was produced by the following procedure. An aqueous silica sol 666.7g containing SiO 2 30 wt% average particle diameter of the primary particles is 12 nm, the average particle diameter of primary particles were mixed with an aqueous silica sol 666.7g containing SiO 2 is 41 nm 30 wt% A mixed solution of two kinds of silica was obtained.
  • a raw material such as a Mo 12 Bi 0.40 Fe 1.70 Ni 5.30 Mg 2.10 Ce 0.80 Rb 0.11 O g 60
  • silica silica
  • the above-mentioned aqueous raw material mixture was spray-dried under the conditions of an inlet temperature of about 230 ° C. and an outlet temperature of about 110 ° C. using a spray device equipped with a dish-shaped rotor installed in the center of the upper part of the dryer.
  • the rotation speed of the disk was set to 12500 rotations / minute.
  • the obtained dried product was held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at 2.5 ° C./min, and held at 450 ° C. for 20 minutes to denitrate.
  • the obtained denitration powder was calcined at 580 ° C. for 2 hours to obtain a catalyst precursor.
  • Reduction process (1) Reduction pretreatment Further, using a Pyrex (registered trademark) glass tube having an inner diameter of 25 mm containing 16 10-mesh wire meshes at 1 cm intervals, 0.82 g of ammonium paramolybdate for 50 cc of the catalyst precursor [(). NH 4) 6 Mo 7 O 24 ⁇ 4H 2 O ] (a mixture of 0.4 equivalent) to the molybdenum 12 reference, temperature 460 ° C., set at a pressure 0.17 MPa, propylene 9 volume% of the gas mixture (propylene , Ammonia, oxygen, helium). The gas flow rate was set so that the contact time defined by the following formula was 3.5 seconds.
  • the molar ratio of ammonia / propylene was set to 1.7, and the molar ratio of oxygen / propylene was set so that the oxygen concentration of the reactor outlet gas was 0.2 ⁇ 0.02% by volume.
  • (2) Reduction Treatment After setting the gas conditions, an operation was performed to reduce the oxygen / propylene molar ratio (O / C) by 0.28. At this time, analysis by gas chromalography was performed, and the oxygen concentration of the reactor outlet gas was 0% by volume, and the conversion rate of propylene was 91%.
  • Post-reduction treatment After 75 minutes had passed from the above operation, the oxygen / propylene molar ratio was increased by 0.28 to return to the level before the reduction treatment.
  • the sulfate intensity defined by the above formula is 20 ⁇ 2 kg / T-AN
  • the oxygen concentration of the reactor outlet gas is 0.05 ⁇ 0.01 by volume
  • the conversion rate of propylene is The gas conditions; the molar ratio of ammonia / propylene, the molar ratio of oxygen / propylene, and the contact time were set so as to be 99.3 ⁇ 0.2%. After 90 minutes had passed after setting the gas conditions, the gas conditions of the molar ratio of oxygen / propylene were set so that the oxygen concentration of the reactor outlet gas was 1.0 ⁇ 0.1% by volume.
  • the molar ratio of oxygen / propylene is set so that the oxygen concentration of the reactor outlet gas is 0.2 ⁇ 0.02% by volume, and after 20 minutes, all Gas supply was stopped to obtain a catalyst.
  • the surface nickel concentration / bulk nickel concentration ratio calculated from the surface nickel concentration obtained by measuring SEM / EDX of the obtained catalyst and the bulk nickel concentration obtained from the charged composition was 0.83.
  • Example 2 A catalyst was obtained by the same operation as in Example 1 except that the amount of reduction in the oxygen / propylene molar ratio in the reduction treatment (2) was 0.25 and the conversion rate of propylene was 96%.
  • Example 3 A catalyst was obtained by the same operation as in Example 1 except that the reduction amount of the oxygen / propylene molar ratio in the reduction treatment (2) was 0.36 and the conversion rate of propylene was 89%.
  • Example 4 A catalyst was obtained by the same operation as in Example 1 except that the mixing ratio of ammonium paramolybdate in the above (1) reduction pretreatment was 0.2 and the conversion rate of propylene was 92%.
  • Example 5 A catalyst was obtained by the same operation as in Example 1 except that ammonium paramolybdate was not mixed in the above (1) reduction pretreatment and the conversion rate of propylene was set to 92%.
  • Example 1 A catalyst was obtained by the same operation as in Example 1 except that the above (reduction treatment) was not performed.
  • Example 2 A catalyst was obtained by the same operation as in Example 1 except that the reduction amount of the oxygen / propylene molar ratio in the reduction treatment (2) was 0.53 and the conversion rate of propylene was 85%.
  • Example 6 Metal oxides the composition was produced by adjusting the charge mass of a raw material such as a Mo 12 Bi 0.35 Fe 1.61 Ni 3.60 C O3.90 Ce 0.84 Rb 0.14 O g 60 wt%
  • a raw material such as a Mo 12 Bi 0.35 Fe 1.61 Ni 3.60 C O3.90 Ce 0.84 Rb 0.14 O g 60 wt%
  • the catalyst was obtained by the same operation as in Example 1 except that the reduction amount of the oxygen / propylene molar ratio in the above (2) reduction treatment was 0.29 and the conversion rate of propylene was 93%. It was.
  • Example 7 A catalyst was obtained by the same operation as in Example 6 except that the reduction amount of the oxygen / propylene molar ratio in the reduction treatment (2) was 0.23 and the conversion rate of propylene was 96%.
  • Example 8 A catalyst was obtained by the same operation as in Example 6 except that the amount of reduction in the oxygen / propylene molar ratio in the reduction treatment (2) was 0.38 and the conversion rate of propylene was 89%.
  • Example 9 Metal oxide whose composition is prepared by adjusting the charge mass of a raw material such as a Mo 12 Bi 0.50 Fe 1.31 Ni 3.10 C O4.05 Ce 0.87 Rb 0.10 K 0.08 O g The same operation as in Example 1 except that 60% by mass of the product was used, the amount of reduction in the oxygen / propylene molar ratio in the above (2) reduction treatment was 0.27, and the conversion rate of propylene was 93%. Obtained a catalyst.
  • a raw material such as a Mo 12 Bi 0.50 Fe 1.31 Ni 3.10 C O4.05 Ce 0.87 Rb 0.10 K 0.08 O g
  • Example 10 Metal oxides the composition was produced by adjusting the charge mass of a raw material such as a Mo 12 Bi 0.39 Fe 1.60 Ni 6.97 Mg 0.77 Ce 0.63 Rb 0.17 O g 60 wt%
  • the catalyst was obtained by the same operation as in Example 1 except that the reduction amount of the oxygen / propylene molar ratio in the above (2) reduction treatment was 0.32 and the conversion rate of propylene was 91%. It was.
  • Example 11 Metal oxide whose composition is prepared by adjusting the charge mass of a raw material such as a Mo 12 Bi 0.57 Fe 1.01 Ni 0.98 C O6.83 Mg 0.98 Ce 0.38 Rb 0.12 O g The same operation as in Example 1 except that 60% by mass of the product was used, the amount of reduction in the oxygen / propylene molar ratio in the above (2) reduction treatment was 0.29, and the conversion rate of propylene was 92%. Obtained a catalyst.
  • a raw material such as a Mo 12 Bi 0.57 Fe 1.01 Ni 0.98 C O6.83 Mg 0.98 Ce 0.38 Rb 0.12 O g
  • Example 12 Its composition Mo 12 Bi 0.27 Fe 0.95 Ni 2.95 C O6.69 Ce 0.18 Rb 0.13 metal oxides were charged mass of material so as to be O g were prepared by adjusting 60% The catalyst was obtained by the same operation as in Example 1 except that the reduction amount of the oxygen / propylene molar ratio in the above (2) reduction treatment was 0.35 and the conversion rate of propylene was 90%. It was.
  • Example 13 Its composition Mo 12 Bi 0.27 Fe 0.95 Ni 1.48 C O8.16 Ce 0.18 Rb 0.13 metal oxides were charged mass of material so as to be O g were prepared by adjusting 60% The catalyst was obtained by the same operation as in Example 1 except that the reduction amount of the oxygen / propylene molar ratio in the above (2) reduction treatment was 0.24 and the conversion rate of propylene was 94%. It was.
  • Example 14 That the composition using Mo 12 Bi 1.20 Fe 0.60 Ni 7.80 Cr 1.20 K 0.48 metal oxides were charged mass of material so as to be O g were prepared by adjusting 60% A catalyst was obtained by the same operation as in Example 1 except that the conversion rate of propylene was set to 92%.
  • Example 15 An oxide having a composition represented by Mo 12 Bi 0.45 Ce 0.90 Co 3.00 Fe 1.70 K 0.09 Ni 2.00 Mg 2.00 Rb 0.04 O g, the total amount of the catalyst An oxide catalyst supported on 50% by mass of silica was prepared as follows.
  • Example 1 the same operation as in Example 1 was carried out except that the reduction amount of the oxygen / propylene molar ratio in the reduction treatment (2) was 0.31 and the conversion rate of propylene was 92%. Obtained a catalyst.
  • the catalyst of the present invention has industrial applicability in the production of acrylonitrile and hydrogen cyanide, which comprises the step of ammoxidating propylene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

モリブデン、ビスマス、鉄、及びニッケルを含む触媒であって、 バルクのニッケル濃度に対する、表面のニッケル濃度の割合が、0.60~1.20である、触媒。

Description

触媒、触媒の製造方法、アクリロニトリルの製造方法
 本発明は、触媒、触媒の製造方法、アクリロニトリルの製造方法に関する。
 アクリロニトリルを製造する方法として、プロピレンをアンモ酸化する方法が知られている。また、このアンモ酸化によって、アクリロニトリルと共にシアン化水素を得ることができる。
 アンモ酸化用の触媒としては、モリブデン、ビスマス及び鉄を含む酸化物触媒や、アンチモン及び鉄を含む酸化物触媒が利用されており、これらの基本的な組成を有する触媒に対して、アンモ酸化反応の効率を向上させることを目的に様々な改良が加えられている。
 例えば、特許文献1に記載の、下記一般式(1)で表される、流動床アンモ酸化反応触媒は、プロピレンのアンモ酸化におけるアンモニアを過剰量使用する必要なく、アクリロニトリルを高収率、且つ、長期安定的に生産することができるとされている。
 Mo12BiFeNiCoCeCr/(SiO・・・(1)
(式(1)中、Moはモリブデンを表し、Biはビスマスを表し、Feは鉄を表し、Niはニッケルを表し、Coはコバルトを表し、Ceはセリウムを表し、Crはクロムを表し、Xはカリウム、ルビジウム及びセシウムからなる群より選ばれる少なくとも1つの元素を表し、SiOはシリカを表し、a、b、c、d、e、f、g及びhは、それぞれの元素の原子比を表し、0.1≦a≦1、1≦b≦3、1≦c≦6.5、1≦d≦6.5、0.2≦e≦1.2、f≦0.05、及び0.05≦g≦1を満たし、hはシリカを除く各構成元素の原子価を満足する酸素原子の原子比であり、Aは前記複合体中のシリカの含有量(質量%)を表し、35≦A≦48を満たし、各元素の原子比から下記式(2)、(3)及び(4)より算出されるα、β及びγの値が、0.03≦α≦0.08、0.2≦β≦0.4及び0.5≦γ≦2を満たす。)
  α=1.5a/(1.5(b+f)+c+d)・・・(2)
  β=1.5(b+f)/(c+d)・・・・・・・・(3)
  γ=d/c・・・・・・・・・・・・・・・・・・・(4)
国際公開2017/130906号公報
 プロピレンのアンモ酸化においては、アクリロニトリルと共にシアン化水素の生産性も上げることが求められており、アクリロニトリルの高い収率を維持しながらシアン化水素の収率も向上させることが課題となっている。
 本発明は、上記問題点に鑑みてなされたものであり、プロピレンのアンモ酸化においてアクリロニトリルの高い収率を維持しながらシアン化水素の収率も向上できる触媒を提供することを目的とする。
 本発明者らは、前記課題を解決するために鋭意検討を重ねた結果、特定の金属種を含み、バルクのニッケル濃度に対する表面のニッケル濃度の割合が特定の範囲である触媒を用いることにより上記課題を解決し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下のとおりである。
[1]
 モリブデン、ビスマス、鉄、及びニッケルを含む触媒であって、
 バルクのニッケル濃度に対する、表面のニッケル濃度の割合が、0.60~1.20である、触媒。
[2]
 表面のモリブデン濃度に対する、表面のニッケル濃度の割合が、0.15~0.40である、[1]に記載の触媒。
[3]
 コバルトをさらに含み、
 バルクのコバルト濃度に対する、表面のコバルト濃度の割合が、0.80~1.40である、[1]又は[2]に記載の触媒。
[4]
 コバルトをさらに含み、
 表面のモリブデン濃度に対する、表面のコバルト濃度の割合が、0.15~0.40である、[1]~[3]のいずれか一項に記載の触媒。
[5]
 比表面積が10~70m/gである、[1]~[4]のいずれか一項に記載の触媒。
[6]
 体積基準の粒度分布における粒径45μm以下の粒子の割合が5~45%である、[1]~[5]のいずれかに記載の触媒。
[7]
 メジアン径が10~180μmである、[1]~[6]のいずれか一項に記載の触媒。
[8]
 見かけ比重が0.8~1.2g/ccである、[1]~[7]のいずれか一項に記載の触媒
[9]
 下記式(1)で表される組成を有する金属酸化物を含む、
 [1]~[8]のいずれか一項に記載の触媒。
Mo12BiFeNi (1)
(式(1)中、
 Xは、コバルト、マグネシウム、カルシウム、亜鉛、ストロンチウム、バリウム、及びタングステンからなる群より選ばれる1種以上の元素を示し、
 Yは、セリウム、クロム、ランタン、ネオジム、イットリウム、プラセオジム、サマリウム、アルミニウム、ホウ素、ガリウム、及びインジウムからなる群より選ばれる1種以上の元素を示し、
 Zは、ナトリウム、カリウム、ルビジウム、及びセシウムからなる群より選ばれる1種以上の元素を示し、
 a、b、c、d、e、及びfは、0.1≦a≦2.0、0.1≦b≦3.0、0.1≦c≦10.0、0≦d≦10.0、0.1≦e≦3.0、及び0.01≦f≦2.0をそれぞれ満たし、
 gは、存在する他の元素の原子価要求を満足させるのに必要な酸素の原子数である。)
[10]
 シリカを含有する担体をさらに含む、[1]~[9]のいずれか一項に記載の触媒。
[11]
 アンモ酸化に用いるための、[1]~[10]のいずれか一項に記載の触媒。
[12]
 モリブデン、ビスマス、鉄、及びニッケルを含むスラリーを噴霧乾燥することにより、乾燥粒子を得て、前記乾燥粒子を空気中で焼成し、焼成粒子を得る工程と、
 前記焼成粒子を還元ガス及び酸素存在下で還元処理する工程と、を含む、
 [1]~[11]のいずれか一項に記載の触媒の製造方法。
[13]
 還元ガス及び酸素存在下で還元処理する前記工程において、モリブデンをさらに添加する、
 [12]に記載の触媒の製造方法。
[14]
 [1]~[11]のいずれか一項に記載の触媒の存在下、プロピレンと、分子状酸素と、アンモニアと、を反応させる工程を含む、アクロニトリルの製造方法。
 本発明によれば、プロピレンのアンモ酸化の生成物であるアクリロニトリルの高い収率を維持しながらシアン化水素の収率も向上できる触媒を提供することができる。したがって、本発明の触媒の存在下、プロピレンをアンモ酸化する工程を含む製造方法は、アクリロニトリル及びシアン化水素の生産性を高め、アクリロニトリル及びシアン化水素を効率よく供給することができる。
 シアン化水素はシアン化ナトリウムをはじめとする化学品の原料として工業的に広く利用されている化合物である。シアン化水素は白金触媒を用いて、メタンとアンモニアを原料として製造することが可能である。しかし、前記手法では反応温度を900℃近傍にする必要があり、エネルギーロスの大きい反応である。一方で、シアン化水素はプロピレンのアンモ酸化反応の副生成物としても製造することができる。この場合の400~500℃と比較的低い温度で反応を実施することができエネルギーロスが抑えられるため、プロピレンのアンモ酸化反応におけるシアン化水素収率の向上は工業的な観点及び環境的な観点から有用である。
触媒の見かけ比重の測定方法を説明するための概略図である。
 以下、本発明の実施の形態(以下、「本実施形態」という。)について詳細に説明する。なお、本発明は、以下の本実施形態に制限されるものではなく、その要旨の範囲内で種々変形して実施することができる。なお、本明細書において、「~」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の値を含むものとして用いる。例えば「1~100」との数値範囲の表記は、その上限値「100」及び下限値「1」の双方を包含するものとする。また、他の数値範囲の表記も同様である。
 本実施形態の触媒は、モリブデン、ビスマス、鉄、及びニッケルを含み、必要に応じてコバルトやその他の元素を含んでいてもよい。また、本実施形態の触媒は、バルクのニッケル濃度に対する、表面のニッケル濃度の割合が、0.60~1.20である。本実施形態の触媒をプロピレンのアンモ酸化に用いることにより、アクリロニトリルの高い収率を維持しながらシアン化水素の収率も向上できる。本実施形態の触媒の一態様は、アンモ酸化に用いるための触媒である。
 本実施形態の触媒の、バルクのニッケル濃度に対する表面のニッケル濃度の割合(表面Ni濃度/バルクNi濃度比)は、0.60~1.20であり、好ましくは0.70~1.20であり、より好ましくは0.80~1.15である。本実施形態における「バルクのニッケル濃度」とは、触媒調製時の原料の仕込みの元素組成から算出した値であって、触媒全体が均一であると仮定して求められるニッケルの濃度である。また、本実施形態における「表面のニッケル濃度」とは、触媒の表面(触媒粒子の表面)の金属組成を分析して求められるニッケル濃度である。バルクのニッケル濃度に対する表面のニッケル濃度は、具体的には実施例に記載の方法によって測定することができる。
 バルクのニッケル濃度に対する表面のニッケル濃度の割合が0.60~1.20であることにより、プロピレンのアンモ酸化において、アクリロニトリルの高い収率を維持しながらシアン化水素の収率も向上できる。
 バルクのニッケル濃度に対する表面のニッケル濃度の割合を0.60~1.20にする方法としては、例えば、後述する触媒の製造方法に記載したように、触媒の調製時に還元処理を行い、この還元処理において系内の酸素を不足した状態に制御する方法等が挙げられる。
 本実施形態の触媒の、表面のモリブデン濃度に対する表面のニッケル濃度の割合(表面Ni濃度/表面Mo濃度比)は、特に制限されないが、0.15~0.40であることが好ましい。表面のモリブデン濃度に対する表面のニッケル濃度の割合を0.15~0.40とすることにより、プロピレンのアンモ酸化において、アクリロニトリルの高い収率を維持しながらシアン化水素の収率も向上できる。
 本実施形態の触媒がコバルトを含む場合、バルクのコバルト濃度に対する表面のコバルト濃度の割合(表面Co濃度/バルクCo濃度比)は、特に制限されないが、0.80~1.40であることが好ましい。バルクのコバルト濃度に対する表面のコバルト濃度の割合を0.80~1.40とすることにより、プロピレンのアンモ酸化において、アクリロニトリルの高い収率を維持しながらシアン化水素の収率も向上できる。
 本実施形態の触媒がコバルトを含む場合、表面のモリブデン濃度に対する表面のコバルト濃度の割合(表面Co濃度/表面Mo濃度比)は、特に制限されないが、0.15~0.40であることが好ましい。表面のモリブデン濃度に対する表面のコバルト濃度の割合を0.15~0.40とすることにより、プロピレンのアンモ酸化において、アクリロニトリルの高い収率を維持しながらシアン化水素の収率も向上できる。
 コバルトまたはニッケルとモリブデンの複合酸化物はアクリロニトリルを分解し、シアン化水素を生成する役割を果たしている。触媒表面においてこれらの酸化物の濃度が高まることで、効率的にシアン化水素収率を向上できる。
 本実施形態の触媒は、少なくともモリブデン(Mo)、ビスマス(Bi)、鉄(Fe)及びニッケル(Ni)を含んでいれば特に制限されず、その他の元素を含んでいてもよい。その他の元素としては、例えば、コバルト、マグネシウム等やアルカリ金属等が挙げられる。例えば、マグネシウムを含むことによって、結晶相を安定化させることができ、流動床反応に供した際の性能低下につながる結晶相のα化を抑える傾向にある。アルカリ金属を含むことによって、副生成物の生成を抑えたり、触媒の焼成温度を好ましい領域に保ったりする傾向にある。
 本実施形態の触媒は、式(1)で表される組成を有する金属酸化物を含むことが好ましい。
Mo12BiFeNi (1)
(式(1)中、
 Xは、コバルト、マグネシウム、カルシウム、亜鉛、ストロンチウム、バリウム、及びタングステンからなる群より選ばれる1種以上の元素を示し、
 Yは、セリウム、クロム、ランタン、ネオジム、イットリウム、プラセオジム、サマリウム、アルミニウム、ホウ素、ガリウム、及びインジウムからなる群より選ばれる1種以上の元素を示し、
 Zは、ナトリウム、カリウム、ルビジウム、及びセシウムからなる群より選ばれる1種以上の元素を示し、
 a、b、c、d、e、及びfは、0.1≦a≦2.0、0.1≦b≦3.0、0.1≦c≦10.0、0≦d≦10.0、0.1≦e≦3.0、及び0.01≦f≦2.0をそれぞれ満たし、
 gは、存在する他の元素の原子価要求を満足させるのに必要な酸素の原子数である。)
 モリブデン12原子に対するビスマスの原子比aは、0.1≦a≦2.0、好ましくは0.2≦a≦1.8である。aが0.1以上2.0以下であることにより、アクリロニトリル及びシアン化水素を製造する反応初期の収率が高くなり、反応の安定性も優れる傾向にある。
 モリブデン12原子に対する鉄の原子比bは、0.1≦b≦3.0、好ましくは0.2≦b≦2.6である。
 モリブデン12原子に対するニッケルの原子比cは、0.1≦c≦10.0であり、好ましくは0.2≦c≦9.6である。
 モリブデン12原子に対する元素Xの原子比dは、0≦d≦10.0であり、好ましくは0.2≦d≦9.6である。元素Xは、コバルト、マグネシウム、カルシウム、亜鉛、ストロンチウム、バリウム及びタングステンからなる群より選ばれる1種以上である。
 モリブデン12原子に対する元素Yの原子比eは、0.1≦e≦3.0であり、好ましくは0.2≦e≦2.8である。元素Yは、セリウム、クロム、ランタン、ネオジム、イットリウム、プラセオジム、サマリウム、アルミニウム、ホウ素、ガリウム及びインジウムからなる群より選ばれる1種以上である。元素Yは、少なくともセリウムを含むことが好ましく、さらに、クロム、ランタン、ネオジム、イットリウム、プラセオジム、サマリウム、アルミニウム、ガリウム及びインジウムからなる群より選ばれる1種以上の元素を含んでいてもよい。
 モリブデン12原子に対する元素Zの原子比fは、0.01≦f≦2.0であり、好ましくは0.03≦f≦1.8である。元素Zは、ナトリウム、カリウム、ルビジウム及びセシウムからなる群より選ばれる1種以上である。
 また、モリブデン12原子に対する酸素の原子比gは、存在する他の元素の原子価要求を満足させるのに必要な酸素の原子数であればよい。
 本実施形態の触媒は、上記金属酸化物が担体に担持されたものであってもよい。すなわち、本実施形態の触媒は、上記金属酸化物及び担体を含む触媒であってもよい。担体としては、シリカ、アルミナ、チタニア、ジルコニア等の酸化物が用いられるが、目的物の選択性の低下が小さく、形成した触媒粒子の耐摩耗性、粒子強度が良好となる観点から、シリカが好適である。すなわち、本実施形態の触媒の好ましい態様の一つは、シリカを含有する担体をさらに含む触媒である。
 シリカ担体の量は、シリカ担体と複合金属酸化物との合計質量に対して、20質量%~80質量%、好ましくは30質量%~70質量%、さらに好ましくは40質量%~60質量%の範囲で用いられる。
 本実施形態の触媒の比表面積は、特に制限されないが、好ましくは10~70m/gである。本実施形態の触媒の比表面積は、マイクロメリティックス製自動比表面積測定装置ジェミニVを用いて、試料に対してヘリウム流通下300℃で15分間、予備乾燥を行った後、吸着ガスとして窒素を用いて、BET1点法により測定することができる。
 本実施形態の触媒の体積基準の粒度分布における粒径45μm以下の粒子の割合は、特に制限されないが、好ましくは5~45%(体積基準分布における累積45μmが5~45%)である。分散媒を水とし、触媒0.6gを250mlの水に入れ、1分間の超音波分散処理を行った後、堀場製作所製のレーザー回折/散乱式粒度分布測定装置LA-300を用いて相対屈折率1.40の条件で測定することで、得られた体積基準の粒度分布から粒径45μm以下の粒子の割合(体積基準分布における累積45μm)として、得ることができる。
 本実施形態の触媒の形状としては、特に制限はないが、流動床触媒として使用する場合、流動性の観点から、球状が好ましい。また、本実施形態の触媒のメジアン径は、特に制限されないが、好ましくは10~180μmであり、より好ましくは20~150μmである。本発明の触媒のメジアン径は、分散媒を水とし、触媒0.6gを250mlの水に入れ、1分間の超音波分散処理を行った後、堀場製作所製のレーザー回折/散乱式粒度分布測定装置LA-300を用いて相対屈折率1.40の条件で測定することで、得ることができる。
 本実施形態の触媒の見かけ比重は、特に制限されないが、好ましくは0.8~1.2g/ccである。本実施形態の触媒の見かけ比重の測定方法を示す概略図を図1にしめす。図1に示すロート、メスシリンダーを用いて、ロートからメスシリンダーに触媒を落下させ、メスシリンダー上部の触媒を金属製の定規等で摺り切り、メスシリンダーの重量を秤量し、メスシリンダー風袋重量を差し引き、触媒の重量を得る。得られた触媒の重量を用いて、見かけ比重は下記式で算出することができる。
 見かけ比重=触媒の重量(g)/25(cc)
[触媒の製造方法]
 本実施形態の触媒は、モリブデン、ビスマス、鉄、及びニッケルを含むスラリーを噴霧乾燥することにより、乾燥粒子を得て、乾燥粒子を空気中で焼成し、焼成粒子を得る工程(以下、工程Iともいう)と、焼成粒子を還元ガス及び酸素存在下で還元処理する工程(以下、工程IIともいう)と、を含む、製造方法により製造される。
(工程I)
 本実施形態の触媒の製造方法における工程Iは、モリブデン、ビスマス、鉄、及びニッケルを含むスラリーを噴霧乾燥することにより、乾燥粒子を得て、乾燥粒子を空気中で焼成し、焼成粒子を得る工程である。焼成粒子は、触媒前駆体ともいう。
 上記焼成粒子は、公知の方法、例えば、国際公開第2018/211858号に記載の製造方法を参考に製造することができる。上記焼成物は、モリブデン、ビスマス、鉄、及びニッケルに加え、式(1)で表される組成に含まれる金属を含んでいてもよい。モリブデンと、ビスマスと、鉄と、ニッケルを含む焼成粒子は、式(1)で表される組成を有する金属酸化物であることが好ましい。
 モリブデン、ビスマス、鉄、及びニッケルを含むスラリーは、触媒の原料と、溶媒とを混合することにより得られる。溶媒は水であることが好ましく、上記スラリーは水性スラリーであることが好ましい。本実施形態の触媒をシリカに担持する場合、シリカを含んだ水溶液に対してモリブデンを含んだ水溶液を混合撹拌し、その後、ビスマス、鉄、ニッケル及び他の金属を含んだ溶液を混合撹拌する調製法が好ましく用いられる。
 シリカの原料としてはシリカゾルが好ましい。その他の金属成分が混合されていない原料の状態におけるシリカゾルの好ましい濃度は、10~50質量%である。
 スラリーを調製するためのモリブデン、ビスマス、セリウム、鉄、ニッケル、コバルト、マグネシウム、亜鉛、カリウム、ルビジウム、及びセシウム等の、触媒を構成する各元素の原料は、水又は硝酸に可溶な塩であればよく、各金属のアンモニウム塩、硝酸塩、塩酸塩、硫酸塩、有機酸塩等が挙げられる。モリブデンを含む原料としてはアンモニウム塩が好適に用いられ、ビスマス、セリウム、鉄、ニッケル、マグネシウム、亜鉛、カリウム、ルビジウム、及びセシウムを含む原料としては硝酸塩が好適に用いられる。
 モリブデン、ビスマス、鉄、及びニッケルを含むスラリーは噴霧乾燥され、乾燥粒子が調製される。噴霧乾燥では、上記スラリーを噴霧乾燥して球状の粒子が得られる。水性スラリーの噴霧は、工業的に通常用いられる遠心方式、二流体ノズル方式、高圧ノズル方式等の方法により行うことができ、遠心方式により行うことが好ましい。乾燥には加熱された空気を用いることが好ましく、乾燥のための熱源としてはスチーム、電気ヒーター等が挙げられる。乾燥機の入口温度は、好ましくは100℃~400℃、より好ましくは150℃~300℃である。乾燥機の出口温度は、好ましくは100℃~180℃、より好ましくは120℃~170℃である。
 上述のように得られた乾燥粒子は、空気中で焼成され焼成粒子が得られる。焼成は、通常のトンネル型あるいはロータリー型のキルンを用いて行われる。焼成温度は、好ましくは500~750℃、より好ましくは500~680℃の範囲である。焼成時間は、焼成温度によって適宜調整すればよく、好ましくは1~20時間の範囲である。
 焼成粒子の形状は、特に制限はないが、球状が好ましい。焼成粒子のメジアン径は、特に制限されないが、好ましくは10~180μmである。焼成粒子のメジアン径は、分散媒を水とし、焼成粒子0.6gを250mlの水に入れ、1分間の超音波分散処理を行った後、堀場製作所製のレーザー回折/散乱式粒度分布測定装置LA-300を用いて相対屈折率1.40の条件で測定することで、得ることができる。
(工程II)
 本実施形態の触媒の製造方法における工程IIは、工程Iにより得られた焼成粒子を還元ガス及び酸素存在下で還元処理する工程である。工程IIは、反応器として流動層反応器を好適に用い行うことができる。流動層反応器としては、特に制限されず、好ましくは縦型円筒型であり、空気分散板、その上にプロピレン及びアンモニア供給用の原料ガス分散管、及び反応器出口等を備える反応器を好適に用いることができる。
 工程Iにより得られた焼成粒子は、反応器に充填して、必要に応じて、まず、プロピレン、アンモニア、酸素、ヘリウムを含む混合ガスと接触する状態に供することが好ましい。本明細書において、この状態に供する処理を還元前処理ともいう。
 なお、本明細書において、酸素は分子状酸素を指し、酸素源は空気である。本発明においては、酸素濃度の制御が重要であり、説明の簡便化のためモル比について空気ではなく酸素で表すことがあるが、所望の酸素モル数及びモル比となるように空気量は制御される。空気中の酸素濃度21%として、酸素モル比は下記式で換算できる。
 酸素モル比=空気モル比×0.21
 この混合ガスと焼成粒子との接触時間は、特に制限されないが通常0.5~30秒であり、好ましくは1~10秒である。ここで接触時間は、実施例に記載の方法によって求められる接触時間である。還元前処理の温度は、好ましくは400~500℃であり、より好ましくは420~480℃である。このとき、混合ガスにおいて、アンモニア/プロピレンのモル比は1.0~5.0に設定することが好ましい。また、酸素/プロピレンのモル比は、反応器の出口において検出される酸素濃度(以下、反応器出口ガスの酸素濃度ともいう)が0.18~0.22容積%となるように設定することが好ましい。この時、プロピレンの転化率は、98%以上となることが好ましく、99%以上となることがより好ましい。
 本実施形態の触媒の製造方法において、モリブデン化合物を添加してもよい。モリブデン化合物を添加することにより、アンモニアに対する触媒活性が高まり、アクリロニトリルの収率を高められる傾向にある。モリブデン化合物の添加は、工程Iにより得られた焼成粒子を還元ガス及び酸素存在下で還元処理する工程において、工程Iにより得られた焼成粒子に対して行うこと、または、上記の還元前処理において、工程Iにより得られた焼成粒子に対して行うことが好ましく、上記の還元前処理において、工程Iにより得られた焼成粒子に対して行うことがより好ましい。モリブデン化合物の添加には、モリブデンのアンモニウム塩を用いることが好ましい。
 モリブデン化合物の添加量は、工程Iにより得られた焼成粒子に含まれるモリブデンの物質量を12とし、この物質量の値(物質量12)を基準として、0.05~3.0相当の量であることが好ましく、0.1~1.0相当の量であることがより好ましい。
 本実施形態の触媒の製造方法においては、還元処理として、反応器内の酸素が不足した状態に制御を行うことが好ましい。還元処理の具体的な方法としては、例えば、酸素/プロピレンのモル比を調整することによって反応器内の酸素量を低減する方法が挙げられる。酸素/プロピレンのモル比を大きく低減することによって、表面ニッケル濃度/バルクニッケル濃度の比は高い値になるように制御される。
 酸素量が低減されたことは、反応器出口ガスの酸素濃度を検出することによって確認できる。酸素/プロピレンのモル比を大きく低減して反応器内の酸素が不足した状態になっていることは、反応器出口ガスの酸素濃度を測定して0容積%になっていることにより確認できる。そのため、反応器出口ガスの酸素濃度を0容積%になるように反応器内への酸素流量を減少させるなどの制御をすることが好ましい。また、反応器内の酸素が不足した状態であることは、プロピレンの転化率が89~96%の範囲内となっていることからも確認できる。反応器内の酸素が不足した状態として、より好ましい状態であることは、プロピレン転化率が90~95%の範囲内となっていることから確認できる。
 反応器内の酸素が不足した状態を継続する時間としては、好ましくは10分~5時間未満であり、より好ましくは30分~2時間である。酸素濃度及び時間を上記の範囲とすることにより、表面ニッケル濃度/バルクニッケル濃度の比を0.60~1.20に制御できる傾向にあり、プロピレンのアンモ酸化の生成物であるアクリロニトリルの高い収率を維持しながらシアン化水素の収率も向上できる触媒を得られる傾向にある。
 還元処理における酸素/プロピレンのモル比は、具体的には、還元前処理における酸素/プロピレンのモル比から、0.10以上0.50以下低減させることが好ましく、0.20以上0.40以下低減させることがより好ましい。
 ここで、還元前処理における酸素/プロピレンのモル比は、反応器出口ガスの酸素濃度が0.18~0.22容積%となった際の反応器へ酸素流量及びプロピレン流量に基づいて特定される。
 還元処理における酸素/プロピレンのモル比を還元前処理における酸素/プロピレンのモル比から0.10以上低減することにより、反応器内の酸素濃度を十分に低下させることができ、シアン化水素の収率を向上できる触媒を得られる傾向にある。また、還元処理における酸素/プロピレンのモル比を還元前処理における酸素/プロピレンのモル比から0.50以下低減することにより、アクリロニトリルの高い収率を維持できる触媒を得られる傾向にある。
 還元処理の温度は、好ましくは400~500℃であり、より好ましくは420~480℃である。
 工程IIにおいて、還元処理の後、還元処理を停止するために、酸素濃度を還元前処理における酸素濃度に上昇するよう調整してもよい。このとき、還元処理を穏やかに停止するために、徐々に酸素濃度を上昇させることが好ましい。
 還元処理の停止は、上記還元処理において、低減させた分の酸素/プロピレンのモル比を上昇させることによって開始することが好ましい。また、アンモニア/プロピレンのモル比、酸素/プロピレンのモル比、及び接触時間のガス条件を調整して、実施例において定義される硫酸原単位を10~30kg/T-AN、反応器出口ガスの酸素濃度を0容積%超過、プロピレンの転化率を97%以上100%以下になるように制御することが好ましい。上記のガス条件は、30分以上5時間以下継続することが好ましい。還元後処理の温度は、好ましくは300~500℃であり、より好ましくは400~480℃である。
 その後さらに、酸素/プロピレンのモル比を調整して、反応器出口ガスの酸素濃度を還元前処理時の酸素濃度になるよう制御することが好ましい。
[アクリロニトリル及びシアン化水素の製造方法]
 本実施形態のアクリロニトリルの製造方法は、本実施形態の触媒を用いるものである。すなわち、本実施形態のアクリロニトリルの製造方法は、本実施形態の触媒の存在下、プロピレンと、酸素と、アンモニアと、を反応させる工程を含む。本実施形態の製造方法は、流動床アンモ酸化反応により行うことが好ましい。また、本実施形態のアクリロニトリルの製造は、上述した触媒の製造に用いた流動層反応器と同じ反応器にて行うことができる。本実施形態の製造方法によって、アクリロニトリル及びシアン化水素を製造することができる。
 本実施形態のアクリロニトリルの製造方法は、例えば、通常用いられる流動層反応器内で行われてもよい。原料のプロピレン及びアンモニアは、必ずしも高純度である必要はなく、工業グレードのものを使用することができる。また、分子状酸素源としては、通常空気を用いるのが好ましいが、酸素を空気と混合する等して酸素濃度を高めたガスを用いることもできる。
 本実施形態のアクリロニトリルの製造方法における酸素源が空気である場合、原料ガスの組成(プロピレンに対するアンモニア及び空気のモル比;プロピレン/アンモニア/空気)は、好ましくは1/(0.8~2.5)/(7.0~12.0)の範囲であり、より好ましくは1/(0.9~1.3)/(8.0~11.0)の範囲である。
 本実施形態のアクリロニトリルの製造方法における反応温度は、好ましくは300~500℃の範囲であり、より好ましくは400~480℃の範囲である。反応圧力は、好ましくは常圧~0.3MPaの範囲である。原料ガスと触媒との接触時間は、好ましくは0.5~20(sec・g/cc)、より好ましくは1~10(sec・g/cc)である。
 以下に実施例を挙げて本実施形態をより具体的に説明するが、本実施形態はこれらの実施例により何ら限定されるものではない。また、各種物性の評価方法は下記に示すとおりである。
[バルクのニッケル濃度に対する表面のニッケル濃度の割合]
 バルクのニッケル濃度を、触媒調製時の原料の仕込みの元素組成から算出し、触媒全体が均一であると仮定して求めた。具体的には、触媒を構成する酸素以外の元素を100%とし、ニッケルの重量濃度をバルクのニッケル濃度とした。なお、触媒を構成する酸素以外の元素には、担体中の酸素以外の元素、例えば、SiO2のケイ素も含まれる。
 「表面のニッケル濃度」とは、触媒表面を電子顕微鏡(SEM:scanning electron microscopy)を用いたエネルギー分散型X線分光法(EDX:energy dispersive X-ray spectrometry)によって測定することで得られる、触媒を構成する酸素以外の元素の重量を100%とした際の、ニッケルの重量濃度である。下記に具体的な測定方法を記載する。
 まず、試料の前処理として、φ15mmのカーボン試料台の上に10mm角のカーボンテープを張り付け、その上に触媒粒子を敷き詰め固定を行った。その後、四酸化オスミウムを触媒粒子の表面にコーティングし金属オスミウム層を形成することにより、導電処理を行い測定に供した。四酸化オスミウムコーティングには、四酸化オスミウム源にオスミウム酸1g(日新EM株式会社製)を用い、株式会社真空デバイス社製のオスミウムコーター HPC-1SWを用い、コーティング時間は5秒とした。オスミウムコーター HPC-1SWのカタログによれば、1.5nmの金属オスミウム層が前記触媒粒子表面に形成されたものと推測される。
 SEMはショットキー型電子銃を備えた日立製のSU-70を用いた。EDX検出器には、堀場製作所製のEMAX X-maxを用いた。SEMの加速電圧は、10kVに設定し、対物レンズからの作動距離は15mmとした。EDXの分析範囲を2mm×2mm四方で、500粒以上が観察される広い範囲とすることで、粒子間の組成ばらつきの影響を小さくした。Niの定量には、K線を用いた。本条件の加速電圧では、Ni-K線の強度が弱くなるため、スペクトルの収集時間は、300秒とした。また、Ni以外の触媒を構成する元素の定量には、以下の励起線;Co-K線、Mg-K線、Si-K線、Fe-K線、Mo-L線、Ce-L線、Bi-M線、Cr-K線を用いた。
 ピーク強度を、ピークを積分した面積として取得し、触媒を構成する酸素以外の元素に対して、上記EDX検出器に備えられた測定ソフトを用いてXPP法にて元素定量値を求めた。定量計算に使用される各元素のX線強度は、連続X線成分を除去し、さらにピーク重複がある場合にはピーク分離を実施して求めた。Rb、K等の微量のアルカリ金属については定量できないため、計算から除外した。XPP法については、文献Quantitative Analysis of Homogeneous or Stratified Microvolumes Applying the Model "PAP" Electron Probe Quantitation pp 31-75 Jean-Louis PouchouFrancoise Pichoir (1991)を参考にした。バルクのニッケル濃度に対する表面のニッケル濃度の割合は、表面のニッケル濃度/バルクのニッケル濃度から得た。
 上記バルクのニッケル濃度に対する表面のニッケル濃度の割合の算出方法と同様にして、表面のモリブデン濃度に対する表面のニッケル濃度の割合を得た。同様にして、バルクのコバルト濃度に対する表面のコバルト濃度の割合を得た。また、同様にして、表面のモリブデン濃度に対する表面のコバルト濃度の割合を得た。
[プロピレン転化率、アクリロニトリル収率、シアン化水素収率]
 実施例及び比較例で得られた触媒を用いて、プロピレンのアンモ酸化反応によりアクリロニトリル及びシアン化水素を製造した。その際に使用する反応管としては、10メッシュの金網を1cm間隔で16枚内蔵した内径25mmのパイレックス(登録商標)ガラス管を使用した。
 触媒量50cc、反応温度430℃、反応圧力0.17MPaに設定し、プロピレン/アンモニア/空気の混合ガスを全ガス流量として250~450cc/sec(NTP換算)で供給して反応を実施した。その際、混合ガス中のプロピレンの含有量は9容積%とし、プロピレン/アンモニア/空気のモル比は1/(0.7~2.5)/(8.0~13.5)として、その範囲内で、下記式で定義される硫酸原単位が20±2kg/T-ANとなるようにアンモニア流量を、また、反応器出口ガスの酸素濃度が0.2±0.02容積%になるように空気流量を、適宜変更した。また、混合ガス全体の流速を変更することにより、下記式で定義される接触時間を変更し、下記式で定義されるプロピレン転化率が99.3±0.2%となるように設定した。
 反応によって生成するアクリロニトリル収率及びシアン化水素の収率は、下記式のように定義される値とした。生成物の物質量については原料であるプロピレンの炭素数を基準として定義した。
Figure JPOXMLDOC01-appb-M000001
[実施例1]
(触媒前駆体の調製)
 まず、その組成がMo12Bi0.40Fe1.70Ni5.30Mg2.10Ce0.80Rb0.11となるよう原料の仕込み質量を調整して製造した金属酸化物60質量%を、40質量%のシリカ(SiO)に担持した触媒を、以下の手順で製造した。
 一次粒子の平均粒子直径が12nmであるSiOを30質量%含む水性シリカゾル666.7gと、一次粒子の平均粒子直径が41nmであるSiOを30質量%含む水性シリカゾル666.7gとを混合して、2種シリカの混合液を得た。
 次に水200gに溶解させたシュウ酸二水和物25.0gを上記シリカ混合液に加えた。
 次に、水886gに493gのパラモリブデン酸アンモニウム〔(NHMo24・4HO〕を溶解させた液を上記シリカゾルとシュウ酸の混合液に加えた。
 次いで、16.6質量%濃度の硝酸液399gに、45.2gの硝酸ビスマス〔Bi(NO・5HO〕、160gの硝酸鉄〔Fe(NO・9HO〕、359gの硝酸ニッケル〔Ni(NO・6HO〕、80.8gの硝酸セリウム〔Ce(NO・6HO〕、3.78gの硝酸ルビジウム〔RbNO〕を溶解させて得られた液を、上記の混合液に加えて水性原料混合物(原料スラリー)を得た。次に、乾燥器上部中央に設置された皿型回転子を備えた噴霧装置を用い、入口温度約230℃、出口温度約110℃の条件で上記水性原料混合物の噴霧乾燥を行った。また、円盤の回転数は12500回転/分に設定した。得られた乾燥体を200℃で5分間保持し、200℃から450℃まで2.5℃/分で昇温し、450℃で20分間保持することで脱硝した。得られた脱硝粉を580℃で2時間焼成して、触媒前駆体を得た。
(還元処理)
(1)還元前処理
 さらに10メッシュの金網を1cm間隔で16枚内蔵した内径25mmのパイレックス(登録商標)ガラス管を使用して、触媒前駆体50ccについて、0.82gのパラモリブデン酸アンモニウム〔(NHMo24・4HO〕(モリブデン12基準に対して0.4相当)を混合し、温度460℃、圧力0.17MPaに設定し、プロピレン9容積%の混合ガス(プロピレン、アンモニア、酸素、ヘリウム)を通過させた。ガス流量は下記式で定義される接触時間が3.5秒となるように設定した。アンモニア/プロピレンのモル比は1.7に設定し、酸素/プロピレンモル比は、反応器出口ガスの酸素濃度が0.2±0.02容積%になるように設定した。
(2)還元処理
 前記ガス条件に設定したのち、酸素/プロピレンモル比(O/C)を0.28低減する操作をした。このときガスクロマログラフィーによる分析を行い、反応器出口ガスの酸素濃度は0容積%であり、プロピレンの転化率が91%であった。
(3)還元後処理
 前記操作から75分経過後、酸素/プロピレンモル比を0.28増加させて還元処理前の水準に戻した。温度を430℃に降温したのち、上記式で定義される硫酸原単位が20±2kg/T-AN、反応器出口ガスの酸素濃度が0.05±0.01容積%、プロピレンの転化率が99.3±0.2%になるように、ガス条件;アンモニア/プロピレンのモル比、酸素/プロピレンのモル比、及び接触時間を設定した。
 前記ガス条件に設定して90分経過したのち、反応器出口ガスの酸素濃度が1.0±0.1容積%になるように酸素/プロピレンのモル比のガス条件を設定した。前記ガス条件に設定して10分経過したのち、反応器出口ガスの酸素濃度が0.2±0.02容積%になるように酸素/プロピレンのモル比を設定し、20分経過後、全てのガスの供給を停止して触媒を得た。
 得られた触媒についてSEM/EDXを測定して得られた表面ニッケル濃度、仕込み組成から得られるバルクのニッケル濃度から計算される表面ニッケル濃度/バルクニッケル濃度比は0.83であった。
[実施例2]
 上記(2)還元処理における酸素/プロピレンモル比の低減量を0.25とし、プロピレンの転化率を96%としたこと以外は、実施例1と同様の操作により触媒を得た。
[実施例3]
 上記(2)還元処理における酸素/プロピレンモル比の低減量を0.36とし、プロピレンの転化率を89%としたこと以外は、実施例1と同様の操作により触媒を得た。
[実施例4]
 上記(1)還元前処理におけるパラモリブデン酸アンモニウムの混合比を0.2とし、プロピレンの転化率を92%としたこと以外は、実施例1と同様の操作により触媒を得た。
[実施例5]
 上記(1)還元前処理におけるパラモリブデン酸アンモニウムを混合しなかったこと、プロピレンの転化率を92%としたこと以外は、実施例1と同様の操作により触媒を得た。
[比較例1]
 上記の(還元処理)を行わなかったこと以外は、実施例1と同様の操作により触媒を得た。
[比較例2]
 上記(2)還元処理における酸素/プロピレンモル比の低減量を0.53とし、プロピレンの転化率を85%としたこと以外は、実施例1と同様の操作により触媒を得た。
[実施例6]
 その組成がMo12Bi0.35Fe1.61Ni3.60O3.90Ce0.84Rb0.14となるよう原料の仕込み質量を調整して製造した金属酸化物60質量%を用い、且つ、上記(2)還元処理における酸素/プロピレンモル比の低減量を0.29とし、プロピレンの転化率を93%としたこと以外は、実施例1と同様の操作により触媒を得た。
[実施例7]
 上記(2)還元処理における酸素/プロピレンモル比の低減量を0.23とし、プロピレンの転化率を96%としたこと以外は、実施例6と同様の操作により触媒を得た。
[実施例8]
 上記(2)還元処理における酸素/プロピレンモル比の低減量を0.38とし、プロピレンの転化率を89%としたこと以外は、実施例6と同様の操作により触媒を得た。
[比較例3]
 上記の(還元処理)を行わなかったこと以外は、実施例6と同様の操作により触媒を得た。
[実施例9]
 その組成がMo12Bi0.50Fe1.31Ni3.10O4.05Ce0.87Rb0.100.08となるよう原料の仕込み質量を調整して製造した金属酸化物60質量%を用い、且つ、上記(2)還元処理における酸素/プロピレンモル比の低減量を0.27とし、プロピレンの転化率を93%としたこと以外は、実施例1と同様の操作により触媒を得た。
[比較例4]
 上記の(還元処理)を行わなかったこと以外は、実施例9と同様の操作により触媒を得た。
[実施例10]
 その組成がMo12Bi0.39Fe1.60Ni6.97Mg0.77Ce0.63Rb0.17となるよう原料の仕込み質量を調整して製造した金属酸化物60質量%を用い、且つ、上記(2)還元処理における酸素/プロピレンモル比の低減量を0.32とし、プロピレンの転化率を91%としたこと以外は、実施例1と同様の操作により触媒を得た。
[比較例5]
 上記の(還元処理)を行わなかったこと以外は、実施例10と同様の操作により触媒を得た。
[実施例11]
 その組成がMo12Bi0.57Fe1.01Ni0.98O6.83Mg0.98Ce0.38Rb0.12となるよう原料の仕込み質量を調整して製造した金属酸化物60質量%を用い、且つ、上記(2)還元処理における酸素/プロピレンモル比の低減量を0.29とし、プロピレンの転化率を92%としたこと以外は、実施例1と同様の操作により触媒を得た。
[比較例6]
 上記の(還元処理)を行わなかったこと以外は、実施例11と同様の操作により触媒を得た。
[実施例12]
 その組成がMo12Bi0.27Fe0.95Ni2.95O6.69Ce0.18Rb0.13となるよう原料の仕込み質量を調整して製造した金属酸化物60質量%を用い、且つ、上記(2)還元処理における酸素/プロピレンモル比の低減量を0.35とし、プロピレンの転化率を90%としたこと以外は、実施例1と同様の操作により触媒を得た。
[比較例7]
 上記の(還元処理)を行わなかったこと以外は、実施例12と同様の操作により触媒を得た。
[実施例13]
 その組成がMo12Bi0.27Fe0.95Ni1.48O8.16Ce0.18Rb0.13となるよう原料の仕込み質量を調整して製造した金属酸化物60質量%を用い、且つ、上記(2)還元処理における酸素/プロピレンモル比の低減量を0.24とし、プロピレンの転化率を94%としたこと以外は、実施例1と同様の操作により触媒を得た。
[比較例8]
 上記の(還元処理)を行わなかったこと以外は、実施例13と同様の操作により触媒を得た。
[実施例14]
 その組成がMo12Bi1.20Fe0.60Ni7.80Cr1.200.48となるよう原料の仕込み質量を調整して製造した金属酸化物60質量%を用いたこと、プロピレンの転化率を92%としたこと以外は、実施例1と同様の操作により触媒を得た。
[比較例9]
 上記の(還元処理)を行わなかったこと以外は、実施例14と同様の操作により触媒を得た。
[実施例15]
 Mo12Bi0.45Ce0.90Co3.00Fe1.700.09Ni2.00Mg2.00Rb0.04で表される組成を有する酸化物を、触媒の総量に対して50質量%のシリカに担持した酸化物触媒を下記のようにして調製した。
 16.6質量%濃度の硝酸水溶液395.1gに43.1gの硝酸ビスマス〔Bi(NO・5HO〕、76.2gの硝酸セリウム〔Ce(NO・6HO〕、133.9gの硝酸鉄〔Fe(NO・9HO〕、114.6gの硝酸ニッケル〔Ni(NO・6HO〕、171.8gの硝酸コバルト〔Co(NO・6HO〕、101.4gの硝酸マグネシウム〔Mg(NO・6HO〕、1.77gの硝酸カリウム〔KNO〕及び1.15gの硝酸ルビジウム〔RbNO〕を溶解させた液を一次粒子の平均粒子径が12nmのSiOを30質量%含む水性シリカゾル833.3gと一次粒子の平均粒子径が41nmのSiOを30質量%含む水性シリカゾル833.3gとの混合物に添加した。そこに、水738.7gに413.8gのパラモリブデン酸アンモニウム〔(NHMo24・4HO〕を溶解させた液を添加し混合撹拌して、前駆体スラリーを得た。次いで、得られた前駆体スラリーを、乾燥器上部の中央に設置された、皿型回転子を備えた遠心式噴霧化装置を用いて噴霧乾燥した。乾燥器の入口空気温度を240℃に、出口温度を140℃に保持して前駆体スラリーを噴霧乾燥した。こうして得られた乾燥粒子をキルンに移し、空気雰囲気下で焼成した。具体的には、まず、室温から320℃まで2時間かけて昇温し、320℃で2時間保持して仮焼成し、仮焼成粒子を得た。続けて、580℃まで3時間かけて昇温し、仮焼成粒子を580℃で2時間本焼成して、酸化物触媒を得た。得られた酸化物触媒について、上記(2)還元処理における酸素/プロピレンモル比の低減量を0.31とし、プロピレンの転化率を92%としたこと以外は、実施例1と同様の操作により触媒を得た。
[比較例10]
 Mo12Bi0.45Ce0.90Co3.00Fe1.700.09Ni2.00Mg2.00Rb0.04で表される組成を有する酸化物を、触媒の総量に対して50質量%のシリカに担持した酸化物触媒を下記のようにして調製した。
 16.6質量%濃度の硝酸水溶液395.1gに43.1gの硝酸ビスマス〔Bi(NO・5HO〕、76.2gの硝酸セリウム〔Ce(NO・6HO〕、133.9gの硝酸鉄〔Fe(NO・9HO〕、114.6gの硝酸ニッケル〔Ni(NO・6HO〕、171.8gの硝酸コバルト〔Co(NO・6HO〕、101.4gの硝酸マグネシウム〔Mg(NO・6HO〕、1.77gの硝酸カリウム〔KNO〕及び1.15gの硝酸ルビジウム〔RbNO〕を溶解させた液を一次粒子の平均粒子径が12nmのSiOを30質量%含む水性シリカゾル833.3gと一次粒子の平均粒子径が41nmのSiOを30質量%含む水性シリカゾル833.3gとの混合物に添加した。そこに、水738.7gに413.8gのパラモリブデン酸アンモニウム〔(NHMo24・4HO〕を溶解させた液を添加し混合撹拌して、前駆体スラリーを得た。次いで、得られた前駆体スラリーを、乾燥器上部の中央に設置された、皿型回転子を備えた遠心式噴霧化装置を用いて噴霧乾燥した。乾燥器の入口空気温度を240℃に、出口温度を140℃に保持して前駆体スラリーを噴霧乾燥した。こうして得られた乾燥粒子をキルンに移し、空気雰囲気下で焼成した。具体的には、まず、室温から320℃まで2時間かけて昇温し、320℃で2時間保持して仮焼成し、仮焼成粒子を得た。続けて、580℃まで3時間かけて昇温し、仮焼成粒子を580℃で2時間本焼成して、酸化物触媒を得た。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明の触媒は、プロピレンをアンモ酸化する工程を含むアクリロニトリル及びシアン化水素の製造において産業上の利用可能性を有する。

Claims (14)

  1.  モリブデン、ビスマス、鉄、及びニッケルを含む触媒であって、
     バルクのニッケル濃度に対する、表面のニッケル濃度の割合が、0.60~1.20である、触媒。
  2.  表面のモリブデン濃度に対する、表面のニッケル濃度の割合が、0.15~0.40である、請求項1に記載の触媒。
  3.  コバルトをさらに含み、
     バルクのコバルト濃度に対する、表面のコバルト濃度の割合が、0.80~1.40である、請求項1又は2に記載の触媒。
  4.  コバルトをさらに含み、
     表面のモリブデン濃度に対する、表面のコバルト濃度の割合が、0.15~0.40である、請求項1~3のいずれか一項に記載の触媒。
  5.  比表面積が10~70m/gである、請求項1~4のいずれか一項に記載の触媒。
  6.  体積基準の粒度分布における粒径45μm以下の粒子の割合が5~45%である、請求項1~5のいずれか一項に記載の触媒。
  7.  メジアン径が10~180μmである、請求項1~6のいずれか一項に記載の触媒。
  8.  見かけ比重が0.8~1.2g/ccである、請求項1~7のいずれか一項に記載の触媒。
  9.  下記式(1)で表される組成を有する金属酸化物を含む、
     請求項1~8のいずれか一項に記載の触媒。
    Mo12BiFeNi (1)
    (式(1)中、
     Xは、コバルト、マグネシウム、カルシウム、亜鉛、ストロンチウム、バリウム、及びタングステンからなる群より選ばれる1種以上の元素を示し、
     Yは、セリウム、クロム、ランタン、ネオジム、イットリウム、プラセオジム、サマリウム、アルミニウム、ホウ素、ガリウム、及びインジウムからなる群より選ばれる1種以上の元素を示し、
     Zは、ナトリウム、カリウム、ルビジウム、及びセシウムからなる群より選ばれる1種以上の元素を示し、
     a、b、c、d、e、及びfは、0.1≦a≦2.0、0.1≦b≦3.0、0.1≦c≦10.0、0≦d≦10.0、0.1≦e≦3.0、及び0.01≦f≦2.0をそれぞれ満たし、
     gは、存在する他の元素の原子価要求を満足させるのに必要な酸素の原子数である。)
  10.  シリカを含有する担体をさらに含む、請求項1~9のいずれか一項に記載の触媒。
  11.  アンモ酸化に用いるための、請求項1~10のいずれか一項に記載の触媒。
  12.  モリブデン、ビスマス、鉄、及びニッケルを含むスラリーを噴霧乾燥することにより、乾燥粒子を得て、前記乾燥粒子を空気中で焼成し、焼成粒子を得る工程と、
     前記焼成粒子を還元ガス及び酸素存在下で還元処理する工程と、を含む、
     請求項1~11のいずれか一項に記載の触媒の製造方法。
  13.  還元ガス及び酸素存在下で還元処理する前記工程において、モリブデンをさらに添加する、
     請求項12に記載の触媒の製造方法。
  14.  請求項1~11のいずれか一項に記載の触媒の存在下、プロピレンと、分子状酸素と、アンモニアと、を反応させる工程を含む、アクロニトリルの製造方法。
PCT/JP2020/013730 2019-04-15 2020-03-26 触媒、触媒の製造方法、アクリロニトリルの製造方法 WO2020213361A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020217028447A KR102605977B1 (ko) 2019-04-15 2020-03-26 촉매, 촉매의 제조 방법, 아크릴로니트릴의 제조 방법
EP20792163.6A EP3957395A4 (en) 2019-04-15 2020-03-26 CATALYST, METHOD FOR MAKING A CATALYST AND METHOD FOR MAKING ACRYLONITRILE
CN202080028687.3A CN113727778B (zh) 2019-04-15 2020-03-26 催化剂、催化剂的制造方法、丙烯腈的制造方法
BR112021014691-1A BR112021014691B1 (pt) 2019-04-15 2020-03-26 Catalisador, método para fabricar catalisador, e método para fabricar acrilonitrila
US17/436,787 US11772080B2 (en) 2019-04-15 2020-03-26 Catalyst, method for producing catalyst, and method for producing acrylonitrile
JP2021514847A JP7101310B2 (ja) 2019-04-15 2020-03-26 触媒、触媒の製造方法、アクリロニトリルの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-077367 2019-04-15
JP2019077367 2019-04-15

Publications (1)

Publication Number Publication Date
WO2020213361A1 true WO2020213361A1 (ja) 2020-10-22

Family

ID=72837313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013730 WO2020213361A1 (ja) 2019-04-15 2020-03-26 触媒、触媒の製造方法、アクリロニトリルの製造方法

Country Status (7)

Country Link
US (1) US11772080B2 (ja)
EP (1) EP3957395A4 (ja)
JP (1) JP7101310B2 (ja)
KR (1) KR102605977B1 (ja)
CN (1) CN113727778B (ja)
TW (1) TWI757721B (ja)
WO (1) WO2020213361A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002502699A (ja) * 1998-02-13 2002-01-29 コリア リサーチ インスティチュート オブ ケミカル テクノロジイ コアー殻触媒相の固形触媒とその製造方法
KR20110130130A (ko) * 2010-05-27 2011-12-05 금호석유화학 주식회사 BiPO4를 포함하는 다성분계 금속산화물 촉매와 그의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법
JP2015157243A (ja) * 2014-02-21 2015-09-03 旭化成ケミカルズ株式会社 酸化物触媒及びその製造方法、酸化物触媒を用いた不飽和ニトリルの製造方法
WO2017069119A1 (ja) * 2015-10-19 2017-04-27 日本化薬株式会社 共役ジオレフィン製造用触媒と、その製造方法
WO2017130906A1 (ja) 2016-01-25 2017-08-03 旭化成株式会社 流動床アンモ酸化反応触媒及びアクリロニトリルの製造方法
WO2018211858A1 (ja) 2017-05-19 2018-11-22 旭化成株式会社 アンモ酸化用触媒、及び、その製造方法、並びにアクリロニトリルの製造方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4040978A (en) * 1975-11-28 1977-08-09 Monsanto Company Production of (amm)oxidation catalyst
US4335264A (en) * 1976-07-07 1982-06-15 E. I. Du Pont De Nemours And Company High yield, low byproduct α, β-unsaturated aldehydes from olefins
US4212766A (en) * 1978-04-21 1980-07-15 Standard Oil Company Process for forming multi-component oxide complex catalysts
JPS5756044A (en) 1980-09-20 1982-04-03 Mitsui Toatsu Chem Inc Method for reactivation of catalyst
US5134105A (en) 1990-03-19 1992-07-28 The Standard Oil Company Catalyst for propylene ammoxidation to acrylonitrile
US5169822A (en) * 1991-06-17 1992-12-08 Texaco Inc. Catalysts for removal of impurities by the hydroprocessing of hydrocarbons
KR100247552B1 (ko) * 1998-03-31 2000-03-15 김충섭 코아-쉘 구조를 갖는 고체촉매
KR100247556B1 (ko) * 1998-02-13 2000-03-15 김충섭 코아-쉘 구조를 갖는 고체촉매
KR100280372B1 (ko) * 1998-07-03 2001-03-02 김충섭 다성분계 복합산화물 촉매와 이의 제조방법
KR100293331B1 (ko) * 1998-10-14 2001-10-26 김충섭 복합산화물촉매와이의제조방법
JP3790080B2 (ja) 2000-01-25 2006-06-28 三菱レイヨン株式会社 メタクロレインおよびメタクリル酸合成用触媒、ならびにメタクロレインおよびメタクリル酸の製造方法
DE10023279A1 (de) * 2000-05-08 2001-11-29 Inst Angewandte Chemie Berlin Neuer Katalysator zur Aromatisierung von aliphatischen und alicyclischen Kohlenwasserstoffen
JP4242197B2 (ja) 2003-04-18 2009-03-18 ダイヤニトリックス株式会社 アクリロニトリル合成用触媒
BRPI0415989B1 (pt) 2003-10-31 2016-03-29 Basf Ag processo para operação a longo prazo de uma oxidação parcial em fase gasosa heterogeneamente catalisada de propeno a ácido acrílico
US20060199730A1 (en) 2005-03-02 2006-09-07 Seely Michael J Composition and method for improving density and hardness of fluid bed catalysts
EP2550097B1 (en) * 2010-03-23 2020-11-11 INEOS Europe AG High efficiency ammoxidation process and mixed metal oxide catalysts
WO2014039735A2 (en) * 2012-09-05 2014-03-13 Chevron U.S.A. Inc. Hydroconversion multi-metallic catalyst and method for making thereof
RU2615762C2 (ru) * 2012-09-28 2017-04-11 Асахи Касеи Кемикалз Корпорейшн Оксидный катализатор и способ его получения, а также способы получения ненасыщенного альдегида, диолефина и ненасыщенного нитрила
JP6247561B2 (ja) 2014-02-21 2017-12-13 旭化成株式会社 酸化物触媒及びその製造方法、並びに、酸化物触媒を用いた不飽和ニトリルの製造方法
JP6271317B2 (ja) * 2014-03-27 2018-01-31 旭化成株式会社 酸化物触媒及びその製造方法、並びにアクリロニトリルの製造方法
JP2016120468A (ja) * 2014-12-25 2016-07-07 旭化成ケミカルズ株式会社 アンモ酸化用触媒及びその製造方法、並びに、アクリロニトリルの製造方法
KR101892566B1 (ko) 2016-05-20 2018-08-28 주식회사 크레펀 지역기반 실감미디어 콘텐츠의 제공방법 및 시스템
EP3508272B1 (en) 2016-08-31 2024-09-04 Asahi Kasei Kabushiki Kaisha Method for producing catalyst, catalyst and method for producing acrylonitrile
JP6467115B2 (ja) * 2016-08-31 2019-02-06 旭化成株式会社 触媒の製造方法、及びアクリロニトリルの製造方法
JP6914114B2 (ja) 2017-06-23 2021-08-04 旭化成株式会社 金属酸化物触媒及びその製造方法ならびにそれを用いたアクリロニトリルの製造方法
WO2020213362A1 (ja) * 2019-04-16 2020-10-22 旭化成株式会社 触媒、触媒の製造方法、アクリロニトリルの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002502699A (ja) * 1998-02-13 2002-01-29 コリア リサーチ インスティチュート オブ ケミカル テクノロジイ コアー殻触媒相の固形触媒とその製造方法
KR20110130130A (ko) * 2010-05-27 2011-12-05 금호석유화학 주식회사 BiPO4를 포함하는 다성분계 금속산화물 촉매와 그의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법
JP2015157243A (ja) * 2014-02-21 2015-09-03 旭化成ケミカルズ株式会社 酸化物触媒及びその製造方法、酸化物触媒を用いた不飽和ニトリルの製造方法
WO2017069119A1 (ja) * 2015-10-19 2017-04-27 日本化薬株式会社 共役ジオレフィン製造用触媒と、その製造方法
WO2017130906A1 (ja) 2016-01-25 2017-08-03 旭化成株式会社 流動床アンモ酸化反応触媒及びアクリロニトリルの製造方法
WO2018211858A1 (ja) 2017-05-19 2018-11-22 旭化成株式会社 アンモ酸化用触媒、及び、その製造方法、並びにアクリロニトリルの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JEAN-LOUIS POUCHOUFRANCOISE PICHOIR, QUANTITATIVE ANALYSIS OF HOMOGENEOUS OR STRATIFIED MICROVOLUMES APPLYING THE MODEL ''PAP'' ELECTRON PROBE QUANTITATION, 1991, pages 31 - 75

Also Published As

Publication number Publication date
CN113727778B (zh) 2024-02-06
US11772080B2 (en) 2023-10-03
JPWO2020213361A1 (ja) 2021-11-11
TWI757721B (zh) 2022-03-11
TW202042904A (zh) 2020-12-01
KR20210122834A (ko) 2021-10-12
US20220168711A1 (en) 2022-06-02
KR102605977B1 (ko) 2023-11-23
EP3957395A1 (en) 2022-02-23
CN113727778A (zh) 2021-11-30
EP3957395A4 (en) 2022-06-08
JP7101310B2 (ja) 2022-07-14
BR112021014691A2 (pt) 2021-10-26

Similar Documents

Publication Publication Date Title
JP5458088B2 (ja) ナノ結晶ビスマス−モリブデン混合酸化物の製造方法
RU2709012C1 (ru) Способ получения катализатора и способ получения акрилонитрила
JP4242197B2 (ja) アクリロニトリル合成用触媒
KR101795095B1 (ko) 중공 원통형 지지체 및 지지체의 외부 표면에 적용된 촉매 활성 산화물 물질로 이루어진 쉘 촉매 전환제
JP5361034B2 (ja) 流動床用アンモ酸化触媒及びそれを用いたアクリロニトリル又はメタクリロニトリルの製造方法
RU2729070C2 (ru) Способ получения катализатора аммоксидирования и способ получения акрилонитрила
JP2016120468A (ja) アンモ酸化用触媒及びその製造方法、並びに、アクリロニトリルの製造方法
JP5210834B2 (ja) アクリロニトリル合成用触媒の製造方法およびアクリロニトリルの製造方法
JP6914114B2 (ja) 金属酸化物触媒及びその製造方法ならびにそれを用いたアクリロニトリルの製造方法
JP6758514B2 (ja) 触媒、触媒の製造方法、アクリロニトリルの製造方法
JP2009220052A (ja) アクリロニトリル合成用触媒の製造方法およびアクリロニトリルの製造方法
JPH0134222B2 (ja)
WO2020213361A1 (ja) 触媒、触媒の製造方法、アクリロニトリルの製造方法
JP2010131576A (ja) アクリロニトリル合成用触媒の製造方法およびアクリロニトリルの製造方法
JPS582232B2 (ja) アクリロニトリルの製造方法
RU2781388C1 (ru) Катализатор, способ производства катализатора и способ производства акрилонитрила
JP5020514B2 (ja) 流動層用触媒の製造方法およびニトリル類の製造方法
JPS6041665B2 (ja) メタクリロニトリルの製造方法
CN113692315A (zh) 催化剂、催化剂的制造方法、丙烯腈的制造方法
JP5011177B2 (ja) アクリロニトリル合成用触媒の製造方法およびアクリロニトリルの製造方法
WO2013129385A1 (ja) アクリロニトリルの製造方法
JPS6041666B2 (ja) メタクリロニトリルを製造する方法
KR20230099704A (ko) 기상 접촉 암모산화 반응용 촉매 및 기상 접촉 암모산화 반응용 촉매의 제조 방법
BR112021014691B1 (pt) Catalisador, método para fabricar catalisador, e método para fabricar acrilonitrila

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20792163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514847

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021014691

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217028447

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112021014691

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210726

ENP Entry into the national phase

Ref document number: 2020792163

Country of ref document: EP

Effective date: 20211115

WWE Wipo information: entry into national phase

Ref document number: 521430577

Country of ref document: SA

WWE Wipo information: entry into national phase

Ref document number: 521430577

Country of ref document: SA