WO2020209359A1 - 弾性波装置 - Google Patents

弾性波装置 Download PDF

Info

Publication number
WO2020209359A1
WO2020209359A1 PCT/JP2020/016115 JP2020016115W WO2020209359A1 WO 2020209359 A1 WO2020209359 A1 WO 2020209359A1 JP 2020016115 W JP2020016115 W JP 2020016115W WO 2020209359 A1 WO2020209359 A1 WO 2020209359A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric film
elastic wave
thickness
wave device
electrode finger
Prior art date
Application number
PCT/JP2020/016115
Other languages
English (en)
French (fr)
Inventor
翔 永友
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2021513714A priority Critical patent/JP7176622B2/ja
Priority to CN202080027974.2A priority patent/CN113785489B/zh
Publication of WO2020209359A1 publication Critical patent/WO2020209359A1/ja
Priority to US17/492,753 priority patent/US20220029601A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02637Details concerning reflective or coupling arrays
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02866Means for compensation or elimination of undesirable effects of bulk wave excitation and reflections
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02992Details of bus bars, contact pads or other electrical connections for finger electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present invention relates to an elastic wave device in which an edge region having a relatively low sound velocity is provided in an intersection region of IDT electrodes.
  • an elastic wave device in which the sound velocity in a part of the region is lowered in order to suppress the transverse mode ripple is known.
  • a low sound velocity region is provided in the intersection region when the region where adjacent electrode fingers overlap is defined as an intersection region when viewed in the direction of elastic wave propagation.
  • the first and second edge regions are provided on both sides of the central region of the intersection region. In the first and second edge regions, the width of the electrode fingers is increased, and the mass addition layer of the electrode fingers is laminated to reduce the sound velocity.
  • An object of the present invention is to provide an elastic wave device in which deterioration of the electromechanical coupling coefficient and deterioration of Q characteristics are unlikely to occur.
  • the elastic wave device includes a support substrate, a piezoelectric film directly or indirectly laminated on the support substrate, and an IDT electrode provided on the piezoelectric film, and the IDT electrodes are provided with each other. It has a first electrode finger and a second electrode finger that are interleaved with each other, and intersects a region where the first electrode finger and the second electrode finger overlap when viewed in the direction of elastic wave propagation.
  • the intersecting region is a central region located in the center of the direction in which the first and second electrode fingers extend, and the outer side of the central region in the direction in which the first and second electrode fingers extend.
  • the thickness Ht of the piezoelectric film in the central region and the thickness He of the piezoelectric film in the first and second edge regions are different and the wavelength determined by the electrode finger pitch of the IDT electrode is ⁇ .
  • At least one of the thickness Ht of the piezoelectric film in the central region and the thickness He of the piezoelectric film in the first and second edge regions is 1 ⁇ or less.
  • FIG. 1 is a side sectional view of the elastic wave device according to the first embodiment of the present invention.
  • FIG. 2 is a plan view of the elastic wave device according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing the relationship between the LiTaO 3 film thickness, the normalized film thickness of SiO 2 , and the speed of sound.
  • FIG. 4 is a diagram showing impedance-frequency characteristics of examples and comparative examples of the elastic wave device according to the present invention.
  • FIG. 5 is a side sectional view of the elastic wave device according to the second embodiment of the present invention.
  • FIG. 6 is a side sectional view of the elastic wave device according to the third embodiment of the present invention.
  • FIG. 7 is a side sectional view of the elastic wave device according to the fourth embodiment of the present invention.
  • FIG. 8 is a side sectional view of the elastic wave device according to the fifth embodiment of the present invention.
  • FIG. 9 is a side sectional view of the elastic wave device according to the sixth embodiment of the present invention.
  • FIG. 10 is a plan view of the elastic wave device according to the seventh embodiment of the present invention.
  • FIG. 11 is a side sectional view of the elastic wave device according to the seventh embodiment of the present invention.
  • FIG. 12 is a side sectional view of the elastic wave device according to the eighth embodiment of the present invention.
  • FIG. 13 is a side sectional view of the elastic wave device according to the ninth embodiment of the present invention.
  • FIG. 14 is a side sectional view of the elastic wave device according to the tenth embodiment of the present invention.
  • FIG. 1 is a side sectional view of the elastic wave device according to the first embodiment of the present invention
  • FIG. 2 is a plan view thereof. Note that FIG. 1 is a cross-sectional view of a portion along the line XX in FIG.
  • the elastic wave device 1 has a support substrate 2.
  • the piezoelectric film 4 is laminated on the support substrate 2 via the intermediate layer 3.
  • the IDT electrode 5 and the reflectors 6 and 7 are provided on the piezoelectric film 4. As a result, a 1-port elastic wave resonator is constructed.
  • the piezoelectric film 4 is made of lithium tantalate (LiTaO 3 ). However, the piezoelectric film 4 may be made of another piezoelectric material such as lithium niobate (LiNbO 3 ). Although the piezoelectric film 4 is indirectly laminated on the support substrate 2 via the intermediate layer 3, the piezoelectric film 4 may be directly laminated on the support substrate 2. In the elastic wave device 1, the sound velocity is lowered by providing the piezoelectric film 4 with a portion having a thickness different from that of other portions. This will be described in more detail below.
  • the IDT electrode 5 has a plurality of first electrode fingers 5a and a plurality of second electrode fingers 5b.
  • a plurality of first electrode fingers 5a and a plurality of second electrode fingers 5b are interleaved with each other.
  • One end of a plurality of first electrode fingers 5a is connected to the first bus bar 5c.
  • the other ends of the plurality of first electrode fingers 5a are extended toward the second bus bar 5d.
  • One end of the plurality of second electrode fingers 5b is connected to the second bus bar 5d.
  • the other ends of the plurality of second electrode fingers 5b are extended toward the first bus bar 5c.
  • the elastic wave propagation direction is a direction orthogonal to the first and second electrode fingers 5a and 5b.
  • the region where the first electrode finger 5a and the second electrode finger 5b overlap is the intersection region C. That is, it is a region where elastic waves are excited.
  • the intersection region C includes a central region t located at the center in the direction in which the first and second electrode fingers 5a and 5b extend, and first and second edge regions e1 and e2 connected to the outside of the central region t. And have.
  • the portion between the tip of the first electrode finger 5a and the second bus bar 5d is the gap region g shown in FIG.
  • the portion between the tip of the second electrode finger 5b and the first bus bar 5c is also a gap region g.
  • the thickness of the piezoelectric film 4 in the central region t is Ht
  • the thickness of the piezoelectric film 4 in the first and second edge regions e1 and e2 is He.
  • the thickness of the piezoelectric film 4 in the first edge region e1 is equal to the thickness of the piezoelectric film 4 in the second edge region e2.
  • the thickness of the piezoelectric film 4 in the gap region g is Hg, and the thickness of the piezoelectric film 4 below the portion where the first and second bus bars 5c and 5d are provided is Hb.
  • the support substrate 2 is made of a silicon substrate.
  • the material of the support substrate 2 may be another dielectric or semiconductor, and is not particularly limited. For example, crystal or sapphire may be used.
  • the intermediate layer 3 is preferably a low sound velocity film.
  • the low sound velocity film means a film in which the sound velocity of the propagating bulk wave is lower than the sound velocity of the bulk wave propagating in the piezoelectric film 4.
  • Examples of the material of the low sound velocity film include silicon oxide, fluorine-doped silicon oxide, silicon nitride, carbon-doped oxide and the like.
  • the intermediate layer 3 is made of a silicon oxide (SiO 2 ) film.
  • recesses 4b and 4a are provided on the lower surface of the piezoelectric film 4 in order to reduce the thickness of the piezoelectric film 4 in the first and second edge regions e1 and e2.
  • An intermediate layer 3 made of a silicon oxide film is laminated on the lower surface of the piezoelectric film 4 so as to fold such recesses 4a and 4b.
  • the IDT electrode 5 and the reflectors 6 and 7 are made of a metal such as Al, Cu, Pt, W, Mo or an alloy mainly composed of these metals.
  • the metal material is not particularly limited.
  • the IDT electrode 5 and the reflectors 6 and 7 may be a laminated metal film formed by laminating a plurality of metal films.
  • the first and second edge regions e1 and e2 since the thickness He of the piezoelectric film 4 in the first and second edge regions e1 and e2 is thinner than the thickness Ht of the piezoelectric film 4 in the central region t, the first and second The speed of sound in the edge regions e1 and e2 can be lowered. This will be described with reference to FIG.
  • FIG. 3 is a diagram showing the relationship between the LiTaO 3 film thickness, the normalized film thickness of SiO 2 , and the speed of sound.
  • the SiO 2 film and the LiTaO 3 film are laminated on the support substrate 2 in this order.
  • the wavelength determined by the electrode finger pitch of the IDT electrode is ⁇ .
  • the film thickness of the LiTaO 3 film in FIG. 3 is a value standardized by ⁇ .
  • the film thickness of the SiO 2 film is 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1.0, in terms of the wavelength standardized film thickness. in the case of the 1.5 and 2.0, the wavelength normalized thickness of the SiO 2 film is 0, that is SiO 2 film are shown results when not provided.
  • the SiO 2 film when the SiO 2 film is not provided, the sound velocity decreases as the film thickness of the LiTaO 3 film, which is a piezoelectric film, increases. Therefore, it can be seen that the thickness of the piezoelectric film should be partially increased in order to create a low sound velocity region.
  • the thickness of the LiTaO 3 film is 0.1 [lambda], the film thickness of the SiO 2 film as compared with the case of 0.3Ramuda, the film thickness of the LiTaO 3 film is 0.3Ramuda,
  • the sound velocity is higher when the film thickness of the SiO 2 film is 0.1 ⁇ . That is, when the total film thickness of both is constant, the speed of sound increases as the film thickness of the LiTaO 3 film increases.
  • LiTaO 3 film thickness of the film is more than 0.05 [lambda], in the following range 0.2?, Reduced sound speed when the film thickness of the SiO 2 film is increased It turns out that there is a tendency to do. Therefore, when a SiO 2 film with a film thickness within such a range is selected, there is a range in which the sound velocity can be lowered when the total film thickness of both is constant and the film thickness of the LiTaO 3 film is reduced. I understand.
  • the thickness of the LiTaO 3 film can be increased to increase the sound velocity, or conversely, the thickness of the LiTaO 3 film can be reduced. High sound speed can be achieved.
  • the speed of sound in the first and second edge regions e1 and e2 is lowered as compared with the central region t, and the sound velocity region is defined as the low sound velocity region.
  • the speed of sound in the gap region g is higher than the speed of sound in the first and second edge regions e1 and e2.
  • the sound velocity of the portion where the first and second bus bars 5c and 5d are provided is lower than the gap region g.
  • at least one of the thickness Ht of the piezoelectric film 4 in the central region t and the thickness He of the piezoelectric film 4 in the first and second edge regions e1 and e2 is 1 ⁇ or less.
  • the speed of sound in the first and second edge regions e1 and e2 is lower than the speed of sound in the central region t, and the speed of sound in the gap region g is the speed of sound in the first and second edge regions e1 and e2. Higher than. Therefore, the elastic wave device 1 can suppress the ripple in the transverse mode like the elastic wave device described in Patent Document 1.
  • the elastic wave device 1 only the recesses 4a and 4b are provided in the piezoelectric film 4 in order to reduce the sound velocity of the first and second edge regions e1 and e2. Therefore, it is not necessary to change the shapes of the first and second electrode fingers 5a and 5b in the first and second edge regions e1 and e2. Further, it is not necessary to form a mass addition layer on the first and second electrode fingers 5a and 5b. Therefore, deterioration of the electromechanical coupling coefficient and deterioration of the Q characteristic due to such a change in the shape of the electrode finger and the lamination of the mass addition layer are unlikely to occur.
  • the structure in which the thickness of the piezoelectric film 4 in the first and second edge regions e1 and e2 is reduced is not particularly limited, but for example, the following manufacturing method can be adopted.
  • a LiTaO 3 film is formed on the support base material to be thicker than the thickness of the piezoelectric film 4. After that, the LiTaO 3 film is polished to be thinned to obtain the piezoelectric film 4. Next, the recesses 4a and 4b are formed by a laser or an appropriate excavation method. After that, the silicon oxide film as the intermediate layer 3 is formed so as to fill the recesses 4a and 4b of the piezoelectric film 4. Next, the support substrate 2 or the structure provided with the thin silicon oxide film on the support substrate 2 and the laminate of the piezoelectric film 4 and the intermediate layer 3 are laminated. After that, the supporting base material is peeled off, and the IDT electrode 5 and the reflectors 6 and 7 are provided.
  • the elastic wave device 1 can be easily obtained.
  • FIG. 4 shows the impedance-frequency characteristics of the examples and comparative examples of the elastic wave device according to the present invention.
  • the solid line in FIG. 4 shows the result of the example, and the broken line shows the result of the comparative example.
  • the thickness He of the piezoelectric film 4 in the first and second edge regions e1 and e2 and the thickness Ht of the piezoelectric film 4 in the central region t are the same.
  • the design parameters of the elastic wave device according to the present invention are as follows.
  • Support substrate 2 Silicon substrate Intermediate layer 3: Silicon oxide film, the thickness of the silicon oxide film in the central region t is 0.335 ⁇ , and the thickness of the silicon oxide film in the first and second edge regions e1 and e2 is 0.285 ⁇ .
  • Electrode finger pitch 1 ⁇ m
  • FIG. 5 is a side sectional view of the elastic wave device according to the second embodiment of the present invention. It should be pointed out that the side cross sections shown in FIGS. 5 and 6 to 9 and 11 to 14 described below show the cross sections at the same positions as those in FIG.
  • a protruding portion 4c is provided on the lower surface of the piezoelectric film 4 so as to form a relatively thick region.
  • the protrusion 4c is located directly below the central region t.
  • the protruding portion 4c may be provided.
  • the crossing width direction is parallel to the direction in which the first and second electrode fingers 5a and 5b extend.
  • the IDT electrode 5 is configured in the same manner as in the first embodiment.
  • the piezoelectric film 4 is made of a LiTaO 3 film, and the intermediate layer 3 is made of a silicon oxide film. The thickness of the intermediate layer 3 is the same as that of the first embodiment.
  • the thickness He of the piezoelectric film 4 in the first and second edge regions e1 and e2 is thinner than the thickness Ht of the piezoelectric film 4 in the central region t. Therefore, the first and second edge regions e1 and e2 can be defined as low sound velocity regions.
  • a low sound velocity film 22 as a low sound velocity layer is laminated between the support substrate 2 and the intermediate layer 3.
  • the support substrate 2 is made of a silicon substrate. Therefore, the confinement layer 23 is composed of the support substrate 2 as the hypersonic layer and the low sound velocity film 22.
  • the low sound velocity film 22 is a film made of a low sound velocity material having a relatively low sound velocity of the propagating bulk wave.
  • the support substrate 2 is made of a high sound velocity material, whereby the confinement layer 23 is formed by the low sound velocity film 22 and the support substrate 2. That is, since the hypersonic material is located on the side farther from the piezoelectric film 4 than the low sound velocity material, the elastic wave can be confined on the piezoelectric film 4 side.
  • the low sound velocity material and the high sound velocity material are not particularly limited as long as the relative sound velocity relationship is satisfied.
  • the low sound velocity material includes silicon oxide, glass, silicon nitride, tantalum oxide, a compound obtained by adding fluorine, carbon, boron, hydrogen, or a silanol group to silicon oxide, and the above material as a main component.
  • Various materials such as a medium to be used can be used.
  • High-frequency materials include aluminum oxide, silicon carbide, silicon nitride, silicon nitride, silicon, sapphire, lithium tantalate, lithium niobate, crystal, alumina, zirconia, cozylite, mulite, steatite, and forsterite.
  • Magnesia, DLC (diamond-like carbon) film or diamond, a medium containing the above material as a main component, a medium containing a mixture of the above materials as a main component, and the like can be used.
  • the intermediate layer 3 is made of a silicon oxide film, and in this case, a silicon oxide film may be used for the bass velocity film 22 as well.
  • FIG. 6 is a side sectional view of the elastic wave device according to the third embodiment of the present invention.
  • the elastic wave device 31 is the same as the elastic wave device 21 except that the support substrate 2 and the confinement layer 32 shown in FIG. 6 are provided in place of the confinement layer 23 in FIG.
  • the support substrate 2 is made of a silicon substrate.
  • the confinement layer 32 is laminated between the support substrate 2 and the intermediate layer 3. In this way, the confinement layer 32 may be provided independently of the support substrate 2.
  • the confinement layer 32 is composed of an acoustic Bragg reflector. That is, the low acoustic impedance layers 32a and 32c having a relatively low acoustic impedance and the high acoustic impedance layers 32b and 32d having a relatively high acoustic impedance are alternately laminated. In this way, if the high acoustic impedance layer has a structure in which the high acoustic impedance layer is laminated on the side farther from the piezoelectric film 4 than the low acoustic impedance layer, the elastic wave is reflected and the energy of the elastic wave is transmitted to the piezoelectric film 4 side. Can be effectively trapped.
  • an acoustic Bragg reflector may be used as the confinement layer 32 as described above.
  • the number of layers of the low acoustic impedance layer and the high acoustic impedance layer is not particularly limited.
  • FIG. 7 is a side sectional view of the elastic wave device according to the fourth embodiment of the present invention.
  • the elastic wave device 41 has the same configuration as the elastic wave device 21 except that a confinement layer 42 is provided between the support substrate 2 and the piezoelectric film 4.
  • the confinement layer 42 also has the function of the intermediate layer 3 shown in FIG.
  • the confinement layer 42 is made of silicon oxide.
  • the upper surface of the confinement layer 42 is in contact with the lower surface of the piezoelectric film 4.
  • the cavity 42a is provided in the confinement layer 42.
  • the cavity 42a is provided in the IDT electrode 5 in a region including the lower part of the portion where the above-mentioned intersection region C is located.
  • FIG. 8 is a side sectional view of the elastic wave device according to the fifth embodiment of the present invention.
  • protrusions 4d and 4e are provided on the lower surface of the piezoelectric film 4.
  • the thickness of the piezoelectric film 4 is increased in the first and second edge regions e1 and e2 to be low.
  • the speed of sound may be increased.
  • the elastic wave device 51 has the same other structure as the elastic wave device 1.
  • FIG. 9 is a side sectional view of the elastic wave device according to the sixth embodiment of the present invention.
  • the piezoelectric film 4 is provided with a recess.
  • the intermediate layer 3 is laminated on the lower surface of the piezoelectric film 4 so as to fill such a recess.
  • Ht of the piezoelectric film 4 in the central region t is made thinner than the thickness He of the piezoelectric film 4 in the first and second edge regions e1 and e2.
  • the elastic wave device 51 similarly to the elastic wave device 51, by making the thickness of the piezoelectric film 4 relatively thicker in the first and second edge regions e1 and e2 than in the central region t, the first and second edge regions are formed. The bass speed of e1 and e2 is reduced.
  • the elastic wave devices 21, 31, 41, 51, 61 also provide a low sound velocity region by partially differentizing the thickness of the piezoelectric film 4. Therefore, deterioration of the electromechanical coupling coefficient and deterioration of the Q characteristic are unlikely to occur.
  • FIG. 10 is a plan view of the elastic wave device according to the seventh embodiment of the present invention
  • FIG. 11 is a side sectional view thereof.
  • FIG. 11 shows a cross section of a portion along the XX line in FIG.
  • the IDT electrode 5 has a first dummy electrode 5e and a second dummy electrode 5f.
  • One end of the first dummy electrode 5e is connected to the first bus bar 5c, and the tip of the first dummy electrode 5e faces the tip of the second electrode finger 5b via a gap.
  • One end of the second dummy electrode 5f is connected to the second bus bar 5d.
  • the tip of the second dummy electrode 5f faces the tip of the first electrode finger 5a with a gap. This gap constitutes the gap region g.
  • the electrode structure is the same as that of the elastic wave device 1 of the first embodiment, except that the first and second dummy electrodes 5e and 5f are provided.
  • He ⁇ Ht is set as in the first embodiment. That is, the thickness He in the first and second edge regions e1 and e2 of the piezoelectric film 4 is thinner than the thickness Ht of the piezoelectric film 4 in the central region t. Therefore, the speed of sound in the first and second edge regions e1 and e2 is lower than the speed of sound in the central region t.
  • the thickness Hg of the piezoelectric film 4 in the gap region g is Hg> He. Therefore, the speed of sound in the gap region g is higher than the speed of sound in the first and second edge regions e1 and e2.
  • the regions where the first and second dummy electrodes 5e and 5f are provided are designated as dummy regions d1 and d2. More specifically, when viewed in the elastic wave propagation direction, the regions overlapping the first and second dummy electrode fingers 5e and 5f are the dummy regions d1 and d2.
  • Hd be the thickness of the piezoelectric film 4 in the dummy regions d1 and d2.
  • Hd ⁇ Hg Hb.
  • the support substrate 2 and the intermediate layer 3 are configured in the same manner as the elastic wave device 1.
  • the IDT electrode 5 may have the first and second dummy electrodes 5e and 5f.
  • FIG. 12 is a side sectional view of the elastic wave device according to the eighth embodiment of the present invention.
  • the elastic wave device 81 is the same as the elastic wave device 71, except that the portions of the piezoelectric film 4 having different thicknesses are designed as follows.
  • the first and second edge regions e1 and e2 are compared with the speed of sound in the intersection region C and the gap region g.
  • the speed of sound can be lowered. Therefore, the ripple due to the transverse mode can be effectively suppressed.
  • Hd ⁇ Hb since Hd ⁇ Hb, the ripple due to the transverse mode can be effectively suppressed.
  • FIG. 13 is a side sectional view of the elastic wave device according to the ninth embodiment of the present invention.
  • an intermediate layer 3 having a flat upper surface is laminated on the support substrate 2.
  • a recess 4g is provided on the bottom surface of the piezoelectric film 4.
  • the laminate of the support substrate 2 and the intermediate layer 3 may be laminated on the lower surface of the piezoelectric film 4.
  • FIG. 14 is a side sectional view of the elastic wave device according to the tenth embodiment of the present invention.
  • the elastic wave device 101 is filled with a different material layer 102 made of a material different from the piezoelectric film 4 in the recess 4g, that is, in the void.
  • Other configurations are the same as those of the elastic wave device 91.
  • a silicon oxide film as the intermediate layer 3 may be formed and bonded to the support substrate 2.
  • the material of the dissimilar material layer 102 is preferably a material having no piezoelectricity. Thereby, it is easy to lower the sound velocity of the first and second edge regions e1 and e2 to be lower than the sound velocity of the central region t as in the case of the elastic wave device 91, as in the case of the elastic wave device 91. It becomes.
  • the material constituting the dissimilar material layer 102 is not particularly limited as long as it is a material different from the piezoelectric film 4, but a material having no piezoelectricity is preferable, and such a material includes silicon oxide, silicon nitride, and alumina. Insulating materials such as silicon and semiconductor materials such as silicon can be mentioned.

Abstract

電気機械結合係数の劣化やQ特性の劣化が生じ難い、弾性波装置を提供する。 支持基板2上に直接又は間接に積層されている圧電膜4と、圧電膜4上に設けられたIDT電極5とを備え、IDT電極5は第1の電極指5aと第2の電極指5bとが弾性波伝搬方向に見たときに重なり合っている交差領域Cを有し、交差領域Cが第1,第2の電極指5a,5bが延びる方向中央に位置している中央領域tと、中央領域tの外側に配置された第1,第2のエッジ領域e1,e2とを有し、第1,第2のエッジ領域e1,e2における音速が、中央領域tにおける音速よりも低く、圧電膜4において、中央領域tにおける圧電膜4の厚みHtと、第1,第2のエッジ領域e1,e2における圧電膜4の厚みHeとが異なっており、IDT電極5の電極指ピッチで定まる波長をλとしたときに、Ht及びHeの少なくとも一方が1λ以下である、弾性波装置1。

Description

弾性波装置
 本発明は、IDT電極の交差領域において、音速が相対的に低いエッジ領域が設けられている、弾性波装置に関する。
 従来、横モードリップルを抑制するために、一部の領域の音速を低くした弾性波装置が知られている。例えば下記の特許文献1に記載の弾性波装置では、弾性波伝搬方向に見たときに、隣り合う電極指が重なっている領域を交差領域としたときに、交差領域内に低音速領域が設けられている。すなわち、交差領域の中央の領域の両側に、第1,第2のエッジ領域が設けられている。この第1,第2のエッジ領域では、電極指の幅が大きくされていたり、電極指の質量付加層を積層することにより、低音速化が図られている。
特表2013-518455号公報
 特許文献1に記載のような弾性波装置では、電極指の幅が部分的に大きくされたり、質量付加層を付け加える必要があるため、電気機械結合係数やQ特性が劣化するおそれがあった。
 本発明の目的は、電気機械結合係数の劣化やQ特性の劣化が生じ難い、弾性波装置を提供することにある。
 本発明に係る弾性波装置は、支持基板と、前記支持基板上に直接又は間接に積層されている圧電膜と、前記圧電膜上に設けられたIDT電極とを備え、前記IDT電極は、互いに間挿しあう第1の電極指と第2の電極指とを有し、弾性波伝搬方向に見たときに、前記第1の電極指と前記第2の電極指とが重なり合っている領域を交差領域とした場合、前記交差領域が、前記第1,第2の電極指が延びる方向の中央に位置している中央領域と、前記中央領域の前記第1,第2の電極指が延びる方向外側に配置された第1,第2のエッジ領域とを有し、前記第1,第2のエッジ領域における弾性波の音速が、前記中央領域における弾性波の音速よりも低く、前記圧電膜において、前記中央領域における前記圧電膜の厚みHtと、前記第1,第2のエッジ領域における前記圧電膜の厚みHeとが異なっており、前記IDT電極の電極指ピッチで定まる波長をλとしたときに、前記中央領域における前記圧電膜の厚みHt及び前記第1,第2のエッジ領域における前記圧電膜の厚みHeの少なくとも一方が1λ以下である。
 本発明によれば、電気機械結合係数やQ特性の劣化が生じ難い弾性波装置を提供することができる。
図1は、本発明の第1の実施形態に係る弾性波装置の側面断面図である。 図2は、本発明の第1の実施形態に係る弾性波装置の平面図である。 図3は、LiTaO膜厚と、SiOの規格化膜厚と、音速との関係を示す図である。 図4は、本発明に係る弾性波装置の実施例及び比較例のインピーダンス-周波数特性を示す図である。 図5は、本発明の第2の実施形態に係る弾性波装置の側面断面図である。 図6は、本発明の第3の実施形態に係る弾性波装置の側面断面図である。 図7は、本発明の第4の実施形態に係る弾性波装置の側面断面図である。 図8は、本発明の第5の実施形態に係る弾性波装置の側面断面図である。 図9は、本発明の第6の実施形態に係る弾性波装置の側面断面図である。 図10は、本発明の第7の実施形態に係る弾性波装置の平面図である。 図11は、本発明の第7の実施形態に係る弾性波装置の側面断面図である。 図12は、本発明の第8の実施形態に係る弾性波装置の側面断面図である。 図13は、本発明の第9の実施形態に係る弾性波装置の側面断面図である。 図14は、本発明の第10の実施形態に係る弾性波装置の側面断面図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 図1は、本発明の第1の実施形態に係る弾性波装置の側面断面図であり、図2はその平面図である。なお、図1は、図2中のX-X線に沿う部分の断面図である。
 弾性波装置1は、支持基板2を有する。支持基板2上に中間層3を介して圧電膜4が積層されている。圧電膜4上にIDT電極5及び反射器6,7が設けられている。それによって、1ポート型弾性波共振子が構成されている。
 圧電膜4は、タンタル酸リチウム(LiTaO)からなる。もっとも、圧電膜4は、ニオブ酸リチウム(LiNbO)等の他の圧電体からなるものであってもよい。圧電膜4は支持基板2上に中間層3を介して間接的に積層されているが、圧電膜4は、支持基板2に直接積層されていてもよい。弾性波装置1では、圧電膜4に他の部分と厚みが異なる部分を設けることにより、音速が低められている。以下、これをより詳細に説明する。
 図2に示すように、IDT電極5は、複数本の第1の電極指5aと、複数本の第2の電極指5bとを有する。複数本の第1の電極指5aと、複数本の第2の電極指5bが互いに間挿しあっている。複数本の第1の電極指5aの一端は、第1のバスバー5cに接続されている。複数本の第1の電極指5aの他端が第2のバスバー5d側に延ばされている。複数本の第2の電極指5bの一端は、第2のバスバー5dに接続されている。複数本の第2の電極指5bの他端が第1のバスバー5c側に延ばされている。
 弾性波伝搬方向は、第1,第2の電極指5a,5bと直交する方向である。弾性波伝搬方向に見たときに、第1の電極指5aと第2の電極指5bとが重なり合っている領域が交差領域Cである。すなわち、弾性波が励振される領域である。
 交差領域Cは、第1,第2の電極指5a,5bが延びる方向中央に位置している中央領域tと、中央領域tの外側に連なっている第1,第2のエッジ領域e1,e2とを有する。
 他方、第1の電極指5aの先端と第2のバスバー5dとの間の部分が、図2に示すギャップ領域gである。第2の電極指5bの先端と第1のバスバー5cとの間の部分もギャップ領域gとなる。
 図1に示すように、中央領域tにおける圧電膜4の厚みをHtとし、第1,第2のエッジ領域e1,e2における圧電膜4の厚みをHeとする。なお、第1のエッジ領域e1における圧電膜4の厚みと、第2のエッジ領域e2における圧電膜4の厚みは等しくされている。
 弾性波装置1では、He<Htとされている。また、ギャップ領域gにおける圧電膜4の厚みをHgとし、第1,第2のバスバー5c,5dが設けられている部分の下方の圧電膜4の厚みをHbとする。本実施形態では、Ht=Hg=Hb>Heとされている。
 支持基板2は、シリコン基板からなる。もっとも、支持基板2の材料は、他の誘電体や半導体を用いてもよく、特に限定されない。例えば、水晶やサファイアなどを用いてもよい。
 中間層3は、低音速膜であることが好ましい。低音速膜とは、伝搬するバルク波の音速が、圧電膜4を伝搬するバルク波の音速よりも低い膜をいう。低音速膜の材料としては、酸化ケイ素、フッ素ドープド酸化ケイ素、酸窒化ケイ素、カーボンドープドオキサイドなどが挙げられる。本実施形態では、中間層3は、酸化ケイ素(SiO)膜からなる。
 圧電膜4では、第1,第2のエッジ領域e1,e2における圧電膜4の厚みを薄くするために、圧電膜4の下面に凹部4b,4aが設けられている。このような凹部4a,4bをうずめるように、酸化ケイ素膜からなる中間層3が圧電膜4の下面に積層されている。
 IDT電極5及び反射器6,7はAl,Cu,Pt,W,Mo等の金属またはこれらの金属を主体とする合金からなる。金属材料は特に限定されない。また、IDT電極5及び反射器6,7は、複数の金属膜を積層してなる積層金属膜であってもよい。
 弾性波装置1では、第1,第2のエッジ領域e1,e2における、圧電膜4の厚みHeが、中央領域tにおける圧電膜4の厚みHtよりも薄くされているため、第1,第2のエッジ領域e1,e2における音速を低めることができる。これを、図3を参照して説明する。
 図3は、LiTaO膜厚と、SiOの規格化膜厚と、音速との関係を示す図である。ここでは、支持基板2上にSiO膜及びLiTaO膜がこの順序で積層されている。なお、IDT電極の電極指ピッチで定まる波長をλとする。図3におけるLiTaO膜の膜厚は、λで規格化した値である。同様に、図3では、SiO膜の膜厚が、波長規格化膜厚で、0.1、0.2、0.3、0.4、0.5、0.8、1.0、1.5及び2.0の場合と、SiO膜の波長規格化膜厚が0すなわちSiO膜が設けられていない場合の結果が示されている。
 図3から明らかなように、SiO膜が設けられていない場合には、圧電膜であるLiTaO膜の膜厚が増加するにつれて、音速が低くなっている。したがって、低音速領域を作るには、圧電膜の厚みを部分的に厚くすればよいことがわかる。
 これに対して、SiO膜の膜厚が、0.3λ以上の場合には、LiTaO膜の膜厚を厚くすれば音速が高くなり、薄くすれば音速が低くなることがわかる。
 また、図3から明らかなように、例えば、LiTaO膜の膜厚が0.1λ、SiO膜の膜厚が0.3λの場合に比べて、LiTaO膜の膜厚が0.3λ、SiO膜の膜厚が0.1λの場合のほうが音速が高くなる。すなわち、両者の合計膜厚を一定とした場合、LiTaO膜の膜厚が増加するにつれて、音速が高くなっている。これに対して、SiO膜の膜厚が0.1λの場合、LiTaO膜の膜厚が0.05λ以上、0.2λ以下の範囲では、SiO膜の膜厚が大きくなると音速が低下する傾向があることがわかる。したがって、このような範囲内の膜厚のSiO膜を選択した場合、両者の膜厚合計を一定とし、かつLiTaO膜の膜厚を薄くした場合に、音速を低くし得る範囲があることがわかる。すなわち、LiTaO膜と、SiO膜の膜厚とを選択することにより、LiTaO膜の膜厚を厚くすることで高音速化を図ったり、逆にLiTaO膜の膜厚を薄くして高音速化を図ることができる。
 図1に示すように、弾性波装置1では、He<Htとされている。したがって、中央領域tに比べて、第1,第2のエッジ領域e1,e2における音速が低められて、低音速領域とされている。なお、弾性波装置1では、ギャップ領域gの音速は、第1,第2のエッジ領域e1,e2における音速よりも高くされている。第1,第2のバスバー5c,5dが設けられている部分の音速は、ギャップ領域gよりも低くなっている。本実施形態では、中央領域tにおける圧電膜4の厚みHt及び第1,第2のエッジ領域e1,e2における圧電膜4の厚みHeの少なくとも一方が1λ以下である。
 上記のように、第1,第2のエッジ領域e1,e2の音速が中央領域tにおける音速よりも低められており、ギャップ領域gにおける音速が第1,第2のエッジ領域e1,e2における音速よりも高い。したがって、弾性波装置1では、特許文献1に記載の弾性波装置のように、横モードのリップルを抑制することができる。
 上述したように、弾性波装置1では、第1,第2のエッジ領域e1,e2の音速を低めるために、圧電膜4に凹部4a,4bを設けているだけである。したがって、第1,第2のエッジ領域e1,e2において第1,第2の電極指5a,5bの形状を変更する必要はない。また、第1,第2の電極指5a,5bに質量付加層を形成する必要もない。そのため、このような電極指の形状の変更や質量付加層の積層による、電気機械結合係数の劣化やQ特性の劣化が生じ難い。
 なお、第1,第2のエッジ領域e1,e2における圧電膜4の厚みを薄くした構造を得るには、特に限定されないが、例えば以下の製造方法を採用することができる。
 支持基材上にLiTaO膜を圧電膜4の厚みよりも厚く形成する。しかる後、LiTaO膜を研磨して薄くし圧電膜4を得る。次に、レーザーや適宜の掘削方法により凹部4a,4bを形成する。しかる後、圧電膜4の凹部4a,4bに充填するように、中間層3としての酸化ケイ素膜を製膜する。次に、支持基板2と、または支持基板2上に薄い酸化ケイ素膜が設けられた構造と、上記圧電膜4及び中間層3の積層体とを積層する。しかる後、支持基材を剥離し、IDT電極5及び反射器6,7を設ける。
 上記のようにして、弾性波装置1を容易に得ることができる。
 本発明に係る弾性波装置の実施例及び比較例のインピーダンス-周波数特性を図4に示す。図4の実線が実施例の結果を、破線が比較例の結果を示す。比較例の弾性波装置においては、第1,第2のエッジ領域e1,e2における圧電膜4の厚みHe及び中央領域tにおける圧電膜4の厚みHtは同じである。なお、上記本発明に係る弾性波装置の設計パラメーターは以下の通りとした。
 支持基板2:シリコン基板
 中間層3:酸化ケイ素膜、中央領域tにおける酸化ケイ素膜の厚みは0.335λ、第1,第2のエッジ領域e1,e2における酸化ケイ素膜の厚みは0.285λ
 圧電膜4:50°YカットX伝搬のLiTaO単結晶膜
 厚みHt=Hg=Hb=0.3λ、厚みHe=0.35λ
 IDT電極:電極指の対数=100対、電極指ピッチで定まる波長λ=2μm、電極膜の構成=圧電膜4側から、Ti膜及びAlCu膜の積層金属膜、Ti膜の厚み=12nm、AlCu膜の厚み=120nm
 電極指ピッチ=1μm
 圧電膜4の厚みHt=600nm=0.3λ
 酸化ケイ素膜の厚み:673nm=0.335λ
 ギャップ領域gの第1,第2の電極指5a,5bの延びる方向に沿う寸法:2λ
 図4から明らかなように、比較例の弾性波装置では、エッジ領域の音速が低められていないため、共振周波数と反共振周波数との間の帯域内及び反共振周波数より高い領域において、矢印Dで示す多数の横モードによるとみられるリップルが現れている。これに対して、実施例では、上記リップルが大幅に低減されていることがわかる。
 図5は、本発明の第2の実施形態に係る弾性波装置の側面断面図である。なお、図5及び以下に述べる図6~図9、図11~図14で示す側面断面は、図1と同じ位置の断面を示していることを指摘しておく。
 図5に示す弾性波装置21では、圧電膜4の下面に相対的に厚みが厚い領域を形成するよう突出部4cが設けられている。この突出部4cは、中央領域tの直下に位置している。
 このように、圧電膜4において、残りの部分と交差幅方向において厚みが異なる領域を設けるには、突出部4cを設けてもよい。なお、交差幅方向は、第1,第2の電極指5a,5bが延びる方向と平行である。本実施形態においても、IDT電極5は第1の実施形態と同様に構成されている。そして、圧電膜4はLiTaO膜からなり、中間層3は酸化ケイ素膜からなる。中間層3の厚みは第1の実施形態と同様である。本実施形態においても、第1,第2のエッジ領域e1,e2における圧電膜4の厚みHeが、中央領域tにおける圧電膜4の厚みHtよりも薄くされている。したがって、第1,第2のエッジ領域e1,e2を低音速の領域とすることができる。なお、He=Hg=Hbである。この場合、ギャップ領域gにおける音速は、第1,第2のエッジ領域e1,e2における音速よりも高くなる。したがって、横モードリップルを効果的に抑制することができる。
 さらに、弾性波装置21では、支持基板2と中間層3との間に低音速層としての低音速膜22が積層されている。支持基板2は、シリコン基板からなる。したがって、高音速層としての支持基板2と、低音速膜22とにより、閉じ込め層23が構成されている。ここで、低音速膜22とは、伝搬するバルク波の音速が相対的に低い低音速材料からなる膜である。支持基板2は、高音速材料からなり、それによって、低音速膜22と支持基板2とにより閉じ込め層23が構成される。すなわち、高音速材料が低音速材料よりも圧電膜4から遠い側に位置しているため、弾性波を圧電膜4側に閉じ込めることができる。
 上記低音速材料及び高音速材料としては、相対的な音速関係を満たす限り特に限定されない。もっとも、好ましくは、低音速材料としては、酸化ケイ素、ガラス、酸窒化ケイ素、酸化タンタル、また、酸化ケイ素にフッ素や炭素やホウ素、水素、あるいはシラノール基を加えた化合物、上記材料を主成分とする媒質等の様々な材料を用いることができる。
 また、高音速材料としては、酸化アルミニウム、炭化ケイ素、窒化ケイ素、酸窒化ケイ素、シリコン、サファイア、タンタル酸リチウム、ニオブ酸リチウム、水晶、アルミナ、ジルコニア、コ-ジライト、ムライト、ステアタイト、フォルステライト、マグネシア、DLC(ダイヤモンドライクカーボン)膜またはダイヤモンド、上記材料を主成分とする媒質、上記材料の混合物を主成分とする媒質等の様々な材料を用いることができる。
 中間層3は、酸化ケイ素膜からなり、この場合、低音速膜22についても酸化ケイ素膜を用いてもよい。
 図6は本発明の第3の実施形態に係る弾性波装置の側面断面図である。弾性波装置31では、図5の閉じ込め層23に代えて、図6に示す支持基板2及び閉じ込め層32が設けられていることを除いては、弾性波装置21と同様である。
 支持基板2は、シリコン基板からなる。閉じ込め層32は、支持基板2と中間層3との間に積層されている。このように、支持基板2と独立に閉じ込め層32を設けてもよい。
 さらに閉じ込め層32は、音響ブラッグ反射器からなる。すなわち、音響インピーダンスが相対的に低い低音響インピーダンス層32a,32cと、音響インピーダンスが相対的に高い高音響インピーダンス層32b,32dとが交互に積層されている。このように、高音響インピーダンス層が低音響インピーダンス層よりも圧電膜4に対して遠い側に積層されている構造を有すれば、弾性波を反射し、圧電膜4側に弾性波のエネルギーを効果的に閉じ込めることができる。
 本発明においては、上記のように閉じ込め層32として音響ブラッグ反射器を用いてもよい。この場合、低音響インピーダンス層及び高音響インピーダンス層の積層数は特に限定されない。
 図7は、本発明の第4の実施形態に係る弾性波装置の側面断面図である。弾性波装置41では、支持基板2と圧電膜4との間に閉じ込め層42が設けられていることを除いては、弾性波装置21と同様に構成されている。ここでは、閉じ込め層42は、図5に示した中間層3の機能をも有する。
 閉じ込め層42は、酸化ケイ素からなる。閉じ込め層42の上面は、圧電膜4の下面に接触している。もっとも、閉じ込め層42内には、キャビティ42aが設けられている。キャビティ42aは、IDT電極5において、前述した交差領域Cが位置している部分の下方を含む領域に設けられている。それによって、弾性波の支持基板2側への漏洩を抑制することができ、弾性波のエネルギーを圧電膜4内に効果的に閉じ込めることができる。このように、本発明においては、キャビティ42aを有する閉じ込め層42を用いてもよい。
 図8は、本発明の第5の実施形態に係る弾性波装置の側面断面図である。弾性波装置51では、圧電膜4の下面に突出部4d,4eが設けられている。突出部4d,4eは、第2,第1のエッジ領域e2,e1に設けられている。すなわち、弾性波装置51では、He>Ht=Hg=Hbとされている。したがって、圧電膜4の厚みが相対的に厚い第1,第2のエッジ領域e1,e2における音速が、中央領域tにおける音速よりも低められている。このように、酸化ケイ素膜の膜厚及びLiTaO膜の膜厚と音速との関係を選択することにより、圧電膜4の厚みを第1,第2のエッジ領域e1,e2において厚くして低音速化を図ってもよい。
 弾性波装置51は、その他の構造は弾性波装置1と同様である。
 図9は、本発明の第6の実施形態に係る弾性波装置の側面断面図である。弾性波装置61では、圧電膜4に凹部が設けられている。このような凹部をうずめるように、中間層3が圧電膜4の下面に積層されている。それによって、中央領域tにおける圧電膜4の厚みHtが、第1,第2のエッジ領域e1,e2における圧電膜4の厚みHeよりも薄くされている。そして、Ht<He=Hg=Hbとされている。したがって、弾性波装置51と同様に、圧電膜4の厚みを中央領域tに比べて第1,第2のエッジ領域e1,e2において相対的に厚くすることにより、第1,第2のエッジ領域e1,e2の低音速化が図られている。
 上記弾性波装置21,31,41,51,61においても、弾性波装置1と同様に、圧電膜4の厚みを部分的に異ならせることにより低音速領域を設けている。したがって、電気機械結合係数の劣化やQ特性の劣化が生じ難い。
 図10は、本発明の第7の実施形態に係る弾性波装置の平面図であり、図11はその側面断面図である。図11は、図10中のX-X線に沿う部分の断面を示す。
 弾性波装置71では、IDT電極5が、第1のダミー電極5e及び第2のダミー電極5fを有する。第1のダミー電極5eは、第1のバスバー5cに一端が接続されており、先端がギャップを介して第2の電極指5bの先端と対向している。第2のダミー電極5fは、一端が第2のバスバー5dに接続されている。第2のダミー電極5fの先端は、第1の電極指5aの先端とギャップを隔てて対向している。このギャップがギャップ領域gを構成している。第1,第2のダミー電極5e,5fが設けられていることを除いて、電極構造は第1の実施形態の弾性波装置1と同様とされている。
 また、図11に示すように、弾性波装置71では、第1の実施形態と同様に、He<Htとされている。すなわち、圧電膜4の第1,第2のエッジ領域e1,e2における厚みHeが、中央領域tにおける圧電膜4の厚みHtよりも薄い。したがって、第1,第2のエッジ領域e1,e2の音速は、中央領域tの音速よりも低められている。
 他方、ギャップ領域gの圧電膜4の厚みHgは、Hg>Heである。したがって、ギャップ領域gにおける音速は、第1,第2のエッジ領域e1,e2における音速よりも高い。
 なお、第1,第2のダミー電極5e,5fが設けられている領域をダミー領域d1,d2とする。より具体的には、弾性波伝搬方向に見たときに、第1,第2のダミー電極指5e,5fと重なっている領域がダミー領域d1,d2である。このダミー領域d1,d2における圧電膜4の厚みをHdとする。弾性波装置71では、Hd<Hg=Hbとされている。このように、Hd<Hbとすることにより、横モードのリップルによる影響をより効果的に抑制することができる。もっとも、Hd<Hbとする必要はない。
 弾性波装置71において、支持基板2及び中間層3は弾性波装置1と同様に構成されている。
 弾性波装置71のように、本発明においては、IDT電極5は第1,第2のダミー電極5e,5fを有していてもよい。
 図12は、本発明の第8の実施形態に係る弾性波装置の側面断面図である。弾性波装置81では、圧電膜4の厚みが異なる部分が以下のように設計されていることを除いては、弾性波装置71と同様である。
 He<Ht=Hd<Hg<Hb
 本実施形態においても、He<Htであり、ギャップ領域gでは電極材料は付与されていないため、交差領域C及びギャップ領域gにおける音速に比べて、第1,第2のエッジ領域e1,e2の音速を低めることができる。したがって、横モードによるリップルを効果的に抑圧することができる。さらに、Hd<Hbであるため、それによっても、横モードによるリップルを効果的に抑圧することができる。
 図13は、本発明の第9の実施形態に係る弾性波装置の側面断面図である。弾性波装置91では、支持基板2上に上面が平坦な中間層3が積層されている。そして、圧電膜4の底面に凹部4gが設けられている。凹部4gは中央領域tの下方に位置している。すなわち、Ht<He=Hg=Hbとされている。このように、凹部4gを設けることにより、Ht<Heとされている。圧電膜4の厚みが相対的に薄い部分と、中間層3との間に空隙が設けられている。弾性波装置91は、その他の構造は、図8に示した弾性波装置51と同様とされている。ここでも、He>Htとされているため、弾性波装置51と同様に、第1,第2のエッジ領域e1,e2における音速を低めることができる。
 なお、製造に際しては、凹部4gを形成した後に、圧電膜4の下面に支持基板2及び中間層3の積層体を積層すればよい。
 図14は、本発明の第10の実施形態に係る弾性波装置の側面断面図である。弾性波装置101は、凹部4g内に、すなわち空隙内に、圧電膜4とは異なる材料からなる、異種材料層102が充填されている。その他の構成は弾性波装置91と同様である。凹部4g内に異種材料層102を充填した後に中間層3としての酸化ケイ素膜を製膜し、支持基板2と貼り合わせてもよい。
 異種材料層102の材料は、圧電性を有しない材料であることが好ましい。それによって、弾性波装置91の場合と同様にして、第1,第2のエッジ領域e1,e2の音速を、中央領域tの音速よりも弾性波装置91の場合と同様にして低めることが容易となる。
 上記異種材料層102を構成する材料としては、圧電膜4と異なる材料であれば特に限定されないが、圧電性を有しない材料が好ましく、このような材料としては、酸化ケイ素、酸窒化ケイ素、アルミナ等の絶縁性材料や、シリコン等の半導体材料を挙げることができる。
 弾性波装置91,101においても、第1の実施形態と同様に電気機械結合係数の劣化やQ特性の劣化が生じ難い。
 1,21,31,41,51,61,71,81,91,101…弾性波装置
 2…支持基板
 3…中間層
 4…圧電膜
 4a,4b,4g…凹部
 4c,4d,4e…突出部
 5…IDT電極
 5a,5b…第1,第2の電極指
 5c,5d…第1,第2のバスバー
 5e,5f…第1,第2のダミー電極
 6,7…反射器
 22…低音速膜
 23,32,42…閉じ込め層
 32a,32c…低音響インピーダンス層
 32b,32d…高音響インピーダンス層
 42a…キャビティ
 102…異種材料層

Claims (16)

  1.  支持基板と、
     前記支持基板上に直接又は間接に積層されている圧電膜と、
     前記圧電膜上に設けられたIDT電極とを備え、
     前記IDT電極は、互いに間挿しあう第1の電極指と第2の電極指とを有し、
     弾性波伝搬方向に見たときに、前記第1の電極指と前記第2の電極指とが重なり合っている領域を交差領域とした場合、前記交差領域が、前記第1,第2の電極指が延びる方向の中央に位置している中央領域と、前記中央領域の前記第1,第2の電極指が延びる方向外側に配置された第1,第2のエッジ領域とを有し、前記第1,第2のエッジ領域における弾性波の音速が、前記中央領域における弾性波の音速よりも低く、
     前記圧電膜において、前記中央領域における前記圧電膜の厚みHtと、前記第1,第2のエッジ領域における前記圧電膜の厚みHeとが異なっており、
     前記IDT電極の電極指ピッチで定まる波長をλとしたときに、前記中央領域における前記圧電膜の厚みHt及び前記第1,第2のエッジ領域における前記圧電膜の厚みHeの少なくとも一方が1λ以下である、弾性波装置。
  2.  前記支持基板と、前記圧電膜との間に積層された中間層をさらに備え、前記圧電膜が前記支持基板に間接的に積層されている、請求項1に記載の弾性波装置。
  3.  前記中間層が、酸化ケイ素膜である、請求項2に記載の弾性波装置。
  4.  前記支持基板と、前記圧電膜との間に積層されており、前記圧電膜に弾性波のエネルギーを閉じ込めるための閉じ込め層をさらに備える、請求項1~3のいずれか1項に記載の弾性波装置。
  5.  前記中間層と、前記支持基板との間に積層されており、前記圧電膜に弾性波のエネルギーを閉じ込めるための閉じ込め層が配置されている、請求項2に記載の弾性波装置。
  6.  前記IDT電極が、第1,第2のバスバーを有し、前記第1の電極指が前記第1のバスバーに接続されており、前記第2の電極指が前記第2のバスバーに接続されており、前記第1のバスバーと前記第2の電極指の先端との間及び前記第2のバスバーと前記第1の電極指の先端との間がそれぞれギャップ領域とされており、前記ギャップ領域における前記圧電膜の厚みHgが、前記第1,第2のエッジ領域における前記圧電膜の厚みHeと等しくされている、請求項1~5のいずれか1項に記載の弾性波装置。
  7.  前記第1,第2のバスバーが設けられている部分における前記圧電膜の厚みHbが、前記第1,第2のエッジ領域における前記圧電膜の厚みHeに等しい、請求項6に記載の弾性波装置。
  8.  前記IDT電極が、第1,第2のバスバーを有し、前記第1の電極指が前記第1のバスバーに接続されており、前記第2の電極指が前記第2のバスバーに接続されており、前記第1のバスバーと前記第2の電極指の先端との間及び前記第2のバスバーと前記第1の電極指の先端との間がそれぞれギャップ領域とされており、前記ギャップ領域における前記圧電膜の厚みHgが、前記第1,第2のエッジ領域における前記圧電膜の厚みHe及び前記中央領域における前記圧電膜の厚みHtと異なっている、請求項1~5のいずれか1項に記載の弾性波装置。
  9.  前記IDT電極が、第1,第2のバスバーを有し、前記第1の電極指が前記第1のバスバーに接続されており、前記第2の電極指が前記第2のバスバーに接続されており、前記第1のバスバーと前記第2の電極指の先端との間及び前記第2のバスバーと前記第1の電極指の先端との間がそれぞれギャップ領域とされており、前記第1,第2のバスバーが設けられている部分における前記圧電膜の厚みHbが、前記第1,第2のエッジ領域における前記圧電膜の厚みHe及び前記中央領域における前記圧電膜の厚みHtと異なっている、請求項1~5のいずれか1項に記載の弾性波装置。
  10.  前記中間層の上面が前記圧電膜の前記中間層側の底面に接触しており、前記圧電膜の厚みが相対的に薄い部分と、前記中間層との間に空隙が設けられている、請求項2に記載の弾性波装置。
  11.  前記空隙に、前記圧電膜とは異なる材料が充填されている、請求項10に記載の弾性波装置。
  12.  前記圧電膜がタンタル酸リチウム又はニオブ酸リチウムからなる、請求項1~11のいずれか1項に記載の弾性波装置。
  13.  前記閉じ込め層が、前記圧電膜を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高い高音速材料からなる高音速層を有する、請求項4または5に記載の弾性波装置。
  14.  前記閉じ込め層が、前記圧電膜を伝搬するバルク波の音速よりも伝搬するバルク波の音速が低い低音速材料からなる低音速層を有し、前記低音速層が、前記高音速層よりも前記圧電膜側に配置されている、請求項13に記載の弾性波装置。
  15.  前記閉じ込め層が、音響インピーダンスが相対的に低い低音響インピーダンス層と、音響インピーダンスが相対的に高い高音響インピーダンス層とを有する音響ブラッグ反射器である、請求項4または5に記載の弾性波装置。
  16.  前記閉じ込め層において、弾性波を前記圧電膜に閉じ込めるためのキャビティが設けられている、請求項4または5に記載の弾性波装置。
PCT/JP2020/016115 2019-04-12 2020-04-10 弾性波装置 WO2020209359A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021513714A JP7176622B2 (ja) 2019-04-12 2020-04-10 弾性波装置
CN202080027974.2A CN113785489B (zh) 2019-04-12 2020-04-10 弹性波装置
US17/492,753 US20220029601A1 (en) 2019-04-12 2021-10-04 Acoustic wave device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-076446 2019-04-12
JP2019076446 2019-04-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/492,753 Continuation US20220029601A1 (en) 2019-04-12 2021-10-04 Acoustic wave device

Publications (1)

Publication Number Publication Date
WO2020209359A1 true WO2020209359A1 (ja) 2020-10-15

Family

ID=72751831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016115 WO2020209359A1 (ja) 2019-04-12 2020-04-10 弾性波装置

Country Status (4)

Country Link
US (1) US20220029601A1 (ja)
JP (1) JP7176622B2 (ja)
CN (1) CN113785489B (ja)
WO (1) WO2020209359A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022103405A1 (en) * 2020-11-16 2022-05-19 Qorvo Us, Inc. Piezoelectric layer arrangements in acoustic wave devices and related methods
WO2022131237A1 (ja) * 2020-12-18 2022-06-23 株式会社村田製作所 弾性波装置及びラダー型フィルタ
WO2022153948A1 (ja) * 2021-01-13 2022-07-21 株式会社村田製作所 弾性波装置
WO2022207266A1 (en) * 2021-03-29 2022-10-06 RF360 Europe GmbH Site-selective piezoelectric-layer trimming
WO2023013742A1 (ja) * 2021-08-04 2023-02-09 株式会社村田製作所 弾性波装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115642895A (zh) * 2022-11-10 2023-01-24 锐石创芯(重庆)科技有限公司 声表面波器件、滤波器及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013544041A (ja) * 2011-03-25 2013-12-09 パナソニック株式会社 高次横モード波を抑制した弾性波デバイス
WO2017086004A1 (ja) * 2015-11-17 2017-05-26 株式会社村田製作所 弾性波装置及びその製造方法
JP2017224890A (ja) * 2016-06-13 2017-12-21 株式会社村田製作所 弾性波装置
WO2018131454A1 (ja) * 2017-01-13 2018-07-19 株式会社村田製作所 弾性波装置
WO2018163860A1 (ja) * 2017-03-06 2018-09-13 株式会社村田製作所 弾性波装置、高周波フロントエンド回路、通信装置及び弾性波装置の製造方法
WO2018198654A1 (ja) * 2017-04-26 2018-11-01 株式会社村田製作所 弾性波装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101534654B1 (ko) * 2010-12-24 2015-07-07 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치 및 그 제조 방법
WO2015098756A1 (ja) * 2013-12-26 2015-07-02 株式会社村田製作所 弾性波装置及びフィルタ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013544041A (ja) * 2011-03-25 2013-12-09 パナソニック株式会社 高次横モード波を抑制した弾性波デバイス
WO2017086004A1 (ja) * 2015-11-17 2017-05-26 株式会社村田製作所 弾性波装置及びその製造方法
JP2017224890A (ja) * 2016-06-13 2017-12-21 株式会社村田製作所 弾性波装置
WO2018131454A1 (ja) * 2017-01-13 2018-07-19 株式会社村田製作所 弾性波装置
WO2018163860A1 (ja) * 2017-03-06 2018-09-13 株式会社村田製作所 弾性波装置、高周波フロントエンド回路、通信装置及び弾性波装置の製造方法
WO2018198654A1 (ja) * 2017-04-26 2018-11-01 株式会社村田製作所 弾性波装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022103405A1 (en) * 2020-11-16 2022-05-19 Qorvo Us, Inc. Piezoelectric layer arrangements in acoustic wave devices and related methods
WO2022131237A1 (ja) * 2020-12-18 2022-06-23 株式会社村田製作所 弾性波装置及びラダー型フィルタ
WO2022153948A1 (ja) * 2021-01-13 2022-07-21 株式会社村田製作所 弾性波装置
WO2022207266A1 (en) * 2021-03-29 2022-10-06 RF360 Europe GmbH Site-selective piezoelectric-layer trimming
WO2023013742A1 (ja) * 2021-08-04 2023-02-09 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
CN113785489B (zh) 2023-11-21
JPWO2020209359A1 (ja) 2020-10-15
CN113785489A (zh) 2021-12-10
JP7176622B2 (ja) 2022-11-22
US20220029601A1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
WO2020209359A1 (ja) 弾性波装置
JP6819834B1 (ja) 弾性波装置
JP7377920B2 (ja) 弾性表面波素子
WO2017212774A1 (ja) 弾性波装置及びその製造方法
JP4178328B2 (ja) 弾性境界波装置
JP6741082B2 (ja) 弾性波装置
JP5035421B2 (ja) 弾性波装置
JP7231015B2 (ja) 弾性波装置
JP7268747B2 (ja) 弾性波装置
JPWO2011007690A1 (ja) 弾性表面波装置
US20210408995A1 (en) Acoustic wave device
WO2021079830A1 (ja) 弾性波装置
WO2022085581A1 (ja) 弾性波装置
CN111446942B (zh) 弹性波装置
WO2023223906A1 (ja) 弾性波素子
WO2023002823A1 (ja) 弾性波装置
WO2021241355A1 (ja) 弾性波装置
WO2022085565A1 (ja) 弾性波装置
WO2021220974A1 (ja) 弾性波装置
WO2023003006A1 (ja) 弾性波装置
WO2024043347A1 (ja) 弾性波装置及びフィルタ装置
WO2023003005A1 (ja) 弾性波装置
WO2023048256A1 (ja) 弾性波装置
WO2023195409A1 (ja) 弾性波装置および弾性波装置の製造方法
WO2023210764A1 (ja) 弾性波素子および弾性波装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20788115

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021513714

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20788115

Country of ref document: EP

Kind code of ref document: A1