WO2017086004A1 - 弾性波装置及びその製造方法 - Google Patents

弾性波装置及びその製造方法 Download PDF

Info

Publication number
WO2017086004A1
WO2017086004A1 PCT/JP2016/076988 JP2016076988W WO2017086004A1 WO 2017086004 A1 WO2017086004 A1 WO 2017086004A1 JP 2016076988 W JP2016076988 W JP 2016076988W WO 2017086004 A1 WO2017086004 A1 WO 2017086004A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode fingers
elastic wave
wave device
electrode
piezoelectric substrate
Prior art date
Application number
PCT/JP2016/076988
Other languages
English (en)
French (fr)
Inventor
克也 松本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2017086004A1 publication Critical patent/WO2017086004A1/ja
Priority to US15/933,506 priority Critical patent/US11456716B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02614Treatment of substrates, e.g. curved, spherical, cylindrical substrates ensuring closed round-about circuits for the acoustical waves
    • H03H9/02622Treatment of substrates, e.g. curved, spherical, cylindrical substrates ensuring closed round-about circuits for the acoustical waves of the surface, including back surface
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02858Means for compensation or elimination of undesirable effects of wave front distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters

Definitions

  • the present invention relates to an elastic wave device and a manufacturing method thereof, and more particularly to an elastic wave device using a piston mode and a manufacturing method thereof.
  • Patent Document 1 discloses an elastic wave device using a piston mode.
  • a plurality of first electrode fingers and a plurality of second electrode fingers are provided with a crossing region where they overlap when viewed in the elastic wave propagation direction.
  • the crossing region includes a central region in the extending direction of the first and second electrode fingers, and first and second edge regions provided outside the central region in the extending direction of the first and second electrode fingers. And have.
  • the sound speed of the first and second edge areas is lowered compared to the sound speed of the central area.
  • the sound speed of the area outside the crossing area is higher than the sound speed of the first and second edge areas.
  • Patent Document 1 discloses a method for increasing the width of the first and second electrode fingers in the edge region, and adding mass to the first and second electrode fingers in the edge region. In order to do this, a structure is shown in which electrodes are stacked.
  • the speed of sound in the edge region cannot be lowered sufficiently by simply increasing the width of the first and second electrode fingers in the edge region. Further, in the structure in which the width of the first and second electrode fingers is widened in the edge region, it is difficult to reduce the dimension in the elastic wave propagation direction. Therefore, it has been difficult to reduce the size.
  • An object of the present invention is to provide an acoustic wave device capable of sufficiently increasing the difference in sound velocity between the edge region and the central region while realizing downsizing of the acoustic wave device in an acoustic wave device using a piston mode, and a method for manufacturing the same. Is to provide.
  • An elastic wave device includes a piezoelectric substrate and an IDT electrode provided on the piezoelectric substrate, and the IDT electrode is disposed separately from the first bus bar and the first bus bar.
  • the plurality of first electrode fingers and the plurality of second electrode fingers are arranged so as to interpose each other, and the first electrode fingers and the second electrode fingers Is a cross-region, and the cross-region is located on the center side in the direction in which the first and second electrode fingers extend, and the central region And first and second edge regions disposed on both sides of the front In the first and second edge regions, a recess is provided on the piezoelectric substrate, the first and second electrode fingers enter the recess, and the recess is formed on the piezoelectric substrate in the recess. Is arranged.
  • the sound velocity of the elastic wave in the central region is V1
  • the sound velocity of the elastic wave in the first and second edge regions is V2
  • the first and second edges are V3> V1> V2.
  • the difference in sound speed between the sound speed V1 and the sound speed V2 is 200 m / second or more and 340 m / second or less. In this case, the transverse mode spurious can be more effectively suppressed.
  • portions of the first and second electrode fingers reaching the recess are made of a material having a Young's modulus lower than that of the piezoelectric substrate. In this case, the sound speed of the first and second edge regions can be lowered more effectively.
  • the portions of the first and second electrode fingers reaching the recesses are made of metal.
  • the metal at least one metal layer selected from the group consisting of Au, Cu, Pt, W and Al or at least one metal layer made of an alloy mainly composed of at least one metal is preferably used.
  • the density of the portion of the first and second electrode fingers reaching the recess is higher than the density of the piezoelectric substrate.
  • the speed of sound in the first and second edge regions can be lowered more effectively than in the central region.
  • the portion reaching the recess is made of one kind of metal selected from the group consisting of Au, Cu, Pt and W or an alloy mainly composed of the metal. In this case, the speed of sound in the first and second edge regions can be further reduced sufficiently.
  • the concave portion is a groove extending in the elastic wave propagation direction.
  • the cross-sectional shape of the groove along the direction in which the first and second electrode fingers extend is an inverted trapezoid. In this case, it is possible to more effectively suppress a plurality of types of unnecessary waves.
  • a cross-sectional shape of the groove along the extending direction of the first and second electrode fingers is a rounded shape. In this case, it is possible to more effectively suppress a plurality of types of unnecessary waves.
  • the groove reaches the full width direction of the first electrode finger or the second electrode finger in the elastic wave propagation direction. In this case, the speed of sound can be lowered more effectively in the first and second edge regions.
  • the groove is not more than a width-direction dimension along the elastic wave propagation direction of the first or second electrode finger.
  • the groove is larger than a width-direction dimension of the first or second electrode finger in the elastic wave propagation direction, and the first and second electrodes The electrode finger extends beyond the edge in the width direction of the electrode finger in the elastic wave propagation direction.
  • the groove is provided so as to connect the concave portions of the plurality of first electrode fingers or the plurality of second electrode fingers.
  • the groove can be easily formed in the first and second edge regions.
  • a first bus bar, a second bus bar, and a plurality of first bus bars are provided on the one main surface of the piezoelectric substrate having a plurality of recesses on one main surface.
  • the crossing region includes a central region, and first and second edge regions located outside the central region in the extending direction of the first and second electrode fingers.
  • the IDT electrode is formed so that the concave portion is positioned in the first and second edge regions.
  • a second metal film is formed on at least a part of the first and second bus bars.
  • the difference in sound speed between the edge region and the central region can be sufficiently increased in the elastic wave device using the piston mode.
  • the size can be reduced and the cost can be reduced.
  • FIG. 1A and FIG. 1B correspond to a schematic plan view showing an electrode structure of an acoustic wave device according to an embodiment of the present invention and a portion along line AA in FIG. It is sectional drawing of the part to do.
  • FIG. 2 is a partially cutaway enlarged cross-sectional view showing the main part of FIG.
  • FIG. 3 is a schematic plan view showing the overall structure of the acoustic wave device according to the embodiment of the present invention.
  • FIG. 4 is a partially cutaway enlarged sectional view showing a modification of the sectional shape of the groove.
  • FIG. 5 is a partially cutaway enlarged cross-sectional view showing another modification of the cross-sectional shape of the groove.
  • FIG. 1A and FIG. 1B correspond to a schematic plan view showing an electrode structure of an acoustic wave device according to an embodiment of the present invention and a portion along line AA in FIG. It is sectional drawing of the part to do.
  • FIG. 2 is a partially cutaway enlarged cross-
  • FIG. 6 is a schematic plan view showing an electrode structure of an acoustic wave device for explaining still another modification example of the groove.
  • FIG. 7 is a diagram showing the relationship between the sound velocity difference between the center region and the edge region and the electromechanical coupling coefficient of unnecessary waves when a 42 ° Y-cut LiTaO 3 substrate is used.
  • FIG. 8 is a diagram showing the relationship between the electrode finger crossing width and the electromechanical coupling coefficient of unnecessary waves when a 42 ° Y-cut LiTaO 3 substrate is used.
  • FIG. 9 is a diagram showing the relationship between the sound velocity difference between the center region and the edge region and the electromechanical coupling coefficient of unnecessary waves when a 0 ° Y cut LiNbO 3 substrate is used.
  • FIG. 7 is a diagram showing the relationship between the sound velocity difference between the center region and the edge region and the electromechanical coupling coefficient of unnecessary waves when a 42 ° Y-cut LiTaO 3 substrate is used.
  • FIG. 8 is a diagram showing the relationship between
  • FIG. 10 is a diagram showing the relationship between the electrode finger crossing width and the electromechanical coupling coefficient of unnecessary waves when a 0 ° Y cut LiNbO 3 substrate is used.
  • FIG. 11A to FIG. 11C are perspective views for explaining a method of manufacturing an acoustic wave device according to an embodiment of the present invention.
  • FIG. 3 is a schematic plan view showing the overall structure of an elastic wave device according to an embodiment of the present invention
  • FIG. 1 (a) is a schematic plan view showing the electrode structure
  • 1B is a cross-sectional view of a portion corresponding to the portion along the line AA in FIG. 1A
  • FIG. 2 is a partial cutaway view showing an enlarged main portion of FIG. It is an expanded sectional view.
  • the acoustic wave device 1 has a piezoelectric substrate 2.
  • the piezoelectric substrate 2 is made of a piezoelectric single crystal such as LiTaO 3 or LiNbO 3 .
  • the piezoelectric substrate 2 may be made of piezoelectric ceramics.
  • the piezoelectric substrate 2 may have a structure in which a piezoelectric film is provided on an insulating substrate.
  • the piezoelectric substrate 2 is made of Y-cut LiTaO 3 .
  • An IDT electrode 3 is provided on the piezoelectric substrate 2.
  • Reflectors 4 and 5 are provided on both sides of the IDT electrode 3 in the elastic wave propagation direction. Thereby, a 1-port elastic wave resonator is formed.
  • the IDT electrode 3 includes a first bus bar 11 and a second bus bar 12 provided to be separated from the first bus bar 11. One end of a plurality of first electrode fingers 13 is connected to the first bus bar 11. One end of a plurality of second electrode fingers 14 is connected to the second bus bar 12. The plurality of first electrode fingers 13 and the plurality of second electrode fingers 14 are interleaved with each other.
  • a second metal film 15 is formed on the first bus bar 11.
  • a second metal film 16 is provided on the second bus bar 12.
  • the second metal films 15 and 16 are not essential, but the loss can be reduced by providing the second metal films 15 and 16. Moreover, the sound speed in the part in which the 1st, 2nd bus-bars 11 and 12 are provided can be made slower.
  • the IDT electrode 3 and the reflectors 4 and 5 are made of an appropriate metal or alloy. However, in a portion where the first and second electrode fingers 13 and 14 reach in a recess in an edge region described later, a preferable metal described later is preferably used.
  • the first electrode finger 13 and the second electrode finger 14 partially overlap when viewed from the elastic wave propagation direction P.
  • This overlapping region R1 is a crossing region.
  • the crossing region R1 has a central region R2 and first and second edge regions R3 and R4 provided on both sides of the central region R2 in the direction in which the first and second electrode fingers 13 and 14 extend.
  • the central region R2 is sandwiched between the first and second edge regions R3 and R4 and is located in the center of the crossing region R1 in the direction in which the first and second electrode fingers 13 and 14 extend. It is.
  • the first gap region R5 is located outside the first edge region R3.
  • the first gap region R ⁇ b> 5 is located between the first bus bar 11 and the tip of the second electrode finger 14.
  • the second gap region R6 is located outside the second edge region R4 in the direction in which the first and second electrode fingers 13 and 14 extend.
  • the second gap region R ⁇ b> 6 is a region between the tip of the first electrode finger 13 and the second bus bar 12.
  • grooves 17 and 18 as concave portions are provided on one main surface 2a of the piezoelectric substrate 2.
  • a metal film is formed so as to enter the grooves 17 and 18, and a first electrode finger 13 is provided. That is, the first electrode finger 13 is provided so as to enter the groove as the concave portion and be disposed on the piezoelectric substrate 2 in the groove.
  • the second electrode finger 14 is also provided so as to enter a groove as a recess in the first and second edge regions R3 and R4.
  • the groove 17 has a bottom surface 17a and side surfaces 17b and 17c that connect the one main surface 2a of the piezoelectric substrate 2.
  • the side surfaces 17b and 17c are inclined so as to approach each other toward the bottom surface 17a side. Accordingly, the groove 17 has an inverted trapezoidal shape in a cross section along the elastic wave propagation direction.
  • the upper surface 13 a is recessed in accordance with the cross-sectional shape of the groove 17 in the portion entering the groove 17.
  • the groove 17 is provided by providing the groove 17 on the one main surface 2a of the piezoelectric substrate 2 and allowing a part of the first electrode finger 13 to enter the groove 17. The elastic wave propagation speed can be reduced.
  • the sound speeds of the central region R2, the first and second edge regions R3 and R4, and the first and second gap regions R5 and R6 are represented by symbols V1 to V3. It shows with. V3> V1> V2 between the sound velocity V1 in the central region R2, the sound velocity V2 in the first and second edge regions R3, R4, and the sound velocity V3 in the first and second gap regions R5, R6. There is a relationship. That is, since the first and second gap regions R5 and R6 have the smallest metallization ratio, the sound velocity V3 is high.
  • the characteristic of the acoustic wave device 1 is that the first and second electrode fingers 13 and 14 enter the grooves 17 and 18 in the first and second edge regions R3 and R4. That is, the fingers 13 and 14 are provided. Thereby, the difference in sound speed between the sound speed V1 in the central region R2 and the sound speed V2 in the first and second edge regions R3, R4 can be sufficiently increased. Therefore, the transverse mode can be effectively suppressed. In this case, since it is not necessary to provide the first and second electrode fingers with a portion having a wide electrode finger width, the size can be reduced and the power durability can be improved.
  • the film forming process is performed a plurality of times. Therefore, the cost is high.
  • the first structure can be obtained simply by forming the electrode structure including the first and second electrode fingers 13 and 14 after providing the recesses.
  • Second edge regions R3, R4 can be easily formed. Therefore, since it is not necessary to perform many steps for forming the edge region, the cost can be reduced.
  • the speed of sound is reduced because the first and second electrode fingers 13 and 14 are provided in the grooves 17 and 18 as the recesses, and the Young's modulus of the metal constitutes the piezoelectric substrate 2. This is because it is lower than the piezoelectric single crystal. That is, since the Young's modulus is low and the material is soft, the sound speed becomes slow. More preferably, it is desirable that the density of the material constituting the first and second electrode fingers 13 and 14 entering the recess is higher than the density of the material constituting the piezoelectric substrate 2. This can also reduce the speed of sound.
  • Tables 1 to 4 below show the speed of sound when an electrode made of Cu, Pt, Au, or Al is provided on a piezoelectric substrate, the speed of sound when embedded in a groove, and the difference between these speeds of sound. It shows.
  • the speed of sound can be lowered in the structure in which the electrode finger is embedded in contrast to the structure in which the electrode is provided on the piezoelectric substrate. Recognize.
  • h in the electrode film thickness h / ⁇ represents the film thickness.
  • represents a wavelength determined by the electrode finger pitch of the IDT electrode. Therefore, as is apparent from Table 1, when Cu is used, if the electrode film thickness h / ⁇ is 5% or more, the sound velocity V1 in the central region R2 and the first and first grooves provided with the grooves 17 and 18 are provided.
  • the sound speed difference with the sound speed V2 in the second edge regions R3 and R4 can be 200 m / sec or more.
  • the electrode film thickness h / ⁇ is 4% or more, and Au is similarly 4% or more, it can be seen that the sound speed difference can be 200 m / second or more.
  • the electrode film thickness h / ⁇ may be set to 14% or more. Even in this case, the difference in sound speed is 200 m / second or more. It can be understood that
  • the first and second electrode fingers 13 and 14 reach into the recess.
  • the portions reaching the recesses of the first and second electrode fingers are made of metal. More preferably, as the metal, at least one metal layer including at least one selected from the group consisting of Au, Cu, Pt, W and Al and an alloy mainly composed of at least one is used. .
  • the alloy mainly composed of at least one kind means an alloy containing at least one kind exceeding 50% by weight. In the case of these metals or alloys, the difference in sound speed can be further effectively increased.
  • the metal may be a single metal layer or a laminate of a plurality of metal layers.
  • the density of the portions reaching the recesses of the first and second electrode fingers 13 and 14 is preferably higher than the density of the piezoelectric substrate 2. Even in that case, the difference in sound speed can be effectively increased. Accordingly, the portion reaching the concave portion of the first and second electrode fingers is more preferably made of one kind of metal selected from the group consisting of Au, Cu, Pt and W or an alloy mainly composed of the metal. It is desirable. In that case, the sound speed difference can be increased more effectively.
  • FIG. 4 is a partially cutaway enlarged cross-sectional view showing a modified example of the groove as the concave portion.
  • a groove 21 as a recess is provided.
  • the groove 21 has a bottom surface 21a extending parallel to the one main surface 2a of the piezoelectric substrate 2 and side surfaces 21b and 21c connecting the bottom surface 21a and the one main surface 2a.
  • the side surfaces 21b and 21c extend in a direction orthogonal to the bottom surface 21a and the one main surface 2a. Therefore, the shape of the groove 21 is rectangular in the cross section along the direction in which the first and second electrode fingers extend.
  • the groove 22 has a rounded shape in a cross section along the direction in which the first and second electrode fingers extend.
  • the cross-sectional shape of the groove can be variously deformed.
  • the cross-sectional structure is an inverted trapezoid like the groove 17, or the cross-sectional shape is rounded like the groove 22 shown in FIG. In these cases, it is possible to effectively suppress more types of unnecessary waves.
  • the groove 17 has a dimension in the direction extending in the elastic wave propagation direction that is narrower than the width of the first and second electrode fingers 13 and 14.
  • the widths of the grooves 17 and 18 may be equal to the widths of the first and second electrode fingers 13 and 14. In that case, the above-described difference in sound speed can be increased more effectively.
  • the grooves 17 and 18 may extend beyond the edges in the width direction of the first and second electrode fingers 13 and 14. Furthermore, as shown in FIG. 6, the grooves 17 and 18 may be provided so as to connect the concave portions of the plurality of first electrode fingers 13 and the plurality of second electrode fingers 14. In this case, it is only necessary to form one groove extending in the elastic wave propagation direction in each of the first edge region R3 and the second edge region R4. Therefore, processing becomes easy and productivity can be further improved.
  • the difference in sound speed between the sound speed V1 in the central area R2 and the sound speed V2 in the first and second edge areas R3 and R4 is preferably 200 m / sec or more and 340 m / sec or less. In that case, unnecessary waves can be more effectively suppressed. This will be described with reference to FIGS.
  • An elastic wave device 1 was manufactured using LiTaO 3 of 42 ° Y cut as the piezoelectric substrate 2.
  • a metal film for forming the IDT electrode 3 and the reflectors 4 and 5 an Al film was formed so that the electrode film thickness h / ⁇ was 14%.
  • a metal film made of an Al film and having a thickness of 3 ⁇ m is stacked.
  • the electrode finger crossing width was 57 ⁇ m.
  • D / ⁇ was set to 14% when the depth of the grooves 17 and 18 in the first and second edge regions R3 and R4 was D.
  • a plurality of types of elastic wave devices 1 were produced by changing the shape of the groove 17.
  • FIG. 7 is a diagram showing the relationship between the sound velocity difference between the sound velocity V1 in the central region R2 and the sound velocity V2 in the first and second edge regions R3 and R4, and the electromechanical coupling coefficient (%) of unnecessary waves.
  • the sound velocity V1 in the central region R2 is 3882 m / sec.
  • the sound velocity V2 of the first and second edge regions R3 and R4 was changed in the range of 3462 m / sec or more and 3812 m / sec or less. That is, the sound speed difference between the sound speed V1 and the sound speed V2 was changed between 70 m / sec and 420 m / sec.
  • the same piezoelectric substrate was used, except that the dimensions of the first and second edge regions R3 and R4 were not changed, and the electrode finger crossing width in the IDT electrode was changed.
  • the crossover width was also changed in the comparative example of the acoustic wave device manufactured in the same manner as described above except that the groove as the concave portion was not provided.
  • the sound velocity V1 in the central region R2 of the elastic wave is 3882 m / sec
  • the sound velocity V2 in the first and second edge regions R3 and R4 is 3582 m / sec. Therefore, the sound speed difference between the sound speed V1 and the sound speed V2 is 300 m / sec.
  • FIG. 8 is a diagram showing the relationship between the electrode finger crossing width and the electromechanical coupling coefficient of unnecessary waves in the embodiment and the comparative example.
  • the electromechanical coupling coefficient of the unwanted wave cannot be sufficiently reduced.
  • the unwanted wave is effectively reduced. It can be seen that the electromechanical coupling coefficient of the unwanted wave can be further reduced when the crossover width is 40 ⁇ m or more. It can also be seen that when the crossing width is in the range of 40 ⁇ m or more and 80 ⁇ m or less, the variation in the influence of unnecessary waves is small due to the change in the crossing width.
  • the crossing width is 40 ⁇ m or more, that is, the crossing width is 20 ⁇ or more as a value normalized by the wavelength ⁇ of the surface wave. More preferably, the crossing width is 80 ⁇ m or less, that is, a value normalized by the wavelength ⁇ of the surface wave, and is 40 ⁇ or less.
  • the piezoelectric substrate is changed from the 42 ° Y-cut LiTaO 3 to the 0 ° Y-cut LiNbO 3 substrate, and the sound velocity difference between the sound velocity V1 and the sound velocity V2 is changed to the groove 17 as a concave portion in the same manner as in the above experimental example. , 18 by changing the shape.
  • the sound velocity V1 in the central region R2 is 3653 m / sec.
  • the shapes of the grooves 17 and 18 were changed so that the sound velocity V2 of the first and second edge regions R3 and R4 was 3233 m / sec or more and 3583 m / sec or less.
  • the sound speed difference between the sound speed V1 and the sound speed V2 is in the range of 70 m / sec or more and 420 m / sec or less.
  • the electrode finger crossing width was 57 ⁇ m.
  • FIG. 9 is a diagram showing the relationship between the sound speed difference between the sound speed V1 and the sound speed V2 and the electromechanical coupling coefficient of unnecessary waves.
  • the electromechanical coupling coefficient of the unwanted wave is 0 if the sound speed difference is 200 m / sec or more and 340 m / sec or less. It can be seen that it can be 1% or less.
  • the sound velocity V1 of the central region R2 is 3653 m / second
  • the sound velocity V2 of the first and second edge regions R3, R4 is 3383 m / second
  • the electrode finger crossing width is set.
  • a structure similar to that of the embodiment was prepared as a second comparative example except that the structure was not provided with a recess.
  • the sound speed difference between the sound speed V1 and the sound speed V2 is 270 m / sec in the embodiment, and 0 in the second comparative example.
  • the crossover width was changed in the range of 20 ⁇ m or more and 80 ⁇ m or less, and the elastic wave device of the above embodiment and the second comparative example was manufactured.
  • FIG. 10 shows the relationship between the electrode finger crossing width and the electromechanical coupling coefficient of unnecessary waves. As shown in FIG. 10, in the second comparative example, the electromechanical coupling coefficient of unnecessary waves could not be effectively reduced even when the electrode finger cross width was changed.
  • the electromechanical coupling coefficient of the unnecessary wave can be sufficiently reduced as compared with the second comparative example. It can also be seen that if the crossing width is 40 ⁇ m or more, the electromechanical coupling coefficient of the unnecessary wave can be further reduced, and the variation of the electromechanical coupling coefficient of the unnecessary wave due to the change in the crossing width is small. Therefore, it is preferable that the crossing width is 40 ⁇ m or more, and the value normalized by the surface wave wavelength ⁇ is 20 ⁇ or more. More preferably, the crossing width is 80 ⁇ m or less and the value normalized by the surface wave wavelength ⁇ is 40 ⁇ or less.
  • the difference in sound speed between the sound speed V1 and the sound speed V2 is 200 m / sec or more and 340 m / sec or less, thereby suppressing unnecessary waves more effectively.
  • the grooves 17 and 18 are formed when the first and second edge regions R3 and R4 are formed.
  • the recesses in the present invention are not limited to the grooves and can be changed to various shapes. it can.
  • the difference in sound speed can be easily adjusted by changing the dimensions of the openings of the grooves 17, 18, the dimensions of the bottom surfaces of the grooves 17, 18, the inclination angle of the side surfaces of the grooves 17, 18, and the like.
  • FIG. 11A to FIG. 11C are perspective views for explaining a method of manufacturing the acoustic wave device 1.
  • a piezoelectric substrate 2 having grooves 17 and 18 as recesses on one main surface 2a is prepared.
  • the method of providing the grooves 17 and 18 is not particularly limited, and an appropriate method such as laser processing or a method of etching after placing a mask can be used.
  • a first metal film is formed on one main surface 2 a of the piezoelectric substrate 2.
  • the first and second bus bars 11 and 12 and the first and second electrode fingers 13 and 14 are formed.
  • the first and second electrode fingers 13 and 14 enter the grooves 17 and 18 shown in FIG. 1A by forming a film by a deposition method such as vapor deposition or sputtering.
  • the first and second electrode fingers 13 are arranged so that the first and second electrode fingers 13 and 14 enter the grooves 17 and 18.
  • 14 are formed.
  • second-layer metal films 15 and 16 are formed on the first and second bus bars 11 and 12. In this way, the elastic wave device 1 can be obtained.
  • the piezoelectric substrate 2 provided with the grooves 17 and 18 in advance is prepared, and then only one film formation is performed.
  • the first and second edge regions R3 and R4 can be formed. Therefore, it can be seen that the manufacturing process can be simplified and the cost can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

弾性波装置の小型化を実現しながら、エッジ領域と中央領域との音速差を十分大きくすることができる弾性波装置を提供する。 圧電基板2上に、IDT電極3が設けられており、IDT電極3が、複数本の第1の電極指13と複数本の第2の電極指14とを有し、第1の電極指13と第2の電極指14とが弾性波伝搬方向において重なり合っている部分を交叉領域R1とした場合に、交叉領域R1が、第1,第2の電極指13,14が延びる方向において、中央側に位置している中央領域R2と、中央領域R2の両側に配置された第1及び第2のエッジ領域R3,R4とを有し、第1及び第2のエッジ領域R3,R4において、圧電基板2上に凹部としての溝17,18が設けられており、第1,第2の電極指13,14が凹部としての溝17,18内に入り込んでおり、かつ、前記凹部としての溝17,18内において圧電基板2上に配置されている、弾性波装置1。

Description

弾性波装置及びその製造方法
 本発明は、弾性波装置及びその製造方法に関し、特にピストンモードを利用した弾性波装置及びその製造方法に関する。
 従来、横モードスプリアスを抑圧するために、ピストンモードを利用した弾性波装置が提案されている。下記の特許文献1には、ピストンモードを利用した弾性波装置が開示されている。特許文献1に記載の弾性波装置では、複数本の第1の電極指と複数本の第2の電極指とが、弾性波伝搬方向にみたときに重なっている交叉領域が設けられている。そして、この交叉領域は、第1,第2の電極指の延びる方向において中央領域と、中央領域の第1,第2の電極指の延びる方向外側に設けられた第1,第2のエッジ領域とを有する。中央領域の音速に比べて、第1,第2のエッジ領域の音速が低められている。第1,第2のエッジ領域の音速よりも、交叉領域の外側の領域の音速が高められている。この音速差により横モードスプリアスが抑制されている。上記音速差を実現するために、特許文献1では、エッジ領域において、第1,第2の電極指の幅を大きくする方法や、エッジ領域において、第1,第2の電極指に質量を付加するために電極を重ねる構造が示されている。
WO2011/088904 A1
 しかしながら、上記のように、第1,第2の電極指の幅をエッジ領域で広げるだけでは、エッジ領域の音速を十分低めることができなかった。また、第1,第2の電極指の幅をエッジ領域において広げる構造では、弾性波伝搬方向の寸法を小さくすることが困難となる。そのため、小型化を進めることが困難であった。
 本発明の目的は、ピストンモードを利用した弾性波装置において、弾性波装置の小型化を実現しながら、エッジ領域と中央領域との音速差を十分大きくすることができる弾性波装置及びその製造方法を提供することにある。
 本発明に係る弾性波装置は、圧電基板と、前記圧電基板上に設けられたIDT電極とを備え、前記IDT電極が、第1のバスバーと、前記第1のバスバーと隔てられて配置された第2のバスバーと、前記第1のバスバーに一端が接続されている複数本の第1の電極指と、前記第2のバスバーに一端が接続されている複数本の第2の電極指とを有し、前記複数本の第1の電極指と、前記複数本の第2の電極指とが互いに間挿し合うように配置されており、前記第1の電極指と前記第2の電極指とが弾性波伝搬方向において重なり合っている部分を交叉領域とした場合に、該交叉領域が前記第1,第2の電極指が延びる方向において、中央側に位置している中央領域と、前記中央領域の両側に配置された第1及び第2のエッジ領域とを有し、前記第1及び第2のエッジ領域において、前記圧電基板上に凹部が設けられており、前記第1,第2の電極指は前記凹部内に入り込んでおり、かつ、前記凹部内において前記圧電基板上に配置されている。
 本発明に係る弾性波装置のある特定の局面では、前記中央領域における弾性波の音速をV1、前記第1,第2のエッジ領域における弾性波の音速をV2、前記第1,第2のエッジ領域の前記中央領域とは反対側の領域における弾性波の音速をV3とした場合、V3>V1>V2とされている。
 本発明に係る弾性波装置の他の特定の局面では、前記音速V1と、前記音速V2との音速差が200m/秒以上、340m/秒以下である。この場合には、横モードスプリアスをより一層効果的に抑圧することができる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記第1及び第2の電極指において、前記凹部内に至っている部分が、前記圧電基板よりもヤング率が低い材料からなる。この場合には、第1,第2のエッジ領域の音速をより効果的に低めることができる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記第1,第2の電極指の前記凹部内に至っている部分が、金属からなる。また、前記金属としては、Au、Cu、Pt、W及びAlからなる群から選択された少なくとも1種または該少なくとも1種を主体とする合金からなる少なくとも1層の金属層が好適に用いられる。
 本発明に係る弾性波装置の別の特定の局面では、前記第1,第2の電極指の前記凹部に至っている部分の密度が、前記圧電基板の密度よりも高い。この場合には、第1,第2のエッジ領域の音速を、中央領域に比べより効果的に低めることができる。好ましくは、前記凹部に至っている部分が、Au、Cu、Pt及びWからなる群から選択された1種の金属または該金属を主体とする合金からなる。この場合には、第1,第2のエッジ領域における音速をより一層十分に低めることができる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記凹部が、前記弾性波伝搬方向に延びる溝である。
 本発明に係る弾性波装置の別の特定の局面では、前記溝の前記第1,第2の電極指が延びる方向に沿う断面形状が逆台形である。この場合には、複数種の不要波を、より一層効果的に抑制することができる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記溝の前記第1及び第2の電極指の延びる方向に沿う断面形状が、丸みを帯びた形状とされている。この場合には、複数種の不要波を、より一層効果的に抑圧することができる。
 本発明に係る弾性波装置の別の特定の局面では、前記溝が、前記弾性波伝搬方向において、前記第1の電極指または、前記第2の電極指の幅方向全幅に至っている。この場合には、第1,第2のエッジ領域において、より一層効果的に音速を低めることができる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記溝が、前記第1または第2の電極指の前記弾性波伝搬方向に沿う幅方向寸法以下とされている。
 本発明に係る弾性波装置の別の特定の局面では、前記溝が、前記弾性波伝搬方向において、前記第1または第2の電極指の幅方向寸法よりも大きく、前記第1,第2の電極指の幅方向端縁を越えて弾性波伝搬方向外側に延びている。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記溝が、前記複数本の第1の電極指または前記複数本の第2の電極指の凹部を連ねるように設けられている。この場合には、第1,第2のエッジ領域において溝を容易に形成することができる。
 本発明に係る弾性波装置の製造方法は、一方主面上に複数の凹部が設けられている圧電基板の前記一方主面上に、第1のバスバー、第2のバスバー、複数本の第1の電極指及び複数本の第2の電極指を有するIDT電極を形成する工程を備え、前記IDT電極の形成に際し、前記複数本の第1,第2の電極指が、弾性波伝搬方向からみたときに重なり合っている交叉領域において、前記交叉領域が、中央領域と、前記第1及び第2の電極指の延びる方向において前記中央領域の外側に位置している第1,第2のエッジ領域とを有し、前記IDT電極の形成に際し、前記凹部が前記第1,第2のエッジ領域に位置するように前記IDT電極を形成する。
 本発明に係る弾性波装置の製造方法のある特定の局面では、前記第1,第2のバスバーの少なくとも一部に2層目の金属膜を成膜する。
 本発明に係る弾性波装置及びその製造方法によれば、ピストンモードを利用した弾性波装置において、エッジ領域と中央領域との音速差を十分大きくすることができる。しかも、小型化を図ることができ、かつコストを低減することができる。
図1(a)及び図1(b)は、本発明の一実施形態に係る弾性波装置の電極構造を示す模式的平面図及び図1(a)中のA-A線に沿う部分に相当する部分の断面図である。 図2は、図1(a)の要部を拡大して示す部分切欠拡大断面図である。 図3は、本発明の一実施形態に係る弾性波装置の全体構造を示す略図的平面図である。 図4は、溝の断面形状の変形例を示す部分切欠拡大断面図である。 図5は、溝の断面形状の他の変形例を示す部分切欠拡大断面図である。 図6は、溝のさらに他の変形例を説明するための弾性波装置の電極構造を示す模式的平面図である。 図7は、42°YカットのLiTaO基板を用いた場合の中央領域とエッジ領域との音速差と、不要波の電気機械結合係数との関係を示す図である。 図8は、42°YカットのLiTaO基板を用いた場合の電極指交叉幅と、不要波の電気機械結合係数との関係を示す図である。 図9は、0°YカットのLiNbO基板を用いた場合の中央領域とエッジ領域との音速差と、不要波の電気機械結合係数との関係を示す図である。 図10は、0°YカットのLiNbO基板を用いた場合の電極指交叉幅と、不要波の電気機械結合係数との関係を示す図である。 図11(a)~図11(c)は、本発明の一実施形態に係る弾性波装置の製造方法を説明するための各斜視図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 図3は、本発明の一実施形態に係る弾性波装置の全体構造を示す略図的平面図であり、図1(a)はその電極構造を示す模式的平面図である。図1(b)は、図1(a)中のA-A線に沿う部分に相当する部分の断面図であり、図2は、図1(a)の要部を拡大して示す部分切欠拡大断面図である。
 図3に示すように、弾性波装置1は、圧電基板2を有する。圧電基板2は、LiTaOやLiNbOなどの圧電単結晶からなる。圧電基板2は、圧電セラミックスからなるものであってもよい。また、圧電基板2は、絶縁基板上に、圧電膜が設けられている構造を有していてもよい。
 本実施形態では、圧電基板2は、YカットのLiTaOからなる。圧電基板2上に、IDT電極3が設けられている。IDT電極3の弾性波伝搬方向両側に、反射器4,5が設けられている。それによって、1ポート型の弾性波共振子が構成されている。
 IDT電極3は、第1のバスバー11と、第1のバスバー11と隔てられて設けられた第2のバスバー12とを有する。第1のバスバー11に、複数本の第1の電極指13の一端が接続されている。第2のバスバー12に、複数本の第2の電極指14の一端が接続されている。複数本の第1の電極指13と、複数本の第2の電極指14とは、互いに間挿し合っている。
 必須ではないが、第1のバスバー11上に、2層目の金属膜15が成膜されている。同様に、第2のバスバー12上にも、2層目の金属膜16が設けられている。2層目の金属膜15,16は必須ではないが、2層目の金属膜15,16が設けられていることにより、損失を低減することができる。また、第1,第2のバスバー11,12が設けられている部分における音速をより遅くすることができる。
 上記IDT電極3及び反射器4,5は適宜の金属もしくは合金からなる。もっとも、後述するエッジ領域における凹部内に第1,第2の電極指13,14が至っている部分においては、後述する好ましい金属が好適に用いられる。
 図1(a)に示すように、第1の電極指13と第2の電極指14とは、弾性波伝搬方向Pからみたときに、部分的に重なり合っている。この重なっている領域R1が交叉領域である。交叉領域R1は中央領域R2と、中央領域R2の第1,第2の電極指13,14が延びる方向両側に設けられた第1,第2のエッジ領域R3,R4とを有する。中央領域R2とは、上記第1,第2のエッジ領域R3,R4で挟まれており、第1,第2の電極指13,14が延びる方向において交叉領域R1の中央に位置している領域である。
 第1のエッジ領域R3の外側には、第1のギャップ領域R5が位置している。第1のギャップ領域R5は、第1のバスバー11と、第2の電極指14の先端との間に位置している。同様に、第2のエッジ領域R4の第1,第2の電極指13,14が延びる方向外側には、第2のギャップ領域R6が位置している。第2のギャップ領域R6は、第1の電極指13の先端と、第2のバスバー12との間の領域である。
 図1(b)に示すように、第1,第2のエッジ領域R3,R4において、圧電基板2の一方主面2aにおいて、凹部としての溝17,18が設けられている。この溝17,18に入り込むように金属膜が成膜されて、第1の電極指13が設けられている。すなわち、第1の電極指13は、凹部としての溝内に入り込んでおり、かつ、溝内において圧電基板2上に配置されるように設けられている。断面構造は省略するが、第2の電極指14においても、同様に、第1,第2のエッジ領域R3,R4において、凹部としての溝に入り込むように設けられている。
 図2に拡大して示すように、溝17は、底面17aと、圧電基板2の一方主面2aとを結ぶ側面17b,17cとを有する。本実施形態では、側面17b,17cが、底面17a側に行くにつれて近づくように傾斜している。従って、溝17は、弾性波伝搬方向に沿う断面において逆台形形状を有している。
 第1の電極指13は、溝17に入り込んでいる部分において、上面13aが溝17の断面形状に応じて凹んでいる。圧電基板2の一方主面2a上に上記溝17を設け、溝17に、第1の電極指13の一部を入り込ませることにより、溝17が設けられている第1のエッジ領域R3において、弾性波伝搬速度を遅くすることができる。
 図1(a)において、電極構造の右側に、中央領域R2、第1,第2のエッジ領域R3,R4及び第1,第2のギャップ領域R5,R6の音速を、V1~V3の各記号で示す。中央領域R2の音速V1と、第1,第2のエッジ領域R3,R4の音速V2と、第1,第2のギャップ領域R5,R6の音速V3との間には、V3>V1>V2の関係がある。すなわち、第1,第2のギャップ領域R5,R6は、メタライゼーション比が最も小さいため、音速V3は高速である。他方、第1,第2のエッジ領域R3及びR4では、上記溝17,18内に第1の電極指13の一部が至っており、第2の電極指14の一部も同様に溝内に至っている。従って、音速V2は、中央領域R2の音速V1よりも十分低くされている。
 弾性波装置1の特徴は、第1,第2のエッジ領域R3,R4において、溝17,18内に、第1,第2の電極指13,14が入り込むように第1,第2の電極指13,14が設けられていることにある。それによって、中央領域R2の音速V1と、第1,第2のエッジ領域R3,R4の音速V2との音速差を十分に大きくすることができる。よって、横モードを効果的に抑圧することができる。この場合、第1,第2の電極指に、電極指幅が広い部分を設ける必要がないため、小型化を図ることができ、かつ耐電力性を高めることができる。
 さらに、従来のエッジ領域において、第1,第2の電極指に質量を付加するために電極を重ねる方法では、成膜工程が複数回となる。そのため、コストが高くつく。これに対して、本実施形態では、後述する製造方法から明らかなように、凹部を設けた後に、第1,第2の電極指13,14を含む電極構造を成膜するだけで、第1,第2のエッジ領域R3,R4を容易に形成することができる。よって、エッジ領域の形成に、多数の工程を実施する必要はないため、コストの低減を図ることができる。
 なお、凹部としての溝17,18に第1,第2の電極指13,14が入り込むように設けられていることにより、音速が低下するのは、金属のヤング率が、圧電基板2を構成している圧電単結晶よりも低いことによる。すなわち、ヤング率が低く、柔らかい材料であるため、音速が遅くなる。より好ましくは、凹部に入り込んでいる第1,第2の電極指13,14を構成している材料の密度が、圧電基板2を構成している材料の密度より高いことが望ましい。それによっても、音速を遅くすることができる。
 下記の表1~表4は、それぞれ、Cu、Pt、AuまたはAlからなる電極が圧電基板上に設けられた場合の音速と、溝内に埋め込まれている場合の音速と、これらの音速差とを示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1~表4から明らかなように、いずれの金属を用いた場合においても、圧電基板上に電極が設けられた構造に対し、電極指が埋め込まれている構造では、音速を低め得ることがわかる。なお、表1~表4における電極膜厚h/λにおけるhは膜厚を示す。また、λはIDT電極の電極指ピッチで定まる波長を示す。従って、表1から明らかなように、Cuを用いた場合、電極膜厚h/λを5%以上とすれば、中央領域R2の音速V1と、溝17,18が設けられている第1,第2のエッジ領域R3,R4における音速V2との音速差を200m/秒以上とし得ることがわかる。同様に、Ptを用いた場合には、電極膜厚h/λを4%以上、Auの場合には、同様に4%以上とすれば、音速差を200m/秒以上とし得ることがわかる。Alを用いた場合には、表4から明らかなように、Alの密度が低いため、電極膜厚h/λを14%以上とすればよく、その場合においても、音速差を200m/秒以上とし得ることがわかる。
 上記中央領域R2の音速V1と、第1,第2のエッジ領域R3,R4の音速V2との音速差を大きくするには、第1,第2の電極指13,14において、凹部内に至っている部分が圧電基板2よりもヤング率が低い材料からなることが好ましい。それによって上記音速差を効果的に高めることができる。従って、好ましくは、第1,第2の電極指の凹部内に至っている部分は、金属からなることが望ましい。また、より好ましくは、上記金属として、Au、Cu、Pt、W及びAlからなる群から選択された少なくとも1種及び該少なくとも1種を主体とする合金を含む少なくとも1層の金属層が用いられる。少なくとも1種を主体とする合金とは、少なくとも1種が50重量%を超えて、含有されている合金をいうものとする。これらの金属もしくは、合金の場合には、上記音速差をより一層効果的に大きくすることができる。以上のように、上記金属は1層の金属層でもよく、複数の金属層の積層体でもよい。
 また、上記第1,第2の電極指13,14の凹部に至っている部分の密度は、好ましくは、圧電基板2の密度よりも高いことが望ましい。その場合においても、上記音速差を効果的に大きくすることができる。従って、第1,第2の電極指の凹部に至っている部分はより一層好ましくは、Au、Cu、Pt及びWからなる群から選択された1種の金属または該金属を主体とする合金からなることが望ましい。その場合には、上記音速差をより一層効果的に高めることができる。
 上記実施形態では、上記凹部としての溝17,18が設けられていたが、凹部の形状はこれに限定されるものではない。図4は、凹部としての溝の変形例を示す部分切欠拡大断面図である。図4に示す変形例では、凹部としての溝21が設けられている。溝21では、圧電基板2の一方主面2aに平行に延びる底面21aと、底面21aと一方主面2aとを結ぶ側面21b,21cとを有する。側面21b,21cは、底面21a及び一方主面2aと直交する方向に延びている。従って、第1,第2の電極指が延びる方向に沿う断面において、溝21の形状は矩形とされている。
 図5に示す他の変形例では、溝22は、第1,第2の電極指が延びる方向に沿う断面において、丸みを帯びた形状とされている。このように、溝の断面形状は、様々に変形することができる。もっとも、好ましくは、溝17のように、断面構造が逆台形であったり、図5に示す溝22のように、断面形状において丸みを帯びていたりすることが望ましい。これらの場合には、より多数の種類の不要波を効果的に抑圧することができる。
 また、図1(a)に示すように、溝17は、その弾性波伝搬方向に延びる方向の寸法が、第1,第2の電極指13,14の幅よりも狭くされている。もっとも、溝17,18の幅は、第1,第2の電極指13,14の幅と等しくてもよい。その場合には、より一層効果的に前述した音速差を大きくすることができる。
 また、溝17,18は、第1,第2の電極指13,14の幅方向端縁を越えて延ばされていてもよい。さらに、図6に示すように、溝17,18は、複数本の第1の電極指13及び複数本の第2の電極指14の凹部を連ねるように設けられていてもよい。この場合には、第1のエッジ領域R3及び第2のエッジ領域R4において、それぞれ、弾性波伝搬方向に延びる一本の溝を形成すればよい。従って、加工が容易となり、生産性をより一層高めることができる。
 上記中央領域R2の音速V1と、第1,第2のエッジ領域R3,R4の音速V2との音速差は、好ましくは、200m/秒以上、340m/秒以下である。その場合には、不要波をより効果的に抑圧することができる。これを、図7~図10を参照して、説明する。
 圧電基板2として、42°YカットのLiTaOを用い、弾性波装置1を作製した。IDT電極3及び反射器4,5を形成する金属膜としては、Al膜を、電極膜厚h/λが14%となるように、形成した。なお、第1,第2のバスバー11,12が設けられている部分では、Al膜からなり、厚み3μmの金属膜を重ねた。電極指交叉幅は57μmとした。
 なお、第1,第2のエッジ領域R3,R4における上記溝17,18の深さをDとしたときにD/λを14%とした。
 上記溝17の形状を変化させ、複数種の弾性波装置1を作製した。
 上記複数種の弾性波装置における、不要波の電気機械結合係数(%)を求めた。図7は、中央領域R2の音速V1と、第1,第2のエッジ領域R3,R4の音速V2との音速差と、不要波の電気機械結合係数(%)との関係を示す図である。なお、中央領域R2の音速V1は、3882m/秒である。
 第1,第2のエッジ領域R3、R4の音速V2を3462m/秒以上、3812m/秒以下の範囲で変化させた。すなわち、音速V1と、音速V2との音速差は、70m/秒以上、420m/秒以下の間で変化させた。
 図7に示すように、上記音速V1と音速V2との音速差が、200m/秒以上、340m/秒以下であれば、不要波の電気機械結合係数が1×10-1(%)=0.1%以下となり、不要波が効果的に抑圧されていることがわかる。
 次に、同じ圧電基板を用い、但し、第1,第2のエッジ領域R3,R4の寸法は変化させず、IDT電極における電極指交叉幅を変化させた。また、比較のために、上記凹部としての溝を有しないことを除いては、上記と同様にして作製された比較例の弾性波装置においても、同様に、交叉幅を変化させた。
 なお、弾性波の中央領域R2の音速V1は、3882m/秒であり、第1,第2のエッジ領域R3,R4の音速V2は、3582m/秒である。従って、音速V1と、音速V2の音速差は300m/秒である。
 図8は、上記実施形態及び比較例における、電極指交叉幅と、不要波の電気機械結合係数との関係を示す図である。図8から明らかなように、比較例では、電極指交叉幅を変化させたとしても、不要波の電気機械結合係数を十分低めることができないが、実施形態によれば、不要波を効果的に抑圧することができ、しかも交叉幅を40μm以上としたときに、不要波の電気機械結合係数をより一層小さくし得ることがわかる。また、交叉幅が40μm以上、80μm以下の範囲では、交叉幅の変化により不要波の影響のばらつきも小さいことがわかる。
 従って、好ましくは、交叉幅が、40μm以上、すなわち、交叉幅を表面波の波長λで規格化した値で20λ以上であることが望ましい。より好ましくは、80μm以下、すなわち表面波の波長λで規格化した値で交叉幅は40λ以下であることが望ましい。
 次に、圧電基板を42°YカットLiTaOから、0°のYカットのLiNbO基板に変更し、上記実験例と同様にして、音速V1と音速V2との音速差を凹部としての溝17,18の形状を変化させることにより変化させた。この場合、中央領域R2の音速V1は3653m/秒である。第1,第2のエッジ領域R3,R4の音速V2が、3233m/秒以上、3583m/秒以下となるように、溝17,18の形状を変化させた。この場合、音速V1と音速V2との音速差は70m/秒以上、420m/秒以下の範囲となる。電極指交叉幅は57μmとした。
 図9は、この音速V1と音速V2との音速差と、不要波の電気機械結合係数との関係を示す図である。図9から明らかなように、圧電基板を0°YカットのLiNbO基板とした場合においても、音速差が200m/秒以上、340m/秒以下であれば、不要波の電気機械結合係数を0.1%以下とし得ることがわかる。
 また、LiNbO基板を用いた実験においても、中央領域R2の音速V1を3653m/秒、第1,第2のエッジ領域R3,R4の音速V2を3383m/秒となるようにし、電極指交叉幅を変化させた。比較のために、凹部が設けられていない構造であることを除いては、実施形態と同様の構造を第2の比較例として用意した。この場合、音速V1と音速V2との音速差は、実施形態では、270m/秒であり、第2の比較例では0である。
 上記交叉幅を20μm以上、80μm以下の範囲で、変化させ、上記実施形態及び第2の比較例の弾性波装置を作製した。
 図10は、電極指交叉幅と、不要波の電気機械結合係数との関係を示す。図10より第2の比較例では、電極指交叉幅を変化させても、不要波の電気機械結合係数を効果的に低めることができなかった。
 これに対して、上記実施形態では、LiNbO基板を用いた場合においても、第2の比較例に比べ、不要波の電気機械結合係数を十分に小さくすることができる。また、交叉幅が40μm以上であれば、不要波の電気機械結合係数をより一層小さくすることができ、しかも交叉幅の変化による不要波の電気機械結合係数のばらつきも小さいことがわかる。従って、好ましくは、交叉幅40μm以上、表面波の波長λで規格化した値として20λ以上であることが望ましい。より好ましくは、交叉幅80μm以下、表面波の波長λで規格化した値において、40λ以下であることが望ましい。
 上記のように、弾性波装置1では、音速V1と音速V2との音速差が200m/秒以上、340m/秒以下であることが望ましく、それによって、不要波をより一層効果的に抑圧し得ることがわかる。なお、上記実施形態では、第1,第2のエッジ領域R3,R4の形成に際し、溝17,18を形成したが、本発明における凹部は、溝に限らず、様々な形状に変更することができる。
 また、上記溝17,18の開口部の寸法、溝17,18の底面の寸法、及び溝17,18の側面の傾斜角度等を変化させることにより、音速差を容易に調整することができる。
 図11(a)~図11(c)は、弾性波装置1の製造方法を説明するための各斜視図である。まず、図11(a)に示すように、一方主面2a上に、凹部としての溝17,18が設けられている圧電基板2を用意する。溝17,18を設ける方法は、特に限定されず、レーザー加工や、マスクを載置した後に、エッチングする方法などの適宜の方法を用いることができる。
 次に、図11(b)に示すように、圧電基板2の一方主面2a上に1層目の金属膜を成膜する。それによって、第1,第2のバスバー11,12、第1,第2の電極指13,14が形成される。この場合、蒸着、スパッタリングなどの堆積法で成膜することにより、第1,第2の電極指13,14が、図1(a)に示した、溝17,18に入り込むことになる。従って、図1(a)及び図1(b)に示したように、第1,第2の電極指13,14が溝17,18内に入り込むように、第1,第2の電極指13,14が形成される。次に、図11(c)に示すように、第1,第2のバスバー11,12上に、2層目の金属膜15,16を成膜する。このようにして、弾性波装置1を得ることができる。
 上記製造方法から明らかなように、第1,第2のエッジ領域R3,R4の形成に際し、あらかじめ溝17,18が設けられている圧電基板2を用意した後に、1回の成膜を行うだけで、第1,第2のエッジ領域R3,R4を形成することができる。従って、製造工程の簡略化及びコストの低減を果たし得ることがわかる。
 上記実施形態では、1ポート型弾性波共振子につき説明したが、本発明は、弾性波共振子に限らず、弾性波フィルタなどのさまざまな弾性波装置に適用することができる。
1…弾性波装置
2…圧電基板
2a…一方主面
3…IDT電極
4,5…反射器
11,12…第1,第2のバスバー
13,14…第1,第2の電極指
13a…上面
15,16…金属膜
17,18…溝
17a…底面
17b,17c…側面
21,22…溝
21a…底面
21b,21c…側面

Claims (17)

  1.  圧電基板と、
     前記圧電基板上に設けられたIDT電極とを備え、
     前記IDT電極が、第1のバスバーと、前記第1のバスバーと隔てられて配置された第2のバスバーと、前記第1のバスバーに一端が接続されている複数本の第1の電極指と、前記第2のバスバーに一端が接続されている複数本の第2の電極指とを有し、
     前記複数本の第1の電極指と、前記複数本の第2の電極指とが互いに間挿し合うように配置されており、前記第1の電極指と前記第2の電極指とが弾性波伝搬方向において重なり合っている部分を交叉領域とした場合に、該交叉領域が前記第1,第2の電極指が延びる方向において、中央側に位置している中央領域と、前記中央領域の両側に配置された第1及び第2のエッジ領域とを有し、
     前記第1及び第2のエッジ領域において、前記圧電基板上に凹部が設けられており、前記第1,第2の電極指は前記凹部内に入り込んでおり、かつ、前記凹部内において前記圧電基板上に配置されている、弾性波装置。
  2.  前記中央領域における弾性波の音速をV1、前記第1,第2のエッジ領域における弾性波の音速をV2、前記第1,第2のエッジ領域の前記中央領域とは反対側の領域における弾性波の音速をV3とした場合、V3>V1>V2とされている、請求項1に記載の弾性波装置。
  3.  前記音速V1と、前記音速V2との音速差が200m/秒以上、340m/秒以下である、請求項2に記載の弾性波装置。
  4.  前記第1及び第2の電極指において、前記凹部内に至っている部分が、前記圧電基板よりもヤング率が低い材料からなる、請求項1~3のいずれか1項に記載の弾性波装置。
  5.  前記第1,第2の電極指の前記凹部内に至っている部分が、金属からなる、請求項4に記載の弾性波装置。
  6.  前記金属が、Au、Cu、Pt、W及びAlからなる群から選択された少なくとも1種または該少なくとも1種を主体とする合金からなる少なくとも1層の金属層を含む、請求項5に記載の弾性波装置。
  7.  前記第1,第2の電極指の前記凹部に至っている部分の密度が、前記圧電基板の密度よりも高い、請求項1~6のいずれか1項に記載の弾性波装置。
  8.  前記凹部に至っている部分が、Au、Cu、Pt及びWからなる群から選択された1種の金属または該金属を主体とする合金からなる、請求項7に記載の弾性波装置。
  9.  前記凹部が、前記弾性波伝搬方向に延びる溝である、請求項1~8のいずれか1項に記載の弾性波装置。
  10.  前記溝の前記第1,第2の電極指が延びる方向に沿う断面形状が逆台形である、請求項9に記載の弾性波装置。
  11.  前記溝の前記第1及び第2の電極指の延びる方向に沿う断面形状が、丸みを帯びた形状とされている、請求項9に記載の弾性反装置。
  12.  前記溝が、前記弾性波伝搬方向において、前記第1の電極指または、前記第2の電極指の幅方向全幅に至っている、請求項1~11のいずれか1項に記載の弾性波装置。
  13.  前記溝が、前記第1または第2の電極指の前記弾性波伝搬方向に沿う幅方向寸法以下とされている、請求項1~11のいずれか1項に記載の弾性波装置。
  14.  前記溝が、前記弾性波伝搬方向において、前記第1または第2の電極指の幅方向寸法よりも大きく、前記第1,第2の電極指の幅方向端縁を越えて弾性波伝搬方向外側に延びている、請求項1~10のいずれか1項に記載の弾性波装置。
  15.  前記溝が、前記複数本の第1の電極指または前記複数本の第2の電極指の凹部を連ねるように設けられている、請求項1~10のいずれか1項に記載の弾性波装置。
  16.  一方主面上に複数の凹部が設けられている圧電基板の前記一方主面上に、第1のバスバー、第2のバスバー、複数本の第1の電極指及び複数本の第2の電極指を有するIDT電極を形成する工程を備え、
     前記IDT電極の形成に際し、前記複数本の第1,第2の電極指が、弾性波伝搬方向からみたときに重なり合っている交叉領域において、前記交叉領域が、中央領域と、前記第1及び第2の電極指の延びる方向において前記中央領域の外側に位置している第1,第2のエッジ領域とを有し、
     前記IDT電極の形成に際し、前記凹部が前記第1,第2のエッジ領域に位置するように前記IDT電極を形成する、弾性波装置の製造方法。
  17.  前記第1,第2のバスバーの少なくとも一部に2層目の金属膜を成膜する、請求項16に記載の弾性波装置の製造方法。
PCT/JP2016/076988 2015-11-17 2016-09-13 弾性波装置及びその製造方法 WO2017086004A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/933,506 US11456716B2 (en) 2015-11-17 2018-03-23 Elastic wave device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015224940 2015-11-17
JP2015-224940 2015-11-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/933,506 Continuation US11456716B2 (en) 2015-11-17 2018-03-23 Elastic wave device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2017086004A1 true WO2017086004A1 (ja) 2017-05-26

Family

ID=58718599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076988 WO2017086004A1 (ja) 2015-11-17 2016-09-13 弾性波装置及びその製造方法

Country Status (2)

Country Link
US (1) US11456716B2 (ja)
WO (1) WO2017086004A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020209359A1 (ja) * 2019-04-12 2020-10-15
WO2021149471A1 (ja) * 2020-01-20 2021-07-29 株式会社村田製作所 弾性波装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11811387B2 (en) * 2015-04-24 2023-11-07 Murata Manufacturing Co., Ltd. Elastic wave device
CN110140295B (zh) * 2017-01-13 2023-02-28 株式会社村田制作所 弹性波装置
DE102018124372A1 (de) * 2018-10-02 2020-04-02 RF360 Europe GmbH Elektroakustischer Resonator
WO2022087825A1 (zh) * 2020-10-27 2022-05-05 华为技术有限公司 谐振器及其制作方法、滤波器、电子设备
US12040774B2 (en) * 2021-03-29 2024-07-16 Rf360 Singapore Pte. Ltd. Site-selective piezoelectric-layer trimming

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186808A (ja) * 2011-03-07 2012-09-27 Triquint Semiconductor Inc トリミング効果とピストンモードでの不安定性を最小化する音響波導波装置および方法
JP2013544041A (ja) * 2011-03-25 2013-12-09 パナソニック株式会社 高次横モード波を抑制した弾性波デバイス
WO2015119025A1 (ja) * 2014-02-04 2015-08-13 株式会社村田製作所 弾性波装置
JP2015188123A (ja) * 2014-03-26 2015-10-29 太陽誘電株式会社 弾性表面波デバイス及びフィルタ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011018913A1 (ja) * 2009-08-10 2011-02-17 株式会社村田製作所 弾性境界波装置
US7939989B2 (en) 2009-09-22 2011-05-10 Triquint Semiconductor, Inc. Piston mode acoustic wave device and method providing a high coupling factor
DE102010005596B4 (de) 2010-01-25 2015-11-05 Epcos Ag Elektroakustischer Wandler mit verringerten Verlusten durch transversale Emission und verbesserter Performance durch Unterdrückung transversaler Moden

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186808A (ja) * 2011-03-07 2012-09-27 Triquint Semiconductor Inc トリミング効果とピストンモードでの不安定性を最小化する音響波導波装置および方法
JP2013544041A (ja) * 2011-03-25 2013-12-09 パナソニック株式会社 高次横モード波を抑制した弾性波デバイス
WO2015119025A1 (ja) * 2014-02-04 2015-08-13 株式会社村田製作所 弾性波装置
JP2015188123A (ja) * 2014-03-26 2015-10-29 太陽誘電株式会社 弾性表面波デバイス及びフィルタ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020209359A1 (ja) * 2019-04-12 2020-10-15
WO2020209359A1 (ja) * 2019-04-12 2020-10-15 株式会社村田製作所 弾性波装置
JP7176622B2 (ja) 2019-04-12 2022-11-22 株式会社村田製作所 弾性波装置
WO2021149471A1 (ja) * 2020-01-20 2021-07-29 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
US20180212581A1 (en) 2018-07-26
US11456716B2 (en) 2022-09-27

Similar Documents

Publication Publication Date Title
WO2017086004A1 (ja) 弾性波装置及びその製造方法
JP6179594B2 (ja) 弾性波装置
US9035725B2 (en) Acoustic wave device
JP5035421B2 (ja) 弾性波装置
JP5120461B2 (ja) チューナブルフィルタ
WO2015182521A1 (ja) 弾性波装置及びラダー型フィルタ
JP4968334B2 (ja) 弾性表面波装置
KR102306238B1 (ko) 탄성파 장치
WO2006109591A1 (ja) 弾性波素子
JP6806265B2 (ja) 弾性波フィルタ装置及びマルチプレクサ
WO2018131360A1 (ja) 弾性波装置
WO2011007690A1 (ja) 弾性表面波装置
WO2017077892A1 (ja) 弾性波装置
WO2019003909A1 (ja) 弾性波装置及び複合フィルタ装置
KR102448414B1 (ko) 탄성파 장치
JP5176863B2 (ja) 弾性波装置
WO2009090715A1 (ja) 弾性表面波装置
JP2009194895A (ja) 弾性表面波装置
JP2011041082A (ja) 一ポート型弾性波共振子及び弾性波フィルタ装置
JP4055651B2 (ja) 表面波装置
WO2023048256A1 (ja) 弾性波装置
WO2016039026A1 (ja) 弾性表面波装置
WO2009090713A1 (ja) 弾性表面波装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP