WO2020209130A1 - 液体微細化装置 - Google Patents

液体微細化装置 Download PDF

Info

Publication number
WO2020209130A1
WO2020209130A1 PCT/JP2020/014631 JP2020014631W WO2020209130A1 WO 2020209130 A1 WO2020209130 A1 WO 2020209130A1 JP 2020014631 W JP2020014631 W JP 2020014631W WO 2020209130 A1 WO2020209130 A1 WO 2020209130A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
liquid
humidity
humidification
rotation speed
Prior art date
Application number
PCT/JP2020/014631
Other languages
English (en)
French (fr)
Inventor
将秀 福本
末広 善文
剛也 重信
訓央 清本
広大 横山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019073885A external-priority patent/JP7270120B2/ja
Priority claimed from JP2019079461A external-priority patent/JP7133755B2/ja
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202080024159.0A priority Critical patent/CN113613793B/zh
Priority to CN202310807365.4A priority patent/CN116857737A/zh
Publication of WO2020209130A1 publication Critical patent/WO2020209130A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • F24F6/16Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/10Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0008Control or safety arrangements for air-humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity

Definitions

  • the present disclosure relates to a liquid miniaturization device that refines a liquid, impregnates the inhaled air with the micronized liquid, and blows it out.
  • a liquid miniaturization device that miniaturizes water, impregnates the inhaled air with the finely divided water, and blows it out
  • a liquid for miniaturizing water is provided in an air passage between a suction port for sucking air, an outlet for blowing out the sucked air, and an air passage between the suction port and the outlet. It is equipped with a miniaturization room.
  • the liquid miniaturization chamber includes a water storage unit and a pumping pipe fixed to the rotating shaft of the rotary motor. The pumping pipe is rotated by a rotary motor to pump the water stored in the water storage unit and radiate the pumped water in the centrifugal direction. When the radiated water collides with the collision wall, the water is refined.
  • the conventional liquid miniaturization device executes the humidification operation while performing feedback control based on the indoor humidity (humidity of the sucked air).
  • Such a liquid miniaturizing device executes a humidifying operation when the indoor humidity is insufficient for the target humidity, and stops the humidifying operation when the indoor humidity exceeds the target humidity.
  • the conventional liquid miniaturization device is connected to the water storage unit and is provided with a drain pipe (drainage port) for draining the water stored in the water storage unit.
  • a gap is formed between the drain pipe (drain port) and the pump pipe (pump port) by the rotation of the pump pipe, and the water in the water storage section is drained from the drain pipe (drain port). It suppresses that. That is, the conventional liquid miniaturization device controls the drainage depending on the presence or absence of rotation of the pumping pipe.
  • the rotation of the pumping pipe is repeatedly executed and stopped, and as a result, water is stored.
  • the drainage of water from the department and the supply of water to the water storage department will be repeated. That is, in the conventional liquid miniaturization device, there is a concern that the amount of water used (displacement amount) will increase when the feedback control of the humidification amount in the humidification operation is performed.
  • the present disclosure has been made to solve the above problems, and provides a liquid miniaturization device capable of reducing the amount of water (liquid) used when feedback control of the humidification amount in the humidification operation is performed. It is something to do.
  • the liquid miniaturization device of the present disclosure is a liquid miniaturization device in which the air sucked from the suction port contains the finely divided liquid and is blown out from the outlet.
  • the liquid miniaturization device includes a pumping pipe, a collision wall, a storage unit, and a control unit.
  • the pumping pipe is tubular and has a pumping port downward in the vertical direction, and discharges the liquid pumped from the pumping port in the centrifugal direction as the rotation shaft rotates.
  • the collision wall miniaturizes the liquid by colliding with the liquid discharged from the pumping pipe.
  • the storage section is provided below the pumping pipe in the vertical direction and stores the liquid pumped from the pumping port.
  • the drain port drains the liquid at the bottom surface of the reservoir.
  • the control unit controls the liquid miniaturization operation in the liquid miniaturization device.
  • the suction port is communicated with a blower having a humidity recovery unit.
  • the pumping pipe rotates at any rotation speed in the range from the first rotation speed to the second rotation speed, which is higher than the first rotation speed.
  • a vortex is generated in the liquid in the reservoir inside the pumping pipe by the rotation, and the pumping port and the draining port are located at the center of the vortex. It is the number of revolutions that forms a gap that communicates with each other to prevent the liquid in the storage unit from flowing into the drainage port.
  • the control unit is characterized in that, when it is determined that the humidity of the air sucked from the suction port exceeds the target humidity, the pumping pipe is rotated at the first rotation speed.
  • liquid miniaturization device capable of reducing the amount of liquid used in the case of performing feedback control of the humidification amount in the humidification operation.
  • FIG. 1 is a schematic perspective view of the liquid miniaturization apparatus according to the first embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view showing the internal configuration of the liquid miniaturization apparatus according to the first embodiment of the present disclosure.
  • FIG. 3 is a diagram for explaining a water stopping mechanism of a water storage unit by a drain pipe and a pump pipe in the liquid miniaturization apparatus according to the first embodiment of the present disclosure.
  • FIG. 4 is a schematic perspective view of a heat exchange air device including the liquid miniaturization device according to the first embodiment of the present disclosure.
  • FIG. 5 is a block diagram showing a configuration of a humidification control unit in the liquid miniaturization apparatus according to the first embodiment of the present disclosure.
  • FIG. 6 is a flowchart showing a humidification treatment procedure by the liquid miniaturization apparatus according to the first embodiment of the present disclosure.
  • FIG. 7 is a flowchart showing a humidification treatment procedure by the liquid miniaturization apparatus according to the first embodiment of the present disclosure.
  • FIG. 8 is a flowchart showing a water supply treatment procedure by the liquid miniaturization apparatus according to the first embodiment of the present disclosure.
  • FIG. 9 is a flowchart showing a water miniaturization treatment procedure by the liquid miniaturization apparatus according to the first embodiment of the present disclosure.
  • FIG. 10 is a flowchart showing a wastewater treatment procedure by the liquid miniaturization apparatus according to the first embodiment of the present disclosure.
  • FIG. 10 is a flowchart showing a wastewater treatment procedure by the liquid miniaturization apparatus according to the first embodiment of the present disclosure.
  • FIG. 11 is a flowchart showing a humidification treatment procedure by the liquid miniaturization apparatus according to the second embodiment of the present disclosure.
  • FIG. 12 is a flowchart showing a humidification treatment procedure by the liquid miniaturization apparatus according to the second embodiment of the present disclosure.
  • FIG. 13 is a flowchart showing a water supply treatment procedure by the liquid miniaturization apparatus according to the second embodiment of the present disclosure.
  • FIG. 14 is a flowchart showing a wastewater treatment procedure by the liquid miniaturization apparatus according to the second embodiment of the present disclosure.
  • the liquid miniaturization device of the present disclosure is a liquid miniaturization device in which the air sucked from the suction port is impregnated with finely divided water and blown out from the outlet.
  • the liquid miniaturization device includes a pumping pipe, a collision wall, a storage unit, and a control unit.
  • the pumping pipe is tubular and has a pumping port downward in the vertical direction, and discharges the liquid pumped from the pumping port in the centrifugal direction as the rotation shaft rotates.
  • the collision wall refines the liquid by colliding with the liquid discharged from the pumping pipe.
  • the storage section is provided below the pumping pipe in the vertical direction and stores the liquid pumped from the pumping port.
  • the control unit controls a drainage port for discharging the liquid at the bottom surface of the storage unit and a liquid miniaturization operation in the liquid miniaturization device.
  • the suction port is communicated with a blower having a humidity recovery unit.
  • the pumping pipe rotates at any rotation speed in the range from the first rotation speed to the second rotation speed, which is higher than the first rotation speed.
  • a vortex is generated in the liquid in the reservoir inside the pumping liquid port by the rotation, and the pumping liquid port and the drainage port are located at the center of the vortex.
  • control unit is characterized in that the pumping pipe is rotated at the first rotation speed when it is determined that the humidity of the air sucked from the suction port exceeds the target humidity.
  • the control unit determines that the humidity of the air sucked from the suction port exceeds the target humidity during the humidification operation (liquid miniaturization operation, particularly water miniaturization operation). Even if there is, since the pumping pipe is rotated at the first rotation speed, the discharge of the liquid in the storage portion can be suppressed. Therefore, the control unit can prevent the liquid from being discharged from the storage unit and reduce the amount of the liquid used even in a situation where the humidity exceeds the target humidity and the humidity decreases repeatedly. That is, in the case of performing feedback control of the humidification amount in the humidification operation, the liquid miniaturization device capable of reducing the amount of liquid used can be obtained.
  • the control unit when the humidity of the air sucked from the suction port is insufficient to the target humidity, the control unit sets the third rotation speed in the range from the first rotation speed to the second rotation speed. The pumping pipe is rotating. By doing so, in the feedback control of the humidification amount, when the humidity of the air sucked from the suction port is insufficient to the target humidity, the control unit can humidify the necessary humidification amount toward the target humidity. it can.
  • the control unit determines whether or not the humidity of the air sucked from the suction port exceeds the target humidity every first period. By doing so, when the feedback control of the humidification amount in the humidification operation is performed, the humidification amount is adjusted every first period, so that the humidity of the air sucked from the suction port is increased due to some factor (for example, use of the bathroom). Even if it changes suddenly, the amount of humidification can be effectively adjusted toward the target humidity.
  • the control unit determines that the humidity of the air sucked from the suction port exceeds the target humidity for a second period longer than the first period, the control unit continues. It is preferable to stop the rotation of the pumping pipe. By doing so, if the condition in which the indoor air has reached the target humidity continues for the second period, the humidification of the air sucked from the suction port is stopped. That is, in the period from the stop of humidification to the resumption of humidification, the amount of liquid used can be reduced by the amount of liquid (humidification amount) consumed by humidification by rotation at the first rotation speed.
  • the control unit determines that the humidity of the air sucked from the suction port exceeds the target humidity, and the humidity of the air sucked from the suction port is the target. It is preferable to stop the rotation of the pumping pipe when the first humidity is higher than the humidity. By doing so, the control unit can suppress excessive humidification of the air sucked from the suction port, so that the humidity in the room can be controlled more appropriately.
  • the blower device is configured to allow the air whose humidity has been recovered by the humidity recovery unit to flow into the suction port. By doing so, the air after the humidity is recovered flows into the liquid miniaturization device (suction port), so that the humidity in the room can be controlled more appropriately.
  • FIG. 1 is a schematic perspective view of the liquid miniaturization apparatus according to the first embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view showing the internal configuration of the liquid miniaturization apparatus according to the first embodiment of the present disclosure.
  • the liquid miniaturization device 1 includes a suction port 2 for sucking air and an outlet 3 for blowing out air sucked from the suction port 2.
  • the suction port 2 is provided on the side surface of the liquid miniaturization device 1.
  • the air outlet 3 is provided above the liquid miniaturization device 1.
  • the liquid miniaturization device 1 includes a liquid miniaturization chamber 7 provided in the air passages 4 to 6, and the suction port 2, the liquid miniaturization chamber 7, and the air outlet 3 communicate with each other. ..
  • the liquid miniaturization chamber 7 is the main part of the liquid miniaturization apparatus 1 and is where water is miniaturized.
  • the air taken in from the suction port 2 is sent to the liquid miniaturization chamber 7 via the air passage 4.
  • the liquid miniaturization device 1 impregnates the air passing through the air passage 4 with the water refined in the liquid miniaturization chamber 7, and the air containing the water is introduced into the air passages 5 and 6. It is configured to blow out from the outlet 3 in order.
  • the air passage 5 is configured to change the direction in which the air containing water flows downward in the vertical direction of the liquid miniaturization chamber 7 to the direction in which it flows upward in the vertical direction on the outer circumference thereof.
  • the air passage 6 is configured so that the air passing through the air passage 5 flows upward in the vertical direction as it is and is blown out from the air outlet 3.
  • the liquid miniaturization chamber 7 is provided with a tubular collision wall 8 having openings at the top and bottom.
  • the collision wall 8 is fixed in the liquid miniaturization chamber 7.
  • the liquid miniaturization chamber 7 is provided with a tubular pumping pipe 9 (pumping pipe) for pumping (pumping) water while rotating inside surrounded by the collision wall 8.
  • the pumping pipe 9 has an inverted conical hollow structure, and is provided with a circular pumping port 9a (pumping port) below.
  • a rotating shaft 10 arranged in the vertical direction is fixed to the center of the top surface of the inverted cone shape above the pumping pipe 9.
  • the rotary motor 11 is configured to execute a rotary motion based on a control signal from the humidification control unit 30 described later.
  • the pumping pipe 9 is provided with a plurality of rotating plates 12 formed so as to project outward from the outer surface of the pumping pipe 9 on the top surface side of the inverted cone.
  • the plurality of rotating plates 12 are formed so as to project outward from the outer surface of the pumping pipe 9 by providing a predetermined interval in the axial direction of the rotating shaft 10 between the vertically adjacent rotating plates 12. Since the rotating plate 12 rotates together with the pumping pipe 9, a horizontal disk shape coaxial with the rotating shaft 10 is preferable.
  • the number of rotating plates 12 is appropriately set according to the target performance or the dimensions of the pumping pipe 9.
  • the wall surface of the pumping pipe 9 is provided with a plurality of openings 13 penetrating the wall surface of the pumping pipe 9.
  • Each of the plurality of openings 13 is provided at a position where the inside of the pumping pipe 9 and the upper surface of the rotating plate 12 formed so as to project outward from the outer surface of the pumping pipe 9 communicate with each other.
  • a water storage unit 14 (storage unit) is provided below the pumping pipe 9 in the vertical direction to store the water pumped by the pumping pipe 9 from the pumping port 9a.
  • the depth of the water storage unit 14 is designed so that a part of the lower part of the pumping pipe 9, for example, about one-third to one-hundredth of the height of the cone of the pumping pipe 9 is immersed. .. This depth can be designed according to the amount of pumped water required.
  • the bottom surface of the water storage unit 14 is formed in a mortar shape (bowl shape) that inclines downward toward the pumping port 9a (see FIG. 3).
  • Water is supplied to the water storage unit 14 by the water supply unit 15.
  • a water supply pipe 15a is connected to the water supply unit 15, and water is directly supplied from the water supply through, for example, a water pressure adjusting valve (water supply valve: not shown) by the water supply pipe 15a.
  • the water supply unit 15 is provided above the bottom surface of the water storage unit 14 in the vertical direction. Further, it is preferable that the water supply unit 15 is provided not only on the bottom surface of the water storage unit 14, but also on the upper surface of the water storage unit 14 (the surface of the maximum water level that can be stored in the water storage unit 14) in the vertical direction.
  • the water supply unit 15 may be configured to pump up only the amount of water required by the siphon principle from a water tank provided outside the liquid miniaturization chamber 7 in advance and supply water to the water storage unit 14.
  • the liquid miniaturization device 1 is provided with a water level detection unit 18 for detecting the water level of the water storage unit 14.
  • the water level detection unit 18 has a float switch 18a.
  • the float switch 18a is turned off when the water in the water storage unit 14 has not reached a certain water level (full state), and is turned on when the water in the water storage unit 14 has reached a certain water level (full state). .. That is, the water level detection unit 18 detects whether or not the water in the water storage unit 14 has a constant water level (full state) by the float switch 18a. Then, the water level detection unit 18 outputs information regarding the on / off of the float switch 18a to the humidification control unit 30.
  • the humidification control unit 30 supplies water from the water supply unit 15 to the water storage unit 14.
  • the first time T1 is set to a time during which the water in the water storage unit 14 is not reduced to the amount of water that cannot be pumped by the humidification treatment, and is set to a fixed time (for example, 30 minutes) in the present embodiment.
  • a drainage pipe 16 is connected to the bottom surface of the water storage unit 14.
  • the circular drainage port 16a drainage port
  • the circular drainage port 16a drainage port
  • Water stoppage and drainage by the drainage pipe 16 are realized by rotation of the pumping pipe 9. That is, the drainage pipe 16 and the pumping pipe 9 constitute a water stopping mechanism and a pumping mechanism of the water storage unit 14. The details of the water stop mechanism and the drainage mechanism of the water storage unit 14 by the drainage pipe 16 and the pumping pipe 9 will be described later with reference to FIG.
  • the collision wall 8 (the space between the collision wall 8 and the water storage unit 14), it is arranged so as to separate the inside and outside of the liquid miniaturization chamber 7 and collect a part of the miniaturized water droplets.
  • a cylindrical eliminator 17 is provided. Further, the eliminator 17 is made of a porous body through which air can flow. The eliminator 17 is fixed so as to be included in the eliminator holder 19 connected to the lower part of the collision wall 8.
  • the eliminator holder 19 includes a top plate 19c, a first holding portion 19a extending vertically downward from the top plate 19c, and a top plate 19c inside the first holding portion 19a (on the pumping pipe 9 side).
  • the eliminator 17 is sandwiched and fixed between the first holding portion 19a and the second holding portion 19b of the eliminator holder 19.
  • the support portion 22 of the water flow control plate 20 is connected to the second holding portion 19b of the eliminator holder 19.
  • the eliminator 17 is arranged in the air passage 5 and circulates in the eliminator 17 to collect water droplets among the water contained in the air passing through the liquid miniaturization chamber 7. As a result, the air flowing through the air passage 5 contains only vaporized water.
  • the water flow control plate 20 is provided above the water storage unit 14 so as to cover the water storage unit 14. Specifically, the water flow control plate 20 is formed so that the outer diameter is smaller than the inner wall diameter of the water storage unit 14, and is provided so as to cover the upper part of the water storage unit 14 below the space surrounded by the eliminator 17. There is.
  • the water flow control plate 20 has a substantially disk-like shape, and an opening (not shown) having a diameter open so that the pumping pipe 9 can penetrate the water flow control plate 20 is formed in the central portion. Further, the water flow control plate 20 has a plurality of support portions 22 on the upper surface side of the outer peripheral portion (outer edge), and is fixed to the second holding portion 19b of the eliminator holder 19 via the support portions 22.
  • the water flow control plate 20 prevents noise from rising due to the generation of air bubbles in the water flow due to the rotation of the pumping pipe 9.
  • the liquid miniaturization device 1 is provided with a humidification control unit 30.
  • the humidification control unit 30 controls the humidification operation (water miniaturization operation) in the humidification process by controlling the operation operation of the liquid miniaturization device 1.
  • the humidification control unit 30 has a drainage operation (first treatment) of draining the water of the water storage unit when the number of times of water supply to the water storage unit 14 reaches a predetermined number of times during the humidification operation, and a humidification operation for a predetermined time. (Second time T2) Controls the drainage operation (second treatment) of draining the water in the water storage section when it continues.
  • the second time T2 is set to a fixed time (for example, 24 hours).
  • the humidification control unit 30 controls the drying operation in the drying process performed when the operation operation of the liquid miniaturization device 1 is stopped.
  • the liquid miniaturization device 1 does not include the humidification control unit 30, and is subjected to a humidification operation (water miniaturization operation) and a drainage operation (first treatment) by the control unit 60a (see FIG. 5) that controls the heat exchange air device 60. , Second treatment), and the drying operation may be controlled.
  • the ventilation of air from the outside suction of air from the suction port 2 is started.
  • the rotary motor 11 rotates the rotary shaft 10 at the first rotation speed R1 (for example, 2000 rpm), and the pumping pipe 9 is rotated accordingly.
  • water is supplied from the water supply unit 15 to the water storage unit 14.
  • the water supplied to the water storage unit 14 is pumped up by the pumping pipe 9 due to the centrifugal force generated by the rotation of the pumping pipe 9, and the water supplied to the water storage unit 14 is drained from the drain port 16a. Water is stopped without being done.
  • the water supplied from the water supply unit 15 is stored in the water storage unit 14. Then, after the water storage unit 14 is full, the supply of water from the water supply unit 15 to the water storage unit 14 is stopped.
  • the water stop mechanism and drainage mechanism will be described later.
  • the rotary motor 11 rotates the rotary shaft 10 at the second rotation speed R2, and the pumping pipe 9 is rotated accordingly.
  • the centrifugal force generated by the rotation causes the water stored in the water storage unit 14 to be pumped. It is pumped by 9.
  • the second rotation speed R2 of the rotary motor 11 (pumping pipe 9) is set between 2000 rpm and 4000 rpm according to the amount of humidification to the air.
  • the second rotation speed R2 may be set between 2000 rpm and 5000 rpm. Since the pumping pipe 9 has an inverted conical hollow structure, the water pumped by the rotation is pumped up along the inner wall of the pumping pipe 9. Then, the pumped water is discharged from the opening 13 of the pumping pipe 9 through the rotating plate 12 in the centrifugal direction and scattered as water droplets.
  • the water droplets scattered from the rotating plate 12 fly in the space (liquid miniaturization chamber 7) surrounded by the collision wall 8 and collide with the collision wall 8 to be miniaturized.
  • the air passing through the liquid miniaturization chamber 7 moves from above the collision wall 8 to the inside of the collision wall 8, and includes water droplets crushed (miniaturized) by the collision wall 8 from below to the outside of the collision wall 8. Move to. Then, the air containing water droplets passes through the eliminator 17.
  • the liquid miniaturization device 1 can humidify the air sucked from the suction port 2 and blow out the humidified air from the air outlet 3.
  • the liquid to be refined may be a liquid other than water, for example, a liquid such as hypochlorite water having bactericidal or deodorant properties.
  • a liquid such as hypochlorite water having bactericidal or deodorant properties.
  • FIG. 3 is a diagram for explaining a water stopping mechanism of a water storage unit by a drain pipe and a pump pipe in the liquid miniaturization apparatus according to the first embodiment of the present disclosure.
  • the rotary motor 11 (pumping pipe 9) is rotated at the first rotation speed R1 (for example, 2000 rpm)
  • the centrifugal force of the rotation is generated.
  • a vortex 24 is generated in the water of the water storage unit 14 inside the pumping pipe 9.
  • the pumping pipe 9 forms a gap 25 that communicates between the pumping port 9a and the drainage port 16a at the center of the vortex generated by its rotation.
  • the gap 25 closes the drain port 16a, and the water in the water storage unit 14 is suppressed from flowing into the drain port 16a.
  • the rotation motor 11 is rotating at the second rotation speed R2.
  • the pumping pipe 9 is rotated at a rotation speed within a predetermined range (for example, a minimum of 2000 rpm and a maximum of 4000 rpm). Any rotation speed within this predetermined range is a rotation speed that ensures prevention of water from flowing into the drain port 16a of the water storage unit 14.
  • the void 25 disappears together with the vortex 24, and the water of the water storage unit 14 flows into the drain port 16a. That is, in the liquid miniaturization device 1, the water in the water storage unit 14 can be drained from the drain port 16a by stopping the humidification operation (rotational operation of the rotary motor 11).
  • the liquid miniaturization device 1 can suppress (stop) the water of the water storage unit 14 from being drained from the drain port 16a during the humidification operation without using the drain valve for the drain pipe 16. After the humidification operation is stopped, the water in the water storage unit 14 can be drained from the drain port 16a.
  • FIG. 4 is a schematic perspective view of a heat exchange air device including the liquid miniaturization device 60 according to the first embodiment.
  • the heat exchange air device 60 includes a liquid miniaturization device 1, a humidity recovery unit 65, and a blower 67.
  • the heat exchange air device 60 takes in the outside air (air whose humidity has been recovered by passing through the humidity recovery unit 65) sucked from the outside air suction port 63 through the suction port 2 of the liquid miniaturization device 1 (FIG. 6). Blow to 1).
  • the liquid miniaturization device 1 performs a humidifying treatment on the air sucked from the suction port 2, blows out the humidified air from the air outlet 3 (see FIG. 1), and supplies the humidified air to the room through the air supply port 64.
  • the heat exchange air device 60 corresponds to the "blower" of the claim.
  • the heat exchange air device 60 has a box-shaped main body case 50 and is used, for example, in a state of being placed on the floor.
  • the top surface of the main body case 50 (the surface on which the liquid miniaturization device 1 is mounted) is provided with an inside air suction port 61, an exhaust port 62, an outside air suction port 63, and an air supply port 64. Further, a liquid miniaturization device 1 is installed on the top surface of the main body case 50.
  • a humidity recovery unit 65 and a blower 67 are provided inside the main body case 50.
  • the inside air suction port 61 is a suction port for sucking the air (inside air) in the building into the inside of the heat exchange air device 60. Specifically, the inside air suction port 61 is connected to the indoor exhaust port for sucking the inside air through a duct (not shown) extending to the ceiling surface or the wall surface of each space in the building.
  • the exhaust port 62 is a discharge port that blows the inside air from the heat exchange air device 60 to the outside. Specifically, the exhaust port 62 is connected to the outdoor exhaust port that blows out the inside air through a duct (not shown) extending to the outer wall surface of the building.
  • the outside air suction port 63 is a suction port that sucks the air (outside air) outside the building into the inside of the heat exchange air device 60. Specifically, the outside air suction port 63 is connected to the outdoor air supply port for sucking outside air through a duct (not shown) extending to the outer wall surface of the building.
  • the air supply port 64 is a discharge port that blows outside air from the heat exchange air device 60 into the room via the liquid miniaturization device 1. Specifically, the air supply port 64 is connected to the indoor air supply port that blows out outside air through a duct (not shown) extending to the ceiling surface or wall surface of each space in the building.
  • the humidity recovery unit 65 is provided in the main body case 50 at an upstream side of the blower 67.
  • the humidity recovery unit 65 has a humidity recovery (humidity exchange) function that recovers (exchanges) the humidity of the air that is sucked in by the operation of the blower 67 and passes through the inside of the heat exchange air device 60 (particularly, the air supply air passage).
  • the humidity recovery unit 65 is, for example, a desiccant type or heat pump type heat exchanger.
  • the air supply air passage sucks fresh outdoor air (outside air) from the outside air suction port 63, and passes through the humidity recovery unit 65, the blower 67, the connection duct 66, and the liquid miniaturization device 1 in this order. It is an air passage that is supplied from the air supply port 64 into the room.
  • connection duct 66 is a duct that connects and communicates the blower 67 and the suction port 2. Further, in the connection duct 66, a temperature / humidity sensor 34 is installed on the suction port 2 side of the connection duct 66.
  • the temperature / humidity sensor 34 is a sensor that senses the temperature and humidity of the air flowing through the air supply air passage (air sucked into the suction port 2).
  • the blower 67 is a device for blowing outside air from the outside air suction port 63 to the air supply port 64.
  • the blower 67 circulates the outside air inside the humidity recovery unit 65 by blowing air.
  • Examples of the blower 67 include a cross flow fan or a blower fan.
  • the blower 67 is configured to execute a blower operation based on a control signal from a control unit 60a (see FIG. 5) that controls the heat exchange air device 60.
  • the heat exchange air device 60 is provided with a water supply / drainage pipe 51.
  • the water supply and drainage to the liquid miniaturization device 1 is performed by the water supply / drainage pipe 51.
  • one end of the water supply / drainage pipe 51 is connected to the water supply pipe 15a (see FIG. 2) and the drainage pipe 16 (see FIG. 2) of the liquid miniaturization device 1, respectively.
  • the other end of the water supply / drainage pipe 51 is connected to the water supply equipment and the drainage equipment of a house or facility, respectively.
  • the heat exchange air device 60 has a control unit 60a (see FIG. 5) that controls the blowing operation of the blower 67. Further, the control unit 60a is electrically connected to the humidification control unit 30 of the liquid miniaturization device 1, receives a control signal from the humidification control unit 30, and controls the blower 67 and the liquid miniaturization device 1 in conjunction with each other. It is configured to do.
  • FIG. 5 is a block diagram showing a configuration of a humidification control unit in the liquid miniaturization apparatus according to the first embodiment of the present disclosure.
  • the humidification control unit 30 includes an input unit 30a, a storage unit 30b, a timekeeping unit 30c, a processing unit 30d, and an output unit 30e.
  • the input unit 30a has the first information regarding the operation start instruction or the operation stop instruction from the operation panel 31, the second information regarding the temperature and humidity of the indoor air from the temperature / humidity sensor 32, and the temperature of the outdoor air from the temperature sensor 33. Third information regarding the temperature and humidity of the air before humidification (air sucked into the suction port 2) from the temperature / humidity sensor 34, and fourth information regarding the on / off of the float switch 18a from the water level detection unit 18. Accepts five information.
  • the input unit 30a outputs the received first information to the fifth information to the processing unit 30d.
  • the operation panel 31 is a terminal for the user to input user input information (for example, air volume, humidification amount, blowout temperature, etc.) regarding the liquid micronization device 1 and the heat exchange air device 60, and humidifies wirelessly or by wire. It is communicably connected to the control unit 30.
  • the first information also includes user input information.
  • the temperature / humidity sensor 32 is a sensor that senses the temperature and humidity of the indoor air immediately after being taken in from the inside air suction port 61.
  • the temperature sensor 33 is a sensor that senses the temperature of the outdoor air immediately after being taken in from the outside air suction port 63.
  • the storage unit 30b contains sixth information regarding the humidification setting in the humidification operation, seventh information regarding the drainage setting in the drainage operation (first treatment, second treatment), eighth information regarding the drying setting in the drying operation, and user input information.
  • the ninth information about the setting information corresponding to is stored.
  • the storage unit 30b outputs the stored sixth information to the ninth information to the processing unit 30d.
  • the timekeeping unit 30c outputs the tenth information regarding the current time to the processing unit 30d.
  • the processing unit 30d receives the first information to the fifth information from the input unit 30a, the sixth information to the ninth information from the storage unit 30b, and the tenth information from the timekeeping unit 30c.
  • the processing unit 30d uses the received first information to the tenth information to control information regarding the humidification operation based on the humidification setting, the drainage operation based on the drainage setting (first treatment, second treatment), and the drying operation in the drying setting. To identify.
  • the processing unit 30d outputs the specified control information to the output unit 30e.
  • the output unit 30e receives control information from the processing unit 30d.
  • the output unit 30e is electrically connected to the heat exchange air device 60 (control unit 60a, blower 67), the rotary motor 11, and the water supply valve 15b. Then, the output unit 30e controls the blowing operation of the blower 67, the humidifying operation in the liquid miniaturization chamber 7 (rotational operation of the rotary motor 11), and the opening / closing operation of the water supply valve 15b based on the received control information. Output the signal (control signal).
  • the heat exchange air device 60 receives a signal from the output unit 30e, and the control unit 60a controls the blower 67 based on the received signal. Further, the rotary motor 11 and the water supply valve 15b each receive a signal from the output unit 30e, and execute their respective controls based on the received signal.
  • the humidification control unit 30 executes control of the humidification operation in the humidification treatment, control of the drainage operation in the first treatment or the second treatment, and control of the drying operation in the drying treatment, respectively.
  • FIGS. 6 to 10 are flowcharts showing a humidification treatment procedure by the liquid miniaturization apparatus according to the first embodiment of the present disclosure.
  • FIG. 8 is a flowchart showing a water supply treatment procedure by the liquid miniaturization apparatus according to the first embodiment of the present disclosure.
  • FIG. 9 is a flowchart showing a water miniaturization treatment procedure by the liquid miniaturization apparatus according to the first embodiment of the present disclosure.
  • FIG. 10 is a flowchart showing a wastewater treatment procedure by the liquid miniaturization apparatus according to the first embodiment of the present disclosure.
  • the blower 67 executes the blowing operation not by the control signal from the control unit 60a but by the control signal from the humidification control unit 30.
  • the humidification control unit 30 When a control signal regarding the start of the humidification process of the liquid miniaturization device 1 is input to the humidification control unit 30, the humidification control unit 30 first operates the blower 67, and the blower 67 sends the control signal, as shown in FIG. The ventilation is started (step S01). As a result, air flows into the liquid miniaturization device 1 (liquid miniaturization chamber 7). Then, the humidification control unit 30 resets the water level detection counter N and sets the water level detection counter N to “0” (step S02).
  • the water level detection counter N is a value indicating the number of times water is supplied to the water storage unit 14 (the number of times water is supplied until the water storage unit 14 is full). Then, the humidification control unit 30 executes the water supply treatment of water to the water storage unit 14 (step S03).
  • the humidification control unit 30 operates the rotary motor 11 at the first rotation speed R1 (for example, 2000 rpm) so that the water stop mechanism functions (step S20).
  • the humidification control unit 30 opens the water supply valve 15b of the water supply unit 15 and starts supplying water to the water storage unit 14 (step S21).
  • the humidification control unit 30 determines whether or not the water level of the water storage unit 14 is full based on the fifth information from the water level detection unit 18 (step S22). As a result, when the water in the water storage unit 14 is not full (No in step S22), the humidification control unit 30 continues the supply of water to the water storage unit 14 as it is (returns to step S22).
  • step S22 when the water in the water storage unit 14 is full (Yes in step S22), the humidification control unit 30 closes the water supply valve 15b and stops the supply of water to the water storage unit 14 (step). S23). Then, the humidification control unit 30 adds "1" to the water level detection counter N (step S24).
  • step S24 the water supply process of water to the water storage unit 14 is completed. However, the water supply process ends in a state where the rotary motor 11 is rotated at the first rotation speed R1.
  • the humidification control unit 30 executes a water miniaturization treatment as a humidification operation in the humidification treatment (step S04).
  • the humidification control unit 30 humidifies (water miniaturization) based on the first information from the operation panel 31 and the fourth information from the temperature / humidity sensor 34. It is determined whether or not it is necessary (step S30). As a result, when humidification is required (Yes in step S30), the humidification control unit 30 rotates the rotary motor 11 at the second rotation speed R2, and a humidification operation (water miniaturization operation) based on the humidification setting. ) Is started (step S31).
  • the second rotation speed R2 is a rotation speed determined by the humidification condition (for example, the amount of humidification toward the target humidity), and at least the first rotation speed R1 or more is set.
  • step S32 it is determined whether or not the time measured with the operation time of the rotary motor 11 in step S31 as the start time has elapsed the predetermined time (fifth time T5) (step S32).
  • the humidification control unit 30 continues the water miniaturization operation as it is (returns to step S32).
  • the humidification control unit 30 proceeds to the next step (step S05) while continuing the water miniaturization operation as it is.
  • the fifth time T5 is an interval time for feedback control of humidification, and is set to, for example, 5 minutes.
  • step S30 when humidification is not necessary (No in step S30), the humidification control unit 30 operates the rotary motor 11 at the fourth rotation speed R4 (for example, 2000 rpm) and at least stops it.
  • the water mechanism is in a functioning state (step S33). If the rotary motor 11 is already rotating at the fourth rotation speed R4, the fourth rotation speed R4 is maintained. Then, it is determined whether or not the time measured with the operation time point or the operation maintenance time point of the rotary motor 11 in step S33 as the start time has elapsed a predetermined time (sixth time T6) (step S34).
  • the humidification control unit 30 continues the water stop state as it is (returns to step S34).
  • the humidification control unit 30 proceeds to the next step (step S35).
  • the sixth time T6 is an interval time for feedback control of humidification, and is set to, for example, 5 minutes.
  • the fifth hour T5 (more accurately, the time required for water supply in step S06 added to the fifth hour T5) or the sixth hour T6 corresponds to the "first period" of the claims.
  • step S35 it is determined whether or not the time measured with the operation time of the rotary motor 11 in step S33 as the start time has passed the predetermined time (7th time T7) (step S35).
  • the humidification control unit 30 returns to step S30 with the rotary motor 11 rotated at the fourth rotation speed R4, and humidifies again.
  • the humidification control unit 30 stops the rotary motor 11 (step S36).
  • the humidification control unit 30 returns to step S02 and restarts the operation of the humidification process of the liquid miniaturization device 1.
  • the seventh time T7 is set to, for example, 2 hours.
  • the seventh hour T7 corresponds to the "second period" of the claims.
  • the time measured with the operation time of the rotary motor 11 in step S31 as the start time is a predetermined time (the first time) while the water miniaturization operation is continued as it is. It is determined whether or not one hour T1) has passed (step S05).
  • the humidification control unit 30 executes the water supply treatment (see FIG. 8) to the water storage unit 14, and fills the water storage unit 14 with water.
  • the first time T1 is a time set in anticipation of a decrease in the amount of water in the water storage unit 14 that is reduced by the humidification operation, and is set to, for example, 30 minutes.
  • the humidification control unit 30 executes the processes after step S10 (see FIG. 7).
  • the second time T2 is a time measured with the reset time of the water level detection counter N in step S02 as the start time, and is set to, for example, 24 hours.
  • the second time T2 may be the time after the liquid miniaturization device 1 is started or the time after the previous drying operation is performed.
  • the humidification control unit 30 fills the water with water M times (for example, 10 times) based on the water level detection counter N.
  • step S08 It is determined whether or not the above amount has been exceeded. As a result, when the water level detection counter N does not exceed M times (No in step S08), the process returns to step S04, and the humidification control unit 30 repeatedly executes the humidification operation. On the other hand, when the water level detection counter N exceeds M times (Yes in step S08), the humidification control unit 30 causes the water storage unit 14 to execute the drainage treatment of water (step S09).
  • the treatments in steps S08 and S09 are drainage operations corresponding to the first treatment.
  • the humidification control unit 30 stops the rotary motor 11 so that the water stop mechanism does not function (step S40). As a result, drainage of water from the water storage unit 14 is started. Then, it is determined whether or not the time measured with the stop time of the rotary motor 11 in step S40 as the start time has elapsed the predetermined time (eighth time T8) (step S41). As a result, when the eighth time T8 has not elapsed (No in step S41), the humidification control unit 30 continues the drainage state as it is (returns to step S41).
  • the humidification control unit 30 considers that the water in the water storage unit 14 has been drained, and ends the drainage treatment of the water in the water storage unit 14.
  • the eighth time T8 is a time during which the water in the water storage unit 14 is surely drained (time for drainage even when the water is full), and is set to, for example, one minute.
  • step S09 When the water drainage treatment (step S09) of the water storage unit 14 is completed, the humidification control unit 30 returns to step S02 and repeats each subsequent step.
  • step S10 to be performed when the second time T2 has elapsed will be described.
  • step S10 When the second time T2 has elapsed (Yes in step S07), as shown in FIG. 7, the humidification control unit 30 causes the water storage unit 14 to execute the water drainage treatment (see FIG. 10) (step S10). ..
  • the treatments in steps S07 and S10 are drainage operations corresponding to the second treatment.
  • the humidification control unit 30 rotates the rotary motor 11 at the third rotation speed R3 (for example, 2000 rpm) to perform the first drying operation (water storage unit 14).
  • the miniaturization operation in the absence of water) is started (step S11).
  • step S12 when a predetermined time (third time T3) has elapsed from the start of the first drying operation (Yes in step S12), the humidification control unit 30 stops the rotary motor 11 (step S13). On the other hand, when the third time T3 has not elapsed (No in step S12), the humidification control unit 30 continues the first drying operation as it is (returns to step S12). That is, in the first drying operation, the pumping pipe 9 is rotated in the state where there is no water in the water storage unit 14, and the water droplets remaining attached to the pumping pipe 9 and the like are removed.
  • the third time T3 is a time for removing water droplets by rotating the pumping pipe 9, and is set to, for example, 30 seconds.
  • the second drying operation is performed in which air is circulated in the liquid miniaturization device 1 (liquid miniaturization chamber 7) in a state where the miniaturization operation is stopped. Then, when the predetermined time (fourth time T4) has not elapsed since the second drying operation was started (No in step S14), the humidification control unit 30 continues the second drying operation as it is (step). Return to S14). That is, in the second drying operation, the ventilation operation into the liquid miniaturization device 1 (liquid miniaturization chamber 7) is performed, and the inside of the device is dried (removal of water remaining in the device).
  • the fourth time T4 is a drying time due to ventilation into the apparatus, and is set to, for example, one hour.
  • the humidification control unit 30 determines whether or not a control signal for stopping the operation of the humidification process of the liquid miniaturization device 1 is input (Yes). Step S15). As a result, when the control signal for stopping the operation of the humidification process is not input (No in step S15), the humidification control unit 30 returns to step S02 and restarts the operation of the humidification process of the liquid miniaturization device 1. Let me. On the other hand, when the control signal for stopping the operation of the humidification process is input (Yes in step S15), the humidification control unit 30 stops the blower 67 (step S16). Then, the humidification control unit 30 ends the operation of the humidification process of the liquid miniaturization device 1. As a result, the liquid miniaturization device 1 is in a state of waiting for an operation start instruction from the operation panel 31.
  • the processes in the first drying operation (steps S11 to S13) and the second drying operation (steps S13 to S14) are the drying operations.
  • first rotation speed R1, the second rotation speed R2 (the smallest 2000 rpm in the rotation speed range), the third rotation speed R3, and the fourth rotation speed R4 correspond to the "first rotation speed” of the claims. ..
  • the second rotation speed R2 (maximum 4000 rpm in the rotation speed range) corresponds to the "second rotation speed” of the claims.
  • the second rotation speed R2 (2000 rpm-4000 rpm in the rotation speed range) corresponds to the "third rotation speed" of the claims.
  • each process in the humidification operation by the liquid miniaturization device 1 is executed.
  • the fourth rotation The pumping pipe 9 was controlled to rotate at a number R4 (2000 rpm). As a result, even if the liquid miniaturization device 1 determines that the humidity of the air sucked from the suction port 2 exceeds the target humidity during the humidification operation (water miniaturization operation), the fourth Since the pumping pipe 9 is rotated at the rotation speed R4, the drainage of water in the water storage unit 14 can be suppressed.
  • the liquid miniaturization device 1 can surely stop the water in the water storage unit 14 and reduce the amount of drainage of water even in a situation where the state where the humidity exceeds the target humidity and the state where the humidity falls below the target humidity are repeated. That is, in the case of performing feedback control of the humidification amount in the humidification operation, the liquid miniaturization device 1 capable of reducing the amount of water used can be obtained.
  • the humidification control unit 30 sets the pumping pipe 9 at the second rotation speed R2 (2000 rpm-4000 rpm) when the humidity of the air sucked from the suction port 2 is less than the target humidity. It was controlled to rotate.
  • the liquid micronizing device 1 can humidify the required humidification amount toward the target humidity when the humidity of the air sucked from the suction port 2 is insufficient for the target humidity. it can.
  • the humidification control unit 30 determines whether or not the humidity of the air sucked from the suction port 2 exceeds the target humidity for a predetermined period (fifth hour T5 or sixth hour T6). It was controlled to be performed every time. As a result, when the feedback control of the humidification amount in the humidification operation is performed, the humidification amount is adjusted at predetermined intervals, so that the humidity of the air sucked from the suction port 2 suddenly changes due to some factor (for example, use of the bathroom). However, the amount of humidification can be effectively adjusted toward the target humidity.
  • the humidification control unit 30 determines that the humidity of the air sucked from the suction port 2 exceeds the target humidity, and the pumping pipe 9 continues for the seventh hour T7.
  • the rotation of the (rotary motor 11) was controlled to be stopped.
  • the humidification of the air sucked from the suction port 2 is stopped. That is, in the period from the stop of humidification to the resumption of humidification, the amount of water used is reduced by the amount of water (humidification amount) consumed by humidification by rotation at the fourth rotation speed R4 (2000 rpm). Can be done.
  • the humidity recovery unit 65 is arranged on the upstream side of the liquid miniaturization device 1 in the flow of air passing through the liquid miniaturization device 1 and the humidity recovery unit 65. That is, in the liquid miniaturization device 1, the humidity recovery unit 65 is arranged so that the air whose humidity has been recovered by the humidity recovery unit 65 flows into the suction port 2. As a result, the air after the humidity is recovered by the humidity recovery unit 65 flows into the liquid miniaturization device 1 (suction port 2), so that the humidity in the room can be controlled more appropriately.
  • the humidity recovery unit 65 and the liquid miniaturization device 1 by controlling the humidity at two locations, the humidity recovery unit 65 and the liquid miniaturization device 1, a sufficient amount of humidification is secured even when a heater or the like is not installed in the humidity recovery unit 65 or the liquid miniaturization device 1. can do. In addition, energy saving can be realized by eliminating the need for a heater for securing the amount of humidification.
  • the liquid miniaturization device 1 drains the water of the water storage unit 14 when the number of times of water supply to the water storage unit 14 reaches a predetermined number (more than M times) during the humidification operation (miniaturization operation). It is configured to execute the first process. In the first treatment, since the water of the water storage unit 14 is drained every predetermined number of times the water is supplied to the water storage unit 14, the amount of water used can be reduced as compared with the case of draining the water each time.
  • the predetermined number of times is two times or more.
  • the water in the water storage unit 14 is drained. It is configured to execute the first process.
  • the water (calcium content, magnesium content, etc.) of the water storage unit 14 is executed by executing the first treatment. Water with concentrated scale components) is drained and removed. Therefore, it is possible to suppress an increase in the concentration of the scale component of water in the water storage unit 14.
  • the liquid miniaturization device 1 is configured to execute the second treatment of draining the water of the water storage unit 14 when the humidification operation (miniaturization operation) is continued for a predetermined time (second time T2). As a result, even when the humidification operation is continued for a predetermined time (second time T2), the water in the water storage unit 14 (water in a state where the scale component is concentrated) is drained and removed by executing the second treatment. .. That is, in the liquid miniaturization apparatus 1, the increase in the concentration of the scale component of water in the water storage unit 14 can be reliably suppressed by the first treatment or the second treatment.
  • a humidifying operation (miniaturization operation) is performed in a state where there is no water in the water storage unit 14, and a drying process of blowing air from the blower 67 is executed. It was configured in. As a result, the inside of the device can be dried, so that when the liquid miniaturization device 1 is maintained in a stopped state for a long period of time, the growth of mold or germs in the device can be suppressed.
  • Embodiment 2 Conventionally, there is a liquid miniaturization device that miniaturizes water, impregnates the sucked air with the finely divided water, and blows it out (for example, Patent Document 2).
  • a liquid miniaturization chamber for miniaturizing water is provided in the air passage between the suction port for sucking air and the outlet for blowing out the sucked air.
  • the liquid miniaturization chamber includes a pumping pipe fixed to the rotating shaft of the rotary motor. When the pumping pipe is rotated by a rotary motor, the water stored in the water storage unit is pumped by the pumping pipe, and the pumped water is radiated in the centrifugal direction.
  • the conventional liquid miniaturization device is configured to detect the water level in the water storage unit and control the automatic water supply valve to maintain the water level in the water storage unit at a predetermined amount during operation.
  • This embodiment is made to solve the above-mentioned problems, and is a liquid miniaturization device capable of suppressing the occurrence of clogging in the device when the device is used continuously for a long period of time. Is to provide.
  • the liquid miniaturization device of the present embodiment is a liquid miniaturization device in which the air sucked from the suction port contains the finely divided liquid and is blown out from the outlet.
  • the liquid micronizer has a liquid pumping port downward in the vertical direction, and has a tubular liquid pumping pipe that discharges the liquid pumped from the liquid pumping port in the centrifugal direction as the rotation shaft rotates, and a liquid pumping pipe.
  • a collision wall that refines the liquid when the released liquid collides, a storage section that is provided vertically below the pumping pipe and stores the liquid pumped from the pumping pipe, and a collision wall and storage section.
  • the eliminator It is provided between the eliminator and the eliminator that collects a part of the finely divided droplets, and a control unit that controls the finening operation of the liquid in the liquid finer.
  • the suction port is communicated with a blower having a humidity recovery unit.
  • the control unit is characterized in that when the number of times the liquid is supplied to the storage unit reaches a predetermined number of times during the miniaturization operation, the first process of discharging the liquid in the storage unit is executed.
  • the liquid in the storage unit for example, the scale component is concentrated
  • Water is drained and removed. Therefore, it is possible to suppress an increase in the concentration of the scale component of the liquid in the storage portion. As a result, it is possible to reduce the amount of scale components contained in the liquid in the reservoir from entering the eliminator during the subsequent miniaturization operation. That is, when the device is used continuously for a long period of time, it can be a liquid miniaturization device capable of suppressing the occurrence of clogging in the device.
  • the control unit executes a second process of discharging the liquid in the storage unit when the miniaturization operation is continued for a predetermined period (second time). ..
  • the liquid in the storage portion for example, water in which the scale component is concentrated
  • the first treatment or the second treatment can surely suppress the increase in the concentration of the scale component of the liquid in the storage portion.
  • the control unit performs the miniaturization operation in a state where there is no liquid in the storage unit, and executes the third process of blowing air from the blower. Is preferable.
  • the inside of the apparatus can be dried after the completion of the third treatment, so that when the stopped state of the liquid miniaturization apparatus is maintained for a long period of time, the growth of mold or germs in the apparatus can be prevented. It can be suppressed.
  • the liquid micronization device of the present disclosure further includes a drainage port for discharging the liquid at the bottom surface of the storage portion, and the pumping pipe is rotated into the liquid in the storage portion during the miniaturization operation.
  • a vortex is generated, and a gap communicating between the pumping port and the draining port is formed at the center of the vortex to prevent the liquid in the storage part from flowing into the draining port, and the control unit rotates.
  • the liquid is discharged in the first treatment or the second treatment.
  • the opening area of the drainage port can be increased and the inner diameter of the drainage pipe can be increased, the liquid miniaturization device can be made so that clogging due to the drainage mechanism is less likely to occur.
  • the liquid miniaturization device 1 of the present embodiment is structurally the same as the liquid miniaturization device 1 of the first embodiment. However, the liquid miniaturization device 1 of the present embodiment does not have to include the temperature / humidity sensor 34.
  • FIGS. 11 to 14 are flowcharts showing a humidification treatment procedure by the liquid miniaturization apparatus according to the second embodiment of the present disclosure.
  • FIG. 13 is a flowchart showing a water supply treatment procedure by the liquid miniaturization apparatus according to the second embodiment of the present disclosure.
  • FIG. 14 is a flowchart showing a wastewater treatment procedure by the liquid miniaturization apparatus according to the second embodiment of the present disclosure.
  • the blower 67 executes the blowing operation not by the control signal from the control unit 60a but by the control signal from the humidification control unit 30.
  • the humidification control unit 30 when a control signal regarding the start of operation of the humidification process of the liquid miniaturization device 1 is input to the humidification control unit 30, the humidification control unit 30 first operates the blower 67, and the blower 67 sends the control signal.
  • the ventilation is started (step S51).
  • the humidification control unit 30 resets the water level detection counter N and sets the water level detection counter N to “0” (step S52).
  • the water level detection counter N is a value indicating the number of times water is supplied to the water storage unit 14 (the number of times water is supplied until the water storage unit 14 is full).
  • the humidification control unit 30 executes the water supply treatment of water to the water storage unit 14 (step S53).
  • the humidification control unit 30 operates the rotary motor 11 at the first rotation speed R1 (for example, 2000 rpm) so that the water stop mechanism functions (step S70).
  • the humidification control unit 30 opens the water supply valve 15b of the water supply unit 15 and starts supplying water to the water storage unit 14 (step S71).
  • the humidification control unit 30 determines whether or not the water level of the water storage unit 14 is full based on the fifth information regarding the on / off of the float switch 18a from the water level detection unit 18 (step S72).
  • step S72 when the water in the water storage unit 14 is not full (No in step S72), the humidification control unit 30 continues the supply of water to the water storage unit 14 as it is (returns to step S72).
  • step S73 when the water in the water storage unit 14 is full (Yes in step S72), the humidification control unit 30 closes the water supply valve 15b and stops the supply of water to the water storage unit 14 (step). S73). Then, the humidification control unit 30 adds "1" to the water level detection counter N (step S74).
  • the humidification control unit 30 rotates the rotary motor 11 at the second rotation speed R2 to start the humidification operation (humidification operation) based on the humidification setting.
  • the second rotation speed R2 is a rotation speed determined by a humidification condition (for example, a humidification amount), and at least a rotation speed of at least the first rotation speed R1 is set.
  • a predetermined time (first time T1) starting from step S54 elapses during the humidification operation (Yes in step S55)
  • the humidification control unit 30 supplies water to the water storage unit 14 (Yes). (See FIG. 13) is executed to fill the water storage unit 14 with water (step S56).
  • the humidification control unit 30 continues the humidification operation as it is (returns to step S55).
  • the first time T1 is a time measured with the operation time point of the rotary motor 11 in step S54 as the start time, and is set to, for example, 30 minutes.
  • the humidification control unit 30 executes the processes after step S60 (see FIG. 12).
  • the second time T2 is a time measured with the reset time of the water level detection counter N in step S52 as the start time, and is set to, for example, 24 hours.
  • the second time T2 may be the time after the liquid miniaturization device 1 is started or the time after the previous drying operation is performed.
  • the humidification control unit 30 fills the water with water M times (for example, 10 times) based on the water level detection counter N.
  • step S58 It is determined whether or not the above amount has been exceeded. As a result, when the water level detection counter N does not exceed M times (No in step S58), the process returns to step S54, and the humidification control unit 30 repeatedly executes the humidification operation. On the other hand, when the water level detection counter N exceeds M times (Yes in step S58), the humidification control unit 30 causes the water storage unit 14 to execute the drainage treatment of water (step S59).
  • the treatments in steps S58 and S59 are drainage operations corresponding to the first treatment.
  • the humidification control unit 30 stops the rotary motor 11 so that the water stop mechanism does not function (step S80). As a result, drainage of water from the water storage unit 14 is started. Then, when the predetermined time (8th hour T8) starting from step S80 has not elapsed during the drainage of water (No in step S81), the humidification control unit 30 keeps the drainage state as it is (No). Return to step S81). On the other hand, when the eighth time T8 has elapsed (Yes in step S81), the humidification control unit 30 considers that the water in the water storage unit 14 has been drained, and ends the drainage treatment of the water in the water storage unit 14.
  • the eighth time T8 is a time measured with the stop time of the rotary motor 11 in step S80 as the start time, and is set to, for example, one minute.
  • step S59 When the drainage treatment of water in the water storage unit 14 (step S59) is completed, the humidification control unit 30 returns to step S52 and repeats each subsequent step.
  • step S60 the processing after step S60 to be performed when the second time T2 has elapsed will be described.
  • the humidification control unit 30 causes the water storage unit 14 to execute the water drainage treatment (see FIG. 14) (step S60). ..
  • the treatments in steps S57 and S60 are drainage operations corresponding to the second treatment.
  • the humidification control unit 30 rotates the rotary motor 11 at the third rotation speed R3 (for example, 2000 rpm) to perform the first drying operation (water storage unit 14).
  • the miniaturization operation in the absence of water) is started (step S61).
  • step S63 the humidification control unit 30 stops the rotary motor 11 (step S63).
  • the humidification control unit 30 continues the first drying operation as it is (returns to step S62). That is, in the first drying operation, the pumping pipe 9 is rotated in the state where there is no water in the water storage unit 14, and the water droplets remaining attached to the pumping pipe 9 and the like are removed.
  • the third time T3 is set to, for example, 30 seconds.
  • the second drying operation is performed in which air is circulated in the liquid miniaturization device 1 (liquid miniaturization chamber 7) in a state where the miniaturization operation is stopped. Then, when the predetermined time (fourth time T4) has not elapsed since the second drying operation was started (No in step S64), the humidification control unit 30 continues the second drying operation as it is (step). Return to S64). That is, in the second drying operation, the ventilation operation into the liquid miniaturization device 1 (liquid miniaturization chamber 7) is performed, and the inside of the device is dried (removal of water remaining in the device).
  • the fourth time T4 is set to, for example, one hour.
  • the humidification control unit 30 determines whether or not a control signal for stopping the operation of the humidification process of the liquid miniaturization device 1 is input (Yes). Step S65). As a result, when the control signal for stopping the operation of the humidification process is not input (No in step S65), the humidification control unit 30 returns to step S52 and restarts the operation of the humidification process of the liquid miniaturization device 1. Let me. On the other hand, when the control signal for stopping the operation of the humidification process is input (Yes in step S65), the humidification control unit 30 stops the blower 67 (step S66). Then, the humidification control unit 30 ends the operation of the humidification process of the liquid miniaturization device 1. As a result, the liquid miniaturization device 1 is in a state of waiting for an operation start instruction from the operation panel 31.
  • the processes in the first drying operation (steps S61 to S63) and the second drying operation (steps S63 to S64) are the drying operations corresponding to the third process.
  • each process in the humidification operation by the liquid miniaturization device 1 is executed.
  • the water in the water storage unit 14 is drained. It is configured to execute the first process.
  • the water (scale component) of the water storage unit 14 is concentrated by executing the first treatment. State water) is drained and removed. Therefore, it is possible to suppress an increase in the concentration of the scale component of water in the water storage unit 14.
  • the liquid miniaturization device 1 can suppress the occurrence of clogging in the device.
  • the liquid miniaturization device 1 drains the water of the water storage unit 14 when the number of times of water supply to the water storage unit 14 reaches a predetermined number (more than M times) during the humidification operation (miniaturization operation). It is configured to execute the first process. In the first treatment, since the water of the water storage unit 14 is drained every predetermined number of times the water is supplied to the water storage unit 14, the amount of water used can be reduced as compared with the case of draining the water each time. Therefore, the running cost of the liquid miniaturization device 1 can be reduced.
  • the predetermined number of times is two times or more.
  • the liquid miniaturization device 1 is configured to execute the second treatment of draining the water of the water storage unit 14 when the humidification operation (miniaturization operation) is continued for a predetermined time (second time T2). As a result, even when the humidification operation is continued for a predetermined time (second time T2), the water in the water storage unit 14 (water in a state where the scale component is concentrated) is drained and removed by executing the second treatment. .. That is, in the liquid miniaturization apparatus 1, the increase in the concentration of the scale component of water in the water storage unit 14 can be reliably suppressed by the first treatment or the second treatment.
  • the humidification operation (miniaturization operation) is performed in the state where there is no water in the water storage unit 14, and the third treatment for blowing air from the blower 67 is executed. It was configured as follows. As a result, the inside of the apparatus can be dried after the completion of the third treatment, so that when the liquid miniaturization apparatus 1 is maintained in a stopped state for a long period of time, the growth of mold or germs in the apparatus can be suppressed. Can be done.
  • a vortex 24 is generated in the water of the water storage unit 14 by rotation inside the pumping pipe 9 during the humidification operation (miniaturization operation), and the pumping port 9a and the drainage port are generated at the center of the vortex.
  • a gap 25 communicating with the 16a was formed so as to stop the water in the water storage portion. Then, by stopping the rotation of the rotary motor 11, the drainage of water in the first treatment or the second treatment is executed.
  • the liquid miniaturization device 1 can stop water and drain water in the liquid miniaturization device 1 without using a drain valve. Therefore, since the opening area of the drainage port 16a can be increased and the inner diameter of the drainage pipe 16 can be increased, the liquid miniaturization device 1 can be made so that clogging due to the drainage mechanism is less likely to occur.
  • the bottom surface of the water storage unit 14 is formed in a mortar shape that inclines downward toward the pumping port 9a.
  • the humidity recovery unit 65 is arranged on the upstream side of the liquid miniaturization device 1 in the flow of air passing through the liquid miniaturization device 1 and the humidity recovery unit 65.
  • the liquid miniaturization device 1 is arranged on the downstream side of the humidity recovery unit 65.
  • the humidity recovery unit 65 and the liquid miniaturization device 1 a sufficient amount of humidification is secured even when a heater or the like is not installed in the humidity recovery unit 65 or the liquid miniaturization device 1. can do.
  • energy saving can be realized by eliminating the need for a heater for securing the amount of humidification.
  • the humidity recovery unit 65 may be configured to have a function of recovering (exchange) not only humidity but also temperature.
  • the humidity recovery unit 65 is used as a total heat exchange element, and an exhaust blower is provided inside the main body case 50 to form an exhaust air passage.
  • the exhaust air passage is an air passage in which indoor air is sucked from the inside air suction port 61 by an exhaust blower and exhausted to the outside from the exhaust port 62 through the humidity recovery unit 65.
  • the humidity recovery unit 65 is arranged at a position where the exhaust air passage and the air supply air passage intersect. Then, the humidity recovery unit 65 exchanges heat and humidity between the air passing through the exhaust air passage and the air passing through the air supply air passage. This makes it possible to supply more comfortable air to the room.
  • the heat exchange air device 60 is configured to bypass the liquid miniaturization device 1 and be supplied to the room so that the air after the humidity is recovered by the humidity recovery unit 65 does not flow through the liquid miniaturization device 1. You may. As a result, when the liquid miniaturization device 1 is not operated and is operated only by heat exchange air, the air after the humidity is recovered can be efficiently supplied to the room. Further, since the increase in pressure loss caused by the liquid miniaturization device 1 is suppressed, it is possible to realize energy-saving operation throughout the year.
  • the blowing from the blower 67 is stopped by stopping the operation of the blower 67, but the present invention is not limited to this.
  • the switching to the bypass described above may prevent the air from being blown to the liquid miniaturization device 1.
  • the humidification control unit 30 may control to supply water to the water storage unit 14 when the amount of water reduction in the water storage unit 14 that decreases due to the humidification operation reaches a predetermined water amount V.
  • whether or not the predetermined amount of water V is reached is determined by determining the expected amount of water that decreases at regular intervals (for example, 1 minute or 5 minutes) according to the humidification conditions (humidification amount, air flow amount) during the humidification operation. It is calculated and integrated to determine. As a result, the accuracy of managing the amount of water (or the remaining amount) of the water storage unit 14 can be improved, so that unnecessary water supply (water supply in a state where the water in the water storage unit 14 is not reduced) can be suppressed.
  • the humidification control unit 30 determines that the humidity of the air sucked from the suction port 2 exceeds the target humidity, and the humidity of the air sucked from the suction port 2 May be controlled to stop the rotation of the pumping pipe 9 (rotating motor 11) when the first humidity becomes higher than the target humidity.
  • the first humidity is set to, for example, 120% of the target humidity.
  • the humidification control unit 30 determines whether or not humidification (water miniaturization) is necessary based on the first information from the operation panel 31 and the fourth information from the temperature / humidity sensor 34. I decided to make a decision, but the specifics are as follows.
  • the humidification control unit 30 targets the target based on the first information (target humidity, ventilation air volume) from the operation panel 31 and the fourth information (temperature and humidity of the air sucked into the suction port 2) from the temperature / humidity sensor 34. Calculate the amount of humidification required to reach the humidity. Then, the humidification control unit 30 calculates the rotation speed of the rotary motor 11 when the calculated humidification amount is realized. As a result, the humidification control unit 30 determines that humidification is not necessary if the calculated rotation speed of the rotary motor 11 is less than 2000 rpm, and determines that humidification is necessary if it is 2000 rpm or more.
  • the humidification control unit 30 sets the calculated rotation speed as the second rotation speed R2. On the other hand, when the calculated rotation speed exceeds 4000 rpm, 4000 rpm is set as the second rotation speed R2. If the calculated rotation speed is less than 2000 rpm after the start of the water miniaturization operation, the fourth rotation speed R4 (the rotation speed at which the water stop mechanism functions) is set.
  • the liquid micronization device is applicable to a device for vaporizing a liquid such as a water vaporizer for humidification purposes and a hypochlorous acid vaporizer for sterilization or deodorization purposes. Further, in a heat exchange air device, an air purifier or an air conditioner, the liquid miniaturization device according to the present disclosure can be applied to a water vaporizer or a hypochlorous acid vaporizer incorporated as one of its functions. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Humidification (AREA)

Abstract

吸込口(2)より吸い込んだ空気に微細化された水を含ませて吹出口(3)より吹き出す液体微細化装置(1)は、揚水口(9a)より揚水した水を遠心方向に放出する筒状の揚水管(9)と、揚水される水を貯水する貯水部(14)と、貯水部(14)の底面において水を排水する排水口(16a)と、水の微細化動作を制御する加湿制御部(30)とを備える。揚水管(9)は、微細化動作の際に、第二回転数での回転によって揚水管(9)の内部における貯水部(14)の水に渦を発生させ、その渦中心において揚水口(9a)と排水口(16a)との間を連通する空隙を形成して貯水部(14)の水を止水する。加湿制御部(30)は、吸込口(2)より吸い込んだ空気の湿度が目標湿度を超えていると判定した場合に、第四回転数にて揚水管(9)を回転させる。

Description

液体微細化装置
 本開示は、液体を微細化し、吸い込んだ空気にその微細化した液体を含ませて吹き出す液体微細化装置に関する。
 従来より、水を微細化し、吸い込んだ空気にその微細化した水を含ませて吹き出す液体微細化装置がある(例えば、特許文献1)。このような従来の液体微細化装置は、空気を吸い込む吸込口と、吸い込んだ空気を吹き出す吹出口と、吸込口と吹出口との間の風路内に設けられた、水を微細化する液体微細化室を備える。液体微細化室は、貯水部と、回転モータの回転軸に固定された揚水管とを備えている。揚水管は、回転モータによって回転されることで、貯水部に貯水された水を揚水し、揚水された水を遠心方向に放射する。この放射された水が衝突壁に衝突することで、水が微細化される。
 また、従来の液体微細化装置は、室内湿度(吸い込む空気の湿度)を元にフィードバック制御を行いながら加湿運転を実行する。このような液体微細化装置は、室内湿度が目標湿度に足りない場合に加湿運転を実行し、室内湿度が目標湿度を超えている場合に加湿運転を停止する。
日本国特許第6476422号公報 特開2009-279514号公報
 従来の液体微細化装置は、貯水部に連結され、貯水部に貯水された水を排水するための排水管(排水口)を備える。従来の液体微細化装置は、揚水管の回転によって、排水管(排水口)と揚水管(揚水口)との間に空隙を形成し、貯水部の水が排水管(排水口)から排水されることを抑制している。つまり、従来の液体微細化装置は、揚水管の回転の有無によって、排水を制御している。このため、従来の液体微細化装置は、加湿運転の際に、目標湿度を上回る状態と下回る状態とを繰り返していると、揚水管の回転の実行と停止とを繰り返すことになり、結果として貯水部の水の排水と貯水部への水の給水を繰り返し実行することになる。つまり、従来の液体微細化装置では、加湿運転における加湿量のフィードバック制御を行う場合には、水の使用量(排水量)が増加することが懸念される。
 本開示は、上記課題を解決するためになされたものであり、加湿運転における加湿量のフィードバック制御を行う場合において、水(液体)の使用量を削減することが可能な液体微細化装置を提供するものである。
 本開示の液体微細化装置は、吸込口より吸い込んだ空気に微細化された液体を含ませて吹出口より吹き出す液体微細化装置である。液体微細化装置は、揚液管と、衝突壁と、貯留部と、制御部と、を備える。揚液管は、筒状であって、鉛直方向下方に揚液口を有し、回転軸の回転に伴って揚液口より汲み上げられた液体を遠心方向に放出する。衝突壁は、揚液管から放出された液体が衝突することにより、液体を微細化する。貯留部は、揚液管の鉛直方向下方に設けられ、揚液口より汲み上げられる液体を貯留する。排液口は、貯留部の底面において液体を排出する。制御部は、液体微細化装置における液体の微細化動作を制御する。吸込口は、湿度回収部を有する送風装置と連通されている。揚液管は、微細化動作の際に、第一回転数から第一回転数よりも回転数の多い第二回転数までの範囲のいずれかの回転数で回転する。第一回転数から第二回転数までの範囲のいずれの回転数も、回転によって揚液管の内部において貯留部内の液体に渦を発生させ、その渦中心において揚液口と排液口との間を連通する空隙を形成して、貯留部内の液体の排液口への流れ込みの防止を確保する回転数である。そして、制御部は、吸込口より吸い込んだ空気の湿度が目標湿度を超えていると判定した場合に、第一回転数にて揚液管を回転させることを特徴とするものである。
 本開示によれば、加湿運転における加湿量のフィードバック制御を行う場合において、液体の使用量を削減することが可能な液体微細化装置を提供することができる。
図1は、本開示の実施の形態1に係る液体微細化装置の概略斜視図である。 図2は、本開示の実施の形態1に係る液体微細化装置の内部構成を示す概略断面図である。 図3は、本開示の実施の形態1に係る液体微細化装置における排水管と揚水管とによる貯水部の止水機構を説明するための図である。 図4は、本開示の実施の形態1に係る液体微細化装置を備えた熱交換気装置の概略斜視図である。 図5は、本開示の実施の形態1に係る液体微細化装置における加湿制御部の構成を示すブロック図である。 図6は、本開示の実施の形態1に係る液体微細化装置による加湿処理手順を示すフローチャートである。 図7は、本開示の実施の形態1に係る液体微細化装置による加湿処理手順を示すフローチャートである。 図8は、本開示の実施の形態1に係る液体微細化装置による給水処理手順を示すフローチャートである。 図9は、本開示の実施の形態1に係る液体微細化装置による水の微細化処理手順を示すフローチャートである。 図10は、本開示の実施の形態1に係る液体微細化装置による排水処理手順を示すフローチャートである。 図11は、本開示の実施の形態2に係る液体微細化装置による加湿処理手順を示すフローチャートである。 図12は、本開示の実施の形態2に係る液体微細化装置による加湿処理手順を示すフローチャートである。 図13は、本開示の実施の形態2に係る液体微細化装置による給水処理手順を示すフローチャートである。 図14は、本開示の実施の形態2に係る液体微細化装置による排水処理手順を示すフローチャートである。
 本開示の液体微細化装置は、吸込口より吸い込んだ空気に微細化された水を含ませて吹出口より吹き出す液体微細化装置である。液体微細化装置は、揚液管と、衝突壁と、貯留部と、制御部と、を備える。揚液管は、筒状であって、鉛直方向下方に揚液口を有し、回転軸の回転に伴って揚液口より汲み上げられた液体を遠心方向に放出する。衝突壁は、揚液管から放出された液体が衝突することにより、その液体を微細化する。貯留部は、揚液管の鉛直方向下方に設けられ、揚液口より汲み上げられる液体を貯留する。制御部は、貯留部の底面において液体を排出する排液口と、液体微細化装置における液体の微細化動作を制御する。吸込口は、湿度回収部を有する送風装置と連通されている。揚液管は、微細化動作の際に、第一回転数から第一回転数よりも回転数の多い第二回転数までの範囲のいずれかの回転数で回転する。第一回転数から第二回転数までの範囲のいずれの回転数も、回転によって揚液口の内部において貯留部内の液体に渦を発生させ、その渦中心において揚液口と排液口との間を連通する空隙を形成して、貯留部内の液体の排液口への流れ込みの防止を確保する回転数である。そして、制御部は、吸込口より吸い込んだ空気の湿度が目標湿度を超えていると判定した場合に、第一回転数にて揚液管を回転させることを特徴とする。
 こうした構成によれば、制御部は、加湿運転(液体の微細化動作、特に水の微細化動作)の際に、吸込口より吸い込んだ空気の湿度が目標湿度を超えていると判定した場合であっても、第一回転数にて揚液管を回転させているので、貯留部内の液体の排出を抑制させることができる。このため、制御部は、目標湿度を上回る状態と下回る状態とを繰り返すような状況でも貯留部内の液体の排出を防止し、液体の使用量を削減させることができる。つまり、加湿運転における加湿量のフィードバック制御を行う場合において、液体の使用量を削減することが可能な液体微細化装置とすることができる。
 また、本開示の液体微細化装置では、制御部は、吸込口より吸い込んだ空気の湿度が目標湿度に足りない場合に、第一回転数から第二回転数までの範囲における第三回転数にて揚液管を回転させている。このようにすることで、制御部は、加湿量のフィードバック制御において、吸込口より吸い込んだ空気の湿度が目標湿度に足りない場合に、目標湿度に向けて必要な加湿量の加湿を行うことができる。
 また、本開示の液体微細化装置では、制御部は、吸込口より吸い込んだ空気の湿度が目標湿度を超えているか否かの判定を第一期間ごとに行うようにしている。このようにすることで、加湿運転における加湿量のフィードバック制御を行う場合、加湿量の調整が第一期間ごとに行われるので、何らかの要因(例えば、浴室利用)によって吸込口より吸い込む空気の湿度が急激に変化しても、目標湿度に向けた加湿量の調整を効果的に行うことができる。
 また、本開示の液体微細化装置では、制御部は、吸込口より吸い込んだ空気の湿度が目標湿度を超えていると判定した状態が、第一期間よりも長い第二期間継続した場合に、揚液管の回転を停止させることが好ましい。このようにすることで、室内の空気が目標湿度に達している状況が第二期間継続した場合には、吸込口より吸い込んだ空気への加湿が停止される。つまり、加湿が停止されてから加湿が再開されるまでの期間において、第一回転数での回転による加湿によって消費される液量(加湿量)分の液体の使用量を削減することができる。
 また、本開示の液体微細化装置では、制御部は、吸込口より吸い込んだ空気の湿度が目標湿度を超えていると判定した場合であって、且つ、吸込口より吸い込んだ空気の湿度が目標湿度よりも高い第一湿度となった場合に、揚液管の回転を停止させることが好ましい。このようにすることで、制御部は、吸込口より吸い込んだ空気に対する過剰となる加湿を抑制することができるので、より適切に室内の湿度コントロールすることができる。
 また、本開示の液体微細化装置では、送風装置は、湿度回収部により湿度を回収された空気を吸込口に流入させるように構成されている。このようにすることで、湿度回収された後の空気が液体微細化装置(吸込口)に流入するので、より適切に室内の湿度をコントロールすることができる。
 以下、本開示を実施するための形態について添付図面を参照して説明する。なお、以下に説明する実施の形態は、いずれも本開示の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
 (実施の形態1)
 まず、図1、図2を参照して、本開示の実施の形態1に係る液体微細化装置1の概略構成について説明する。図1は、本開示の実施の形態1に係る液体微細化装置の概略斜視図である。図2は、本開示の実施の形態1に係る液体微細化装置の内部構成を示す概略断面図である。
 図1に示すように、液体微細化装置1は、空気を吸い込む吸込口2と、吸込口2より吸い込まれた空気を吹き出す吹出口3とを備えている。吸込口2は、液体微細化装置1の側面に設けられている。吹出口3は、液体微細化装置1の上方に設けられている。
 図2に示すように、液体微細化装置1内には、吸込口2から吹出口3に至る風路4~風路6が形成されている。また、液体微細化装置1は、風路4~風路6内に設けられた液体微細化室7を備えており、吸込口2と液体微細化室7と吹出口3とが連通している。
 液体微細化室7は、液体微細化装置1の主要部であり、水の微細化を行うところである。液体微細化装置1では、吸込口2から取り込んだ空気が、風路4を経由して液体微細化室7へ送られる。そして、液体微細化装置1は、風路4を通る空気に、液体微細化室7にて微細化された水を含ませて、その水を含んだ空気を、風路5、風路6の順に経由して吹出口3より吹き出すように構成されている。ここで、風路5は、水を含んだ空気を、液体微細化室7の鉛直方向下方に流れる向きから、その外周において鉛直方向上方に流れる向きに変わるように構成されている。風路6は、風路5を経由した空気を、そのまま鉛直方向上方に流して吹出口3より吹き出すように構成されている。
 液体微細化室7には、上方及び下方が開口された筒状の衝突壁8が設けられている。衝突壁8は、液体微細化室7内に固定されている。また、液体微細化室7には、衝突壁8に囲まれた内側に、回転しながら水を汲み上げる(揚水する)筒状の揚水管9(揚液管)が備えられている。揚水管9は、逆円錐形の中空構造となっており、下方に円形状の揚水口9a(揚液口)を備える。また、揚水管9は、揚水管9の上方であって逆円錐形の天面中心に、鉛直方向に向けて配置された回転軸10が固定されている。回転軸10が、液体微細化室7の外面に備えられた回転モータ11と接続されることで、回転モータ11の回転運動が回転軸10を通じて揚水管9に伝導され、揚水管9が回転する。なお、回転モータ11は、後述する加湿制御部30からの制御信号に基づいて、回転運動を実行するように構成されている。
 揚水管9は、逆円錐形の天面側に、揚水管9の外面から外側に突出するように形成された複数の回転板12を備えている。複数の回転板12は、上下で隣接する回転板12の間に、回転軸10の軸方向に所定間隔を設けて、揚水管9の外面から外側に突出するように形成されている。回転板12は、揚水管9とともに回転するため、回転軸10と同軸の水平な円盤形状が好ましい。なお、回転板12の枚数は、目標とする性能あるいは揚水管9の寸法に合わせて適宜設定されるものである。
 また、揚水管9の壁面には、揚水管9の壁面を貫通する複数の開口13が設けられている。複数の開口13のそれぞれは、揚水管9の内部と、揚水管9の外面から外側に突出するように形成された回転板12の上面とを連通する位置に設けられている。
 液体微細化室7の下部には、揚水管9の鉛直方向下方に、揚水管9が揚水口9aより揚水する水を貯水する貯水部14(貯留部)が設けられている。貯水部14の深さは、揚水管9の下部の一部、例えば揚水管9の円錐高さの三分の一から百分の一程度の長さが浸るような深さに設計されている。この深さは、必要な揚水量に合わせて設計できる。また、貯水部14の底面は、揚水口9aに向けて下方に傾斜するすり鉢状(ボウル状)に形成されている(図3参照)。
 貯水部14への水の供給は、給水部15により行われる。給水部15には、給水管15aが接続されており、例えば水道から水圧調整弁(給水弁:図示せず)を通じて、給水管15aにより直接給水される。給水部15は、貯水部14の底面よりも鉛直方向上方に設けられている。また、給水部15は、貯水部14の底面だけでなく、貯水部14の上面(貯水部14に貯水され得る最大水位の面)よりも鉛直方向上方に設けられるのが好ましい。なお、給水部15は、あらかじめ液体微細化室7外に備えられた水タンクからサイフォンの原理で必要な水量のみ汲みあげて、貯水部14へ水を供給するように構成されてもよい。
 また、液体微細化装置1には、貯水部14の水位を検知する水位検知部18が設けられている。水位検知部18は、フロートスイッチ18aを有している。フロートスイッチ18aは、貯水部14内の水が一定の水位(満水状態)に達していない場合はオフとなり、貯水部14内の水が一定の水位(満水状態)に達した場合にオンとなる。つまり、水位検知部18は、フロートスイッチ18aによって貯水部14の水が一定の水位(満水状態)か否かを検知する。そして、水位検知部18は、フロートスイッチ18aのオンまたはオフに関する情報を加湿制御部30に出力する。詳細は後述するが、加湿制御部30は、フロートスイッチ18aがオフとなり、オフの状態が所定時間(第一時間T1)継続した場合には、給水部15より貯水部14へ水が供給されるように制御し、フロートスイッチ18aがオンの場合には、給水部15から貯水部14への水の供給が停止されるように制御する。ここで、第一時間T1は、貯水部14内の水が加湿処理によって揚水できない水量まで減少させない時間に設定され、本実施の形態では、一定時間(例えば、30分)としている。
 貯水部14の底面には、排水管16が接続されている。排水管16が接続される位置に設けられた円形状の排水口16a(排液口)は、すり鉢状に形成された貯水部14の底面の最も低い位置に設けられている。排水管16による止水及び排水は、揚水管9の回転によって実現される。即ち、排水管16と揚水管9とで、貯水部14の止水機構及び揚水機構を構成する。なお、排水管16と揚水管9とによる貯水部14の止水機構及び排水機構の詳細については、図3を参照して後述する。
 また、衝突壁8の下方(衝突壁8と貯水部14との間の空間)には、液体微細化室7の内外を隔てるように配置され、微細化された水滴の一部を捕集する円筒状のエリミネータ17が設けられている。また、エリミネータ17は、空気が流通可能な多孔体で構成されている。エリミネータ17は、衝突壁8の下部に接続されたエリミネータホルダ19に内包されるように固定されている。具体的には、エリミネータホルダ19は、天面板19cと、天面板19cから鉛直方向下方に延びる第一保持部19aと、第一保持部19aよりも内側(揚水管9側)において、天面板19cから鉛直方向下方に延びる第二保持部19bとを有して構成されている。エリミネータ17は、エリミネータホルダ19の第一保持部19aと第二保持部19bとで挟持されて固定されている。なお、エリミネータホルダ19の第二保持部19bには、水流制御板20の支持部22が接続されている。
 エリミネータ17は、風路5内に配置され、エリミネータ17内を流通することによって、液体微細化室7を通過する空気に含められた水のうち水滴を捕集する。これにより、風路5を流れた空気は、気化された水のみが含まれるようになる。
 水流制御板20は、貯水部14を覆うように、貯水部14の上方に設けられている。具体的には、水流制御板20は、外径が貯水部14の内壁径よりも小さく形成され、エリミネータ17で囲まれた空間内の下方において、貯水部14の上方を覆うように設けられている。水流制御板20は、略円板状の形状であり、中央部に揚水管9が水流制御板20を貫通できる直径に開口した開口部(図示せず)が形成されている。また、水流制御板20は、外周部(外縁)の上面側に複数の支持部22を有し、支持部22を介してエリミネータホルダ19の第二保持部19bと固定されている。なお、水流制御板20は、揚水管9の回転に伴う水流の気泡発生による騒音上昇を防いでいる。
 さらに、液体微細化装置1には、加湿制御部30が設けられている。加湿制御部30は、液体微細化装置1の運転動作を制御することで、加湿処理における加湿動作(水の微細化動作)を制御する。また、加湿制御部30は、加湿動作中に貯水部14への水の給水回数が所定回数となった場合に貯水部の水を排水する排水動作(第一処理)と、加湿動作が所定時間(第二時間T2)継続した場合に貯水部の水を排水する排水動作(第二処理)とを制御する。ここで、第二時間T2は、一定時間(例えば、24時間)としている。さらに、加湿制御部30は、液体微細化装置1の運転動作を停止する際に行う乾燥処理における乾燥動作を制御する。
 なお、液体微細化装置1は、加湿制御部30を備えず、熱交換気装置60を制御する制御部60a(図5参照)によって加湿動作(水の微細化動作)、排水動作(第一処理、第二処理)、及び乾燥動作が制御される構成であってもよい。
 次に、図2を参照して、液体微細化装置1における加湿(水の微細化)の動作原理を説明する。
 まず、外部からの空気の送風(吸込口2からの空気の吸い込み)が開始される。そして、貯水部14に水がない状態で、回転モータ11により回転軸10を第一回転数R1(例えば、2000rpm)で回転させ、それに合わせて揚水管9を回転させる。そして、給水部15から貯水部14に水を供給する。この際、貯水部14では、揚水管9の回転によって生じる遠心力により、貯水部14に供給された水が揚水管9によって汲み上げられるとともに、貯水部14に供給された水は排水口16aから排水されることなく止水される。その結果、給水部15から供給される水が貯水部14に貯水されていく。そして、貯水部14の満水後、給水部15から貯水部14への水の供給を停止する。なお、止水機構及び排水機構については、後述する。
 続いて、回転モータ11により回転軸10を第二回転数R2で回転させ、それに合わせて揚水管9を回転させると、その回転によって生じる遠心力により、貯水部14に貯水された水が揚水管9によって汲み上げられる。ここで、回転モータ11(揚水管9)の第二回転数R2は、空気への加湿量に応じて、2000rpm-4000rpmの間に設定される。なお、第二回転数R2は、2000rpm-5000rpmの間に設定されてもよい。揚水管9は、逆円錐形の中空構造となっているため、回転によって汲み上げられた水は、揚水管9の内壁を伝って上部へ揚水される。そして、揚水された水は、揚水管9の開口13から回転板12を伝って遠心方向に放出され、水滴として飛散する。
 回転板12から飛散した水滴は、衝突壁8に囲まれた空間(液体微細化室7)を飛翔し、衝突壁8に衝突し、微細化される。一方、液体微細化室7を通過する空気は、衝突壁8の上方から衝突壁8の内部へ移動し、衝突壁8によって破砕(微細化)された水滴を含みながら下方から衝突壁8の外部へ移動する。そして、水滴を含んだ空気は、エリミネータ17を通過する。これにより、液体微細化装置1は、吸込口2より吸い込んだ空気に対して加湿を行い、吹出口3より加湿された空気を吹き出すことができる。
 なお、微細化される液体は水以外でもよく、例えば、殺菌性あるいは消臭性を備えた次亜塩素酸水等の液体であってもよい。微細化された次亜塩素酸水を液体微細化装置1の吸込口2より吸い込まれた空気に含ませ、その空気を吹出口3より吹き出すことで、液体微細化装置1が置かれた空間の殺菌あるいは消臭を行うことができる。
 次いで、図3を参照して、排水管16と揚水管9とによる貯水部14の止水機構及び排水機構の詳細について説明する。図3は、本開示の実施の形態1に係る液体微細化装置における排水管と揚水管とによる貯水部の止水機構を説明するための図である。
 図3に示すように、液体微細化装置1では、加湿動作が開始され、回転モータ11(揚水管9)が第一回転数R1(例えば、2000rpm)で回転されると、その回転の遠心力によって、揚水管9の内部で貯水部14の水に渦24が発生する。そして、揚水管9は、その回転によって発生する渦中心において、揚水口9aと排水口16aとの間を連通する空隙25を形成する。これにより、空隙25が排水口16aを塞ぐ状態となり、貯水部14の水が排水口16aに流れ込むのが抑制される。つまり、液体微細化装置1では、加湿動作中(回転モータ11が第二回転数R2で回転動作中)に、貯水部14の水が排水口16aから排水されることを抑制することができる。上述の通り、揚水管9は、所定の範囲(例えば、最小2000rpm、最大4000rpm)の回転数で回転される。この所定の範囲内のいずれの回転数も貯水部14の水の排水口16aへの流れ込みの防止を確保する回転数である。
 一方、回転モータ11(揚水管9)の回転が停止されると、渦24とともに空隙25がなくなり、排水口16aに貯水部14の水が流れ込む。つまり、液体微細化装置1では、加湿動作(回転モータ11の回転動作)を停止することにより、貯水部14の水を排水口16aから排水することができる。
 このように、液体微細化装置1は、排水管16に排水弁を用いなくても、加湿動作中は、貯水部14の水が排水口16aから排水されることを抑制(止水)でき、加湿動作の停止後は、貯水部14の水を排水口16aから排水できる。
 次に、図4を参照して、本実施の形態1に係る液体微細化装置1を備えた熱交換気装置60について説明する。図4は、本実施の形態1に係る液体微細化装置60を備えた熱交換気装置の概略斜視図である。
 図4に示すように、熱交換気装置60は、液体微細化装置1と、湿度回収部65と、送風機67とを備えて構成される。熱交換気装置60は、外気吸込口63から吸い込んだ外気(湿度回収部65を通過して湿度が回収された空気)を、接続ダクト66を介して液体微細化装置1の吸込口2(図1参照)に送風する。液体微細化装置1は、吸込口2から吸い込んだ空気に対して加湿処理を行い、加湿した空気を吹出口3(図1参照)から吹き出し、給気口64を介して室内に供給する。ここで、熱交換気装置60は、請求項の「送風装置」に相当する。
 熱交換気装置60は、箱型の本体ケース50を有し、例えば、床に置かれた状態で使用される。本体ケース50の天面(液体微細化装置1が搭載される面)には、内気吸込口61と、排気口62と、外気吸込口63と、給気口64とが設けられている。また、本体ケース50の天面には、液体微細化装置1が設置されている。そして、本体ケース50の内部には、湿度回収部65と、送風機67とが設けられている。
 内気吸込口61は、建物内の空気(内気)を熱交換気装置60の内部に吸い込む吸込口である。具体的には、内気吸込口61は、建物内の各空間の天井面または壁面まで延在するダクト(図示せず)を介して内気を吸い込む室内排気口と連通して接続される。
 排気口62は、内気を熱交換気装置60から屋外に送風する吐出口である。具体的には、排気口62は、建物外壁面まで延在するダクト(図示せず)を介して内気を吹き出す室外排気口と連通して接続される。
 外気吸込口63は、建物外の空気(外気)を熱交換気装置60の内部に吸い込む吸込口である。具体的には、外気吸込口63は、建物外壁面まで延在するダクト(図示せず)を介して外気を吸い込む室外給気口と連通して接続される。
 給気口64は、外気を熱交換気装置60から液体微細化装置1を介して室内に送風する吐出口である。具体的には、給気口64は、建物内の各空間の天井面または壁面まで延在するダクト(図示せず)を介して外気を吹き出す室内給気口と連通して接続される。
 湿度回収部65は、本体ケース50内において、送風機67の上流側に位置して設けられている。湿度回収部65は、送風機67が動作することにより吸い込まれ、熱交換気装置60の内部(特に、給気風路)を通過する空気の湿度を回収(交換)する湿度回収(湿度交換)の機能を有している。湿度回収部65は、例えば、デシカント式あるいはヒートポンプ式の熱交換器などである。
 給気風路は、特に図示していないが、新鮮な室外の空気(外気)を、外気吸込口63から吸い込み、湿度回収部65、送風機67、接続ダクト66、及び液体微細化装置1の順に通過させて、給気口64から室内に供給する風路である。
 接続ダクト66は、送風機67と吸込口2とを接続して連通させるダクトである。また、接続ダクト66には、接続ダクト66の吸込口2側に温湿度センサ34が設置されている。なお、温湿度センサ34は、給気風路を流通する空気(吸込口2に吸い込まれる空気)の温度と湿度を感知するセンサである。
 送風機67は、外気吸込口63から給気口64へと外気を送風するための装置である。送風機67は、送風することによって、湿度回収部65の内部に外気を流通させる。送風機67としては、例えば、クロスフローファンあるいはブロアファンが挙げられる。なお、送風機67は、熱交換気装置60を制御する制御部60a(図5参照)からの制御信号に基づいて、送風動作を実行するように構成されている。
 また、熱交換気装置60には、給排水配管51が設けられている。そして、液体微細化装置1への水の供給及び排水は、給排水配管51によって行われる。具体的には、給排水配管51の一端は、液体微細化装置1の給水管15a(図2参照)と排水管16(図2参照)とそれぞれ接続されている。また、給排水配管51の他端は、住宅あるいは施設の給水設備と排水設備とにそれぞれ接続されている。
 さらに、熱交換気装置60は、送風機67の送風動作の制御を行う制御部60a(図5参照)を有している。また、制御部60aは、液体微細化装置1の加湿制御部30と電気的に接続され、加湿制御部30からの制御信号を受けて、送風機67と液体微細化装置1とを連動させて制御するように構成されている。
 以上のように、熱交換気装置60では、換気の際に屋外へ排出する水分を室内に給気する空気に回収しつつ、さらに湿度回収部65で水分を回収しきれなかった場合には、液体微細化装置1を通過させる際に水分を補填もしくはそれ以上に上乗せすることができるので、室内を加湿および快適な湿度範囲に維持させることができる。
 次に、図5を参照して、液体微細化装置1の加湿制御部30について説明する。図5は、本開示の実施の形態1に係る液体微細化装置における加湿制御部の構成を示すブロック図である。
 図5に示すように、加湿制御部30は、入力部30aと、記憶部30bと、計時部30cと、処理部30dと、出力部30eとを備える。
 入力部30aは、操作パネル31からの運転開始指示または運転停止指示に関する第一情報と、温湿度センサ32からの室内空気の温度と湿度に関する第二情報と、温度センサ33からの室外空気の温度に関する第三情報と、温湿度センサ34からの加湿前の空気(吸込口2に吸い込まれる空気)の温度と湿度に関する第四情報と、水位検知部18からのフロートスイッチ18aのオンまたはオフに関する第五情報とを受け付ける。入力部30aは、受け付けた第一情報~第五情報を処理部30dに出力する。
 ここで、操作パネル31は、ユーザが液体微細化装置1および熱交換気装置60に関するユーザ入力情報(例えば、風量、加湿量、吹き出し温度、等)を入力する端末であり、無線または有線により加湿制御部30と通信可能に接続されている。なお、第一情報には、ユーザ入力情報も含まれる。また、温湿度センサ32は、内気吸込口61から取り込まれた直後の室内空気の温度と湿度を感知するセンサである。また、温度センサ33は、外気吸込口63から取り込まれた直後の室外空気の温度を感知するセンサである。
 記憶部30bは、加湿動作における加湿設定に関する第六情報と、排水動作(第一処理、第二処理)における排水設定に関する第七情報と、乾燥動作における乾燥設定に関する第八情報と、ユーザ入力情報に対応する設定情報に関する第九情報とを記憶する。記憶部30bは、記憶した第六情報~第九情報を処理部30dに出力する。
 計時部30cは、現在時刻に関する第十情報を処理部30dに出力する。
 処理部30dは、入力部30aからの第一情報~第五情報と、記憶部30bからの第六情報~第九情報と、計時部30cからの第十情報とを受け付ける。処理部30dは、受け付けた第一情報~第十情報を用いて、加湿設定に基づく加湿動作、排水設定に基づく排水動作(第一処理、第二処理)、及び乾燥設定における乾燥動作に関する制御情報を特定する。処理部30dは、特定した制御情報を出力部30eに出力する。
 出力部30eは、処理部30dからの制御情報を受け付ける。出力部30eは、熱交換気装置60(制御部60a、送風機67)と、回転モータ11と、給水弁15bと電気的に接続される。そして、出力部30eは、受け付けた制御情報に基づいて、送風機67の送風動作と、液体微細化室7での加湿動作(回転モータ11の回転動作)と、給水弁15bの開閉動作とを制御する信号(制御信号)を出力する。
 そして、熱交換気装置60(制御部60a、送風機67)は、出力部30eからの信号を受け付け、制御部60aは、受け付けた信号に基づいて送風機67の制御を実行する。また、回転モータ11と給水弁15bとは、出力部30eからの信号をそれぞれ受け付け、受け付けた信号に基づいてそれぞれの制御を実行する。
 以上のようにして、加湿制御部30は、加湿処理における加湿動作の制御、第一処理または第二処理における排水動作の制御、及び乾燥処理における乾燥動作の制御をそれぞれ実行させる。
 次に、図6~図10を参照して、液体微細化装置1による加湿動作における処理手順について説明する。図6、図7は、本開示の実施の形態1に係る液体微細化装置による加湿処理手順を示すフローチャートである。図8は、本開示の実施の形態1に係る液体微細化装置による給水処理手順を示すフローチャートである。図9は、本開示の実施の形態1に係る液体微細化装置による水の微細化処理手順を示すフローチャートである。図10は、本開示の実施の形態1に係る液体微細化装置による排水処理手順を示すフローチャートである。なお、以下では、送風機67が、制御部60aからの制御信号ではなく、加湿制御部30からの制御信号によって送風動作を実行しているものとして説明する。
 加湿制御部30に液体微細化装置1の加湿処理の運転開始に関する制御信号が入力されると、図6に示すように、まず、加湿制御部30は、送風機67を作動させ、送風機67からの送風を開始させる(ステップS01)。これにより、液体微細化装置1(液体微細化室7)内に空気が流通するようになる。そして、加湿制御部30は、水位検知カウンタNをリセットし、水位検知カウンタNを「0」とする(ステップS02)。ここで、水位検知カウンタNは、貯水部14への水の給水回数(貯水部14が満水状態となるまでの給水を行った回数)を示す値である。そして、加湿制御部30は、貯水部14への水の給水処理を実行させる(ステップS03)。
 給水処理では、図8に示すように、加湿制御部30は、回転モータ11を第一回転数R1(例えば、2000rpm)で作動させ、止水機構が機能する状態とする(ステップS20)。次に、加湿制御部30は、給水部15の給水弁15bを開弁させ、貯水部14への水の供給を開始させる(ステップS21)。そして、加湿制御部30は、水位検知部18からの第五情報に基づいて、貯水部14の水位が満水状態となったか否かを判断する(ステップS22)。その結果、貯水部14の水が満水状態となっていない場合(ステップS22のNo)には、加湿制御部30は、貯水部14への水の供給をそのまま継続させる(ステップS22に戻る)。一方、貯水部14の水が満水状態となった場合(ステップS22のYes)には、加湿制御部30は、給水弁15bを閉弁させ、貯水部14への水の供給を停止させる(ステップS23)。そして、加湿制御部30は、水位検知カウンタNに「1」を加算する(ステップS24)。以上の各ステップにより、貯水部14への水の給水処理が終了する。但し、給水処理は、回転モータ11を第一回転数R1で回転させた状態で終了する。図6に戻る。
 貯水部14への水の給水処理(ステップS03)が終了すると、加湿制御部30は、加湿処理における加湿動作として、水の微細化処理を実行させる(ステップS04)。
 水の微細化処理では、図9に示すように、加湿制御部30は、操作パネル31からの第一情報および温湿度センサ34からの第四情報に基づいて、加湿(水の微細化)が必要か否かを判断する(ステップS30)。その結果、加湿が必要である場合(ステップS30のYes)には、加湿制御部30は、回転モータ11を第二回転数R2で回転させ、加湿設定に基づいた加湿動作(水の微細化動作)を開始させる(ステップS31)。ここで、第二回転数R2は、加湿条件(例えば、目標湿度に向けた加湿量)によって決められる回転数であり、少なくとも第一回転数R1以上の回転数が設定される。そして、ステップS31での回転モータ11の作動時点を開始時間として計時される時間が所定時間(第五時間T5)を経過したか否かの判定を行う(ステップS32)。その結果、第五時間T5が経過していない場合(ステップS32のNo)には、加湿制御部30は、水の微細化動作をそのまま継続させる(ステップS32に戻る)。一方、第五時間T5が経過した場合(ステップS32のYes)には、加湿制御部30は、水の微細化動作をそのまま継続させた状態で、次のステップ(ステップS05)に進む。ここで、第五時間T5は、加湿のフィードバック制御のための間隔時間であり、例えば、5分に設定される。
 一方、ステップS30での判定の結果、加湿が必要でない場合(ステップS30のNo)には、加湿制御部30は、回転モータ11を第四回転数R4(例えば、2000rpm)で作動させ、少なくとも止水機構が機能する状態とする(ステップS33)。なお、回転モータ11が第四回転数R4で既に回転している場合には、第四回転数R4を維持する。そして、ステップS33での回転モータ11の作動時点または作動維持時点を開始時間として計時される時間が、所定時間(第六時間T6)を経過したか否かの判定を行う(ステップS34)。その結果、第六時間T6が経過していない場合(ステップS34のNo)には、加湿制御部30は、止水状態をそのまま継続させる(ステップS34に戻る)。一方、第六時間T6が経過した場合(ステップS34のYes)には、加湿制御部30は、次のステップ(ステップS35)に進む。ここで、第六時間T6は、加湿のフィードバック制御のための間隔時間であり、例えば、5分に設定される。なお、第五時間T5(より正確には、ステップS06での給水に要する時間を第五時間T5に加算した時間)または第六時間T6は、請求項の「第一期間」に相当する。
 次に、ステップS33での回転モータ11の作動時点を開始時間として計時される時間が、所定時間(第七時間T7)を経過したか否かの判断を行う(ステップS35)。その結果、第七時間T7が経過していない場合(ステップS35のNo)には、加湿制御部30は、回転モータ11を第四回転数R4で回転させた状態でステップS30に戻り、再び加湿の要否の判断を行う。一方、第七時間T7が経過した場合(ステップS35のYes)には、加湿制御部30は、回転モータ11を停止させる(ステップS36)。そして、加湿制御部30は、ステップS02に戻り、液体微細化装置1の加湿処理の運転を再び開始させる。ここで、第七時間T7は、例えば、2時間に設定される。また、第七時間T7は、請求項の「第二期間」に相当する。図6に戻る。
 水の微細化処理(ステップS04)が終了すると、水の微細化動作をそのまま継続させた状態で、ステップS31での回転モータ11の作動時点を開始時間として計時される時間が、所定時間(第一時間T1)を経過したか否かの判断を行う(ステップS05)。その結果、第一時間T1が経過した場合(ステップS05のYes)には、加湿制御部30は、貯水部14への水の給水処理(図8参照)を実行させ、貯水部14を満水状態とする(ステップS06)。一方、第一時間T1が経過していない場合(ステップS05のNo)には、加湿制御部30は、水の微細化動作をそのまま継続させる(ステップS05に戻る)。ここで、第一時間T1は、加湿動作によって減少する貯水部14の水の減少量を見込んで設定される時間であり、例えば、30分に設定される。
 続いて、加湿制御部30は、ステップS02を起点とした所定時間(第二時間T2)が経過した場合(ステップS07のYes)には、ステップS10(図7参照)以降の処理を実行する。ここで、第二時間T2は、ステップS02での水位検知カウンタNのリセット時点を開始時間として計時される時間であり、例えば、24時間に設定される。なお、第二時間T2は、液体微細化装置1が起動してからの時間あるいは前回乾燥運転を行ってからの時間であってもよい。一方、第二時間T2が経過していない場合(ステップS07のNo)には、加湿制御部30は、水位検知カウンタNに基づいて、満水状態とする給水回数がM回(例えば、10回)を超えたか否かを判断する(ステップS08)。その結果、水位検知カウンタNがM回を超えていない場合(ステップS08のNo)には、ステップS04に戻り、加湿制御部30は、加湿動作を繰り返し実行させる。一方、水位検知カウンタNがM回を超えている場合(ステップS08のYes)には、加湿制御部30は、貯水部14の水の排水処理を実行させる(ステップS09)。ここで、ステップS08とステップS09での処理が、第一処理に対応する排水動作となる。
 排水処理では、図10に示すように、加湿制御部30は、回転モータ11を停止させ、止水機構が機能しない状態とする(ステップS40)。これにより、貯水部14の水の排水が開始される。そして、ステップS40での回転モータ11の停止時点を開始時間として計時される時間が、所定時間(第八時間T8)を経過したか否かの判断を行う(ステップS41)。その結果、第八時間T8が経過していない場合(ステップS41のNo)には、加湿制御部30は、排水状態をそのまま継続させる(ステップS41に戻る)。一方、第八時間T8が経過した場合(ステップS41のYes)には、加湿制御部30は、貯水部14の水が排水されたと見なし、貯水部14の水の排水処理を終了させる。ここで、第八時間T8は、貯水部14の水が確実に排水される時間(満水状態であっても排水される時間)であり、例えば、1分に設定される。図6に戻る。
 貯水部14の水の排水処理(ステップS09)が終了すると、加湿制御部30は、ステップS02に戻り、その後の各ステップを繰り返して実行させる。
 引き続き、図7を参照して、第二時間T2が経過した場合に行うステップS10以降の処理について説明する。
 第二時間T2が経過した場合(ステップS07のYes)には、図7に示すように、加湿制御部30は、貯水部14の水の排水処理(図10参照)を実行させる(ステップS10)。ここで、ステップS07とステップS10での処理が、第二処理に対応する排水動作となる。そして、貯水部14の水の排水処理(ステップS10)が終了すると、加湿制御部30は、回転モータ11を第三回転数R3(例えば、2000rpm)で回転させ、第一乾燥運転(貯水部14に水がない状態での微細化動作)を開始させる(ステップS11)。そして、第一乾燥運転を開始してから所定時間(第三時間T3)が経過した場合(ステップS12のYes)には、加湿制御部30は、回転モータ11を停止させる(ステップS13)。一方、第三時間T3が経過していない場合(ステップS12のNo)には、加湿制御部30は、第一乾燥運転をそのまま継続させる(ステップS12に戻る)。つまり、第一乾燥運転では、貯水部14に水がない状態で揚水管9の回転動作が行われ、揚水管9等に付着して残存する水滴の除去がなされる。なお、第三時間T3は、揚水管9の回転による水滴の除去時間であり、例えば、30秒に設定される。
 第一乾燥運転が終了すると、微細化動作が停止した状態で、液体微細化装置1(液体微細化室7)内に空気を流通させる第二乾燥運転となる。そして、第二乾燥運転を開始してから所定時間(第四時間T4)が経過していない場合(ステップS14のNo)には、加湿制御部30は、第二乾燥運転をそのまま継続させる(ステップS14に戻る)。つまり、第二乾燥運転では、液体微細化装置1(液体微細化室7)内への通風動作が行われ、装置内の乾燥(装置内に残存する水分の除去)がなされる。なお、第四時間T4は、装置内への通風による乾燥時間であり、例えば、1時間に設定される。一方、第四時間T4が経過した場合(ステップS14のYes)には、加湿制御部30は、液体微細化装置1の加湿処理の運転停止に関する制御信号が入力されているか否かを判断する(ステップS15)。その結果、加湿処理の運転停止に関する制御信号が入力されていない場合(ステップS15のNo)には、加湿制御部30は、ステップS02に戻り、液体微細化装置1の加湿処理の運転を再び開始させる。一方、加湿処理の運転停止に関する制御信号が入力されている場合(ステップS15のYes)には、加湿制御部30は、送風機67を停止させる(ステップS16)。そして、加湿制御部30は、液体微細化装置1の加湿処理の運転を終了させる。これにより、液体微細化装置1は、操作パネル31からの運転開始指示待ちの状態となる。
 ここで、第一乾燥運転(ステップS11~ステップS13)と第二乾燥運転(ステップS13~ステップS14)での処理が乾燥動作となる。
 また、第一回転数R1、第二回転数R2(回転数範囲のうち最小の2000rpm)、第三回転数R3、及び第四回転数R4は、請求項の「第一回転数」に相当する。第二回転数R2(回転数範囲のうち最大の4000rpm)は、請求項の「第二回転数」に相当する。第二回転数R2(回転数範囲の2000rpm-4000rpm)は、請求項の「第三回転数」に相当する。
 以上のようにして、熱交換気装置60では、液体微細化装置1による加湿動作における各処理が実行される。
 以上、本実施の形態1に係る液体微細化装置1によれば、以下の効果を享受することができる。
 (1)液体微細化装置1では、加湿制御部30は、吸込口2より吸い込んだ空気の湿度が目標湿度(目標湿度に向けた加湿量)を超えていると判定した場合に、第四回転数R4(2000rpm)にて揚水管9を回転させるように制御した。これにより、液体微細化装置1は、加湿動作(水の微細化動作)の際に、吸込口2より吸い込んだ空気の湿度が目標湿度を超えていると判定した場合であっても、第四回転数R4にて揚水管9を回転させているので、貯水部14の水の排水を抑制させることができる。このため、液体微細化装置1は、目標湿度を上回る状態と下回る状態とを繰り返すような状況でも貯水部14の水を確実に止水させ、水の排水量を削減させることができる。つまり、加湿動作における加湿量のフィードバック制御を行う場合において、水の使用量を削減することが可能な液体微細化装置1とすることができる。
 (2)液体微細化装置1では、加湿制御部30は、吸込口2より吸い込んだ空気の湿度が目標湿度に足りない場合に、第二回転数R2(2000rpm-4000rpm)にて揚水管9を回転させるように制御した。これにより、液体微細化装置1は、加湿量のフィードバック制御において、吸込口2より吸い込んだ空気の湿度が目標湿度に足りない場合に、目標湿度に向けて必要な加湿量の加湿を行うことができる。
 (3)液体微細化装置1では、加湿制御部30は、吸込口2より吸い込んだ空気の湿度が目標湿度を超えているか否かの判定を所定期間(第五時間T5または第六時間T6)ごとに行うように制御した。これにより、加湿動作における加湿量のフィードバック制御を行う場合、加湿量の調整が所定期間ごとに行われるので、何らかの要因(例えば、浴室利用)によって吸込口2より吸い込む空気の湿度が急激に変化しても、目標湿度に向けた加湿量の調整を効果的に行うことができる。
 (4)液体微細化装置1では、加湿制御部30は、吸込口2より吸い込んだ空気の湿度が目標湿度を超えていると判定した状態が、第七時間T7継続した場合に、揚水管9(回転モータ11)の回転を停止させるように制御した。これにより、室内の空気が目標湿度に達している状況が第七時間T7継続した場合には、吸込口2より吸い込んだ空気への加湿が停止される。つまり、加湿が停止されてから加湿が再開されるまでの期間において、第四回転数R4(2000rpm)での回転による加湿によって消費される水量(加湿量)分の水の使用量を削減することができる。
 (5)熱交換気装置60では、湿度回収部65を、液体微細化装置1および湿度回収部65を通過する空気の流れにおいて、液体微細化装置1より上流側に配置した。つまり、液体微細化装置1では、湿度回収部65は、湿度回収部65により湿度を回収された空気を吸込口2に流入させるように配置される。これにより、湿度回収部65で湿度回収された後の空気が液体微細化装置1(吸込口2)に流入するので、より適切に室内の湿度をコントロールすることができる。また、湿度回収部65と液体微細化装置1の2箇所で湿度制御を行うことで、湿度回収部65あるいは液体微細化装置1にヒータ等を設置していない場合でも、十分な加湿量を確保することができる。また、加湿量を確保するためのヒータが不要になることで、省エネルギーを実現できる。
 (6)液体微細化装置1は、加湿動作(微細化動作)中に貯水部14への水の給水回数が所定回数(M回超)となった場合に、貯水部14の水を排水する第一処理を実行させるように構成した。第一処理では、貯水部14への水の給水回数が所定回数ごとに貯水部14の水を排水するので、毎回排水する場合に比べて、水の使用量を削減することができる。所定回数は、2回またはそれよりも大きな回数である。
 (7)液体微細化装置1では、加湿動作(微細化動作)中に貯水部14への水の給水回数が所定回数(M回超)となった場合に、貯水部14の水を排水する第一処理を実行させるように構成した。これにより、加湿動作中に貯水部14への水の給水回数が所定回数(M回超)となった場合には、第一処理の実行によって、貯水部14の水(カルシウム分、マグネシウム分等のスケール成分が濃縮された状態の水)が排水されて除去される。このため、貯水部14内の水のスケール成分の濃度上昇を抑制することができる。
 (8)液体微細化装置1では、加湿動作(微細化動作)を所定時間(第二時間T2)継続した場合に、貯水部14の水を排水する第二処理を実行させるように構成した。これにより、加湿動作を所定時間(第二時間T2)継続した場合にも、第二処理の実行によって、貯水部14の水(スケール成分が濃縮された状態の水)が排水されて除去される。つまり、液体微細化装置1では、第一処理または第二処理によって、貯水部14内の水のスケール成分の濃度上昇を確実に抑制することができる。
 (9)液体微細化装置1では、第二処理の終了後に、貯水部14に水がない状態で加湿動作(微細化動作)を行うとともに、送風機67からの送風を行う乾燥処理を実行させるように構成した。これにより、装置内を乾燥させることができるので、液体微細化装置1の停止状態を長期間維持する場合に、装置内でのカビあるいは雑菌等の繁殖を抑制することができる。
 (実施の形態2)
 従来より、水を微細化し、吸い込んだ空気にその微細化した水を含ませて吹き出す液体微細化装置がある(例えば、特許文献2)。このような従来の液体微細化装置では、空気を吸い込む吸込口と吸い込んだ空気を吹き出す吹出口との間の風路内に、水を微細化する液体微細化室が設けられている。液体微細化室は、回転モータの回転軸に固定された揚水管を備えている。揚水管が回転モータによって回転されることで、貯水部に貯水された水が揚水管により揚水され、揚水された水が遠心方向に放射される。この放射された水が多孔部を通過することで、水が微細化される。また、従来の液体微細化装置では、運転中に、貯水部内の水位を検知して自動給水弁を制御して貯水部の水位を所定量に保持するように構成されている。
 しかしながら、特許文献2に記載の従来の液体微細化装置では、自動給水しながら連続して加湿運転を行っていると、貯水部内の水は、水のみが気化され、使用時間および使用水量に比例して給水される水に含まれるカルシウム分、マグネシウム分等のスケール成分が濃縮されていく。その結果、揚水される水の中に含まれるスケール成分が多孔部内で析出し、多孔部が目詰まりを起こしてしまうことが懸念される。また、こうした目詰まりの懸念は、液体微細化室を通過する空気に含められた水のうち水滴を捕集するためのエリミネータを備える液体微細化装置においても同様に起こり得ることである。
 本実施の形態は、上記課題を解決するためになされたものであり、装置を長期間継続して使用する場合に、装置内での目詰まりの発生を抑制することが可能な液体微細化装置を提供するものである。
 本実施の形態の液体微細化装置は、吸込口より吸い込んだ空気に微細化された液体を含ませて吹出口より吹き出す液体微細化装置である。液体微細化装置は、鉛直方向下方に揚液口を有し、回転軸の回転に伴って揚液口より汲み上げられた液体を遠心方向に放出する筒状の揚液管と、揚液管から放出された液体が衝突することにより、その液体を微細化する衝突壁と、揚液管の鉛直方向下方に設けられ、揚液管より汲み上げられる液体を貯留する貯留部と、衝突壁と貯留部との間に設けられ、微細化された液滴の一部を捕集するエリミネータと、液体微細化装置における液体の微細化動作を制御する制御部とを備える。そして、吸込口は、湿度回収部を有する送風装置と連通されている。制御部は、微細化動作中に貯留部への液体の供給回数が所定回数となった場合に、貯留部の液体を排出する第一処理を実行させることを特徴とするものである。
 こうした構成によれば、微細化動作中に貯留部への液体の供給回数が所定回数となった場合には、第一処理の実行によって、貯留部の液体(例えば、スケール成分が濃縮された状態の水)が排出されて除去される。このため、貯留部内の液体のスケール成分の濃度上昇を抑制することができる。この結果、その後の微細化動作の際に、貯留部の液体に含まれるスケール成分がエリミネータ内に入り込むことが低減される。つまり、装置を長期間継続して使用する場合に、装置内での目詰まりの発生を抑制することが可能な液体微細化装置とすることができる。
 また、本実施の形態の液体微細化装置では、制御部は、微細化動作を所定の期間(第二時間)継続した場合に、貯留部の液体を排出する第二処理を実行させることが好ましい。このようにすることで、微細化動作を第二時間継続した場合にも、第二処理の実行によって、貯留部の液体(例えば、スケール成分が濃縮された状態の水)が排出されて除去される。つまり、第一処理または第二処理によって、貯留部内の液体のスケール成分の濃度上昇を確実に抑制することができる。
 また、本開示の液体微細化装置では、制御部は、第二処理の終了後に、貯留部に液体がない状態で微細化動作を行うとともに、送風装置からの送風を行う第三処理を実行させることが好ましい。このようにすることで、第三処理の終了後に、装置内を乾燥させることができるので、液体微細化装置の停止状態を長期間維持する場合に、装置内でのカビあるいは雑菌等の繁殖を抑制することができる。
 また、本開示の液体微細化装置では、貯留部の底面において液体を排出する排液口をさらに備え、揚液管は、微細化動作中に揚液管の内部に回転によって貯留部の液体に渦を発生させ、その渦中心において揚液口と排液口との間を連通する空隙を形成して、貯留部内の液体の排液口への流れ込みを防止しており、制御部は、回転を停止することにより、第一処理または第二処理における液体の排出を実行させている。このようにすることで、排液弁を用いなくても、液体微細化装置での液体の貯留および液体の排出を実行することができる。よって、排液口の開口面積を大きくしたり、排液管の内径を太くしたりできるので、排液機構に起因した目詰まりも生じにくい液体微細化装置とすることができる。
 本実施の形態の液体微細化装置1は、構造的には実施の形態1の液体微細化装置1と同じである。ただし、本実施の形態の液体微細化装置1は、温湿度センサ34を備えていなくてもよい。
 図11~図14を参照して、液体微細化装置1による加湿動作における処理手順について説明する。図11および図12は、本開示の実施の形態2に係る液体微細化装置による加湿処理手順を示すフローチャートである。図13は、本開示の実施の形態2に係る液体微細化装置による給水処理手順を示すフローチャートである。図14は、本開示の実施の形態2に係る液体微細化装置による排水処理手順を示すフローチャートである。なお、以下では、送風機67が、制御部60aからの制御信号ではなく、加湿制御部30からの制御信号によって送風動作を実行しているものとして説明する。
 図11に示すように、加湿制御部30に液体微細化装置1の加湿処理の運転開始に関する制御信号が入力されると、まず、加湿制御部30は、送風機67を作動させ、送風機67からの送風を開始させる(ステップS51)。これにより、液体微細化装置1(液体微細化室7)内に空気が流通するようになる。そして、加湿制御部30は、水位検知カウンタNをリセットし、水位検知カウンタNを「0」とする(ステップS52)。ここで、水位検知カウンタNは、貯水部14への水の給水回数(貯水部14が満水状態となるまでの給水を行った回数)を示す値である。そして、加湿制御部30は、貯水部14への水の給水処理を実行させる(ステップS53)。
 給水処理では、図13に示すように、加湿制御部30は、回転モータ11を第一回転数R1(例えば、2000rpm)で作動させ、止水機構が機能する状態とする(ステップS70)。次に、加湿制御部30は、給水部15の給水弁15bを開弁させ、貯水部14への水の供給を開始させる(ステップS71)。そして、加湿制御部30は、水位検知部18からのフロートスイッチ18aのオンまたはオフに関する第五情報に基づいて、貯水部14の水位が満水状態となったか否かを判断する(ステップS72)。その結果、貯水部14の水が満水状態となっていない場合(ステップS72のNo)には、加湿制御部30は、貯水部14への水の供給をそのまま継続させる(ステップS72に戻る)。一方、貯水部14の水が満水状態となった場合(ステップS72のYes)には、加湿制御部30は、給水弁15bを閉弁させ、貯水部14への水の供給を停止させる(ステップS73)。そして、加湿制御部30は、水位検知カウンタNに「1」を加算する(ステップS74)。以上の各ステップにより、貯水部14への水の給水処理が終了する。但し、給水処理は、回転モータ11を第一回転数R1で回転させた状態で終了する。図11に戻る。
 貯水部14への水の給水処理(ステップS53)が終了すると、加湿制御部30は、回転モータ11を第二回転数R2で回転させ、加湿設定に基づいた加湿動作(加湿運転)を開始させる(ステップS54)。ここで、第二回転数R2は、加湿条件(例えば、加湿量)によって決められる回転数であり、少なくとも第一回転数R1以上の回転数が設定される。そして、加湿動作中に、ステップS54を起点とした所定時間(第一時間T1)が経過した場合(ステップS55のYes)には、加湿制御部30は、貯水部14への水の給水処理(図13参照)を実行させ、貯水部14を満水状態とする(ステップS56)。一方、第一時間T1が経過していない場合(ステップS55のNo)には、加湿制御部30は、加湿動作をそのまま継続させる(ステップS55に戻る)。ここで、第一時間T1は、ステップS54での回転モータ11の作動時点を開始時間として計時される時間であり、例えば、30分に設定される。
 続いて、加湿制御部30は、ステップS52を起点とした所定時間(第二時間T2)が経過した場合(ステップS57のYes)には、ステップS60(図12参照)以降の処理を実行する。ここで、第二時間T2は、ステップS52での水位検知カウンタNのリセット時点を開始時間として計時される時間であり、例えば、24時間に設定される。なお、第二時間T2は、液体微細化装置1が起動してからの時間あるいは前回乾燥運転を行ってからの時間であってもよい。一方、第二時間T2が経過していない場合(ステップS57のNo)には、加湿制御部30は、水位検知カウンタNに基づいて、満水状態とする給水回数がM回(例えば、10回)を超えたか否かを判断する(ステップS58)。その結果、水位検知カウンタNがM回を超えていない場合(ステップS58のNo)には、ステップS54に戻り、加湿制御部30は、加湿動作を繰り返し実行させる。一方、水位検知カウンタNがM回を超えている場合(ステップS58のYes)には、加湿制御部30は、貯水部14の水の排水処理を実行させる(ステップS59)。ここで、ステップS58とステップS59での処理が、第一処理に対応する排水動作となる。
 排水処理では、図14に示すように、加湿制御部30は、回転モータ11を停止させ、止水機構が機能しない状態とする(ステップS80)。これにより、貯水部14の水の排水が開始される。そして、水の排水中に、ステップS80を起点とした所定時間(第八時間T8)が経過していない場合(ステップS81のNo)には、加湿制御部30は、排水状態をそのまま継続させる(ステップS81に戻る)。一方、第八時間T8が経過した場合(ステップS81のYes)には、加湿制御部30は、貯水部14の水が排水されたと見なし、貯水部14の水の排水処理を終了させる。ここで、第八時間T8は、ステップS80での回転モータ11の停止時点を開始時間として計時される時間であり、例えば、1分に設定される。図11に戻る。
 貯水部14の水の排水処理(ステップS59)が終了すると、加湿制御部30は、ステップS52に戻り、その後の各ステップを繰り返して実行させる。
 引き続き、図12を参照して、第二時間T2が経過した場合に行うステップS60以降の処理について説明する。
 第二時間T2が経過した場合(ステップS57のYes)には、図12に示すように、加湿制御部30は、貯水部14の水の排水処理(図14参照)を実行させる(ステップS60)。ここで、ステップS57とステップS60での処理が、第二処理に対応する排水動作となる。そして、貯水部14の水の排水処理(ステップS60)が終了すると、加湿制御部30は、回転モータ11を第三回転数R3(例えば、2000rpm)で回転させ、第一乾燥運転(貯水部14に水がない状態での微細化動作)を開始させる(ステップS61)。そして、第一乾燥運転を開始してから所定時間(第三時間T3)が経過した場合(ステップS62のYes)には、加湿制御部30は、回転モータ11を停止させる(ステップS63)。一方、第三時間T3が経過していない場合(ステップS62のNo)には、加湿制御部30は、第一乾燥運転をそのまま継続させる(ステップS62に戻る)。つまり、第一乾燥運転では、貯水部14に水がない状態で揚水管9の回転動作が行われ、揚水管9等に付着して残存する水滴の除去がなされる。なお、第三時間T3は、例えば、30秒に設定される。
 第一乾燥運転が終了すると、微細化動作が停止した状態で、液体微細化装置1(液体微細化室7)内に空気を流通させる第二乾燥運転となる。そして、第二乾燥運転を開始してから所定時間(第四時間T4)が経過していない場合(ステップS64のNo)には、加湿制御部30は、第二乾燥運転をそのまま継続させる(ステップS64に戻る)。つまり、第二乾燥運転では、液体微細化装置1(液体微細化室7)内への通風動作が行われ、装置内の乾燥(装置内に残存する水分の除去)がなされる。なお、第四時間T4は、例えば、1時間に設定される。一方、第四時間T4が経過した場合(ステップS64のYes)には、加湿制御部30は、液体微細化装置1の加湿処理の運転停止に関する制御信号が入力されているか否かを判断する(ステップS65)。その結果、加湿処理の運転停止に関する制御信号が入力されていない場合(ステップS65のNo)には、加湿制御部30は、ステップS52に戻り、液体微細化装置1の加湿処理の運転を再び開始させる。一方、加湿処理の運転停止に関する制御信号が入力されている場合(ステップS65のYes)には、加湿制御部30は、送風機67を停止させる(ステップS66)。そして、加湿制御部30は、液体微細化装置1の加湿処理の運転を終了させる。これにより、液体微細化装置1は、操作パネル31からの運転開始指示待ちの状態となる。
 ここで、第一乾燥運転(ステップS61~ステップS63)と第二乾燥運転(ステップS63~ステップS64)での処理が、第三処理に対応する乾燥動作となる。
 以上のようにして、熱交換気装置60では、液体微細化装置1による加湿動作における各処理が実行される。
 以上、本実施の形態2に係る液体微細化装置1によれば、以下の効果を享受することができる。
 (1)液体微細化装置1では、加湿動作(微細化動作)中に貯水部14への水の給水回数が所定回数(M回超)となった場合に、貯水部14の水を排水する第一処理を実行させるように構成した。これにより、加湿動作中に貯水部14への水の給水回数が所定回数(M回超)となった場合には、第一処理の実行によって、貯水部14の水(スケール成分が濃縮された状態の水)が排水されて除去される。このため、貯水部14内の水のスケール成分の濃度上昇を抑制することができる。この結果、その後の加湿動作の際に、貯水部14の水に含まれるスケール成分がエリミネータ17内に入り込むことが低減される。つまり、装置を長期間継続して使用する場合に、装置内での目詰まりの発生を抑制することが可能な液体微細化装置1とすることができる。
 (2)液体微細化装置1は、加湿動作(微細化動作)中に貯水部14への水の給水回数が所定回数(M回超)となった場合に、貯水部14の水を排水する第一処理を実行させるように構成した。第一処理では、貯水部14への水の給水回数が所定回数ごとに貯水部14の水を排水するので、毎回排水する場合に比べて、水の使用量を削減することができる。このため、液体微細化装置1のランニングコストを低減することができる。所定回数は、2回またはそれよりも大きな回数である。
 (3)液体微細化装置1では、加湿動作(微細化動作)を所定時間(第二時間T2)継続した場合に、貯水部14の水を排水する第二処理を実行させるように構成した。これにより、加湿動作を所定時間(第二時間T2)継続した場合にも、第二処理の実行によって、貯水部14の水(スケール成分が濃縮された状態の水)が排水されて除去される。つまり、液体微細化装置1では、第一処理または第二処理によって、貯水部14内の水のスケール成分の濃度上昇を確実に抑制することができる。
 (4)液体微細化装置1では、第二処理の終了後に、貯水部14に水がない状態で加湿動作(微細化動作)を行うとともに、送風機67からの送風を行う第三処理を実行させるように構成した。これにより、第三処理の終了後に、装置内を乾燥させることができるので、液体微細化装置1の停止状態を長期間維持する場合に、装置内でのカビあるいは雑菌等の繁殖を抑制することができる。
 (5)液体微細化装置1では、加湿動作(微細化動作)中に、揚水管9の内部に回転によって貯水部14の水に渦24を発生させ、その渦中心において揚水口9aと排水口16aとの間を連通する空隙25を形成して貯水部の水を止水するように構成した。そして、回転モータ11の回転を停止することにより、第一処理または第二処理における水の排水を実行させるように構成した。このように構成したことで、液体微細化装置1では、排水弁を用いなくても、液体微細化装置1での止水および排水を実行することができる。よって、排水口16aの開口面積を大きくしたり、排水管16の内径を太くしたりできるので、排水機構に起因した目詰まりも生じにくい液体微細化装置1とすることができる。
 (6)液体微細化装置1では、貯水部14の底面を、揚水口9aに向かって下方に傾斜するすり鉢状に形成した。これにより、揚水管9が回転した場合に、貯水部14に貯水された水に対して遠心力を与えやすくなる。そのため、揚水管9内部で貯水部14の水に渦24を発生させやすくできるとともに、発生した渦24を安定して存続させ続けることができる。また、揚水管9の回転を停止した場合には、貯水部14に貯水された水を確実に排水口16aから排水させることができる。
 (7)熱交換気装置60では、湿度回収部65を、液体微細化装置1および湿度回収部65を通過する空気の流れにおいて、液体微細化装置1より上流側に配置した。言い換えれば、熱交換気装置60では、液体微細化装置1を、湿度回収部65の下流側に配置した。このとき、湿度回収部65で湿度回収された後の空気が液体微細化装置1に流入するので、より適切に湿度コントロールすることができる。また、湿度回収部65と液体微細化装置1の2箇所で湿度制御を行うことで、湿度回収部65あるいは液体微細化装置1にヒータ等を設置していない場合でも、十分な加湿量を確保することができる。また、加湿量を確保するためのヒータが不要になることで、省エネルギーを実現できる。
 以上、実施の形態に基づき本開示を説明したが、本開示は上記実施の形態に何ら限定されるものではなく、本開示の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、上記実施の形態で挙げた数値は一例であり、他の数値を採用することは当然可能である。
 熱交換気装置60では、湿度回収部65は、湿度だけでなく温度を回収(交換)する機能を有するように構成してもよい。具体的には、湿度回収部65を全熱交換素子とするとともに、本体ケース50の内部に排気送風機を設け、排気風路を構成する。排気風路は、排気送風機によって内気吸込口61から室内空気を吸い込み、湿度回収部65を通って排気口62から外部に排気する風路である。この際、湿度回収部65は、排気風路と給気風路が交わる位置に配置される。そして、湿度回収部65は、排気風路を通過する空気と給気風路を通過する空気との間で熱交換とともに湿度交換を行う。これにより、より快適な空気を室内に供給することが可能となる。
 また、熱交換気装置60では、湿度回収部65によって湿度回収された後の空気が液体微細化装置1を流通しないように、液体微細化装置1をバイパスして室内に供給されるように構成してもよい。これにより、液体微細化装置1は運転せず、熱交換気のみで運転するような場合に、湿度回収された後の空気を効率よく室内に供給することができる。また、液体微細化装置1に起因した圧力損失の上昇が抑制されるので、年間を通じての省エネルギーでの運転も実現することができる。
 また、熱交換気装置60では、送風機67からの送風停止を、送風機67の運転を停止することによって行ったが、これに限らない。例えば、上記したバイパスへの切り替えによって液体微細化装置1への送風がなされないようにしてもよい。これにより、室内への給気を実行しつつ、独立した状態で乾燥処理における乾燥動作を実行することができる。
 また、液体微細化装置1では、加湿制御部30は、給水部15から貯水部14への水の供給に関して、水位検知部18でのオフの状態が所定時間(第一時間T1)継続した場合に、貯水部14に水が供給されるように制御したが、これに限られない。例えば、加湿制御部30は、加湿動作によって減少する貯水部14の水の減少量が所定水量Vに達する場合に、貯水部14への水の供給を実行するように制御してもよい。この場合、所定水量Vに達するか否かは、一定時間(例えば、1分または5分)ごとに、加湿動作の際の加湿条件(加湿量、送風量)に対応して減少する見込み水量を算出して、それらを積算して判断される。これにより、貯水部14の水量(または残量)の管理精度を向上させることができるので、不要な給水(貯水部14の水が減っていない状態での給水)を抑制することができる。
 また、液体微細化装置1では、加湿制御部30は、吸込口2より吸い込んだ空気の湿度が目標湿度を超えていると判定した場合であって、且つ、吸込口2より吸い込んだ空気の湿度が目標湿度よりも高い第一湿度となった場合に、揚水管9(回転モータ11)の回転を停止させるように制御してもよい。ここで、第一湿度は、例えば、目標湿度の120%に設定される。このようにすることで、加湿制御部30は、吸込口2より吸い込んだ空気に対する過剰となる加湿を抑制することができるので、より適切に室内の湿度コントロールすることができる。
 また、液体微細化装置1では、加湿制御部30は、操作パネル31からの第一情報および温湿度センサ34からの第四情報に基づいて、加湿(水の微細化)が必要か否かを判断するとしたが、具体的には、以下の通りである。
 まず、加湿制御部30は、操作パネル31からの第一情報(目標湿度、換気風量)および温湿度センサ34からの第四情報(吸込口2に吸い込まれる空気の温湿度)に基づいて、目標湿度に到達させるのに必要な加湿量を算出する。そして、加湿制御部30は、算出された加湿量を実現する際の回転モータ11の回転数を算出する。その結果、加湿制御部30は、算出された回転モータ11の回転数が、2000rpm未満であれば加湿の必要はなしと判定し、2000rpm以上であれば加湿の必要ありと判定する。そして、加湿制御部30は、算出された回転数が2000rpm-4000rpmの範囲であれば、算出された回転数を第二回転数R2として設定する。一方、算出された回転数が4000rpmを超える場合には、4000rpmを第二回転数R2として設定する。なお、水の微細化動作の開始後に、算出された回転数が2000rpm未満となる場合には、すべて第四回転数R4(止水機構が機能する回転数)に設定されることになる。
 本開示に係る液体微細化装置は、加湿目的での水気化装置、及び殺菌あるいは消臭目的での次亜塩素酸気化装置といった液体を気化させる装置に適用可能である。また、熱交換気装置、空気清浄機又は空気調和機において、その機能の一つとして組み込まれた水気化装置あるいは次亜塩素酸気化装置等に、本開示に係る液体微細化装置は適用可能である。
 1  液体微細化装置
 2  吸込口
 3  吹出口
 4  風路
 5  風路
 6  風路
 7  液体微細化室
 8  衝突壁
 9  揚水管
 9a  揚水口
 10  回転軸
 11  回転モータ
 12  回転板
 13  開口
 14  貯水部
 15  給水部
 15a  給水管
 15b  給水弁
 16  排水管
 16a  排水口
 17  エリミネータ
 18  水位検知部
 18a  フロートスイッチ
 19  エリミネータホルダ
 19a  第一保持部
 19b  第二保持部
 19c  天面板
 20  水流制御板
 22  支持部
 24  渦
 25  空隙
 30  加湿制御部
 30a  入力部
 30b  記憶部
 30c  計時部
 30d  処理部
 30e  出力部
 31  操作パネル
 32  温湿度センサ
 33  温度センサ
 34  温湿度センサ
 50  本体ケース
 51  給排水配管
 60  熱交換気装置
 60a  制御部
 61  内気吸込口
 62  排気口
 63  外気吸込口
 64  給気口
 65  湿度回収部
 66  接続ダクト
 67  送風機

Claims (6)

  1.  吸込口より吸い込んだ空気に微細化された液体を含ませて吹出口より吹き出す液体微細化装置であって、
     鉛直方向下方に揚液口を有し、回転軸の回転に伴って前記揚液口より汲み上げられた液体を遠心方向に放出する筒状の揚液管と、
     前記揚液管から放出された液体が衝突することにより、その液体を微細化する衝突壁と、
     前記揚液管の鉛直方向下方に設けられ、前記揚液口より汲み上げられる液体を貯留する貯留部と、
     前記貯留部の底面において液体を排出する排液口と、
     前記液体微細化装置における液体の微細化動作を制御する制御部と、
    を備え、
     前記吸込口は、湿度回収部を有する送風装置と連通されており、
     前記揚液管は、前記微細化動作の際に、第一回転数から前記第一回転数よりも回転数の多い第二回転数までの範囲のいずれかの回転数で回転し、
     前記第一回転数から前記第二回転数までの範囲のいずれの回転数も、前記回転によって前記揚液管の内部において前記貯留部内の液体に渦を発生させ、その渦中心において前記揚液口と前記排液口との間を連通する空隙を形成して、前記貯留部内の液体の前記排液口への流れ込みの防止を確保する回転数であり、
     前記制御部は、前記吸込口より吸い込んだ空気の湿度が目標湿度を超えていると判定した場合に、前記第一回転数にて前記揚液管を回転させることを特徴とする液体微細化装置。
  2.  前記制御部は、前記吸込口より吸い込んだ空気の湿度が前記目標湿度に足りない場合に、前記第一回転数から前記第二回転数までの範囲における第三回転数にて前記揚液管を回転させることを特徴とする請求項1に記載の液体微細化装置。
  3.  前記制御部は、前記吸込口より吸い込んだ空気の湿度が前記目標湿度を超えているか否かの判定を第一期間ごとに行うことを特徴とする請求項1または2に記載の液体微細化装置。
  4.  前記制御部は、前記吸込口より吸い込んだ空気の湿度が前記目標湿度を超えていると判定した状態が、前記第一期間よりも長い第二期間継続した場合に、前記揚液管の回転を停止させることを特徴とする請求項3に記載の液体微細化装置。
  5.  前記制御部は、前記吸込口より吸い込んだ空気の湿度が前記目標湿度を超えていると判定した場合であって、且つ、前記吸込口より吸い込んだ空気の湿度が前記目標湿度よりも高い第一湿度となった場合に、前記揚液管の回転を停止させることを特徴とする請求項1~4のいずれか一項に記載の液体微細化装置。
  6.  前記送風装置は、前記湿度回収部により湿度を回収された空気を前記吸込口に流入させるように構成されていることを特徴とする請求項1~5のいずれか一項に記載の液体微細化装置。
PCT/JP2020/014631 2019-04-09 2020-03-30 液体微細化装置 WO2020209130A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080024159.0A CN113613793B (zh) 2019-04-09 2020-03-30 液体微细化装置
CN202310807365.4A CN116857737A (zh) 2019-04-09 2020-03-30 液体微细化装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-073885 2019-04-09
JP2019073885A JP7270120B2 (ja) 2019-04-09 2019-04-09 液体微細化装置
JP2019079461A JP7133755B2 (ja) 2019-04-18 2019-04-18 液体微細化装置
JP2019-079461 2019-04-18

Publications (1)

Publication Number Publication Date
WO2020209130A1 true WO2020209130A1 (ja) 2020-10-15

Family

ID=72751580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014631 WO2020209130A1 (ja) 2019-04-09 2020-03-30 液体微細化装置

Country Status (2)

Country Link
CN (2) CN116857737A (ja)
WO (1) WO2020209130A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1119537A (ja) * 1997-06-30 1999-01-26 Aiwa Co Ltd 液体微細化装置、空気清浄装置、マイナスイオン発生装置及び加湿器
JP2001289470A (ja) * 2001-01-22 2001-10-19 Fine:Kk 陰イオン発生装置
JP2009264641A (ja) * 2008-04-24 2009-11-12 Panasonic Corp 水微粒化装置とそれを用いた加湿装置
WO2012026120A1 (ja) * 2010-08-26 2012-03-01 パナソニック株式会社 液体微細化装置とそれを用いたサウナ装置
JP2016205663A (ja) * 2015-04-17 2016-12-08 株式会社コロナ ミスト発生装置
JP6476422B1 (ja) * 2018-02-28 2019-03-06 パナソニックIpマネジメント株式会社 液体微細化装置及びそれを用いた熱交換気装置、空気清浄機又は空気調和機

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040043138A (ko) * 2004-02-07 2004-05-22 윤장식 원심 형식의 공기 정화 장치
KR100647895B1 (ko) * 2004-10-11 2006-11-23 주식회사 대우일렉트로닉스 습식 공기청정기용 다기능 팬
JP2006118724A (ja) * 2004-10-19 2006-05-11 Nichias Corp 湿度制御装置及びその運転方法
KR100640727B1 (ko) * 2004-11-08 2006-11-01 주식회사 대우일렉트로닉스 습식 음이온 발생장치가 구비된 공기청정기
US20070051245A1 (en) * 2005-02-03 2007-03-08 Jangshik Yun Wet type air purification apparatus utilizing a centrifugal impeller
JP2008241131A (ja) * 2007-03-27 2008-10-09 Max Co Ltd 加湿換気システム及び加湿給気システム
JP2009264616A (ja) * 2008-04-23 2009-11-12 Tiger Vacuum Bottle Co Ltd 加湿器
CN102087041B (zh) * 2009-12-04 2013-08-28 珠海格力电器股份有限公司 空调器加湿控制方法
JP7069009B2 (ja) * 2015-10-30 2022-05-17 エルジー エレクトロニクス インコーポレイティド 加湿清浄装置
JP6475602B2 (ja) * 2015-11-13 2019-02-27 株式会社コロナ 加湿装置
JP2017180929A (ja) * 2016-03-30 2017-10-05 株式会社コロナ ミスト発生装置
CN107121996B (zh) * 2017-07-04 2022-07-01 南京信息工程大学 一种恒温恒湿控制装置及控制方法
JP6467597B1 (ja) * 2017-12-04 2019-02-13 パナソニックIpマネジメント株式会社 液体微細化装置およびそれを用いた換気装置、空気清浄機、空気調和機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1119537A (ja) * 1997-06-30 1999-01-26 Aiwa Co Ltd 液体微細化装置、空気清浄装置、マイナスイオン発生装置及び加湿器
JP2001289470A (ja) * 2001-01-22 2001-10-19 Fine:Kk 陰イオン発生装置
JP2009264641A (ja) * 2008-04-24 2009-11-12 Panasonic Corp 水微粒化装置とそれを用いた加湿装置
WO2012026120A1 (ja) * 2010-08-26 2012-03-01 パナソニック株式会社 液体微細化装置とそれを用いたサウナ装置
JP2016205663A (ja) * 2015-04-17 2016-12-08 株式会社コロナ ミスト発生装置
JP6476422B1 (ja) * 2018-02-28 2019-03-06 パナソニックIpマネジメント株式会社 液体微細化装置及びそれを用いた熱交換気装置、空気清浄機又は空気調和機

Also Published As

Publication number Publication date
CN113613793A (zh) 2021-11-05
CN116857737A (zh) 2023-10-10
CN113613793B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
JP2022115918A (ja) 液体微細化装置
JP2015222156A (ja) ミスト発生装置
JP7308383B2 (ja) 加湿装置
JP2015222148A (ja) ミスト発生装置
JP6806595B2 (ja) ミスト発生装置
JP2021046976A (ja) 液体微細化装置
JP7241257B2 (ja) 液体微細化装置
JP7133755B2 (ja) 液体微細化装置
WO2020209130A1 (ja) 液体微細化装置
WO2020136986A1 (ja) 加湿装置
JP7291877B2 (ja) 液体微細化装置
JP2018124032A (ja) ミスト発生装置
JP2021135010A (ja) 液体微細化装置
JP2014204864A (ja) ミスト発生装置
JP7450144B2 (ja) 液体微細化装置の止水方法
JP2021171713A (ja) 液体微細化装置
JP5381576B2 (ja) 液体微細化装置とそれを用いたサウナ装置
JP6346102B2 (ja) ミスト発生装置
WO2020059393A1 (ja) 液体微細化装置及びそれを用いた熱交換気装置
JP2021148380A (ja) 液体微細化装置
JP7194880B2 (ja) 液体微細化装置
JP7493123B2 (ja) 液体微細化装置
WO2023238526A1 (ja) 液体微細化装置及びそれを用いた熱交換気装置
JP7209146B2 (ja) 換気装置
JP2020046109A (ja) 液体微細化装置及びそれを用いた熱交換気装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20787971

Country of ref document: EP

Kind code of ref document: A1