WO2020208947A1 - かしめアセンブリの製造方法、ハブユニット軸受の製造方法及び車両の製造方法 - Google Patents

かしめアセンブリの製造方法、ハブユニット軸受の製造方法及び車両の製造方法 Download PDF

Info

Publication number
WO2020208947A1
WO2020208947A1 PCT/JP2020/006675 JP2020006675W WO2020208947A1 WO 2020208947 A1 WO2020208947 A1 WO 2020208947A1 JP 2020006675 W JP2020006675 W JP 2020006675W WO 2020208947 A1 WO2020208947 A1 WO 2020208947A1
Authority
WO
WIPO (PCT)
Prior art keywords
hub
inner ring
hub body
manufacturing
axial
Prior art date
Application number
PCT/JP2020/006675
Other languages
English (en)
French (fr)
Inventor
信行 萩原
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to JP2020563572A priority Critical patent/JP6897893B2/ja
Priority to EP20787357.1A priority patent/EP3892397A4/en
Priority to CN202080025902.4A priority patent/CN113631298A/zh
Priority to US17/427,397 priority patent/US20220143679A1/en
Priority to KR1020217028017A priority patent/KR20210149693A/ko
Priority to JP2020562219A priority patent/JP6940011B2/ja
Priority to PCT/JP2020/015920 priority patent/WO2020209321A1/ja
Priority to US17/599,712 priority patent/US20220055089A1/en
Priority to KR1020217031137A priority patent/KR20210148142A/ko
Priority to CN202080025587.5A priority patent/CN113631294A/zh
Priority to EP20787498.3A priority patent/EP3928887A4/en
Publication of WO2020208947A1 publication Critical patent/WO2020208947A1/ja
Priority to JP2021133776A priority patent/JP2022048986A/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/28Making machine elements wheels; discs
    • B21K1/40Making machine elements wheels; discs hubs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J9/00Forging presses
    • B21J9/02Special design or construction
    • B21J9/025Special design or construction with rolling or wobbling dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K25/00Uniting components to form integral members, e.g. turbine wheels and shafts, caulks with inserts, with or without shaping of the components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/185Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with two raceways provided integrally on a part other than a race ring, e.g. a shaft or housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/50Positive connections
    • F16C2226/52Positive connections with plastic deformation, e.g. caulking or staking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2233/00Monitoring condition, e.g. temperature, load, vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Definitions

  • the present invention relates to a caulking assembly, a method of manufacturing a hub unit bearing, and a method of manufacturing a vehicle.
  • the present application claims priority based on Japanese Patent Application No. 2019-074550 filed on April 10, 2019, the contents of which are incorporated herein by reference.
  • a hub that rotates together with a wheel is configured to include a hub body (hub wheel) for fixing the wheel and an inner ring fitted to the hub body, and is formed at the axial end of the hub body.
  • a hub unit bearing that presses the axial side surface of the inner ring by the portion is known.
  • automobile wheels and braking rotating bodies are rotatably supported by suspension devices by hub unit bearings.
  • a preload is applied to the rolling element based on the fact that at least the axial side surface of the inner ring is pressed by the caulking portion in order to increase its rigidity.
  • Patent Document 1 As a method of processing the axial end portion of the hub body into a crimped portion, a molding die that swings and rotates around the central axis of the hub body is used as the shaft of the hub body. The rocking forging that is pressed against the directional end is described. Further, in Japanese Patent Application Laid-Open No. 2005-195084 (Patent Document 1), rocking forging is performed in two stages, and the shape of the molding die or the molding die is described in the first step and the second step. A method of suppressing a radial outward load applied to the inner ring from the crimped portion by changing the swing angle is described.
  • JP-A-2017-18991 Patent Document 2
  • JP-A-2017-67254 Patent Document 3
  • JP-A-2017-106510 Patent Document 4
  • Japanese Unexamined Patent Publication No. 2005-195084 Japanese Unexamined Patent Publication No. 2017-18991 JP-A-2017-67254 JP-A-2017-106510
  • the preload of the hub unit bearing affects the running stability of the automobile.
  • the influence of the preload of the hub unit bearing is greater when the electric motor is used than when the engine is used as the power source of the automobile.
  • the method of performing the processing for forming the crimped portion in two stages as described in JP-A-2005-195084 is also effective in adjusting the preload of the hub unit bearing. Considered to be the method.
  • Patent Document 1 does not describe specific contents such as how to adjust the preload.
  • An object of the present invention is to realize a method of manufacturing a caulking assembly, a method of manufacturing a hub unit bearing, and a method of manufacturing a vehicle whose preload can be adjusted.
  • a method for manufacturing a caulking assembly includes a step of axially combining a first member and a second member having a hole into which the first member is inserted, and a shaft of the first member. This is a step of forming a caulking portion with respect to the second member on the first member by applying a load in the axial direction to the end, and (a) first information acquired before applying the load and (b) the above.
  • the step includes a step of adjusting the load based on at least one of the second information acquired in a state where the load is applied.
  • the hub unit bearing is arranged between an outer ring having an outer ring raceway, a hub having an inner ring raceway, and the outer ring raceway and the inner ring raceway.
  • the hub includes a plurality of rolling elements, and the hub has a hub main body and an inner ring arranged outside the hub main body and held by the hub main body.
  • the method comprises a step of axially combining the hub body and an inner ring having a hole into which the hub body is inserted, and applying an axial load to the shaft end of the hub body to the inner ring. This is a step of forming the crimped portion on the hub body, and is based on at least one of (a) first information acquired before the load is applied and (b) second information acquired with the load applied.
  • the step includes the step of adjusting the load.
  • the hub unit bearing to be manufactured includes an outer ring having a double-row outer ring raceway on the inner peripheral surface, a hub having a double-row inner ring raceway on the outer peripheral surface, and the double-row inner ring raceway.
  • a plurality of rolling elements arranged in each row are provided between the outer ring orbits in the double row.
  • the hub includes a hub main body and an inner inner ring having an inner ring orbit in the axial inner row of the double-row inner ring orbits provided on the outer peripheral surface.
  • the inner inner ring is caulked so as to be fitted onto the hub body and plastically deformed so as to crush the axial inner end of the hub body outward in the axial direction and expand it outward in the radial direction.
  • the inner side surface in the axial direction is pressed by the portion. Preload is applied to the rolling element based on at least the axial inner surface of the inner inner ring being pressed by the caulking portion.
  • processing for forming the caulking portion is performed in a plurality of stages, and among the plurality of stages.
  • the decision is made using at least one of the information obtained in.
  • the caulking portion forming step includes a first step and a second step.
  • the first step is a step of processing a cylindrical portion provided at an axially inner end portion of the hub body before forming the crimped portion into a crimped portion intermediate.
  • the second step is a step of processing the crimped intermediate into the crimped portion.
  • the crimped intermediate is not brought into contact with the axial inner side surface of the inner inner ring.
  • the cylindrical portion is made into the crimped intermediate by oscillating forging in which a molding die that swings and rotates about the central axis of the hub body is pressed against the axially inner end of the hub body.
  • the end time point of the rocking forging in the first step is determined by using the value of the molding mold rotation torque which is the torque for swinging and rotating the molding mold.
  • the end time of the rocking forging in the first step is the time when the mold rotation torque first starts to settle to a substantially constant value after the start of the rocking forging, or the rocking. After the start of dynamic forging, the mold rotation torque first settles to a substantially constant value, and then the mold rotation torque begins to decrease.
  • the axial load applied to the axially inner end of the hub body is determined by using the information acquired in the first step.
  • the cylindrical portion is made into the crimped intermediate by oscillating forging in which a molding die that swings and rotates about the central axis of the hub body is pressed against the axially inner end of the hub body.
  • the information acquired in the first step includes an axial load applied from the molding die to the axially inner end of the hub body, a molding die rotation torque for swinging and rotating the molding die, and the above. Includes the axial movement speed of the mold.
  • the axial load applied to the axially inner end of the hub body is added to the information acquired in the first step, and the information acquired in the steps prior to the first step is added. Use to decide.
  • the hub further includes an outer inner ring in which the inner ring track of the axially outer row of the double row inner ring races is provided on the outer peripheral surface, and the outer inner ring is fitted onto the hub body.
  • the information acquired in the steps prior to the first step includes the fitting allowance between the hub body and the inner inner ring and the outer inner ring, and the press-fitting load of the inner inner ring and the outer inner ring on the hub body. Include at least one with the bearing axial clearance.
  • the hub main body When the hub main body is provided with the inner ring races of the axially outer rows of the double row inner ring races on the outer peripheral surface, for example, the information acquired in the step prior to the first step is added.
  • the fitting allowance between the hub body and the inner inner ring, the press-fitting load of the inner inner ring on the hub body, the inter-row width of the double-row outer ring track, and the inter-row width of the double-row inner ring track. Include at least one of the diameter of the rolling elements per row and the pitch circle diameter of the rolling elements per row.
  • a relational expression in which the axial load applied to the axially inner end of the hub body is set as the dependent variable and each of the acquired information and the target value of the preload is included in the independent variable is used. It is used to determine the axial load to be applied to the axially inner end of the hub body.
  • the relational expression obtained by the multiple regression analysis can be used as the relational expression.
  • the processing for forming the caulking portion from the caulking portion intermediate is performed in a plurality of stages, and after the processing in each stage is completed, the outer ring is attached to the hub.
  • the outer ring rotation torque which is the torque for rotation, is measured, and in each of the second and subsequent stages, the axial load applied to the axially inner end of the hub body is applied after the processing of the immediately preceding stage is completed. It is determined by using the measured information on the outer ring rotation torque.
  • the difference between these values and this difference are brought closer to 0.
  • the relationship with the axial load applied to the axially inner end of the hub body, which is required for the above, is obtained in advance.
  • the value of the outer ring rotation torque measured after the processing of the immediately preceding stage is completed is used as the current value of the outer ring rotation torque, and this value and the relationship are used.
  • the axial load applied to the axially inner end of the hub body is determined.
  • the caulking part intermediate is applied to the caulking part by rocking forging in which a molding die that swings and rotates about the central axis of the hub body is pressed against the axially inner end of the hub body.
  • the caulking intermediate is crimped while applying a load to a plurality of rotationally symmetric locations about the central axis of the hub body with respect to the axially inner end of the hub body.
  • a seal member that closes the axial inner end opening of the internal space existing between the inner peripheral surface of the outer ring and the outer peripheral surface of the hub between the first step and the second step. Is attached between the outer ring and the inner inner ring.
  • a machining force inward in the radial direction is applied to the crimped portion.
  • the vehicle to be manufactured includes a hub unit bearing.
  • the vehicle manufacturing method according to one aspect of the present invention manufactures the hub unit bearing by the hub unit bearing manufacturing method of the above aspect.
  • the preload of the hub unit bearing can be adjusted.
  • FIG. 1 is a cross-sectional view showing an example of a state in which a hub unit bearing is assembled to a vehicle.
  • FIG. 2 is a block diagram for explaining a caulking portion forming step in the first embodiment.
  • FIG. 3A is a partial cross-sectional view showing the start state of the first step of the caulking portion forming step in the first embodiment
  • FIG. 3B is a partial cross-sectional view showing the end state of the first step.
  • FIG. 4 is a diagram showing a time change of the mold rotation torque T s when the caulking portion is formed by the caulking processing apparatus used in the first step of the caulking portion forming step in the first embodiment.
  • FIG. 1 is a cross-sectional view showing an example of a state in which a hub unit bearing is assembled to a vehicle.
  • FIG. 2 is a block diagram for explaining a caulking portion forming step in the first embodiment.
  • FIG. 3A is a partial cross-sectional view showing the start state of
  • FIG. 5A is a partial cross-sectional view showing the start state of the second step of the caulking portion forming step in the first embodiment
  • FIG. 5B is a partial cross-sectional view showing the end state of the second step.
  • FIG. 6 is an enlarged view of part A of FIG. 5 (b).
  • FIG. 7 is a diagram showing that the mold rotation torque T s does not change before and after the caulking process in the first step of the caulking portion forming step in the second embodiment.
  • FIG. 8 is a diagram illustrating a case where the outer ring rotation torque T g after the first step of caulking is measured in the second step of the caulking portion forming step in the second embodiment.
  • FIG. 9 is a diagram showing load conditions when caulking in the second and subsequent stages, which is used in the second step of the caulking portion forming step in the second embodiment.
  • FIG. 10 is a diagram illustrating a case where the outer ring rotation torque T g after the second step of caulking is measured in the second step of the caulking portion forming step in the second embodiment.
  • FIG. 11 is a cross-sectional view showing a hub unit bearing according to the third embodiment.
  • FIG. 12 is a partial cross-sectional view showing a completed state of the second step of the caulking portion forming step in the fourth embodiment.
  • FIG. 13 is a partial schematic view of a vehicle provided with a hub unit bearing (bearing unit).
  • FIG. 14 is a cross-sectional view showing an example of a hub unit bearing using tapered rollers.
  • FIG. 1 shows an example of the hub unit bearing 1.
  • the hub unit bearing 1 is for a driven wheel, and includes an outer ring 2, a hub 3, and a plurality of rolling elements 4a and 4b.
  • the outer side in the axial direction is the left side in FIG. 1 which is the outer side in the width direction of the vehicle when assembled to the vehicle.
  • the inside in the axial direction is the right side of FIG. 1, which is the center side in the width direction of the vehicle when assembled to the vehicle.
  • the outer ring 2 includes a double-row outer ring track 5a and 5b and a stationary flange 6.
  • the outer ring 2 is made of a hard metal such as medium carbon steel.
  • the outer ring 2 can be made of another material.
  • the double-row outer ring tracks 5a and 5b are provided on the inner peripheral surface of the axially intermediate portion of the outer ring 2 over the entire circumference.
  • the stationary flange 6 projects radially outward from the axial intermediate portion of the outer ring 2, and has support holes 7 which are screw holes at a plurality of positions in the circumferential direction.
  • the outer ring 2 is supported and fixed to the knuckle 8 by screwing and tightening the bolt 10 through which the through hole 9 of the knuckle 8 constituting the suspension device of the vehicle is inserted into the support hole 7 of the stationary flange 6 from the inside in the axial direction. ing.
  • the hub (caulking assembly, caulking unit) 3 is arranged coaxially with the outer ring 2 inside the outer ring 2 in the radial direction.
  • the hub 3 includes a double-row inner ring track 11a and 11b and a rotary flange 12.
  • the double-row inner ring raceways 11a and 11b are provided on the outer peripheral surface (outer surface) of the hub 3 so as to face the double-row outer ring raceways 5a and 5b over the entire circumference.
  • the rotary flange 12 protrudes outward in the radial direction from a portion of the hub 3 located outside the outer ring 2 in the axial direction, and has mounting holes 13 at a plurality of positions in the circumferential direction.
  • a serration portion provided near the base end of the stud 15 is press-fitted into the mounting hole 13 in order to connect and fix the braking rotating body 14 such as a disc or a drum to the rotating flange 12. Further, the intermediate portion of the stud 15 is press-fitted into the through hole 16 of the braking rotating body 14. Further, in order to fix the wheel 17 constituting the wheel to the rotary flange 12, the nut 19 is screwed into the male threaded portion in a state where the male threaded portion provided at the tip of the stud 15 is inserted into the through hole 18 of the wheel 17. Is tightened.
  • a plurality of rolling elements 4a and 4b are arranged in each row between the double-row outer ring tracks 5a and 5b and the double-row inner ring tracks 11a and 11b.
  • the rolling elements 4a and 4b are each made of a hard metal such as bearing steel or ceramics.
  • the rolling elements 4a and 4b can be made of another material.
  • the rolling elements 4a and 4b are rotatably held by the cages 20a and 20b for each row.
  • balls are used as the rolling elements 4a and 4b, but as shown in the example of FIG. 14, tapered rollers may be used.
  • the hub (caulking assembly) 3 is composed of a hub main body (hub ring) 21, an inner inner ring 22a, and an outer inner ring 22b.
  • the hub body 21 is made of a hard metal such as medium carbon steel.
  • the inner inner ring 22a and the outer inner ring 22b are each made of a hard metal such as bearing steel.
  • the hub body 21, inner inner ring 22a and outer inner ring 22b can be made of other materials.
  • the hub (caulking assembly) 3 is substantially configured by combining the hub main body (first member) 21 and the inner rings (second member) 22a and 22b in the axial direction.
  • the hub 3 has a hub main body 21 having an outer peripheral surface (outer surface) 23, and an inner ring (second member) 22a arranged on the outer peripheral surface (outer surface) 23 of the hub main body 21 and held by the hub main body (first member) 21. , 22b and.
  • the inner ring track 11a in the inner row in the axial direction is provided on the outer peripheral surface of the inner inner ring 22a.
  • the inner ring track 11b of the outer row in the axial direction is provided on the outer peripheral surface of the outer inner ring 22b.
  • the rotary flange 12 is provided on the outer side portion of the hub body 21 in the axial direction.
  • the hub main body 21 has a cylindrical fitting surface portion 23 on the outer peripheral surface of the intermediate portion in the axial direction, and has a stepped surface 24 facing inward in the axial direction at the outer end portion in the axial direction of the fitting surface portion 23. ing.
  • the inner inner ring 22a and the outer inner ring 22b are externally fitted to the fitting surface portion 23 of the hub main body 21 by tightening.
  • the hub body 21 has a caulking portion 26 at the inner end portion in the axial direction.
  • the caulking portion 26 is bent outward in the radial direction from the axially inner end portion of the portion of the hub main body 21 to which the inner inner ring 22a is fitted, and presses the inner side surface in the axial direction of the inner inner ring 22a.
  • the hub body 21 has a caulking portion 26 (caulking portion 26 for holding the inner rings 22a, 22b) with respect to the inner rings 22a, 22b.
  • the hub body 21 is inserted into the holes 120 of the inner rings 22a and 22b.
  • a caulking portion 26 having a bend extending in the circumferential direction and covering the shaft end portion of the inner ring 22a is provided.
  • the axially both ends of the internal space 27 existing between the inner peripheral surface of the outer ring 2 and the outer peripheral surface of the hub 3 are closed by the sealing members 28 and 29.
  • the sealing member 28 on the inner side in the axial direction is assembled between the inner peripheral surface of the inner end portion in the axial direction of the outer ring 2 and the outer peripheral surface of the inner end portion in the axial direction of the inner inner ring 22a.
  • the sealing member 29 on the outer side in the axial direction is assembled between the inner peripheral surface of the outer end portion in the axial direction of the outer ring 2 and the outer peripheral surface of the outer end portion in the axial direction of the outer inner ring 22b.
  • These sealing members 28 and 29 prevent the grease sealed in the internal space 27 from leaking to the external space through the axially both ends of the internal space 27. Further, foreign matter such as muddy water existing in the external space is prevented from entering the internal space 27 through the axially both end openings of the internal space 27.
  • the caulking portion forming step of forming the caulking portion 26 is performed in the first step and the second step. It performed divided into bets, and, in a second step, an axial load applied to the axially inner end portion of the hub body 21, and the information (second information) I B obtained in the first step, from the crimping portion forming process also determined using the previous acquired information (first information) in step I a (see FIG. 2).
  • the method of manufacturing the hub body 21 includes a step of axially combining the hub body 21 and inner rings 22a and 22b having holes 120 into which the hub body 21 is inserted, and at least along the axial direction at the shaft end of the hub body 21. It has a step of forming a caulking portion 26 with respect to the inner rings 22a and 22b on the hub main body 21 by applying a heavy load (shaft load).
  • a heavy load shaft load
  • first information I A acquired before applying the load (axial load) and (b) second information I B acquired with the load (axial load) applied Includes a step of adjusting the load (axial load) based on at least one of.
  • the first step is a step of processing the cylindrical portion 25 provided at the axially inner end portion of the hub body 21 before forming the caulking portion 26 into a caulking portion intermediate (intermediate caulking portion) 39 (FIG. 3 (a) and FIG. 3 (b)).
  • the second step is a step of processing the crimped portion intermediate 39 into the crimped portion 26 (see FIGS. 5 (a) and 5 (b)).
  • the steps of forming the caulking portion 26 are a first step of forming the intermediate caulking portion 39 with a predetermined load and a second step of forming the final caulking portion 26 by applying an adjusted load to the intermediate caulking portion 39. And, including.
  • the caulking part intermediate (intermediate caulking part) 39 is at least partially plastically deformed in the first step (for example, from the start of load application to the completion of load adjustment (preload adjustment)) of the hub body 21. It is defined as a shaft end shape.
  • the caulking part intermediate (intermediate caulking part) 39 is defined to have a shaft end shape of the hub body 21 that is at least partially plastically deformed at the time when the load adjustment is completed (preload adjustment is completed).
  • the crimped intermediate (intermediate crimped portion) 39 has a shaft end shape of the hub body 21 when the preload, which will be described later, has been adjusted.
  • the adjusted load is constantly applied to the intermediate caulking portion 39 to form the final caulking portion 26.
  • the crimped intermediate (intermediate crimped portion) 39 is substantially non-contact with the inner ring 22a. In another example, the crimped intermediate (intermediate crimped portion) 39 comes into substantial contact with the inner ring 22a.
  • Information I B includes information relating to the physical characteristics of the hub body 21.
  • a second step by using the information I B, needed to approach the target value preload, it determines the axial load applied to the axially inner end portion of the hub body 21.
  • the information obtained in the first step as well (second information) I B, among the information acquired in the step before the crimping portion forming process, such as the dimensions of particular parts of, by utilizing also information (first information) I a related factors affecting the preload required to approach the target value preload, the axial load applied to the axially inner end portion of the hub body 21 decide.
  • Information (first information) I A comprises information associated hub body 21 and the inner ring 22a, in combination with 22b.
  • information (first information) I A includes information obtained or measured when combining the hub body 21 and the inner ring 22a, and 22b.
  • the intermediate caulking portion 39 is formed based on both the first information I A acquired before applying the load (axial load) and the second information I B acquired with the load (axial load) applied.
  • the axial load when machining the final caulking portion 26 is determined.
  • the axial load when machining the intermediate caulking portion 39 into the final caulking portion 26 is determined based substantially only on the first information I A acquired before applying the load (axial load). Will be done.
  • the axial load is determined at the time of processing the intermediate caulking portion 39 in the final crimping portion 26 based on only the substantially second information I B acquired while applying a load (axial load) Will be done.
  • an axis for processing the intermediate caulking portion 39 into the final caulking portion 26 based on at least one of the first information and the second information and information different from the first and second information. The directional load is determined.
  • the second step after explaining in order what kind of information the information I A acquired in the step prior to the caulking portion forming step and the information I B acquired in the first step are, respectively, the second step.
  • the process using the information I A and I B , how to specifically determine the axial load to be applied to the axial inner end of the hub body 21 which is necessary to bring the preload closer to the target value. Will be explained.
  • the first information included in the information I A is information regarding the fitting allowance S between the fitting surface portion 23 of the hub main body 21, the inner inner ring 22a, and the outer inner ring 22b.
  • the outer diameter dimension of the fitting surface portion 23 of the hub main body 21 and the inner diameter dimension of the inner inner ring 22a and the outer inner ring 22b are measured.
  • the fitting allowance S (the first information included in the information I A ), which is the difference between the outer diameter dimension of the fitting surface portion 23 of the hub body 21 measured in this way and the inner diameter dimension of the inner inner ring 22a and the outer inner ring 22b. ) Is required in advance.
  • the second piece of information contained in the information I A is information about the bearing axial clearance ⁇ a before forming the caulking portion 26.
  • the third information included in the information I A is information on a press-fitting load F p for press-fitting the inner inner ring 22a and the outer inner ring 22b into the fitting surface portion 23. This information is acquired in the assembly process of the hub unit bearing 1 before forming the caulking portion 26. Next, an example of the assembly method will be described with reference to FIG.
  • the hub unit bearing 1 before forming the caulking portion 26 is assembled by, for example, the following procedure.
  • the rolling elements 4b in the lateral outer row held by the cage 20b are arranged radially inside the outer ring track 5b in the axial outer row.
  • the inner inner ring 22a is inserted into the outer ring 2 in the radial direction from the inner side in the axial direction.
  • the bearing portion assembly 34 is assembled by inserting the outer inner ring 22b into the radial inner side of the outer ring 2 from the axial outer side.
  • the bearing axial gap ⁇ a (second information included in the information I A ) of the bearing portion assembly 34 is measured.
  • the bearing axial gap is an internal gap of the bearing in the axial direction.
  • the bearing axial gap ⁇ a of the bearing portion assembly 34 is a bearing portion related to the axial direction in a state where the inner inner ring 22a and the outer inner ring 22b constituting the bearing portion assembly 34 are in contact with each other in the axial direction facing each other. This is an internal gap of the assembly 34.
  • the bearing axial clearance ⁇ a is positive (> 0).
  • the bearing axial gap ⁇ a moves relative to the inner inner ring 22a, the outer inner ring 22b, and the outer ring 2 in a state where the inner inner ring 22a and the outer inner ring 22b are in contact with each other in the axial direction facing each other. It can be measured based on the fact that it is made to. In another example, the bearing axial clearance ⁇ a can have a different value.
  • the sealing member 28 on the outer side in the axial direction is attached to the bearing portion assembly 34.
  • the seal member 28 inside in the axial direction is not attached at this stage, but is attached after the caulking portion 26 is formed.
  • the inner inner ring 22a and the outer inner ring 22b constituting the bearing portion assembly 34 are press-fitted into the fitting surface portion 23 of the hub body 21 before forming the caulking portion 26 from the axially inner side (right side in FIG. 1).
  • the inner inner ring 22a and the outer inner ring 22b are tightly fitted to the fitting surface portion 23, and the inner inner ring 22a and the outer inner ring 22b are brought into contact with each other in the axial direction facing each other.
  • the hub unit bearing 1 before forming the caulking portion 26 is obtained.
  • the press-fitting load F p (third information included in the information I A ) for press-fitting the inner inner ring 22a and the outer inner ring 22b into the fitting surface portion 23 is measured.
  • the fitting allowance S is met.
  • the diameter of the inner inner ring 22a and the outer inner ring 22b is increased by the amount, and the bearing axial gap changes in the direction from positive to negative.
  • the bearing axial gap ⁇ a'in this state often becomes negative. That is, in many cases, a certain amount of preload is applied to the hub unit bearing 1 before the caulking portion 26 is formed.
  • the caulking portion 26 is then formed, and the caulking portion 26 presses the inner side surface of the inner inner ring 22a in the axial direction to increase the preload (increase the preload already applied, or increase the preload thereof.
  • the preload is brought closer to the target value.
  • the cylindrical portion 25 is crimped as an intermediate by rocking forging using a first caulking apparatus including the first molding die 30 as shown in FIGS. 3 (a) and 3 (b).
  • a first caulking apparatus including the first molding die 30 as shown in FIGS. 3 (a) and 3 (b).
  • the vertical direction means the vertical direction in the figure.
  • the first molding die 30 is arranged above the hub 3 and has a rotation axis ⁇ inclined by a predetermined angle ⁇ with respect to the central axis ⁇ of the hub 3. Further, the first molding die 30 has a machined surface portion 31 which is an annular concave surface centered on the rotation axis ⁇ at the lower end portion. The first molding die 30 is capable of moving in the vertical direction and swinging around the central axis ⁇ of the hub 3, and is free to rotate around the rotation axis ⁇ . In the state before the start of processing, the first molding die 30 is located above the position shown in FIG. 3A and is not in contact with the cylindrical portion 25.
  • a machining force is applied from the machined surface portion 31 of the first molding die 30 to a part of the cylindrical portion 25 in the circumferential direction, which is directed downward in the vertical direction and outward in the radial direction. Further, the position where this processing force is applied is continuously changed with respect to the circumferential direction of the cylindrical portion 25 as the first molding die 30 swings around the central axis ⁇ of the hub 3. As a result, the caulked portion intermediate 39 is formed by plastically deforming the cylindrical portion 25 so as to be crushed outward in the axial direction and expanded outward in the radial direction.
  • the axial outer surface does not contact the axial inner surface of the inner inner ring 22a, or the inner ring track 11a in the axial inner row It has a shape that contacts the inner side surface of the inner inner ring 22a in the axial direction to the extent that it does not deform.
  • the crimped intermediate 39 has a shape in which the preload does not change with the formation of the crimped intermediate 39. In one example, when such a caulked portion intermediate 39 is formed, the rocking forging is terminated. After that, the first molding die 30 is retracted upward with respect to the hub body 21.
  • the time point (timing) at which the rocking forging is completed in the first step is the torque for swinging and rotating the first molding die 30. It is determined based on a certain mold rotation torque T s . This point will be described with reference to FIG.
  • the molding die rotation torque T s can be measured, for example, based on the current value of a molding die electric motor (not shown) for swinging and rotating the first molding die 30.
  • FIG. 4 is a diagram showing a time change of the mold rotation torque T s when the cylindrical portion 25 is processed into the caulked portion 26 only by rocking forging using the first molding die 30.
  • the mold rotation torque T s gradually increases in the first stage (time zone t1) after the start of rocking forging.
  • time zone t2 the mold rotation torque T s settles at a substantially constant value.
  • time zone t3 the mold rotation torque T s gradually decreases.
  • the mold rotation torque T s settles to a substantially constant value again.
  • the axial inner end of the swing-forged hub body 21 is in a state of not being in contact with the axial inner surface of the inner inner ring 22a in the first to second stages (time zones t1 and t2). ..
  • the inner ring track 11a in the inner row in the axial direction is in contact with the inner surface in the axial direction of the inner ring 22a to the extent that the inner ring track 11a is not deformed.
  • the inner ring track 11a in the inner row in the axial direction is in contact with the inner surface in the axial direction to the extent that the inner ring track 11a is deformed.
  • the rocking forging in the first step is completed at any time in the first to third stages (time zone t1, t2, t3) while checking the molding mold rotation torque T s .
  • the time point at which the rocking forging in the first step is completed is any time in the second stage (time zone t2) or the third stage (time zone t3) rather than the first stage (time zone t1). It is desirable to finish.
  • the end time point in this case include a time point immediately after the transition to the second stage (time zone t2) and a time point immediately after the transition to the third stage (time zone t3).
  • the time immediately after the transition to the second stage is the time when the mold rotation torque T s first begins to settle to a substantially constant value after the start of rock forging (for example, FIG. 4). Q1 point in the middle).
  • the time immediately after the transition to the third stage (time zone t3) is that after the start of rocking forging, the mold rotation torque T s first settles to a substantially constant value, and then the mold rotation torque T s. Is the point at which is beginning to decrease (for example, Q2 point in FIG. 4).
  • the oscillating forging in the first step is for oscillating and rotating the axial load P 1 applied from the first forming die 30 to the axial inner end of the hub body 21 and the first forming die 30. This is performed while measuring the mold rotation torque T s and the axial movement speed V s of the first mold 30.
  • the axial load P 1 can be measured, for example, based on the hydraulic pressure in a hydraulic mechanism (not shown) for moving the first molding die 30 in the axial direction. Further, the moving speed V s can be measured by using, for example, a linear scale (not shown).
  • the information I B for obtaining in the first step, at the time to end the swing forging in the first step, the axial load P 1, and the mold rotational torque T s, The information about each of the moving speed V s is adopted.
  • the information I B is, instead of or in addition to the above information, and may include other information.
  • the information obtained in the step prior to the caulking portion forming step is the axial load P 2x applied to the axial inner end of the hub body 21, which is necessary to bring the preload closer to the target value. It is determined by using I A and the information I B acquired in the first step.
  • the axial load P 2x is calculated using the following equation (1).
  • the axial load P 2x is the dependent variable.
  • each information included in the information I A (fitting allowance S, bearing axial gap ⁇ a, press-fitting load F p ) and each information included in the information I B (axial load P 1).
  • P 2x k 1 x S + k 2 x ⁇ a + k 3 x F p + k 4 x P 1 + k 5 x T s + k 6 x V s + k 7 x X ...
  • k 1 , k 2 , k 3 , k 4 , k 5 , k 6 , and k 7 are coefficients. These coefficients are obtained in advance by multiple regression analysis. These coefficients can also be obtained by various experiments and simulations other than multiple regression analysis.
  • the target value X of the preload can be set to an arbitrary value.
  • the outer ring rotation torque T g which is the torque for rotating the outer ring 2 with respect to the hub 3, has a magnitude corresponding to the preload. Therefore, in the equation (1), the target outer ring rotation torque T gx , which is the outer ring rotation torque T g corresponding to the preload target value, can be input to the preload target value X.
  • the outer ring rotation torque T g can be measured based on the current value of an electric motor for outer rings (not shown) for rotating the outer ring 2 with respect to the hub 3.
  • the axial load P 2x applied to the axially inner end of the hub body 21, which is required to bring the preload closer to the target value, is calculated.
  • the crimped portion intermediate 39 is processed into the crimped portion 26 with the axial load P 2x .
  • the caulking portion 39 is formed between the first step and the second step by using different construction methods and / or different devices. Next, this point will be specifically described.
  • the second step includes an apparatus different from the first caulking apparatus used in the first step, specifically, a second molding die 32 as shown in FIGS. 5 (a) and 5 (b).
  • the caulking portion intermediate 39 is processed into the caulking portion 26 by rocking forging using the caulking processing device of 2. That is, as shown in FIGS. 5A and 5B, the hub body 21 is prevented from being displaced, and the outer ring 2 is rotated with respect to the hub 3, with the central axis ⁇ of the hub 3 as the center.
  • the caulking portion 26 is formed by pressing the machined surface portion 33 of the second molding die 32 that swings and rotates against the axially inner end portion (caulking portion intermediate body 39) of the hub body 21.
  • the axial load P 2 applied from the second molding die 32 to the axial inner end portion of the hub main body 21 is gradually increased.
  • the shape of the axially inner end portion of the hub main body 21 is brought closer to the shape of the crimped portion 26 after completion.
  • the upper limit value of the axial load P 2 is set so as to be axial load P 2x.
  • the value of the hydraulic pressure for generating the axial load P 2 by the control valve is the axial load P 2x.
  • the machined surface portion 33 of the second molding die 32 faces downward with respect to the crimped portion 26 in the vertical direction and in the radial direction at the final stage of the swing forging shown in FIG. 5 (b). It has a shape to which a processing force F s facing inward can be applied (see FIG. 6). In other words, the machined surface portion 33 of the second molding die 32 is downward in the vertical direction so that the portion that presses the crimped portion 26 is outward in the radial direction at the final stage of the swing forging shown in FIG. 5 (b). It has a concave curved shape that is inclined in the direction toward the side.
  • the machined surface portion 33 of the second molding die 32 faces downward with respect to the crimped portion 26 in the vertical direction and is inward in the radial direction. Add the processing force F s toward the direction. As a result, as shown by the arrow ⁇ in FIG. 5B, the material escapes from the caulking portion 26 to the inner diameter side of the fitting surface portion 23, and a large force of the axial component is applied from the caulking portion 26 to the inner inner ring 22a.
  • the caulking portion 39 is formed by using the same construction method or the same device in the first step and the second step.
  • a molding mold having the same shape in the first step and the second step.
  • the swing angle ⁇ which is the inclination angle of the rotating shaft of the molding mold with respect to the central axis of the hub, larger than that in the first step in the second step, at the final stage of swing forging in the second step.
  • the swing angle and swing center can be made the same in the first step and the second step.
  • the preload can be adjusted, specifically, the preload can be brought close to the target value.
  • the forming work of the caulking portion 26 is performed separately in the first step and the second step, and the first step and the second step are performed by using different caulking processing devices. Therefore, the production efficiency of the hub unit bearing 1 can be improved. That is, if the forming work of the caulking portion 26 is divided into the first step and the second step, the caulking process time per step can be shortened, and the caulking process continues after the caulking process of the first step is completed. While the caulking process of the second step is performed, the caulking process of the first step of the next hub unit bearing can be started. Therefore, the production efficiency of the hub unit bearing 1 can be improved accordingly.
  • Forming the caulking portion 39 by using different construction methods and / or different devices between the first step and the second step is advantageous for setting machining conditions suitable for, for example, the first step and the second step, respectively. is there.
  • Forming the crimped portion 39 using the same construction method and / or the same device in the first step and the second step is advantageous for simplification of the processing system, for example.
  • the caulking portion forming step for forming the caulking portion 26 includes a first step and a second step.
  • the first step is a step of processing the cylindrical portion 25 provided at the axially inner end portion of the hub body 21 before forming the caulking portion 26 into the caulking portion intermediate 39 (FIGS. 3A and 3). See (b)).
  • the second step is a step of processing the crimped portion intermediate 39 into the crimped portion 26 (see FIGS. 5 (a) and 5 (b)).
  • the rocking forging in the second step is performed in a plurality of stages.
  • the outer ring rotation torque T g is measured after the swing forging of each stage is completed.
  • the information of the outer ring rotation torque T g measured after the axial load P 2 applied to the axial inner end of the hub body 21 after the completion of the swing forging in the immediately preceding stage is obtained. Use to decide. This adjusts the preload. That is, in the second embodiment, the preload is adjusted while checking the outer ring rotation torque T g that changes according to the magnitude of the preload.
  • step of caulking part forming step rocking forging for processing the caulked portion intermediate 39 into the caulked portion 26 is performed in a plurality of stages.
  • the axial load P 2 (1) when the first stage rock forging is performed is such that the outer ring rotation torque T g is the target outer ring rotation torque after the completion of the first stage rock forging. Adjust so that it is smaller than T g x .
  • the target outer ring rotation torque T gx is the outer ring rotation torque T g when the preload reaches the target value, and the same size is determined for the same type of products to be produced.
  • the upper limit value of the axial load P 2 applied from the second molding die 32 in the axial direction inside end portion of the hub body 21, axial load P 2 ( Set so that it becomes 1).
  • the axial load P 2 gradually increases.
  • the downward movement of the second molding die 32 progresses, so that the shape of the axially inner end portion of the hub main body 21 approaches the shape of the crimped portion 26 after completion.
  • the increase of the axial load P 2 stops, and at the same time, the downward movement of the second molding die 32 stops.
  • the axial load P 2 (2) applied to the axial inner end of the hub body 21 from the second molding die 32 in the same manner as in the first stage rocking forging.
  • the upper limit is set to be the axial load P 2 (2), and the second stage swing forging is performed.
  • the second molding die 32 is retracted upward with respect to the axially inner end of the hub body 21, and the outer ring rotation torque T g (2) is measured.
  • the measured value T g (2) is smaller than the target wheel rotating torque T gx, and the measured values T g (2) and the target wheel rotating torque T difference between gx ⁇ G (2 ) Exceeds a predetermined threshold, in other words, if the preload is not within the permissible range, the relationship shown in FIG. 9 is maintained until it is confirmed that the preload is within the permissible range.
  • the work of obtaining the axial load when performing the next stage of rocking forging and the work of performing rocking forging with the obtained axial load are repeatedly performed.
  • the value of the axial load when performing the swing forging of the second and subsequent steps in the second step is obtained by using the relationship of FIG. It is also possible to adopt a value obtained by multiplying the value of the axial load P 2 by a safety factor ⁇ (for example, 0.9 ⁇ ⁇ ⁇ 1) less than 1. In this way, the outer ring rotation torque T g is set to the target outer ring rotation torque T gx while preventing the outer ring rotation torque T g after the second and subsequent swing forgings from becoming larger than the target outer ring rotation torque T gx . You can get close enough.
  • the preload can be adjusted, specifically, the preload can be brought closer to the target value.
  • Other configurations and operations can be the same as in the first embodiment.
  • the hub unit bearing 1a to be manufactured is compared with the hub unit bearing 1 shown in FIG. 1, and the inner ring track 11b in the outer row in the axial direction is the shaft of the hub body 21a constituting the hub 3a. It is provided on the outer peripheral surface of the middle part of the direction. Further, the hub main body 21a has a fitting surface portion 23a having a diameter smaller than that of the inner ring track 11b of the outer row in the axial direction on the outer peripheral surface of the inner portion in the axial direction, and the outer end portion in the axial direction of the fitting surface portion 23a. It has a stepped surface 24a facing inward in the axial direction.
  • the inner inner ring 22a having the inner ring track 11a of the inner row in the axial direction on the outer peripheral surface is fitted to the fitting surface portion 23a by tightening and the outer surface in the axial direction is brought into contact with the stepped surface 24a.
  • the axial inner surface of the inner inner ring 22a is pressed by the caulking portion 26 provided at the axial inner end of the hub body 21a.
  • the hub unit bearing 1a since the hub unit bearing 1a is for driving wheels, it has a spline hole 35 at the center of the hub main body 21a for spline engaging a drive shaft (not shown).
  • the hub unit bearing 1a is assembled by the following procedure, for example. First, the rolling elements 4a in the axial inner row held by the cage 20a are arranged radially inside the outer ring track 5a in the axial inner row, and the rolling elements 4b in the axial outer row held by the cage 20b are placed. , Arranged inside the outer ring track 5b in the outer row in the axial direction in the radial direction. Further, the seal member 29 on the outer side in the axial direction is attached to the outer ring 2. Next, the axial intermediate portion and the inner portion of the hub main body 21a before forming the caulking portion 26 are inserted inside the outer ring 2 in the radial direction.
  • the inner inner ring 22a is press-fitted into the fitting surface portion 23a so that the axially outer surface of the inner inner ring 22a comes into contact with the stepped surface 24a.
  • the caulking portion 26 is formed.
  • the seal member 29 on the inner side in the axial direction is attached after the caulking portion 26 is formed.
  • the hub unit bearing 1a is subjected to a certain amount of preload in the assembled state before forming the crimped portion 26, that is, in the assembled state in which the axially outer surface of the inner inner ring 22a is in contact with the stepped surface 24a as described above.
  • the preload is increased by pressing the inner side surface of the inner inner ring 22a in the axial direction by the caulking portion 26 formed thereafter.
  • the same method of processing the caulking portion 26 as in the first example of the embodiment is carried out.
  • the information I A regarding the factors affecting the preload acquired in the step prior to the first step, which is used in the second step of the caulking portion forming step is the fitting of the fitting surface portion 23a and the inner inner ring 22a.
  • the inter-row width of the outer ring race tracks 5a and 5b of the double row W o , the width between rows W i of the inner ring trajectories 11a and 11b of the double row, the diameters D a and D b of the rolling elements 4a and 4b of each row, and the pitch circles of the rolling elements 4a and 4b of each row.
  • the diameters PCD a and PCD b can be measured and these measured values can be adopted.
  • the outer ring raceway 5a double row, column width between W o of 5b, the center position of the contact portion between the rolling elements 4a of the outer ring raceway 5a and axially outer rows of axially inner row, the axially outer row outer ring
  • the inter-row width Wi i of the inner ring raceways 11a and 11b of the double row is the center position of the contact portion between the inner ring race 11a of the inner row in the axial direction and the rolling element 4a of the outer row in the axial direction, and the inner ring of the outer row in the axial direction.
  • This is the axial distance between the track 11b and the center position of the contact portion between the rolling elements 4b in the outer row in the axial direction.
  • the axial load P 2x is calculated by using the same relational expression as the above equation (1). This relationship is required in order to approximate a preload to the target value, the axial load P 2x adding axially inner end of the hub body 21a, an equivalent axial load P 2x as the dependent variable, and the information I Information contained in A (fitting allowance S, press-fitting load F p , bearing axial gap ⁇ a (or inter-row width W o , inter-row width Wi i , rolling elements 4a, 4b diameters D a , D b , and the pitch circle diameter PCD a, a PCD b)), each of the information included in the information I B (axial load P 1, the mold rotational torque T s, and the moving speed V s), the target value X preload Is included in the independent variable.
  • the crimped intermediate 39 is processed into the crimped portion 26 with the axial load P 2x calculated in this way.
  • the contact portion of the molding die with respect to the work moves in the circumferential direction with the swinging rotation of the molding die, but the circumferential width of the contact portion is the shaking of the molding die.
  • the larger the moving angle ⁇ the narrower it becomes.
  • the plastic deformation region of the work around the contact portion also becomes narrower.
  • the contact portion of the mold with respect to the hub body 21a becomes closer to the spline hole 35 in the second step than in the first step. .. Therefore, in particular, in the second step, the second forming die 32 (FIGS.
  • the inner peripheral surface of the outer ring 2 and the hub 3 are formed after the first step of the caulking portion forming step is performed and before the second step of the caulking portion forming step is performed.
  • a step of mounting the seal member 29 that closes the axial inner end opening of the internal space 27 existing between the outer peripheral surface and the outer ring 2 and the inner inner ring 22a is performed. That is, in the present embodiment, the second step of the caulking portion forming step is performed with the sealing member 29 on the inner side in the axial direction mounted between the outer ring 2 and the inner inner ring 22a.
  • a second caulking processing apparatus including a molding die 36 and a plurality of rollers 37 as shown in the figure is used.
  • the mold 36 is arranged above the hub body 21.
  • the molding dies 36 are arranged side by side in the circumferential direction about the central axis ⁇ of the hub body 21, and are formed by combining a plurality of molding dies 38 capable of moving in the vertical direction independently of each other. ..
  • the plurality of rollers 37 are arranged above the molding die 36. Further, the rollers 37 are arranged at a plurality of locations smaller than the total number of the molding elements 38 in the circumferential direction centered on the central axis ⁇ of the hub main body 21.
  • the rollers 37 are arranged at a plurality of locations that are rotationally symmetric with respect to the central axis ⁇ of the hub main body 21.
  • the rollers 37 are arranged at a plurality of locations at equal intervals in the circumferential direction about the central axis ⁇ of the hub main body 21.
  • the lower side surface of the molding die 36 is brought into contact with the axially inner portion of the hub body 21, and a plurality of them are brought into contact with each other.
  • the individual rollers 37 pressed against the upper side surface of the molding die 36, the plurality of rollers 37 are transferred in the circumferential direction about the central axis ⁇ of the hub body 21.
  • the plurality of rollers 37 are sequentially pressed against the upper side surface of the molding element 38, and the lower side surface of the molding element 38 is sequentially pressed against the axially inner portion of the hub body 21, thereby pressing the hub body.
  • the axially inner portion of 21 is plastically deformed radially outward to form the crimped portion 26.
  • the processing force acting on the axially inner portion of the hub body 21 from the molding die 36 is always a plurality of rotationally symmetric with respect to the central axis ⁇ of the hub body 21. It becomes a place. Therefore, the caulking portion 26 can be formed without substantially applying an eccentric load to the axially inner portion of the hub main body 21. Therefore, after the caulking portion 26 is formed, the force applied from the caulking portion 26 to the inner inner ring 22a can be easily prevented from being biased in the circumferential direction.
  • the second step is performed with the seal member 29 that closes the axial inner end opening of the internal space 27 attached, the axial inner end opening of the internal space 27 is performed when the second processing is performed. Through this, foreign matter is prevented from entering the internal space 27 from the outside.
  • an eccentric load is not substantially applied to the axially inner portion of the hub body 21, so that the inner inner ring 22a is applied to the outer ring 2 during the formation of the caulking portion 26.
  • displacement in the radial direction is prevented, and damage to the seal member 29 is prevented.
  • the second step can be performed without the seal member 29 attached.
  • Other configurations and effects can be the same as in the first embodiment.
  • the present invention can be implemented by appropriately combining the above-described embodiments as long as there is no contradiction.
  • the second embodiment and the fourth embodiment can be combined and implemented. Specifically, as in the fourth embodiment, a step of mounting the seal member on the inner side in the axial direction is performed between the first step and the second step of the caulking portion forming step. Further, in the second step, a method of processing the crimped intermediate into the crimped portion while applying a load to a plurality of rotationally symmetrical locations around the central axis of the hub body with respect to the axially inner end of the hub body. In the case of adopting the above, the preload adjustment can be performed as in the second embodiment.
  • the outer ring rotation torque T sg (0) at the end of the process of mounting the seal member inside in the axial direction is higher than the outer ring rotation torque T g (0) at the end of the first step. ) Is larger by the seal torque (sliding contact resistance) of the seal member. Therefore, in this case, the outer ring rotation torque T g (0) before the first stage processing in FIGS. 8 and 10 is replaced with T sg (0), or the data in FIG. 9 is obtained after the seal member is attached. If each of the outer ring rotation torques handled in the second step is changed to a value in consideration of the seal torque, for example, the preload adjustment as described in the second embodiment can be appropriately performed.
  • the information included in the information I B used in the second step and the information I A acquired in the step prior to the caulking portion forming step As the information to be included, appropriate information can be selected. Further, in the second step, only one of the information I A and the information I B can be used.
  • various conventionally known methods can be adopted as the method of caulking applied to the axially inner end of the hub body in order to form the caulking portion.
  • a method of caulking so that an eccentric load is not applied to the axially inner end of the hub body when forming the caulking portion for example, a molding die is formed on the entire circumference of the axial inner end of the hub body.
  • the method of crimping while pressing is described in JP-A-2017-18991 (Patent Document 2), JP-A-2017-67254 (Patent Document 3), and JP-A-2017-106510 (Patent Document 4). The method can be adopted.
  • the surface portion of the molding die faces downward with respect to the caulking portion in the vertical direction
  • the method of applying the machining force inward in the radial direction is not limited to the caulking machine that performs rocking forging.
  • the method of applying a processing force to the caulking portion can be applied to other caulking processing devices such as the caulking processing device shown in FIG.
  • a method of forming a face spline which is an uneven portion in the circumferential direction is adopted on the inner side surface in the axial direction of the caulking portion. You can also.
  • the method of manufacturing the caulking assembly includes a first member (21, 21a) and a second member (22a, 22b) having a hole (120) into which the first member (21, 21a) is inserted. , And by applying a load in the axial direction to the shaft end of the first member (21, 21a), the caulking portion (39, 26) with respect to the second member (22a, 22b) is formed.
  • This is a step of forming on the first member (21, 21a), and at least one of (a) first information acquired before the load is applied and (b) second information acquired with the load applied.
  • the step includes the step of adjusting the load based on the above.
  • the first information includes information related to the combination of the first member (21) and the second member (22a, 22b), and the second information includes the first member (21, Contains information related to the physical properties of 21a).
  • the first information includes information measured at the time of the combination of the first member (21, 21a) and the second member (22a, 22b).
  • the caulking portions (39, 26) are formed at least temporarily by using the rocking caulking method.
  • the steps of forming the caulking portions (39, 26) include a first step of forming the intermediate caulking portion (39) with a predetermined load and applying the adjusted load to the intermediate caulking portion (39). This includes a second step of forming the caulked portion (26).
  • the caulking portions (39, 26) are formed between the first step and the second step by using different construction methods or different devices, or in the first step and the second step.
  • the caulked portions (39, 26) are formed by using the same method or the same apparatus.
  • the hub unit bearings (1, 1a) include an outer ring (2) having an outer ring track (5a, 5b), a hub (3, 3a) having an inner ring track (11a, 11b), and the outer ring track.
  • a plurality of rolling elements (4a, 4b) arranged between (5a, 5b) and the inner ring orbits (11a, 11b) are provided.
  • the hubs (3, 3a) are the hub body (21, 21a) and the inner ring (22a, 22b) arranged outside the hub body (21, 21a) and held by the hub body (21, 21a). And have.
  • the method for manufacturing the hub unit bearings (1, 1a) includes the hub body (21, 21a) and an inner ring (22a, 22b) having a hole (120) into which the hub body (21, 21a) is inserted. , And by applying the axial load to the shaft end of the hub body (21, 21a), the caulking portion (39, 26) with respect to the inner ring (22a, 22b) is formed into the hub body. It is a step of forming in (21, 21a), and is based on at least one of (a) first information acquired before applying the load and (b) second information acquired in a state where the load is applied. The step includes the step of adjusting the load.
  • FIG. 13 is a partial schematic view of a vehicle 200 including a hub unit bearing (bearing unit) 151.
  • the present invention can be applied to both hub unit bearings for drive wheels and hub unit bearings for driven wheels.
  • the hub unit bearing 151 is for driving wheels and includes an outer ring 152, a hub 153, and a plurality of rolling elements 156.
  • the outer ring 152 is fixed to the knuckle 201 of the suspension device by using bolts or the like.
  • the wheels (and the rotating body for braking) 202 are fixed to the flange (rotating flange) 153A provided on the hub 153 by using bolts or the like.
  • the vehicle 200 can have the same support structure as described above for the hub unit bearing 151 for the driven wheel.
  • the present invention is not limited to the hub of the hub unit bearing, but also to other caulking assembles (caulking units) in which the first member and the second member having a hole into which the first member is inserted are combined in the axial direction. Applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rolling Contact Bearings (AREA)
  • Forging (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Support Of The Bearing (AREA)

Abstract

ハブユニット軸受(1)を製造する方法は、ハブ本体(21)の軸端に軸方向の荷重を加えることにより、内輪(22a、22b)に対するかしめ部(26)をハブ本体(21)に形成する工程を含む。荷重を加える前に取得した第1情報と荷重を加えた状態で取得した第2情報との少なくとも1つに基づいて荷重が調整される。

Description

かしめアセンブリの製造方法、ハブユニット軸受の製造方法及び車両の製造方法
 本発明は、かしめアセンブリ、ハブユニット軸受の製造方法、及び、車両の製造方法に関する。
 本願は、2019年4月10日に出願された特願2019-074550号に基づき優先権を主張し、その内容をここに援用する。
 従来、車輪と共に回転するハブが、車輪を固定するハブ本体(ハブ輪)と、ハブ本体に外嵌された内輪とを含んで構成され、かつ、ハブ本体の軸方向端部に形成されたかしめ部により、内輪の軸方向側面を押さえ付けたハブユニット軸受が知られている。例えば、自動車の車輪および制動用回転体は、ハブユニット軸受により、懸架装置に対して回転自在に支持される。ハブユニット軸受では、その剛性を高めるために、少なくとも内輪の軸方向側面がかしめ部により押さえ付けられることに基づいて、転動体に予圧が付与されている。
 特開2005-195084号公報(特許文献1)には、ハブ本体の軸方向端部をかしめ部に加工する方法として、ハブ本体の中心軸を中心として揺動回転する成形型をハブ本体の軸方向端部に押し付ける揺動鍛造が記載されている。さらに、特開2005-195084号公報(特許文献1)には、揺動鍛造を2段階に分けて行い、かつ、1段階目と2段階目とで、成形型の形状、又は、成形型の揺動角度を変えることで、かしめ部から内輪に加わる径方向外向きの荷重を抑える方法が記載されている。
 また、特開2017-18991号公報(特許文献2)、特開2017-67254号公報(特許文献3)、及び特開2017-106510号公報(特許文献4)には、かしめ部の加工方法として、ハブ本体の軸方向端部に偏荷重が加わらないようにする方法が記載されている。
特開2005-195084号公報 特開2017-18991号公報 特開2017-67254号公報 特開2017-106510号公報
 ハブユニット軸受の予圧は、自動車の走行安定性に影響する。特に、自動車の動力源としてエンジンを用いる場合よりも電動モータを用いる場合に、ハブユニット軸受の予圧の影響が大きくなると言われている。自動車の走行安定性のより一層の均一化を図るためにも、ハブユニット軸受の製造において、予圧を目標通りに調整できるようにすることが求められる。特開2005-195084号公報(特許文献1)に記載されているような、かしめ部を形成するための加工を2段階に分けて行う方法は、ハブユニット軸受の予圧を調整する上でも有効な方法であると考えられる。しかしながら、特開2005-195084号公報(特許文献1)には、どのように予圧を調整するかなどの具体的な内容が記載されていない。
 本発明は、予圧を調整することができるかしめアセンブリの製造方法、ハブユニット軸受の製造方法、及び車両の製造方法を実現することを目的とする。
 本発明の一態様に係る、かしめアセンブリの製造方法は、第1部材と、前記第1部材が挿入される孔を有する第2部材と、を軸方向に組み合わせる工程と、前記第1部材の軸端に前記軸方向の荷重を加えることにより、前記第2部材に対するかしめ部を前記第1部材に形成する工程であり、(a)前記荷重を加える前に取得した第1情報と(b)前記荷重を加えた状態で取得した第2情報との少なくとも1つに基づいて前記荷重を調整する工程を含む、前記工程と、を備える。
 本発明の一態様に係る、ハブユニット軸受の製造方法において、前記ハブユニット軸受は、外輪軌道を有する外輪と、内輪軌道を有するハブと、前記外輪軌道と前記内輪軌道との間に配置される複数の転動体と、を備え、前記ハブは、ハブ本体と、前記ハブ本体の外側に配置されかつ前記ハブ本体に保持された内輪と、を有する。前記方法は、前記ハブ本体と、前記ハブ本体が挿入される孔を有する内輪と、を軸方向に組み合わせる工程と、前記ハブ本体の軸端に前記軸方向の荷重を加えることにより、前記内輪に対するかしめ部を前記ハブ本体に形成する工程であり、(a)前記荷重を加える前に取得した第1情報と(b)前記荷重を加えた状態で取得した第2情報との少なくとも1つに基づいて前記荷重を調整する工程を含む、前記工程と、を備える。
 本発明の一態様において、製造対象となるハブユニット軸受は、内周面に複列の外輪軌道を有する外輪と、外周面に複列の内輪軌道を有するハブと、前記複列の内輪軌道と前記複列の外輪軌道との間に、列ごとに複数個ずつ配置された転動体とを備える。前記ハブは、ハブ本体と、前記複列の内輪軌道のうちの軸方向内側列の内輪軌道が外周面に備えられた内側内輪とを含む。前記内側内輪は、前記ハブ本体に外嵌され、かつ、前記ハブ本体の軸方向内側端部を軸方向外方に押し潰しつつ径方向外方に押し拡げるように塑性変形させることで形成したかしめ部により、軸方向内側面を押さえ付けられている。少なくとも前記内側内輪の軸方向内側面が前記かしめ部により押さえ付けられることに基づいて、前記転動体に予圧が付与されている。
 本発明の一態様に係るハブユニット軸受の製造方法は、前記かしめ部を形成するかしめ部形成工程では、前記かしめ部を形成するための加工を複数段階に分けて行い、かつ、複数段階のうちの少なくとも最後の段階において、前記ハブ本体の軸方向内側端部に加える軸方向荷重を、前記かしめ部形成工程で現段階よりも前に取得した情報と、前記かしめ部形成工程よりも前の工程で取得した情報とのうちの、少なくとも一方の情報を利用して決定する。
 例えば、前記かしめ部形成工程は、第1工程と、第2工程とを備える。前記第1工程は、前記かしめ部を形成する前の前記ハブ本体の軸方向内側端部に備えられた円筒部をかしめ部中間体に加工する工程である。前記第2工程は、前記かしめ部中間体を前記かしめ部に加工する工程である。
 例えば、前記第1工程において、前記かしめ部中間体を前記内側内輪の軸方向内側面に接触させない。
 例えば、前記第1工程において、前記ハブ本体の中心軸を中心として揺動回転する成形型を前記ハブ本体の軸方向内側端部に押し付ける揺動鍛造により、前記円筒部を前記かしめ部中間体に加工する。そして、前記第1工程における前記揺動鍛造の終了時点を、前記成形型を揺動回転させるためのトルクである成形型回転トルクの値を用いて決定する。
 この場合に、例えば、前記第1工程における前記揺動鍛造の終了時点を、前記揺動鍛造の開始後に、前記成形型回転トルクが最初にほぼ一定の値に落ち着き始めた時点、又は、前記揺動鍛造の開始後に、前記成形型回転トルクが最初にほぼ一定の値に落ち着いてから、成形型回転トルクが減少し始めた時点とする。
 例えば、前記第2工程において、前記ハブ本体の軸方向内側端部に加える軸方向荷重を、前記第1工程で取得した情報を利用して決定する。
 例えば、前記第1工程において、前記ハブ本体の中心軸を中心として揺動回転する成形型を前記ハブ本体の軸方向内側端部に押し付ける揺動鍛造により、前記円筒部を前記かしめ部中間体に加工する。そして、前記第1工程で取得した情報に、前記成形型から前記ハブ本体の軸方向内側端部に加えた軸方向荷重と、前記成形型を揺動回転させるための成形型回転トルクと、前記成形型の軸方向の移動速度とを含める。
 例えば、前記第2工程において、前記ハブ本体の軸方向内側端部に加える軸方向荷重を、前記第1工程で取得した情報に加えて、前記第1工程よりも前の工程で取得した情報を利用して決定する。
 前記ハブが、前記複列の内輪軌道のうちの軸方向外側列の内輪軌道が外周面に備えられた外側内輪をさらに含み、外側内輪が、前記ハブ本体に外嵌されている場合には、例えば、前記第1工程よりも前の工程で取得した情報に、前記ハブ本体と前記内側内輪及び前記外側内輪との嵌合代と、前記ハブ本体に対する前記内側内輪及び前記外側内輪の圧入荷重と、軸受アキシアル隙間との少なくとも1つを含める。
 前記ハブ本体が、外周面に、前記複列の内輪軌道のうちの軸方向外側列の内輪軌道を備えている場合には、例えば、前記第1工程よりも前の工程で取得した情報に、前記ハブ本体と前記内側内輪との嵌合代と、前記ハブ本体に対する前記内側内輪の圧入荷重と、前記複列の外輪軌道の列間幅と、前記複列の内輪軌道の列間幅と、列ごとの前記転動体の直径と、列ごとの前記転動体のピッチ円直径との少なくとも1つを含める。
 例えば、前記第2工程では、前記ハブ本体の軸方向内側端部に加える軸方向荷重を従属変数とし、かつ、前記取得した情報のそれぞれと前記予圧の目標値とを独立変数に含む関係式を用いて、前記ハブ本体の軸方向内側端部に加える軸方向荷重を決定する。この場合には、例えば、前記関係式として、重回帰分析によって得られた関係式を用いることができる。
 例えば、前記第2工程では、前記かしめ部中間体から前記かしめ部を形成するための加工を複数段階に分けて行い、かつ、それぞれの段階の加工の終了後に、前記ハブに対して前記外輪を回転させるためのトルクである外輪回転トルクを測定し、かつ、2段階目以降のそれぞれの段階において、前記ハブ本体の軸方向内側端部に加える軸方向荷重を、直前の段階の加工の終了後に測定した前記外輪回転トルクの情報を利用して決定する。
 例えば、前記予圧が目標値になった状態での前記外輪回転トルクの値よりも、現時点での前記外輪回転トルクの値が小さい場合に、これらの値の差と、この差を0に近づけるために必要となる前記ハブ本体の軸方向内側端部に加える軸方向荷重との関係を、予め求めておく。そして、2段階目以降のそれぞれの段階において、直前の段階の加工の終了後に測定した前記外輪回転トルクの値を、現時点での前記外輪回転トルクの値として、この値と、前記関係とを用いて、前記ハブ本体の軸方向内側端部に加える軸方向荷重を決定する。
 例えば、前記第2工程において、前記ハブ本体の中心軸を中心として揺動回転する成形型を前記ハブ本体の軸方向内側端部に押し付ける揺動鍛造により、前記かしめ部中間体を前記かしめ部に加工する。
 例えば、前記第2工程において、前記ハブ本体の軸方向内側端部に対し、前記ハブ本体の中心軸を中心とする回転対称となる複数箇所に荷重を加えながら、前記かしめ部中間体を前記かしめ部に加工する。この場合に、例えば、前記第1工程と前記第2工程との間に、前記外輪の内周面と前記ハブの外周面との間に存在する内部空間の軸方向内端開口を塞ぐシール部材を、前記外輪と前記内側内輪との間に装着する工程を行う。
 例えば、前記第2工程において、前記かしめ部を形成するための加工の最終段階で、かしめ部に対し、径方向に関して内方に向いた加工力を加える。
 本発明の一態様において、製造対象となる車両は、ハブユニット軸受を備える。本発明の一態様に係る車両の製造方法は、上記態様のハブユニット軸受の製造方法により、前記ハブユニット軸受を製造する。
 本発明の態様によれば、ハブユニット軸受の予圧を調整することができる。
図1は、ハブユニット軸受を車両に組み付けた状態の一例を示す断面図である。 図2は、第1実施形態におけるかしめ部形成工程を説明するためのブロック図である。 図3の(a)は、第1実施形態におけるかしめ部形成工程の第1工程の開始状態を示す部分断面図であり、(b)は、第1工程の終了状態を示す部分断面図である。 図4は、第1実施形態におけるかしめ部形成工程の第1工程で用いるかしめ加工装置によってかしめ部を形成する場合における、成形型回転トルクTsの時間変化を示す線図である。 図5の(a)は、第1実施形態におけるかしめ部形成工程の第2工程の開始状態を示す部分断面図であり、(b)は、第2工程の終了状態を示す部分断面図である。 図6は、図5(b)のA部拡大図である。 図7は、第2実施形態におけるかしめ部形成工程の第1工程において、かしめ加工の前後で成形型回転トルクTsが変化しないことを示す線図である。 図8は、第2実施形態におけるかしめ部形成工程の第2工程において、1段階目のかしめ加工を行った後の外輪回転トルクTgを測定した場合を説明する線図である。 図9は、第2実施形態におけるかしめ部形成工程の第2工程において用いられる、2段階目以降のかしめ加工を行う際の荷重条件を示す線図である。 図10は、第2実施形態におけるかしめ部形成工程の第2工程において、2段階目のかしめ加工を行った後の外輪回転トルクTgを測定した場合を説明する線図である。 図11は、第3実施形態におけるハブユニット軸受を示す断面図である。 図12は、第4実施形態におけるかしめ部形成工程の第2工程の終了状態を示す部分断面図である。 図13は、ハブユニット軸受(軸受ユニット)を備える車両の部分的な模式図である。 図14は、円すいころを用いたハブユニット軸受の一例を示す断面図である。
 [第1実施形態]
 本発明の第1実施形態について、図1~図6を用いて説明する。まず、製造対象となるハブユニット軸受1の構造について説明し、続いて、ハブユニット軸受1の製造方法について説明する。
<ハブユニット軸受1の構造>
 図1は、ハブユニット軸受1の一例を示している。ハブユニット軸受1は、従動輪用であり、外輪2と、ハブ3と、複数個の転動体4a、4bとを備えている。
 なお、ハブユニット軸受1に関して、軸方向外側は、車両への組み付け状態で車両の幅方向外側となる、図1の左側である。軸方向内側は、車両への組み付け状態で車両の幅方向中央側となる、図1の右側である。
 外輪2は、複列の外輪軌道5a、5bと、静止フランジ6とを備えている。一例において、外輪2は、中炭素鋼などの硬質金属製である。他の例において、外輪2は、別の材料で形成できる。複列の外輪軌道5a、5bは、外輪2の軸方向中間部内周面に全周にわたり備えられている。静止フランジ6は、外輪2の軸方向中間部から径方向外方に突出しており、円周方向複数箇所にねじ孔である支持孔7を有する。
 外輪2は、車両の懸架装置を構成するナックル8の通孔9を挿通したボルト10を、静止フランジ6の支持孔7に軸方向内側から螺合して締め付けることで、ナックル8に支持固定されている。
 ハブ(かしめアセンブリ、かしめユニット)3は、外輪2の径方向内側に、外輪2と同軸に配置されている。ハブ3は、複列の内輪軌道11a、11bと、回転フランジ12とを備えている。複列の内輪軌道11a、11bは、ハブ3の外周面(外面)のうち、複列の外輪軌道5a、5bに対向する部分に全周にわたり備えられている。回転フランジ12は、ハブ3のうち、外輪2よりも軸方向外側に位置する部分から径方向外方に突出しており、円周方向複数箇所に取付孔13を有する。
 図示の例では、ディスクやドラムなどの制動用回転体14を回転フランジ12に結合固定するために、スタッド15の基端寄り部分に備えられたセレーション部が、取付孔13に圧入されている。また、スタッド15の中間部が、制動用回転体14の通孔16に圧入されている。さらに、車輪を構成するホイール17を回転フランジ12に固定するために、スタッド15の先端部に備えられた雄ねじ部がホイール17の通孔18に挿通した状態で、雄ねじ部にナット19が螺合して締め付けられている。
 転動体4a、4bは、複列の外輪軌道5a、5bと複列の内輪軌道11a、11bとの間に、列ごとに複数個ずつ配置されている。一例において、転動体4a、4bは、それぞれが軸受鋼などの硬質金属製あるいはセラミックス製である。他の例において、転動体4a、4bは、別の材料で形成できる。また、転動体4a、4bは、列ごとに、保持器20a、20bにより転動自在に保持されている。なお、図1の例では、転動体4a、4bとして玉を用いているが、図14の例に示すように、円すいころを用いる場合もある。
 ハブ(かしめアセンブリ)3は、ハブ本体(ハブ輪)21と、内側内輪22a及び外側内輪22bとにより構成されている。一例において、ハブ本体21は、中炭素鋼などの硬質金属製である。内側内輪22a及び外側内輪22bは、それぞれが軸受鋼などの硬質金属製である。他の例において、ハブ本体21、内側内輪22a及び外側内輪22bは、他の材料で形成できる。ハブ(かしめアセンブリ)3は、実質的に、ハブ本体(第1部材)21と内輪(第2部材)22a、22bとを軸方向に組み合わせて構成されている。ハブ3は、外周面(外面)23を有するハブ本体21と、ハブ本体21の外周面(外面)23に配置されかつハブ本体(第1部材)21に保持された内輪(第2部材)22a、22bと、を有する。軸方向内側列の内輪軌道11aは、内側内輪22aの外周面に備えられている。軸方向外側列の内輪軌道11bは、外側内輪22bの外周面に備えられている。回転フランジ12は、ハブ本体21の軸方向外側部に備えられている。ハブ本体21は、軸方向の中間部の外周面に円筒状の嵌合面部23を有し、かつ、嵌合面部23の軸方向外側端部に軸方向内側を向いた段差面24を有している。内側内輪22a及び外側内輪22bは、ハブ本体21の嵌合面部23に締り嵌めにより外嵌されている。さらに、ハブ本体21は、軸方向内側端部にかしめ部26を有している。かしめ部26は、ハブ本体21のうち、内側内輪22aを外嵌した部分の軸方向内側端部から径方向外側に折れ曲がっており、内側内輪22aの軸方向内側面を押さえ付けている。すなわち、内側内輪22a及び外側内輪22bは、ハブ本体21の段差面24とかしめ部26との間に挟み込まれることで、ハブ本体21に対する分離を防止されている。また、この状態で、ハブユニット軸受1を構成する複列の転動体4a、4bには、背面組合せ型の接触角とともに予圧が付与されている。一例において、ハブ本体21は、内輪22a、22bに対するかしめ部26(内輪22a、22bの保持のためのかしめ部26)を有する。ハブ本体21は、内輪22a、22bの孔120に挿入されている。ハブ本体21の周壁において、周方向に延在する曲げを有し内輪22aの軸端部を覆うかしめ部26が設けられている。
 外輪2の内周面とハブ3の外周面との間に存在する内部空間27の軸方向両端開口は、シール部材28、29により塞がれている。軸方向内側のシール部材28は、外輪2の軸方向内側端部の内周面と、内側内輪22aの軸方向内側端部の外周面との間に組み付けられている。軸方向外側のシール部材29は、外輪2の軸方向外側端部の内周面と、外側内輪22bの軸方向外側端部の外周面との間に組み付けられている。これらのシール部材28、29により、内部空間27に封入されたグリースが、内部空間27の軸方向両端開口を通じて外部空間に漏洩することが防止される。また、外部空間に存在する泥水などの異物が、内部空間27の軸方向両端開口を通じて内部空間27に侵入することが防止される。
<ハブユニット軸受1の製造方法>
 本実施形態において、ハブユニット軸受1の製造方法は、転動体4a、4bに付与する予圧を目標値に近づけるために、かしめ部26を形成するかしめ部形成工程を、第1工程と第2工程とに分けて行い、かつ、第2工程において、ハブ本体21の軸方向内側端部に加える軸方向荷重を、第1工程で取得した情報(第2情報)IBと、かしめ部形成工程よりも前の工程で取得した情報(第1情報)IAとを利用して決定する(図2参照)。ハブ本体21の製造方法は、ハブ本体21と、ハブ本体21が挿入される孔120を有する内輪22a、22bと、を軸方向に組み合わせる工程と、ハブ本体21の軸端に少なくとも軸方向に沿った荷重(軸荷重)を加えることにより、内輪22a、22bに対するかしめ部26をハブ本体21に形成する工程とを有する。かしめ部26を形成する工程は、(a)荷重(軸荷重)を加える前に取得した第1情報IAと、(b)荷重(軸荷重)を加えた状態で取得した第2情報IBとの少なくとも1つに基づいて荷重(軸荷重)を調整する工程を含む。なお、第1工程は、かしめ部26を形成する前のハブ本体21の軸方向内側端部に備えられた円筒部25をかしめ部中間体(中間かしめ部)39に加工する工程である(図3(a)及び図3(b)参照)。第2工程は、かしめ部中間体39をかしめ部26に加工する工程である(図5(a)及び図5(b)参照)。かしめ部26を形成する工程は、所定の荷重で中間かしめ部39を形成する第1工程と、調整された荷重を中間かしめ部39に加えることにより最終的なかしめ部26を形成する第2工程と、を含む。
一例において、かしめ部中間体(中間かしめ部)39は、第1工程(例えば、荷重付加開始から荷重調整(予圧調整)の完了まで)において、少なくとも部分的に塑性変形された、ハブ本体21の軸端形状であると定義される。あるいは、かしめ部中間体(中間かしめ部)39は、荷重の調整が完了した(予圧調整完了)時点での、少なくとも部分的に塑性変形された、ハブ本体21の軸端形状であると定義される。例えば、かしめ部中間体(中間かしめ部)39は、後述する予圧が調整が完了した時点でのハブ本体21の軸端形状を有する。調整された荷重が中間かしめ部39に一定に加えられ、最終的なかしめ部26が形成される。一例において、かしめ部中間体(中間かしめ部)39は、内輪22aに実質的に非接触である。他の例において、かしめ部中間体(中間かしめ部)39は、内輪22aに実質的に接触する。
 例えば、ハブユニット軸受1の製造方法では、具体的には、第1工程において、円筒部25をかしめ部中間体39に加工する際に、どの程度の加工抵抗があるか、換言すれば、ハブ本体21の硬さがどの程度の大きさであるかといった情報(第2情報)IBを取得する。情報IBは、ハブ本体21の物理的特性に関連する情報を含む。第2工程において、情報IBを利用して、予圧を目標値に近づけるために必要となる、ハブ本体21の軸方向内側端部に加える軸方向荷重を決定する。一例において、さらに、第2工程において、第1工程において取得した情報(第2情報)IBだけでなく、かしめ部形成工程よりも前の工程において取得した情報のうち、特定の部品の寸法などの、予圧に影響を及ぼす因子に関する情報(第1情報)IAをも利用して、予圧を目標値に近づけるために必要となる、ハブ本体21の軸方向内側端部に加える軸方向荷重を決定する。情報(第1情報)IAは、ハブ本体21と内輪22a、22bとの組み合わせに関連する情報を含む。例えば、情報(第1情報)IAは、ハブ本体21と内輪22a、22bとを組み合わせる際に取得又は測定された情報を含む。一例において、荷重(軸荷重)を加える前に取得した第1情報IAと、荷重(軸荷重)を加えた状態で取得した第2情報IBとの両方に基づいて、中間かしめ部39を最終的なかしめ部26に加工する際の軸方向荷重が決定される。他の例において、荷重(軸荷重)を加える前に取得した第1情報IAのみに実質的に基づいて、中間かしめ部39を最終的なかしめ部26に加工する際の軸方向荷重が決定される。別の例において、荷重(軸荷重)を加えた状態で取得した第2情報IBのみに実質的に基づいて中間かしめ部39を最終的なかしめ部26に加工する際の軸方向荷重が決定される。さらに別の例において、第1情報及び第2情報の少なくとも1つと、第1及び第2情報とは異なる情報とに基づいて、中間かしめ部39を最終的なかしめ部26に加工する際の軸方向荷重が決定される。
 以下、かしめ部形成工程よりも前の工程において取得する情報IAと、第1工程において取得するIBとが、それぞれ具体的にどのような情報であるかを順番に説明した後、第2工程において、情報IA、IBを利用して、予圧を目標値に近づけるために必要となる、ハブ本体21の軸方向内側端部に加える軸方向荷重を、具体的にどのように決定するかについて説明する。
(かしめ部形成工程よりも前の工程)
 本実施形態において、かしめ部形成工程よりも前の工程で取得する情報IAとして、3つの情報が採用される。情報IAに含まれる1つ目の情報は、ハブ本体21の嵌合面部23と内側内輪22a及び外側内輪22bとの嵌合代Sに関する情報である。このために、例えば、かしめ部形成工程よりも前の工程において、ハブ本体21の嵌合面部23の外径寸法と、内側内輪22a及び外側内輪22bの内径寸法とが測定される。このように測定したハブ本体21の嵌合面部23の外径寸法と内側内輪22a及び外側内輪22bの内径寸法との差である、嵌合代S(情報IAに含まれる1つ目の情報)が予め求められる。
 情報IAに含まれる2つ目の情報は、かしめ部26を形成する前の軸受アキシアル隙間Δaに関する情報である。情報IAに含まれる3つ目の情報は、内側内輪22a及び外側内輪22bを嵌合面部23に圧入するための圧入荷重Fpに関する情報である。これらの情報は、かしめ部26を形成する前のハブユニット軸受1の組立工程において取得される。次に、組立方法の1例について、図1を参照して説明する。
 かしめ部26を形成する前のハブユニット軸受1は、例えば、次の手順で組み立てる。まず、保持器20aにより保持した軸方向内側列の転動体4aが、軸方向内側列の外輪軌道5aの径方向内側に配置される。保持器20bにより保持した軸方向外側列の転動体4bが、軸方向外側列の外輪軌道5bの径方向内側に配置される。次に、内側内輪22aが、外輪2の径方向内側に軸方向内側から挿入される。外側内輪22bが、外輪2の径方向内側に軸方向外側から挿入されることによって、軸受部組立体34が組み立てられる。
 次に、かしめ部26を形成する前の軸受アキシアル隙間として、軸受部組立体34の軸受アキシアル隙間△a(情報IAに含まれる2つ目の情報)を測定する。ここで、軸受アキシアル隙間は、アキシアル方向に関する軸受の内部隙間である。軸受部組立体34の軸受アキシアル隙間△aは、軸受部組立体34を構成する内側内輪22aと外側内輪22bとの互いに対向する軸方向側面同士を接触させた状態での、アキシアル方向に関する軸受部組立体34の内部隙間である。一例において、軸受アキシアル隙間△aは正(>0)である。このため、軸受アキシアル隙間△aは、内側内輪22aと外側内輪22bとの互いに対向する軸方向側面同士を接触させた状態で、内側内輪22a及び外側内輪22bと外輪2とを軸方向に相対移動させることに基づいて測定することができる。他の例において、軸受アキシアル隙間△aは別の値にできる。
 次に、軸受部組立体34に対して、軸方向外側のシール部材28の装着を行う。なお、軸方向内側のシール部材28は、この段階で装着せずに、かしめ部26を形成した後に装着する。
 次に、軸受部組立体34を構成する内側内輪22a及び外側内輪22bを、かしめ部26を形成する前のハブ本体21の嵌合面部23に軸方向内側(図1において右側)から圧入する。これにより、内側内輪22a及び外側内輪22bを嵌合面部23に締り嵌めで外嵌するとともに、内側内輪22aと外側内輪22bとの互いに対向する軸方向側面同士を接触させる。また、外側内輪22bの軸方向外側面をハブ本体21の段差面24に接触させることで、かしめ部26を形成する前のハブユニット軸受1を得る。この際に、内側内輪22a及び外側内輪22bを嵌合面部23に圧入するための圧入荷重Fp(情報IAに含まれる3つ目の情報)を測定しておく。
 なお、上述のように軸受部組立体34を構成する内側内輪22a及び外側内輪22bを、かしめ部26を形成する前のハブ本体21の嵌合面部23に圧入すると、前記嵌合代Sに応じた分だけ内側内輪22a及び外側内輪22bが拡径され、軸受アキシアル隙間が正から負に向かう方向に変化する。この結果、この状態での軸受アキシアル隙間△a′は、負になる場合が多い。すなわち、かしめ部26を形成する前のハブユニット軸受1には、多くの場合、ある程度の予圧が付与されている。
 本実施形態において、その後、かしめ部26を形成し、かしめ部26により内側内輪22aの軸方向内側面を押さえ付けることによって、予圧を増大させる(すでに付与されている予圧を増大させる、又は、それまでに付与されていなかった予圧を付与し、かつ、予圧を増大させる)ことにより、予圧を目標値に近づける。
(かしめ部形成工程の第1工程)
 本実施形態において、第1工程で取得する情報IBとして、3つの情報を採用する。3つの情報は、第1工程における加工中に取得する。そこで、次に、第1工程における加工方法について説明する。
 第1工程では、図3(a)及び図3(b)に示すような第1成形型30を含む第1のかしめ加工装置を用いて、揺動鍛造により、円筒部25をかしめ部中間体39に加工する。なお、以下の説明中、上下方向は、図中の上下方向を意味する。
 第1成形型30は、ハブ3の上方に配置されており、ハブ3の中心軸αに対し所定角度θだけ傾斜した自転軸βを有する。また、第1成形型30は、下端部に、自転軸βを中心とする円環状の凹面である加工面部31を有している。第1成形型30は、上下方向の移動及びハブ3の中心軸αを中心とする揺動回転を可能とされており、かつ、自転軸βを中心とする自転を自在とされている。第1成形型30は、加工開始前の状態では、図3(a)に示す位置よりも上方に位置しており、円筒部25に接触していない。
 第1成形型30を用いて、円筒部25に揺動鍛造を施す際には、ハブ本体21の変位を阻止した状態で、ハブ3に対して外輪2を回転させ、かつ、第1成形型30をハブ3の中心軸αを中心として揺動回転させる。そして、この状態で、第1成形型30を下方に移動させ、図3(a)に示すように、第1成形型30の加工面部31を円筒部25に押し付ける。その結果、図3(a)及び図3(b)に示すように、かしめ部中間体39が形成される。すなわち、第1成形型30の加工面部31から円筒部25の円周方向一部に、上下方向に関して下方に向き、かつ、径方向に関して外方に向いた加工力を加える。また、この加工力を加える位置を、ハブ3の中心軸αを中心とする第1成形型30の揺動回転に伴って、円筒部25の円周方向に関して連続的に変化させる。これにより、円筒部25を軸方向外方に押し潰しつつ径方向外方に押し拡げるように塑性変形させることで、かしめ部中間体39が形成される。
 一例において、かしめ部中間体39は、図3(b)に示すように、軸方向外側面が、内側内輪22aの軸方向内側面に接触しないか、あるいは、軸方向内側列の内輪軌道11aが変形しない程度に内側内輪22aの軸方向内側面に接触する形状を有する。例えば、かしめ部中間体39は、かしめ部中間体39の形成に伴って、予圧が変化しない形状である。一例において、このようなかしめ部中間体39を形成した時点で、揺動鍛造を終了する。その後、ハブ本体21に対して第1成形型30を上方に退避させる。
 本実施形態において、上述のようなかしめ部中間体39を形成するために、第1工程において揺動鍛造を終了する時点(タイミング)は、第1成形型30を揺動回転させるためのトルクである成形型回転トルクTsに基づいて決定する。この点について、図4を参照しつつ説明する。なお、成形型回転トルクTsは、例えば、第1成形型30を揺動回転させるための図示しない成形型用電動モータの電流値に基づいて測定することができる。
 図4は、第1成形型30を用いた揺動鍛造のみによって、円筒部25をかしめ部26に加工した場合の、成形型回転トルクTsの時間変化を示す線図である。この場合に、成形型回転トルクTsは、揺動鍛造の開始後の第1段階(時間帯t1)で徐々に増大する。続く第2段階(時間帯t2)で成形型回転トルクTsはほぼ一定の値に落ち着く。続く第3段階(時間帯t3)で成形型回転トルクTsは、徐々に減少する。続く第4段階(時間帯t4)で成形型回転トルクTsは、再びほぼ一定の値に落ち着く。
 揺動鍛造を施されたハブ本体21の軸方向内側端部は、第1段階~第2段階(時間帯t1、t2)では、内側内輪22aの軸方向内側面に接触していない状態となる。第3段階(時間帯t3)では、軸方向内側列の内輪軌道11aが変形しない程度に、内側内輪22aの軸方向内側面に接触した状態となる。第4段階(時間帯t4)では、軸方向内側列の内輪軌道11aが変形する程度に、内側内輪22aの軸方向内側面に接触した状態となる。
 本実施形態において、成形型回転トルクTsを確認しながら、第1段階~第3段階(時間帯t1、t2、t3)におけるいずれかの時点で、第1工程における揺動鍛造を終了する。ただし、かしめ部26の形成作業の効率化を図る観点から、第1工程におけるハブ本体21の軸方向内側端部の加工量は、ある程度確保しておくことが望ましい。このため、第1工程における揺動鍛造を終了する時点は、第1段階(時間帯t1)よりも、第2段階(時間帯t2)や第3段階(時間帯t3)におけるいずれかの時点で終了するのが望ましい。この場合の具体的な終了の時点としては、例えば、第2段階(時間帯t2)に移行した直後の時点や、第3段階(時間帯t3)に移行した直後の時点が挙げられる。ここで、第2段階(時間帯t2)に移行した直後の時点とは、揺動鍛造の開始後に、成形型回転トルクTsが最初にほぼ一定の値に落ち着き始めた時点(例えば、図4中のQ1点)である。また、第3段階(時間帯t3)に移行した直後の時点とは、揺動鍛造の開始後に、成形型回転トルクTsが最初にほぼ一定の値に落ち着いてから、成形型回転トルクTsが減少し始めた時点(例えば、図4中のQ2点)である。
 本実施形態において、第1工程における揺動鍛造は、第1成形型30からハブ本体21の軸方向内側端部に加わる軸方向荷重P1と、第1成形型30を揺動回転させるための成形型回転トルクTsと、第1成形型30の軸方向の移動速度Vsとを測定しながら行う。なお、軸方向荷重P1は、例えば、第1成形型30を軸方向に移動させるための図示しない油圧機構内の油圧に基づいて測定することができる。また、移動速度Vsは、例えば、図示しないリニアスケールを用いて測定することができる。
 本実施形態において、第1工程で取得する情報IBに含まれる3つの情報として、第1工程における揺動鍛造を終了する時点における、軸方向荷重P1と、成形型回転トルクTsと、移動速度Vsとの、それぞれに関する情報を採用する。なお、情報IBは、上記の情報に代えて又は加えて、別の情報を含むことができる。
(かしめ部形成工程の第2工程)
 第2工程では、まず、予圧を目標値に近づけるために必要となる、ハブ本体21の軸方向内側端部に加える軸方向荷重P2xを、かしめ部形成工程よりも前の工程で取得した情報IAと、第1工程で取得した情報IBとを利用して決定する。一例において、具体的には、下記の(1)式を用いて、軸方向荷重P2xを算出する。(1)式では、軸方向荷重P2xを従属変数とする。また、(1)式では、情報IAに含まれるそれぞれの情報(嵌合代S、軸受アキシアル隙間Δa、圧入荷重Fp)と、情報IBに含まれるそれぞれの情報(軸方向荷重P1、成形型回転トルクTs、及び移動速度Vs)と、予圧の目標値Xと、を独立変数に含む。
 P2x=k1×S+k2×Δa+k3×Fp+k4×P1+k5×Ts+k6×Vs+k7×X
    ・・・(1)
 ここで、k1、k2、k3、k4、k5、k6、k7は係数である。これらの係数は、予め、重回帰分析により求めておく。なお、これらの係数は、重回帰分析以外の、各種の実験やシミュレーションで求めておくこともできる。
 また、(1)式において、予圧の目標値Xは、任意の値に設定することができる。また、ハブユニット軸受1では、ハブ3に対して外輪2を回転させるためのトルクである外輪回転トルクTgは、予圧に応じた大きさとなる。このため、(1)式において、予圧の目標値Xには、予圧の目標値に相当する外輪回転トルクTgである、目標外輪回転トルクTgxを入力することができる。なお、外輪回転トルクTgは、ハブ3に対して外輪2を回転させるための図示しない外輪用電動モータの電流値に基づいて測定することができる。
 上述のようにして予圧を目標値に近づけるために必要となる、ハブ本体21の軸方向内側端部に加える軸方向荷重P2xが算出される。続いて、軸方向荷重P2xでかしめ部中間体39をかしめ部26に加工する。一例において、第1工程と第2工程との間で異なる工法及び/又は異なる装置を用いてかしめ部39が形成される。次に、この点について、具体的に説明する。
 第2工程では、第1工程で用いた第1のかしめ加工装置とは異なる装置、具体的には、図5(a)及び図5(b)に示すような第2成形型32を含む第2のかしめ加工装置を用いて、揺動鍛造により、かしめ部中間体39をかしめ部26に加工する。すなわち、図5(a)及び図5(b)に示すように、ハブ本体21の変位を阻止し、かつ、ハブ3に対して外輪2を回転させながら、ハブ3の中心軸αを中心として揺動回転する第2成形型32の加工面部33をハブ本体21の軸方向内側端部(かしめ部中間体39)に押し付けることによって、かしめ部26を形成する。
 このような揺動鍛造によって、かしめ部26を形成する際には、第2成形型32からハブ本体21の軸方向内側端部に加わる軸方向荷重P2を、徐々に大きくする。これにより、第2成形型32の下方への移動を進行させることで、ハブ本体21の軸方向内側端部の形状を、完成後のかしめ部26の形状に近づけていく。また、本例では、この際に、予め、軸方向荷重P2の上限値が、軸方向荷重P2xとなるように設定しておく。このために、例えば、第2成形型32を軸方向に移動させるための図示しない油圧機構おいて、制御弁により、軸方向荷重P2を発生させるための油圧の値が、軸方向荷重P2xに対応する値よりも大きくならないように設定しておく。この結果、本例では、軸方向荷重P2が、軸方向荷重P2xに達した時点で、軸方向荷重P2の上昇が止まり、これと同時に、第2成形型32の下方への移動が止まる。その後、必要に応じて、第2成形型32の揺動回転を所定時間だけ継続させてから、第2工程における揺動鍛造を終了する。このようなかしめ部26の形成作業によって、予圧を増大させ、予圧を目標値に近づける。
 また、本実施形態において、第2成形型32の加工面部33は、図5(b)に示す揺動鍛造の最終段階で、かしめ部26に対し、上下方向に関して下方に向き、かつ、径方向に関して内方に向いた加工力Fsを加えられる形状を有している(図6参照)。換言すれば、第2成形型32の加工面部33は、図5(b)に示す揺動鍛造の最終段階で、かしめ部26を押圧する部分が、径方向に関して外側に向かうほど上下方向に関して下側に向かう方向に傾斜した凹曲面形状を有している。
 このように、本実施形態では、第2工程における揺動鍛造の最終段階で、第2成形型32の加工面部33からかしめ部26に対し、上下方向に関して下方に向き、かつ、径方向に関して内方に向いた加工力Fsを加える。これによって、図5(b)に矢印λで示すように、かしめ部26から嵌合面部23の内径側に材料が逃げ、かしめ部26から内側内輪22aに軸方向成分の大きい力が加わる。これにより、かしめ部26から内側内輪22aに径方向外方に向く過度な力が作用することが防止され、軸方向内側列の内輪軌道11aの形状精度が悪化するなどの不都合が生じることが防止される。
 なお、他の例において、第1工程と第2工程とで同じ工法又は同じ装置を用いてかしめ部39が形成される。例えば、第1工程と第2工程とで同じ形状の成形型を用いることが可能である。この場合は、ハブの中心軸に対する成形型の自転軸の傾斜角度である揺動角度θを、第2工程で第1工程よりも大きくすることによって、第2工程における揺動鍛造の最終段階で、成形型の加工面部からかしめ部に対し、上下方向に関して下方に向き、かつ、径方向に関して内方に向いた加工力を加えることもできる。あるいは、第1工程と第2工程とで揺動角度及び揺動中心を同じにすることもできる。
 以上のように、本実施形態のハブユニット軸受の製造方法によれば、予圧を調整すること、具体的には、予圧を目標値に近づけることができる。
 また、本実施形態では、かしめ部26の形成作業を第1工程と第2工程とに分けて行い、かつ、第1工程と第2工程とを、異なるかしめ加工装置を用いて行う。このため、ハブユニット軸受1の生産効率を高めることができる。すなわち、かしめ部26の形成作業を第1工程と第2工程とに分けて行えば、1工程あたりのかしめ加工時間を短くすることができるとともに、第1工程のかしめ加工が終了した後、続く第2工程のかしめ加工を行う間に、次のハブユニット軸受の第1工程のかしめ加工を開始することができる。したがって、その分、ハブユニット軸受1の生産効率を高めることができる。第1工程と第2工程との間で異なる工法及び/又は異なる装置を用いてかしめ部39を形成することは、例えば、第1工程及び第2工程にそれぞれ適した加工条件の設定に有利である。第1工程と第2工程とで同じ工法及び/又は同じ装置を用いてかしめ部39を形成することは、例えば、加工システムの簡素化に有利である。
 [第2実施形態]
 本発明の第2実施形態について、図7~図10を用いて説明する。
 第2実施形態においても、かしめ部26を形成するかしめ部形成工程は、第1工程と第2工程とを備えている。第1工程は、かしめ部26を形成する前のハブ本体21の軸方向内側端部に備えられた円筒部25をかしめ部中間体39に加工する工程である(図3(a)及び図3(b)参照)。第2工程は、かしめ部中間体39をかしめ部26に加工する工程である(図5(a)及び図5(b)参照)。
 第1実施形態と異なり、第2実施形態では、第2工程における揺動鍛造を複数段階に分けて行う。また、それぞれの段階の揺動鍛造の終了後に、外輪回転トルクTgを測定する。また、2段階目以降のそれぞれの段階において、ハブ本体21の軸方向内側端部に加える軸方向荷重P2を、直前の段階の揺動鍛造の終了後に測定した外輪回転トルクTgの情報を利用して決定する。これにより、予圧を調整する。すなわち、第2実施形態では、予圧の調整を、予圧の大きさに応じて変化する外輪回転トルクTgを確認しながら行う。
(かしめ部形成工程の第1工程)
 本実施形態において、第1工程における揺動鍛造の前後、すなわち、ハブ本体21の円筒部25をかしめ部中間体39に加工する前後で、実質的に予圧が変化していないことを確認する。このために、具体的には、第1工程における揺動鍛造前の時点での外輪回転トルクTg(未加工)と、第1工程における揺動鍛造後の時点での外輪回転トルクTg(0)とを、それぞれ測定する。このように測定した第1工程における揺動鍛造の前後のそれぞれの時点での外輪回転トルクTg(未加工)、Tg(0)が、図7に示すように、ほぼ等しい大きさ(Tg(未加工)≒Tg(0))であること、換言すれば、両者の大きさに差があったとしても、この差が許容範囲に収まっていることを確認する。このような確認ができたならば、続く第2工程に移行する。
(かしめ部形成工程の第2工程)
 第2工程では、かしめ部中間体39をかしめ部26に加工するための揺動鍛造を複数段階に分けて行う。このような第2工程において、1段階目の揺動鍛造を行う際の軸方向荷重P2(1)は、1段階目の揺動鍛造の終了後に、外輪回転トルクTgが目標外輪回転トルクTgxよりも小さくなるように調整しておく。なお、目標外輪回転トルクTgxは、予圧が目標値になった状態での外輪回転トルクTgであり、生産される同種の製品について、同じ大きさに決めておく。
 第2工程における1段階目の揺動鍛造を行う際には、第2成形型32からハブ本体21の軸方向内側端部に加わる軸方向荷重P2の上限値が、軸方向荷重P2(1)となるように設定しておく。このような設定をした上で、1段階目の揺動鍛造を開始すると、軸方向荷重P2が徐々に上昇する。これに伴って、第2成形型32の下方への移動が進行していくことで、ハブ本体21の軸方向内側端部の形状が、完成後のかしめ部26の形状に近づいていく。そして、軸方向荷重P2が、軸方向荷重P2(1)に達した時点で、軸方向荷重P2の上昇が止まり、これと同時に、第2成形型32の下方への移動が止まる。その後、必要に応じて、第2成形型32の揺動回転を所定時間だけ継続させてから、1段階目の揺動鍛造を終了する。そして、揺動鍛造の終了後、第2成形型32をハブ本体21の軸方向内側端部に対して上方に退避させ、外輪回転トルクTg(1)を測定する。そして、図8に示すように、その測定値Tg(1)と目標外輪回転トルクTgxとの差△G(1)=Tgx-Tg(1)を求める。
 また、本実施形態において、図9の線図に示すような関係、すなわち、次の段階の揺動鍛造を行う際の軸方向荷重P2(図9の線図の横軸の値)との関係を、予め、実験やシミュレーションにより求めておく。この関係は、目標外輪回転トルクTgxの値よりも、現時点での外輪回転トルクTg(例えば、Tg(1))の値が小さい場合に、これらの値の差ΔG=Tgx-Tg(図9の線図の横軸の値)と、この差ΔGを0に近づけるために必要となる。このような関係を利用して、上述のように求めた差△G(1)から、2段階目の揺動鍛造を行う際の軸方向荷重P2(2)を求める。
 このような軸方向荷重P2(2)で、1段階目の揺動鍛造と同様にして、すなわち、第2成形型32からハブ本体21の軸方向内側端部に加わる軸方向荷重P2の上限値が、軸方向荷重P2(2)となるように設定して、2段階目の揺動鍛造を行う。揺動鍛造の終了後、第2成形型32をハブ本体21の軸方向内側端部に対して上方に退避させ、外輪回転トルクTg(2)を測定する。図10に示すように、その測定値Tg(2)が目標外輪回転トルクTgxに十分に近づいていること、具体的には、測定値Tg(2)と目標外輪回転トルクTgxとの差△G(2)=Tgx-Tg(2)が予め定めておいた閾値以下になっていることを確認する。
 なお、仮に、この確認作業において、測定値Tg(2)が目標外輪回転トルクTgxよりも小さく、かつ、測定値Tg(2)と目標外輪回転トルクTgxとの差△G(2)が予め定めておいた閾値を超えている場合、換言すれば、予圧が許容範囲に収まっていない場合には、予圧が許容範囲に収まっていることが確認されるまで、図9の関係を利用して次の段階の揺動鍛造を行う際の軸方向荷重を求める作業と、求めた軸方向荷重で揺動鍛造を行う作業とを、繰り返し行う。
 なお、本実施形態において、製造方法を実施する場合には、第2工程において、2段階目以降の揺動鍛造を行う際の軸方向荷重の値として、図9の関係を利用して求めた軸方向荷重P2の値に、1未満の安全率ε(例えば、0.9≦ε<1)を掛けた値を採用することもできる。このようにすれば、2段階目以降の揺動鍛造後の外輪回転トルクTgが目標外輪回転トルクTgxよりも大きくなることを防ぎつつ、外輪回転トルクTgを目標外輪回転トルクTgxに十分に近づけることができる。
 以上のように、本実施形態において、予圧を調整すること、具体的には、予圧を目標値に近づけることができる。その他の構成及び作用は、第1実施形態と同様にできる。
 [第3実施形態]
 本発明の第3実施形態について、図11を用いて説明する。
 第3実施形態において、製造対象となるハブユニット軸受1aは、図1に示したハブユニット軸受1との比較で、軸方向外側列の内輪軌道11bは、ハブ3aを構成するハブ本体21aの軸方向中間部の外周面に備えられている。また、ハブ本体21aは、軸方向内側部の外周面に、軸方向外側列の内輪軌道11bよりも小径の嵌合面部23aを有し、かつ、嵌合面部23aの軸方向外側端部に、軸方向内側に向いた段差面24aを有している。外周面に軸方向内側列の内輪軌道11aを有する内側内輪22aは、嵌合面部23aに締り嵌めで外嵌され、かつ、軸方向外側面を段差面24aに接触させている。この状態で、内側内輪22aの軸方向内側面は、ハブ本体21aの軸方向内側端部に備えられたかしめ部26により押さえ付けられている。また、ハブユニット軸受1aは、駆動輪用であるため、ハブ本体21aの中心部に、図示しない駆動軸をスプライン係合させるためのスプライン孔35を有している。
 ハブユニット軸受1aは、例えば、次のような手順で組み立てる。まず、保持器20aにより保持した軸方向内側列の転動体4aを、軸方向内側列の外輪軌道5aの径方向内側に配置するとともに、保持器20bにより保持した軸方向外側列の転動体4bを、軸方向外側列の外輪軌道5bの径方向内側に配置する。さらに、外輪2に軸方向外側のシール部材29を装着する。次に、外輪2の径方向内側に、かしめ部26を形成する前のハブ本体21aの軸方向中間部及び内側部を挿入する。次に、内側内輪22aを嵌合面部23aに圧入して、内側内輪22aの軸方向外側面を段差面24aに接触させる。このようなかしめ部26を形成する前のハブユニット軸受1aを組み立てた後、かしめ部26を形成する。なお、軸方向内側のシール部材29は、かしめ部26を形成した後に装着する。
 また、ハブユニット軸受1aは、かしめ部26を形成する前の組立状態、すなわち、上述のように内側内輪22aの軸方向外側面を段差面24aに接触させた組立状態で、ある程度の予圧が付与されており、その後に形成されるかしめ部26により内側内輪22aの軸方向内側面が押さえ付けられることによって、予圧が増大するようになっている。
 本実施形態において、このようなハブユニット軸受1aを製造対象として、実施の形態の第1例と同様のかしめ部26の加工方法を実施する。本実施形態において、かしめ部形成工程の第2工程で用いる、第1工程よりも前の工程で取得した予圧に影響を及ぼす因子に関する情報IAは、嵌合面部23aと内側内輪22aとの嵌合代S、嵌合面部23aに対する内側内輪22aの圧入荷重Fp、及びかしめ部26を形成する前の組立状態での軸受アキシアル隙間Δaとする。
 ただし、かしめ部26を形成する前の組立状態での軸受アキシアル隙間Δaを測定することが難しい場合には、軸受アキシアル隙間Δaに代えて、例えば、複列の外輪軌道5a、5bの列間幅Woと、複列の内輪軌道11a、11bの列間幅Wiと、それぞれの列の転動体4a、4bの直径Da、Dbと、それぞれの列の転動体4a、4bのピッチ円直径PCDa、PCDbとを測定し、これらの測定値を採用することができる。
 なお、複列の外輪軌道5a、5bの列間幅Woは、軸方向内側列の外輪軌道5aと軸方向外側列の転動体4aとの接触部の中心位置と、軸方向外側列の外輪軌道5bと軸方向外側列の転動体4bとの接触部の中心位置との間の軸方向距離である。また、複列の内輪軌道11a、11bの列間幅Wiは、軸方向内側列の内輪軌道11aと軸方向外側列の転動体4aとの接触部の中心位置と、軸方向外側列の内輪軌道11bと軸方向外側列の転動体4bとの接触部の中心位置との間の軸方向距離である。
 本実施形態においても、第2工程では、まず、前記(1)式と同様の関係式を用いて、軸方向荷重P2xを算出する。この関係式は、予圧を目標値に近づけるために必要となる、ハブ本体21aの軸方向内側端部に加える軸方向荷重P2xを、当軸方向荷重P2xを従属変数とし、かつ、情報IAに含まれるそれぞれの情報(嵌合代S、圧入荷重Fp、軸受アキシアル隙間Δa(又は、列間幅Wo、列間幅Wi、転動体4a、4bの直径Da、Db、及びピッチ円直径PCDa、PCDb))と、情報IBに含まれるそれぞれの情報(軸方向荷重P1、成形型回転トルクTs、及び移動速度Vs)と、予圧の目標値Xとを独立変数に含む。このように算出した軸方向荷重P2xでかしめ部中間体39をかしめ部26に加工する。
 なお、揺動鍛造を行う際には、ワークに対する成形型の接触部は、成形型の揺動回転に伴って円周方向に移動するが、接触部の円周方向幅は、成形型の揺動角度θが大きくなるほど狭くなる。また、これに伴って、接触部の周辺のワークの塑性変形領域も狭くなる。一方、上述した駆動輪用のハブユニット軸受1aの場合、かしめ部26を形成する際に、ハブ本体21aに対する成形型の接触部は、第1工程よりも第2工程でスプライン孔35に近くなる。このため、特に、第2工程では、揺動鍛造を行う際のハブ本体21aの塑性変形領域がスプライン孔35に達しない程度に、第2成形型32(図5(a)及び図5(b)参照)の揺動角度θを大きくすることが望ましい。その他の構成及び作用効果は、第1実施形態と同様にできる。
 [第4実施形態]
 本発明の第4実施形態について、図12を用いて説明する。
 第4実施形態において、ハブユニット軸受の製造方法では、かしめ部形成工程の第1工程を行った後、かしめ部形成工程の第2工程を行う前に、外輪2の内周面とハブ3の外周面との間に存在する内部空間27の軸方向内端開口を塞ぐシール部材29を、外輪2と内側内輪22aとの間に装着する工程を行う。すなわち、本実施形態では、外輪2と内側内輪22aとの間に軸方向内側のシール部材29を装着した状態で、かしめ部形成工程の第2工程を行う。
 また、本実施形態では、かしめ部形成工程の第2工程において、図示のような成形型36と複数個のローラ37とを含む第2のかしめ加工装置を用いる。成形型36は、ハブ本体21の上方に配置されている。また、成形型36は、ハブ本体21の中心軸αを中心とする円周方向に並べて配置されるとともに、互いに独立した上下方向移動を可能とされた複数個の成形型素子38を組み合わせてなる。複数個のローラ37は、成形型36の上方に配置されている。また、ローラ37は、ハブ本体21の中心軸αを中心とする円周方向に関して、成形型素子38の総数よりも少ない複数箇所に配置されている。より具体的には、ローラ37は、ハブ本体21の中心軸αを中心とする回転対称となる複数箇所に配置されている。特に本例では、ローラ37は、ハブ本体21の中心軸αを中心とする円周方向等間隔となる複数箇所に配置されている。
 第2工程のかしめ加工、すなわち、かしめ部26を形成するための2回目のかしめ加工を行う際には、成形型36の下側面をハブ本体21の軸方向内側部に当接させるとともに、複数個のローラ37を成形型36の上側面に押し付けた状態で、複数個のローラ37をハブ本体21の中心軸αを中心として円周方向に転送させる。これにより、複数個のローラ37を、順次、成形型素子38の上側面に押し付けることによって、成形型素子38の下側面を、順次、ハブ本体21の軸方向内側部に押し付けることで、ハブ本体21の軸方向内側部を径方向外方に塑性変形させて、かしめ部26を形成する。
 このようにしてかしめ部26を形成する際に、成形型36からハブ本体21の軸方向内側部に作用する加工力は、常に、ハブ本体21の中心軸αを中心とする回転対称となる複数箇所となる。このため、ハブ本体21の軸方向内側部に実質的に偏荷重を加えることなく、かしめ部26を形成することができる。したがって、かしめ部26の形成後に、かしめ部26から内側内輪22aに加わる力が円周方向に偏ることを容易に防げる。
 また、本実施形態では、内部空間27の軸方向内端開口を塞ぐシール部材29を装着した状態で第2工程を行うため、第2加工を行う際に、内部空間27の軸方向内端開口を通じて、外部から内部空間27に異物が侵入することが防止される。さらに、本実施形態では、かしめ部26を形成する際に、ハブ本体21の軸方向内側部に実質的に偏荷重が加わらないため、かしめ部26の形成中に、内側内輪22aが外輪2に対して径方向に変位することが防止され、シール部材29が損傷することが防止される。なお、本発明を実施する場合には、シール部材29を装着していない状態で、第2工程を行うこともできる。その他の構成及び作用効果は、第1実施形態と同様にできる。
 本発明は、上述した各実施形態を、矛盾が生じない範囲で適宜組み合わせて実施することができる。
 例えば、第2実施形態と第4実施形態とを組み合わせて実施することができる。具体的には、第4実施形態のように、かしめ部形成工程の第1工程と第2工程との間に軸方向内側のシール部材を装着する工程を行う。また、第2工程において、ハブ本体の軸方向内側端部に対し、ハブ本体の中心軸を中心とする回転対称となる複数箇所に荷重を加えながら、かしめ部中間体をかしめ部に加工する方法を採用する場合に、第2実施形態ののように予圧調整を行うこともできる。なお、この場合には、第1工程が終了した時点での外輪回転トルクTg(0)よりも、軸方向内側のシール部材を装着する工程が終了した時点での外輪回転トルクTsg(0)の方が、シール部材のシールトルク(摺接抵抗)の分だけ大きくなる。そこで、この場合には、図8及び図10における1段階目の加工前の外輪回転トルクTg(0)をTsg(0)に置き換えたり、図9のデータをシール部材を装着した後の関係にしたりするなど、第2工程で扱う外輪回転トルクのそれぞれを、前記シールトルクを考慮した値に変更すれば、第2実施形態で説明したような予圧調整を適切に行うことができる。
 なお、一実施形態において、かしめ部形成工程において、第2工程で用いる、第1工程で取得した情報IBに含まれる情報と、かしめ部形成工程よりも前の工程で取得した情報IAに含まれる情報は、それぞれ適宜の情報を選択することができる。また、第2工程では、情報IAと情報IBとのうちのいずれか一方のみを用いることもできる。
 一実施形態において、かしめ部を形成するためにハブ本体の軸方向内側端部に施すかしめ加工の方法については、従来から知られている各種方法を採用できる。また、かしめ部を形成する際に、ハブ本体の軸方向内側端部に偏荷重が加わらないようにするかしめ加工の方法としては、例えば、ハブ本体の軸方向内側端部の全周に成形型を押し付けながらかしめる方法や、特開2017-18991号公報(特許文献2)、特開2017-67254号公報(特許文献3)、及び特開2017-106510号公報(特許文献4)に記載された方法を採用することができる。
 一実施形態において、図5(b)及び図6に示したように、第2工程におけるかしめ加工の最終段階で、成形型の加工面部からかしめ部に対し、上下方向に関して下方に向き、かつ、径方向に関して内方に向いた加工力を加える方法は、揺動鍛造を行うかしめ加工装置に限らない。例えば、かしめ部に対して加工力を加える方法は、図12に示したかしめ加工装置などの、他のかしめ加工装置においても適用可能である。
 一実施形態において、かしめ部形成工程の第2工程において、かしめ部を形成するのと同時に、かしめ部の軸方向内側面に円周方向に関する凹凸部であるフェイススプラインを形成する方法を採用することもできる。
 一実施形態において、かしめアセンブリの製造方法は、第1部材(21、21a)と、前記第1部材(21、21a)が挿入される孔(120)を有する第2部材(22a、22b)と、を軸方向に組み合わせる工程と、前記第1部材(21、21a)の軸端に前記軸方向の荷重を加えることにより、前記第2部材(22a、22b)に対するかしめ部(39、26)を前記第1部材(21、21a)に形成する工程であり、(a)前記荷重を加える前に取得した第1情報と(b)前記荷重を加えた状態で取得した第2情報との少なくとも1つに基づいて前記荷重を調整する工程を含む、前記工程と、を備える。
 一例において、前記第1情報は、前記第1部材(21)と前記第2部材(22a、22b)との前記組み合わせに関連する情報を含み、前記第2情報は、前記第1部材(21、21a)の物理的特性に関連する情報を含む。
 例えば、前記第1情報は、前記第1部材(21、21a)と前記第2部材(22a、22b)との前記組合わせ時に測定された情報を含む。
 一例において、少なくとも一時的に揺動かしめ法を用いて前記かしめ部(39、26)が形成される。
 一例において、前記かしめ部(39、26)を形成する工程は、所定の荷重で中間かしめ部(39)を形成する第1工程と、前記調整された荷重を前記中間かしめ部(39)に加えることにより前記かしめ部(26)を形成する第2工程と、を含む。
 一例において、前記第1工程と前記第2工程との間で異なる工法又は異なる装置を用いて前記かしめ部(39、26)が形成される、又は、前記第1工程と前記第2工程とで同じ工法又は同じ装置を用いて前記かしめ部(39、26)が形成される。
 一実施形態において、ハブユニット軸受(1、1a)は、外輪軌道(5a、5b)を有する外輪(2)と、内輪軌道(11a、11b)を有するハブ(3、3a)と、前記外輪軌道(5a、5b)と前記内輪軌道(11a、11b)との間に配置される複数の転動体(4a、4b)と、を備える。前記ハブ(3、3a)は、ハブ本体(21、21a)と、前記ハブ本体(21、21a)の外側に配置されかつ前記ハブ本体(21、21a)に保持された内輪(22a、22b)と、を有する。前記ハブユニット軸受(1、1a)を製造する方法は、前記ハブ本体(21、21a)と、前記ハブ本体(21、21a)が挿入される孔(120)を有する内輪(22a、22b)と、を軸方向に組み合わせる工程と、前記ハブ本体(21、21a)の軸端に前記軸方向の荷重を加えることにより、前記内輪(22a、22b)に対するかしめ部(39、26)を前記ハブ本体(21、21a)に形成する工程であり、(a)前記荷重を加える前に取得した第1情報と(b)前記荷重を加えた状態で取得した第2情報との少なくとも1つに基づいて前記荷重を調整する工程を含む、前記工程と、を備える。
 図13は、ハブユニット軸受(軸受ユニット)151を備える車両200の部分的な模式図である。本発明は、駆動輪用のハブユニット軸受、及び従動輪用のハブユニット軸受のいずれにも適用することができる。図13において、ハブユニット軸受151は、駆動輪用であり、外輪152と、ハブ153と、複数の転動体156とを備えている。外輪152は、ボルト等を用いて、懸架装置のナックル201に固定されている。車輪(および制動用回22転体)202は、ボルト等を用いて、ハブ153に設けられたフランジ(回転フランジ)153Aに固定されている。また、車両200は、従動輪用のハブユニット軸受151に関して、上記と同様の支持構造を有することができる。
 本発明は、ハブユニット軸受のハブに限らず、第1部材と、第1部材が挿入される孔を有する第2部材とが軸方向に組み合わされた、他のかしめアセンブル(かしめユニット)にも適用可能である。
 1、1a ハブユニット軸受
 2 外輪
 3、3a ハブ
 4a、4b 転動体
 5a、5b 外輪軌道
 6 静止フランジ
 7 支持孔
 8 ナックル
 9 通孔
 10 ボルト
 11a、11b 内輪軌道
 12 回転フランジ
 13 取付孔
 14 制動用回転体
 15 スタッド
 16 通孔
 17 ホイール
 18 通孔
 19 ナット
 20a、20b 保持器
 21、21a ハブ本体(ハブ輪、第1部材)
 22a 内輪(内側内輪、第2部材)
 22b 内輪(外側内輪、第2部材)
 23、23a 嵌合面部
 24、24a 段差面
 25 円筒部
 26 かしめ部
 27 内部空間
 28 シール部材
 29 シール部材
 30 第1成形型
 31 加工面部
 32 第2成形型
 33 加工面部
 34 軸受部組立体
 35 スプライン孔
 36 成形型
 37 ローラ
 38 成形型素子
 39 かしめ部中間体(中間かしめ部)

Claims (25)

  1.  第1部材と、前記第1部材が挿入される孔を有する第2部材と、を軸方向に組み合わせる工程と、
     前記第1部材の軸端に少なくとも前記軸方向に沿った荷重を加えることにより、前記第2部材に対するかしめ部を前記第1部材に形成する工程であり、(a)前記荷重を加える前に取得した第1情報と(b)前記荷重を加えた状態で取得した第2情報との少なくとも1つに基づいて前記荷重を調整する工程を含む、前記工程と、
     を備える、
     かしめアセンブリの製造方法。
  2.  前記第1情報は、前記第1部材と前記第2部材との前記組み合わせに関連する情報を含み、
     前記第2情報は、前記第1部材の物理的特性に関連する情報を含む、
     請求項1に記載のかしめアセンブリの製造方法。
  3.  前記第1情報は、前記第1部材と前記第2部材との前記組合わせ時に測定された情報を含む、
     請求項1又は2に記載のかしめアセンブリの製造方法。
  4.  少なくとも一時的に揺動かしめ法を用いて前記かしめ部が形成される、
     請求項1から3のいずれかに記載のかしめアセンブリの製造方法。
  5.  前記かしめ部を形成する工程は、所定の荷重で中間かしめ部を形成する第1工程と、前記調整された荷重を前記中間かしめ部に加えることにより前記かしめ部を形成する第2工程と、を含む、
     請求項1から4のいずれかに記載のかしめアセンブリの製造方法。
  6.  前記第1工程と前記第2工程との間で異なる工法又は異なる装置を用いて前記かしめ部が形成される、
     又は、前記第1工程と前記第2工程とで同じ工法又は同じ装置を用いて前記かしめ部が形成される、
     請求項5に記載のかしめアセンブリの製造方法。
  7.  ハブユニット軸受を製造する方法であって、
     前記ハブユニット軸受は、
      外輪軌道を有する外輪と、
      内輪軌道を有するハブと、
      前記外輪軌道と前記内輪軌道との間に配置される複数の転動体と、
      を備え、
      前記ハブは、ハブ本体と、前記ハブ本体の外側に配置されかつ前記ハブ本体に保持された内輪と、を有し、
     前記方法は、
     前記ハブ本体と、前記ハブ本体が挿入される孔を有する内輪と、を軸方向に組み合わせる工程と、
     前記ハブ本体の軸端に前記軸方向の荷重を加えることにより、前記内輪に対するかしめ部を前記ハブ本体に形成する工程であり、(a)前記荷重を加える前に取得した第1情報と(b)前記荷重を加えた状態で取得した第2情報との少なくとも1つに基づいて前記荷重を調整する工程を含む、前記工程と、
     を備える、
     ハブユニット軸受の製造方法。
  8.  内周面に複列の外輪軌道を有する外輪と、
     外周面に複列の内輪軌道を有するハブと、
     前記複列の内輪軌道と前記複列の外輪軌道との間に、列ごとに複数個ずつ配置された転動体と、を備え、
     前記ハブは、ハブ本体と、前記複列の内輪軌道のうちの軸方向内側列の内輪軌道が外周面に備えられた内側内輪とを含み、
     前記内側内輪は、前記ハブ本体に外嵌され、かつ、前記ハブ本体の軸方向内側端部を軸方向外方に押し潰しつつ径方向外方に押し拡げるように塑性変形させることで形成したかしめ部により、軸方向内側面を押さえ付けられており、
     少なくとも前記内側内輪の軸方向内側面が前記かしめ部により押さえ付けられることに基づいて、前記転動体に予圧が付与されている、
     ハブユニット軸受の製造方法であって、
     前記かしめ部を形成するかしめ部形成工程では、前記かしめ部を形成するための加工を複数段階に分けて行い、かつ、該複数段階のうちの少なくとも最後の段階において、前記ハブ本体の軸方向内側端部に加える軸方向荷重を、前記かしめ部形成工程で現段階よりも前に取得した情報と、前記かしめ部形成工程よりも前の工程で取得した情報とのうちの、少なくとも一方の情報を利用して決定する、
     ハブユニット軸受の製造方法。
  9.  前記かしめ部形成工程は、第1工程と、第2工程とを備え、
     前記第1工程は、前記かしめ部を形成する前の前記ハブ本体の軸方向内側端部に備えられた円筒部をかしめ部中間体に加工する工程であり、
     前記第2工程は、前記かしめ部中間体を前記かしめ部に加工する工程である、
     請求項7に記載のハブユニット軸受の製造方法。
  10.  前記第1工程において、前記かしめ部中間体を前記内側内輪の軸方向内側面に接触させない、
     請求項9に記載のハブユニット軸受の製造方法。
  11.  前記第1工程において、前記ハブ本体の中心軸を中心として揺動回転する成形型を前記ハブ本体の軸方向内側端部に押し付ける揺動鍛造により、前記円筒部を前記かしめ部中間体に加工し、
     前記第1工程における前記揺動鍛造の終了時点を、前記成形型を揺動回転させるためのトルクである成形型回転トルクの値を用いて決定する、
     請求項9に記載のハブユニット軸受の製造方法。
  12.  前記第1工程における前記揺動鍛造の終了時点を、前記揺動鍛造の開始後に、前記成形型回転トルクが最初にほぼ一定の値に落ち着き始めた時点、又は、前記揺動鍛造の開始後に、前記成形型回転トルクが最初にほぼ一定の値に落ち着いてから、該成形型回転トルクが減少し始めた時点とする、
     請求項11に記載のハブユニット軸受の製造方法。
  13.  前記第2工程において、前記ハブ本体の軸方向内側端部に加える軸方向荷重を、前記第1工程で取得した情報を利用して決定する、
     請求項9~12のうちのいずれか1項に記載のハブユニット軸受の製造方法。
  14.  前記第1工程において、前記ハブ本体の中心軸を中心として揺動回転する成形型を前記ハブ本体の軸方向内側端部に押し付ける揺動鍛造により、前記円筒部を前記かしめ部中間体に加工し、
     前記第1工程で取得した情報は、前記成形型から前記ハブ本体の軸方向内側端部に加えた軸方向荷重と、前記成形型を揺動回転させるための成形型回転トルクと、前記成形型の軸方向の移動速度とを含む、
     請求項13に記載のハブユニット軸受の製造方法。
  15.  前記第2工程において、前記ハブ本体の軸方向内側端部に加える軸方向荷重を、前記第1工程で取得した情報に加えて、前記第1工程よりも前の工程で取得した情報を利用して決定する、
     請求項13又は14に記載のハブユニット軸受の製造方法。
  16.  (a)前記ハブは、前記複列の内輪軌道のうちの軸方向外側列の内輪軌道が外周面に備えられた外側内輪をさらに含み、該外側内輪は、前記ハブ本体に外嵌されており、前記第1工程よりも前の工程で取得した情報は、前記ハブ本体と前記内側内輪及び前記外側内輪との嵌合代と、前記ハブ本体に対する前記内側内輪及び前記外側内輪の圧入荷重と、軸受アキシアル隙間との少なくとも1つを含む、
     又は、(b)前記ハブ本体は、前記複列の内輪軌道のうちの軸方向外側列の内輪軌道が外周面に備えられており、前記第1工程よりも前の工程で取得した情報は、前記ハブ本体と前記内側内輪との嵌合代と、前記ハブ本体に対する前記内側内輪の圧入荷重と、前記複列の外輪軌道の列間幅と、前記複列の内輪軌道の列間幅と、列ごとの前記転動体の直径と、列ごとの前記転動体のピッチ円直径との少なくとも1つを含む、
     請求項15に記載のハブユニット軸受の製造方法。
  17.  前記第2工程では、前記ハブ本体の軸方向内側端部に加える軸方向荷重を従属変数とし、かつ、前記取得した情報のそれぞれと前記予圧の目標値とを独立変数に含む関係式を用いて、前記ハブ本体の軸方向内側端部に加える軸方向荷重を決定する、
     請求項13~16のうちのいずれか1項に記載のハブユニット軸受の製造方法。
  18.  前記関係式は、重回帰分析によって得られた関係式である、
     請求項17に記載のハブユニット軸受の製造方法。
  19.  前記第2工程では、前記かしめ部中間体から前記かしめ部を形成するための加工を複数段階に分けて行い、かつ、それぞれの段階の加工の終了後に、前記ハブに対して前記外輪を回転させるためのトルクである外輪回転トルクを測定し、かつ、2段階目以降のそれぞれの段階において、前記ハブ本体の軸方向内側端部に加える軸方向荷重を、直前の段階の加工の終了後に測定した前記外輪回転トルクの情報を利用して決定する、
     請求項9~12のうちのいずれか1項に記載のハブユニット軸受の製造方法。
  20.  前記予圧が目標値になった状態での前記外輪回転トルクの値よりも、現時点での前記外輪回転トルクの値が小さい場合に、これらの値の差と、該差を0に近づけるために必要となる前記ハブ本体の軸方向内側端部に加える軸方向荷重との関係を、予め求めておき、
     2段階目以降のそれぞれの段階において、直前の段階の加工の終了後に測定した前記外輪回転トルクの値を、現時点での前記外輪回転トルクの値として、該値と、前記関係とを用いて、前記ハブ本体の軸方向内側端部に加える軸方向荷重を決定する、
     請求項19に記載のハブユニット軸受の製造方法。
  21.  前記第2工程において、前記ハブ本体の中心軸を中心として揺動回転する成形型を前記ハブ本体の軸方向内側端部に押し付ける揺動鍛造により、前記かしめ部中間体を前記かしめ部に加工する、
     請求項9~20のうちのいずれか1項に記載のハブユニット軸受の製造方法。
  22.  前記第2工程において、前記ハブ本体の軸方向内側端部に対し、前記ハブ本体の中心軸を中心とする回転対称となる複数箇所に荷重を加えながら、前記かしめ部中間体を前記かしめ部に加工する、
     請求項9~20のうちのいずれか1項に記載のハブユニット軸受の製造方法。
  23.  前記第1工程と前記第2工程との間に、前記外輪の内周面と前記ハブの外周面との間に存在する内部空間の軸方向内端開口を塞ぐシール部材を、前記外輪と前記内側内輪との間に装着する工程をさらに備える、
     請求項22に記載のハブユニット軸受の製造方法。
  24.  前記第2工程において、前記かしめ部を形成するための加工の最終段階で、該かしめ部に対し、径方向に関して内方に向いた加工力を加える、
     請求項9~23のうちのいずれか1項に記載のハブユニット軸受の製造方法。
  25.  ハブユニット軸受を備えた車両の製造方法であって、
     請求項7~24のうちの何れか1項に記載のハブユニット軸受の製造方法により、前記ハブユニット軸受を製造する、
     車両の製造方法。
PCT/JP2020/006675 2019-04-10 2020-02-20 かしめアセンブリの製造方法、ハブユニット軸受の製造方法及び車両の製造方法 WO2020208947A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2020563572A JP6897893B2 (ja) 2019-04-10 2020-02-20 かしめアセンブリの製造方法、ハブユニット軸受の製造方法及び車両の製造方法
EP20787357.1A EP3892397A4 (en) 2019-04-10 2020-02-20 METHOD OF MANUFACTURING A SEAL ASSEMBLY, METHOD OF MANUFACTURING A BEARING OF A HUB UNIT, AND METHOD OF MANUFACTURING A VEHICLE
CN202080025902.4A CN113631298A (zh) 2019-04-10 2020-02-20 铆接装配件的制造方法、轮毂单元轴承的制造方法及车辆的制造方法
US17/427,397 US20220143679A1 (en) 2019-04-10 2020-02-20 Staking assembly manufacturing method, hub unit bearing manufacturing method, and vehicle manufacturing method
KR1020217028017A KR20210149693A (ko) 2019-04-10 2020-02-20 코킹 어셈블리의 제조 방법, 허브 유닛 베어링의 제조 방법 및 차량의 제조 방법
JP2020562219A JP6940011B2 (ja) 2019-04-10 2020-04-09 かしめアセンブリの製造方法、ハブユニット軸受の製造方法、かしめ装置、かしめアセンブリ、及び車両の製造方法
PCT/JP2020/015920 WO2020209321A1 (ja) 2019-04-10 2020-04-09 かしめアセンブリの製造方法、ハブユニット軸受の製造方法、かしめ装置、かしめアセンブリ、及び車両の製造方法
US17/599,712 US20220055089A1 (en) 2019-04-10 2020-04-09 Method of manufacturing staking assembly, method of manufacturing hub unit bearing, staking device, staking assembly, and method of manufacturing vehicle
KR1020217031137A KR20210148142A (ko) 2019-04-10 2020-04-09 스웨이징 어셈블리의 제조 방법, 허브 유닛 베어링의 제조 방법, 스웨이징 장치, 스웨이징 어셈블리 및 차량의 제조 방법
CN202080025587.5A CN113631294A (zh) 2019-04-10 2020-04-09 铆接装配件的制造方法、轮毂单元轴承的制造方法、铆接装置、铆接装配件、以及车辆的制造方法
EP20787498.3A EP3928887A4 (en) 2019-04-10 2020-04-09 METHOD FOR MANUFACTURING RETAINER ASSEMBLY, METHOD FOR MANUFACTURING HUB UNIT BEARING, RETAINER ASSEMBLY, AND METHOD FOR MANUFACTURING VEHICLE
JP2021133776A JP2022048986A (ja) 2019-04-10 2021-08-19 かしめアセンブリの製造方法、ハブユニット軸受の製造方法、かしめ装置、かしめアセンブリ、及び車両の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019074550 2019-04-10
JP2019-074550 2019-04-10

Publications (1)

Publication Number Publication Date
WO2020208947A1 true WO2020208947A1 (ja) 2020-10-15

Family

ID=72751810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006675 WO2020208947A1 (ja) 2019-04-10 2020-02-20 かしめアセンブリの製造方法、ハブユニット軸受の製造方法及び車両の製造方法

Country Status (4)

Country Link
EP (1) EP3892397A4 (ja)
JP (2) JP6897893B2 (ja)
CN (1) CN113631298A (ja)
WO (1) WO2020208947A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7014350B1 (ja) * 2020-12-18 2022-02-01 日本精工株式会社 軸受ユニットの生産方法、機械の生産方法、及び車両の生産方法
WO2022130687A1 (ja) * 2020-12-18 2022-06-23 日本精工株式会社 軸受ユニットの生産方法、機械の生産方法、及び車両の生産方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115673704A (zh) * 2022-10-10 2023-02-03 哈尔滨工业大学 基于虚拟现实指导的多级大型高速回转装备装配系统、方法、计算机设备和存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003275832A (ja) * 2002-03-20 2003-09-30 Nsk Ltd 車輪支持用ハブユニットの製造方法
JP2005195084A (ja) 2004-01-06 2005-07-21 Nsk Ltd 軸受装置のかしめ加工方法
JP2015077616A (ja) * 2013-10-17 2015-04-23 日本精工株式会社 車輪支持用転がり軸受ユニットの製造方法
JP2017013079A (ja) * 2015-06-29 2017-01-19 Ntn株式会社 車輪用軸受装置の加工方法
JP2017018991A (ja) 2015-07-13 2017-01-26 日本精工株式会社 転がり軸受ユニットの製造方法
JP2017067254A (ja) 2015-10-02 2017-04-06 日本精工株式会社 転がり軸受ユニットの製造方法及び製造装置
JP2017106510A (ja) 2015-12-08 2017-06-15 日本精工株式会社 転がり軸受ユニットの製造方法及び転がり軸受ユニットの製造装置
WO2018012450A1 (ja) * 2016-07-12 2018-01-18 日本精工株式会社 車輪支持用軸受ユニットの製造方法及び製造装置、並びに車両の製造方法
JP2019074550A (ja) 2017-10-12 2019-05-16 キヤノン株式会社 ズームレンズ及び撮像装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10065235B2 (en) * 2014-09-19 2018-09-04 Electroimpact, Inc. System using an air gap for workpiece protection in a fastener machine
DE102017106449A1 (de) * 2017-03-24 2018-09-27 Böllhoff Verbindungstechnik GmbH Mehrstufige Fügevorrichtung und Fügeverfahren dafür

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003275832A (ja) * 2002-03-20 2003-09-30 Nsk Ltd 車輪支持用ハブユニットの製造方法
JP2005195084A (ja) 2004-01-06 2005-07-21 Nsk Ltd 軸受装置のかしめ加工方法
JP2015077616A (ja) * 2013-10-17 2015-04-23 日本精工株式会社 車輪支持用転がり軸受ユニットの製造方法
JP2017013079A (ja) * 2015-06-29 2017-01-19 Ntn株式会社 車輪用軸受装置の加工方法
JP2017018991A (ja) 2015-07-13 2017-01-26 日本精工株式会社 転がり軸受ユニットの製造方法
JP2017067254A (ja) 2015-10-02 2017-04-06 日本精工株式会社 転がり軸受ユニットの製造方法及び製造装置
JP2017106510A (ja) 2015-12-08 2017-06-15 日本精工株式会社 転がり軸受ユニットの製造方法及び転がり軸受ユニットの製造装置
WO2018012450A1 (ja) * 2016-07-12 2018-01-18 日本精工株式会社 車輪支持用軸受ユニットの製造方法及び製造装置、並びに車両の製造方法
JP2019074550A (ja) 2017-10-12 2019-05-16 キヤノン株式会社 ズームレンズ及び撮像装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3892397A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7014350B1 (ja) * 2020-12-18 2022-02-01 日本精工株式会社 軸受ユニットの生産方法、機械の生産方法、及び車両の生産方法
WO2022130687A1 (ja) * 2020-12-18 2022-06-23 日本精工株式会社 軸受ユニットの生産方法、機械の生産方法、及び車両の生産方法
EP4035791A4 (en) * 2020-12-18 2022-08-24 NSK Ltd. BEARING UNIT PRODUCTION METHOD, MACHINE PRODUCTION METHOD AND VEHICLE PRODUCTION METHOD
US11933365B2 (en) 2020-12-18 2024-03-19 Nsk Ltd. Producing method of bearing unit, producing method of machine, and producing method of vehicle

Also Published As

Publication number Publication date
EP3892397A4 (en) 2023-01-11
JP6897893B2 (ja) 2021-07-07
EP3892397A1 (en) 2021-10-13
JP7476850B2 (ja) 2024-05-01
CN113631298A (zh) 2021-11-09
JP2021154391A (ja) 2021-10-07
JPWO2020208947A1 (ja) 2021-04-30

Similar Documents

Publication Publication Date Title
JP6897893B2 (ja) かしめアセンブリの製造方法、ハブユニット軸受の製造方法及び車両の製造方法
US8635775B2 (en) Process for manufacturing a bearing ring member as a constituent of a rolling bearing unit for wheel support
JP6009149B2 (ja) 車輪用軸受装置の製造方法
US8221004B2 (en) Method of making wheel support bearing
JP3650746B2 (ja) 車輪用軸受の固定構造及び車輪用軸受
JP4425652B2 (ja) 車輪軸受装置及びその製造方法
US11745249B2 (en) Rotary caulking device, method of manufacturing hub unit bearing and method of manufacturing vehicle
WO2020209321A1 (ja) かしめアセンブリの製造方法、ハブユニット軸受の製造方法、かしめ装置、かしめアセンブリ、及び車両の製造方法
US20220143679A1 (en) Staking assembly manufacturing method, hub unit bearing manufacturing method, and vehicle manufacturing method
WO2018012450A1 (ja) 車輪支持用軸受ユニットの製造方法及び製造装置、並びに車両の製造方法
JP2019116917A (ja) ハブユニット軸受の製造方法
JP2021165130A (ja) ハブユニット軸受及び車両
JP2013035072A (ja) 筒状シール部材の圧入方法およびそれに用いる治具
US7766554B2 (en) Wheel rolling bearing apparatus
JP6940011B2 (ja) かしめアセンブリの製造方法、ハブユニット軸受の製造方法、かしめ装置、かしめアセンブリ、及び車両の製造方法
JP2021032269A (ja) ハブユニット軸受の製造方法、揺動かしめ装置、及び車両の製造方法
JP7031802B1 (ja) 軸受ユニット用のかしめ装置及びかしめ方法、ハブユニット軸受の製造方法及び製造装置、車両の製造方法
JP4259358B2 (ja) 駆動輪用転がり軸受ユニットの製造方法
JP6054124B2 (ja) 車輪用軸受装置
JP2023127823A (ja) ハブユニット軸受及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020563572

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020787357

Country of ref document: EP

Effective date: 20210707

NENP Non-entry into the national phase

Ref country code: DE