WO2020204029A1 - Curable resin composition, sealing agent for liquid crystal display element, vertical conductive material, and liquid crystal display element - Google Patents

Curable resin composition, sealing agent for liquid crystal display element, vertical conductive material, and liquid crystal display element Download PDF

Info

Publication number
WO2020204029A1
WO2020204029A1 PCT/JP2020/014826 JP2020014826W WO2020204029A1 WO 2020204029 A1 WO2020204029 A1 WO 2020204029A1 JP 2020014826 W JP2020014826 W JP 2020014826W WO 2020204029 A1 WO2020204029 A1 WO 2020204029A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable resin
meth
formula
liquid crystal
acrylate
Prior art date
Application number
PCT/JP2020/014826
Other languages
French (fr)
Japanese (ja)
Inventor
駿介 高橋
秀幸 林
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2020527136A priority Critical patent/JP6928177B2/en
Publication of WO2020204029A1 publication Critical patent/WO2020204029A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to a curable resin composition having both excellent adhesiveness to an alignment film and moisture permeation prevention property.
  • the present invention also relates to a sealant for a liquid crystal display element, a vertical conductive material, and a liquid crystal display element, which are made of the curable resin composition.
  • a curable resin composition as disclosed in Patent Document 1 and Patent Document 2 from the viewpoint of shortening the tact time and optimizing the amount of liquid crystal used.
  • a sealing agent which is called a dropping method.
  • the dropping method first, a sealant is applied to one of the two electrode-equipped substrates to form a frame-shaped seal pattern. Next, in a state where the sealant is uncured, fine droplets of liquid crystal are dropped into the seal frame of the substrate, the other substrate is overlapped under vacuum, and the sealant is cured by light irradiation or heating to produce a liquid crystal display element. To do.
  • this dropping method is the mainstream method for manufacturing liquid crystal display elements.
  • miniaturization of devices is the most sought after issue.
  • a narrowing of the frame of the liquid crystal display unit can be mentioned.
  • the position of the seal portion is arranged under the black matrix (hereinafter, also referred to as a narrow frame design).
  • the coating position of the sealant is often on an alignment film such as polyimide.
  • liquid crystal display elements are increasingly required to have moisture resistance and reliability when driven in a high temperature and high humidity environment, and the sealant prevents water from entering from the outside. Performance is further required.
  • the adhesiveness of the sealant to the substrate, etc. is improved in order to prevent water from entering from the interface between the sealant and the substrate, and the moisture permeation of the sealant is prevented. It is necessary to improve the sex.
  • a method of improving the moisture permeation prevention property of the sealant a method of blending a filler such as talc can be considered, but when a strict moisture resistance reliability test is performed, display unevenness may occur on the liquid crystal display element. there were.
  • the coating position of the sealant is on an alignment film such as polyimide, it is difficult to achieve both adhesiveness to the alignment film and moisture permeation prevention property.
  • the present invention contains a curable resin, a polymerization initiator and / or a thermosetting agent, and the curable resin is a curable resin composition containing a compound represented by the following formula (1).
  • m is an integer of 2 or more and 4 or less
  • R 1 represents a structure derived from an m-valent polyol
  • R 2 is derived from a optionally substituted dicarboxylic acid or an anhydride thereof.
  • R 3 represents the group represented by the following formula (2-1) or (2-2)
  • X represents the ring-opening structure of the cyclic lactone
  • n is 0 or more and 5 or less (mean). Value
  • Ep represents a structure derived from a bifunctional or higher functional epoxy compound.
  • the present inventor has found that by using a compound having a specific structure as a curable resin, a curable resin composition excellent in both adhesiveness to an alignment film and moisture permeation prevention property can be obtained, and the present invention has been developed. It came to be completed.
  • the curable resin composition of the present invention contains a curable resin.
  • the curable resin contains a compound represented by the above formula (1).
  • the curable resin composition of the present invention is excellent in both adhesiveness to the alignment film and moisture permeation prevention property.
  • m is an integer of 2 or more and 4 or less.
  • the above m is preferably 2.
  • R 1 represents a structure derived from an m-valent polyol.
  • the preferable upper limit of the molecular weight of the polyol from which R 1 is derived is 500.
  • the obtained curable resin composition becomes more excellent in moisture permeation prevention property.
  • a more preferable upper limit of the molecular weight of the polyol is 400.
  • the above-mentioned "molecular weight” is the molecular weight obtained from the structural formula for a compound whose molecular structure is specified, but for a compound having a wide distribution of degree of polymerization and a compound having an unspecified modification site. It may be expressed using a number average molecular weight.
  • the number average molecular weight is a value obtained by measuring by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent and converting it into polystyrene.
  • GPC gel permeation chromatography
  • Examples of the column for measuring the number average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK).
  • polyol from which R 1 is derived examples include an aliphatic diol having 2 to 60 carbon atoms which may have a branched structure and 2 to 60 carbon atoms which may have a branched structure.
  • examples thereof include an aliphatic triol of the above, an aliphatic tetraol having 2 to 60 carbon atoms which may have a branched structure, and a diol containing an aromatic ring.
  • an aliphatic diol having 2 to 60 carbon atoms, which may have a branched structure is preferable from the viewpoint of adhesiveness.
  • Examples of the aliphatic diol having 2 to 60 carbon atoms include ethanediol, propanediol, butanediol, pentanediol, hexanediol, heptanediol, octanediol, nonanediol, decanediol, undecanediol, dodecanediol, and tridecandi.
  • diol containing the aromatic ring examples include bisphenol A, bisphenol F, bisphenol B, bisphenol E, bisphenol S, naphthalene diol, resorcinol, catechol, 4,4'-bis (hydroxymethyl) biphenyl, and 9,9-bis.
  • (4-Hydroxyphenyl) fluorene, 1,4-bis (3-hydroxyphenoxy) benzene, 4,4'-dihydroxybiphenyl, 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene, glycerol-2 -Benzyl ether, 2,2'-oxydi (benzyl alcohol), 4,4'-cyclohexylidenebisphenol and the like can be mentioned.
  • R 2 represents a structure derived from a dicarboxylic acid or an anhydride thereof which may be substituted. Since the R 2 has a structure derived from a dicarboxylic acid or an anhydride thereof which may be substituted, the obtained curable resin composition has excellent moisture permeation prevention properties.
  • an unsaturated bond containing an aromatic ring or a branched structure may have 1 to 60 carbon atoms. Examples thereof include a carbon chain and a hydrocarbon skeleton containing a cyclic structure.
  • dicarboxylic acid or its anhydride which may be substituted include phthalic anhydride, 3-methylphthalic anhydride, 4-methylphthalic anhydride, 1,2-naphthalenedicarboxylic acid anhydride, and the like.
  • R 2 has a structure represented by the following formula (3).
  • R 5 and R 6 each independently represent a hydrogen atom or an organic group having 1 or more and 60 or less carbon atoms, or R 5 and R. Represents a structure in which 6 is bonded.
  • the structure represented by the above formula (3) may be a structure in which R 5 and R 6 are not bonded, or a structure in which R 5 and R 6 are bonded, but it is transparent. From the viewpoint of enhancing moisture resistance, a structure in which R 5 and R 6 are bonded is preferable, and a structure represented by the following formula (4-1) or (4-2) is more preferable.
  • R 7 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • formula (4-2) represents a hydrogen atom or an alkyl group having 1 or more and 10 or less carbon atoms.
  • Examples of the structure represented by the above formula (4-1) include structures derived from 1,2-cyclohexanedicarboxylic acid anhydride, 3-methylcyclohexane-1,2-dicarboxylic acid anhydride and the like.
  • Examples of the structure represented by the above formula (4-2) include 4-cyclohexene-1,2-dicarboxylic acid, 3-methyl-4-cyclohexene-1,2-dicarboxylic acid anhydride, 3,4,5. , 6-Tetrahydrophthalic anhydride, 4-methyl-4-cyclohexene-1,2-dicarboxylic acid anhydride and the like.
  • R 6 other than the structure represented by (4-2) are attached, for example, 5-Norbornene-2,3-dicarboxylic acid anhydride, bicyclo [2.2.2] octo-5-ene-2,3-dicarboxylic acid anhydride, 2- (2-carboxyethyl) -3-methylmaleic acid
  • 5-Norbornene-2,3-dicarboxylic acid anhydride bicyclo [2.2.2] octo-5-ene-2,3-dicarboxylic acid anhydride
  • 2- (2-carboxyethyl) -3-methylmaleic acid examples thereof include structures derived from anhydrides, 7-oxabicyclo [2.2.1] hepta-5-ene-2,3-dicarboxylic acid anhydrides and the like.
  • the structures to which the above R 5 and R 6 are not bound include, for example, tetrapropenyl succinic anhydride, decyl succinic anhydride, tetradecyl succinic anhydride, and tetra.
  • Decenyl succinic anhydride hexadecyl succinic anhydride, isooctadecenyl succinic anhydride, butyl succinic anhydride, allyl succinic anhydride, 4-hexene-1,2-dicarboxylic acid anhydride, 2- Dodecene-1-yl succinic anhydride, 2,2-dimethylsuccinic anhydride, 2-hexene-1-yl succinic anhydride, 4-methyl-4-penten-1,2-dicarboxylic acid anhydride, 2-octenyl succinic anhydride Examples thereof include structures derived from acid anhydrides, 4,9-decadien-1,2-dicarboxylic acid anhydrides and the like.
  • R 3 represents a group represented by the above formula (2-1) or (2-2). From the viewpoint of excellent low liquid crystal contamination when the curable resin composition of the present invention is used as a sealant for a liquid crystal display element, at least one R 3 is a group represented by the above formula (2-2). Is preferable.
  • X represents the ring-opening structure of the cyclic lactone.
  • the cyclic lactone include ⁇ -undecalactone, ⁇ -caprolactone, ⁇ -decalactone, ⁇ -dodecalactone, ⁇ -nonanolactone, ⁇ -heptanolactone, ⁇ -valerolactone, ⁇ -valerolactone, and ⁇ -butyrolactone.
  • ⁇ -Butyrolactone ⁇ -propiolactone, ⁇ -hexanolactone, 7-butyl-2-oxepanone and the like.
  • the obtained curable resin composition has excellent adhesiveness to the alignment film and It has the moisture permeation prevention property of the cured product.
  • n is 1 or more and 5 or less, the obtained curable resin composition is more excellent in adhesiveness to the alignment film.
  • Ep represents a structure derived from a bifunctional or higher functional epoxy compound.
  • the epoxy compound from which the above Ep is derived include bisphenol A type epoxy compound, bisphenol F type epoxy compound, bisphenol E type epoxy compound, bisphenol S type epoxy compound, hydrogenated bisphenol A type epoxy compound, and hydrogenated bisphenol F type.
  • the above Ep preferably has a structure derived from a bisphenol A type epoxy compound, a bisphenol F type epoxy compound, or a bisphenol E type epoxy compound.
  • the preferable upper limit of the molecular weight of the epoxy compound from which the Ep is derived is 1000.
  • the obtained curable resin composition has a low viscosity and is excellent in handleability.
  • a more preferable upper limit of the molecular weight of the epoxy compound is 500.
  • Examples of the method for producing the compound represented by the above formula (1) include the following methods. That is, first, the above-mentioned polyol and the above-mentioned optionally substituted dicarboxylic acid or its anhydride are heated and stirred in the presence of a polymerization inhibitor to obtain the reaction product 1. Next, the above-mentioned bifunctional or higher functional epoxy compound is added to the obtained reaction product 1 and heated and stirred to obtain the reaction product 2. Then, by a method having a step of reacting a part or all of the epoxy groups with (meth) acrylic acid by adding (meth) acrylic acid to the obtained reaction product 2 and heating and stirring, the above formula (1) is used. The compound represented can be obtained. The polyol may be reacted with the cyclic lactone before being reacted with the optionally substituted dicarboxylic acid or its anhydride. In addition, in this specification, the said "(meth) acrylic” means acrylic or methacrylic.
  • polymerization inhibitor examples include hydroquinone, p-methoxyphenol and the like.
  • the preferable lower limit of the content of the compound represented by the above formula (1) in 100 parts by weight of the curable resin is 5 parts by weight, and the preferable upper limit is 95 parts by weight.
  • the content of the compound represented by the above formula (1) is in this range, the obtained curable resin composition is more excellent in the effect of achieving both adhesiveness to the alignment film and moisture permeation prevention property.
  • the more preferable lower limit of the content of the compound represented by the above formula (1) is 10 parts by weight, and the more preferable upper limit is 90 parts by weight.
  • the curable resin composition of the present invention may further contain other curable resin other than the compound represented by the above formula (1) as the curable resin as long as the object of the present invention is not impaired. Good.
  • the other curable resin include other epoxy compounds and other (meth) acrylic compounds other than the compound represented by the above formula (1).
  • (meth) acrylic means acrylic or methacrylic
  • (meth) acrylic compound means a compound having a (meth) acryloyl group.
  • Examples of the other epoxy compounds include bisphenol A type epoxy compound, bisphenol F type epoxy compound, bisphenol S type epoxy compound, 2,2'-diallyl bisphenol A type epoxy compound, hydrogenated bisphenol type epoxy compound, and propylene oxide addition.
  • Examples of commercially available bisphenol A type epoxy compounds include jER828EL, jER1004 (all manufactured by Mitsubishi Chemical Corporation), EPICLON EXA-850CRP (manufactured by DIC Corporation), and the like.
  • Examples of commercially available bisphenol F-type epoxy compounds include jER806 and jER4004 (both manufactured by Mitsubishi Chemical Corporation).
  • Examples of commercially available bisphenol S-type epoxy compounds include EPICLON EXA1514 (manufactured by DIC Corporation) and the like.
  • commercially available ones include, for example, RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
  • Examples of commercially available hydrogenated bisphenol type epoxy compounds include EPICLON EXA7015 (manufactured by DIC Corporation) and the like.
  • Examples of commercially available propylene oxide-added bisphenol A type epoxy compounds include EP-4000S (manufactured by ADEKA Corporation) and the like.
  • Examples of commercially available resorcinol-type epoxy compounds include EX-201 (manufactured by Nagase ChemteX Corporation) and the like.
  • Examples of commercially available biphenyl type epoxy compounds include jER YX-4000H (manufactured by Mitsubishi Chemical Corporation) and the like.
  • Examples of commercially available sulfide-type epoxy compounds include YSLV-50TE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) and the like.
  • Examples of commercially available diphenyl ether type epoxy compounds include YSLV-80DE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) and the like.
  • Examples of commercially available dicyclopentadiene type epoxy compounds include EP-4088S (manufactured by ADEKA Corporation) and the like.
  • Examples of commercially available naphthalene-type epoxy compounds include EPICLON HP4032 and EPICLON EXA-4700 (both manufactured by DIC Corporation).
  • Examples of commercially available phenol novolac type epoxy compounds include EPICLON N-770 (manufactured by DIC Corporation) and the like.
  • Examples of commercially available orthocresol novolac type epoxy compounds include EPICLON N-670-EXP-S (manufactured by DIC Corporation) and the like.
  • Examples of commercially available dicyclopentadiene novolac type epoxy compounds include EPICLON HP7200 (manufactured by DIC Corporation) and the like.
  • Examples of commercially available biphenyl novolac type epoxy compounds include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.) and the like.
  • Examples of commercially available naphthalene phenol novolac type epoxy compounds include ESN-165S (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
  • Examples of commercially available glycidylamine type epoxy compounds include jER630 (manufactured by Mitsubishi Chemical Corporation), EPICLON 430 (manufactured by DIC Corporation), TETRAD-X (manufactured by Mitsubishi Gas Chemical Company, Inc.) and the like.
  • alkyl polyol type epoxy compounds include, for example, ZX-1542 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), EPICLON 726 (manufactured by DIC Corporation), Epolite 80MFA (manufactured by Kyoei Co., Ltd.), and Denacol EX-611. (Manufactured by Nagase ChemteX Corporation) and the like.
  • Examples of commercially available rubber-modified epoxy compounds include YR-450, YR-207 (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epolide PB (manufactured by Daicel Co., Ltd.), and the like.
  • Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation) and the like.
  • Other commercially available epoxy compounds include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Corporation), jER1031 and jER1032 (all of which are manufactured by Asahi Kasei Corporation). Mitsubishi Chemical Corporation), EXA-7120 (DIC Corporation), TEPIC (Nissan Chemical Industries, Ltd.) and the like.
  • the curable resin may contain a partially (meth) acrylic-modified epoxy resin as the other epoxy compound.
  • the above-mentioned partial (meth) acrylic-modified epoxy resin means, for example, reacting a part of epoxy groups of an epoxy compound having two or more epoxy groups in one molecule with (meth) acrylic acid. It means a compound having one or more epoxy groups and one or more (meth) acryloyl groups in one molecule.
  • Examples of the other (meth) acrylic compound include (meth) acrylic acid ester compounds, epoxy (meth) acrylates, urethane (meth) acrylates, and the like. Of these, epoxy (meth) acrylate is preferable. Further, the (meth) acrylic compound preferably has two or more (meth) acryloyl groups in one molecule from the viewpoint of reactivity.
  • (meth) acrylate means acrylate or methacrylate
  • the above-mentioned "epoxy (meth) acrylate” means that all epoxy groups in the epoxy compound are referred to as (meth) acrylic acid. Represents a reacted compound.
  • monofunctional ones include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate.
  • bifunctional ones include, for example, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexane.
  • those having trifunctionality or higher include, for example, trimetyl propanetri (meth) acrylate, ethylene oxide-added trimethyl propanetri (meth) acrylate, and propylene oxide-added trimethyl propanetri (meth) acrylate.
  • Examples of the epoxy (meth) acrylate include those obtained by reacting an epoxy compound and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method.
  • epoxy compound used as a raw material for synthesizing the epoxy (meth) acrylate the same epoxy compound as the other epoxy compounds described above can be used.
  • epoxy (meth) acrylates commercially available ones include, for example, epoxy (meth) acrylate manufactured by Daicel Ornex, epoxy (meth) acrylate manufactured by Shin-Nakamura Chemical Industry Co., Ltd., and epoxy (meth) acrylate manufactured by Kyoei Co., Ltd. Examples thereof include meta) acrylate and epoxy (meth) acrylate manufactured by Nagase ChemteX Corporation.
  • the epoxy (meth) acrylate manufactured by the Daicel Orunekusu Inc. for example, EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3703, EBECRYL3708, EBECRYL3800, EBECRYL6040, EBECRYL RDX63182, KRM8076, and the like.
  • Examples of the epoxy (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd. include epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, epoxy ester 200PA, epoxy ester 80MFA, epoxy ester 3002M, epoxy ester 3002A, and epoxy ester 1600A. Examples thereof include epoxy ester 3000M, epoxy ester 3000A, epoxy ester 200EA, and epoxy ester 400EA. Examples of the epoxy (meth) acrylate manufactured by Nagase ChemteX include Denacol acrylate DA-141, Denacol acrylate DA-314, and Denacol acrylate DA-911.
  • the urethane (meth) acrylate can be obtained, for example, by reacting a (meth) acrylic acid derivative having a hydroxyl group with respect to an isocyanate compound in the presence of a catalytic amount of a tin compound.
  • isocyanate compound examples include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4,4'-diisocyanate (MDI), and hydrogenation.
  • MDI Polymeric MDI, 1,5-naphthalenediocyanate, Norbornan diisocyanate, Trizine diisocyanate, Xylylene diisocyanate (XDI), Hydrogenated XDI, Lysine diisocyanate, Triphenylmethane triisocyanate, Tris (isocyanatephenyl) thiophosphate, Tetramethylxylylene diisocyanate
  • XDI Xylylene diisocyanate
  • Hydrogenated XDI Lysine diisocyanate
  • Triphenylmethane triisocyanate Triphenylmethane triisocyanate
  • Tris (isocyanatephenyl) thiophosphate Tetramethylxylylene diisocyanate
  • examples thereof include isocyanates and 1,6,11-undecantry isocyanates.
  • isocyanate compound a chain-extended isocyanate compound obtained by reacting a polyol with an excess isocyanate compound can also be used.
  • the polyol include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, and polycaprolactone diol.
  • Examples of the (meth) acrylic acid derivative having a hydroxyl group include hydroxyalkyl mono (meth) acrylate, mono (meth) acrylate of dihydric alcohol, mono (meth) acrylate of trihydric alcohol, and di (meth) acrylate. , Epoxy (meth) acrylate and the like.
  • Examples of the hydroxyalkyl mono (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. Can be mentioned.
  • Examples of the divalent alcohol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, polyethylene glycol and the like.
  • Examples of the trihydric alcohol include trimethylolethane, trimethylolpropane, and glycerin.
  • Examples of the epoxy (meth) acrylate include bisphenol A type epoxy acrylate and the like.
  • urethane (meth) acrylates commercially available ones include, for example, urethane (meth) acrylate manufactured by Toa Synthetic Co., Ltd., urethane (meth) acrylate manufactured by Daicel Ornex, and urethane (meth) manufactured by Negami Kogyo Co., Ltd. Examples thereof include acrylate, urethane (meth) acrylate manufactured by Shin-Nakamura Chemical Industry Co., Ltd., and urethane (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd. Examples of the urethane (meth) acrylate manufactured by Toagosei Co., Ltd.
  • the urethane (meth) acrylate manufactured by the Daicel Orunekusu Inc. for example, EBECRYL210, EBECRYL220, EBECRYL230, EBECRYL270, EBECRYL1290, EBECRYL2220, EBECRYL4827, EBECRYL4842, EBECRYL4858, EBECRYL5129, EBECRYL6700, EBECRYL8402, EBECRYL8803, EBECRYL8804, EBECRYL8807, EBECRYL9260 etc. Can be mentioned.
  • Examples of the urethane (meth) acrylate manufactured by Negami Kogyo Co., Ltd. include Art Resin UN-330, Art Resin SH-500B, Art Resin UN-1200TPK, Art Resin UN-1255, Art Resin UN-3320HB, and Art Resin UN-. 7100, Art Resin UN-9000A, Art Resin UN-9000H and the like can be mentioned.
  • Examples of the urethane (meth) acrylate manufactured by Shin-Nakamura Chemical Industry Co., Ltd. include U-2HA, U-2PHA, U-3HA, U-4HA, U-6H, U-6HA, U-6LPA, U-10H, and the like.
  • Examples of the urethane (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd. include AH-600, AI-600, AT-600, UA-101I, UA-101T, UA-306H, UA-306I, and UA-306T. Be done.
  • the other (meth) acrylic compound preferably has a hydrogen-bonding unit such as an -OH group, an -NH- group, or an -NH 2 group from the viewpoint of suppressing liquid crystal contamination.
  • the curable resin composition of the present invention contains a polymerization initiator and / or a thermosetting agent.
  • the polymerization initiator include radical polymerization initiators and cationic polymerization initiators.
  • the above-mentioned "polymerization initiator and / or thermosetting agent” means either one or both of the polymerization initiator and the thermosetting agent.
  • radical polymerization initiator examples include a photoradical polymerization initiator that generates radicals by light irradiation, a thermal radical polymerization initiator that generates radicals by heating, and the like.
  • photoradical polymerization initiator examples include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanosen compounds, oxime ester compounds, benzoin ether compounds, thioxanthone compounds and the like.
  • Specific examples of the photoradical polymerization initiator include 1-hydroxycyclohexylphenyl ketone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone, and 1,2- (dimethylamino).
  • thermal radical polymerization initiator examples include those made of an azo compound, an organic peroxide and the like. Of these, an initiator composed of a polymer azo compound (hereinafter, also referred to as “polymer azo initiator”) is preferable.
  • the polymer azo compound means a compound having an azo group and having a number average molecular weight of 300 or more, which generates a radical capable of curing the (meth) acryloyl group by heat.
  • the preferable lower limit of the number average molecular weight of the polymer azo compound is 1000, and the preferable upper limit is 300,000.
  • the more preferable lower limit of the number average molecular weight of the polymer azo compound is 5000, the more preferable upper limit is 100,000, the further preferable lower limit is 10,000, and the further preferable upper limit is 90,000.
  • Examples of the polymer azo compound include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
  • the polymer azo compound having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group those having a polyethylene oxide structure are preferable.
  • Specific examples of the polymer azo compound include a polycondensate of 4,4'-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4'-azobis (4-cyanopentanoic acid). And a polycondensate of polydimethylsiloxane having a terminal amino group and the like.
  • Examples of commercially available polymer azo compounds include VPE-0201, VPE-0401, VPE-0601, VPS-0501, and VPS-1001 (all manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). Be done. Examples of commercially available azo compounds that are not polymers include V-65 and V-501 (both manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.).
  • organic peroxide examples include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, peroxyesters, diacyl peroxides, peroxydicarbonates and the like.
  • a photocationic polymerization initiator is preferably used as the cationic polymerization initiator.
  • the photocationic polymerization initiator is not particularly limited as long as it generates protonic acid or Lewis acid by light irradiation, and may be an ionic photoacid generation type or a nonionic photoacid generation type. It may be.
  • photocationic polymerization initiator examples include onium salts such as aromatic diazonium salt, aromatic halonium salt and aromatic sulfonium salt, and organic metal complexes such as iron-allene complex, titanosen complex and arylsilanol-aluminum complex. Can be mentioned.
  • photocationic polymerization initiators examples include ADEKA OPTMER SP-150 and ADEKA OPTMER SP-170 (both manufactured by ADEKA).
  • the content of the polymerization initiator is preferably 0.01 part by weight and a preferable upper limit is 10 parts by weight with respect to 100 parts by weight of the curable resin.
  • a preferable upper limit is 10 parts by weight with respect to 100 parts by weight of the curable resin.
  • the more preferable lower limit of the content of the polymerization initiator is 0.1 parts by weight, and the more preferable upper limit is 5 parts by weight.
  • heat-curing agent examples include organic acid hydrazide, imidazole derivatives, amine compounds, polyhydric phenolic compounds, acid anhydrides and the like. Of these, solid organic acid hydrazide is preferably used.
  • Examples of the solid organic acid hydrazide include 1,3-bis (hydrazinocarboethyl) -5-isopropylhydrandin, sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, and malonic acid dihydrazide.
  • Examples of commercially available solid organic acid hydrazides include organic acid hydrazides manufactured by Otsuka Chemical Co., Ltd., organic acid hydrazides manufactured by Japan Finechem Co., Ltd., and organic acid hydrazides manufactured by Ajinomoto Fine-Techno Co., Ltd.
  • Examples of the organic acid hydrazide manufactured by Otsuka Chemical Co., Ltd. include SDH and ADH.
  • Examples of the organic acid hydrazide manufactured by Japan Finechem Co., Ltd. include MDH and the like.
  • Examples of the organic acid hydrazide manufactured by Ajinomoto Fine-Techno Co., Ltd. include Amicure VDH, Amicure VDH-J, and Amicure UDH.
  • the content of the thermosetting agent is preferably 1 part by weight and a preferable upper limit of 50 parts by weight with respect to 100 parts by weight of the entire curable resin.
  • the content of the thermosetting agent is in this range, the obtained curable resin composition becomes more excellent in curability while maintaining excellent coatability and storage stability.
  • a more preferable upper limit of the content of the thermosetting agent is 30 parts by weight.
  • the curable resin composition of the present invention contains a filler for the purpose of improving the viscosity, further improving the adhesiveness by the stress dispersion effect, improving the coefficient of linear expansion, further improving the moisture permeation prevention property of the cured product, and the like. It is preferable to do so.
  • an inorganic filler or an organic filler can be used as the filler.
  • the inorganic filler include silica, talc, glass beads, asbestos, gypsum, diatomaceous earth, smectite, bentonite, montmorillonite, sericite, active white clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide and titanium oxide. , Calcium carbonate, magnesium carbonate, magnesium hydroxide, aluminum hydroxide, aluminum nitride, silicon nitride, barium sulfate, calcium silicate and the like.
  • the organic filler include polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, and the like.
  • the preferable lower limit of the content of the filler in 100 parts by weight of the curable resin composition of the present invention is 10 parts by weight, and the preferable upper limit is 70 parts by weight.
  • the more preferable lower limit of the content of the filler is 20 parts by weight, and the more preferable upper limit is 60 parts by weight.
  • the curable resin composition of the present invention preferably contains a silane coupling agent for the purpose of further improving the adhesiveness.
  • the silane coupling agent mainly has a role as an adhesive auxiliary for satisfactorily adhering the curable resin composition to a substrate or the like.
  • the silane coupling agent for example, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane and the like are preferably used.
  • the preferable lower limit of the content of the silane coupling agent in 100 parts by weight of the curable resin composition of the present invention is 0.1 parts by weight, and the preferable upper limit is 10 parts by weight.
  • the content of the silane coupling agent is within this range, the effect of improving the adhesiveness while suppressing the occurrence of liquid crystal contamination when the obtained curable resin composition is used as a sealant for a liquid crystal display element. Can be demonstrated more.
  • the more preferable lower limit of the content of the silane coupling agent is 0.3 parts by weight, and the more preferable upper limit is 5 parts by weight.
  • the curable resin composition of the present invention may contain a light-shielding agent.
  • a light-shielding agent By containing the above-mentioned light-shielding agent, the curable resin composition of the present invention can be suitably used as a light-shielding sealant.
  • Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, resin-coated carbon black and the like. Of these, titanium black is preferable.
  • the titanium black is a substance having a higher transmittance for light in the ultraviolet region, particularly for light having a wavelength of 370 nm or more and 450 nm or less, as compared with the average transmittance for light having a wavelength of 300 nm or more and 800 nm or less. That is, the titanium black has a property of imparting light-shielding property to the curable resin composition of the present invention by sufficiently shielding light having a wavelength in the visible light region, while transmitting light having a wavelength near the ultraviolet region. It is a light-shielding agent.
  • the light-shielding agent contained in the curable resin composition of the present invention a substance having high insulating properties is preferable, and titanium black is also preferable as the light-shielding agent having high insulating properties.
  • the above titanium black exerts a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, or oxidation.
  • an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, or oxidation.
  • Surface-treated titanium black such as those coated with an inorganic component such as zirconium or magnesium oxide, can also be used. Among them, those treated with an organic component are preferable in that the insulating property can be further improved.
  • the liquid crystal display element manufactured by using the curable resin composition of the present invention containing the titanium black as a light-shielding agent as a sealant for a liquid crystal display element has sufficient light-shielding properties, so that light does not leak out. It is possible to realize a liquid crystal display element having high contrast and excellent image display quality.
  • Examples of commercially available titanium blacks include titanium black manufactured by Mitsubishi Materials, titanium black manufactured by Ako Kasei Co., Ltd., and the like. Examples of the titanium black manufactured by Mitsubishi Materials Corporation include 12S, 13M, 13M-C, 13RN, 14MC and the like. Examples of the titanium black manufactured by Ako Kasei Co., Ltd. include Tilak D and the like.
  • the preferable lower limit of the specific surface area of the titanium black is 13 m 2 / g, the preferable upper limit is 30 m 2 / g, the more preferable lower limit is 15 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
  • the preferable lower limit of the volume resistance of the titanium black is 0.5 ⁇ ⁇ cm, the preferred upper limit is 3 ⁇ ⁇ cm, the more preferable lower limit is 1 ⁇ ⁇ cm, and the more preferable upper limit is 2.5 ⁇ ⁇ cm.
  • the preferable lower limit of the primary particle diameter of the light-shielding agent is 1 nm, and the preferable upper limit is 5 ⁇ m.
  • the more preferable lower limit of the primary particle diameter of the light shielding agent is 5 nm, the more preferable upper limit is 200 nm, the further preferable lower limit is 10 nm, and the further preferable upper limit is 100 nm.
  • the primary particle size of the light-shielding agent can be measured using a particle size distribution meter (for example, "NICOMP 380ZLS" manufactured by PARTICLE SIZING SYSTEMS).
  • the preferable lower limit of the content of the light-shielding agent in 100 parts by weight of the curable resin composition of the present invention is 5 parts by weight, and the preferable upper limit is 80 parts by weight.
  • the content of the light-shielding agent is within this range, the effect of improving the light-shielding property can be further exhibited while maintaining the adhesiveness, the strength after curing, and the drawability of the obtained curable resin composition.
  • the more preferable lower limit of the content of the light-shielding agent is 10 parts by weight, the more preferable upper limit is 70 parts by weight, the more preferable lower limit is 30 parts by weight, and the further preferable upper limit is 60 parts by weight.
  • the curable resin composition of the present invention further comprises additives such as stress relaxation agents, reactive diluents, rocking agents, spacers, curing accelerators, defoamers, leveling agents, and polymerization inhibitors, if necessary. May be contained.
  • a curable resin composition of the present invention for example, a curable resin, a polymerization initiator and / or a thermosetting agent, a silane coupling agent to be added as needed, and the like using a mixer are used.
  • the mixer include a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and three rolls.
  • the curable resin composition of the present invention can be used as an adhesive, and can be particularly preferably used as a sealant for a liquid crystal display element.
  • a sealant for a liquid crystal display element using the curable resin composition of the present invention is also one of the present inventions.
  • a vertically conductive material can be produced.
  • a vertically conductive material containing the sealant for a liquid crystal display element of the present invention and conductive fine particles is also one of the present inventions.
  • the conductive fine particles metal balls, those having a conductive metal layer formed on the surface of the resin fine particles, and the like can be used.
  • the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the excellent elasticity of the resin fine particles enables conductive connection without damaging the transparent substrate or the like.
  • a cured product of the sealant for a liquid crystal display element of the present invention or a cured product of the vertically conductive material of the present invention is also one of the present inventions.
  • the sealant for a liquid crystal display element of the present invention can be suitably used for manufacturing a liquid crystal display element by a liquid crystal dropping method.
  • the liquid crystal dropping method is preferably used, and specific examples thereof include a method having the following steps. Be done. First, a step of applying the sealant for a liquid crystal display element of the present invention to one of two transparent substrates having electrodes such as an ITO thin film by screen printing, dispenser application, or the like to form a frame-shaped seal pattern is performed. Next, a step of dropping and applying fine droplets of liquid crystal on the entire surface of the frame of the seal pattern and superimposing the other transparent substrate under vacuum is performed. After that, the liquid crystal display element can be obtained by a method of irradiating the seal pattern portion with light such as ultraviolet rays to temporarily cure the sealant and a step of heating the temporarily cured sealant to perform main curing. it can.
  • the present invention it is possible to provide a curable resin composition having both excellent adhesiveness to an alignment film and moisture permeation prevention property. Further, according to the present invention, it is possible to provide a sealant for a liquid crystal display element, a vertical conductive material, and a liquid crystal display element using the curable resin composition.
  • curable resin A The structure of the curable resin A was analyzed by 1 H-NMR and 13 C-NMR. As a result, in the curable resin A, in the formula (1), m is 2, R 1 is a structure derived from 1,6-hexanediol, R 2 is a structure derived from phthalic anhydride, and R 3 is a formula (2-2). ) group represented by (R 4 is a hydrogen atom), n is 0, Ep was confirmed to be the compound is a structure derived from bisphenol a diglycidyl ether.
  • a curable resin B was obtained in the same manner as in the above "(Preparation of curable resin A)" except that 118 parts by weight of 1,6-hexanediol was changed to 258 parts by weight of 1,16-hexadecanediol.
  • the structure of the curable resin B was analyzed by 1 H-NMR and 13 C-NMR.
  • m is 2
  • R 1 is a structure derived from 1,16-hexadecanediol
  • R 2 is a structure derived from phthalic anhydride
  • R 3 is a formula (2-2).
  • n is 0, Ep was confirmed to be the compound is a structure derived from bisphenol a diglycidyl ether.
  • curable resin C (Preparation of curable resin C) Except that 118 parts by weight of 1,6-hexanediol was changed to 234 parts by weight of bisphenol A and 760 parts by weight of bisphenol A diglycidyl ether was changed to 536 parts by weight of dicyclopentadiene diglycidyl ether, the above "(curable resin A) was changed.
  • the curable resin C was obtained in the same manner as in the above procedure.
  • the structure of the curable resin C was analyzed by 1 H-NMR and 13 C-NMR.
  • the curable resin C is represented by the formula (1), in which m is 2, R 1 is a structure derived from bisphenol A, R 2 is a structure derived from phthalic anhydride, and R 3 is a formula (2-2). That group (R 4 is a hydrogen atom), n is 0, Ep was confirmed to be the compound is a structure derived from dicyclopentadiene diglycidyl ether.
  • curable resin E (Preparation of curable resin E) Except that 296 parts by weight of phthalic anhydride was changed to 536 parts by weight of tetrapropenyl succinic anhydride and 760 parts by weight of bisphenol A diglycidyl ether was changed to 720 parts by weight of bisphenol F diglycidyl ether, the above "(curable resin A) The curable resin E was obtained in the same manner as in the above procedure. The structure of the curable resin E was analyzed by 1 H-NMR and 13 C-NMR.
  • the curable resin F has a structure in the formula (1) in which m is 2 and R 1 is derived from 1,6-hexanediol, and R 2 is derived from 4-methylcyclohexane-1,2-dicarboxylic acid anhydride. It was confirmed that the structure, R 3 is a group represented by the formula (2-2) (R 4 is a hydrogen atom), n is 0, and Ep is a compound derived from bisphenol F diglycidyl ether.
  • curable resin G A curable resin G was obtained in the same manner as in the above "(Preparation of curable resin F)" except that 144 parts by weight of acrylic acid was changed to 168 parts by weight of methacrylic acid.
  • the structure of the curable resin G was analyzed by 1 H-NMR and 13 C-NMR.
  • the curable resin G has a structure in the formula (1) in which m is 2 and R 1 is derived from 1,6-hexanediol, and R 2 is derived from 4-methylcyclohexane-1,2-dicarboxylic acid anhydride. It was confirmed that the structure, R 3 is a group represented by the formula (2-2) (R 4 is a methyl group), n is 0, and Ep is a compound derived from bisphenol F diglycidyl ether.
  • curable resin H in the formula (1), m is 2, R 1 is a structure derived from 1,6-hexanediol, R 2 is a structure derived from phthalic anhydride, and R 3 is a formula (2-2).
  • curable resin I A curable resin I was obtained in the same manner as in the above "(Preparation of curable resin A)" except that the blending amount of acrylic acid was changed to 72 parts by weight.
  • the structure of the curable resin I was analyzed by 1 H-NMR and 13 C-NMR. As a result, the curable resin I contained 52% by weight of the compound I-1 represented by the formula (1), 23% by weight of the compound I-2 represented by the formula (1), and 23% of the bisphenol A diglycidyl ether. It was confirmed that it contained% by weight.
  • Compound I-1 has a structure in the formula (1) in which m is 2, R 1 is derived from 1,6-hexanediol, R 2 is a structure derived from phthalic anhydride, and one of R 3 is the formula (2-1).
  • group a group represented by the other is represented by formula (2-2) is (R 4 is a hydrogen atom), compounds wherein n 0, Ep is a structure derived from bisphenol a diglycidyl ether.
  • Compound I-2 is represented by the formula (1), in which m is 2, R 1 is a structure derived from 1,6-hexanediol, R 2 is a structure derived from phthalic anhydride, and R 3 is a structure derived from formula (2-2). it is the group (R 4 is a hydrogen atom), n is 0, Ep is a compound a structure derived from bisphenol a diglycidyl ether.
  • the curable resin J was analyzed by 1 H-NMR and 13 C-NMR.
  • the curable resin J has a structure in the formula (1) in which m is 2 and R 1 is derived from 1,6-hexanediol, and R 2 is derived from 4-methylcyclohexane-1,2-dicarboxylic acid anhydride. It was confirmed that the structure, R 3 is a group represented by the formula (2-1), n is 0, and Ep is a compound derived from bisphenol F diglycidyl ether.
  • the reaction product was dried over magnesium sulfate, filtered, and the solvent was flushed off under reduced pressure.
  • 295 parts by weight of epichlorohydrin was added to the reaction product, and the mixture was stirred at 80 ° C. for 2 hours.
  • 144 parts by weight of acrylic acid was added to the obtained reaction product, and the mixture was stirred at 110 ° C. for 5 hours to obtain a curable resin O.
  • the structure of the curable resin O was analyzed by 1 H-NMR and 13 C-NMR. As a result, it was confirmed that the curable resin O was a compound represented by the following formula (5).
  • Examples 1 to 16, Comparative Examples 1 to 4 According to the compounding ratios shown in Tables 1 and 2, each material was stirred with a planetary stirrer, then uniformly mixed with three ceramic rolls, and cured of Examples 1 to 16 and Comparative Examples 1 to 4. A sex resin composition was obtained.
  • As the planetary agitator Awatori Rentaro (manufactured by Shinky Co., Ltd.) was used.
  • An imide resin was applied to a glass substrate with an ITO thin film by spin coating, prebaked at 80 ° C., and then fired at 230 ° C. to prepare a substrate with an alignment film.
  • SE7492 manufactured by Nissan Chemical Industries, Ltd.
  • 1 part by weight of a silica spacer was uniformly dispersed by a planetary stirrer.
  • SI-H055 manufactured by Sekisui Chemical Co., Ltd.
  • a curable resin composition in which silica spacers were dispersed was added dropwise onto the alignment film of the substrate with the alignment film.
  • Another substrate with an alignment film is attached to the substrate with an alignment film on which the curable resin composition is dropped in a cross shape via the curable resin composition, and after irradiating with an ultraviolet ray of 3000 mJ / cm 2 with a metal halide lamp, Adhesion test pieces were obtained by heating at 120 ° C. for 60 minutes. When the edge of the substrate in the produced adhesive test piece was pushed in at a speed of 5 mm / min using a metal cylinder having a radius of 5 mm, the strength at which the panel peeled off was measured.
  • the value obtained by dividing the obtained measured value (kgf) by the seal diameter (cm) was " ⁇ " when it was 3.0 kgf / cm or more, and it was 2.5 kgf / cm or more and less than 3.0 kgf / cm.
  • the case was evaluated as " ⁇ "
  • the case of 2.0 kgf / cm or more and less than 2.5 kgf / cm was evaluated as " ⁇ ”
  • the case of less than 2.0 kgf / cm was evaluated as "x" to evaluate the adhesiveness to the alignment film. ..
  • the case was less than 50g / m 2 ⁇ 24hr " ⁇ "
  • the case was less than 50g / m 2 ⁇ 24hr or more 60g / m 2 ⁇ 24hr " ⁇ ”
  • SI-H055 (manufactured by Sekisui Chemical Co., Ltd.) was used as the silica spacer
  • PSY-10E (manufactured by Musashi Engineering Co., Ltd.) was used as the syringe for dispensing.
  • the curable resin composition was applied onto the alignment film of the substrate with the alignment film so as to draw a frame.
  • SHOTMASTER 300 (manufactured by Musashi Engineering Co., Ltd.) was used.
  • fine droplets of TN liquid crystal were dropped and applied into the frame of the curable resin composition by a liquid crystal dropping device.
  • Another substrate with an alignment film is laminated on a substrate with an alignment film to which TN liquid crystal is dropped and coated via a curable resin composition, and the two substrates are bonded together under a reduced pressure of 5 Pa with a vacuum bonding device.
  • JC-5001LA manufactured by Chisso
  • the obtained cell was irradiated with ultraviolet rays of 3000 mJ / cm 2 with a metal halide lamp, and then heated at 120 ° C. for 60 minutes to cure the curable resin composition, thereby producing a liquid crystal display element.
  • the obtained liquid crystal display element was stored in an environment of a temperature of 80 ° C.
  • the present invention it is possible to provide a curable resin composition having both excellent adhesiveness to an alignment film and moisture permeation prevention property. Further, according to the present invention, it is possible to provide a sealant for a liquid crystal display element, a vertical conductive material, and a liquid crystal display element using the curable resin composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Sealing Material Composition (AREA)
  • Epoxy Resins (AREA)
  • Liquid Crystal (AREA)

Abstract

The purpose of the present invention is to provide a curable resin composition excelling both in adhesion to an alignment film and in moisture permeation preventive properties. The purpose of the present invention is also to provide a sealing agent for a liquid crystal display element, obtained by using the curable resin composition, and a vertical conductive material and a liquid crystal display element. The present invention contains a curable resin and a polymerization initiator and/or a thermosetting agent, the curable resin being a curable resin composition including a compound represented by formula (1). In formula (1), m is an integer from 2 to 4, R1 represents an m-valent polyol-derived structure, R2 represents a structure derived from a dicarboxylic acid or an anhydride thereof which may be substituted, R3 represents a group represented by formula (2-1) or (2-2), X represents a cyclic lactone open-ring structure, n is 0 to 5 (average value), and Ep represents a structure derived from a bifunctional or higher epoxy compound. In formulas (2-1) and (2-2), * represents a bond position, and in formula (2-2), R4 represents a hydrogen atom or a methyl group.

Description

硬化性樹脂組成物、液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子Curable resin composition, sealant for liquid crystal display element, vertical conductive material, and liquid crystal display element
本発明は、配向膜に対する接着性と透湿防止性との両方に優れる硬化性樹脂組成物に関する。また、本発明は、該硬化性樹脂組成物を用いてなる液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子に関する。 The present invention relates to a curable resin composition having both excellent adhesiveness to an alignment film and moisture permeation prevention property. The present invention also relates to a sealant for a liquid crystal display element, a vertical conductive material, and a liquid crystal display element, which are made of the curable resin composition.
近年、液晶表示セル等の液晶表示素子の製造方法としては、タクトタイム短縮、使用液晶量の最適化といった観点から、特許文献1、特許文献2に開示されているような、硬化性樹脂組成物をシール剤として用いた滴下工法と呼ばれる方式が用いられている。
滴下工法では、まず、2枚の電極付き基板の一方にシール剤を塗布し、枠状のシールパターンを形成する。次いで、シール剤が未硬化の状態で液晶の微小滴を基板のシール枠内に滴下し、真空下で他方の基板を重ね合わせ、光照射や加熱によりシール剤を硬化させ、液晶表示素子を作製する。現在この滴下工法が液晶表示素子の製造方法の主流となっている。
In recent years, as a method for manufacturing a liquid crystal display element such as a liquid crystal display cell, a curable resin composition as disclosed in Patent Document 1 and Patent Document 2 from the viewpoint of shortening the tact time and optimizing the amount of liquid crystal used. Is used as a sealing agent, which is called a dropping method.
In the dropping method, first, a sealant is applied to one of the two electrode-equipped substrates to form a frame-shaped seal pattern. Next, in a state where the sealant is uncured, fine droplets of liquid crystal are dropped into the seal frame of the substrate, the other substrate is overlapped under vacuum, and the sealant is cured by light irradiation or heating to produce a liquid crystal display element. To do. Currently, this dropping method is the mainstream method for manufacturing liquid crystal display elements.
特開2001-133794号公報Japanese Unexamined Patent Publication No. 2001-133794 国際公開第02/092718号International Publication No. 02/092718
ところで、携帯電話、携帯ゲーム機等、各種液晶パネル付きモバイル機器が普及している現代において、装置の小型化は最も求められている課題である。小型化の手法として、液晶表示部の狭額縁化が挙げられ、例えば、シール部の位置をブラックマトリックス下に配置することが行われている(以下、狭額縁設計ともいう)。このような狭額縁設計に伴い、シール剤の塗布位置がポリイミド等の配向膜上となる場合が多くなっている。 By the way, in the present age when various mobile devices with liquid crystal panels such as mobile phones and portable game machines are widespread, miniaturization of devices is the most sought after issue. As a method of miniaturization, a narrowing of the frame of the liquid crystal display unit can be mentioned. For example, the position of the seal portion is arranged under the black matrix (hereinafter, also referred to as a narrow frame design). With such a narrow frame design, the coating position of the sealant is often on an alignment film such as polyimide.
また、タブレット端末や携帯端末の普及に伴い、液晶表示素子には高温高湿環境下での駆動等における耐湿信頼性がますます要求されており、シール剤には外部からの水の浸入を防止する性能が一層求められている。液晶表示素子の耐湿信頼性を向上させるためには、シール剤と基板等との界面からの水の浸入を防ぐためにシール剤の基板等に対する接着性を向上させ、かつ、シール剤の透湿防止性を向上させる必要がある。シール剤の透湿防止性を向上させる方法としては、タルク等のフィラーを配合する方法が考えられるが、厳しい耐湿信頼性試験を行った場合には、液晶表示素子に表示むらが発生することがあった。特に、シール剤の塗布位置がポリイミド等の配向膜上となる場合において、配向膜に対する接着性と透湿防止性とを両立させることが困難であった。 In addition, with the spread of tablet terminals and mobile terminals, liquid crystal display elements are increasingly required to have moisture resistance and reliability when driven in a high temperature and high humidity environment, and the sealant prevents water from entering from the outside. Performance is further required. In order to improve the moisture resistance and reliability of the liquid crystal display element, the adhesiveness of the sealant to the substrate, etc. is improved in order to prevent water from entering from the interface between the sealant and the substrate, and the moisture permeation of the sealant is prevented. It is necessary to improve the sex. As a method of improving the moisture permeation prevention property of the sealant, a method of blending a filler such as talc can be considered, but when a strict moisture resistance reliability test is performed, display unevenness may occur on the liquid crystal display element. there were. In particular, when the coating position of the sealant is on an alignment film such as polyimide, it is difficult to achieve both adhesiveness to the alignment film and moisture permeation prevention property.
本発明は、配向膜に対する接着性と透湿防止性との両方に優れる硬化性樹脂組成物を提供することを目的とする。また、本発明は、該硬化性樹脂組成物を用いてなる液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子を提供することを目的とする。 An object of the present invention is to provide a curable resin composition having excellent adhesiveness to an alignment film and moisture permeation prevention property. Another object of the present invention is to provide a sealant for a liquid crystal display element, a vertical conductive material, and a liquid crystal display element using the curable resin composition.
本発明は、硬化性樹脂と重合開始剤及び/又は熱硬化剤とを含有し、上記硬化性樹脂は、下記式(1)で表される化合物を含む硬化性樹脂組成物である。 The present invention contains a curable resin, a polymerization initiator and / or a thermosetting agent, and the curable resin is a curable resin composition containing a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
式(1)中、mは、2以上4以下の整数であり、Rは、m価のポリオール由来の構造を表し、Rは、置換されていてもよいジカルボン酸又はその無水物由来の構造を表し、Rは、下記式(2-1)又は(2-2)で表される基を表し、Xは、環状ラクトンの開環構造を表し、nは、0以上5以下(平均値)であり、Epは、2官能以上のエポキシ化合物由来の構造を表す。 In formula (1), m is an integer of 2 or more and 4 or less, R 1 represents a structure derived from an m-valent polyol, and R 2 is derived from a optionally substituted dicarboxylic acid or an anhydride thereof. Represents the structure, R 3 represents the group represented by the following formula (2-1) or (2-2), X represents the ring-opening structure of the cyclic lactone, and n is 0 or more and 5 or less (mean). Value), and Ep represents a structure derived from a bifunctional or higher functional epoxy compound.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
式(2-1)及び(2-2)中、*は、結合位置を表し、式(2-2)中、Rは、水素原子又はメチル基を表す。
以下に本発明を詳述する。
In formulas (2-1) and (2-2), * represents a bond position, and in formula (2-2), R 4 represents a hydrogen atom or a methyl group.
The present invention will be described in detail below.
本発明者は、硬化性樹脂として特定の構造を有する化合物を用いることにより、配向膜に対する接着性と透湿防止性との両方に優れる硬化性樹脂組成物が得られることを見出し、本発明を完成させるに至った。 The present inventor has found that by using a compound having a specific structure as a curable resin, a curable resin composition excellent in both adhesiveness to an alignment film and moisture permeation prevention property can be obtained, and the present invention has been developed. It came to be completed.
本発明の硬化性樹脂組成物は、硬化性樹脂を含有する。
上記硬化性樹脂は、上記式(1)で表される化合物を含む。上記硬化性樹脂として上記式(1)で表される化合物を含有することにより、本発明の硬化性樹脂組成物は、配向膜に対する接着性と透湿防止性との両方に優れる。
The curable resin composition of the present invention contains a curable resin.
The curable resin contains a compound represented by the above formula (1). By containing the compound represented by the above formula (1) as the curable resin, the curable resin composition of the present invention is excellent in both adhesiveness to the alignment film and moisture permeation prevention property.
上記式(1)中、mは、2以上4以下の整数である。上記mは、2であることが好ましい。 In the above equation (1), m is an integer of 2 or more and 4 or less. The above m is preferably 2.
上記式(1)中、Rは、m価のポリオール由来の構造を表す。
上記Rの由来となるポリオールの分子量の好ましい上限は500である。上記ポリオールの分子量が500以下であることにより、得られる硬化性樹脂組成物が透湿防止性により優れるものとなる。上記ポリオールの分子量のより好ましい上限は400である。
なお、本明細書において上記「分子量」は、分子構造が特定される化合物については、構造式から求められる分子量であるが、重合度の分布が広い化合物及び変性部位が不特定な化合物については、数平均分子量を用いて表す場合がある。また、本明細書において、上記数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で溶媒としてテトラヒドロフランを用いて測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際のカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。
In the above formula (1), R 1 represents a structure derived from an m-valent polyol.
The preferable upper limit of the molecular weight of the polyol from which R 1 is derived is 500. When the molecular weight of the polyol is 500 or less, the obtained curable resin composition becomes more excellent in moisture permeation prevention property. A more preferable upper limit of the molecular weight of the polyol is 400.
In the present specification, the above-mentioned "molecular weight" is the molecular weight obtained from the structural formula for a compound whose molecular structure is specified, but for a compound having a wide distribution of degree of polymerization and a compound having an unspecified modification site. It may be expressed using a number average molecular weight. Further, in the present specification, the number average molecular weight is a value obtained by measuring by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent and converting it into polystyrene. Examples of the column for measuring the number average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK).
上記Rの由来となるポリオールとしては、具体的には例えば、分岐構造を有していてもよい炭素数2~60の脂肪族ジオール、分岐構造を有していてもよい炭素数2~60の脂肪族トリオール、分岐構造を有していてもよい炭素数2~60の脂肪族テトラオール、芳香環を含むジオール等が挙げられる。なかでも、接着性の観点から、分岐構造を有していてもよい炭素数2~60の脂肪族ジオールが好ましい。
上記炭素数2~60の脂肪族ジオールとしては、例えば、エタンジオール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ノナンジオール、デカンジオール、ウンデカンジオール、ドデカンジオール、トリデカンジオール、テトラデカンジオール、ペンタデカンジオール、ヘキサデカンジオール、ヘプタデカンジオール、オクタデカンジオール、ノナンジオールや、2-ブテン-1,4-ジオール、1,4-シクロヘキサンジメタノール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,3-シクロペンタンジオール、1,2-シクロペンタンジオール、1,3-アダマンタンジオール、3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、4,4’-ビシクロヘキサノール、4-(2-ヒドロキシエチル)ヘキサノール、水素添加ビスフェノールA等が挙げられる。
上記芳香環を含むジオールとしては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールB、ビスフェノールE、ビスフェノールS、ナフタレンジオール、レゾルシノール、カテコール、4,4’-ビス(ヒドロキシメチル)ビフェニル、9,9-ビス(4-ヒドロキシフェニル)フルオレン、1,4-ビス(3-ヒドロキシフェノキシ)ベンゼン、4,4’-ジヒドロキシビフェニル、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、グリセロール-2-ベンジルエーテル、2,2’-オキシジ(ベンジルアルコール)、4,4’-シクロヘキシリデンビスフェノール等が挙げられる。
Specific examples of the polyol from which R 1 is derived include an aliphatic diol having 2 to 60 carbon atoms which may have a branched structure and 2 to 60 carbon atoms which may have a branched structure. Examples thereof include an aliphatic triol of the above, an aliphatic tetraol having 2 to 60 carbon atoms which may have a branched structure, and a diol containing an aromatic ring. Of these, an aliphatic diol having 2 to 60 carbon atoms, which may have a branched structure, is preferable from the viewpoint of adhesiveness.
Examples of the aliphatic diol having 2 to 60 carbon atoms include ethanediol, propanediol, butanediol, pentanediol, hexanediol, heptanediol, octanediol, nonanediol, decanediol, undecanediol, dodecanediol, and tridecandi. All, tetradecanediol, pentadecanediol, hexadecanediol, heptadecanediol, octadecanediol, nonanediol, 2-butene-1,4-diol, 1,4-cyclohexanedimethanol, 1,2-cyclohexanediol, 1,3 -Cyclohexanediol, 1,4-cyclohexanediol, 1,3-cyclopentanediol, 1,2-cyclopentanediol, 1,3-adamantandiol, 3,9-bis (1,1-dimethyl-2-hydroxyethyl) ) -2,4,8,10-Tetraoxaspiro [5.5] undecane, 4,4'-bicyclohexanol, 4- (2-hydroxyethyl) hexanol, hydrogenated bisphenol A and the like.
Examples of the diol containing the aromatic ring include bisphenol A, bisphenol F, bisphenol B, bisphenol E, bisphenol S, naphthalene diol, resorcinol, catechol, 4,4'-bis (hydroxymethyl) biphenyl, and 9,9-bis. (4-Hydroxyphenyl) fluorene, 1,4-bis (3-hydroxyphenoxy) benzene, 4,4'-dihydroxybiphenyl, 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene, glycerol-2 -Benzyl ether, 2,2'-oxydi (benzyl alcohol), 4,4'-cyclohexylidenebisphenol and the like can be mentioned.
上記式(1)中、Rは、置換されていてもよいジカルボン酸又はその無水物由来の構造を表す。上記Rが、置換されていてもよいジカルボン酸又はその無水物由来の構造であることにより、得られる硬化性樹脂組成物が透湿防止性に優れるものとなる。 In the above formula (1), R 2 represents a structure derived from a dicarboxylic acid or an anhydride thereof which may be substituted. Since the R 2 has a structure derived from a dicarboxylic acid or an anhydride thereof which may be substituted, the obtained curable resin composition has excellent moisture permeation prevention properties.
上記置換されていてもよいジカルボン酸又はその無水物が置換されている場合の置換基としては、例えば、芳香環を含む不飽和結合や分岐構造を有していてもよい炭素数1~60の炭素鎖、環状構造を含む炭化水素骨格等が挙げられる。 When the substituted dicarboxylic acid or its anhydride is substituted, for example, an unsaturated bond containing an aromatic ring or a branched structure may have 1 to 60 carbon atoms. Examples thereof include a carbon chain and a hydrocarbon skeleton containing a cyclic structure.
上記置換されていてもよいジカルボン酸又はその無水物としては、具体的には例えば、無水フタル酸、3-メチルフタル酸無水物、4-メチルフタル酸無水物、1,2-ナフタレンジカルボン酸無水物、2,3-ナフタレンジカルボン酸無水物、1,8-ナフタレンジカルボン酸無水物、4-tert-ブチルフタル酸無水物、フェニルマレイン酸無水物、フェニルコハク酸無水物、1,2-シクロヘキサンジカルボン酸無水物、3-メチルシクロヘキサン-1,2-ジカルボン酸無水物、4-メチルシクロヘキサン-1,2-ジカルボン酸無水物、4-シクロヘキセン-1,2-ジカルボン酸、3-メチル-4-シクロヘキセン-1,2-ジカルボン酸無水物、3,4,5,6-テトラヒドロフタル酸無水物、4-メチル-4-シクロヘキセン-1,2-ジカルボン酸無水物、テトラプロペニルコハク酸無水物、デシルコハク酸無水物、テトラデシルコハク酸無水物、テトラデセニルコハク酸無水物、ヘキサデシルコハク酸無水物、アリルコハク酸無水物、イソオクタデセニルコハク酸無水物、ブチルコハク酸無水物、4-ヘキセン-1,2-ジカルボン酸無水物、2-ドデセン-1-イルコハク酸無水物、2,2-ジメチルコハク酸無水物、2-ヘキセン-1-イルコハク酸無水物、4-メチル-4-ペンテン-1,2-ジカルボン酸無水物、2-オクテニルコハク酸無水物、4,9-デカジエン-1,2-ジカルボン酸無水物、5-ノルボルネン-2,3-ジカルボン酸無水物、ビシクロ[2.2.2]オクト-5-エン-2,3-ジカルボン酸無水物、2-(2-カルボキシエチル)-3-メチルマレイン酸無水物、7-オキサビシクロ[2.2.1]ヘプタ-5-エン-2,3-ジカルボン酸無水物、及び、これらのジカルボン酸等が挙げられる。 Specific examples of the dicarboxylic acid or its anhydride which may be substituted include phthalic anhydride, 3-methylphthalic anhydride, 4-methylphthalic anhydride, 1,2-naphthalenedicarboxylic acid anhydride, and the like. 2,3-naphthalenedicarboxylic acid anhydride, 1,8-naphthalenedicarboxylic acid anhydride, 4-tert-butylphthalic acid anhydride, phenylmaleic acid anhydride, phenylsuccinic anhydride, 1,2-cyclohexanedicarboxylic acid anhydride , 3-Methylcyclohexane-1,2-dicarboxylic acid anhydride, 4-methylcyclohexane-1,2-dicarboxylic acid anhydride, 4-cyclohexene-1,2-dicarboxylic acid, 3-methyl-4-cyclohexene-1, 2-dicarboxylic acid anhydride, 3,4,5,6-tetrahydrophthalic anhydride, 4-methyl-4-cyclohexene-1,2-dicarboxylic acid anhydride, tetrapropenylsuccinic anhydride, decylsuccinic anhydride, Tetradecyl succinic anhydride, tetradecenyl succinic anhydride, hexadecyl succinic acid anhydride, allyl succinic acid anhydride, isooctadecenyl succinic acid anhydride, butyl succinic acid anhydride, 4-hexene-1,2 -Dicarboxylic acid anhydride, 2-dodecene-1-ylsuccinate anhydride, 2,2-dimethylsuccinic anhydride, 2-hexene-1-ylsuccinic anhydride, 4-methyl-4-pentene-1,2- Dicarboxylic Acid Anhydride, 2-octenyl succinic anhydride, 4,9-decadien-1,2-dicarboxylic acid anhydride, 5-norbornene-2,3-dicarboxylic acid anhydride, bicyclo [2.2.2] octo- 5-En-2,3-dicarboxylic acid anhydride, 2- (2-carboxyethyl) -3-methylmaleic acid anhydride, 7-oxabicyclo [2.2.1] hepta-5-en-2,3 -Dicarboxylic acid anhydrides, these dicarboxylic acids and the like can be mentioned.
得られる硬化性樹脂組成物の配向膜に対する接着性をより向上させる観点から、上記Rは、下記式(3)で表される構造であることが好ましい。 From the viewpoint of further improving the adhesiveness of the obtained curable resin composition to the alignment film, it is preferable that R 2 has a structure represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
式(3)中、*は、結合位置を表し、R及びRは、それぞれ独立して、水素原子、又は、炭素数1以上60以下の有機基を表すか、或いは、R、Rが結合している構造を表す。 In the formula (3), * represents a bond position, and R 5 and R 6 each independently represent a hydrogen atom or an organic group having 1 or more and 60 or less carbon atoms, or R 5 and R. Represents a structure in which 6 is bonded.
上記式(3)で表される構造としては、R、Rが結合していない構造であってもよいし、R、Rが結合している構造であってもよいが、透湿防止性を高める観点から、R、Rが結合している構造が好ましく、下記式(4-1)又は(4-2)で表される構造であることがより好ましい。 The structure represented by the above formula (3) may be a structure in which R 5 and R 6 are not bonded, or a structure in which R 5 and R 6 are bonded, but it is transparent. From the viewpoint of enhancing moisture resistance, a structure in which R 5 and R 6 are bonded is preferable, and a structure represented by the following formula (4-1) or (4-2) is more preferable.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
式(4-1)中、*は、結合位置を表し、式(4-1)中、Rは、水素原子、又は、炭素数1以上10以下のアルキル基を表し、式(4-2)中、Rは、水素原子、又は、炭素数1以上10以下のアルキル基を表す。 In formula (4-1), * represents a bond position, and in formula (4-1), R 7 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and formula (4-2). ), R 8 represents a hydrogen atom or an alkyl group having 1 or more and 10 or less carbon atoms.
上記式(4-1)で表される構造としては、例えば、1,2-シクロヘキサンジカルボン酸無水物、3-メチルシクロヘキサン-1,2-ジカルボン酸無水物等に由来する構造が挙げられる。
上記式(4-2)で表される構造としては、例えば、4-シクロヘキセン-1,2-ジカルボン酸、3-メチル-4-シクロヘキセン-1,2-ジカルボン酸無水物、3,4,5,6-テトラヒドロフタル酸無水物、4-メチル-4-シクロヘキセン-1,2-ジカルボン酸無水物等に由来する構造が挙げられる。
上記式(3)で表される構造のうち、上記式(4-1)又は(4-2)で表される構造以外の上記R、Rが結合している構造としては、例えば、5-ノルボルネン-2,3-ジカルボン酸無水物、ビシクロ[2.2.2]オクト-5-エン-2,3-ジカルボン酸無水物、2-(2-カルボキシエチル)-3-メチルマレイン酸無水物、7-オキサビシクロ[2.2.1]ヘプタ-5-エン-2,3-ジカルボン酸無水物等に由来する構造が挙げられる。
Examples of the structure represented by the above formula (4-1) include structures derived from 1,2-cyclohexanedicarboxylic acid anhydride, 3-methylcyclohexane-1,2-dicarboxylic acid anhydride and the like.
Examples of the structure represented by the above formula (4-2) include 4-cyclohexene-1,2-dicarboxylic acid, 3-methyl-4-cyclohexene-1,2-dicarboxylic acid anhydride, 3,4,5. , 6-Tetrahydrophthalic anhydride, 4-methyl-4-cyclohexene-1,2-dicarboxylic acid anhydride and the like.
Among the structures represented by the above formula (3), as the structural above formula (4-1) or the above R 5, R 6 other than the structure represented by (4-2) are attached, for example, 5-Norbornene-2,3-dicarboxylic acid anhydride, bicyclo [2.2.2] octo-5-ene-2,3-dicarboxylic acid anhydride, 2- (2-carboxyethyl) -3-methylmaleic acid Examples thereof include structures derived from anhydrides, 7-oxabicyclo [2.2.1] hepta-5-ene-2,3-dicarboxylic acid anhydrides and the like.
上記式(3)で表される構造のうち、上記R、Rが結合していない構造としては、例えば、テトラプロペニルコハク酸無水物、デシルコハク酸無水物、テトラデシルコハク酸無水物、テトラデセニルコハク酸無水物、ヘキサデシルコハク酸無水物、イソオクタデセニルコハク酸無水物、ブチルコハク酸無水物、アリルコハク酸無水物、4-ヘキセン-1,2-ジカルボン酸無水物、2-ドデセン-1-イルコハク酸無水物、2,2-ジメチルコハク酸無水物、2-ヘキセン-1-イルコハク酸無水物、4-メチル-4-ペンテン-1,2-ジカルボン酸無水物、2-オクテニルコハク酸無水物、4,9-デカジエン-1,2-ジカルボン酸無水物等に由来する構造が挙げられる。 Among the structures represented by the above formula (3), the structures to which the above R 5 and R 6 are not bound include, for example, tetrapropenyl succinic anhydride, decyl succinic anhydride, tetradecyl succinic anhydride, and tetra. Decenyl succinic anhydride, hexadecyl succinic anhydride, isooctadecenyl succinic anhydride, butyl succinic anhydride, allyl succinic anhydride, 4-hexene-1,2-dicarboxylic acid anhydride, 2- Dodecene-1-yl succinic anhydride, 2,2-dimethylsuccinic anhydride, 2-hexene-1-yl succinic anhydride, 4-methyl-4-penten-1,2-dicarboxylic acid anhydride, 2-octenyl succinic anhydride Examples thereof include structures derived from acid anhydrides, 4,9-decadien-1,2-dicarboxylic acid anhydrides and the like.
上記式(1)中、Rは、上記式(2-1)又は(2-2)で表される基を表す。本発明の硬化性樹脂組成物を液晶表示素子用シール剤に用いる場合に低液晶汚染性に優れるものとする観点から、少なくとも1つのRは、上記式(2-2)で表される基であることが好ましい。 In the above formula (1), R 3 represents a group represented by the above formula (2-1) or (2-2). From the viewpoint of excellent low liquid crystal contamination when the curable resin composition of the present invention is used as a sealant for a liquid crystal display element, at least one R 3 is a group represented by the above formula (2-2). Is preferable.
上記式(1)中、Xは、環状ラクトンの開環構造を表す。
上記環状ラクトンとしては、例えば、γ-ウンデカラクトン、ε-カプロラクトン、γ-デカラクトン、σ-ドデカラクトン、γ-ノナノラクトン、γ-ヘプタノラクトン、γ-バレロラクトン、σ-バレロラクトン、β-ブチロラクトン、γ-ブチロラクトン、β-プロピオラクトン、σ-ヘキサノラクトン、7-ブチル-2-オキセパノン等が挙げられる。なかでも、開環したときに主骨格の直鎖部分の炭素数が5以上7以下となるものが好ましい。
なお、上記式(1)中、nが0である場合、即ち、Xで表される環状ラクトンの開環構造がない場合でも、得られる硬化性樹脂組成物が配向膜に対する優れた接着性及び硬化物の透湿防止性を有するものとなる。上記nが1以上5以下である場合は、得られる硬化性樹脂組成物が配向膜に対する接着性により優れるものとなる。
In the above formula (1), X represents the ring-opening structure of the cyclic lactone.
Examples of the cyclic lactone include γ-undecalactone, ε-caprolactone, γ-decalactone, σ-dodecalactone, γ-nonanolactone, γ-heptanolactone, γ-valerolactone, σ-valerolactone, and β-butyrolactone. , Γ-Butyrolactone, β-propiolactone, σ-hexanolactone, 7-butyl-2-oxepanone and the like. Among them, those having 5 or more and 7 or less carbon atoms in the linear portion of the main skeleton when the ring is opened are preferable.
In the above formula (1), even when n is 0, that is, even when there is no ring-opening structure of the cyclic lactone represented by X, the obtained curable resin composition has excellent adhesiveness to the alignment film and It has the moisture permeation prevention property of the cured product. When the above n is 1 or more and 5 or less, the obtained curable resin composition is more excellent in adhesiveness to the alignment film.
上記式(1)中、Epは2官能以上のエポキシ化合物由来の構造を表す。
上記Epの由来となるエポキシ化合物としては、例えば、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールE型エポキシ化合物、ビスフェノールS型エポキシ化合物、水添ビスフェノールA型エポキシ化合物、水添ビスフェノールF型エポキシ化合物、水添ビスフェノールE型エポキシ化合物、水添ビスフェノールS型エポキシ化合物、レゾルシノール型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、ナフタレン型エポキシ化合物、フルオレン型エポキシ化合物、ゴム変性型エポキシ化合物、グリシジルエステル化合物等が挙げられる。
なかでも、上記Epは、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、又は、ビスフェノールE型エポキシ化合物由来の構造であることが好ましい。
In the above formula (1), Ep represents a structure derived from a bifunctional or higher functional epoxy compound.
Examples of the epoxy compound from which the above Ep is derived include bisphenol A type epoxy compound, bisphenol F type epoxy compound, bisphenol E type epoxy compound, bisphenol S type epoxy compound, hydrogenated bisphenol A type epoxy compound, and hydrogenated bisphenol F type. Epoxy compound, hydrogenated bisphenol E type epoxy compound, hydrogenated bisphenol S type epoxy compound, resorcinol type epoxy compound, dicyclopentadiene type epoxy compound, naphthalene type epoxy compound, fluorene type epoxy compound, rubber modified type epoxy compound, glycidyl ester compound And so on.
Among them, the above Ep preferably has a structure derived from a bisphenol A type epoxy compound, a bisphenol F type epoxy compound, or a bisphenol E type epoxy compound.
上記Epの由来となるエポキシ化合物の分子量の好ましい上限は1000である。上記エポキシ化合物の分子量が1000以下であることにより、得られる硬化性樹脂組成物が低粘度でハンドリング性に優れるものとなる。上記エポキシ化合物の分子量のより好ましい上限は500である。 The preferable upper limit of the molecular weight of the epoxy compound from which the Ep is derived is 1000. When the molecular weight of the epoxy compound is 1000 or less, the obtained curable resin composition has a low viscosity and is excellent in handleability. A more preferable upper limit of the molecular weight of the epoxy compound is 500.
上記式(1)で表される化合物を製造する方法としては、例えば、以下の方法等が挙げられる。
即ち、まず、上記ポリオールと、上記置換されていてもよいジカルボン酸又はその無水物とを、重合禁止剤の存在下で加熱撹拌する工程を行って反応物1を得る。次いで、得られた反応物1に上記2官能以上のエポキシ化合物を加えて加熱撹拌する工程を行って反応物2を得る。その後、得られた反応物2に(メタ)アクリル酸を加えて加熱撹拌することにより一部又は全部のエポキシ基を(メタ)アクリル酸と反応させる工程を有する方法により、上記式(1)で表される化合物を得ることができる。
上記ポリオールは、上記置換されていてもよいジカルボン酸又はその無水物と反応させる前に上記環状ラクトンと反応させていてもよい。
なお、本明細書において、上記「(メタ)アクリル」とは、アクリル又はメタクリルを意味する。
Examples of the method for producing the compound represented by the above formula (1) include the following methods.
That is, first, the above-mentioned polyol and the above-mentioned optionally substituted dicarboxylic acid or its anhydride are heated and stirred in the presence of a polymerization inhibitor to obtain the reaction product 1. Next, the above-mentioned bifunctional or higher functional epoxy compound is added to the obtained reaction product 1 and heated and stirred to obtain the reaction product 2. Then, by a method having a step of reacting a part or all of the epoxy groups with (meth) acrylic acid by adding (meth) acrylic acid to the obtained reaction product 2 and heating and stirring, the above formula (1) is used. The compound represented can be obtained.
The polyol may be reacted with the cyclic lactone before being reacted with the optionally substituted dicarboxylic acid or its anhydride.
In addition, in this specification, the said "(meth) acrylic" means acrylic or methacrylic.
上記重合禁止剤としては、例えば、ハイドロキノン、p-メトキシフェノール等が挙げられる。 Examples of the polymerization inhibitor include hydroquinone, p-methoxyphenol and the like.
上記硬化性樹脂100重量部中における上記式(1)で表される化合物の含有量の好ましい下限は5重量部、好ましい上限は95重量部である。上記式(1)で表される化合物の含有量がこの範囲であることにより、得られる硬化性樹脂組成物が配向膜に対する接着性と透湿防止性とを両立する効果により優れるものとなる。上記式(1)で表される化合物の含有量のより好ましい下限は10重量部、より好ましい上限は90重量部である。 The preferable lower limit of the content of the compound represented by the above formula (1) in 100 parts by weight of the curable resin is 5 parts by weight, and the preferable upper limit is 95 parts by weight. When the content of the compound represented by the above formula (1) is in this range, the obtained curable resin composition is more excellent in the effect of achieving both adhesiveness to the alignment film and moisture permeation prevention property. The more preferable lower limit of the content of the compound represented by the above formula (1) is 10 parts by weight, and the more preferable upper limit is 90 parts by weight.
本発明の硬化性樹脂組成物は、本発明の目的を阻害しない範囲において、上記硬化性樹脂として、更に、上記式(1)で表される化合物以外のその他の硬化性樹脂を含有してもよい。
上記その他の硬化性樹脂としては、例えば、上記式(1)で表される化合物以外の、その他のエポキシ化合物やその他の(メタ)アクリル化合物等が挙げられる。
なお、本明細書において、上記「(メタ)アクリル」とは、アクリル又はメタクリルを意味し、上記「(メタ)アクリル化合物」とは、(メタ)アクリロイル基を有する化合物を意味する。
The curable resin composition of the present invention may further contain other curable resin other than the compound represented by the above formula (1) as the curable resin as long as the object of the present invention is not impaired. Good.
Examples of the other curable resin include other epoxy compounds and other (meth) acrylic compounds other than the compound represented by the above formula (1).
In the present specification, the above-mentioned "(meth) acrylic" means acrylic or methacrylic, and the above-mentioned "(meth) acrylic compound" means a compound having a (meth) acryloyl group.
上記その他のエポキシ化合物としては、例えば、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、2,2’-ジアリルビスフェノールA型エポキシ化合物、水添ビスフェノール型エポキシ化合物、プロピレンオキシド付加ビスフェノールA型エポキシ化合物、レゾルシノール型エポキシ化合物、ビフェニル型エポキシ化合物、スルフィド型エポキシ化合物、ジフェニルエーテル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、ナフタレン型エポキシ化合物、フェノールノボラック型エポキシ化合物、オルトクレゾールノボラック型エポキシ化合物、ジシクロペンタジエンノボラック型エポキシ化合物、ビフェニルノボラック型エポキシ化合物、ナフタレンフェノールノボラック型エポキシ化合物、グリシジルアミン型エポキシ化合物、アルキルポリオール型エポキシ化合物、ゴム変性型エポキシ化合物、グリシジルエステル化合物等が挙げられる。 Examples of the other epoxy compounds include bisphenol A type epoxy compound, bisphenol F type epoxy compound, bisphenol S type epoxy compound, 2,2'-diallyl bisphenol A type epoxy compound, hydrogenated bisphenol type epoxy compound, and propylene oxide addition. Bisphenol A type epoxy compound, resorsinol type epoxy compound, biphenyl type epoxy compound, sulfide type epoxy compound, diphenyl ether type epoxy compound, dicyclopentadiene type epoxy compound, naphthalene type epoxy compound, phenol novolac type epoxy compound, orthocresol novolac type epoxy compound , Dicyclopentadiene novolac type epoxy compound, biphenyl novolac type epoxy compound, naphthalenephenol novolac type epoxy compound, glycidylamine type epoxy compound, alkyl polyol type epoxy compound, rubber modified epoxy compound, glycidyl ester compound and the like.
上記ビスフェノールA型エポキシ化合物のうち市販されているものとしては、例えば、jER828EL、jER1004(いずれも三菱ケミカル社製)、EPICLON EXA-850CRP(DIC社製)等が挙げられる。
上記ビスフェノールF型エポキシ化合物のうち市販されているものとしては、例えば、jER806、jER4004(いずれも三菱ケミカル社製)等が挙げられる。
上記ビスフェノールS型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON EXA1514(DIC社製)等が挙げられる。
上記2,2’-ジアリルビスフェノールA型エポキシ化合物のうち市販されているものとしては、例えば、RE-810NM(日本化薬社製)等が挙げられる。
上記水添ビスフェノール型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON EXA7015(DIC社製)等が挙げられる。
上記プロピレンオキシド付加ビスフェノールA型エポキシ化合物のうち市販されているものとしては、例えば、EP-4000S(ADEKA社製)等が挙げられる。
上記レゾルシノール型エポキシ化合物のうち市販されているものとしては、例えば、EX-201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ化合物のうち市販されているものとしては、例えば、jER YX-4000H(三菱ケミカル社製)等が挙げられる。
上記スルフィド型エポキシ化合物のうち市販されているものとしては、例えば、YSLV-50TE(新日鉄住金化学社製)等が挙げられる。
上記ジフェニルエーテル型エポキシ化合物のうち市販されているものとしては、例えば、YSLV-80DE(新日鉄住金化学社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ化合物のうち市販されているものとしては、例えば、EP-4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON HP4032、EPICLON EXA-4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON N-770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON N-670-EXP-S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON HP7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ化合物のうち市販されているものとしては、例えば、NC-3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ化合物のうち市販されているものとしては、例えば、ESN-165S(新日鉄住金化学社製)等が挙げられる。
上記グリシジルアミン型エポキシ化合物のうち市販されているものとしては、例えば、jER630(三菱ケミカル社製)、EPICLON 430(DIC社製)、TETRAD-X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ化合物のうち市販されているものとしては、例えば、ZX-1542(新日鉄住金化学社製)、EPICLON 726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX-611(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ化合物のうち市販されているものとしては、例えば、YR-450、YR-207(いずれも新日鉄住金化学社製)、エポリードPB(ダイセル社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されているものとしては、例えば、デナコールEX-147(ナガセケムテックス社製)等が挙げられる。
上記エポキシ化合物のうちその他に市販されているものとしては、例えば、YDC-1312、YSLV-80XY、YSLV-90CR(いずれも新日鉄住金化学社製)、XAC4151(旭化成社製)、jER1031、jER1032(いずれも三菱ケミカル社製)、EXA-7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
Examples of commercially available bisphenol A type epoxy compounds include jER828EL, jER1004 (all manufactured by Mitsubishi Chemical Corporation), EPICLON EXA-850CRP (manufactured by DIC Corporation), and the like.
Examples of commercially available bisphenol F-type epoxy compounds include jER806 and jER4004 (both manufactured by Mitsubishi Chemical Corporation).
Examples of commercially available bisphenol S-type epoxy compounds include EPICLON EXA1514 (manufactured by DIC Corporation) and the like.
Among the above 2,2'-diallyl bisphenol A type epoxy compounds, commercially available ones include, for example, RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
Examples of commercially available hydrogenated bisphenol type epoxy compounds include EPICLON EXA7015 (manufactured by DIC Corporation) and the like.
Examples of commercially available propylene oxide-added bisphenol A type epoxy compounds include EP-4000S (manufactured by ADEKA Corporation) and the like.
Examples of commercially available resorcinol-type epoxy compounds include EX-201 (manufactured by Nagase ChemteX Corporation) and the like.
Examples of commercially available biphenyl type epoxy compounds include jER YX-4000H (manufactured by Mitsubishi Chemical Corporation) and the like.
Examples of commercially available sulfide-type epoxy compounds include YSLV-50TE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) and the like.
Examples of commercially available diphenyl ether type epoxy compounds include YSLV-80DE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) and the like.
Examples of commercially available dicyclopentadiene type epoxy compounds include EP-4088S (manufactured by ADEKA Corporation) and the like.
Examples of commercially available naphthalene-type epoxy compounds include EPICLON HP4032 and EPICLON EXA-4700 (both manufactured by DIC Corporation).
Examples of commercially available phenol novolac type epoxy compounds include EPICLON N-770 (manufactured by DIC Corporation) and the like.
Examples of commercially available orthocresol novolac type epoxy compounds include EPICLON N-670-EXP-S (manufactured by DIC Corporation) and the like.
Examples of commercially available dicyclopentadiene novolac type epoxy compounds include EPICLON HP7200 (manufactured by DIC Corporation) and the like.
Examples of commercially available biphenyl novolac type epoxy compounds include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.) and the like.
Examples of commercially available naphthalene phenol novolac type epoxy compounds include ESN-165S (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available glycidylamine type epoxy compounds include jER630 (manufactured by Mitsubishi Chemical Corporation), EPICLON 430 (manufactured by DIC Corporation), TETRAD-X (manufactured by Mitsubishi Gas Chemical Company, Inc.) and the like.
Commercially available alkyl polyol type epoxy compounds include, for example, ZX-1542 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), EPICLON 726 (manufactured by DIC Corporation), Epolite 80MFA (manufactured by Kyoei Co., Ltd.), and Denacol EX-611. (Manufactured by Nagase ChemteX Corporation) and the like.
Examples of commercially available rubber-modified epoxy compounds include YR-450, YR-207 (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epolide PB (manufactured by Daicel Co., Ltd.), and the like.
Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation) and the like.
Other commercially available epoxy compounds include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Corporation), jER1031 and jER1032 (all of which are manufactured by Asahi Kasei Corporation). Mitsubishi Chemical Corporation), EXA-7120 (DIC Corporation), TEPIC (Nissan Chemical Industries, Ltd.) and the like.
また、上記硬化性樹脂は、上記その他のエポキシ化合物として部分(メタ)アクリル変性エポキシ樹脂を含有してもよい。
なお、本明細書において上記部分(メタ)アクリル変性エポキシ樹脂とは、例えば、1分子中に2つ以上のエポキシ基を有するエポキシ化合物の一部のエポキシ基を(メタ)アクリル酸と反応させることによって得ることができる、1分子中にエポキシ基と(メタ)アクリロイル基とをそれぞれ1つ以上有する化合物を意味する。
Further, the curable resin may contain a partially (meth) acrylic-modified epoxy resin as the other epoxy compound.
In the present specification, the above-mentioned partial (meth) acrylic-modified epoxy resin means, for example, reacting a part of epoxy groups of an epoxy compound having two or more epoxy groups in one molecule with (meth) acrylic acid. It means a compound having one or more epoxy groups and one or more (meth) acryloyl groups in one molecule.
上記その他の(メタ)アクリル化合物としては、例えば、(メタ)アクリル酸エステル化合物、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート等が挙げられる。なかでも、エポキシ(メタ)アクリレートが好ましい。また、上記(メタ)アクリル化合物は、反応性の観点から、1分子中に(メタ)アクリロイル基を2個以上有するものが好ましい。
なお、本明細書において、上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味し、上記「エポキシ(メタ)アクリレート」とは、エポキシ化合物中の全てのエポキシ基を(メタ)アクリル酸と反応させた化合物のことを表す。
Examples of the other (meth) acrylic compound include (meth) acrylic acid ester compounds, epoxy (meth) acrylates, urethane (meth) acrylates, and the like. Of these, epoxy (meth) acrylate is preferable. Further, the (meth) acrylic compound preferably has two or more (meth) acryloyl groups in one molecule from the viewpoint of reactivity.
In the present specification, the above-mentioned "(meth) acrylate" means acrylate or methacrylate, and the above-mentioned "epoxy (meth) acrylate" means that all epoxy groups in the epoxy compound are referred to as (meth) acrylic acid. Represents a reacted compound.
上記(メタ)アクリル酸エステル化合物のうち単官能のものとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル2-ヒドロキシプロピルフタレート、2-(メタ)アクリロイロキシエチルホスフェート、グリシジル(メタ)アクリレート等が挙げられる。 Among the above (meth) acrylic acid ester compounds, monofunctional ones include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate. , T-Butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, iso Myristyl (meth) acrylate, stearyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, cyclohexyl ( Meta) acrylate, isobornyl (meth) acrylate, bicyclopentenyl (meth) acrylate, benzyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-butoxyethyl (meth) acrylate, 2-Phenoxyethyl (meth) acrylate, methoxyethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, ethylcarbi Thor (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, Iimide (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2-( Examples thereof include 2- (meth) acryloyloxyethyl 2-hydroxypropylphthalate, 2- (meth) acryloyloxyethyl phosphate, and glycidyl (meth) acrylate.
また、上記(メタ)アクリル酸エステル化合物のうち2官能のものとしては、例えば、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。 Among the above (meth) acrylic acid ester compounds, bifunctional ones include, for example, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexane. Diol Di (meth) acrylate, 1,9-nonane diol di (meth) acrylate, 1,10-decane diol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meta) acrylate, polyethylene glycol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) ) Acrylic, Polypropylene glycol di (meth) acrylate, Neopentyl glycol di (meth) acrylate, ethylene oxide-added bisphenol A di (meth) acrylate, propylene oxide-added bisphenol A di (meth) acrylate, ethylene oxide-added bisphenol F di (meth) acrylate , Dimethylol dicyclopentadienyldi (meth) acrylate, ethylene oxide-modified isocyanurate di (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, carbonatediol di (meth) acrylate, Examples thereof include polyether diol di (meth) acrylate, polyester diol di (meth) acrylate, polycaprolactone diol di (meth) acrylate, and polybutadiene diol di (meth) acrylate.
また、上記(メタ)アクリル酸エステル化合物のうち3官能以上のものとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 Among the above (meth) acrylic acid ester compounds, those having trifunctionality or higher include, for example, trimetyl propanetri (meth) acrylate, ethylene oxide-added trimethyl propanetri (meth) acrylate, and propylene oxide-added trimethyl propanetri (meth) acrylate. Meta) acrylate, caprolactone-modified trimethylol propantri (meth) acrylate, ethylene oxide-added isocyanuric acid tri (meth) acrylate, glycerin tri (meth) acrylate, propylene oxide-added glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, Examples thereof include tris (meth) acryloyloxyethyl phosphate, ditrimethylolpropantetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol hexa (meth) acrylate.
上記エポキシ(メタ)アクリレートとしては、例えば、エポキシ化合物と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応させることにより得られるもの等が挙げられる。 Examples of the epoxy (meth) acrylate include those obtained by reacting an epoxy compound and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method.
上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物としては、上述したその他のエポキシ化合物と同様のものを用いることができる。 As the epoxy compound used as a raw material for synthesizing the epoxy (meth) acrylate, the same epoxy compound as the other epoxy compounds described above can be used.
上記エポキシ(メタ)アクリレートのうち市販されているものとしては、例えば、ダイセル・オルネクス社製のエポキシ(メタ)アクリレート、新中村化学工業社製のエポキシ(メタ)アクリレート、共栄社化学社製のエポキシ(メタ)アクリレート、ナガセケムテックス社製のエポキシ(メタ)アクリレート等が挙げられる。
上記ダイセル・オルネクス社製のエポキシ(メタ)アクリレートとしては、例えば、EBECRYL860、EBECRYL3200、EBECRYL3201、EBECRYL3412、EBECRYL3600、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL3708、EBECRYL3800、EBECRYL6040、EBECRYL RDX63182、KRM8076等が挙げられる。
上記新中村化学工業社製のエポキシ(メタ)アクリレートとしては、例えば、EA-1010、EA-1020、EA-5323、EA-5520、EA-CHD、EMA-1020等が挙げられる。
上記共栄社化学社製のエポキシ(メタ)アクリレートとしては、例えば、エポキシエステルM-600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、エポキシエステル400EA等が挙げられる。
上記ナガセケムテックス社製のエポキシ(メタ)アクリレートとしては、例えば、デナコールアクリレートDA-141、デナコールアクリレートDA-314、デナコールアクリレートDA-911等が挙げられる。
Among the above-mentioned epoxy (meth) acrylates, commercially available ones include, for example, epoxy (meth) acrylate manufactured by Daicel Ornex, epoxy (meth) acrylate manufactured by Shin-Nakamura Chemical Industry Co., Ltd., and epoxy (meth) acrylate manufactured by Kyoei Co., Ltd. Examples thereof include meta) acrylate and epoxy (meth) acrylate manufactured by Nagase ChemteX Corporation.
The epoxy (meth) acrylate manufactured by the Daicel Orunekusu Inc., for example, EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3703, EBECRYL3708, EBECRYL3800, EBECRYL6040, EBECRYL RDX63182, KRM8076, and the like.
Examples of the epoxy (meth) acrylate manufactured by Shin-Nakamura Chemical Industry Co., Ltd. include EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, and EMA-1020.
Examples of the epoxy (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd. include epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, epoxy ester 200PA, epoxy ester 80MFA, epoxy ester 3002M, epoxy ester 3002A, and epoxy ester 1600A. Examples thereof include epoxy ester 3000M, epoxy ester 3000A, epoxy ester 200EA, and epoxy ester 400EA.
Examples of the epoxy (meth) acrylate manufactured by Nagase ChemteX include Denacol acrylate DA-141, Denacol acrylate DA-314, and Denacol acrylate DA-911.
上記ウレタン(メタ)アクリレートは、例えば、イソシアネート化合物に対して水酸基を有する(メタ)アクリル酸誘導体を、触媒量のスズ系化合物存在下で反応させることによって得ることができる。 The urethane (meth) acrylate can be obtained, for example, by reacting a (meth) acrylic acid derivative having a hydroxyl group with respect to an isocyanate compound in the presence of a catalytic amount of a tin compound.
上記イソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシリレンジイソシアネート、1,6,11-ウンデカントリイソシアネート等が挙げられる。 Examples of the isocyanate compound include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4,4'-diisocyanate (MDI), and hydrogenation. MDI, Polymeric MDI, 1,5-naphthalenediocyanate, Norbornan diisocyanate, Trizine diisocyanate, Xylylene diisocyanate (XDI), Hydrogenated XDI, Lysine diisocyanate, Triphenylmethane triisocyanate, Tris (isocyanatephenyl) thiophosphate, Tetramethylxylylene diisocyanate Examples thereof include isocyanates and 1,6,11-undecantry isocyanates.
また、上記イソシアネート化合物としては、ポリオールと過剰のイソシアネート化合物との反応により得られる鎖延長されたイソシアネート化合物も使用することができる。
上記ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等が挙げられる。
Further, as the isocyanate compound, a chain-extended isocyanate compound obtained by reacting a polyol with an excess isocyanate compound can also be used.
Examples of the polyol include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, and polycaprolactone diol.
上記水酸基を有する(メタ)アクリル酸誘導体としては、例えば、ヒドロキシアルキルモノ(メタ)アクリレート、二価のアルコールのモノ(メタ)アクリレート、三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げられる。
上記ヒドロキシアルキルモノ(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。
上記二価のアルコールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等が挙げられる。
上記三価のアルコールとしては、例えば、トリメチロールエタン、トリメチロールプロパン、グリセリン等が挙げられる。
上記エポキシ(メタ)アクリレートとしては、例えば、ビスフェノールA型エポキシアクリレート等が挙げられる。
Examples of the (meth) acrylic acid derivative having a hydroxyl group include hydroxyalkyl mono (meth) acrylate, mono (meth) acrylate of dihydric alcohol, mono (meth) acrylate of trihydric alcohol, and di (meth) acrylate. , Epoxy (meth) acrylate and the like.
Examples of the hydroxyalkyl mono (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. Can be mentioned.
Examples of the divalent alcohol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, polyethylene glycol and the like.
Examples of the trihydric alcohol include trimethylolethane, trimethylolpropane, and glycerin.
Examples of the epoxy (meth) acrylate include bisphenol A type epoxy acrylate and the like.
上記ウレタン(メタ)アクリレートのうち市販されているものとしては、例えば、東亞合成社製のウレタン(メタ)アクリレート、ダイセル・オルネクス社製のウレタン(メタ)アクリレート、根上工業社製のウレタン(メタ)アクリレート、新中村化学工業社製のウレタン(メタ)アクリレート、共栄社化学社製のウレタン(メタ)アクリレート等が挙げられる。
上記東亞合成社製のウレタン(メタ)アクリレートとしては、例えば、M-1100、M-1200、M-1210、M-1600等が挙げられる。
上記ダイセル・オルネクス社製のウレタン(メタ)アクリレートとしては、例えば、EBECRYL210、EBECRYL220、EBECRYL230、EBECRYL270、EBECRYL1290、EBECRYL2220、EBECRYL4827、EBECRYL4842、EBECRYL4858、EBECRYL5129、EBECRYL6700、EBECRYL8402、EBECRYL8803、EBECRYL8804、EBECRYL8807、EBECRYL9260等が挙げられる。
上記根上工業社製のウレタン(メタ)アクリレートとしては、例えば、アートレジンUN-330、アートレジンSH-500B、アートレジンUN-1200TPK、アートレジンUN-1255、アートレジンUN-3320HB、アートレジンUN-7100、アートレジンUN-9000A、アートレジンUN-9000H等が挙げられる。
上記新中村化学工業社製のウレタン(メタ)アクリレートとしては、例えば、U-2HA、U-2PHA、U-3HA、U-4HA、U-6H、U-6HA、U-6LPA、U-10H、U-15HA、U-108、U-108A、U-122A、U-122P、U-324A、U-340A、U-340P、U-1084A、U-2061BA、UA-340P、UA-4000、UA-4100、UA-4200、UA-4400、UA-5201P、UA-7100、UA-7200、UA-W2A等が挙げられる。
上記共栄社化学社製のウレタン(メタ)アクリレートとしては、例えば、AH-600、AI-600、AT-600、UA-101I、UA-101T、UA-306H、UA-306I、UA-306T等が挙げられる。
Among the above urethane (meth) acrylates, commercially available ones include, for example, urethane (meth) acrylate manufactured by Toa Synthetic Co., Ltd., urethane (meth) acrylate manufactured by Daicel Ornex, and urethane (meth) manufactured by Negami Kogyo Co., Ltd. Examples thereof include acrylate, urethane (meth) acrylate manufactured by Shin-Nakamura Chemical Industry Co., Ltd., and urethane (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd.
Examples of the urethane (meth) acrylate manufactured by Toagosei Co., Ltd. include M-1100, M-1200, M-1210, and M-1600.
The urethane (meth) acrylate manufactured by the Daicel Orunekusu Inc., for example, EBECRYL210, EBECRYL220, EBECRYL230, EBECRYL270, EBECRYL1290, EBECRYL2220, EBECRYL4827, EBECRYL4842, EBECRYL4858, EBECRYL5129, EBECRYL6700, EBECRYL8402, EBECRYL8803, EBECRYL8804, EBECRYL8807, EBECRYL9260 etc. Can be mentioned.
Examples of the urethane (meth) acrylate manufactured by Negami Kogyo Co., Ltd. include Art Resin UN-330, Art Resin SH-500B, Art Resin UN-1200TPK, Art Resin UN-1255, Art Resin UN-3320HB, and Art Resin UN-. 7100, Art Resin UN-9000A, Art Resin UN-9000H and the like can be mentioned.
Examples of the urethane (meth) acrylate manufactured by Shin-Nakamura Chemical Industry Co., Ltd. include U-2HA, U-2PHA, U-3HA, U-4HA, U-6H, U-6HA, U-6LPA, U-10H, and the like. U-15HA, U-108, U-108A, U-122A, U-122P, U-324A, U-340A, U-340P, U-1084A, U-2061BA, UA-340P, UA-4000, UA- Examples thereof include 4100, UA-4200, UA-4400, UA-5201P, UA-7100, UA-7200, and UA-W2A.
Examples of the urethane (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd. include AH-600, AI-600, AT-600, UA-101I, UA-101T, UA-306H, UA-306I, and UA-306T. Be done.
上記その他の(メタ)アクリル化合物は、液晶汚染を抑制する観点から、-OH基、-NH-基、-NH基等の水素結合性のユニットを有するものが好ましい。 The other (meth) acrylic compound preferably has a hydrogen-bonding unit such as an -OH group, an -NH- group, or an -NH 2 group from the viewpoint of suppressing liquid crystal contamination.
本発明の硬化性樹脂組成物は、重合開始剤及び/又は熱硬化剤を含有する。
上記重合開始剤としては、例えば、ラジカル重合開始剤やカチオン重合開始剤等が挙げられる。
なお、上記「重合開始剤及び/又は熱硬化剤」は、重合開始剤と熱硬化剤とのいずれか一方又は両方を意味する。
The curable resin composition of the present invention contains a polymerization initiator and / or a thermosetting agent.
Examples of the polymerization initiator include radical polymerization initiators and cationic polymerization initiators.
The above-mentioned "polymerization initiator and / or thermosetting agent" means either one or both of the polymerization initiator and the thermosetting agent.
上記ラジカル重合開始剤としては、光照射によりラジカルを発生する光ラジカル重合開始剤、加熱によりラジカルを発生する熱ラジカル重合開始剤等が挙げられる。 Examples of the radical polymerization initiator include a photoradical polymerization initiator that generates radicals by light irradiation, a thermal radical polymerization initiator that generates radicals by heating, and the like.
上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン化合物、アセトフェノン化合物、アシルフォスフィンオキサイド化合物、チタノセン化合物、オキシムエステル化合物、ベンゾインエーテル化合物、チオキサントン化合物等が挙げられる。
上記光ラジカル重合開始剤としては、具体的には例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタノン、1,2-(ジメチルアミノ)-2-((4-メチルフェニル)メチル)-1-(4-(4-モルホリニル)フェニル)-1-ブタノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、1-(4-(2-ヒドロキシエトキシ)-フェニル)-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、1-(4-(フェニルチオ)フェニル)-1,2-オクタンジオン2-(O-ベンゾイルオキシム)、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等が挙げられる。
Examples of the photoradical polymerization initiator include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanosen compounds, oxime ester compounds, benzoin ether compounds, thioxanthone compounds and the like.
Specific examples of the photoradical polymerization initiator include 1-hydroxycyclohexylphenyl ketone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone, and 1,2- (dimethylamino). -2-((4-Methylphenyl) methyl) -1- (4- (4-morpholinyl) phenyl) -1-butanone, 2,2-dimethoxy-1,2-diphenylethane-1-one, bis (2) , 4,6-trimethylbenzoyl) Phenylphosphenyl oxide, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1-one, 1- (4- (2-hydroxyethoxy) -phenyl)- 2-Hydroxy-2-methyl-1-propane-1-one, 1- (4- (phenylthio) phenyl) -1,2-octanedione 2- (O-benzoyloxime), 2,4,6-trimethylbenzoyl Examples thereof include diphenylphosphine oxide, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether and the like.
上記熱ラジカル重合開始剤としては、例えば、アゾ化合物、有機過酸化物等からなるものが挙げられる。なかでも、高分子アゾ化合物からなる開始剤(以下、「高分子アゾ開始剤」ともいう)が好ましい。
なお、本明細書において高分子アゾ化合物とは、アゾ基を有し、熱によって(メタ)アクリロイル基を硬化させることができるラジカルを生成する、数平均分子量が300以上の化合物を意味する。
Examples of the thermal radical polymerization initiator include those made of an azo compound, an organic peroxide and the like. Of these, an initiator composed of a polymer azo compound (hereinafter, also referred to as “polymer azo initiator”) is preferable.
In the present specification, the polymer azo compound means a compound having an azo group and having a number average molecular weight of 300 or more, which generates a radical capable of curing the (meth) acryloyl group by heat.
上記高分子アゾ化合物の数平均分子量の好ましい下限は1000、好ましい上限は30万である。上記高分子アゾ化合物の数平均分子量がこの範囲であることにより、液晶汚染を抑制しつつ、硬化性樹脂と容易に混合することができる。上記高分子アゾ化合物の数平均分子量のより好ましい下限は5000、より好ましい上限は10万であり、更に好ましい下限は1万、更に好ましい上限は9万である。 The preferable lower limit of the number average molecular weight of the polymer azo compound is 1000, and the preferable upper limit is 300,000. When the number average molecular weight of the polymer azo compound is in this range, it can be easily mixed with the curable resin while suppressing liquid crystal contamination. The more preferable lower limit of the number average molecular weight of the polymer azo compound is 5000, the more preferable upper limit is 100,000, the further preferable lower limit is 10,000, and the further preferable upper limit is 90,000.
上記高分子アゾ化合物としては、例えば、アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有するものが挙げられる。
上記アゾ基を介してポリアルキレンオキサイド等のユニットが複数結合した構造を有する高分子アゾ化合物としては、ポリエチレンオキサイド構造を有するものが好ましい。
上記高分子アゾ化合物としては、具体的には例えば、4,4’-アゾビス(4-シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4’-アゾビス(4-シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられる。
上記高分子アゾ化合物のうち市販されているものとしては、例えば、VPE-0201、VPE-0401、VPE-0601、VPS-0501、VPS-1001(いずれも富士フイルム和光純薬社製)等が挙げられる。
また、高分子ではないアゾ化合物として市販されているものとしては、例えば、V-65、V-501(いずれも富士フイルム和光純薬社製)等が挙げられる。
Examples of the polymer azo compound include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
As the polymer azo compound having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group, those having a polyethylene oxide structure are preferable.
Specific examples of the polymer azo compound include a polycondensate of 4,4'-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4'-azobis (4-cyanopentanoic acid). And a polycondensate of polydimethylsiloxane having a terminal amino group and the like.
Examples of commercially available polymer azo compounds include VPE-0201, VPE-0401, VPE-0601, VPS-0501, and VPS-1001 (all manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). Be done.
Examples of commercially available azo compounds that are not polymers include V-65 and V-501 (both manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.).
上記有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。 Examples of the organic peroxide include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, peroxyesters, diacyl peroxides, peroxydicarbonates and the like.
上記カチオン重合開始剤としては、光カチオン重合開始剤が好適に用いられる。
上記光カチオン重合開始剤は、光照射によりプロトン酸又はルイス酸を発生するものであれば特に限定されず、イオン性光酸発生タイプのものであってもよいし、非イオン性光酸発生タイプであってもよい。
As the cationic polymerization initiator, a photocationic polymerization initiator is preferably used.
The photocationic polymerization initiator is not particularly limited as long as it generates protonic acid or Lewis acid by light irradiation, and may be an ionic photoacid generation type or a nonionic photoacid generation type. It may be.
上記光カチオン重合開始剤としては、例えば、芳香族ジアゾニウム塩、芳香族ハロニウム塩、芳香族スルホニウム塩等のオニウム塩類、鉄-アレン錯体、チタノセン錯体、アリールシラノール-アルミニウム錯体等の有機金属錯体類等が挙げられる。 Examples of the photocationic polymerization initiator include onium salts such as aromatic diazonium salt, aromatic halonium salt and aromatic sulfonium salt, and organic metal complexes such as iron-allene complex, titanosen complex and arylsilanol-aluminum complex. Can be mentioned.
上記光カチオン重合開始剤のうち市販されているものとしては、例えば、アデカオプトマーSP-150、アデカオプトマーSP-170(いずれもADEKA社製)等が挙げられる。 Examples of commercially available photocationic polymerization initiators include ADEKA OPTMER SP-150 and ADEKA OPTMER SP-170 (both manufactured by ADEKA).
上記重合開始剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.01重量部、好ましい上限が10重量部である。上記重合開始剤の含有量がこの範囲であることにより、得られる硬化性樹脂組成物を液晶表示素子用シール剤として用いた場合に液晶汚染を抑制しつつ、保存安定性や硬化性により優れるものとなる。上記重合開始剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は5重量部である。 The content of the polymerization initiator is preferably 0.01 part by weight and a preferable upper limit is 10 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the above-mentioned polymerization initiator is within this range, when the obtained curable resin composition is used as a sealant for a liquid crystal display element, it is excellent in storage stability and curability while suppressing liquid crystal contamination. It becomes. The more preferable lower limit of the content of the polymerization initiator is 0.1 parts by weight, and the more preferable upper limit is 5 parts by weight.
上記熱硬化剤としては、例えば、有機酸ヒドラジド、イミダゾール誘導体、アミン化合物、多価フェノール系化合物、酸無水物等が挙げられる。なかでも、固形の有機酸ヒドラジドが好適に用いられる。 Examples of the heat-curing agent include organic acid hydrazide, imidazole derivatives, amine compounds, polyhydric phenolic compounds, acid anhydrides and the like. Of these, solid organic acid hydrazide is preferably used.
上記固形の有機酸ヒドラジドとしては、例えば、1,3-ビス(ヒドラジノカルボエチル)-5-イソプロピルヒダントイン、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド、マロン酸ジヒドラジド等が挙げられる。
上記固形の有機酸ヒドラジドのうち市販されているものとしては、例えば、大塚化学社製の有機酸ヒドラジド、日本ファインケム社製の有機酸ヒドラジド、味の素ファインテクノ社製の有機酸ヒドラジド等が挙げられる。
上記大塚化学社製の有機酸ヒドラジドとしては、例えば、SDH、ADH等が挙げられる。
上記日本ファインケム社製の有機酸ヒドラジドとしては、例えば、MDH等が挙げられる。
上記味の素ファインテクノ社製の有機酸ヒドラジドとしては、例えば、アミキュアVDH、アミキュアVDH-J、アミキュアUDH等が挙げられる。
Examples of the solid organic acid hydrazide include 1,3-bis (hydrazinocarboethyl) -5-isopropylhydrandin, sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, and malonic acid dihydrazide.
Examples of commercially available solid organic acid hydrazides include organic acid hydrazides manufactured by Otsuka Chemical Co., Ltd., organic acid hydrazides manufactured by Japan Finechem Co., Ltd., and organic acid hydrazides manufactured by Ajinomoto Fine-Techno Co., Ltd.
Examples of the organic acid hydrazide manufactured by Otsuka Chemical Co., Ltd. include SDH and ADH.
Examples of the organic acid hydrazide manufactured by Japan Finechem Co., Ltd. include MDH and the like.
Examples of the organic acid hydrazide manufactured by Ajinomoto Fine-Techno Co., Ltd. include Amicure VDH, Amicure VDH-J, and Amicure UDH.
上記熱硬化剤の含有量は、硬化性樹脂全体100重量部に対して、好ましい下限が1重量部、好ましい上限が50重量部である。上記熱硬化剤の含有量がこの範囲であることにより、得られる硬化性樹脂組成物が優れた塗布性や保存安定性を維持したまま、硬化性により優れるものとなる。上記熱硬化剤の含有量のより好ましい上限は30重量部である。 The content of the thermosetting agent is preferably 1 part by weight and a preferable upper limit of 50 parts by weight with respect to 100 parts by weight of the entire curable resin. When the content of the thermosetting agent is in this range, the obtained curable resin composition becomes more excellent in curability while maintaining excellent coatability and storage stability. A more preferable upper limit of the content of the thermosetting agent is 30 parts by weight.
本発明の硬化性樹脂組成物は、粘度の向上、応力分散効果による接着性の更なる向上、線膨張率の改善、硬化物の透湿防止性の更なる向上等を目的として充填剤を含有することが好ましい。 The curable resin composition of the present invention contains a filler for the purpose of improving the viscosity, further improving the adhesiveness by the stress dispersion effect, improving the coefficient of linear expansion, further improving the moisture permeation prevention property of the cured product, and the like. It is preferable to do so.
上記充填剤としては、無機充填剤や有機充填剤を用いることができる。
上記無機充填剤としては、例えば、シリカ、タルク、ガラスビーズ、石綿、石膏、珪藻土、スメクタイト、ベントナイト、モンモリロナイト、セリサイト、活性白土、アルミナ、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、水酸化アルミニウム、窒化アルミニウム、窒化珪素、硫酸バリウム、珪酸カルシウム等が挙げられる。
上記有機充填剤としては、例えば、ポリエステル微粒子、ポリウレタン微粒子、ビニル重合体微粒子、アクリル重合体微粒子等が挙げられる。
As the filler, an inorganic filler or an organic filler can be used.
Examples of the inorganic filler include silica, talc, glass beads, asbestos, gypsum, diatomaceous earth, smectite, bentonite, montmorillonite, sericite, active white clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide and titanium oxide. , Calcium carbonate, magnesium carbonate, magnesium hydroxide, aluminum hydroxide, aluminum nitride, silicon nitride, barium sulfate, calcium silicate and the like.
Examples of the organic filler include polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, and the like.
本発明の硬化性樹脂組成物100重量部中における上記充填剤の含有量の好ましい下限は10重量部、好ましい上限は70重量部である。上記充填剤の含有量がこの範囲であることにより、塗布性等の悪化を抑制しつつ、接着性の向上等の効果をより発揮することができる。上記充填剤の含有量のより好ましい下限は20重量部、より好ましい上限は60重量部である。 The preferable lower limit of the content of the filler in 100 parts by weight of the curable resin composition of the present invention is 10 parts by weight, and the preferable upper limit is 70 parts by weight. When the content of the filler is in this range, it is possible to further exert the effect of improving the adhesiveness while suppressing the deterioration of the coatability and the like. The more preferable lower limit of the content of the filler is 20 parts by weight, and the more preferable upper limit is 60 parts by weight.
本発明の硬化性樹脂組成物は、接着性を更に向上させることを目的として、シランカップリング剤を含有することが好ましい。上記シランカップリング剤は、主に硬化性樹脂組成物と基板等とを良好に接着するための接着助剤としての役割を有する。
上記シランカップリング剤としては、例えば、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン等が好適に用いられる。
The curable resin composition of the present invention preferably contains a silane coupling agent for the purpose of further improving the adhesiveness. The silane coupling agent mainly has a role as an adhesive auxiliary for satisfactorily adhering the curable resin composition to a substrate or the like.
As the silane coupling agent, for example, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane and the like are preferably used.
本発明の硬化性樹脂組成物100重量部中における上記シランカップリング剤の含有量の好ましい下限は0.1重量部、好ましい上限は10重量部である。上記シランカップリング剤の含有量がこの範囲であることにより、得られる硬化性樹脂組成物を液晶表示素子用シール剤として用いた場合の液晶汚染の発生を抑制しつつ、接着性を向上させる効果をより発揮することができる。上記シランカップリング剤の含有量のより好ましい下限は0.3重量部、より好ましい上限は5重量部である。 The preferable lower limit of the content of the silane coupling agent in 100 parts by weight of the curable resin composition of the present invention is 0.1 parts by weight, and the preferable upper limit is 10 parts by weight. When the content of the silane coupling agent is within this range, the effect of improving the adhesiveness while suppressing the occurrence of liquid crystal contamination when the obtained curable resin composition is used as a sealant for a liquid crystal display element. Can be demonstrated more. The more preferable lower limit of the content of the silane coupling agent is 0.3 parts by weight, and the more preferable upper limit is 5 parts by weight.
本発明の硬化性樹脂組成物は、遮光剤を含有してもよい。上記遮光剤を含有することにより、本発明の硬化性樹脂組成物は、遮光シール剤として好適に用いることができる。 The curable resin composition of the present invention may contain a light-shielding agent. By containing the above-mentioned light-shielding agent, the curable resin composition of the present invention can be suitably used as a light-shielding sealant.
上記遮光剤としては、例えば、酸化鉄、チタンブラック、アニリンブラック、シアニンブラック、フラーレン、カーボンブラック、樹脂被覆型カーボンブラック等が挙げられる。なかでも、チタンブラックが好ましい。 Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, resin-coated carbon black and the like. Of these, titanium black is preferable.
上記チタンブラックは、波長300nm以上800nm以下の光に対する平均透過率と比較して、紫外線領域付近、特に波長370nm以上450nm以下の光に対する透過率が高くなる物質である。即ち、上記チタンブラックは、可視光領域の波長の光を充分に遮蔽することで本発明の硬化性樹脂組成物に遮光性を付与する一方、紫外線領域付近の波長の光は透過させる性質を有する遮光剤である。本発明の硬化性樹脂組成物に含有される遮光剤としては、絶縁性の高い物質が好ましく、絶縁性の高い遮光剤としてもチタンブラックが好適である。 The titanium black is a substance having a higher transmittance for light in the ultraviolet region, particularly for light having a wavelength of 370 nm or more and 450 nm or less, as compared with the average transmittance for light having a wavelength of 300 nm or more and 800 nm or less. That is, the titanium black has a property of imparting light-shielding property to the curable resin composition of the present invention by sufficiently shielding light having a wavelength in the visible light region, while transmitting light having a wavelength near the ultraviolet region. It is a light-shielding agent. As the light-shielding agent contained in the curable resin composition of the present invention, a substance having high insulating properties is preferable, and titanium black is also preferable as the light-shielding agent having high insulating properties.
上記チタンブラックは、表面処理されていないものでも充分な効果を発揮するが、表面がカップリング剤等の有機成分で処理されているものや、酸化ケイ素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等の無機成分で被覆されているもの等、表面処理されたチタンブラックを用いることもできる。なかでも、有機成分で処理されているものは、より絶縁性を向上できる点で好ましい。
また、遮光剤として上記チタンブラックを含有する本発明の硬化性樹脂組成物を液晶表示素子用シール剤として用いて製造した液晶表示素子は、充分な遮光性を有するため、光の漏れ出しがなく高いコントラストを有し、優れた画像表示品質を有する液晶表示素子を実現することができる。
The above titanium black exerts a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, or oxidation. Surface-treated titanium black, such as those coated with an inorganic component such as zirconium or magnesium oxide, can also be used. Among them, those treated with an organic component are preferable in that the insulating property can be further improved.
Further, the liquid crystal display element manufactured by using the curable resin composition of the present invention containing the titanium black as a light-shielding agent as a sealant for a liquid crystal display element has sufficient light-shielding properties, so that light does not leak out. It is possible to realize a liquid crystal display element having high contrast and excellent image display quality.
上記チタンブラックのうち市販されているものとしては、例えば、三菱マテリアル社製のチタンブラック、赤穂化成社製のチタンブラック等が挙げられる。
上記三菱マテリアル社製のチタンブラックとしては、例えば、12S、13M、13M-C、13R-N、14M-C等が挙げられる。
上記赤穂化成社製のチタンブラックとしては、例えば、ティラックD等が挙げられる。
Examples of commercially available titanium blacks include titanium black manufactured by Mitsubishi Materials, titanium black manufactured by Ako Kasei Co., Ltd., and the like.
Examples of the titanium black manufactured by Mitsubishi Materials Corporation include 12S, 13M, 13M-C, 13RN, 14MC and the like.
Examples of the titanium black manufactured by Ako Kasei Co., Ltd. include Tilak D and the like.
上記チタンブラックの比表面積の好ましい下限は13m/g、好ましい上限は30m/gであり、より好ましい下限は15m/g、より好ましい上限は25m/gである。
また、上記チタンブラックの体積抵抗の好ましい下限は0.5Ω・cm、好ましい上限は3Ω・cmであり、より好ましい下限は1Ω・cm、より好ましい上限は2.5Ω・cmである。
The preferable lower limit of the specific surface area of the titanium black is 13 m 2 / g, the preferable upper limit is 30 m 2 / g, the more preferable lower limit is 15 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
The preferable lower limit of the volume resistance of the titanium black is 0.5 Ω · cm, the preferred upper limit is 3 Ω · cm, the more preferable lower limit is 1 Ω · cm, and the more preferable upper limit is 2.5 Ω · cm.
上記遮光剤の一次粒子径の好ましい下限は1nm、好ましい上限は5μmである。上記遮光剤の一次粒子径がこの範囲であることにより、得られる硬化性樹脂組成物の粘度やチクソトロピーが大きく増大することなく、塗布性により優れるものとなる。上記遮光剤の一次粒子径のより好ましい下限は5nm、より好ましい上限は200nm、更に好ましい下限は10nm、更に好ましい上限は100nmである。
なお、上記遮光剤の一次粒子径は、粒度分布計(例えば、PARTICLE SIZING SYSTEMS社製、「NICOMP 380ZLS」)を用いて測定することができる。
The preferable lower limit of the primary particle diameter of the light-shielding agent is 1 nm, and the preferable upper limit is 5 μm. When the primary particle size of the light-shielding agent is in this range, the viscosity and thixotropy of the obtained curable resin composition are not significantly increased, and the coatability is improved. The more preferable lower limit of the primary particle diameter of the light shielding agent is 5 nm, the more preferable upper limit is 200 nm, the further preferable lower limit is 10 nm, and the further preferable upper limit is 100 nm.
The primary particle size of the light-shielding agent can be measured using a particle size distribution meter (for example, "NICOMP 380ZLS" manufactured by PARTICLE SIZING SYSTEMS).
本発明の硬化性樹脂組成物100重量部中における上記遮光剤の含有量の好ましい下限は5重量部、好ましい上限は80重量部である。上記遮光剤の含有量がこの範囲であることにより、得られる硬化性樹脂組成物の接着性、硬化後の強度、及び、描画性を維持しつつ、遮光性を向上させる効果をより発揮できる。上記遮光剤の含有量のより好ましい下限は10重量部、より好ましい上限は70重量部であり、更に好ましい下限は30重量部、更に好ましい上限は60重量部である。 The preferable lower limit of the content of the light-shielding agent in 100 parts by weight of the curable resin composition of the present invention is 5 parts by weight, and the preferable upper limit is 80 parts by weight. When the content of the light-shielding agent is within this range, the effect of improving the light-shielding property can be further exhibited while maintaining the adhesiveness, the strength after curing, and the drawability of the obtained curable resin composition. The more preferable lower limit of the content of the light-shielding agent is 10 parts by weight, the more preferable upper limit is 70 parts by weight, the more preferable lower limit is 30 parts by weight, and the further preferable upper limit is 60 parts by weight.
本発明の硬化性樹脂組成物は、更に、必要に応じて、応力緩和剤、反応性希釈剤、揺変剤、スペーサー、硬化促進剤、消泡剤、レベリング剤、重合禁止剤等の添加剤を含有してもよい。 The curable resin composition of the present invention further comprises additives such as stress relaxation agents, reactive diluents, rocking agents, spacers, curing accelerators, defoamers, leveling agents, and polymerization inhibitors, if necessary. May be contained.
本発明の硬化性樹脂組成物を製造する方法としては、例えば、混合機を用いて、硬化性樹脂と、重合開始剤及び/又は熱硬化剤と、必要に応じて添加するシランカップリング剤等の添加剤とを混合する方法等が挙げられる。
上記混合機としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等が挙げられる。
As a method for producing the curable resin composition of the present invention, for example, a curable resin, a polymerization initiator and / or a thermosetting agent, a silane coupling agent to be added as needed, and the like using a mixer are used. Examples thereof include a method of mixing with the additive of.
Examples of the mixer include a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and three rolls.
本発明の硬化性樹脂組成物は、接着剤として用いることができ、特に液晶表示素子用シール剤として好適に用いることができる。本発明の硬化性樹脂組成物を用いてなる液晶表示素子用シール剤もまた、本発明の1つである。
また、本発明の液晶表示素子用シール剤に、導電性微粒子を配合することにより、上下導通材料を製造することができる。本発明の液晶表示素子用シール剤と導電性微粒子とを含有する上下導通材料もまた、本発明の1つである。
The curable resin composition of the present invention can be used as an adhesive, and can be particularly preferably used as a sealant for a liquid crystal display element. A sealant for a liquid crystal display element using the curable resin composition of the present invention is also one of the present inventions.
Further, by blending the conductive fine particles with the sealant for a liquid crystal display element of the present invention, a vertically conductive material can be produced. A vertically conductive material containing the sealant for a liquid crystal display element of the present invention and conductive fine particles is also one of the present inventions.
上記導電性微粒子としては、金属ボール、樹脂微粒子の表面に導電金属層を形成したもの等を用いることができる。なかでも、樹脂微粒子の表面に導電金属層を形成したものは、樹脂微粒子の優れた弾性により、透明基板等を損傷することなく導電接続が可能であることから好適である。 As the conductive fine particles, metal balls, those having a conductive metal layer formed on the surface of the resin fine particles, and the like can be used. Among them, the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the excellent elasticity of the resin fine particles enables conductive connection without damaging the transparent substrate or the like.
本発明の液晶表示素子用シール剤の硬化物、又は、本発明の上下導通材料の硬化物を有する液晶表示素子もまた、本発明の1つである。 A cured product of the sealant for a liquid crystal display element of the present invention or a cured product of the vertically conductive material of the present invention is also one of the present inventions.
本発明の液晶表示素子用シール剤は、液晶滴下工法による液晶表示素子の製造に好適に用いることができる。
本発明の液晶表示素子用シール剤を用いて本発明の液晶表示素子を製造する方法としては、液晶滴下工法が好適に用いられ、具体的には例えば、以下の各工程を有する方法等が挙げられる。
まず、ITO薄膜等の電極を有する2枚の透明基板の一方に、本発明の液晶表示素子用シール剤をスクリーン印刷、ディスペンサー塗布等により塗布して枠状のシールパターンを形成する工程を行う。次いで、液晶の微小滴をシールパターンの枠内全面に滴下塗布し、真空下で他方の透明基板を重ね合わせる工程を行う。その後、シールパターン部分に紫外線等の光を照射してシール剤を仮硬化させる工程、及び、仮硬化させたシール剤を加熱して本硬化させる工程を行う方法により、液晶表示素子を得ることができる。
The sealant for a liquid crystal display element of the present invention can be suitably used for manufacturing a liquid crystal display element by a liquid crystal dropping method.
As a method for manufacturing the liquid crystal display element of the present invention using the sealant for the liquid crystal display element of the present invention, the liquid crystal dropping method is preferably used, and specific examples thereof include a method having the following steps. Be done.
First, a step of applying the sealant for a liquid crystal display element of the present invention to one of two transparent substrates having electrodes such as an ITO thin film by screen printing, dispenser application, or the like to form a frame-shaped seal pattern is performed. Next, a step of dropping and applying fine droplets of liquid crystal on the entire surface of the frame of the seal pattern and superimposing the other transparent substrate under vacuum is performed. After that, the liquid crystal display element can be obtained by a method of irradiating the seal pattern portion with light such as ultraviolet rays to temporarily cure the sealant and a step of heating the temporarily cured sealant to perform main curing. it can.
本発明によれば、配向膜に対する接着性と透湿防止性との両方に優れる硬化性樹脂組成物を提供することができる。また、本発明によれば、該硬化性樹脂組成物を用いてなる液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子を提供することができる。 According to the present invention, it is possible to provide a curable resin composition having both excellent adhesiveness to an alignment film and moisture permeation prevention property. Further, according to the present invention, it is possible to provide a sealant for a liquid crystal display element, a vertical conductive material, and a liquid crystal display element using the curable resin composition.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
(硬化性樹脂Aの作製)
反応フラスコに、1,6-ヘキサンジオール118重量部と、無水フタル酸296重量部と、重合禁止剤としてハイドロキノン0.1重量部とを加え、マントルヒーターを用いて90℃で5時間撹拌した。得られた反応物にビスフェノールAジグリシジルエーテル760重量部を加え、更にトリフェニルフォスフィンを0.5重量部加え、110℃で5時間撹拌した。その後、得られた反応物にアクリル酸144重量部を加え、110℃で5時間撹拌することにより、硬化性樹脂Aを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Aの構造解析を行った。その結果、硬化性樹脂Aは、式(1)における、mが2、Rが1,6-ヘキサンジオール由来の構造、Rが無水フタル酸由来の構造、Rが式(2-2)で表される基(Rは水素原子)、nが0、EpがビスフェノールAジグリシジルエーテル由来の構造である化合物であることを確認した。
(Preparation of curable resin A)
To a reaction flask, 118 parts by weight of 1,6-hexanediol, 296 parts by weight of phthalic anhydride, and 0.1 parts by weight of hydroquinone as a polymerization inhibitor were added, and the mixture was stirred at 90 ° C. for 5 hours using a mantle heater. 760 parts by weight of bisphenol A diglycidyl ether was added to the obtained reaction product, 0.5 part by weight of triphenylphosphine was further added, and the mixture was stirred at 110 ° C. for 5 hours. Then, 144 parts by weight of acrylic acid was added to the obtained reaction product, and the mixture was stirred at 110 ° C. for 5 hours to obtain a curable resin A.
The structure of the curable resin A was analyzed by 1 H-NMR and 13 C-NMR. As a result, in the curable resin A, in the formula (1), m is 2, R 1 is a structure derived from 1,6-hexanediol, R 2 is a structure derived from phthalic anhydride, and R 3 is a formula (2-2). ) group represented by (R 4 is a hydrogen atom), n is 0, Ep was confirmed to be the compound is a structure derived from bisphenol a diglycidyl ether.
(硬化性樹脂Bの作製)
1,6-ヘキサンジオール118重量部を1,16-ヘキサデカンジオール258重量部に変更したこと以外は、上記「(硬化性樹脂Aの作製)」と同様にして硬化性樹脂Bを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Bの構造解析を行った。その結果、硬化性樹脂Bは、式(1)における、mが2、Rが1,16-ヘキサデカンジオール由来の構造、Rが無水フタル酸由来の構造、Rが式(2-2)で表される基(Rは水素原子)、nが0、EpがビスフェノールAジグリシジルエーテル由来の構造である化合物であることを確認した。
(Preparation of curable resin B)
A curable resin B was obtained in the same manner as in the above "(Preparation of curable resin A)" except that 118 parts by weight of 1,6-hexanediol was changed to 258 parts by weight of 1,16-hexadecanediol.
The structure of the curable resin B was analyzed by 1 H-NMR and 13 C-NMR. As a result, in the curable resin B, in the formula (1), m is 2, R 1 is a structure derived from 1,16-hexadecanediol, R 2 is a structure derived from phthalic anhydride, and R 3 is a formula (2-2). ) group represented by (R 4 is a hydrogen atom), n is 0, Ep was confirmed to be the compound is a structure derived from bisphenol a diglycidyl ether.
(硬化性樹脂Cの作製)
1,6-ヘキサンジオール118重量部をビスフェノールA234重量部に変更し、ビスフェノールAジグリシジルエーテル760重量部をジシクロペンタジエンジグリシジルエーテル536重量部に変更したこと以外は、上記「(硬化性樹脂Aの作製)」と同様にして硬化性樹脂Cを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Cの構造解析を行った。その結果、硬化性樹脂Cは、式(1)における、mが2、RがビスフェノールA由来の構造、Rが無水フタル酸由来の構造、Rが式(2-2)で表される基(Rは水素原子)、nが0、Epがジシクロペンタジエンジグリシジルエーテル由来の構造である化合物であることを確認した。
(Preparation of curable resin C)
Except that 118 parts by weight of 1,6-hexanediol was changed to 234 parts by weight of bisphenol A and 760 parts by weight of bisphenol A diglycidyl ether was changed to 536 parts by weight of dicyclopentadiene diglycidyl ether, the above "(curable resin A) was changed. The curable resin C was obtained in the same manner as in the above procedure.
The structure of the curable resin C was analyzed by 1 H-NMR and 13 C-NMR. As a result, the curable resin C is represented by the formula (1), in which m is 2, R 1 is a structure derived from bisphenol A, R 2 is a structure derived from phthalic anhydride, and R 3 is a formula (2-2). that group (R 4 is a hydrogen atom), n is 0, Ep was confirmed to be the compound is a structure derived from dicyclopentadiene diglycidyl ether.
(硬化性樹脂Dの作製)
ビスフェノールAジグリシジルエーテル760重量部をビスフェノールFジグリシジルエーテル720重量部に変更したこと以外は、上記「(硬化性樹脂Aの作製)」と同様にして硬化性樹脂Dを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Dの構造解析を行った。その結果、硬化性樹脂Dは、式(1)における、mが2、Rが1,6-ヘキサンジオール由来の構造、Rが無水フタル酸由来の構造、Rが式(2-2)で表される基(Rは水素原子)、nが0、EpがビスフェノールFジグリシジルエーテル由来の構造である化合物であることを確認した。
(Preparation of curable resin D)
A curable resin D was obtained in the same manner as in the above "(Preparation of curable resin A)" except that 760 parts by weight of bisphenol A diglycidyl ether was changed to 720 parts by weight of bisphenol F diglycidyl ether.
The structure of the curable resin D was analyzed by 1 H-NMR and 13 C-NMR. As a result, in the curable resin D, in the formula (1), m is 2, R 1 is a structure derived from 1,6-hexanediol, R 2 is a structure derived from phthalic anhydride, and R 3 is a formula (2-2). ) group represented by (R 4 is a hydrogen atom), n is 0, Ep was confirmed to be the compound is a structure derived from bisphenol F diglycidyl ether.
(硬化性樹脂Eの作製)
無水フタル酸296重量部をテトラプロペニル無水コハク酸536重量部に変更し、ビスフェノールAジグリシジルエーテル760重量部をビスフェノールFジグリシジルエーテル720重量部に変更したこと以外は、上記「(硬化性樹脂Aの作製)」と同様にして硬化性樹脂Eを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Eの構造解析を行った。その結果、硬化性樹脂Eは、式(1)における、mが2、Rが1,6-ヘキサンジオール由来の構造、Rがテトラプロペニル無水コハク酸由来の構造、Rが式(2-2)で表される基(Rは水素原子)、nが0、EpがビスフェノールFジグリシジルエーテル由来の構造である化合物であることを確認した。
(Preparation of curable resin E)
Except that 296 parts by weight of phthalic anhydride was changed to 536 parts by weight of tetrapropenyl succinic anhydride and 760 parts by weight of bisphenol A diglycidyl ether was changed to 720 parts by weight of bisphenol F diglycidyl ether, the above "(curable resin A) The curable resin E was obtained in the same manner as in the above procedure.
The structure of the curable resin E was analyzed by 1 H-NMR and 13 C-NMR. As a result, in the curable resin E, in the formula (1), m is 2, R 1 is a structure derived from 1,6-hexanediol, R 2 is a structure derived from tetrapropenyl succinic anhydride, and R 3 is a formula (2). groups represented by -2) (R 4 is a hydrogen atom), n is 0, Ep was confirmed to be the compound is a structure derived from bisphenol F diglycidyl ether.
(硬化性樹脂Fの作製)
無水フタル酸296重量部を4-メチルシクロヘキサン-1,2-ジカルボン酸無水物336重量部に変更し、ビスフェノールAジグリシジルエーテル760重量部をビスフェノールFジグリシジルエーテル720重量部に変更したこと以外は、上記「(硬化性樹脂Aの作製)」と同様にして硬化性樹脂Fを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Fの構造解析を行った。その結果、硬化性樹脂Fは、式(1)における、mが2、Rが1,6-ヘキサンジオール由来の構造、Rが4-メチルシクロヘキサン-1,2-ジカルボン酸無水物由来の構造、Rが式(2-2)で表される基(Rは水素原子)、nが0、EpがビスフェノールFジグリシジルエーテル由来の構造である化合物であることを確認した。
(Preparation of curable resin F)
Except that 296 parts by weight of phthalic anhydride was changed to 336 parts by weight of 4-methylcyclohexane-1,2-dicarboxylic acid anhydride, and 760 parts by weight of bisphenol A diglycidyl ether was changed to 720 parts by weight of bisphenol F diglycidyl ether. , The curable resin F was obtained in the same manner as in the above "(Preparation of curable resin A)".
The structure of the curable resin F was analyzed by 1 H-NMR and 13 C-NMR. As a result, the curable resin F has a structure in the formula (1) in which m is 2 and R 1 is derived from 1,6-hexanediol, and R 2 is derived from 4-methylcyclohexane-1,2-dicarboxylic acid anhydride. It was confirmed that the structure, R 3 is a group represented by the formula (2-2) (R 4 is a hydrogen atom), n is 0, and Ep is a compound derived from bisphenol F diglycidyl ether.
(硬化性樹脂Gの作製)
アクリル酸144重量部をメタクリル酸168重量部に変更したこと以外は、上記「(硬化性樹脂Fの作製)」と同様にして硬化性樹脂Gを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Gの構造解析を行った。その結果、硬化性樹脂Gは、式(1)における、mが2、Rが1,6-ヘキサンジオール由来の構造、Rが4-メチルシクロヘキサン-1,2-ジカルボン酸無水物由来の構造、Rが式(2-2)で表される基(Rはメチル基)、nが0、EpがビスフェノールFジグリシジルエーテル由来の構造である化合物であることを確認した。
(Preparation of curable resin G)
A curable resin G was obtained in the same manner as in the above "(Preparation of curable resin F)" except that 144 parts by weight of acrylic acid was changed to 168 parts by weight of methacrylic acid.
The structure of the curable resin G was analyzed by 1 H-NMR and 13 C-NMR. As a result, the curable resin G has a structure in the formula (1) in which m is 2 and R 1 is derived from 1,6-hexanediol, and R 2 is derived from 4-methylcyclohexane-1,2-dicarboxylic acid anhydride. It was confirmed that the structure, R 3 is a group represented by the formula (2-2) (R 4 is a methyl group), n is 0, and Ep is a compound derived from bisphenol F diglycidyl ether.
(硬化性樹脂Hの作製)
反応フラスコに、1,6-ヘキサンジオール118重量部と、ε-カプロラクトン228重量部と、重合禁止剤としてハイドロキノン0.1重量部とを加え、マントルヒーターを用いて90℃で5時間撹拌した。次いで、無水フタル酸296重量部を加え、更に5時間撹拌した。得られた反応物にビスフェノールAジグリシジルエーテル760重量部を加え、更にトリフェニルフォスフィンを0.5重量部加え、110℃で5時間撹拌した。その後、得られた反応物にアクリル酸144重量部を加え、110℃で5時間撹拌することにより、硬化性樹脂Hを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Hの構造解析を行った。その結果、硬化性樹脂Hは、式(1)における、mが2、Rが1,6-ヘキサンジオール由来の構造、Rが無水フタル酸由来の構造、Rが式(2-2)で表される基(Rは水素原子)、Xがε-カプロラクトンの開環構造、nが1.9(平均値)、EpがビスフェノールAジグリシジルエーテル由来の構造である化合物であることを確認した。
(Preparation of curable resin H)
To a reaction flask, 118 parts by weight of 1,6-hexanediol, 228 parts by weight of ε-caprolactone, and 0.1 parts by weight of hydroquinone as a polymerization inhibitor were added, and the mixture was stirred at 90 ° C. for 5 hours using a mantle heater. Then, 296 parts by weight of phthalic anhydride was added, and the mixture was further stirred for 5 hours. 760 parts by weight of bisphenol A diglycidyl ether was added to the obtained reaction product, 0.5 part by weight of triphenylphosphine was further added, and the mixture was stirred at 110 ° C. for 5 hours. Then, 144 parts by weight of acrylic acid was added to the obtained reaction product, and the mixture was stirred at 110 ° C. for 5 hours to obtain a curable resin H.
The structure of the curable resin H was analyzed by 1 H-NMR and 13 C-NMR. As a result, in the curable resin H, in the formula (1), m is 2, R 1 is a structure derived from 1,6-hexanediol, R 2 is a structure derived from phthalic anhydride, and R 3 is a formula (2-2). ) Is a group (R 4 is a hydrogen atom), X is a ring-opening structure of ε-caprolactone, n is 1.9 (average value), and Ep is a compound derived from bisphenol A diglycidyl ether. It was confirmed.
(硬化性樹脂Iの作製)
アクリル酸の配合量を72重量部に変更したこと以外は、上記「(硬化性樹脂Aの作製)」と同様にして硬化性樹脂Iを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Iの構造解析を行った。その結果、硬化性樹脂Iは、式(1)で表される化合物I-1を52重量%、式(1)で表される化合物I-2を23重量%、ビスフェノールAジグリシジルエーテルを23重量%含むことを確認した。
化合物I-1は、式(1)における、mが2、Rが1,6-ヘキサンジオール由来の構造、Rが無水フタル酸由来の構造、Rの一方が式(2-1)で表される基、他方が式(2-2)で表される基(Rは水素原子)、nが0、EpがビスフェノールAジグリシジルエーテル由来の構造である化合物である。
化合物I-2は、式(1)における、mが2、Rが1,6-ヘキサンジオール由来の構造、Rが無水フタル酸由来の構造、Rが式(2-2)で表される基(Rは水素原子)、nが0、EpがビスフェノールAジグリシジルエーテル由来の構造である化合物である。
(Preparation of curable resin I)
A curable resin I was obtained in the same manner as in the above "(Preparation of curable resin A)" except that the blending amount of acrylic acid was changed to 72 parts by weight.
The structure of the curable resin I was analyzed by 1 H-NMR and 13 C-NMR. As a result, the curable resin I contained 52% by weight of the compound I-1 represented by the formula (1), 23% by weight of the compound I-2 represented by the formula (1), and 23% of the bisphenol A diglycidyl ether. It was confirmed that it contained% by weight.
Compound I-1 has a structure in the formula (1) in which m is 2, R 1 is derived from 1,6-hexanediol, R 2 is a structure derived from phthalic anhydride, and one of R 3 is the formula (2-1). group a group represented by the other is represented by formula (2-2) is (R 4 is a hydrogen atom), compounds wherein n 0, Ep is a structure derived from bisphenol a diglycidyl ether.
Compound I-2 is represented by the formula (1), in which m is 2, R 1 is a structure derived from 1,6-hexanediol, R 2 is a structure derived from phthalic anhydride, and R 3 is a structure derived from formula (2-2). it is the group (R 4 is a hydrogen atom), n is 0, Ep is a compound a structure derived from bisphenol a diglycidyl ether.
(硬化性樹脂Jの作製)
反応フラスコに、1,6-ヘキサンジオール118重量部と、4-メチルシクロヘキサン-1,2-ジカルボン酸無水物336重量部と、重合禁止剤としてハイドロキノン0.1重量部とを加え、マントルヒーターを用いて90℃で5時間撹拌した。得られた反応物にビスフェノールFジグリシジルエーテル720重量部を加え、更にトリフェニルフォスフィンを0.5重量部加え、110℃で5時間撹拌することにより、硬化性樹脂Jを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Jの構造解析を行った。その結果、硬化性樹脂Jは、式(1)における、mが2、Rが1,6-ヘキサンジオール由来の構造、Rが4-メチルシクロヘキサン-1,2-ジカルボン酸無水物由来の構造、Rが式(2-1)で表される基、nが0、EpがビスフェノールFジグリシジルエーテル由来の構造である化合物であることを確認した。
(Preparation of curable resin J)
To the reaction flask, 118 parts by weight of 1,6-hexanediol, 336 parts by weight of 4-methylcyclohexane-1,2-dicarboxylic acid anhydride, and 0.1 parts by weight of hydroquinone as a polymerization inhibitor were added, and a mantle heater was added. It was stirred at 90 ° C. for 5 hours. 720 parts by weight of bisphenol F diglycidyl ether was added to the obtained reaction product, 0.5 part by weight of triphenylphosphine was further added, and the mixture was stirred at 110 ° C. for 5 hours to obtain a curable resin J.
The structure of the curable resin J was analyzed by 1 H-NMR and 13 C-NMR. As a result, the curable resin J has a structure in the formula (1) in which m is 2 and R 1 is derived from 1,6-hexanediol, and R 2 is derived from 4-methylcyclohexane-1,2-dicarboxylic acid anhydride. It was confirmed that the structure, R 3 is a group represented by the formula (2-1), n is 0, and Ep is a compound derived from bisphenol F diglycidyl ether.
(硬化性樹脂Kの作製)
ビスフェノールAジグリシジルエーテル760重量部を9,9-ビス(4-グリシジルオキシ-3-フェニル)フルオレンジグリシジルエーテル924重量部に変更したこと以外は、上記「(硬化性樹脂Aの作製)」と同様にして硬化性樹脂Kを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Kの構造解析を行った。その結果、硬化性樹脂Kは、式(1)における、mが2、Rが1,6-ヘキサンジオール由来の構造、Rが無水フタル酸由来の構造、Rが式(2-2)で表される基(Rは水素原子)、nが0、Epが9,9-ビス(4-グリシジルオキシ-3-フェニル)フルオレンジグリシジルエーテル由来の構造である化合物であることを確認した。
(Preparation of curable resin K)
Except that 760 parts by weight of bisphenol A diglycidyl ether was changed to 924 parts by weight of 9,9-bis (4-glycidyloxy-3-phenyl) full orange glycidyl ether, the above "(preparation of curable resin A)" was applied. A curable resin K was obtained in the same manner.
The structure of the curable resin K was analyzed by 1 H-NMR and 13 C-NMR. As a result, in the curable resin K, in the formula (1), m is 2, R 1 is a structure derived from 1,6-hexanediol, R 2 is a structure derived from phthalic anhydride, and R 3 is a formula (2-2). ) group represented by (R 4 is a hydrogen atom), verify that n is 0, Ep is the 9,9-bis (4-glycidyloxy-3-phenyl) compound is a structure derived from diglycidyl ether did.
(硬化性樹脂Lの作製)
ビスフェノールAジグリシジルエーテル760重量部を1,6-ビス(2,3-エポキシプロパン-1-イルオキシ)ナフタレンジグリシジルエーテル544重量部に変更したこと以外は、上記「(硬化性樹脂Aの作製)」と同様にして硬化性樹脂Lを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Lの構造解析を行った。その結果、硬化性樹脂Lは、式(1)における、mが2、Rが1,6-ヘキサンジオール由来の構造、Rが無水フタル酸由来の構造、Rが式(2-2)で表される基(Rは水素原子)、nが0、Epが1,6-ビス(2,3-エポキシプロパン-1-イルオキシ)ナフタレンジグリシジルエーテル由来の構造である化合物であることを確認した。
(Preparation of curable resin L)
Except for changing 760 parts by weight of bisphenol A diglycidyl ether to 544 parts by weight of 1,6-bis (2,3-epoxypropane-1-yloxy) naphthalene diglycidyl ether, the above "(Preparation of curable resin A)" A curable resin L was obtained in the same manner as above.
The structure of the curable resin L was analyzed by 1 H-NMR and 13 C-NMR. As a result, in the curable resin L, in the formula (1), m is 2, R 1 is a structure derived from 1,6-hexanediol, R 2 is a structure derived from phthalic anhydride, and R 3 is a formula (2-2). ) (R 4 is a hydrogen atom), n is 0, Ep is 1,6-bis (2,3-epoxypropane-1-yloxy), and the compound has a structure derived from naphthalenediglycidyl ether. It was confirmed.
(硬化性樹脂Mの作製)
ビスフェノールAジグリシジルエーテル760重量部をレゾルシノールジグリシジルエーテル444重量部に変更したこと以外は、上記「(硬化性樹脂Aの作製)」と同様にして硬化性樹脂Mを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Mの構造解析を行った。その結果、硬化性樹脂Mは、式(1)における、mが2、Rが1,6-ヘキサンジオール由来の構造、Rが無水フタル酸由来の構造、Rが式(2-2)で表される基(Rは水素原子)、nが0、Epがレゾルシノールジグリシジルエーテル由来の構造である化合物であることを確認した。
(Preparation of curable resin M)
A curable resin M was obtained in the same manner as in the above "(Preparation of curable resin A)" except that 760 parts by weight of bisphenol A diglycidyl ether was changed to 444 parts by weight of resorcinol diglycidyl ether.
The structure of the curable resin M was analyzed by 1 H-NMR and 13 C-NMR. As a result, in the curable resin M, in the formula (1), m is 2, R 1 is a structure derived from 1,6-hexanediol, R 2 is a structure derived from phthalic anhydride, and R 3 is a formula (2-2). ) group represented by (R 4 is a hydrogen atom), n is 0, Ep was confirmed to be the compound is a structure derived from resorcinol diglycidyl ether.
(硬化性樹脂Nの作製)
ビスフェノールAジグリシジルエーテル760重量部を水添ビスフェノールAジグリシジルエーテル706重量部に変更したこと以外は、上記「(硬化性樹脂Aの作製)」と同様にして硬化性樹脂Nを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Nの構造解析を行った。その結果、硬化性樹脂Nは、式(1)における、mが2、Rが1,6-ヘキサンジオール由来の構造、Rが無水フタル酸由来の構造、Rが式(2-2)で表される基(Rは水素原子)、nが0、Epが水添ビスフェノールAジグリシジルエーテル由来の構造である化合物であることを確認した。
(Preparation of curable resin N)
A curable resin N was obtained in the same manner as in the above "(Preparation of curable resin A)" except that 760 parts by weight of bisphenol A diglycidyl ether was changed to 706 parts by weight of hydrogenated bisphenol A diglycidyl ether.
Structural analysis of the curable resin N was performed by 1 H-NMR and 13 C-NMR. As a result, in the curable resin N, in the formula (1), m is 2, R 1 is a structure derived from 1,6-hexanediol, R 2 is a structure derived from phthalic anhydride, and R 3 is a formula (2-2). ) group represented by (R 4 is a hydrogen atom), n is 0, Ep was confirmed to be the compound is a structure derived from hydrogenated bisphenol a diglycidyl ether.
(硬化性樹脂Oの作製)
反応フラスコに、1,6-ヘキサンジオールジグリシジルエーテル298重量部と、ビスフェノールA456重量部とを加え、マントルヒーターを用いて150℃まで昇温し、4%NaOH水溶液を1重量部添加し150℃で3時間撹拌した。液温が60℃まで下がるのを確認した後、クロロホルムを500重量部加え、1%NaOH水溶液500重量部で5回水洗し、水1000重量部で3回水洗した。その後、硫酸マグネシウムで乾燥、ろ過し、溶媒を減圧流去することにより得られた反応物にエピクロロヒドリン295重量部を加え、80℃で2時間撹拌した。その後、得られた反応物にアクリル酸144重量部を加え、110℃で5時間撹拌することにより、硬化性樹脂Oを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Oの構造解析を行った。その結果、硬化性樹脂Oは、下記式(5)で表される化合物であることを確認した。
(Preparation of curable resin O)
To the reaction flask, 298 parts by weight of 1,6-hexanediol diglycidyl ether and 456 parts by weight of bisphenol A were added, the temperature was raised to 150 ° C. using a mantle heater, and 1 part by weight of a 4% NaOH aqueous solution was added to 150 ° C. Was stirred for 3 hours. After confirming that the liquid temperature had dropped to 60 ° C., 500 parts by weight of chloroform was added, and the mixture was washed 5 times with 500 parts by weight of a 1% NaOH aqueous solution and 3 times with 1000 parts by weight of water. Then, the reaction product was dried over magnesium sulfate, filtered, and the solvent was flushed off under reduced pressure. 295 parts by weight of epichlorohydrin was added to the reaction product, and the mixture was stirred at 80 ° C. for 2 hours. Then, 144 parts by weight of acrylic acid was added to the obtained reaction product, and the mixture was stirred at 110 ° C. for 5 hours to obtain a curable resin O.
The structure of the curable resin O was analyzed by 1 H-NMR and 13 C-NMR. As a result, it was confirmed that the curable resin O was a compound represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(硬化性樹脂Pの作製)
反応フラスコに、1,6-ヘキサンジオールジグリシジルエーテル298重量部と、ビスフェノールA456重量部とを加え、マントルヒーターを用いて150℃まで昇温し、4%NaOH水溶液を1重量部添加し150℃で3時間撹拌した。液温が60℃まで下がるのを確認した後、クロロホルムを500重量部加え、1%NaOH水溶液500重量部で5回水洗し、水1000重量部で3回水洗した。その後、硫酸マグネシウムで乾燥、ろ過し、溶媒を減圧流去することにより得られた反応物にエピクロロヒドリン295重量部を加え、80℃で2時間撹拌することにより、硬化性樹脂Pを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Pの構造解析を行った。その結果、硬化性樹脂Pは、下記式(6)で表される化合物であることを確認した。
(Preparation of curable resin P)
To the reaction flask, 298 parts by weight of 1,6-hexanediol diglycidyl ether and 456 parts by weight of bisphenol A were added, the temperature was raised to 150 ° C. using a mantle heater, and 1 part by weight of a 4% NaOH aqueous solution was added to 150 ° C. Was stirred for 3 hours. After confirming that the liquid temperature had dropped to 60 ° C., 500 parts by weight of chloroform was added, and the mixture was washed 5 times with 500 parts by weight of a 1% NaOH aqueous solution and 3 times with 1000 parts by weight of water. Then, 295 parts by weight of epichlorohydrin was added to the reaction product obtained by drying and filtering with magnesium sulfate and flowing off the solvent under reduced pressure, and the mixture was stirred at 80 ° C. for 2 hours to obtain a curable resin P. It was.
The structure of the curable resin P was analyzed by 1 H-NMR and 13 C-NMR. As a result, it was confirmed that the curable resin P was a compound represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(実施例1~16、比較例1~4)
表1、2に記載された配合比に従い、各材料を、遊星式撹拌装置にて撹拌した後、セラミック3本ロールにて均一に混合して実施例1~16、比較例1~4の硬化性樹脂組成物を得た。遊星式撹拌装置としては、あわとり練太郎(シンキー社製)を用いた。
(Examples 1 to 16, Comparative Examples 1 to 4)
According to the compounding ratios shown in Tables 1 and 2, each material was stirred with a planetary stirrer, then uniformly mixed with three ceramic rolls, and cured of Examples 1 to 16 and Comparative Examples 1 to 4. A sex resin composition was obtained. As the planetary agitator, Awatori Rentaro (manufactured by Shinky Co., Ltd.) was used.
<評価>
実施例及び比較例で得られた各硬化性樹脂組成物について以下の評価を行った。結果を表1、2に示した。
<Evaluation>
The following evaluations were performed on each of the curable resin compositions obtained in Examples and Comparative Examples. The results are shown in Tables 1 and 2.
(配向膜に対する接着性)
ITO薄膜付きガラス基板にイミド樹脂をスピンコートで塗布し、80℃でプリベイクした後、230℃で焼成することにより、配向膜付き基板を作製した。イミド樹脂としてはSE7492(日産化学社製)を用いた。
実施例及び比較例で得られた各硬化性樹脂組成物100重量部に対して、シリカスペーサーを1重量部を遊星式撹拌装置によって均一に分散させた。シリカスペーサーとしては、SI-H055(積水化学工業社製)を用いた。次いで、シリカスペーサーを分散させた硬化性樹脂組成物を配向膜付き基板の配向膜上に微小滴下した。硬化性樹脂組成物を滴下した配向膜付き基板に、硬化性樹脂組成物を介して別の配向膜付き基板を十字状に貼り合わせ、メタルハライドランプにて3000mJ/cmの紫外線を照射した後、120℃で60分加熱することによって接着性試験片を得た。作製した接着試験片における基板の端部を半径5mmの金属円柱を使って5mm/minの速度で押し込んだときに、パネル剥がれが起こる際の強度を測定した。得られた測定値(kgf)をシール直径(cm)で除した値が、3.0kgf/cm以上であった場合を「◎」、2.5kgf/cm以上3.0kgf/cm未満であった場合を「○」、2.0kgf/cm以上2.5kgf/cm未満であった場合を「△」、2.0kgf/cm未満であった場合を「×」として配向膜に対する接着性を評価した。 
(Adhesion to alignment film)
An imide resin was applied to a glass substrate with an ITO thin film by spin coating, prebaked at 80 ° C., and then fired at 230 ° C. to prepare a substrate with an alignment film. SE7492 (manufactured by Nissan Chemical Industries, Ltd.) was used as the imide resin.
With respect to 100 parts by weight of each curable resin composition obtained in Examples and Comparative Examples, 1 part by weight of a silica spacer was uniformly dispersed by a planetary stirrer. SI-H055 (manufactured by Sekisui Chemical Co., Ltd.) was used as the silica spacer. Next, a curable resin composition in which silica spacers were dispersed was added dropwise onto the alignment film of the substrate with the alignment film. Another substrate with an alignment film is attached to the substrate with an alignment film on which the curable resin composition is dropped in a cross shape via the curable resin composition, and after irradiating with an ultraviolet ray of 3000 mJ / cm 2 with a metal halide lamp, Adhesion test pieces were obtained by heating at 120 ° C. for 60 minutes. When the edge of the substrate in the produced adhesive test piece was pushed in at a speed of 5 mm / min using a metal cylinder having a radius of 5 mm, the strength at which the panel peeled off was measured. The value obtained by dividing the obtained measured value (kgf) by the seal diameter (cm) was "◎" when it was 3.0 kgf / cm or more, and it was 2.5 kgf / cm or more and less than 3.0 kgf / cm. The case was evaluated as "○", the case of 2.0 kgf / cm or more and less than 2.5 kgf / cm was evaluated as "Δ", and the case of less than 2.0 kgf / cm was evaluated as "x" to evaluate the adhesiveness to the alignment film. ..
(透湿防止性)
実施例及び比較例で得られた各硬化性樹脂組成物を、平滑な離型フィルム上にコーターを用いて厚さ200μm以上300μm以下となるように塗布した。次いで、メタルハライドランプを用いて3000mJ/cmの紫外線を照射した後、120℃で60分加熱することによって透湿度測定用フィルムを得た。JIS Z 0208の防湿包装材料の透湿度試験方法(カップ法)に準じた方法で透湿度試験用カップを作製し、得られた透湿度測定用フィルムを取り付け、温度80℃湿度90%RHの恒温恒湿オーブンに投入して透湿度を測定した。得られた透湿度の値が、50g/m・24hr未満であった場合を「◎」、50g/m・24hr以上60g/m・24hr未満であった場合を「○」、60g/m・24hr以上70g/m・24hr未満であった場合を「△」、70g/m・24hr以上であった場合を「×」として透湿防止性を評価した。
(Moisture prevention)
Each of the curable resin compositions obtained in Examples and Comparative Examples was applied onto a smooth release film using a coater so as to have a thickness of 200 μm or more and 300 μm or less. Next, a film for measuring moisture permeability was obtained by irradiating with an ultraviolet ray of 3000 mJ / cm 2 using a metal halide lamp and then heating at 120 ° C. for 60 minutes. A cup for moisture permeability test is prepared by a method according to the moisture permeability test method (cup method) of the moisture-proof packaging material of JIS Z 0208, the obtained film for moisture permeability measurement is attached, and a constant temperature of 80 ° C. and 90% humidity RH is attached. It was put into a constant humidity oven and the moisture permeability was measured. The obtained value of the moisture permeability, the case was less than 50g / m 2 · 24hr "◎", the case was less than 50g / m 2 · 24hr or more 60g / m 2 · 24hr "○", 60g / m 2 · 24 hr or more 70 g / m where the a was less than 2 · 24 hr or "△", was evaluated anti-moisture permeability as "×" the case was 70g / m 2 · 24hr or more.
(液晶表示素子の表示性能)
ITO薄膜付きガラス基板にイミド樹脂をスピンコートで塗布し、80℃でプリベイクした後、230℃で焼成することにより、配向膜付き基板を作製した。イミド樹脂としてはSE7492(日産化学社製)を用いた。
実施例及び比較例で得られた各硬化性樹脂組成物100重量部に対して、シリカスペーサー1重量部を遊星式撹拌装置によって均一に分散させ、脱泡処理をして硬化性樹脂組成物中の泡を取り除いた後、ディスペンス用のシリンジに充填し、再び脱泡処理を行った。シリカスペーサーとしては、SI-H055(積水化学工業社製)を用い、ディスペンス用のシリンジとしては、PSY-10E(武蔵エンジニアリング社製)を用いた。次いで、ディスペンサーを用いて、硬化性樹脂組成物を枠を描く様に配向膜付き基板の配向膜上に塗布した。ディスペンサーとしては、SHOTMASTER300(武蔵エンジニアリング社製)を用いた。続いて、TN液晶の微小滴を液晶滴下装置にて硬化性樹脂組成物の枠内に滴下塗布した。TN液晶を滴下塗布した配向膜付き基板に、硬化性樹脂組成物を介して別の配向膜付き基板を重ね、真空貼り合わせ装置にて5Paの減圧下にて2枚の基板を貼り合わせ、セルを得た。TN液晶としては、JC-5001LA(チッソ社製)を用いた。得られたセルにメタルハライドランプにて3000mJ/cmの紫外線を照射した後、120℃で60分加熱することによって硬化性樹脂組成物を硬化させ、液晶表示素子を作製した。得られた液晶表示素子を温度80℃、湿度90%RHの環境下にて144時間保管した後、AC3.5Vの電圧駆動をさせ、表示むら(色むら)の有無を目視で観察した。液晶表示素子の周辺部に表示むらが全く見られなかった場合を「◎」、少し薄い表示むらが見えた場合を「○」、はっきりとした濃い表示むらがあった場合を「△」、はっきりとした濃い表示むらが周辺部のみではなく、中央部まで広がっていた場合を「×」として液晶表示素子の表示性能を評価した。
なお、評価が「◎」、「○」の液晶表示素子は実用に全く問題のないレベルである。
(Display performance of liquid crystal display element)
An imide resin was applied to a glass substrate with an ITO thin film by spin coating, prebaked at 80 ° C., and then fired at 230 ° C. to prepare a substrate with an alignment film. SE7492 (manufactured by Nissan Chemical Industries, Ltd.) was used as the imide resin.
With respect to 100 parts by weight of each curable resin composition obtained in Examples and Comparative Examples, 1 part by weight of a silica spacer was uniformly dispersed by a planetary stirrer and defoamed to be contained in the curable resin composition. After removing the foam, the resin was filled in a syringe for dispensing and defoamed again. SI-H055 (manufactured by Sekisui Chemical Co., Ltd.) was used as the silica spacer, and PSY-10E (manufactured by Musashi Engineering Co., Ltd.) was used as the syringe for dispensing. Then, using a dispenser, the curable resin composition was applied onto the alignment film of the substrate with the alignment film so as to draw a frame. As a dispenser, SHOTMASTER 300 (manufactured by Musashi Engineering Co., Ltd.) was used. Subsequently, fine droplets of TN liquid crystal were dropped and applied into the frame of the curable resin composition by a liquid crystal dropping device. Another substrate with an alignment film is laminated on a substrate with an alignment film to which TN liquid crystal is dropped and coated via a curable resin composition, and the two substrates are bonded together under a reduced pressure of 5 Pa with a vacuum bonding device. Got As the TN liquid crystal, JC-5001LA (manufactured by Chisso) was used. The obtained cell was irradiated with ultraviolet rays of 3000 mJ / cm 2 with a metal halide lamp, and then heated at 120 ° C. for 60 minutes to cure the curable resin composition, thereby producing a liquid crystal display element. The obtained liquid crystal display element was stored in an environment of a temperature of 80 ° C. and a humidity of 90% RH for 144 hours, and then was driven by a voltage of AC3.5V, and the presence or absence of display unevenness (color unevenness) was visually observed. "◎" when there is no display unevenness around the liquid crystal display element, "○" when a slightly light display unevenness is seen, "△" when there is a clear dark display unevenness, clearly The display performance of the liquid crystal display element was evaluated as "x" when the dark display unevenness was spread not only to the peripheral portion but also to the central portion.
The liquid crystal display elements with evaluations of "◎" and "○" are at a level where there is no problem in practical use.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
本発明によれば、配向膜に対する接着性と透湿防止性との両方に優れる硬化性樹脂組成物を提供することができる。また、本発明によれば、該硬化性樹脂組成物を用いてなる液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子を提供することができる。 According to the present invention, it is possible to provide a curable resin composition having both excellent adhesiveness to an alignment film and moisture permeation prevention property. Further, according to the present invention, it is possible to provide a sealant for a liquid crystal display element, a vertical conductive material, and a liquid crystal display element using the curable resin composition.

Claims (6)

  1. 硬化性樹脂と重合開始剤及び/又は熱硬化剤とを含有し、前記硬化性樹脂は、下記式(1)で表される化合物を含むことを特徴とする硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    式(1)中、mは、2以上4以下の整数であり、Rは、m価のポリオール由来の構造を表し、Rは、置換されていてもよいジカルボン酸又はその無水物由来の構造を表し、Rは、下記式(2-1)又は(2-2)で表される基を表し、Xは、環状ラクトンの開環構造を表し、nは、0以上5以下(平均値)であり、Epは、2官能以上のエポキシ化合物由来の構造を表す。
    Figure JPOXMLDOC01-appb-C000002
    式(2-1)及び(2-2)中、*は、結合位置を表し、式(2-2)中、Rは、水素原子又はメチル基を表す。
    A curable resin composition containing a curable resin and a polymerization initiator and / or a thermosetting agent, wherein the curable resin contains a compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    In formula (1), m is an integer of 2 or more and 4 or less, R 1 represents a structure derived from an m-valent polyol, and R 2 is derived from a optionally substituted dicarboxylic acid or an anhydride thereof. Represents the structure, R 3 represents the group represented by the following formula (2-1) or (2-2), X represents the ring-opening structure of the cyclic lactone, and n is 0 or more and 5 or less (mean). Value), and Ep represents a structure derived from a bifunctional or higher functional epoxy compound.
    Figure JPOXMLDOC01-appb-C000002
    In formulas (2-1) and (2-2), * represents a bond position, and in formula (2-2), R 4 represents a hydrogen atom or a methyl group.
  2. 前記式(1)中、Rは、下記式(3)で表される構造である請求項1記載の硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    式(3)中、*は、結合位置を表し、R及びRは、それぞれ独立して、水素原子、又は、炭素数1以上60以下の有機基を表すか、或いは、R、Rが結合している構造を表す。
    The curable resin composition according to claim 1, wherein R 2 in the formula (1) has a structure represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000003
    In the formula (3), * represents a bond position, and R 5 and R 6 each independently represent a hydrogen atom or an organic group having 1 or more and 60 or less carbon atoms, or R 5 and R. Represents a structure in which 6 is bonded.
  3. 前記式(1)中、Rは、下記式(4-1)又は(4-2)で表される構造である請求項2記載の硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    式(4-1)中、*は、結合位置を表し、式(4-1)中、Rは、水素原子、又は、炭素数1以上10以下のアルキル基を表し、式(4-2)中、Rは、水素原子、又は、炭素数1以上10以下のアルキル基を表す。
    The curable resin composition according to claim 2 , wherein R 2 in the formula (1) has a structure represented by the following formula (4-1) or (4-2).
    Figure JPOXMLDOC01-appb-C000004
    In formula (4-1), * represents a bond position, and in formula (4-1), R 7 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and formula (4-2). ), R 8 represents a hydrogen atom or an alkyl group having 1 or more and 10 or less carbon atoms.
  4. 請求項1、2又は3記載の硬化性樹脂組成物を用いてなる液晶表示素子用シール剤。 A sealant for a liquid crystal display element using the curable resin composition according to claim 1, 2 or 3.
  5. 請求項4記載の液晶表示素子用シール剤と導電性微粒子とを含有する上下導通材料。 A vertically conductive material containing the sealant for a liquid crystal display element according to claim 4 and conductive fine particles.
  6. 請求項4記載の液晶表示素子用シール剤の硬化物又は請求項5記載の上下導通材料の硬化物を有する液晶表示素子。 A liquid crystal display element having a cured product of the sealant for a liquid crystal display element according to claim 4 or a cured product of a vertically conductive material according to claim 5.
PCT/JP2020/014826 2019-04-02 2020-03-31 Curable resin composition, sealing agent for liquid crystal display element, vertical conductive material, and liquid crystal display element WO2020204029A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020527136A JP6928177B2 (en) 2019-04-02 2020-03-31 Curable resin composition, sealant for liquid crystal display element, vertical conductive material, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019070656 2019-04-02
JP2019-070656 2019-04-02

Publications (1)

Publication Number Publication Date
WO2020204029A1 true WO2020204029A1 (en) 2020-10-08

Family

ID=72668961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014826 WO2020204029A1 (en) 2019-04-02 2020-03-31 Curable resin composition, sealing agent for liquid crystal display element, vertical conductive material, and liquid crystal display element

Country Status (3)

Country Link
JP (1) JP6928177B2 (en)
TW (1) TW202104517A (en)
WO (1) WO2020204029A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209502A (en) * 2012-03-30 2013-10-10 Nippon Steel & Sumikin Chemical Co Ltd Curable resin composition
JP2015063595A (en) * 2013-09-25 2015-04-09 新日鉄住金化学株式会社 High molecular weight epoxy resin, epoxy resin composition and cured product
JP2017203830A (en) * 2016-05-10 2017-11-16 日本化薬株式会社 Liquid crystal sealant and liquid crystal display cell using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108292067B (en) * 2016-06-21 2021-11-12 积水化学工业株式会社 Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209502A (en) * 2012-03-30 2013-10-10 Nippon Steel & Sumikin Chemical Co Ltd Curable resin composition
JP2015063595A (en) * 2013-09-25 2015-04-09 新日鉄住金化学株式会社 High molecular weight epoxy resin, epoxy resin composition and cured product
JP2017203830A (en) * 2016-05-10 2017-11-16 日本化薬株式会社 Liquid crystal sealant and liquid crystal display cell using the same

Also Published As

Publication number Publication date
JP6928177B2 (en) 2021-09-01
TW202104517A (en) 2021-02-01
JPWO2020204029A1 (en) 2021-04-30

Similar Documents

Publication Publication Date Title
JP6798978B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6905158B2 (en) Sealing agent for display elements, vertical conductive materials, and display elements
JP7112604B1 (en) Liquid crystal display element sealant, vertical conduction material, and liquid crystal display element
WO2017199905A1 (en) Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
JP6792088B2 (en) Sealing agent for liquid crystal dropping method, cured product, vertical conductive material, and liquid crystal display element
JP6978314B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP7160907B2 (en) Sealant for liquid crystal display element for substrate with polyimide alignment film, vertical conduction material, and liquid crystal display element
KR20190055015A (en) A sealing agent for a liquid crystal display element, an upper and lower conductive material, and a liquid crystal display element
WO2022071404A1 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6928177B2 (en) Curable resin composition, sealant for liquid crystal display element, vertical conductive material, and liquid crystal display element
JP7127990B2 (en) Liquid crystal display element sealant, vertical conduction material, and liquid crystal display element
JP7000164B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2021044842A1 (en) Sealing agent for liquid crystal display elements, vertical conduction material, and liquid crystal display element
WO2017038611A1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP2019184730A (en) Liquid crystal display element sealant, epoxy compound, method of manufacturing epoxy compound, vertical conduction material, and liquid crystal display element
JP6821102B1 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP7231794B1 (en) Hydrazide compound, curable resin composition, sealing agent for liquid crystal display element, and liquid crystal display element
JP6609396B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP7088676B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP7088833B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JPWO2017119260A1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP7148332B2 (en) Liquid crystal display element sealant, vertical conduction material, and liquid crystal display element
WO2021246479A1 (en) Dihydrazide compound, curable resin composition, sealing agent for liquid crystal display elements, vertically conductive material, and liquid crystal display element
JPWO2019221044A1 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JPWO2017119407A1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020527136

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20782935

Country of ref document: EP

Kind code of ref document: A1