WO2022071404A1 - Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element - Google Patents

Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element Download PDF

Info

Publication number
WO2022071404A1
WO2022071404A1 PCT/JP2021/035891 JP2021035891W WO2022071404A1 WO 2022071404 A1 WO2022071404 A1 WO 2022071404A1 JP 2021035891 W JP2021035891 W JP 2021035891W WO 2022071404 A1 WO2022071404 A1 WO 2022071404A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
display element
meth
sealant
Prior art date
Application number
PCT/JP2021/035891
Other languages
French (fr)
Japanese (ja)
Inventor
勇人 ▲高▼田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020227043399A priority Critical patent/KR20230074660A/en
Priority to CN202180047130.9A priority patent/CN115867590A/en
Priority to JP2021568419A priority patent/JP7151003B2/en
Publication of WO2022071404A1 publication Critical patent/WO2022071404A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0645Macromolecular organic compounds, e.g. prepolymers obtained otherwise than by reactions involving carbon-to-carbon unsaturated bonds
    • C09K2200/0647Polyepoxides

Definitions

  • the present invention relates to a sealant for a liquid crystal display element, which is excellent in storage stability, adhesiveness, and low liquid crystal stain resistance.
  • the present invention also relates to a vertically conductive material and a liquid crystal display element using the sealant for a liquid crystal display element.
  • a liquid crystal dropping method called a construction method is used.
  • the dropping method first, a frame-shaped seal pattern is formed on one of the two substrates with electrodes by dispensing. Next, in a state where the sealant is uncured, fine droplets of liquid crystal are dropped into the frame of the seal pattern, the other substrate is laminated under vacuum, and then the sealant is cured to produce a liquid crystal display element.
  • this dropping method is the mainstream method for manufacturing liquid crystal display elements.
  • miniaturization of the devices is the most sought after issue.
  • a narrowing of the frame of the liquid crystal display unit is mentioned.
  • the position of the seal portion is arranged under the black matrix (hereinafter, also referred to as a narrow frame design).
  • the sealant In the narrow frame design, the sealant is placed directly under the black matrix, so if the dropping method is used, the light emitted when the sealant is photo-cured is blocked, and it is difficult for the light to reach the inside of the sealant.
  • the sealing agent is insufficiently cured. When the curing of the sealing agent is insufficient as described above, there is a problem that the uncured sealing agent component is eluted into the liquid crystal display and the liquid crystal contamination is likely to occur. In particular, in recent years, with the increasing polarity of liquid crystals, liquid crystal contamination may occur even when a sealing agent, which has not been a problem in the past, is used, and the sealing agent is required to have further low liquid crystal contamination.
  • thermosetting agent is added to the sealant. ..
  • the sealant is also arranged on the alignment film, there is a demand for a sealant for a liquid crystal display element having excellent adhesiveness not only to the substrate but also to the alignment film.
  • the obtained sealant may be inferior in storage stability or cause liquid crystal contamination. was there.
  • the present invention is a sealant for a liquid crystal display element containing a curable resin and a thermosetting agent
  • the thermosetting agent is a sealant for a liquid crystal display element containing an amine adduct body of an epoxy compound and an imidazole compound. ..
  • the present invention will be described in detail below.
  • the present inventor uses a combination of an amine adduct of an epoxy compound and an imidazole compound as a thermosetting agent to provide a sealant for a liquid crystal display element which is excellent in storage stability, adhesiveness, and low liquid crystal contamination. It was found that the present invention can be obtained, and the present invention has been completed.
  • the sealant for a liquid crystal display element of the present invention contains a thermosetting agent.
  • the thermosetting agent contains an amine adduct body of an epoxy compound (hereinafter, also simply referred to as “amine adduct body”) and an imidazole compound.
  • amine adduct body an epoxy compound
  • imidazole compound an imidazole compound
  • the amine adduct body has a structure derived from an epoxy compound and a structure derived from an amine compound.
  • Examples of the epoxy compound from which the amine adduct is derived include bisphenol A type epoxy compound, bisphenol F type epoxy compound, bisphenol E type epoxy compound, bisphenol S type epoxy compound, and 2,2'-diallyl bisphenol A type epoxy compound. , Hydrogenated bisphenol type epoxy compound, propylene oxide added bisphenol A type epoxy compound, resorcinol type epoxy compound, biphenyl type epoxy compound, sulfide type epoxy compound, diphenyl ether type epoxy compound, dicyclopentadiene type epoxy compound, naphthalene type epoxy compound, phenol Novolak type epoxy compound, orthocresol novolak type epoxy compound, dicyclopentadiene novolak type epoxy compound, biphenylnovolak type epoxy compound, naphthalenephenol novolak type epoxy compound, glycidylamine type epoxy compound, alkylpolypoly type epoxy compound, rubber-modified epoxy compound , Glysidyl ester compound and the like. Of these, bisphenol A type epoxy compounds
  • Examples of the amine compound from which the amine adduct is derived include an aliphatic primary monoamine, an alicyclic primary monoamine, an aromatic primary monoamine, an alkylenediamine, and an imidazolyl substituted with a nitrogen atom at the 1-position.
  • Examples thereof include primary diamines having a group, polyalkyl polyamines, alicyclic polyamines, aromatic polyamines and the like.
  • Examples of the aliphatic primary monoamine include methylamine, ethylamine, propylamine, butylamine, ethanolamine, propanolamine and the like.
  • Examples of the alicyclic primary monoamine include cyclohexylamine and the like.
  • Examples of the aromatic primary monoamine include aniline and toluidine.
  • alkylenediamine examples include ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,3-diaminobutane, 1,4-diaminobutane, cadaverine, hexamethylenediamine and other alkylenediamines. Be done.
  • Examples of the primary diamine having an imidazolyl group in which the nitrogen atom at the 1-position is substituted include 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine.
  • the polyalkylpolyamine include diethylenetriamine, triethylenetriamine, tetraethylenetriamine, tetraethylenepentamine and the like.
  • Examples of the alicyclic polyamine include 1,4-bis (aminomethyl) cyclohexane, 1,3-bis (aminomethyl) cyclohexane, 1,2-bis (aminomethyl) cyclohexane, and 1,4-diamino-3. , 6-diethylcyclohexane, isophoronediamine and the like.
  • Examples of the aromatic polyamine include aromatic polyamines such as o-xylylene diamine, m-xylylene diamine, p-xylylene diamine, diaminodiphenylmethane, and diaminodiphenyl sulfone. Of these, 1,4-bis (aminomethyl) cyclohexane is preferable.
  • the preferable lower limit of the mass average molecular weight is 500, and the preferable upper limit is 1500.
  • the mass average molecular weight of the amine adduct body is 500 or more, the obtained sealant for a liquid crystal display element becomes more excellent in low liquid crystal contamination.
  • the mass average molecular weight of the amine adduct body is 1500 or less, the obtained sealant for a liquid crystal display element becomes excellent in handleability.
  • the more preferable lower limit of the mass average molecular weight of the amine adduct body is 1000, and the more preferable upper limit is 1200.
  • the mass average molecular weight is a value obtained by measuring by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent and converting it into polystyrene.
  • GPC gel permeation chromatography
  • Examples of the column for measuring the mass average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK) and the like.
  • the amine adduct body preferably contains a compound represented by the following formula (1).
  • R 1 is an independent hydrogen atom or a methyl group
  • n is an integer of 1 or more and 10 or less.
  • each of R 1 in the above formula (1) is a methyl group.
  • the preferable lower limit of the content ratio of the amine adduct body in the entire sealant for a liquid crystal display element of the present invention is 2% by mass, and the preferable upper limit is 5% by mass.
  • the content ratio of the amine adduct compound in the entire sealant for a liquid crystal display element of the present invention is 2% by mass or more, the obtained sealant for a liquid crystal display element becomes more excellent in adhesiveness.
  • the content ratio of the amine adduct compound in the entire sealant for a liquid crystal display element of the present invention is 5% by mass or less, the obtained sealant for a liquid crystal display element becomes more excellent in low liquid crystal contamination.
  • a more preferable lower limit of the content ratio of the amine adduct compound in the entire sealant for a liquid crystal display element of the present invention is 3% by mass, and a more preferable upper limit is 4% by mass.
  • the preferable lower limit of the content of the amine adduct body with respect to 100 parts by mass of the curable resin described later is 2 parts by mass, and the preferable upper limit is 5 parts by mass.
  • the content of the amine adduct compound with respect to 100 parts by mass of the curable resin is 5 parts by mass or less, the obtained sealing agent for a liquid crystal display element becomes more excellent in low liquid crystal contamination.
  • the more preferable lower limit of the content of the amine adduct compound with respect to 100 parts by mass of the curable resin is 3 parts by mass, and the more preferable upper limit is 4 parts by mass.
  • the imidazole compound preferably has an alkyl chain having 10 or more carbon atoms, and more preferably has an alkyl chain having 10 or more carbon atoms and 12 or less carbon atoms.
  • the preferable upper limit of the melting point of the imidazole compound is 130 ° C.
  • the melting point of the imidazole compound is 130 ° C. or lower, the obtained sealant for a liquid crystal display element becomes more excellent in low liquid crystal contamination.
  • a more preferable upper limit of the melting point of the imidazole compound is 120 ° C.
  • a further preferable upper limit is 110 ° C.
  • a further preferable upper limit is 60 ° C.
  • a more preferable lower limit of the melting point of the imidazole compound is 30 ° C.
  • the melting point of the imidazole compound can be determined by differential scanning calorimetry or a commercially available melting point measuring instrument.
  • Examples of the imidazole compound include a compound represented by the following formula (2), a compound represented by the following formula (3), a compound represented by the following formula (4), and the like.
  • the compound represented by the following formula (2) is preferable, and the compound (1- (2-cyanoethyl) -2-undecylimidazole) in which m is 10 and l is 2 in the following formula (2) is preferable. Especially preferable.
  • m is an integer of 1 or more and 10 or less
  • l is an integer of 1 or more and 3 or less.
  • m is an integer of 1 or more and 10 or less
  • l is an integer of 1 or more and 3 or less.
  • l is an integer of 1 or more and 3 or less.
  • the preferable lower limit of the content ratio of the imidazole compound in the entire sealant for a liquid crystal display element of the present invention is 0.1% by mass, and the preferable upper limit is 0.7% by mass.
  • the content of the imidazole compound in the entire sealant for a liquid crystal display element of the present invention is 0.1% by mass or more, the obtained sealant for a liquid crystal display element becomes more excellent in adhesiveness.
  • the content of the imidazole compound in the entire sealant for a liquid crystal display element of the present invention is 0.7% by mass or less, the obtained sealant for a liquid crystal display element is excellent in adhesiveness and storage stability.
  • a more preferable upper limit of the content ratio of the imidazole compound in the entire sealant for a liquid crystal display element of the present invention is 0.3% by mass.
  • the preferable lower limit of the content of the imidazole compound with respect to 100 parts by mass of the curable resin described later is 0.1 parts by mass, and the preferable upper limit is 0.7 parts by mass.
  • the content of the imidazole compound with respect to 100 parts by mass of the curable resin is 0.1 part by mass or more, the obtained sealant for a liquid crystal display element becomes more excellent in adhesiveness.
  • the content of the imidazole compound with respect to 100 parts by mass of the curable resin is 0.7 parts by mass or less, the obtained sealant for a liquid crystal display element becomes excellent in adhesiveness and storage stability.
  • a more preferable upper limit of the content of the imidazole compound with respect to 100 parts by mass of the curable resin is 0.3 parts by mass.
  • the ratio of the content of the amine adduct to the content of the imidazole compound is a mass ratio with a preferable lower limit of 15 and a preferred upper limit of 50.
  • the ratio of the content of the amine adduct to the content of the imidazole compound is 15 or more, the obtained sealant for a liquid crystal display element becomes excellent in adhesiveness and storage stability.
  • the ratio of the content of the amine adduct to the content of the imidazole compound is 50 or less, the obtained sealing agent for a liquid crystal display element becomes more excellent in low liquid crystal contamination.
  • the more preferable lower limit of the ratio of the content of the amine adduct to the content of the imidazole compound is 17.5, and the more preferable upper limit is 35.
  • thermosetting agent may contain other thermosetting agents in addition to the amine adduct body and the imidazole compound as long as the object of the present invention is not impaired.
  • the other heat-curing agent include organic acid hydrazide, polyhydric phenolic compound, acid anhydride and the like.
  • the sealant for a liquid crystal display element of the present invention contains a curable resin.
  • the curable resin preferably contains an epoxy compound.
  • the epoxy compound include bisphenol A type epoxy compound, bisphenol F type epoxy compound, bisphenol E type epoxy compound, bisphenol S type epoxy compound, 2,2'-diallyl bisphenol A type epoxy compound, hydrogenated bisphenol type epoxy compound.
  • Examples of commercially available bisphenol A type epoxy compounds include jER828EL, jER1004 (all manufactured by Mitsubishi Chemical Corporation), EPICLON850 (manufactured by DIC Corporation), and the like.
  • Examples of commercially available bisphenol F type epoxy compounds include jER806, jER4004 (all manufactured by Mitsubishi Chemical Corporation), EPICLON EXA-830CRP (manufactured by DIC Corporation), and the like.
  • Examples of commercially available bisphenol E-type epoxy compounds include Epomic R710 (manufactured by Mitsui Chemicals, Inc.) and the like.
  • Examples of commercially available bisphenol S-type epoxy compounds include EPICLON EXA-1514 (manufactured by DIC Corporation) and the like.
  • Examples of commercially available 2,2'-diallyl bisphenol A type epoxy compounds include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
  • Examples of commercially available hydrogenated bisphenol type epoxy compounds include EPICLON EXA-7015 (manufactured by DIC Corporation) and the like.
  • Examples of commercially available propylene oxide-added bisphenol A type epoxy compounds include EP-4000S (manufactured by ADEKA Corporation) and the like.
  • Examples of commercially available resorcinol-type epoxy compounds include EX-201 (manufactured by Nagase ChemteX Corporation) and the like.
  • Examples of commercially available biphenyl type epoxy compounds include jER YX-4000H (manufactured by Mitsubishi Chemical Corporation) and the like.
  • Examples of commercially available sulfide-type epoxy compounds include YSLV-50TE (manufactured by Nittetsu Chemical & Materials Co., Ltd.).
  • Examples of commercially available diphenyl ether type epoxy compounds include YSLV-80DE (manufactured by Nittetsu Chemical & Materials Co., Ltd.).
  • Examples of commercially available dicyclopentadiene type epoxy compounds include EP-4088S (manufactured by ADEKA Corporation) and the like.
  • Examples of commercially available naphthalene-type epoxy compounds include EPICLON HP-4032 and EPICLON EXA-4700 (both manufactured by DIC Corporation).
  • Examples of commercially available phenol novolac type epoxy compounds include EPICLON N-770 (manufactured by DIC Corporation) and the like.
  • Examples of commercially available orthocresol novolak type epoxy compounds include EPICLON N-670-EXP-S (manufactured by DIC Corporation) and the like.
  • Examples of commercially available dicyclopentadiene novolak type epoxy compounds include EPICLON HP-7200 (manufactured by DIC Corporation) and the like.
  • Examples of commercially available biphenyl novolac type epoxy compounds include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.) and the like.
  • Examples of commercially available naphthalene phenol novolac type epoxy compounds include ESN-165S (manufactured by Nittetsu Chemical & Materials Co., Ltd.).
  • Examples of commercially available glycidylamine type epoxy compounds include jER630 (manufactured by Mitsubishi Chemical Corporation), EPICLON430 (manufactured by DIC Corporation), TETRAD-X (manufactured by Mitsubishi Gas Chemical Company, Inc.) and the like.
  • alkyl polyol type epoxy compounds for example, ZX-1542 (manufactured by Nittetsu Chemical & Materials Co., Ltd.), EPICLON726 (manufactured by DIC Corporation), Epolite 80MFA (manufactured by Kyoei Co., Ltd.), Denacol EX- 611 (manufactured by Nagase ChemteX Corporation) and the like can be mentioned.
  • Examples of commercially available rubber-modified epoxy compounds include YR-450, YR-207 (all manufactured by Nittetsu Chemical & Materials Co., Ltd.), Epolide PB (manufactured by Daicel Co., Ltd.), and the like.
  • Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation) and the like.
  • Other commercially available epoxy compounds include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nittetsu Chemical & Materials Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Co., Ltd.), jER1031 and jER1032. (All manufactured by Mitsubishi Chemical Corporation), EXA-7120 (manufactured by DIC Corporation), TEPIC (manufactured by Nissan Chemical Industries, Ltd.) and the like can be mentioned.
  • the epoxy compound a partially (meth) acrylic-modified epoxy compound is also preferably used.
  • the partial (meth) acrylic-modified epoxy compound can be obtained by reacting an epoxy group of a part of an epoxy compound having two or more epoxy groups with (meth) acrylic acid. It means a compound having one or more epoxy groups and one or more (meth) acryloyl groups in the molecule.
  • the above-mentioned "(meth) acrylic” means acrylic or methacrylic
  • the above-mentioned "(meth) acryloyl” means acryloyl or methacrylic acid.
  • Examples of commercially available partial (meth) acrylic-modified epoxy compounds include UVACURE1561, KRM8287 (both manufactured by Dycel Ornex) and the like.
  • the curable resin may contain a (meth) acrylic compound.
  • the (meth) acrylic compound include (meth) acrylic acid ester compounds, epoxy (meth) acrylates, urethane (meth) acrylates, and the like. Of these, epoxy (meth) acrylate is preferable.
  • the (meth) acrylic compound preferably has two or more (meth) acryloyl groups in one molecule from the viewpoint of reactivity.
  • the above-mentioned "(meth) acrylic compound” means a compound having a (meth) acryloyl group.
  • (meth) acrylate means acrylate or methacrylate
  • epoxy (meth) acrylate is a compound obtained by reacting all epoxy groups in an epoxy compound with (meth) acrylic acid. Represents that.
  • monofunctional ones include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate.
  • bifunctional ones include, for example, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexane.
  • Dimethylol dicyclopentadienyldi (meth) acrylate Dimethylol dicyclopentadienyldi (meth) acrylate, ethylene oxide modified isocyanuric acid di (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, carbonate diol di (meth) acrylate, Examples thereof include polyether diol di (meth) acrylate, polyester diol di (meth) acrylate, polycaprolactone diol di (meth) acrylate, and polybutadiene diol di (meth) acrylate.
  • those having trifunctionality or higher include, for example, trimethylol propanetri (meth) acrylate, ethylene oxide-added trimethylol propanetri (meth) acrylate, and propylene oxide-added trimethylol propanetri (meth) acrylate.
  • Examples of the epoxy (meth) acrylate include those obtained by reacting an epoxy compound and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method.
  • the same epoxy compound as the above-mentioned epoxy compound can be used as the curable resin contained in the sealant for a liquid crystal display element of the present invention.
  • epoxy (meth) acrylates commercially available ones include, for example, epoxy (meth) acrylate manufactured by Dycel Ornex, epoxy (meth) acrylate manufactured by Shin-Nakamura Chemical Industry Co., Ltd., and epoxy manufactured by Kyoei Co., Ltd. Examples thereof include meta) acrylate and epoxy (meth) acrylate manufactured by Nagase ChemteX Corporation.
  • Examples of the epoxy (meth) acrylate manufactured by Dycel Ornex include EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3702, EBECRYL3702, EBECRYL3701, EBECRYL3701
  • Examples of the epoxy (meth) acrylate manufactured by Shin-Nakamura Chemical Industry Co., Ltd. include EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, EMA-1020 and the like.
  • Examples of the epoxy (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd. include epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, epoxy ester 200PA, epoxy ester 80MFA, epoxy ester 3002M, epoxy ester 3002A, and epoxy ester 1600A. Examples thereof include epoxy ester 3000M, epoxy ester 3000A, epoxy ester 200EA, and epoxy ester 400EA. Examples of the epoxy (meth) acrylate manufactured by Nagase ChemteX include Denacol acrylate DA-141, Denacol acrylate DA-314, and Denacol acrylate DA-911.
  • the urethane (meth) acrylate can be obtained, for example, by reacting a (meth) acrylic acid derivative having a hydroxyl group with respect to an isocyanate compound in the presence of a catalytic amount of a tin-based compound.
  • Examples of the isocyanate compound used as a raw material for the urethane (meth) acrylate include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and diphenylmethane-4,4.
  • MDI '-Diisocyanate
  • XDI xylylene diisocyanate
  • XDI hydrogenated XDI
  • lysine diisocyanate triphenylmethane triisocyanate
  • tris (isocyanate) Phenyl) thiophosphate tetramethylxylylene diisocyanate
  • 1,6,11-undecantry isocyanate and the like can be mentioned.
  • the isocyanate compound which is a raw material of the urethane (meth) acrylate a chain-extended isocyanate compound obtained by reacting a polyol with an excess isocyanate compound can also be used.
  • the polyol include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, and polycaprolactone diol.
  • Examples of the (meth) acrylic acid derivative having a hydroxyl group include hydroxyalkyl mono (meth) acrylate, mono (meth) acrylate of dihydric alcohol, mono (meth) acrylate of trihydric alcohol or di (meth) acrylate. , Epoxy (meth) acrylate and the like.
  • Examples of the hydroxyalkyl mono (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. Can be mentioned.
  • Examples of the divalent alcohol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, polyethylene glycol and the like.
  • Examples of the trihydric alcohol include trimethylolethane, trimethylolpropane, and glycerin.
  • Examples of the epoxy (meth) acrylate include bisphenol A type epoxy (meth) acrylate.
  • urethane (meth) acrylates commercially available ones include, for example, urethane (meth) acrylate manufactured by Toa Synthetic Co., Ltd., urethane (meth) acrylate manufactured by Dycel Ornex, and urethane (meth) manufactured by Negami Kogyo Co., Ltd. Examples thereof include acrylate, urethane (meth) acrylate manufactured by Shin-Nakamura Chemical Industry Co., Ltd., urethane (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd., and the like. Examples of the urethane (meth) acrylate manufactured by Toagosei Co., Ltd.
  • the urethane (meth) acrylate manufactured by the Daicel Orunekusu Inc. for example, EBECRYL210, EBECRYL220, EBECRYL230, EBECRYL270, EBECRYL1290, EBECRYL2220, EBECRYL4827, EBECRYL4842, EBECRYL4858, EBECRYL5129, EBECRYL6700, EBECRYL8402, EBECRYL8803, EBECRYL8804, EBECRYL8807, EBECRYL9260 etc. Can be mentioned.
  • Examples of the urethane (meth) acrylate manufactured by Negami Kogyo Co., Ltd. include Art Resin UN-330, Art Resin SH-500B, Art Resin UN-1200TPK, Art Resin UN-1255, Art Resin UN-3320HB, and Art Resin UN-. 7100, Art Resin UN-9000A, Art Resin UN-9000H and the like can be mentioned.
  • Examples of the urethane (meth) acrylate manufactured by Shin Nakamura Chemical Industry Co., Ltd. include U-2HA, U-2PHA, U-3HA, U-4HA, U-6H, U-6HA, U-6LPA, U-10H, and the like.
  • Examples of the urethane (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd. include AH-600, AI-600, AT-600, UA-101I, UA-101T, UA-306H, UA-306I, UA-306T and the like. Be done.
  • the curable resin contains the (meth) acrylic compound in addition to the epoxy compound, or when the partially (meth) acrylic-modified epoxy compound is contained, the epoxy group and the (meth) in the curable resin are contained. It is preferable that the ratio of the (meth) acryloyl group in the total with the acryloyl group is 30 mol% or more and 95 mol% or less. When the ratio of the (meth) acryloyl group is in this range, the sealant for the liquid crystal display element obtained is excellent in adhesiveness while suppressing the occurrence of liquid crystal contamination.
  • the curable resin preferably has a hydrogen-bonding unit such as an -OH group, an -NH- group, and an -NH 2 group from the viewpoint of further suppressing liquid crystal contamination.
  • the sealant for a liquid crystal display element of the present invention preferably contains a photoradical polymerization initiator.
  • the photoradical polymerization initiator include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanosen compounds, oxime ester compounds, benzoin ether compounds, thioxanthone compounds and the like.
  • Specific examples of the photoradical polymerization initiator include 1-hydroxycyclohexylphenylketone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone, and 2- (dimethylamino).
  • the content of the photoradical polymerization initiator has a preferable lower limit of 0.5 parts by mass and a preferable upper limit of 10 parts by mass with respect to 100 parts by mass of the curable resin.
  • the content of the photoradical polymerization initiator is in this range, the obtained sealing agent for a liquid crystal display element is excellent in storage stability and photocurability while suppressing liquid crystal contamination.
  • the more preferable lower limit of the content of the photoradical polymerization initiator is 1 part by mass, and the more preferable upper limit is 7 parts by mass.
  • the sealant for a liquid crystal display element of the present invention may contain a thermal radical polymerization initiator.
  • the thermal radical polymerization initiator include those composed of an azo compound, an organic peroxide, or the like. Among them, an initiator composed of an azo compound (hereinafter, also referred to as “azo initiator”) is preferable from the viewpoint of suppressing liquid crystal contamination, and an initiator composed of a polymer azo compound (hereinafter, “polymer azo”) is preferable. Also referred to as “initiator”) is more preferred.
  • the thermal radical polymerization initiator may be used alone or in combination of two or more.
  • polymer azo compound means a compound having an azo group and having a number average molecular weight of 300 or more, which generates a radical capable of reacting a (meth) acryloyl group by heat. do.
  • the preferable lower limit of the number average molecular weight of the polymer azo compound is 1000, and the preferable upper limit is 300,000.
  • the more preferable lower limit of the number average molecular weight of the polymer azo compound is 5000, the more preferable upper limit is 100,000, the further preferable lower limit is 10,000, and the further preferable upper limit is 90,000.
  • the number average molecular weight is a value obtained by measuring by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent and converting it into polystyrene. Examples of the column for measuring the number average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK) and the like.
  • Examples of the polymer azo compound include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
  • the polymer azo compound having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group those having a polyethylene oxide structure are preferable.
  • Specific examples of the polymer azo compound include a polycondensate of 4,4'-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4'-azobis (4-cyanopentanoic acid). And a polycondensate of polydimethylsiloxane having a terminal amino group and the like.
  • polymer azo initiators include, for example, VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001 (all manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and the like. Can be mentioned.
  • examples of the non-polymer azo initiator include V-65 and V-501 (both manufactured by Wako Pure Chemical Industries, Ltd.).
  • organic peroxide examples include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, peroxyesters, diacyl peroxides, peroxydicarbonates and the like.
  • the content of the thermal radical polymerization initiator has a preferable lower limit of 0.1 parts by mass and a preferable upper limit of 10 parts by mass with respect to 100 parts by mass of the curable resin.
  • the content of the thermal radical polymerization initiator is in this range, the obtained sealing agent for a liquid crystal display element is excellent in storage stability and thermosetting property while suppressing liquid crystal contamination.
  • the more preferable lower limit of the content of the thermal radical polymerization initiator is 0.3 parts by mass, and the more preferable upper limit is 5 parts by mass.
  • the sealant for a liquid crystal display element of the present invention may contain a filler for the purpose of improving the viscosity, improving the adhesiveness by the stress dispersion effect, improving the linear expansion rate, improving the moisture resistance of the cured product, and the like.
  • an inorganic filler or an organic filler can be used as the filler.
  • the inorganic filler include silica, talc, glass beads, asbestos, gypsum, diatomaceous soil, smectite, bentonite, montmorillonite, sericite, active white clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide and titanium oxide. , Calcium carbonate, magnesium carbonate, magnesium hydroxide, aluminum hydroxide, aluminum nitride, silicon nitride, barium sulfate, calcium silicate and the like.
  • the organic filler include polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, and the like. The filler may be used alone or in combination of two or more.
  • the preferable lower limit of the content of the filler in 100 parts by mass of the sealant for a liquid crystal display element of the present invention is 10 parts by mass, and the preferable upper limit is 70 parts by mass.
  • the content of the filler is in this range, the effect of improving the adhesiveness and the like is excellent without deteriorating the coatability and the like.
  • the more preferable lower limit of the content of the filler is 20 parts by mass, and the more preferable upper limit is 60 parts by mass.
  • the sealant for a liquid crystal display element of the present invention may contain a silane coupling agent.
  • the silane coupling agent mainly has a role as an adhesive auxiliary for satisfactorily adhering a sealant for a liquid crystal display element and a substrate or the like.
  • silane coupling agent for example, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatepropyltrimethoxysilane and the like are preferably used. These are excellent in the effect of improving the adhesiveness with the substrate and the like, and can suppress the outflow of the curable resin into the liquid crystal display by chemically bonding with the curable resin. Of these, 3-glycidoxypropyltrimethoxysilane is preferable.
  • the silane coupling agent may be used alone or in combination of two or more.
  • the preferable lower limit of the content of the silane coupling agent in 100 parts by mass of the sealant for a liquid crystal display element of the present invention is 0.1 parts by mass, and the preferable upper limit is 10 parts by mass.
  • the content of the silane coupling agent is within this range, the effect of improving the adhesiveness while suppressing the occurrence of liquid crystal contamination becomes more excellent.
  • the more preferable lower limit of the content of the silane coupling agent is 0.3 parts by mass, and the more preferable upper limit is 5 parts by mass.
  • the sealant for a liquid crystal display element of the present invention may contain a light-shielding agent.
  • the sealant for a liquid crystal display element of the present invention can be suitably used as a light-shielding sealant.
  • Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black. Of these, titanium black is preferable.
  • the titanium black is a substance having a higher transmittance in the vicinity of the ultraviolet region, particularly for light having a wavelength of 370 nm or more and 450 nm or less, as compared with the average transmittance for light having a wavelength of 300 nm or more and 800 nm or less. That is, the titanium black has a property of imparting a light-shielding property to the sealant for a liquid crystal display element of the present invention by sufficiently blocking light having a wavelength in the visible light region, while transmitting light having a wavelength in the vicinity of the ultraviolet region. It is a light-shielding agent.
  • the photoradical polymerization initiator that can initiate the reaction with light having a wavelength having a high transmittance of the titanium black, the photocurability of the sealant for a liquid crystal display element of the present invention is further improved. Can be made to.
  • the light-shielding agent contained in the sealant for a liquid crystal display element of the present invention a substance having a high insulating property is preferable, and as a light-shielding agent having a high insulating property, titanium black is preferable.
  • the titanium black has an optical density (OD value) of 3 or more, more preferably 4 or more, per 1 ⁇ m. The higher the light-shielding property of the titanium black, the better, and the OD value of the titanium black has no particular preferable upper limit, but is usually 5 or less.
  • the above titanium black exerts a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, and oxidation.
  • an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, and oxidation.
  • Surface-treated titanium black such as those coated with an inorganic component such as zirconium or magnesium oxide, can also be used. Among them, those treated with an organic component are preferable in that the insulating property can be further improved.
  • the liquid crystal display element manufactured by using the sealant for the liquid crystal display element of the present invention containing the above titanium black as a light shielding agent has sufficient light shielding property, so that there is no light leakage and a high contrast is obtained. It is possible to realize a liquid crystal display element having excellent image display quality.
  • Examples of commercially available titanium blacks include titanium black manufactured by Mitsubishi Materials Corporation and titanium black manufactured by Ako Kasei Co., Ltd. Examples of the titanium black manufactured by Mitsubishi Materials Corporation include 12S, 13M, 13M-C, 13RN, 14M-C and the like. Examples of the titanium black manufactured by Ako Kasei Co., Ltd. include Tilak D and the like.
  • the preferable lower limit of the specific surface area of the titanium black is 13 m 2 / g, the preferable upper limit is 30 m 2 / g, the more preferable lower limit is 15 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
  • the preferable lower limit of the volume resistance of the titanium black is 0.5 ⁇ ⁇ cm, the preferable upper limit is 3 ⁇ ⁇ cm, the more preferable lower limit is 1 ⁇ ⁇ cm, and the more preferable upper limit is 2.5 ⁇ ⁇ cm.
  • the primary particle diameter of the light-shielding agent is not particularly limited as long as it is equal to or less than the distance between the substrates of the liquid crystal display element, but the preferable lower limit is 1 nm and the preferable upper limit is 5000 nm.
  • the primary particle size of the light-shielding agent is in this range, the light-shielding property can be improved without deteriorating the coatability of the obtained sealant for a liquid crystal display element.
  • the more preferable lower limit of the primary particle diameter of the light-shielding agent is 5 nm
  • the more preferable upper limit is 200 nm
  • the further preferable lower limit is 10 nm
  • the further preferable upper limit is 100 nm.
  • the primary particle size of the light-shielding agent can be measured by using NICOMP 380ZLS (manufactured by PARTICLE SIZING SYSTEMS) to disperse the light-shielding agent in a solvent (water, organic solvent, etc.).
  • the preferable lower limit of the content of the light-shielding agent in 100 parts by mass of the sealant for a liquid crystal display element of the present invention is 5 parts by mass, and the preferable upper limit is 80 parts by mass.
  • the content of the light-shielding agent is within this range, the adhesiveness of the obtained sealant for a liquid crystal display element, the strength after curing, and the drawing property are not significantly deteriorated, and more excellent light-shielding property is exhibited.
  • the more preferable lower limit of the content of the light-shielding agent is 10 parts by mass
  • the more preferable upper limit is 70 parts by mass
  • the further preferable lower limit is 30 parts by mass
  • the further preferable upper limit is 60 parts by mass.
  • the sealant for a liquid crystal display element of the present invention further contains, if necessary, a stress relaxation agent, a reactive diluent, a rocking agent, a spacer, a curing accelerator, a defoaming agent, a leveling agent, a polymerization inhibitor and the like. It may contain an agent.
  • a curable resin, a thermosetting agent, a photoradical polymerization initiator added as necessary, and the like are mixed using a mixer. How to do it, etc.
  • the mixer include a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and three rolls.
  • a vertically conductive material By blending conductive fine particles with the sealant for a liquid crystal display element of the present invention, a vertically conductive material can be manufactured.
  • a vertically conductive material containing a sealing agent for a liquid crystal display element of the present invention and conductive fine particles is also one of the present inventions.
  • the conductive fine particles for example, a metal ball, a resin fine particle having a conductive metal layer formed on the surface thereof, or the like can be used.
  • the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the excellent elasticity of the resin fine particles enables conductive connection without damaging the transparent substrate or the like.
  • a liquid crystal display element having a cured product of a sealant for a liquid crystal display element of the present invention or a cured product of a vertically conductive material of the present invention is also one of the present inventions.
  • the liquid crystal display element of the present invention a liquid crystal display element having a narrow frame design is preferable.
  • the width of the frame portion around the liquid crystal display unit is preferably 2 mm or less.
  • the coating width of the sealant for the liquid crystal display element of the present invention when manufacturing the liquid crystal display element of the present invention is preferably 1 mm or less.
  • the sealant for a liquid crystal display element of the present invention can be suitably used for manufacturing a liquid crystal display element by a liquid crystal dropping method.
  • Examples of the method for manufacturing the liquid crystal display element of the present invention by the liquid crystal dropping method include the following methods. First, a step of forming a frame-shaped seal pattern on a substrate by screen printing, applying a dispenser, or the like with the sealant for a liquid crystal display element of the present invention is performed. Next, in a state where the sealant for a liquid crystal display element of the present invention is uncured, fine droplets of liquid crystal are dropped and applied to the entire surface of the frame of the seal pattern, and a step of immediately superimposing another substrate is performed.
  • a liquid crystal display element can be obtained by a method of heating and curing the sealant. Further, before the step of heating and curing the sealant, a step of irradiating the seal pattern portion with light such as ultraviolet rays to temporarily cure the sealant may be performed.
  • the present invention it is possible to provide a sealant for a liquid crystal display element having excellent storage stability, adhesiveness, and low liquid crystal contamination. Further, according to the present invention, it is possible to provide a vertically conductive material and a liquid crystal display element using the sealant for a liquid crystal display element.
  • Examples 1 to 16 Comparative Examples 1 to 13
  • a planetary stirrer manufactured by Shinky Co., Ltd., "Awatori Rentaro"
  • Sealing agents for liquid crystal display elements of Examples 1 to 16 and Comparative Examples 1 to 13 were prepared.
  • the sealant for the liquid crystal display element is spread, irradiated with ultraviolet rays (wavelength 365 nm) of 100 mW / cm 2 for 30 seconds using a metal halide lamp, and then heated at 120 ° C. for 1 hour to cure the sealant for the liquid crystal display element.
  • An adhesion test piece was obtained.
  • An adhesion test piece was obtained in the same manner for a glass substrate having a polyimide alignment film for TN (manufactured by Nissan Chemical Industries, Ltd., "SE6414”) on the surface instead of the glass substrate with an ITO thin film.
  • the adhesive strength (adhesive strength) of each of the obtained adhesive test pieces was measured using a tension gauge.
  • the sealant for the liquid crystal display element after the defoaming treatment is applied to the two alignment films under the conditions of a nozzle diameter of 0.4 mm ⁇ , a nozzle gap of 42 ⁇ m, a syringe discharge pressure of 100 to 400 kPa, and a coating speed of 60 mm / sec. It was applied in a frame shape to one of the substrates with ITO. At this time, the discharge pressure was adjusted so that the line width of the sealant for the liquid crystal display element was about 1.0 mm.
  • liquid crystal 4-pentyl-4-biphenylcarbonitrile manufactured by Tokyo Chemical Industry Co., Ltd.
  • the other substrate was bonded under vacuum.
  • the sealant for the liquid crystal display element is temporarily irradiated with ultraviolet rays of 100 mW / cm 2 for 30 seconds using a metal halide lamp. It was cured. Then, it was heated at 120 ° C. for 1 hour to perform main curing, and a liquid crystal display element was manufactured.
  • orientation disorder display unevenness
  • VHX-5000 polarizing microscope
  • Orientation disorder is judged from the color unevenness of the display part, and if no display unevenness is seen on the liquid crystal display element, there is " ⁇ ", and there is display unevenness in a part of the seal peripheral part (near the sealant for the liquid crystal display element).
  • the low liquid crystal contamination property was evaluated as " ⁇ ” in the case of " ⁇ ” and "x” in the case where uneven display occurred over the entire peripheral part of the seal.
  • the present invention it is possible to provide a sealant for a liquid crystal display element having excellent storage stability, adhesiveness, and low liquid crystal contamination. Further, according to the present invention, it is possible to provide a vertically conductive material and a liquid crystal display element using the sealant for a liquid crystal display element.

Abstract

The purpose of the present invention is to provide a sealing agent, for a liquid crystal display element, having excellent storage stability, adhesiveness, and low liquid crystal contamination properties. Also, the purpose of the present invention is to provide a vertical conduction material and a liquid crystal display element which are obtained by using said sealing agent for a liquid crystal display element. The present invention pertains to a sealing agent, for a liquid crystal display element, that contains a curable resin and a thermosetting agent, wherein the thermosetting agent includes an imidazole compound and amine adduct for an epoxy compound.

Description

液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
本発明は、保存安定性、接着性、及び、低液晶汚染性に優れる液晶表示素子用シール剤に関する。また、本発明は、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子に関する。 The present invention relates to a sealant for a liquid crystal display element, which is excellent in storage stability, adhesiveness, and low liquid crystal stain resistance. The present invention also relates to a vertically conductive material and a liquid crystal display element using the sealant for a liquid crystal display element.
近年、液晶表示セル等の液晶表示素子の製造方法としては、タクトタイム短縮、使用液晶量の最適化といった観点から、特許文献1、特許文献2に開示されているようなシール剤を用いた滴下工法と呼ばれる液晶滴下方式が用いられている。
滴下工法では、まず、2枚の電極付き基板の一方に、ディスペンスにより枠状のシールパターンを形成する。次いで、シール剤が未硬化の状態で液晶の微小滴をシールパターンの枠内に滴下し、真空下で他方の基板を重ね合わせた後にシール剤を硬化させ、液晶表示素子を作製する。現在この滴下工法が液晶表示素子の製造方法の主流となっている。
In recent years, as a method for manufacturing a liquid crystal display element such as a liquid crystal display cell, dripping using a sealing agent as disclosed in Patent Document 1 and Patent Document 2 from the viewpoint of shortening the tact time and optimizing the amount of liquid crystal used. A liquid crystal dropping method called a construction method is used.
In the dropping method, first, a frame-shaped seal pattern is formed on one of the two substrates with electrodes by dispensing. Next, in a state where the sealant is uncured, fine droplets of liquid crystal are dropped into the frame of the seal pattern, the other substrate is laminated under vacuum, and then the sealant is cured to produce a liquid crystal display element. Currently, this dropping method is the mainstream method for manufacturing liquid crystal display elements.
ところで、携帯電話、携帯ゲーム機等、各種液晶パネル付きモバイル機器が普及している現代において、機器の小型化は最も求められている課題である。機器の小型化の手法としては、液晶表示部の狭額縁化が挙げられ、例えば、シール部の位置をブラックマトリックス下に配置することが行われている(以下、狭額縁設計ともいう)。 By the way, in the present age when mobile devices with various liquid crystal panels such as mobile phones and handheld game machines are widespread, miniaturization of the devices is the most sought after issue. As a method for miniaturizing the device, a narrowing of the frame of the liquid crystal display unit is mentioned. For example, the position of the seal portion is arranged under the black matrix (hereinafter, also referred to as a narrow frame design).
特開2001-133794号公報Japanese Unexamined Patent Publication No. 2001-133794 国際公開第02/092718号International Publication No. 02/02718
狭額縁設計ではシール剤がブラックマトリックスの直下に配置されるため、滴下工法を行うと、シール剤を光硬化させる際に照射した光が遮られ、シール剤の内部に光が到達し難く、従来のシール剤では硬化が不充分となる。このようにシール剤の硬化が不充分となると、未硬化のシール剤成分が液晶中に溶出して液晶汚染を発生させやすくなるという問題があった。特に、近年、液晶の高極性化に伴って、従来は問題のなかったシール剤を用いた場合でも液晶汚染が生じることがあり、シール剤には更なる低液晶汚染性が求められていた。 In the narrow frame design, the sealant is placed directly under the black matrix, so if the dropping method is used, the light emitted when the sealant is photo-cured is blocked, and it is difficult for the light to reach the inside of the sealant. The sealing agent is insufficiently cured. When the curing of the sealing agent is insufficient as described above, there is a problem that the uncured sealing agent component is eluted into the liquid crystal display and the liquid crystal contamination is likely to occur. In particular, in recent years, with the increasing polarity of liquid crystals, liquid crystal contamination may occur even when a sealing agent, which has not been a problem in the past, is used, and the sealing agent is required to have further low liquid crystal contamination.
シール剤を光硬化させることが困難となる場合は、加熱によって硬化させることが考えられ、シール剤を加熱によって硬化させるための方法として、シール剤に熱硬化剤を配合することが行われている。また、狭額縁設計ではシール剤は配向膜上にも配置されることから、基板だけでなく配向膜に対する接着性にも優れる液晶表示素子用シール剤が求められている。しかしながら、シール剤の硬化性や接着性を向上させるために反応性の高い熱硬化剤を用いた場合、得られるシール剤が保存安定性に劣るものとなったり、液晶汚染を生じさせたりすることがあった。 When it is difficult to photo-cure the sealant, it is conceivable to cure it by heating, and as a method for curing the sealant by heating, a thermosetting agent is added to the sealant. .. Further, in the narrow frame design, since the sealant is also arranged on the alignment film, there is a demand for a sealant for a liquid crystal display element having excellent adhesiveness not only to the substrate but also to the alignment film. However, when a highly reactive thermosetting agent is used to improve the curability and adhesiveness of the sealant, the obtained sealant may be inferior in storage stability or cause liquid crystal contamination. was there.
本発明は、保存安定性、接着性、及び、低液晶汚染性に優れる液晶表示素子用シール剤を提供することを目的とする。また、本発明は、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することを目的とする。 An object of the present invention is to provide a sealant for a liquid crystal display element having excellent storage stability, adhesiveness, and low liquid crystal stain resistance. Another object of the present invention is to provide a vertically conductive material and a liquid crystal display element using the sealant for a liquid crystal display element.
本発明は、硬化性樹脂と熱硬化剤とを含有する液晶表示素子用シール剤であって、上記熱硬化剤は、エポキシ化合物のアミンアダクト体及びイミダゾール化合物を含む液晶表示素子用シール剤である。
以下に本発明を詳述する。
The present invention is a sealant for a liquid crystal display element containing a curable resin and a thermosetting agent, and the thermosetting agent is a sealant for a liquid crystal display element containing an amine adduct body of an epoxy compound and an imidazole compound. ..
The present invention will be described in detail below.
本発明者は、熱硬化剤として、エポキシ化合物のアミンアダクト体とイミダゾール化合物とを組み合わせて用いることにより、保存安定性、接着性、及び、低液晶汚染性の全てに優れる液晶表示素子用シール剤を得ることができることを見出し、本発明を完成させるに至った。 The present inventor uses a combination of an amine adduct of an epoxy compound and an imidazole compound as a thermosetting agent to provide a sealant for a liquid crystal display element which is excellent in storage stability, adhesiveness, and low liquid crystal contamination. It was found that the present invention can be obtained, and the present invention has been completed.
本発明の液晶表示素子用シール剤は、熱硬化剤を含有する。
上記熱硬化剤は、エポキシ化合物のアミンアダクト体(以下、単に「アミンアダクト体」ともいう)及びイミダゾール化合物を含む。
上記アミンアダクト体と上記イミダゾール化合物とを組み合わせて含有することにより、本発明の液晶表示素子用シール剤は、保存安定性、接着性、及び、低液晶汚染性の全てに優れるものとなる。
The sealant for a liquid crystal display element of the present invention contains a thermosetting agent.
The thermosetting agent contains an amine adduct body of an epoxy compound (hereinafter, also simply referred to as “amine adduct body”) and an imidazole compound.
By containing the amine adduct body and the imidazole compound in combination, the sealant for a liquid crystal display element of the present invention is excellent in all of storage stability, adhesiveness, and low liquid crystal contamination.
上記アミンアダクト体は、エポキシ化合物に由来する構造とアミン化合物に由来する構造とを有する。 The amine adduct body has a structure derived from an epoxy compound and a structure derived from an amine compound.
上記アミンアダクト体の由来となるエポキシ化合物としては、例えば、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールE型エポキシ化合物、ビスフェノールS型エポキシ化合物、2,2’-ジアリルビスフェノールA型エポキシ化合物、水添ビスフェノール型エポキシ化合物、プロピレンオキシド付加ビスフェノールA型エポキシ化合物、レゾルシノール型エポキシ化合物、ビフェニル型エポキシ化合物、スルフィド型エポキシ化合物、ジフェニルエーテル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、ナフタレン型エポキシ化合物、フェノールノボラック型エポキシ化合物、オルトクレゾールノボラック型エポキシ化合物、ジシクロペンタジエンノボラック型エポキシ化合物、ビフェニルノボラック型エポキシ化合物、ナフタレンフェノールノボラック型エポキシ化合物、グリシジルアミン型エポキシ化合物、アルキルポリオール型エポキシ化合物、ゴム変性型エポキシ化合物、グリシジルエステル化合物等が挙げられる。なかでも、ビスフェノールA型エポキシ化合物が好ましい。 Examples of the epoxy compound from which the amine adduct is derived include bisphenol A type epoxy compound, bisphenol F type epoxy compound, bisphenol E type epoxy compound, bisphenol S type epoxy compound, and 2,2'-diallyl bisphenol A type epoxy compound. , Hydrogenated bisphenol type epoxy compound, propylene oxide added bisphenol A type epoxy compound, resorcinol type epoxy compound, biphenyl type epoxy compound, sulfide type epoxy compound, diphenyl ether type epoxy compound, dicyclopentadiene type epoxy compound, naphthalene type epoxy compound, phenol Novolak type epoxy compound, orthocresol novolak type epoxy compound, dicyclopentadiene novolak type epoxy compound, biphenylnovolak type epoxy compound, naphthalenephenol novolak type epoxy compound, glycidylamine type epoxy compound, alkylpolypoly type epoxy compound, rubber-modified epoxy compound , Glysidyl ester compound and the like. Of these, bisphenol A type epoxy compounds are preferable.
上記アミンアダクト体の由来となるアミン化合物としては、例えば、脂肪族第1級モノアミン、脂環式第1級モノアミン、芳香族第1級モノアミン、アルキレンジアミン、1位の窒素原子が置換されたイミダゾリル基を有する第1級ジアミン、ポリアルキルポリアミン、脂環式ポリアミン、芳香族ポリアミン等が挙げられる。
上記脂肪族第1級モノアミンとしては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、エタノールアミン、プロパノールアミン等が挙げられる。
上記脂環式第1級モノアミンとしては、例えば、シクロヘキシルアミン等が挙げられる。
上記芳香族第1級モノアミンとしては、例えば、アニリン、トルイジン等が挙げられる。
上記アルキレンジアミンとしては、例えば、エチレンジアミン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,3-ジアミノブタン、1,4-ジアミノブタン、カダベリン、ヘキサメチレンジアミン等のアルキレンジアミン等が挙げられる。
上記1位の窒素原子が置換されたイミダゾリル基を有する第1級ジアミンとしては、例えば、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物等が挙げられる。
上記ポリアルキルポリアミンとしては、例えば、ジエチレントリアミン、トリエチレントリアミン、テトラエチレントリアミン、テトラエチレンペンタミン等が挙げられる。
上記脂環式ポリアミンとしては、例えば、1,4-ビス(アミノメチル)シクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、1,2-ビス(アミノメチル)シクロヘキサン、1,4-ジアミノ-3,6-ジエチルシクロヘキサン、イソホロンジアミン等が挙げられる。
上記芳香族ポリアミンとしては、例えば、o-キシリレンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等の芳香族ポリアミン等が挙げられる。
なかでも、1,4-ビス(アミノメチル)シクロヘキサンが好ましい。
Examples of the amine compound from which the amine adduct is derived include an aliphatic primary monoamine, an alicyclic primary monoamine, an aromatic primary monoamine, an alkylenediamine, and an imidazolyl substituted with a nitrogen atom at the 1-position. Examples thereof include primary diamines having a group, polyalkyl polyamines, alicyclic polyamines, aromatic polyamines and the like.
Examples of the aliphatic primary monoamine include methylamine, ethylamine, propylamine, butylamine, ethanolamine, propanolamine and the like.
Examples of the alicyclic primary monoamine include cyclohexylamine and the like.
Examples of the aromatic primary monoamine include aniline and toluidine.
Examples of the alkylenediamine include ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,3-diaminobutane, 1,4-diaminobutane, cadaverine, hexamethylenediamine and other alkylenediamines. Be done.
Examples of the primary diamine having an imidazolyl group in which the nitrogen atom at the 1-position is substituted include 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine. 2,4-Diamino-6- [2'-Undecylimidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino-6- [2'-ethyl-4'-methylimidazolyl- (1') ')]-Ethyl-s-triazine, 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine isocyanuric acid adduct and the like.
Examples of the polyalkylpolyamine include diethylenetriamine, triethylenetriamine, tetraethylenetriamine, tetraethylenepentamine and the like.
Examples of the alicyclic polyamine include 1,4-bis (aminomethyl) cyclohexane, 1,3-bis (aminomethyl) cyclohexane, 1,2-bis (aminomethyl) cyclohexane, and 1,4-diamino-3. , 6-diethylcyclohexane, isophoronediamine and the like.
Examples of the aromatic polyamine include aromatic polyamines such as o-xylylene diamine, m-xylylene diamine, p-xylylene diamine, diaminodiphenylmethane, and diaminodiphenyl sulfone.
Of these, 1,4-bis (aminomethyl) cyclohexane is preferable.
上記アミンアダクト体は、質量平均分子量の好ましい下限が500、好ましい上限が1500である。上記アミンアダクト体の質量平均分子量が500以上であることにより、得られる液晶表示素子用シール剤が低液晶汚染性により優れるものとなる。上記アミンアダクト体の質量平均分子量が1500以下であることにより、得られる液晶表示素子用シール剤がハンドリング性により優れるものとなる。上記アミンアダクト体の質量平均分子量のより好ましい下限は1000、より好ましい上限は1200である。
なお、本明細書において、上記質量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で溶媒としてテトラヒドロフランを用いて測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による質量平均分子量を測定する際のカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。
In the amine adduct body, the preferable lower limit of the mass average molecular weight is 500, and the preferable upper limit is 1500. When the mass average molecular weight of the amine adduct body is 500 or more, the obtained sealant for a liquid crystal display element becomes more excellent in low liquid crystal contamination. When the mass average molecular weight of the amine adduct body is 1500 or less, the obtained sealant for a liquid crystal display element becomes excellent in handleability. The more preferable lower limit of the mass average molecular weight of the amine adduct body is 1000, and the more preferable upper limit is 1200.
In the present specification, the mass average molecular weight is a value obtained by measuring by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent and converting it into polystyrene. Examples of the column for measuring the mass average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK) and the like.
上記アミンアダクト体は、下記式(1)で表される化合物を含むことが好ましい。 The amine adduct body preferably contains a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
式(1)中、Rは、それぞれ独立して、水素原子又はメチル基であり、nは、1以上10以下の整数である。 In the formula (1), R 1 is an independent hydrogen atom or a methyl group, and n is an integer of 1 or more and 10 or less.
上記式(1)中のRは、いずれもメチル基であることが好ましい。 It is preferable that each of R 1 in the above formula (1) is a methyl group.
本発明の液晶表示素子用シール剤全体における上記アミンアダクト体の含有割合の好ましい下限は2質量%、好ましい上限は5質量%である。本発明の液晶表示素子用シール剤全体における上記アミンアダクト化合物の含有割合が2質量%以上であることにより、得られる液晶表示素子用シール剤が接着性により優れるものとなる。本発明の液晶表示素子用シール剤全体における上記アミンアダクト化合物の含有割合が5質量%以下であることにより、得られる液晶表示素子用シール剤が低液晶汚染性により優れるものとなる。本発明の液晶表示素子用シール剤全体における上記アミンアダクト化合物の含有割合のより好ましい下限は3質量%、より好ましい上限は4質量%である。
また、後述する硬化性樹脂100質量部に対する上記アミンアダクト体の含有量の好ましい下限は2質量部、好ましい上限は5質量部である。硬化性樹脂100質量部に対する上記アミンアダクト化合物の含有量が2質量部以上であることにより、得られる液晶表示素子用シール剤が接着性により優れるものとなる。硬化性樹脂100質量部に対する上記アミンアダクト化合物の含有量が5質量部以下であることにより、得られる液晶表示素子用シール剤が低液晶汚染性により優れるものとなる。硬化性樹脂100質量部に対する上記アミンアダクト化合物の含有量のより好ましい下限は3質量部、より好ましい上限は4質量部である。
The preferable lower limit of the content ratio of the amine adduct body in the entire sealant for a liquid crystal display element of the present invention is 2% by mass, and the preferable upper limit is 5% by mass. When the content ratio of the amine adduct compound in the entire sealant for a liquid crystal display element of the present invention is 2% by mass or more, the obtained sealant for a liquid crystal display element becomes more excellent in adhesiveness. When the content ratio of the amine adduct compound in the entire sealant for a liquid crystal display element of the present invention is 5% by mass or less, the obtained sealant for a liquid crystal display element becomes more excellent in low liquid crystal contamination. A more preferable lower limit of the content ratio of the amine adduct compound in the entire sealant for a liquid crystal display element of the present invention is 3% by mass, and a more preferable upper limit is 4% by mass.
Further, the preferable lower limit of the content of the amine adduct body with respect to 100 parts by mass of the curable resin described later is 2 parts by mass, and the preferable upper limit is 5 parts by mass. When the content of the amine adduct compound with respect to 100 parts by mass of the curable resin is 2 parts by mass or more, the obtained sealant for a liquid crystal display element becomes more excellent in adhesiveness. When the content of the amine adduct compound with respect to 100 parts by mass of the curable resin is 5 parts by mass or less, the obtained sealing agent for a liquid crystal display element becomes more excellent in low liquid crystal contamination. The more preferable lower limit of the content of the amine adduct compound with respect to 100 parts by mass of the curable resin is 3 parts by mass, and the more preferable upper limit is 4 parts by mass.
上記イミダゾール化合物は、貯蔵安定性の観点から、炭素数10以上のアルキル鎖を有することが好ましく、炭素数10以上12以下のアルキル鎖を有することがより好ましい。 From the viewpoint of storage stability, the imidazole compound preferably has an alkyl chain having 10 or more carbon atoms, and more preferably has an alkyl chain having 10 or more carbon atoms and 12 or less carbon atoms.
上記イミダゾール化合物の融点の好ましい上限は130℃である。上記イミダゾール化合物の融点が130℃以下であることにより、得られる液晶表示素子用シール剤が低液晶汚染性により優れるものとなる。上記イミダゾール化合物の融点のより好ましい上限は120℃、更に好ましい上限は110℃、更により好ましい上限は60℃である。
また、得られる液晶表示素子用シール剤の保存安定性の観点から、上記イミダゾール化合物の融点のより好ましい下限は30℃である。
なお、上記イミダゾール化合物の融点は、示差走査熱量測定又は市販の融点測定器により求めることができる。
The preferable upper limit of the melting point of the imidazole compound is 130 ° C. When the melting point of the imidazole compound is 130 ° C. or lower, the obtained sealant for a liquid crystal display element becomes more excellent in low liquid crystal contamination. A more preferable upper limit of the melting point of the imidazole compound is 120 ° C., a further preferable upper limit is 110 ° C., and a further preferable upper limit is 60 ° C.
Further, from the viewpoint of storage stability of the obtained sealant for a liquid crystal display element, a more preferable lower limit of the melting point of the imidazole compound is 30 ° C.
The melting point of the imidazole compound can be determined by differential scanning calorimetry or a commercially available melting point measuring instrument.
上記イミダゾール化合物としては、例えば、下記式(2)で表される化合物、下記式(3)で表される化合物、下記式(4)で表される化合物等が挙げられる。なかでも、下記式(2)で表される化合物が好ましく、下記式(2)におけるmが10であり、lが2である化合物(1-(2-シアノエチル)-2-ウンデシルイミダゾール)が特に好ましい。 Examples of the imidazole compound include a compound represented by the following formula (2), a compound represented by the following formula (3), a compound represented by the following formula (4), and the like. Among them, the compound represented by the following formula (2) is preferable, and the compound (1- (2-cyanoethyl) -2-undecylimidazole) in which m is 10 and l is 2 in the following formula (2) is preferable. Especially preferable.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
式(2)中、mは、1以上10以下の整数であり、lは、1以上3以下の整数である。 In the formula (2), m is an integer of 1 or more and 10 or less, and l is an integer of 1 or more and 3 or less.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
式(3)中、mは、1以上10以下の整数であり、lは、1以上3以下の整数である。 In the formula (3), m is an integer of 1 or more and 10 or less, and l is an integer of 1 or more and 3 or less.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
式(4)中、lは、1以上3以下の整数である。 In equation (4), l is an integer of 1 or more and 3 or less.
本発明の液晶表示素子用シール剤全体における上記イミダゾール化合物の含有割合の好ましい下限は0.1質量%、好ましい上限は0.7質量%である。本発明の液晶表示素子用シール剤全体における上記イミダゾール化合物の含有割合が0.1質量%以上であることにより、得られる液晶表示素子用シール剤が接着性により優れるものとなる。本発明の液晶表示素子用シール剤全体における上記イミダゾール化合物の含有割合が0.7質量%以下であることにより、得られる液晶表示素子用シール剤が接着性及び保存安定性により優れるものとなる。本発明の液晶表示素子用シール剤全体における上記イミダゾール化合物の含有割合のより好ましい上限は0.3質量%である。
また、後述する硬化性樹脂100質量部に対する上記イミダゾール化合物の含有量の好ましい下限は0.1質量部、好ましい上限は0.7質量部である。硬化性樹脂100質量部に対する上記イミダゾール化合物の含有量が0.1質量部以上であることにより、得られる液晶表示素子用シール剤が接着性により優れるものとなる。硬化性樹脂100質量部に対する上記イミダゾール化合物の含有量が0.7質量部以下であることにより、得られる液晶表示素子用シール剤が接着性及び保存安定性により優れるものとなる。硬化性樹脂100質量部に対する上記イミダゾール化合物の含有量のより好ましい上限は0.3質量部である。
The preferable lower limit of the content ratio of the imidazole compound in the entire sealant for a liquid crystal display element of the present invention is 0.1% by mass, and the preferable upper limit is 0.7% by mass. When the content of the imidazole compound in the entire sealant for a liquid crystal display element of the present invention is 0.1% by mass or more, the obtained sealant for a liquid crystal display element becomes more excellent in adhesiveness. When the content of the imidazole compound in the entire sealant for a liquid crystal display element of the present invention is 0.7% by mass or less, the obtained sealant for a liquid crystal display element is excellent in adhesiveness and storage stability. A more preferable upper limit of the content ratio of the imidazole compound in the entire sealant for a liquid crystal display element of the present invention is 0.3% by mass.
The preferable lower limit of the content of the imidazole compound with respect to 100 parts by mass of the curable resin described later is 0.1 parts by mass, and the preferable upper limit is 0.7 parts by mass. When the content of the imidazole compound with respect to 100 parts by mass of the curable resin is 0.1 part by mass or more, the obtained sealant for a liquid crystal display element becomes more excellent in adhesiveness. When the content of the imidazole compound with respect to 100 parts by mass of the curable resin is 0.7 parts by mass or less, the obtained sealant for a liquid crystal display element becomes excellent in adhesiveness and storage stability. A more preferable upper limit of the content of the imidazole compound with respect to 100 parts by mass of the curable resin is 0.3 parts by mass.
上記イミダゾール化合物の含有量に対する上記アミンアダクト体の含有量の割合(アミンアダクト体の含有量/イミダゾール化合物の含有量)は、質量比で、好ましい下限が15、好ましい上限が50である。上記イミダゾール化合物の含有量に対する上記アミンアダクト体の含有量の割合が15以上であることにより、得られる液晶表示素子用シール剤が接着性及び保存安定性により優れるものとなる。上記イミダゾール化合物の含有量に対する上記アミンアダクト体の含有量の割合が50以下であることにより、得られる液晶表示素子用シール剤が低液晶汚染性により優れるものとなる。上記イミダゾール化合物の含有量に対する上記アミンアダクト体の含有量の割合のより好ましい下限は17.5、より好ましい上限は35である。 The ratio of the content of the amine adduct to the content of the imidazole compound (content of the amine adduct / content of the imidazole compound) is a mass ratio with a preferable lower limit of 15 and a preferred upper limit of 50. When the ratio of the content of the amine adduct to the content of the imidazole compound is 15 or more, the obtained sealant for a liquid crystal display element becomes excellent in adhesiveness and storage stability. When the ratio of the content of the amine adduct to the content of the imidazole compound is 50 or less, the obtained sealing agent for a liquid crystal display element becomes more excellent in low liquid crystal contamination. The more preferable lower limit of the ratio of the content of the amine adduct to the content of the imidazole compound is 17.5, and the more preferable upper limit is 35.
上記熱硬化剤は、本発明の目的を阻害しない範囲で、上記アミンアダクト体及び上記イミダゾール化合物に加えて、その他の熱硬化剤を含有してもよい。
上記その他の熱硬化剤としては、例えば、有機酸ヒドラジド、多価フェノール系化合物、酸無水物等が挙げられる。
The thermosetting agent may contain other thermosetting agents in addition to the amine adduct body and the imidazole compound as long as the object of the present invention is not impaired.
Examples of the other heat-curing agent include organic acid hydrazide, polyhydric phenolic compound, acid anhydride and the like.
本発明の液晶表示素子用シール剤は、硬化性樹脂を含有する。
上記硬化性樹脂は、エポキシ化合物を含むことが好ましい。
上記エポキシ化合物としては、例えば、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールE型エポキシ化合物、ビスフェノールS型エポキシ化合物、2,2’-ジアリルビスフェノールA型エポキシ化合物、水添ビスフェノール型エポキシ化合物、プロピレンオキシド付加ビスフェノールA型エポキシ化合物、レゾルシノール型エポキシ化合物、ビフェニル型エポキシ化合物、スルフィド型エポキシ化合物、ジフェニルエーテル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、ナフタレン型エポキシ化合物、フェノールノボラック型エポキシ化合物、オルトクレゾールノボラック型エポキシ化合物、ジシクロペンタジエンノボラック型エポキシ化合物、ビフェニルノボラック型エポキシ化合物、ナフタレンフェノールノボラック型エポキシ化合物、グリシジルアミン型エポキシ化合物、アルキルポリオール型エポキシ化合物、ゴム変性型エポキシ化合物、グリシジルエステル化合物等が挙げられる。
The sealant for a liquid crystal display element of the present invention contains a curable resin.
The curable resin preferably contains an epoxy compound.
Examples of the epoxy compound include bisphenol A type epoxy compound, bisphenol F type epoxy compound, bisphenol E type epoxy compound, bisphenol S type epoxy compound, 2,2'-diallyl bisphenol A type epoxy compound, hydrogenated bisphenol type epoxy compound. , Pylene oxide-added bisphenol A type epoxy compound, resorcinol type epoxy compound, biphenyl type epoxy compound, sulfide type epoxy compound, diphenyl ether type epoxy compound, dicyclopentadiene type epoxy compound, naphthalene type epoxy compound, phenol novolac type epoxy compound, orthocresol Novolac type epoxy compound, dicyclopentadiene novolak type epoxy compound, biphenylnovolak type epoxy compound, naphthalenephenol novolak type epoxy compound, glycidylamine type epoxy compound, alkylpolypoly type epoxy compound, rubber modified epoxy compound, glycidyl ester compound and the like. Will be.
上記ビスフェノールA型エポキシ化合物のうち市販されているものとしては、例えば、jER828EL、jER1004(いずれも三菱ケミカル社製)、EPICLON850(DIC社製)等が挙げられる。
上記ビスフェノールF型エポキシ化合物のうち市販されているものとしては、例えば、jER806、jER4004(いずれも三菱ケミカル社製)、EPICLON EXA-830CRP(DIC社製)等が挙げられる。
上記ビスフェノールE型エポキシ化合物のうち市販されているものとしては、例えば、エポミックR710(三井化学社製)等が挙げられる。
上記ビスフェノールS型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON EXA-1514(DIC社製)等が挙げられる。
上記2,2’-ジアリルビスフェノールA型エポキシ化合物のうち市販されているものとしては、例えば、RE-810NM(日本化薬社製)等が挙げられる。
上記水添ビスフェノール型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON EXA-7015(DIC社製)等が挙げられる。
上記プロピレンオキシド付加ビスフェノールA型エポキシ化合物のうち市販されているものとしては、例えば、EP-4000S(ADEKA社製)等が挙げられる。
上記レゾルシノール型エポキシ化合物のうち市販されているものとしては、例えば、EX-201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ化合物のうち市販されているものとしては、例えば、jER YX-4000H(三菱ケミカル社製)等が挙げられる。
上記スルフィド型エポキシ化合物のうち市販されているものとしては、例えば、YSLV-50TE(日鉄ケミカル&マテリアル社製)等が挙げられる。
上記ジフェニルエーテル型エポキシ化合物のうち市販されているものとしては、例えば、YSLV-80DE(日鉄ケミカル&マテリアル社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ化合物のうち市販されているものとしては、例えば、EP-4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON HP-4032、EPICLON EXA-4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON N-770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON N-670-EXP-S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON HP-7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ化合物のうち市販されているものとしては、例えば、NC-3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ化合物のうち市販されているものとしては、例えば、ESN-165S(日鉄ケミカル&マテリアル社製)等が挙げられる。
上記グリシジルアミン型エポキシ化合物のうち市販されているものとしては、例えば、jER630(三菱ケミカル社製)、EPICLON430(DIC社製)、TETRAD-X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ化合物のうち市販されているものとしては、例えば、ZX-1542(日鉄ケミカル&マテリアル社製)、EPICLON726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX-611(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ化合物のうち市販されているものとしては、例えば、YR-450、YR-207(いずれも日鉄ケミカル&マテリアル社製)、エポリードPB(ダイセル社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されているものとしては、例えば、デナコールEX-147(ナガセケムテックス社製)等が挙げられる。
上記エポキシ化合物のうちその他に市販されているものとしては、例えば、YDC-1312、YSLV-80XY、YSLV-90CR(いずれも日鉄ケミカル&マテリアル社製)、XAC4151(旭化成社製)、jER1031、jER1032(いずれも三菱ケミカル社製)、EXA-7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
Examples of commercially available bisphenol A type epoxy compounds include jER828EL, jER1004 (all manufactured by Mitsubishi Chemical Corporation), EPICLON850 (manufactured by DIC Corporation), and the like.
Examples of commercially available bisphenol F type epoxy compounds include jER806, jER4004 (all manufactured by Mitsubishi Chemical Corporation), EPICLON EXA-830CRP (manufactured by DIC Corporation), and the like.
Examples of commercially available bisphenol E-type epoxy compounds include Epomic R710 (manufactured by Mitsui Chemicals, Inc.) and the like.
Examples of commercially available bisphenol S-type epoxy compounds include EPICLON EXA-1514 (manufactured by DIC Corporation) and the like.
Examples of commercially available 2,2'-diallyl bisphenol A type epoxy compounds include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
Examples of commercially available hydrogenated bisphenol type epoxy compounds include EPICLON EXA-7015 (manufactured by DIC Corporation) and the like.
Examples of commercially available propylene oxide-added bisphenol A type epoxy compounds include EP-4000S (manufactured by ADEKA Corporation) and the like.
Examples of commercially available resorcinol-type epoxy compounds include EX-201 (manufactured by Nagase ChemteX Corporation) and the like.
Examples of commercially available biphenyl type epoxy compounds include jER YX-4000H (manufactured by Mitsubishi Chemical Corporation) and the like.
Examples of commercially available sulfide-type epoxy compounds include YSLV-50TE (manufactured by Nittetsu Chemical & Materials Co., Ltd.).
Examples of commercially available diphenyl ether type epoxy compounds include YSLV-80DE (manufactured by Nittetsu Chemical & Materials Co., Ltd.).
Examples of commercially available dicyclopentadiene type epoxy compounds include EP-4088S (manufactured by ADEKA Corporation) and the like.
Examples of commercially available naphthalene-type epoxy compounds include EPICLON HP-4032 and EPICLON EXA-4700 (both manufactured by DIC Corporation).
Examples of commercially available phenol novolac type epoxy compounds include EPICLON N-770 (manufactured by DIC Corporation) and the like.
Examples of commercially available orthocresol novolak type epoxy compounds include EPICLON N-670-EXP-S (manufactured by DIC Corporation) and the like.
Examples of commercially available dicyclopentadiene novolak type epoxy compounds include EPICLON HP-7200 (manufactured by DIC Corporation) and the like.
Examples of commercially available biphenyl novolac type epoxy compounds include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.) and the like.
Examples of commercially available naphthalene phenol novolac type epoxy compounds include ESN-165S (manufactured by Nittetsu Chemical & Materials Co., Ltd.).
Examples of commercially available glycidylamine type epoxy compounds include jER630 (manufactured by Mitsubishi Chemical Corporation), EPICLON430 (manufactured by DIC Corporation), TETRAD-X (manufactured by Mitsubishi Gas Chemical Company, Inc.) and the like.
Among the above alkyl polyol type epoxy compounds, for example, ZX-1542 (manufactured by Nittetsu Chemical & Materials Co., Ltd.), EPICLON726 (manufactured by DIC Corporation), Epolite 80MFA (manufactured by Kyoei Co., Ltd.), Denacol EX- 611 (manufactured by Nagase ChemteX Corporation) and the like can be mentioned.
Examples of commercially available rubber-modified epoxy compounds include YR-450, YR-207 (all manufactured by Nittetsu Chemical & Materials Co., Ltd.), Epolide PB (manufactured by Daicel Co., Ltd.), and the like.
Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation) and the like.
Other commercially available epoxy compounds include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nittetsu Chemical & Materials Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Co., Ltd.), jER1031 and jER1032. (All manufactured by Mitsubishi Chemical Corporation), EXA-7120 (manufactured by DIC Corporation), TEPIC (manufactured by Nissan Chemical Industries, Ltd.) and the like can be mentioned.
上記エポキシ化合物としては、部分(メタ)アクリル変性エポキシ化合物も好適に用いられる。
なお、本明細書において上記部分(メタ)アクリル変性エポキシ化合物とは、2つ以上のエポキシ基を有するエポキシ化合物の一部分のエポキシ基を(メタ)アクリル酸と反応させることによって得ることができる、1分子中にエポキシ基と(メタ)アクリロイル基とをそれぞれ1つ以上有する化合物を意味する。
なお、本明細書において、上記「(メタ)アクリル」とは、アクリル又はメタクリルを意味し、上記「(メタ)アクリロイル」とは、アクリロイル又はメタクリロイルを意味する。
As the epoxy compound, a partially (meth) acrylic-modified epoxy compound is also preferably used.
In the present specification, the partial (meth) acrylic-modified epoxy compound can be obtained by reacting an epoxy group of a part of an epoxy compound having two or more epoxy groups with (meth) acrylic acid. It means a compound having one or more epoxy groups and one or more (meth) acryloyl groups in the molecule.
In the present specification, the above-mentioned "(meth) acrylic" means acrylic or methacrylic, and the above-mentioned "(meth) acryloyl" means acryloyl or methacrylic acid.
上記部分(メタ)アクリル変性エポキシ化合物のうち市販されているものとしては、例えば、UVACURE1561、KRM8287(いずれもダイセル・オルネクス社製)等が挙げられる。 Examples of commercially available partial (meth) acrylic-modified epoxy compounds include UVACURE1561, KRM8287 (both manufactured by Dycel Ornex) and the like.
また、上記硬化性樹脂は、(メタ)アクリル化合物を含んでいてもよい。
上記(メタ)アクリル化合物としては、例えば、(メタ)アクリル酸エステル化合物、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート等が挙げられる。なかでも、エポキシ(メタ)アクリレートが好ましい。また、上記(メタ)アクリル化合物は、反応性の観点から1分子中に(メタ)アクリロイル基を2個以上有するものが好ましい。
なお、本明細書において、上記「(メタ)アクリル化合物」とは、(メタ)アクリロイル基を有する化合物を意味する。また、上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味し、上記「エポキシ(メタ)アクリレート」とは、エポキシ化合物中の全てのエポキシ基を(メタ)アクリル酸と反応させた化合物のことを表す。
Further, the curable resin may contain a (meth) acrylic compound.
Examples of the (meth) acrylic compound include (meth) acrylic acid ester compounds, epoxy (meth) acrylates, urethane (meth) acrylates, and the like. Of these, epoxy (meth) acrylate is preferable. Further, the (meth) acrylic compound preferably has two or more (meth) acryloyl groups in one molecule from the viewpoint of reactivity.
In the present specification, the above-mentioned "(meth) acrylic compound" means a compound having a (meth) acryloyl group. Further, the above-mentioned "(meth) acrylate" means acrylate or methacrylate, and the above-mentioned "epoxy (meth) acrylate" is a compound obtained by reacting all epoxy groups in an epoxy compound with (meth) acrylic acid. Represents that.
上記(メタ)アクリル酸エステル化合物のうち単官能のものとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル2-ヒドロキシプロピルフタレート、2-(メタ)アクリロイロキシエチルホスフェート、グリシジル(メタ)アクリレート等が挙げられる。 Among the above (meth) acrylic acid ester compounds, monofunctional ones include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate. , T-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, iso Myristyl (meth) acrylate, stearyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, cyclohexyl ( Meta) acrylate, isobornyl (meth) acrylate, bicyclopentenyl (meth) acrylate, benzyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-butoxyethyl (meth) acrylate, 2-Phenoxyethyl (meth) acrylate, methoxyethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, ethylcarbi Thor (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, Imid (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2- ( Examples thereof include 2- (meth) acryloyloxyethyl phosphate, 2- (meth) acryloyloxyethyl phosphate, and glycidyl (meth) acrylate.
また、上記(メタ)アクリル酸エステル化合物のうち2官能のものとしては、例えば、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。 Among the above (meth) acrylic acid ester compounds, bifunctional ones include, for example, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexane. Didioldi (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meta) acrylate, polyethylene glycol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate ) Acrylate, polypropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide-added bisphenol A di (meth) acrylate, propylene oxide-added bisphenol A di (meth) acrylate, ethylene oxide-added bisphenol F di (meth) acrylate. , Dimethylol dicyclopentadienyldi (meth) acrylate, ethylene oxide modified isocyanuric acid di (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, carbonate diol di (meth) acrylate, Examples thereof include polyether diol di (meth) acrylate, polyester diol di (meth) acrylate, polycaprolactone diol di (meth) acrylate, and polybutadiene diol di (meth) acrylate.
また、上記(メタ)アクリル酸エステル化合物のうち3官能以上のものとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 Among the above (meth) acrylic acid ester compounds, those having trifunctionality or higher include, for example, trimethylol propanetri (meth) acrylate, ethylene oxide-added trimethylol propanetri (meth) acrylate, and propylene oxide-added trimethylol propanetri (meth) acrylate. Meta) acrylate, caprolactone-modified trimethylol propantri (meth) acrylate, ethylene oxide-added isocyanuric acid tri (meth) acrylate, glycerintri (meth) acrylate, propylene oxide-added glycerintri (meth) acrylate, pentaerythritol tri (meth) acrylate, Examples thereof include tris (meth) acryloyloxyethyl phosphate, ditrimethylol propanetetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol hexa (meth) acrylate.
上記エポキシ(メタ)アクリレートとしては、例えば、エポキシ化合物と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応させることにより得られるもの等が挙げられる。 Examples of the epoxy (meth) acrylate include those obtained by reacting an epoxy compound and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method.
上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物としては、本発明の液晶表示素子用シール剤の含有する硬化性樹脂として上述したエポキシ化合物と同様のものを用いることができる。 As the epoxy compound used as a raw material for synthesizing the epoxy (meth) acrylate, the same epoxy compound as the above-mentioned epoxy compound can be used as the curable resin contained in the sealant for a liquid crystal display element of the present invention.
上記エポキシ(メタ)アクリレートのうち市販されているものとしては、例えば、ダイセル・オルネクス社製のエポキシ(メタ)アクリレート、新中村化学工業社製のエポキシ(メタ)アクリレート、共栄社化学社製のエポキシ(メタ)アクリレート、ナガセケムテックス社製のエポキシ(メタ)アクリレート等が挙げられる。
上記ダイセル・オルネクス社製のエポキシ(メタ)アクリレートとしては、例えば、EBECRYL860、EBECRYL3200、EBECRYL3201、EBECRYL3412、EBECRYL3600、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL3708、EBECRYL3800、EBECRYL6040、EBECRYL RDX63182等が挙げられる。
上記新中村化学工業社製のエポキシ(メタ)アクリレートとしては、例えば、EA-1010、EA-1020、EA-5323、EA-5520、EA-CHD、EMA-1020等が挙げられる。
上記共栄社化学社製のエポキシ(メタ)アクリレートとしては、例えば、エポキシエステルM-600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、エポキシエステル400EA等が挙げられる。
上記ナガセケムテックス社製のエポキシ(メタ)アクリレートとしては、例えば、デナコールアクリレートDA-141、デナコールアクリレートDA-314、デナコールアクリレートDA-911等が挙げられる。
Among the above-mentioned epoxy (meth) acrylates, commercially available ones include, for example, epoxy (meth) acrylate manufactured by Dycel Ornex, epoxy (meth) acrylate manufactured by Shin-Nakamura Chemical Industry Co., Ltd., and epoxy manufactured by Kyoei Co., Ltd. Examples thereof include meta) acrylate and epoxy (meth) acrylate manufactured by Nagase ChemteX Corporation.
Examples of the epoxy (meth) acrylate manufactured by Dycel Ornex include EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3702, EBECRYL3702, EBECRYL3702, EBECRYL3701
Examples of the epoxy (meth) acrylate manufactured by Shin-Nakamura Chemical Industry Co., Ltd. include EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, EMA-1020 and the like.
Examples of the epoxy (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd. include epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, epoxy ester 200PA, epoxy ester 80MFA, epoxy ester 3002M, epoxy ester 3002A, and epoxy ester 1600A. Examples thereof include epoxy ester 3000M, epoxy ester 3000A, epoxy ester 200EA, and epoxy ester 400EA.
Examples of the epoxy (meth) acrylate manufactured by Nagase ChemteX include Denacol acrylate DA-141, Denacol acrylate DA-314, and Denacol acrylate DA-911.
上記ウレタン(メタ)アクリレートは、例えば、イソシアネート化合物に対して水酸基を有する(メタ)アクリル酸誘導体を、触媒量のスズ系化合物存在下で反応させることによって得ることができる。 The urethane (meth) acrylate can be obtained, for example, by reacting a (meth) acrylic acid derivative having a hydroxyl group with respect to an isocyanate compound in the presence of a catalytic amount of a tin-based compound.
上記ウレタン(メタ)アクリレートの原料となるイソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシリレンジイソシアネート、1,6,11-ウンデカントリイソシアネート等が挙げられる。 Examples of the isocyanate compound used as a raw material for the urethane (meth) acrylate include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and diphenylmethane-4,4. '-Diisocyanate (MDI), hydrogenated MDI, polypeptide MDI, 1,5-naphthalenediocyanate, norbornan diisocyanate, trizine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (isocyanate) Phenyl) thiophosphate, tetramethylxylylene diisocyanate, 1,6,11-undecantry isocyanate and the like can be mentioned.
また、上記ウレタン(メタ)アクリレートの原料となるイソシアネート化合物としては、ポリオールと過剰のイソシアネート化合物との反応により得られる鎖延長されたイソシアネート化合物も使用することができる。
上記ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等が挙げられる。
Further, as the isocyanate compound which is a raw material of the urethane (meth) acrylate, a chain-extended isocyanate compound obtained by reacting a polyol with an excess isocyanate compound can also be used.
Examples of the polyol include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, and polycaprolactone diol.
上記水酸基を有する(メタ)アクリル酸誘導体としては、例えば、ヒドロキシアルキルモノ(メタ)アクリレート、二価のアルコールのモノ(メタ)アクリレート、三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げられる。
上記ヒドロキシアルキルモノ(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。
上記二価のアルコールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等が挙げられる。
上記三価のアルコールとしては、例えば、トリメチロールエタン、トリメチロールプロパン、グリセリン等が挙げられる。
上記エポキシ(メタ)アクリレートとしては、例えば、ビスフェノールA型エポキシ(メタ)アクリレート等が挙げられる。
Examples of the (meth) acrylic acid derivative having a hydroxyl group include hydroxyalkyl mono (meth) acrylate, mono (meth) acrylate of dihydric alcohol, mono (meth) acrylate of trihydric alcohol or di (meth) acrylate. , Epoxy (meth) acrylate and the like.
Examples of the hydroxyalkyl mono (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. Can be mentioned.
Examples of the divalent alcohol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, polyethylene glycol and the like.
Examples of the trihydric alcohol include trimethylolethane, trimethylolpropane, and glycerin.
Examples of the epoxy (meth) acrylate include bisphenol A type epoxy (meth) acrylate.
上記ウレタン(メタ)アクリレートのうち市販されているものとしては、例えば、東亞合成社製のウレタン(メタ)アクリレート、ダイセル・オルネクス社製のウレタン(メタ)アクリレート、根上工業社製のウレタン(メタ)アクリレート、新中村化学工業社製のウレタン(メタ)アクリレート、共栄社化学社製のウレタン(メタ)アクリレート等が挙げられる。
上記東亞合成社製のウレタン(メタ)アクリレートとしては、例えば、M-1100、M-1200、M-1210、M-1600等が挙げられる。
上記ダイセル・オルネクス社製のウレタン(メタ)アクリレートとしては、例えば、EBECRYL210、EBECRYL220、EBECRYL230、EBECRYL270、EBECRYL1290、EBECRYL2220、EBECRYL4827、EBECRYL4842、EBECRYL4858、EBECRYL5129、EBECRYL6700、EBECRYL8402、EBECRYL8803、EBECRYL8804、EBECRYL8807、EBECRYL9260等が挙げられる。
上記根上工業社製のウレタン(メタ)アクリレートとしては、例えば、アートレジンUN-330、アートレジンSH-500B、アートレジンUN-1200TPK、アートレジンUN-1255、アートレジンUN-3320HB、アートレジンUN-7100、アートレジンUN-9000A、アートレジンUN-9000H等が挙げられる。
上記新中村化学工業社製のウレタン(メタ)アクリレートとしては、例えば、U-2HA、U-2PHA、U-3HA、U-4HA、U-6H、U-6HA、U-6LPA、U-10H、U-15HA、U-108、U-108A、U-122A、U-122P、U-324A、U-340A、U-340P、U-1084A、U-2061BA、UA-340P、UA-4000、UA-4100、UA-4200、UA-4400、UA-5201P、UA-7100、UA-7200、UA-W2A等が挙げられる。
上記共栄社化学社製のウレタン(メタ)アクリレートとしては、例えば、AH-600、AI-600、AT-600、UA-101I、UA-101T、UA-306H、UA-306I、UA-306T等が挙げられる。
Among the above urethane (meth) acrylates, commercially available ones include, for example, urethane (meth) acrylate manufactured by Toa Synthetic Co., Ltd., urethane (meth) acrylate manufactured by Dycel Ornex, and urethane (meth) manufactured by Negami Kogyo Co., Ltd. Examples thereof include acrylate, urethane (meth) acrylate manufactured by Shin-Nakamura Chemical Industry Co., Ltd., urethane (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd., and the like.
Examples of the urethane (meth) acrylate manufactured by Toagosei Co., Ltd. include M-1100, M-1200, M-1210, M-1600 and the like.
The urethane (meth) acrylate manufactured by the Daicel Orunekusu Inc., for example, EBECRYL210, EBECRYL220, EBECRYL230, EBECRYL270, EBECRYL1290, EBECRYL2220, EBECRYL4827, EBECRYL4842, EBECRYL4858, EBECRYL5129, EBECRYL6700, EBECRYL8402, EBECRYL8803, EBECRYL8804, EBECRYL8807, EBECRYL9260 etc. Can be mentioned.
Examples of the urethane (meth) acrylate manufactured by Negami Kogyo Co., Ltd. include Art Resin UN-330, Art Resin SH-500B, Art Resin UN-1200TPK, Art Resin UN-1255, Art Resin UN-3320HB, and Art Resin UN-. 7100, Art Resin UN-9000A, Art Resin UN-9000H and the like can be mentioned.
Examples of the urethane (meth) acrylate manufactured by Shin Nakamura Chemical Industry Co., Ltd. include U-2HA, U-2PHA, U-3HA, U-4HA, U-6H, U-6HA, U-6LPA, U-10H, and the like. U-15HA, U-108, U-108A, U-122A, U-122P, U-324A, U-340A, U-340P, U-1084A, U-2061BA, UA-340P, UA-4000, UA- Examples thereof include 4100, UA-4200, UA-4400, UA-5201P, UA-7100, UA-7200, UA-W2A and the like.
Examples of the urethane (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd. include AH-600, AI-600, AT-600, UA-101I, UA-101T, UA-306H, UA-306I, UA-306T and the like. Be done.
上記硬化性樹脂として上記エポキシ化合物に加えて上記(メタ)アクリル化合物を含有する場合、又は、上記部分(メタ)アクリル変性エポキシ化合物を含有する場合、上記硬化性樹脂中のエポキシ基と(メタ)アクリロイル基との合計中における(メタ)アクリロイル基の比率を30モル%以上95モル%以下になるようにすることが好ましい。上記(メタ)アクリロイル基の比率がこの範囲であることにより、液晶汚染の発生を抑制しつつ、得られる液晶表示素子用シール剤が接着性により優れるものとなる。 When the curable resin contains the (meth) acrylic compound in addition to the epoxy compound, or when the partially (meth) acrylic-modified epoxy compound is contained, the epoxy group and the (meth) in the curable resin are contained. It is preferable that the ratio of the (meth) acryloyl group in the total with the acryloyl group is 30 mol% or more and 95 mol% or less. When the ratio of the (meth) acryloyl group is in this range, the sealant for the liquid crystal display element obtained is excellent in adhesiveness while suppressing the occurrence of liquid crystal contamination.
上記硬化性樹脂は、液晶汚染をより抑制する観点から、-OH基、-NH-基、-NH基等の水素結合性のユニットを有するものが好ましい。 The curable resin preferably has a hydrogen-bonding unit such as an -OH group, an -NH- group, and an -NH 2 group from the viewpoint of further suppressing liquid crystal contamination.
本発明の液晶表示素子用シール剤は、光ラジカル重合開始剤を含有することが好ましい。
上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン化合物、アセトフェノン化合物、アシルフォスフィンオキサイド化合物、チタノセン化合物、オキシムエステル化合物、ベンゾインエーテル化合物、チオキサントン化合物等が挙げられる。
上記光ラジカル重合開始剤としては、具体的には例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタノン、2-(ジメチルアミノ)-2-((4-メチルフェニル)メチル)-1-(4-(4-モルホリニル)フェニル)-1-ブタノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、1-(4-(2-ヒドロキシエトキシ)-フェニル)-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、1-(4-(フェニルチオ)フェニル)-1,2-オクタンジオン2-(O-ベンゾイルオキシム)、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド等が挙げられる。
上記光ラジカル重合開始剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
The sealant for a liquid crystal display element of the present invention preferably contains a photoradical polymerization initiator.
Examples of the photoradical polymerization initiator include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanosen compounds, oxime ester compounds, benzoin ether compounds, thioxanthone compounds and the like.
Specific examples of the photoradical polymerization initiator include 1-hydroxycyclohexylphenylketone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone, and 2- (dimethylamino). )-2-((4-Methylphenyl) Methyl) -1- (4- (4-morpholinyl) phenyl) -1-butanone, 2,2-dimethoxy-1,2-diphenylethan-1-one, bis ( 2,4,6-trimethylbenzoyl) phenylphosphenyl oxide, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1-one, 1- (4- (2-hydroxyethoxy) -phenyl) -2-Hydroxy-2-methyl-1-propane-1-one, 1- (4- (phenylthio) phenyl) -1,2-octanedione 2- (O-benzoyloxime), 2,4,6-trimethyl Examples thereof include benzoyldiphenylphosphine oxide.
The photoradical polymerization initiator may be used alone or in combination of two or more.
上記光ラジカル重合開始剤の含有量は、上記硬化性樹脂100質量部に対して、好ましい下限が0.5質量部、好ましい上限が10質量部である。上記光ラジカル重合開始剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤が液晶汚染を抑制しつつ、保存安定性や光硬化性により優れるものとなる。上記光ラジカル重合開始剤の含有量のより好ましい下限は1質量部、より好ましい上限は7質量部である。 The content of the photoradical polymerization initiator has a preferable lower limit of 0.5 parts by mass and a preferable upper limit of 10 parts by mass with respect to 100 parts by mass of the curable resin. When the content of the photoradical polymerization initiator is in this range, the obtained sealing agent for a liquid crystal display element is excellent in storage stability and photocurability while suppressing liquid crystal contamination. The more preferable lower limit of the content of the photoradical polymerization initiator is 1 part by mass, and the more preferable upper limit is 7 parts by mass.
本発明の液晶表示素子用シール剤は、熱ラジカル重合開始剤を含有してもよい。
上記熱ラジカル重合開始剤としては、例えば、アゾ化合物や有機過酸化物等で構成されるものが挙げられる。なかでも、液晶汚染を抑制する観点から、アゾ化合物で構成される開始剤(以下、「アゾ開始剤」ともいう)が好ましく、高分子アゾ化合物で構成される開始剤(以下、「高分子アゾ開始剤」ともいう)がより好ましい。
上記熱ラジカル重合開始剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
なお、本明細書において上記「高分子アゾ化合物」とは、アゾ基を有し、熱によって(メタ)アクリロイル基を反応させることができるラジカルを生成する、数平均分子量が300以上の化合物を意味する。
The sealant for a liquid crystal display element of the present invention may contain a thermal radical polymerization initiator.
Examples of the thermal radical polymerization initiator include those composed of an azo compound, an organic peroxide, or the like. Among them, an initiator composed of an azo compound (hereinafter, also referred to as “azo initiator”) is preferable from the viewpoint of suppressing liquid crystal contamination, and an initiator composed of a polymer azo compound (hereinafter, “polymer azo”) is preferable. Also referred to as "initiator") is more preferred.
The thermal radical polymerization initiator may be used alone or in combination of two or more.
In the present specification, the above-mentioned "polymer azo compound" means a compound having an azo group and having a number average molecular weight of 300 or more, which generates a radical capable of reacting a (meth) acryloyl group by heat. do.
上記高分子アゾ化合物の数平均分子量の好ましい下限は1000、好ましい上限は30万である。上記高分子アゾ化合物の数平均分子量がこの範囲であることにより、液晶への悪影響を防止しつつ、硬化性樹脂へ容易に混合することができる。上記高分子アゾ化合物の数平均分子量のより好ましい下限は5000、より好ましい上限は10万であり、更に好ましい下限は1万、更に好ましい上限は9万である。
なお、本明細書において、上記数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で溶媒としてテトラヒドロフランを用いて測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際のカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。
The preferable lower limit of the number average molecular weight of the polymer azo compound is 1000, and the preferable upper limit is 300,000. When the number average molecular weight of the polymer azo compound is in this range, it can be easily mixed with the curable resin while preventing adverse effects on the liquid crystal display. The more preferable lower limit of the number average molecular weight of the polymer azo compound is 5000, the more preferable upper limit is 100,000, the further preferable lower limit is 10,000, and the further preferable upper limit is 90,000.
In the present specification, the number average molecular weight is a value obtained by measuring by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent and converting it into polystyrene. Examples of the column for measuring the number average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK) and the like.
上記高分子アゾ化合物としては、例えば、アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有するものが挙げられる。
上記アゾ基を介してポリアルキレンオキサイド等のユニットが複数結合した構造を有する高分子アゾ化合物としては、ポリエチレンオキサイド構造を有するものが好ましい。
上記高分子アゾ化合物としては、具体的には例えば、4,4’-アゾビス(4-シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4’-アゾビス(4-シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられる。
上記高分子アゾ開始剤のうち市販されているものとしては、例えば、VPE-0201、VPE-0401、VPE-0601、VPS-0501、VPS-1001(いずれも富士フイルム和光純薬社製)等が挙げられる。
また、高分子ではないアゾ開始剤としては、例えば、V-65、V-501(いずれも富士フイルム和光純薬社製)等が挙げられる。
Examples of the polymer azo compound include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
As the polymer azo compound having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group, those having a polyethylene oxide structure are preferable.
Specific examples of the polymer azo compound include a polycondensate of 4,4'-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4'-azobis (4-cyanopentanoic acid). And a polycondensate of polydimethylsiloxane having a terminal amino group and the like.
Commercially available polymer azo initiators include, for example, VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001 (all manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and the like. Can be mentioned.
Examples of the non-polymer azo initiator include V-65 and V-501 (both manufactured by Wako Pure Chemical Industries, Ltd.).
上記有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。 Examples of the organic peroxide include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, peroxyesters, diacyl peroxides, peroxydicarbonates and the like.
上記熱ラジカル重合開始剤の含有量は、上記硬化性樹脂100質量部に対して、好ましい下限が0.1質量部、好ましい上限が10質量部である。上記熱ラジカル重合開始剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤が液晶汚染を抑制しつつ、保存安定性や熱硬化性により優れるものとなる。上記熱ラジカル重合開始剤の含有量のより好ましい下限は0.3質量部、より好ましい上限は5質量部である。 The content of the thermal radical polymerization initiator has a preferable lower limit of 0.1 parts by mass and a preferable upper limit of 10 parts by mass with respect to 100 parts by mass of the curable resin. When the content of the thermal radical polymerization initiator is in this range, the obtained sealing agent for a liquid crystal display element is excellent in storage stability and thermosetting property while suppressing liquid crystal contamination. The more preferable lower limit of the content of the thermal radical polymerization initiator is 0.3 parts by mass, and the more preferable upper limit is 5 parts by mass.
本発明の液晶表示素子用シール剤は、粘度の向上、応力分散効果による接着性の改善、線膨張率の改善、硬化物の耐湿性の向上等を目的として充填剤を含有してもよい。 The sealant for a liquid crystal display element of the present invention may contain a filler for the purpose of improving the viscosity, improving the adhesiveness by the stress dispersion effect, improving the linear expansion rate, improving the moisture resistance of the cured product, and the like.
上記充填剤としては、無機充填剤や有機充填剤を用いることができる。
上記無機充填剤としては、例えば、シリカ、タルク、ガラスビーズ、石綿、石膏、珪藻土、スメクタイト、ベントナイト、モンモリロナイト、セリサイト、活性白土、アルミナ、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、水酸化アルミニウム、窒化アルミニウム、窒化珪素、硫酸バリウム、珪酸カルシウム等が挙げられる。
上記有機充填剤としては、例えば、ポリエステル微粒子、ポリウレタン微粒子、ビニル重合体微粒子、アクリル重合体微粒子等が挙げられる。
上記充填剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
As the filler, an inorganic filler or an organic filler can be used.
Examples of the inorganic filler include silica, talc, glass beads, asbestos, gypsum, diatomaceous soil, smectite, bentonite, montmorillonite, sericite, active white clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide and titanium oxide. , Calcium carbonate, magnesium carbonate, magnesium hydroxide, aluminum hydroxide, aluminum nitride, silicon nitride, barium sulfate, calcium silicate and the like.
Examples of the organic filler include polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, and the like.
The filler may be used alone or in combination of two or more.
本発明の液晶表示素子用シール剤100質量部中における上記充填剤の含有量の好ましい下限は10質量部、好ましい上限は70質量部である。上記充填剤の含有量がこの範囲であることにより、塗布性等を悪化させることなく、接着性の改善等の効果により優れるものとなる。上記充填剤の含有量のより好ましい下限は20質量部、より好ましい上限は60質量部である。 The preferable lower limit of the content of the filler in 100 parts by mass of the sealant for a liquid crystal display element of the present invention is 10 parts by mass, and the preferable upper limit is 70 parts by mass. When the content of the filler is in this range, the effect of improving the adhesiveness and the like is excellent without deteriorating the coatability and the like. The more preferable lower limit of the content of the filler is 20 parts by mass, and the more preferable upper limit is 60 parts by mass.
本発明の液晶表示素子用シール剤は、シランカップリング剤を含有してもよい。上記シランカップリング剤は、主に液晶表示素子用シール剤と基板等とを良好に接着するための接着助剤としての役割を有する。 The sealant for a liquid crystal display element of the present invention may contain a silane coupling agent. The silane coupling agent mainly has a role as an adhesive auxiliary for satisfactorily adhering a sealant for a liquid crystal display element and a substrate or the like.
上記シランカップリング剤としては、例えば、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が好適に用いられる。これらは、基板等との接着性を向上させる効果に優れ、硬化性樹脂と化学結合することにより液晶中への硬化性樹脂の流出を抑制することができる。なかでも、3-グリシドキシプロピルトリメトキシシランが好ましい。
上記シランカップリング剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
As the silane coupling agent, for example, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatepropyltrimethoxysilane and the like are preferably used. These are excellent in the effect of improving the adhesiveness with the substrate and the like, and can suppress the outflow of the curable resin into the liquid crystal display by chemically bonding with the curable resin. Of these, 3-glycidoxypropyltrimethoxysilane is preferable.
The silane coupling agent may be used alone or in combination of two or more.
本発明の液晶表示素子用シール剤100質量部中における上記シランカップリング剤の含有量の好ましい下限は0.1質量部、好ましい上限は10質量部である。上記シランカップリング剤の含有量がこの範囲であることにより、液晶汚染の発生を抑制しつつ、接着性を向上させる効果により優れるものとなる。上記シランカップリング剤の含有量のより好ましい下限は0.3質量部、より好ましい上限は5質量部である。 The preferable lower limit of the content of the silane coupling agent in 100 parts by mass of the sealant for a liquid crystal display element of the present invention is 0.1 parts by mass, and the preferable upper limit is 10 parts by mass. When the content of the silane coupling agent is within this range, the effect of improving the adhesiveness while suppressing the occurrence of liquid crystal contamination becomes more excellent. The more preferable lower limit of the content of the silane coupling agent is 0.3 parts by mass, and the more preferable upper limit is 5 parts by mass.
本発明の液晶表示素子用シール剤は、遮光剤を含有してもよい。上記遮光剤を含有することにより、本発明の液晶表示素子用シール剤は、遮光シール剤として好適に用いることができる。 The sealant for a liquid crystal display element of the present invention may contain a light-shielding agent. By containing the above-mentioned light-shielding agent, the sealant for a liquid crystal display element of the present invention can be suitably used as a light-shielding sealant.
上記遮光剤としては、例えば、酸化鉄、チタンブラック、アニリンブラック、シアニンブラック、フラーレン、カーボンブラック、樹脂被覆型カーボンブラック等が挙げられる。なかでも、チタンブラックが好ましい。 Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black. Of these, titanium black is preferable.
上記チタンブラックは、波長300nm以上800nm以下の光に対する平均透過率と比較して、紫外線領域付近、特に波長370nm以上450nm以下の光に対する透過率が高くなる物質である。即ち、上記チタンブラックは、可視光領域の波長の光を充分に遮蔽することで本発明の液晶表示素子用シール剤に遮光性を付与する一方、紫外線領域付近の波長の光は透過させる性質を有する遮光剤である。従って、上記光ラジカル重合開始剤として、上記チタンブラックの透過率の高くなる波長の光によって反応を開始可能なものを用いることで、本発明の液晶表示素子用シール剤の光硬化性をより増大させることができる。また一方で、本発明の液晶表示素子用シール剤に含有される遮光剤としては、絶縁性の高い物質が好ましく、絶縁性の高い遮光剤としてもチタンブラックが好適である。
上記チタンブラックは、1μmあたりの光学濃度(OD値)が、3以上であることが好ましく、4以上であることがより好ましい。上記チタンブラックの遮光性は高ければ高いほどよく、上記チタンブラックのOD値に好ましい上限は特にないが、通常は5以下となる。
The titanium black is a substance having a higher transmittance in the vicinity of the ultraviolet region, particularly for light having a wavelength of 370 nm or more and 450 nm or less, as compared with the average transmittance for light having a wavelength of 300 nm or more and 800 nm or less. That is, the titanium black has a property of imparting a light-shielding property to the sealant for a liquid crystal display element of the present invention by sufficiently blocking light having a wavelength in the visible light region, while transmitting light having a wavelength in the vicinity of the ultraviolet region. It is a light-shielding agent. Therefore, by using the photoradical polymerization initiator that can initiate the reaction with light having a wavelength having a high transmittance of the titanium black, the photocurability of the sealant for a liquid crystal display element of the present invention is further improved. Can be made to. On the other hand, as the light-shielding agent contained in the sealant for a liquid crystal display element of the present invention, a substance having a high insulating property is preferable, and as a light-shielding agent having a high insulating property, titanium black is preferable.
The titanium black has an optical density (OD value) of 3 or more, more preferably 4 or more, per 1 μm. The higher the light-shielding property of the titanium black, the better, and the OD value of the titanium black has no particular preferable upper limit, but is usually 5 or less.
上記チタンブラックは、表面処理されていないものでも充分な効果を発揮するが、表面がカップリング剤等の有機成分で処理されているものや、酸化ケイ素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等の無機成分で被覆されているもの等、表面処理されたチタンブラックを用いることもできる。なかでも、有機成分で処理されているものは、より絶縁性を向上できる点で好ましい。
また、遮光剤として上記チタンブラックを配合した本発明の液晶表示素子用シール剤を用いて製造した液晶表示素子は、充分な遮光性を有するため、光の漏れ出しがなく高いコントラストを有し、優れた画像表示品質を有する液晶表示素子を実現することができる。
The above titanium black exerts a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, and oxidation. Surface-treated titanium black, such as those coated with an inorganic component such as zirconium or magnesium oxide, can also be used. Among them, those treated with an organic component are preferable in that the insulating property can be further improved.
Further, the liquid crystal display element manufactured by using the sealant for the liquid crystal display element of the present invention containing the above titanium black as a light shielding agent has sufficient light shielding property, so that there is no light leakage and a high contrast is obtained. It is possible to realize a liquid crystal display element having excellent image display quality.
上記チタンブラックのうち市販されているものとしては、例えば、三菱マテリアル社製のチタンブラック、赤穂化成社製のチタンブラック等が挙げられる。
上記三菱マテリアル社製のチタンブラックとしては、例えば、12S、13M、13M-C、13R-N、14M-C等が挙げられる。
上記赤穂化成社製のチタンブラックとしては、例えば、ティラックD等が挙げられる。
Examples of commercially available titanium blacks include titanium black manufactured by Mitsubishi Materials Corporation and titanium black manufactured by Ako Kasei Co., Ltd.
Examples of the titanium black manufactured by Mitsubishi Materials Corporation include 12S, 13M, 13M-C, 13RN, 14M-C and the like.
Examples of the titanium black manufactured by Ako Kasei Co., Ltd. include Tilak D and the like.
上記チタンブラックの比表面積の好ましい下限は13m/g、好ましい上限は30m/gであり、より好ましい下限は15m/g、より好ましい上限は25m/gである。
また、上記チタンブラックの体積抵抗の好ましい下限は0.5Ω・cm、好ましい上限は3Ω・cmであり、より好ましい下限は1Ω・cm、より好ましい上限は2.5Ω・cmである。
The preferable lower limit of the specific surface area of the titanium black is 13 m 2 / g, the preferable upper limit is 30 m 2 / g, the more preferable lower limit is 15 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
Further, the preferable lower limit of the volume resistance of the titanium black is 0.5 Ω · cm, the preferable upper limit is 3 Ω · cm, the more preferable lower limit is 1 Ω · cm, and the more preferable upper limit is 2.5 Ω · cm.
上記遮光剤の一次粒子径は、液晶表示素子の基板間の距離以下であれば特に限定されないが、好ましい下限は1nm、好ましい上限は5000nmである。上記遮光剤の一次粒子径がこの範囲であることにより、得られる液晶表示素子用シール剤の塗布性等を悪化させることなく遮光性により優れるものとすることができる。上記遮光剤の一次粒子径のより好ましい下限は5nm、より好ましい上限は200nm、更に好ましい下限は10nm、更に好ましい上限は100nmである。
なお、上記遮光剤の一次粒子径は、NICOMP 380ZLS(PARTICLE SIZING SYSTEMS社製)を用いて、上記遮光剤を溶媒(水、有機溶媒等)に分散させて測定することができる。
The primary particle diameter of the light-shielding agent is not particularly limited as long as it is equal to or less than the distance between the substrates of the liquid crystal display element, but the preferable lower limit is 1 nm and the preferable upper limit is 5000 nm. When the primary particle size of the light-shielding agent is in this range, the light-shielding property can be improved without deteriorating the coatability of the obtained sealant for a liquid crystal display element. The more preferable lower limit of the primary particle diameter of the light-shielding agent is 5 nm, the more preferable upper limit is 200 nm, the further preferable lower limit is 10 nm, and the further preferable upper limit is 100 nm.
The primary particle size of the light-shielding agent can be measured by using NICOMP 380ZLS (manufactured by PARTICLE SIZING SYSTEMS) to disperse the light-shielding agent in a solvent (water, organic solvent, etc.).
本発明の液晶表示素子用シール剤100質量部中における上記遮光剤の含有量の好ましい下限は5質量部、好ましい上限は80質量部である。上記遮光剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤の接着性、硬化後の強度、及び、描画性を大きく低下させることなく、より優れた遮光性を発揮することができる。上記遮光剤の含有量のより好ましい下限は10質量部、より好ましい上限は70質量部であり、更に好ましい下限は30質量部、更に好ましい上限は60質量部である。 The preferable lower limit of the content of the light-shielding agent in 100 parts by mass of the sealant for a liquid crystal display element of the present invention is 5 parts by mass, and the preferable upper limit is 80 parts by mass. When the content of the light-shielding agent is within this range, the adhesiveness of the obtained sealant for a liquid crystal display element, the strength after curing, and the drawing property are not significantly deteriorated, and more excellent light-shielding property is exhibited. be able to. The more preferable lower limit of the content of the light-shielding agent is 10 parts by mass, the more preferable upper limit is 70 parts by mass, the further preferable lower limit is 30 parts by mass, and the further preferable upper limit is 60 parts by mass.
本発明の液晶表示素子用シール剤は、更に、必要に応じて、応力緩和剤、反応性希釈剤、揺変剤、スペーサー、硬化促進剤、消泡剤、レベリング剤、重合禁止剤等の添加剤を含有してもよい。 The sealant for a liquid crystal display element of the present invention further contains, if necessary, a stress relaxation agent, a reactive diluent, a rocking agent, a spacer, a curing accelerator, a defoaming agent, a leveling agent, a polymerization inhibitor and the like. It may contain an agent.
本発明の液晶表示素子用シール剤を製造する方法としては、例えば、混合機を用いて、硬化性樹脂と、熱硬化剤と、必要に応じて添加される光ラジカル重合開始剤等とを混合する方法等が挙げられる。
上記混合機としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等が挙げられる。
As a method for producing a sealant for a liquid crystal display element of the present invention, for example, a curable resin, a thermosetting agent, a photoradical polymerization initiator added as necessary, and the like are mixed using a mixer. How to do it, etc.
Examples of the mixer include a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and three rolls.
本発明の液晶表示素子用シール剤に導電性微粒子を配合することにより、上下導通材料を製造することができる。本発明の液晶表示素子用シール剤と導電性微粒子とを含有する上下導通材料もまた、本発明の1つである。 By blending conductive fine particles with the sealant for a liquid crystal display element of the present invention, a vertically conductive material can be manufactured. A vertically conductive material containing a sealing agent for a liquid crystal display element of the present invention and conductive fine particles is also one of the present inventions.
上記導電性微粒子としては、例えば、金属ボール、樹脂微粒子の表面に導電金属層を形成したもの等を用いることができる。なかでも、樹脂微粒子の表面に導電金属層を形成したものは、樹脂微粒子の優れた弾性により、透明基板等を損傷することなく導電接続が可能であることから好適である。 As the conductive fine particles, for example, a metal ball, a resin fine particle having a conductive metal layer formed on the surface thereof, or the like can be used. Among them, the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the excellent elasticity of the resin fine particles enables conductive connection without damaging the transparent substrate or the like.
本発明の液晶表示素子用シール剤の硬化物又は本発明の上下導通材料の硬化物を有する液晶表示素子もまた、本発明の1つである。 A liquid crystal display element having a cured product of a sealant for a liquid crystal display element of the present invention or a cured product of a vertically conductive material of the present invention is also one of the present inventions.
本発明の液晶表示素子としては、狭額縁設計の液晶表示素子が好ましい。具体的には、液晶表示部の周囲の枠部分の幅が2mm以下であることが好ましい。
また、本発明の液晶表示素子を製造する際の本発明の液晶表示素子用シール剤の塗布幅は1mm以下であることが好ましい。
As the liquid crystal display element of the present invention, a liquid crystal display element having a narrow frame design is preferable. Specifically, the width of the frame portion around the liquid crystal display unit is preferably 2 mm or less.
Further, the coating width of the sealant for the liquid crystal display element of the present invention when manufacturing the liquid crystal display element of the present invention is preferably 1 mm or less.
本発明の液晶表示素子用シール剤は、液晶滴下工法による液晶表示素子の製造に好適に用いることができる。
液晶滴下工法によって本発明の液晶表示素子を製造する方法としては、例えば、以下の方法等が挙げられる。
まず、基板に本発明の液晶表示素子用シール剤をスクリーン印刷、ディスペンサー塗布等により枠状のシールパターンを形成する工程を行う。次いで、本発明の液晶表示素子用シール剤が未硬化の状態で液晶の微小滴をシールパターンの枠内全面に滴下塗布し、すぐに別の基板を重ね合わせる工程を行う。その後、シール剤を加熱して硬化させる工程を行う方法により、液晶表示素子を得ることができる。また、シール剤を加熱して硬化させる工程の前にシールパターン部分に紫外線等の光を照射してシール剤を仮硬化させる工程を行ってもよい。
The sealant for a liquid crystal display element of the present invention can be suitably used for manufacturing a liquid crystal display element by a liquid crystal dropping method.
Examples of the method for manufacturing the liquid crystal display element of the present invention by the liquid crystal dropping method include the following methods.
First, a step of forming a frame-shaped seal pattern on a substrate by screen printing, applying a dispenser, or the like with the sealant for a liquid crystal display element of the present invention is performed. Next, in a state where the sealant for a liquid crystal display element of the present invention is uncured, fine droplets of liquid crystal are dropped and applied to the entire surface of the frame of the seal pattern, and a step of immediately superimposing another substrate is performed. After that, a liquid crystal display element can be obtained by a method of heating and curing the sealant. Further, before the step of heating and curing the sealant, a step of irradiating the seal pattern portion with light such as ultraviolet rays to temporarily cure the sealant may be performed.
本発明によれば、保存安定性、接着性、及び、低液晶汚染性に優れる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することができる。 According to the present invention, it is possible to provide a sealant for a liquid crystal display element having excellent storage stability, adhesiveness, and low liquid crystal contamination. Further, according to the present invention, it is possible to provide a vertically conductive material and a liquid crystal display element using the sealant for a liquid crystal display element.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(化合物Bの作製)
還流冷却管を取り付けた100mL容のナスフラスコに、テトラヒドロフラン50mLと、エタノール50mLと、ヒドラジン一水和物10g(0.2モル)と、繰り返し単位n=7のビスフェノールFジグリシジルエーテル19.2g(0.02モル)とを入れ、還流冷却を行いながら60℃で一晩撹拌した。次いで、得られた溶液を1000mL容のナスフラスコに移し、水500mLを加えて撹拌した。その後、得られた混合液を濾過し、残渣を真空オーブンにて60℃で真空乾燥させ、下記式(5)におけるnが7である化合物Bを作製した。
なお、得られた化合物Bの構造は、H-NMR、13C-NMR、及び、FT-IRにより確認した。
(Preparation of compound B)
In a 100 mL eggplant flask equipped with a reflux condenser, 50 mL of tetrahydrofuran, 50 mL of ethanol, 10 g (0.2 mol) of hydrazine monohydrate, and 19.2 g of bisphenol F diglycidyl ether having a repeating unit of n = 7 ( 0.02 mol) was added, and the mixture was stirred overnight at 60 ° C. while reflux cooling. Then, the obtained solution was transferred to a 1000 mL eggplant flask, 500 mL of water was added, and the mixture was stirred. Then, the obtained mixed solution was filtered, and the residue was vacuum-dried at 60 ° C. in a vacuum oven to prepare compound B in which n in the following formula (5) was 7.
The structure of the obtained compound B was confirmed by 1 H-NMR, 13 C-NMR, and FT-IR.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(化合物Cの作製)
繰り返し単位n=7のビスフェノールFジグリシジルエーテル19.2g(0.02モル)に代えて、繰り返し単位n=11のビスフェノールFジグリシジルエーテル19.2g(0.02モル)を用いたこと以外は上記「(化合物Bの作製)」と同様にして、上記式(5)におけるnが11である化合物Cを作製した。
なお、得られた化合物Cの構造は、H-NMR、13C-NMR、及び、FT-IRにより確認した。
(Preparation of compound C)
Except for using 19.2 g (0.02 mol) of bisphenol F diglycidyl ether with repeating unit n = 11 instead of 19.2 g (0.02 mol) of bisphenol F diglycidyl ether with repeating unit n = 7. In the same manner as in the above "(Preparation of compound B)", compound C in which n in the above formula (5) is 11 was prepared.
The structure of the obtained compound C was confirmed by 1 H-NMR, 13 C-NMR, and FT-IR.
(化合物Dの作製)
還流冷却管を取り付けた100mL容のナスフラスコに、テトラヒドロフラン50mLと、エタノール50mlLと、ヒドラジン一水和物10g(0.2モル)と、ビスフェノールFジグリシジルエーテル6.24g(0.02モル)とを入れ、還流冷却を行いながら60℃で一晩撹拌した。次いで、得られた溶液を1000mL容のナスフラスコに移し、水500mLを加えて撹拌した。その後、得られた混合液を濾過し、残渣を真空オーブンにて60℃で真空乾燥させ、下記式(6)で表される化合物Dを作製した。
なお、得られた化合物Dの構造は、H-NMR、13C-NMR、及び、FT-IRにより確認した。
(Preparation of compound D)
In a 100 mL eggplant flask equipped with a reflux condenser, 50 mL of tetrahydrofuran, 50 mlL of ethanol, 10 g (0.2 mol) of hydrazine monohydrate, and 6.24 g (0.02 mol) of bisphenol F diglycidyl ether were added. Was added, and the mixture was stirred at 60 ° C. overnight while reflux-cooling. Then, the obtained solution was transferred to a 1000 mL eggplant flask, 500 mL of water was added, and the mixture was stirred. Then, the obtained mixed solution was filtered, and the residue was vacuum-dried at 60 ° C. in a vacuum oven to prepare compound D represented by the following formula (6).
The structure of the obtained compound D was confirmed by 1 H-NMR, 13 C-NMR, and FT-IR.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(化合物Eの作製)
ビスフェノールFジグリシジルエーテル6.24g(0.02モル)に代えて、ビスフェノールAジグリシジルエーテル6.8g(0.02モル)を用いたこと以外は、上記「(アダクト体Aの合成)」と同様にして、下記式(7)で表される化合物Eを作製した。
なお、得られた化合物Eの構造は、H-NMR、13C-NMR、及び、FT-IRにより確認した。
(Preparation of compound E)
Except for the fact that 6.8 g (0.02 mol) of bisphenol A diglycidyl ether was used instead of 6.24 g (0.02 mol) of bisphenol F diglycidyl ether, the above "(synthesis of adduct A)" was used. In the same manner, compound E represented by the following formula (7) was prepared.
The structure of the obtained compound E was confirmed by 1 H-NMR, 13 C-NMR, and FT-IR.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(化合物Fの作製)
ビスフェノールFジグリシジルエーテル6.24g(0.02モル)に代えて、ビス(4-グリシジルオキシフェニル)エーテル6.28g(0.02モル)を用いたこと以外は、上記「(アダクト体Aの合成)」と同様にして、下記式(8)で表される化合物Fを作製した。
なお、得られた化合物Fの構造は、H-NMR、13C-NMR、及び、FT-IRにより確認した。
(Preparation of compound F)
Except for the fact that 6.28 g (0.02 mol) of bis (4-glycidyloxyphenyl) ether was used instead of 6.24 g (0.02 mol) of bisphenol F diglycidyl ether, the above "(Adduct A) Synthetic) ”, compound F represented by the following formula (8) was prepared.
The structure of the obtained compound F was confirmed by 1 H-NMR, 13 C-NMR, and FT-IR.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(実施例1~16、比較例1~13)
表1~4に記載された配合比に従い、各材料を、遊星式撹拌機(シンキー社製、「あわとり練太郎」)を用いて混合した後、更に3本ロールを用いて混合することにより実施例1~16、比較例1~13の各液晶表示素子用シール剤を調製した。
(Examples 1 to 16, Comparative Examples 1 to 13)
According to the compounding ratios shown in Tables 1 to 4, each material was mixed using a planetary stirrer (manufactured by Shinky Co., Ltd., "Awatori Rentaro"), and then further mixed using three rolls. Sealing agents for liquid crystal display elements of Examples 1 to 16 and Comparative Examples 1 to 13 were prepared.
<評価>
実施例及び比較例で得られた各液晶表示素子用シール剤について以下の評価を行った。結果を表1~4に示した。
<Evaluation>
The following evaluations were performed on the sealants for each liquid crystal display element obtained in Examples and Comparative Examples. The results are shown in Tables 1 to 4.
(保存安定性)
実施例及び比較例で得られた各液晶表示素子用シール剤について、製造直後の初期粘度と、製造後に25℃で6日間保管した後の粘度とを測定した。(保管後の粘度)/(初期粘度)を増粘率とし、増粘率が1.3未満であったものを「◎」、1.3以上1.7未満であったものを「○」、1.7以上2.0未満であったものを「△」、2.0以上であったものを「×」として保存安定性を評価した。
なお、液晶表示素子用シール剤の粘度は、E型粘度計(BROOK FIELD社製、「DV-III」)を用い、25℃において回転速度1.0rpmの条件で測定した。
(Storage stability)
For each of the sealants for liquid crystal display elements obtained in Examples and Comparative Examples, the initial viscosity immediately after production and the viscosity after storage at 25 ° C. for 6 days after production were measured. (Viscosity after storage) / (Initial viscosity) is defined as the thickening rate, and the thickening rate of less than 1.3 is "◎", and the thickening rate of 1.3 or more and less than 1.7 is "○". The storage stability was evaluated as "Δ" for those having a value of 1.7 or more and less than 2.0 and "x" for those having a viscosity of 2.0 or more.
The viscosity of the sealant for the liquid crystal display element was measured using an E-type viscometer (“DV-III” manufactured by BROOK FIELD) at 25 ° C. and a rotation speed of 1.0 rpm.
(接着性)
実施例及び比較例で得られた各液晶表示素子用シール剤100質量部に対して平均粒子径4μmのスペーサー粒子(積水化学工業社製、「ミクロパールSP-2050」)1質量部を遊星式撹拌機によって均一に分散させた。スペーサー粒子を分散させた液晶表示素子用シール剤の極微量を、ITO薄膜付きガラス基板(20mm×45mm×厚さ0.7mm)の中央部に取り、同型のITO薄膜付きガラス基板をその上に重ね合わせた。液晶表示素子用シール剤を押し広げ、メタルハライドランプを用いて100mW/cmの紫外線(波長365nm)を30秒照射した後、120℃で1時間加熱して液晶表示素子用シール剤を硬化させ、接着試験片を得た。ITO薄膜付きガラス基板に代えて表面にTN用ポリイミド配向膜(日産化学社製、「SE6414」)を有するガラス基板についても同様にして接着試験片を得た。
得られた各接着試験片について、テンションゲージを用いて接着強度(接着力)を測定した。
接着強度が2.5kg/cm以上であった場合を「◎」、2.0kg/cm以上2.5kg/cm未満であった場合を「○」、1.5kg/cm以上2.0kg/cm未満であった場合を「△」、接着強度が1.5kg/cm未満であった場合を「×」として接着性を評価した。
(Adhesiveness)
1 part by mass of spacer particles (manufactured by Sekisui Chemical Co., Ltd., "Micropearl SP-2050") having an average particle diameter of 4 μm with respect to 100 parts by mass of the sealant for each liquid crystal display element obtained in Examples and Comparative Examples is a planetary type. It was uniformly dispersed by a stirrer. A very small amount of a sealing agent for a liquid crystal display element in which spacer particles are dispersed is taken in the center of a glass substrate with an ITO thin film (20 mm × 45 mm × 0.7 mm in thickness), and a glass substrate with an ITO thin film of the same type is placed on it. Overlaid. The sealant for the liquid crystal display element is spread, irradiated with ultraviolet rays (wavelength 365 nm) of 100 mW / cm 2 for 30 seconds using a metal halide lamp, and then heated at 120 ° C. for 1 hour to cure the sealant for the liquid crystal display element. An adhesion test piece was obtained. An adhesion test piece was obtained in the same manner for a glass substrate having a polyimide alignment film for TN (manufactured by Nissan Chemical Industries, Ltd., "SE6414") on the surface instead of the glass substrate with an ITO thin film.
The adhesive strength (adhesive strength) of each of the obtained adhesive test pieces was measured using a tension gauge.
"◎" when the adhesive strength is 2.5 kg / cm 2 or more, "○" when the adhesive strength is 2.0 kg / cm 2 or more and less than 2.5 kg / cm 2 , 1.5 kg / cm 2 or more 2 The adhesiveness was evaluated as "Δ" when it was less than 0.0 kg / cm 2 and as "x" when the adhesive strength was less than 1.5 kg / cm 2 .
(低液晶汚染性)
実施例及び比較例で得られた各液晶表示素子用シール剤100質量部に平均粒子径7μmのスペーサー微粒子(積水化学工業社製、「ミクロパールSI-H050」)1質量部を分散させ、シリンジに充填し、遠心脱泡機(アワトロンAW-1)にて脱泡した。脱泡処理後の液晶表示素子用シール剤を、ディスペンサーを用いて、ノズル径0.4mmφ、ノズルギャップ42μm、シリンジの吐出圧100~400kPa、塗布速度60mm/secの条件で2枚の配向膜及びITO付き基板の一方に枠状に塗布した。このとき、液晶表示素子用シール剤の線幅が約1.0mmとなるように吐出圧を調整した。続いて液晶(東京化成工業社製、「4-ペンチル-4-ビフェニルカルボニトリル」)の微小滴を、液晶表示素子用シール剤を塗布した基板の液晶表示素子用シール剤の枠内全面に滴下塗布し、2時間放置したのち真空下でもう一方の基板を貼り合わせた。貼り合わせた基板について、貼り合わせてから15分間静置した後、液晶表示素子用シール剤部分にメタルハライドランプを用いて100mW/cmの紫外線を30秒照射して液晶表示素子用シール剤を仮硬化させた。次いで、120℃で1時間加熱して本硬化を行い、液晶表示素子を作製した。
得られた液晶表示素子について、偏光顕微鏡(キーエンス社製、「VHX-5000」)を用いて、配向乱れ(表示むら)を確認した。配向乱れは表示部の色むらより判断し、液晶表示素子に表示むらが全く見られなかった場合を「○」、シール周辺部(液晶表示素子用シール剤付近)の一部に表示むらがあった場合を「△」、表示むらがシール周辺部全体に亘って発生した場合を「×」として低液晶汚染性を評価した。
(Low LCD pollution)
1 part by mass of spacer fine particles (manufactured by Sekisui Chemical Co., Ltd., "Micropearl SI-H050") having an average particle diameter of 7 μm was dispersed in 100 parts by mass of the sealant for each liquid crystal display element obtained in Examples and Comparative Examples, and a syringe was used. The particles were defoamed with a centrifugal defoaming machine (Awatron AW-1). Using a dispenser, the sealant for the liquid crystal display element after the defoaming treatment is applied to the two alignment films under the conditions of a nozzle diameter of 0.4 mmφ, a nozzle gap of 42 μm, a syringe discharge pressure of 100 to 400 kPa, and a coating speed of 60 mm / sec. It was applied in a frame shape to one of the substrates with ITO. At this time, the discharge pressure was adjusted so that the line width of the sealant for the liquid crystal display element was about 1.0 mm. Subsequently, fine droplets of liquid crystal ("4-pentyl-4-biphenylcarbonitrile" manufactured by Tokyo Chemical Industry Co., Ltd.) are dropped on the entire surface of the frame of the liquid crystal display element sealant on the substrate coated with the liquid crystal display element sealant. After applying and leaving for 2 hours, the other substrate was bonded under vacuum. After the bonded substrate is allowed to stand for 15 minutes after being bonded, the sealant for the liquid crystal display element is temporarily irradiated with ultraviolet rays of 100 mW / cm 2 for 30 seconds using a metal halide lamp. It was cured. Then, it was heated at 120 ° C. for 1 hour to perform main curing, and a liquid crystal display element was manufactured.
With respect to the obtained liquid crystal display element, orientation disorder (display unevenness) was confirmed using a polarizing microscope (“VHX-5000” manufactured by KEYENCE CORPORATION). Orientation disorder is judged from the color unevenness of the display part, and if no display unevenness is seen on the liquid crystal display element, there is "○", and there is display unevenness in a part of the seal peripheral part (near the sealant for the liquid crystal display element). The low liquid crystal contamination property was evaluated as "Δ" in the case of "Δ" and "x" in the case where uneven display occurred over the entire peripheral part of the seal.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
本発明によれば、保存安定性、接着性、及び、低液晶汚染性に優れる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することができる。 According to the present invention, it is possible to provide a sealant for a liquid crystal display element having excellent storage stability, adhesiveness, and low liquid crystal contamination. Further, according to the present invention, it is possible to provide a vertically conductive material and a liquid crystal display element using the sealant for a liquid crystal display element.

Claims (10)

  1. 硬化性樹脂と熱硬化剤とを含有する液晶表示素子用シール剤であって、
    前記熱硬化剤は、エポキシ化合物のアミンアダクト体及びイミダゾール化合物を含む
    ことを特徴とする液晶表示素子用シール剤。
    A sealant for a liquid crystal display element containing a curable resin and a thermosetting agent.
    The thermosetting agent is a sealant for a liquid crystal display element, which comprises an amine adduct body of an epoxy compound and an imidazole compound.
  2. 前記アミンアダクト体は、下記式(1)で表される化合物を含む請求項1記載の液晶表示素子用シール剤。
    Figure JPOXMLDOC01-appb-C000001
    式(1)中、Rは、それぞれ独立して、水素原子又はメチル基であり、nは、1以上10以下の整数である。
    The sealant for a liquid crystal display element according to claim 1, wherein the amine adduct body contains a compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    In the formula (1), R 1 is an independent hydrogen atom or a methyl group, and n is an integer of 1 or more and 10 or less.
  3. 前記液晶表示素子用シール剤全体における前記アミンアダクト体の含有割合が2質量%以上5質量%以下である請求項1又は2記載の液晶表示素子用シール剤。 The sealant for a liquid crystal display element according to claim 1 or 2, wherein the content ratio of the amine adduct body in the entire sealant for a liquid crystal display element is 2% by mass or more and 5% by mass or less.
  4. 前記イミダゾール化合物は、炭素数10以上のアルキル鎖を有する請求項1、2又は3記載の液晶表示素子用シール剤。 The sealant for a liquid crystal display element according to claim 1, 2 or 3, wherein the imidazole compound has an alkyl chain having 10 or more carbon atoms.
  5. 前記イミダゾール化合物は、融点が130℃以下である請求項1、2、3又は4記載の液晶表示素子用シール剤。 The sealant for a liquid crystal display element according to claim 1, 2, 3 or 4, wherein the imidazole compound has a melting point of 130 ° C. or lower.
  6. 前記イミダゾール化合物は、下記式(2)で表される化合物を含む請求項1、2、3、4又は5記載の液晶表示素子用シール剤。
    Figure JPOXMLDOC01-appb-C000002
    式(2)中、mは、1以上10以下の整数であり、lは、1以上3以下の整数である。
    The sealant for a liquid crystal display element according to claim 1, 2, 3, 4 or 5, wherein the imidazole compound contains a compound represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000002
    In the formula (2), m is an integer of 1 or more and 10 or less, and l is an integer of 1 or more and 3 or less.
  7. 前記液晶表示素子用シール剤全体における前記イミダゾール化合物の含有割合が0.1質量%以上0.7質量%以下である請求項1、2、3、4、5又は6記載の液晶表示素子用シール剤。 The seal for a liquid crystal display element according to claim 1, 2, 3, 4, 5 or 6, wherein the content ratio of the imidazole compound in the entire sealing agent for a liquid crystal display element is 0.1% by mass or more and 0.7% by mass or less. Agent.
  8. 前記イミダゾール化合物の含有量に対する前記アミンアダクト体の含有量の割合(アミンアダクト体の含有量/イミダゾール化合物の含有量)が、質量比で、15以上50以下である請求項1、2、3、4、5、6又は7記載の液晶表示素子用シール剤。 Claims 1, 2, 3, the ratio of the content of the amine adduct to the content of the imidazole compound (content of the amine adduct / content of the imidazole compound) is 15 or more and 50 or less in terms of mass ratio. 4. The sealing agent for a liquid crystal display element according to 5, 6 or 7.
  9. 請求項1、2、3、4、5、6、7又は8記載の液晶表示素子用シール剤と導電性微粒子とを含有する上下導通材料。 A vertically conductive material containing the sealant for a liquid crystal display element according to claim 1, 2, 3, 4, 5, 6, 7 or 8, and conductive fine particles.
  10. 請求項1、2、3、4、5、6、7又は8記載の液晶表示素子用シール剤の硬化物又は請求項9記載の上下導通材料の硬化物を有する液晶表示素子。 A liquid crystal display element having a cured product of the sealant for a liquid crystal display element according to claim 1, 2, 3, 4, 5, 6, 7 or 8, or a cured product of a vertically conductive material according to claim 9.
PCT/JP2021/035891 2020-09-30 2021-09-29 Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element WO2022071404A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227043399A KR20230074660A (en) 2020-09-30 2021-09-29 Sealing agent for liquid crystal display element, top and bottom conduction material, and liquid crystal display element
CN202180047130.9A CN115867590A (en) 2020-09-30 2021-09-29 Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP2021568419A JP7151003B2 (en) 2020-09-30 2021-09-29 Sealant for liquid crystal dropping method, vertical conduction material, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-166192 2020-09-30
JP2020166192 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022071404A1 true WO2022071404A1 (en) 2022-04-07

Family

ID=80950584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035891 WO2022071404A1 (en) 2020-09-30 2021-09-29 Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP7151003B2 (en)
KR (1) KR20230074660A (en)
CN (1) CN115867590A (en)
TW (1) TW202225247A (en)
WO (1) WO2022071404A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022255451A1 (en) * 2021-06-03 2022-12-08 積水化学工業株式会社 Liquid crystal display element sealant and liquid crystal display element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197588A (en) * 1997-09-16 1999-04-09 Toshiba Chem Corp Liquid sealing resin composition
JP2001100224A (en) * 1999-09-28 2001-04-13 Mitsui Chemicals Inc Sealing material composition for liquid crystal display cell
WO2008016122A1 (en) * 2006-08-04 2008-02-07 Mitsui Chemicals, Inc. Liquid crystal sealing material, process for production of liquid crystal display panels with the same, and liquid crystal display panels
JP2011232631A (en) * 2010-04-28 2011-11-17 Mitsui Chemicals Inc Method for manufacturing liquid crystal display panel and liquid crystal display panel
WO2012132203A1 (en) * 2011-03-28 2012-10-04 三井化学株式会社 Liquid crystal sealing agent, method for producing liquid crystal display device using same, and liquid crystal display panel
US20170247586A1 (en) * 2014-11-13 2017-08-31 Henkel Ag & Co, Kgaa Thermally curable sealant composition and the use thereof
WO2019107070A1 (en) * 2017-11-29 2019-06-06 協立化学産業株式会社 Curable resin composition and method for manufacturing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3583326B2 (en) 1999-11-01 2004-11-04 協立化学産業株式会社 Sealant for dripping method of LCD panel
EP1405888A1 (en) 2001-05-16 2004-04-07 Sekisui Chemical Co., Ltd. Curing resin composition and sealants and end-sealing materials for displays

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197588A (en) * 1997-09-16 1999-04-09 Toshiba Chem Corp Liquid sealing resin composition
JP2001100224A (en) * 1999-09-28 2001-04-13 Mitsui Chemicals Inc Sealing material composition for liquid crystal display cell
WO2008016122A1 (en) * 2006-08-04 2008-02-07 Mitsui Chemicals, Inc. Liquid crystal sealing material, process for production of liquid crystal display panels with the same, and liquid crystal display panels
JP2011232631A (en) * 2010-04-28 2011-11-17 Mitsui Chemicals Inc Method for manufacturing liquid crystal display panel and liquid crystal display panel
WO2012132203A1 (en) * 2011-03-28 2012-10-04 三井化学株式会社 Liquid crystal sealing agent, method for producing liquid crystal display device using same, and liquid crystal display panel
US20170247586A1 (en) * 2014-11-13 2017-08-31 Henkel Ag & Co, Kgaa Thermally curable sealant composition and the use thereof
WO2019107070A1 (en) * 2017-11-29 2019-06-06 協立化学産業株式会社 Curable resin composition and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022255451A1 (en) * 2021-06-03 2022-12-08 積水化学工業株式会社 Liquid crystal display element sealant and liquid crystal display element

Also Published As

Publication number Publication date
TW202225247A (en) 2022-07-01
KR20230074660A (en) 2023-05-31
JPWO2022071404A1 (en) 2022-04-07
CN115867590A (en) 2023-03-28
JP7151003B2 (en) 2022-10-11

Similar Documents

Publication Publication Date Title
JP7112604B1 (en) Liquid crystal display element sealant, vertical conduction material, and liquid crystal display element
JP6792088B2 (en) Sealing agent for liquid crystal dropping method, cured product, vertical conductive material, and liquid crystal display element
JP7151003B2 (en) Sealant for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
WO2021044842A1 (en) Sealing agent for liquid crystal display elements, vertical conduction material, and liquid crystal display element
TWI766068B (en) Liquid crystal display element sealing compound, vertical conduction material, and liquid crystal display element
JP7000164B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6802147B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JPWO2020171053A1 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP7185103B1 (en) Sealant for liquid crystal display element and liquid crystal display element
JP6849866B1 (en) Curable resin composition, sealant for liquid crystal display element, vertical conductive material, and liquid crystal display element
JP7007524B1 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6821102B1 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP7231794B1 (en) Hydrazide compound, curable resin composition, sealing agent for liquid crystal display element, and liquid crystal display element
JP6928177B2 (en) Curable resin composition, sealant for liquid crystal display element, vertical conductive material, and liquid crystal display element
JP7148332B2 (en) Liquid crystal display element sealant, vertical conduction material, and liquid crystal display element
TWI813686B (en) Sealant for liquid crystal display element, upper and lower conduction material, and liquid crystal display element
JP6609396B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2023120683A1 (en) Sealing agent for liquid crystal display elements, liquid crystal display element and polyvalent hydrazide compound
JP7088676B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2022255291A1 (en) Sealing agent for liquid crystal display elements, and liquid crystal display element
JPWO2019221044A1 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021568419

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875702

Country of ref document: EP

Kind code of ref document: A1