WO2021044842A1 - Sealing agent for liquid crystal display elements, vertical conduction material, and liquid crystal display element - Google Patents

Sealing agent for liquid crystal display elements, vertical conduction material, and liquid crystal display element Download PDF

Info

Publication number
WO2021044842A1
WO2021044842A1 PCT/JP2020/031221 JP2020031221W WO2021044842A1 WO 2021044842 A1 WO2021044842 A1 WO 2021044842A1 JP 2020031221 W JP2020031221 W JP 2020031221W WO 2021044842 A1 WO2021044842 A1 WO 2021044842A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
display element
meth
sealant
Prior art date
Application number
PCT/JP2020/031221
Other languages
French (fr)
Japanese (ja)
Inventor
駿介 高橋
秀幸 林
幸平 竹田
洋 小林
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2020552920A priority Critical patent/JP6821102B1/en
Priority to CN202080037785.3A priority patent/CN113874462B/en
Priority to KR1020217028250A priority patent/KR20220058488A/en
Publication of WO2021044842A1 publication Critical patent/WO2021044842A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to a sealant for a liquid crystal display element, which is excellent in storage stability, adhesiveness, and low liquid crystal contamination.
  • the present invention also relates to a vertically conductive material and a liquid crystal display element using the sealant for a liquid crystal display element.
  • a method for manufacturing a liquid crystal display element such as a liquid crystal display cell
  • dropping using a sealant as disclosed in Patent Document 1 and Patent Document 2 from the viewpoint of shortening the tact time and optimizing the amount of liquid crystal used.
  • a liquid crystal dropping method called a construction method is used.
  • the dropping method first, a frame-shaped seal pattern is formed on one of the two electrode-equipped substrates by dispensing. Next, in a state where the sealant is uncured, fine droplets of liquid crystal are dropped into the frame of the seal pattern, the other substrate is overlapped under vacuum, and then the sealant is cured to produce a liquid crystal display element.
  • this dropping method is the mainstream method for manufacturing liquid crystal display elements.
  • miniaturization of the devices is the most sought after issue.
  • a narrowing of the frame of the liquid crystal display unit can be mentioned.
  • the position of the seal portion is arranged under the black matrix (hereinafter, also referred to as a narrow frame design).
  • the sealant is placed directly under the black matrix, so if the dropping method is performed, the light emitted when the sealant is photocured is blocked, and it is difficult for the light to reach the inside of the sealant. , The conventional sealant is insufficiently cured. When the sealant is not sufficiently cured in this way, there is a problem that the uncured sealant component elutes into the liquid crystal and easily causes liquid crystal contamination. In particular, in recent years, with the increasing polarity of liquid crystals, the sealant has been required to have further low liquid crystal contamination.
  • the sealant When it is difficult to photo-cure the sealant, it is considered that the sealant is cured by heating, and as a method for curing the sealant by heating, a thermosetting agent is added to the sealant. ..
  • a thermosetting agent is added to the sealant.
  • the obtained sealant may be inferior in storage stability.
  • the present invention is a sealant for a liquid crystal display element containing a curable resin and a thermosetting agent, wherein the thermosetting agent contains a hydrazide compound, and the hydrazide compound is represented by the following formula (1-1). It is a sealing agent for a liquid crystal display element having a structure to be formed and a structure represented by the following formula (1-2).
  • Ar is an aromatic ring
  • R 1 is a hydrogen atom or a methyl group.
  • thermosetting agent having a specific structure
  • a sealant for a liquid crystal display element having excellent storage stability, adhesiveness, and low liquid crystal contamination can be obtained.
  • the present invention has been completed.
  • the sealant for a liquid crystal display element of the present invention contains a thermosetting agent.
  • the thermosetting agent contains a hydrazide compound.
  • the hydrazide compound has a structure represented by the above formula (1-1) and a structure represented by the above formula (1-2).
  • a hydrazide compound having a structure represented by the above formula (1-1) and a structure represented by the above formula (1-2) is also referred to as a “hydrazide compound according to the present invention”.
  • the sealant for a liquid crystal display element of the present invention is excellent in all of storage stability, adhesiveness, and low liquid crystal contamination.
  • the following can be considered as the reason why the obtained sealant for a liquid crystal display element is excellent in storage stability, adhesiveness, and low liquid crystal contamination by using the hydrazide compound according to the present invention. .. That is, it is considered that the storage stability can be improved because the softening point of the hydrazide compound can be controlled by having the structure represented by the above formula (1-1). Further, it is considered that the adhesiveness of the obtained sealant can be improved by having the structure represented by the above formula (1-2) containing the primary amino group. Further, it is considered that having these structures increases the molecular weight of the hydrazide compound, so that elution into the liquid crystal can be suppressed.
  • the preferable lower limit of the ratio of the structure represented by the above formula (1-1) is 5 mol%, and the preferable upper limit is 95 mol%.
  • the ratio of the structure represented by the above formula (1-1) is 5 mol% or more, the obtained sealant for a liquid crystal display element becomes more excellent in storage stability.
  • the ratio of the structure represented by the above formula (1-1) is 95 mol% or less, the obtained sealant for a liquid crystal display element becomes more excellent in adhesiveness.
  • the more preferable lower limit of the ratio of the structure represented by the above formula (1-1) is 10 mol%, the more preferable upper limit is 90 mol%, and the further preferable upper limit is 50 mol%.
  • the preferable lower limit of the ratio of the structure represented by the above formula (1-2) is 5 mol%, and the preferable upper limit is 95 mol%.
  • the ratio of the structure represented by the above formula (1-2) is 5 mol% or more, the obtained sealant for the liquid crystal display element becomes more excellent in adhesiveness.
  • the ratio of the structure represented by the above formula (1-2) is 95 mol% or less, the obtained sealant for a liquid crystal display element becomes more excellent in storage stability.
  • the more preferable lower limit of the ratio of the structure represented by the above formula (1-2) is 10 mol%, the more preferable upper limit is 90 mol%, and the further preferable lower limit is 50 mol%.
  • the hydrazide compound according to the present invention may have other structures in addition to the structure represented by the above formula (1-1) and the structure represented by the above formula (1-2).
  • the hydrazide compound according to the present invention preferably has a structure represented by the following formula (2) as the above-mentioned other structure.
  • R 2 is a hydrogen atom or a methyl group
  • OR 4 group R 4 is a hydrogen atom or an alkyl group having 1 or more and 10 or less carbon atoms
  • -CN group R 4 is an alkyl group having 1 to 10 carbon atoms
  • R 5 is an alkyl group having 1 to 10 carbon atoms
  • the hydrazide compound according to the present invention has a preferable lower limit of 2000 and a preferable upper limit of 200,000 in weight average molecular weight.
  • the weight average molecular weight is 2000 or more, the obtained sealant for a liquid crystal display element becomes more excellent in low liquid crystal contamination.
  • the weight average molecular weight is 200,000 or less, the obtained sealant for a liquid crystal display element becomes more excellent in handleability.
  • the more preferable lower limit of the weight average molecular weight is 4000, and the more preferable upper limit is 100,000.
  • the weight average molecular weight is a value obtained by measuring by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent and converting it into polystyrene. Examples of the column for measuring the weight average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK).
  • the preferable lower limit of the softening point of the hydrazide compound according to the present invention is 65 ° C., and the preferable upper limit is 200 ° C.
  • the softening point of the hydrazide compound according to the present invention is 65 ° C. or higher, the obtained sealant for a liquid crystal display element becomes more excellent in storage stability.
  • the softening point of the hydrazide compound according to the present invention is 200 ° C. or lower, the obtained sealant for a liquid crystal display element becomes more excellent in adhesiveness.
  • the more preferable lower limit of the softening point of the hydrazide compound according to the present invention is 90 ° C., and the more preferable upper limit is 160 ° C.
  • the softening point can be determined by the ring-and-ball method according to JIS K 2207.
  • Examples of the method for producing the hydrazide compound according to the present invention include the following methods. That is, first, the compound represented by the following formula (3-1) and the compound represented by the following formula (3-2) are dissolved in a solvent such as tetrahydrofuran, and the polymerization of azobisisobutyronitrile or the like is started. In the presence of the agent, the reaction is carried out by heating and stirring while substituting nitrogen. After concentrating the obtained reaction product, it is reprecipitated in an ethanol solution to obtain an intermediate polymer compound. The obtained intermediate polymer compound and hydrazine hydrate are dissolved in a solvent such as tetrahydrofuran and reacted under reflux.
  • the hydrazide compound according to the present invention can be obtained by concentrating and separating the solid matter. Further, in addition to the compound represented by the following formula (3-1) and the compound represented by the following formula (3-2), a compound represented by the following formula (4) may be used.
  • Ar is an aromatic ring
  • R 1 is a hydrogen atom or a methyl group
  • R 6 is an alkyl group having 1 to 10 carbon atoms. is there.
  • R 2 is a hydrogen atom or a methyl group
  • OR 4 group R 4 is a hydrogen atom or an alkyl group having 1 or more and 10 or less carbon atoms
  • -CN group R 4 is an alkyl group having 1 to 10 carbon atoms
  • R 5 is an alkyl group having 1 to 10 carbon atoms
  • the preferable lower limit is 1 part by weight and the preferable upper limit is 20 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the hydrazide compound according to the present invention is 1 part by weight or more, the obtained sealant for a liquid crystal display element becomes excellent in curability and adhesiveness.
  • the content of the hydrazide compound according to the present invention is 20 parts by weight or less, the obtained sealant for a liquid crystal display element becomes excellent in storage stability and low liquid crystal contamination.
  • the more preferable lower limit of the content of the hydrazide compound according to the present invention is 2 parts by weight, and the more preferable upper limit is 15 parts by weight.
  • the sealant for a liquid crystal display element of the present invention may contain other heat-curing agents in addition to the hydrazide compound according to the present invention as long as the object of the present invention is not impaired.
  • the heat-curing agent include organic acid hydrazide, imidazole derivative, amine compound, polyhydric phenol compound, acid anhydride and the like.
  • the sealant for a liquid crystal display element of the present invention contains a curable resin.
  • the curable resin preferably contains an epoxy compound.
  • the epoxy compound include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, 2,2'-diallyl bisphenol A type epoxy resin, and hydrogenated bisphenol type epoxy resin.
  • Propoxy oxide-added bisphenol A type epoxy resin resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, phenol novolac type epoxy resin, orthocresol Novolac type epoxy resin, dicyclopentadiene novolac type epoxy resin, biphenyl novolac type epoxy resin, naphthalenephenol novolac type epoxy resin, glycidylamine type epoxy resin, alkyl polyol type epoxy resin, rubber modified epoxy resin, glycidyl ester compound, etc. Be done.
  • Examples of commercially available bisphenol A type epoxy resins include jER828EL, jER1004 (all manufactured by Mitsubishi Chemical Corporation), EPICLON850 (manufactured by DIC Corporation), and the like.
  • Examples of commercially available bisphenol F type epoxy resins include jER806, jER4004 (all manufactured by Mitsubishi Chemical Corporation), EPICLON EXA-830CRP (manufactured by DIC Corporation), and the like.
  • Examples of commercially available bisphenol E-type epoxy resins include Epomic R710 (manufactured by Mitsui Chemicals, Inc.) and the like.
  • Examples of commercially available bisphenol S-type epoxy resins include EPICLON EXA-1514 (manufactured by DIC Corporation) and the like.
  • 2,2'-diallyl bisphenol A type epoxy resins commercially available ones include, for example, RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
  • Examples of commercially available hydrogenated bisphenol type epoxy resins include EPICLON EXA-7015 (manufactured by DIC Corporation) and the like.
  • Examples of commercially available propylene oxide-added bisphenol A type epoxy resins include EP-4000S (manufactured by ADEKA Corporation) and the like.
  • Examples of commercially available resorcinol type epoxy resins include EX-201 (manufactured by Nagase ChemteX Corporation) and the like.
  • Examples of commercially available biphenyl type epoxy resins include jER YX-4000H (manufactured by Mitsubishi Chemical Corporation) and the like.
  • Examples of commercially available sulfide type epoxy resins include YSLV-50TE (manufactured by Nippon Steel Chemical & Materials Co., Ltd.).
  • Examples of commercially available diphenyl ether type epoxy resins include YSLV-80DE (manufactured by Nippon Steel Chemical & Materials Co., Ltd.).
  • Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA Corporation) and the like.
  • Examples of commercially available naphthalene-type epoxy resins include EPICLON HP-4032 and EPICLON EXA-4700 (both manufactured by DIC Corporation).
  • Examples of commercially available phenol novolac type epoxy resins include EPICLON N-770 (manufactured by DIC Corporation) and the like.
  • Examples of commercially available orthocresol novolac type epoxy resins include EPICLON N-670-EXP-S (manufactured by DIC Corporation) and the like.
  • Examples of commercially available dicyclopentadiene novolac type epoxy resins include EPICLON HP-7200 (manufactured by DIC Corporation) and the like.
  • Examples of commercially available biphenyl novolac type epoxy resins include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.) and the like.
  • Examples of commercially available naphthalene phenol novolac type epoxy resins include ESN-165S (manufactured by Nippon Steel Chemical & Materials Co., Ltd.).
  • Examples of commercially available glycidylamine type epoxy resins include jER630 (manufactured by Mitsubishi Chemical Corporation), EPICLON430 (manufactured by DIC Corporation), TETRAD-X (manufactured by Mitsubishi Gas Chemical Company, Inc.) and the like.
  • alkyl polyol type epoxy resins commercially available ones include, for example, ZX-1542 (manufactured by Nippon Steel Chemical & Materials Co., Ltd.), EPICLON726 (manufactured by DIC Corporation), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), and Denacol EX-. 611 (manufactured by Nagase ChemteX Corporation) and the like can be mentioned.
  • Examples of commercially available rubber-modified epoxy resins include YR-450, YR-207 (all manufactured by Nippon Steel Chemical & Materials Co., Ltd.), Epolide PB (manufactured by Daicel Co., Ltd.), and the like.
  • Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation) and the like.
  • Other commercially available epoxy compounds include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel Chemical & Materials), XAC4151 (manufactured by Asahi Kasei Corporation), jER1031 and jER1032. (All manufactured by Mitsubishi Chemical Corporation), EXA-7120 (manufactured by DIC Corporation), TEPIC (manufactured by Nissan Chemical Industries, Ltd.) and the like.
  • the epoxy compound a partially (meth) acrylic-modified epoxy resin is also preferably used.
  • the partial (meth) acrylic-modified epoxy resin can be obtained by reacting a partial epoxy group of an epoxy compound having two or more epoxy groups with (meth) acrylic acid. It means a compound having one or more epoxy groups and one or more (meth) acryloyl groups in the molecule.
  • the above-mentioned "(meth) acrylic” means acrylic or methacrylic
  • the above-mentioned "(meth) acryloyl” means acryloyl or methacryloyl.
  • Examples of commercially available partial (meth) acrylic-modified epoxy resins include UVACURE1561 and KRM8287 (both manufactured by Daicel Ornex).
  • the curable resin may contain a (meth) acrylic compound.
  • the (meth) acrylic compound include (meth) acrylic acid ester compounds, epoxy (meth) acrylates, urethane (meth) acrylates, and the like. Of these, epoxy (meth) acrylate is preferable.
  • the (meth) acrylic compound preferably has two or more (meth) acryloyl groups in one molecule from the viewpoint of reactivity.
  • the above-mentioned "(meth) acrylic compound” means a compound having a (meth) acryloyl group.
  • (meth) acrylate means acrylate or methacrylate
  • epoxy (meth) acrylate is a compound obtained by reacting all epoxy groups in an epoxy compound with (meth) acrylic acid. Represents that.
  • monofunctional ones include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate.
  • Examples of the bifunctional one among the above (meth) acrylic acid ester compounds include 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexane.
  • those having trifunctionality or higher include, for example, trimetyl propanetri (meth) acrylate, ethylene oxide-added trimethyl propanetri (meth) acrylate, and propylene oxide-added trimethyl propanetri (meth) acrylate.
  • Examples of the epoxy (meth) acrylate include those obtained by reacting an epoxy compound and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method.
  • the same epoxy compound as the above-mentioned epoxy compound can be used as the curable resin contained in the sealant for a liquid crystal display element of the present invention.
  • epoxy (meth) acrylates commercially available ones include, for example, epoxy (meth) acrylate manufactured by Daicel Ornex, epoxy (meth) acrylate manufactured by Shin-Nakamura Chemical Industry Co., Ltd., and epoxy (meth) acrylate manufactured by Kyoei Co., Ltd. Examples thereof include meta) acrylate and epoxy (meth) acrylate manufactured by Nagase ChemteX Corporation.
  • Examples of the epoxy (meth) acrylate manufactured by Daicel Ornex include EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3702, EBECRYL3702, EBECRYL3702, EBECRYL3701, EBECRYL3701
  • Examples of the epoxy (meth) acrylate manufactured by Shin-Nakamura Chemical Industry Co., Ltd. include EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, and EMA-1020.
  • Examples of the epoxy (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd. include epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, epoxy ester 200PA, epoxy ester 80MFA, epoxy ester 3002M, epoxy ester 3002A, and epoxy ester 1600A. Examples thereof include epoxy ester 3000M, epoxy ester 3000A, epoxy ester 200EA, and epoxy ester 400EA. Examples of the epoxy (meth) acrylate manufactured by Nagase ChemteX include Denacol acrylate DA-141, Denacol acrylate DA-314, and Denacol acrylate DA-911.
  • the urethane (meth) acrylate can be obtained, for example, by reacting a (meth) acrylic acid derivative having a hydroxyl group with respect to an isocyanate compound in the presence of a catalytic amount of a tin-based compound.
  • Examples of the isocyanate compound used as a raw material for the urethane (meth) acrylate include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and diphenylmethane-4,4.
  • MDI '-Diisocyanate
  • XDI xylylene diisocyanate
  • XDI hydrogenated XDI
  • lysine diisocyanate triphenylmethane triisocyanate
  • tris (isocyanate) Phenyl) thiophosphate tetramethylxylylene diisocyanate, 1,6,11-undecantryisocyanate and the like
  • the isocyanate compound which is a raw material of the urethane (meth) acrylate a chain-extended isocyanate compound obtained by reacting a polyol with an excess isocyanate compound can also be used.
  • the polyol include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, and polycaprolactone diol.
  • Examples of the (meth) acrylic acid derivative having a hydroxyl group include hydroxyalkyl mono (meth) acrylate, mono (meth) acrylate of dihydric alcohol, mono (meth) acrylate of trihydric alcohol, and di (meth) acrylate. , Epoxy (meth) acrylate and the like.
  • Examples of the hydroxyalkyl mono (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. Can be mentioned.
  • Examples of the divalent alcohol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, polyethylene glycol and the like.
  • Examples of the trihydric alcohol include trimethylolethane, trimethylolpropane, and glycerin.
  • Examples of the epoxy (meth) acrylate include bisphenol A type epoxy acrylate and the like.
  • urethane (meth) acrylates commercially available ones include, for example, urethane (meth) acrylate manufactured by Toa Synthetic Co., Ltd., urethane (meth) acrylate manufactured by Daicel Ornex, and urethane (meth) manufactured by Negami Kogyo Co., Ltd. Examples thereof include acrylate, urethane (meth) acrylate manufactured by Shin-Nakamura Chemical Industry Co., Ltd., urethane (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd., and the like. Examples of the urethane (meth) acrylate manufactured by Toagosei Co., Ltd.
  • the urethane (meth) acrylate manufactured by the Daicel Orunekusu Inc. for example, EBECRYL210, EBECRYL220, EBECRYL230, EBECRYL270, EBECRYL1290, EBECRYL2220, EBECRYL4827, EBECRYL4842, EBECRYL4858, EBECRYL5129, EBECRYL6700, EBECRYL8402, EBECRYL8803, EBECRYL8804, EBECRYL8807, EBECRYL9260 etc. Can be mentioned.
  • Examples of the urethane (meth) acrylate manufactured by Negami Kogyo Co., Ltd. include Art Resin UN-330, Art Resin SH-500B, Art Resin UN-1200TPK, Art Resin UN-1255, Art Resin UN-3320HB, and Art Resin UN-. 7100, Art Resin UN-9000A, Art Resin UN-9000H and the like can be mentioned.
  • Examples of the urethane (meth) acrylate manufactured by Shin-Nakamura Chemical Industry Co., Ltd. include U-2HA, U-2PHA, U-3HA, U-4HA, U-6H, U-6HA, U-6LPA, U-10H, and the like.
  • Examples of the urethane (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd. include AH-600, AI-600, AT-600, UA-101I, UA-101T, UA-306H, UA-306I, and UA-306T. Be done.
  • the curable resin contains the (meth) acrylic compound in addition to the epoxy compound, or when the partial (meth) acrylic-modified epoxy compound is contained, the epoxy group and the (meth) in the curable resin It is preferable that the ratio of the (meth) acryloyl group in the total with the acryloyl group is 30 mol% or more and 95 mol% or less. When the ratio of the (meth) acryloyl group is in this range, the sealant for the liquid crystal display element obtained is excellent in adhesiveness while suppressing the occurrence of liquid crystal contamination.
  • the curable resin preferably has hydrogen-bonding units such as -OH group, -NH- group, and -NH 2 group from the viewpoint of further suppressing liquid crystal contamination.
  • the sealant for a liquid crystal display element of the present invention preferably further contains a photoradical polymerization initiator.
  • the photoradical polymerization initiator include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanosen compounds, oxime ester compounds, benzoin ether compounds, and thioxanthone compounds.
  • Specific examples of the photoradical polymerization initiator include 1-hydroxycyclohexylphenyl ketone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone, and 2- (dimethylamino).
  • the content of the photoradical polymerization initiator is preferably 0.5 parts by weight and a preferable upper limit is 10 parts by weight with respect to 100 parts by weight of the curable resin.
  • a preferable upper limit is 10 parts by weight with respect to 100 parts by weight of the curable resin.
  • the more preferable lower limit of the content of the photoradical polymerization initiator is 1 part by weight, and the more preferable upper limit is 7 parts by weight.
  • the sealant for a liquid crystal display element of the present invention may contain a thermal radical polymerization initiator.
  • the thermal radical polymerization initiator include those composed of an azo compound, an organic peroxide, or the like. Among them, an initiator composed of an azo compound (hereinafter, also referred to as “azo initiator”) is preferable from the viewpoint of suppressing liquid crystal contamination, and an initiator composed of a polymer azo compound (hereinafter, “polymer azo”) is preferable. Also referred to as “initiator”) is more preferred.
  • the thermal radical polymerization initiator may be used alone or in combination of two or more.
  • polymer azo compound means a compound having an azo group and having a number average molecular weight of 300 or more, which generates a radical capable of curing a (meth) acryloyl group by heat. To do.
  • the preferable lower limit of the number average molecular weight of the polymer azo compound is 1000, and the preferable upper limit is 300,000.
  • the more preferable lower limit of the number average molecular weight of the polymer azo compound is 5000, the more preferable upper limit is 100,000, the further preferable lower limit is 10,000, and the further preferable upper limit is 90,000.
  • the number average molecular weight is a value obtained by measuring by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent and converting it into polystyrene. Examples of the column for measuring the number average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK).
  • Examples of the polymer azo compound include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
  • the polymer azo compound having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group those having a polyethylene oxide structure are preferable.
  • Specific examples of the polymer azo compound include a polycondensate of 4,4'-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4'-azobis (4-cyanopentanoic acid). And a polycondensate of polydimethylsiloxane having a terminal amino group and the like.
  • Examples of commercially available polymer azo initiators include VPE-0201, VPE-0401, VPE-0601, VPS-0501, and VPS-1001 (all manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). Can be mentioned.
  • Examples of the azo initiator that is not a polymer include V-65 and V-501 (both manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.).
  • organic peroxide examples include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, peroxyesters, diacyl peroxides, peroxydicarbonates and the like.
  • the preferable lower limit is 0.1 parts by weight and the preferable upper limit is 10 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the thermal radical polymerization initiator is in this range, the obtained sealant for a liquid crystal display element is excellent in storage stability and thermosetting property while suppressing liquid crystal contamination.
  • the more preferable lower limit of the content of the thermal radical polymerization initiator is 0.3 parts by weight, and the more preferable upper limit is 5 parts by weight.
  • the sealant for a liquid crystal display element of the present invention may contain a filler for the purpose of improving the viscosity, improving the adhesiveness by the stress dispersion effect, improving the coefficient of linear expansion, improving the moisture resistance of the cured product, and the like.
  • an inorganic filler or an organic filler can be used as the filler.
  • the inorganic filler include silica, talc, glass beads, asbestos, gypsum, diatomaceous earth, smectite, bentonite, montmorillonite, sericite, active white clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, and titanium oxide.
  • the organic filler include polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, and the like. The above-mentioned filler may be used alone or in combination of two or more.
  • the preferable lower limit of the content of the filler in 100 parts by weight of the sealant for a liquid crystal display element of the present invention is 10 parts by weight, and the preferable upper limit is 70 parts by weight.
  • the content of the filler is in this range, the effect of improving the adhesiveness and the like is excellent without deteriorating the coatability and the like.
  • the more preferable lower limit of the content of the filler is 20 parts by weight, and the more preferable upper limit is 60 parts by weight.
  • the sealant for a liquid crystal display element of the present invention may contain a silane coupling agent.
  • the silane coupling agent mainly has a role as an adhesive auxiliary for satisfactorily adhering a sealant for a liquid crystal display element and a substrate or the like.
  • silane coupling agent for example, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatepropyltrimethoxysilane and the like are preferably used. These are excellent in the effect of improving the adhesiveness with the substrate and the like, and can suppress the outflow of the curable resin into the liquid crystal by chemically bonding with the curable resin.
  • the silane coupling agent may be used alone or in combination of two or more.
  • the preferable lower limit of the content of the silane coupling agent in 100 parts by weight of the sealant for a liquid crystal display element of the present invention is 0.1 parts by weight, and the preferable upper limit is 10 parts by weight.
  • the content of the silane coupling agent is within this range, the effect of improving the adhesiveness while suppressing the occurrence of liquid crystal contamination becomes more excellent.
  • the more preferable lower limit of the content of the silane coupling agent is 0.3 parts by weight, and the more preferable upper limit is 5 parts by weight.
  • the sealant for a liquid crystal display element of the present invention may contain a light-shielding agent.
  • the sealant for a liquid crystal display element of the present invention can be suitably used as a light-shielding sealant.
  • Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, resin-coated carbon black and the like. Of these, titanium black is preferable.
  • the titanium black is a substance having a higher transmittance for light in the ultraviolet region, particularly for light having a wavelength of 370 nm or more and 450 nm or less, as compared with the average transmittance for light having a wavelength of 300 nm or more and 800 nm or less. That is, the titanium black has a property of imparting light-shielding property to the sealant for a liquid crystal display element of the present invention by sufficiently blocking light having a wavelength in the visible light region, while transmitting light having a wavelength in the vicinity of the ultraviolet region. It is a light-shielding agent.
  • the photoradical polymerization initiator that can initiate the reaction with light having a wavelength that increases the transmittance of the titanium black, the photocurability of the sealant for a liquid crystal display element of the present invention is further increased. Can be made to.
  • the light-shielding agent contained in the sealant for a liquid crystal display element of the present invention a substance having high insulating properties is preferable, and titanium black is also preferable as the light-shielding agent having high insulating properties.
  • the titanium black has an optical density (OD value) per ⁇ m of preferably 3 or more, and more preferably 4 or more. The higher the light-shielding property of the titanium black, the better, and the OD value of the titanium black has no particular preferable upper limit, but is usually 5 or less.
  • the above titanium black exerts a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, or oxidation.
  • an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, or oxidation.
  • Surface-treated titanium black such as those coated with an inorganic component such as zirconium or magnesium oxide, can also be used. Among them, those treated with an organic component are preferable in that the insulating property can be further improved.
  • the liquid crystal display element manufactured by using the sealant for the liquid crystal display element of the present invention containing the above titanium black as a light shielding agent has sufficient light shielding properties, so that there is no light leakage and the contrast is high. A liquid crystal display element having excellent image display quality can be realized.
  • Examples of commercially available titanium blacks include titanium black manufactured by Mitsubishi Materials Corporation and titanium black manufactured by Ako Kasei Co., Ltd. Examples of the titanium black manufactured by Mitsubishi Materials Corporation include 12S, 13M, 13MC, 13RN, 14MC and the like. Examples of the titanium black manufactured by Ako Kasei Co., Ltd. include Tilak D and the like.
  • the preferable lower limit of the specific surface area of the titanium black is 13 m 2 / g, the preferable upper limit is 30 m 2 / g, the more preferable lower limit is 15 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
  • the preferable lower limit of the volume resistance of the titanium black is 0.5 ⁇ ⁇ cm, the preferable upper limit is 3 ⁇ ⁇ cm, the more preferable lower limit is 1 ⁇ ⁇ cm, and the more preferable upper limit is 2.5 ⁇ ⁇ cm.
  • the primary particle size of the light-shielding agent is not particularly limited as long as it is equal to or less than the distance between the substrates of the liquid crystal display element, but the preferable lower limit is 1 nm and the preferable upper limit is 5000 nm.
  • the primary particle size of the light-shielding agent is within this range, the light-shielding property can be improved without deteriorating the coatability of the obtained sealant for the liquid crystal display element.
  • the more preferable lower limit of the primary particle size of the light-shielding agent is 5 nm
  • the more preferable upper limit is 200 nm
  • the further preferable lower limit is 10 nm
  • the further preferable upper limit is 100 nm.
  • the primary particle size of the light-shielding agent can be measured by dispersing the light-shielding agent in a solvent (water, organic solvent, etc.) using NICOMP 380ZLS (manufactured by PARTICLE SIZING SYSTEMS).
  • the preferable lower limit of the content of the light-shielding agent in 100 parts by weight of the sealant for a liquid crystal display element of the present invention is 5 parts by weight, and the preferable upper limit is 80 parts by weight.
  • the content of the light-shielding agent is within this range, the adhesiveness of the obtained sealant for a liquid crystal display element, the strength after curing, and the drawability are not significantly deteriorated, and more excellent light-shielding property is exhibited.
  • a more preferable lower limit of the content of the light-shielding agent is 10 parts by weight, a more preferable upper limit is 70 parts by weight, a further preferable lower limit is 30 parts by weight, and a further preferable upper limit is 60 parts by weight.
  • the sealant for a liquid crystal display element of the present invention further contains a stress relaxation agent, a reactive diluent, a rocking agent, a spacer, a curing accelerator, a defoaming agent, a leveling agent, a polymerization inhibitor and the like, if necessary.
  • the agent may be contained.
  • a curable resin, a thermosetting agent, a thermal radical polymerization initiator added as needed, and the like are mixed using a mixer.
  • the method of doing this can be mentioned.
  • the mixer include a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and three rolls.
  • a vertically conductive material By blending conductive fine particles with the sealant for a liquid crystal display element of the present invention, a vertically conductive material can be produced. Such a vertically conductive material containing the sealant for a liquid crystal display element of the present invention and conductive fine particles is also one of the present inventions.
  • the conductive fine particles for example, a metal ball, a resin fine particle having a conductive metal layer formed on the surface thereof, or the like can be used.
  • the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the excellent elasticity of the resin fine particles enables conductive connection without damaging the transparent substrate or the like.
  • a liquid crystal display element made of the sealant for a liquid crystal display element of the present invention or the vertically conductive material of the present invention is also one of the present inventions.
  • the liquid crystal display element of the present invention a liquid crystal display element having a narrow frame design is preferable.
  • the width of the frame portion around the liquid crystal display unit is preferably 2 mm or less.
  • the coating width of the sealant for the liquid crystal display element of the present invention is preferably 1 mm or less.
  • the sealant for a liquid crystal display element of the present invention can be suitably used for manufacturing a liquid crystal display element by a liquid crystal dropping method.
  • Examples of the method for manufacturing the liquid crystal display element of the present invention by the liquid crystal dropping method include the following methods. First, a step of forming a frame-shaped seal pattern on a substrate by screen printing, applying a dispenser, or the like to the sealant for a liquid crystal display element of the present invention is performed. Next, in a state where the sealant for a liquid crystal display element of the present invention is uncured, fine droplets of liquid crystal are dropped and applied to the entire surface of the frame of the seal pattern, and a step of immediately superimposing another substrate is performed.
  • a liquid crystal display element can be obtained by a method of heating and curing the sealant. Further, before the step of heating and curing the sealant, a step of irradiating the seal pattern portion with light such as ultraviolet rays to temporarily cure the sealant may be performed.
  • a sealant for a liquid crystal display element which is excellent in storage stability, adhesiveness, and low liquid crystal contamination. Further, according to the present invention, it is possible to provide a vertically conductive material and a liquid crystal display element using the sealant for a liquid crystal display element.
  • the obtained reaction product was concentrated and then reprecipitated in an ethanol solution to obtain an intermediate polymer compound.
  • the intermediate polymer compound obtained in a three-necked flask equipped with a reflux condenser, a thermometer, and a stirrer and 113 g (2.3 mol) of hydrazine hydrate were dissolved in 200 mL of tetrahydrofuran and under reflux. The reaction was carried out for 3 hours. After completion of the reaction, the compound A was obtained by concentrating and separating the solid matter.
  • 1 Compound A obtained by 1 H-NMR, MS, and FT-IR is represented by the structure represented by the above formula (1-1) (Ar is a phenyl group) and the above formula (1-2).
  • the obtained reaction product was concentrated and then reprecipitated in an ethanol solution to obtain an intermediate polymer compound.
  • the intermediate polymer compound obtained in a three-necked flask equipped with a reflux condenser, a thermometer, and a stirrer and 113 g (2.3 mol) of hydrazine hydrate were dissolved in 100 mL of methanol and 10 mL of water. The reaction was carried out under reflux for 3 hours. After completion of the reaction, the compound G was obtained by concentrating and separating the solid matter. 1 It was confirmed by 1 H-NMR, MS and FT-IR that the obtained compound G was a compound represented by the following formula (5). The weight average molecular weight of the obtained compound G was 12000, and the softening point was 64 ° C.
  • m and n are repetition numbers.
  • Examples 1 to 10 Comparative Examples 1 to 3
  • a planetary stirrer manufactured by Shinky Co., Ltd., "Awatori Rentaro”
  • Sealing agents for each liquid crystal display element of Examples 1 to 10 and Comparative Examples 1 to 3 were prepared.
  • a high-pressure mercury lamp is used to irradiate 100 mW / cm 2 ultraviolet rays for 30 seconds to temporarily cure the sealant for the liquid crystal display element, and then heat at 120 ° C. for 1 hour to thermally cure the sealant for the liquid crystal display element.
  • An adhesion test piece was obtained. When the edge of the substrate of the obtained adhesive test piece is pushed in at a speed of 5 mm / min using a metal rod having a radius of 5 mm, the strength (kgf) at the time of panel peeling is measured, and the adhesive strength (kg / kg /) is measured. cm) was calculated.
  • the sealant for the liquid crystal display element after the defoaming treatment is applied to the two alignment films under the conditions of a nozzle diameter of 0.4 mm ⁇ , a nozzle gap of 42 ⁇ m, a syringe discharge pressure of 100 to 400 kPa, and a coating speed of 60 mm / sec. It was applied in a frame shape to one of the substrates with ITO. At this time, the discharge pressure was adjusted so that the line width of the sealant for the liquid crystal display element was about 1.5 mm.
  • liquid crystal (“4-pentyl-4-biphenylcarbonitrile” manufactured by Tokyo Chemical Industry Co., Ltd.) are dropped on the entire surface of the liquid crystal display element sealant on the substrate coated with the liquid crystal display element sealant. It was applied and the other substrate was bonded under vacuum. Immediately after the bonding, the sealant for the liquid crystal display element was temporarily cured by irradiating the sealant portion for the liquid crystal display element with ultraviolet rays of 100 mW / cm 2 for 30 seconds using a metal halide lamp. Then, it was heated at 120 ° C. for 1 hour to perform main curing to prepare a liquid crystal display element.
  • liquid crystal 4-pentyl-4-biphenylcarbonitrile manufactured by Tokyo Chemical Industry Co., Ltd.
  • liquid crystal display elements were produced for each of the liquid crystal display element sealants obtained in Examples and Comparative Examples, and for each of the obtained liquid crystal display elements, the vicinity of the liquid crystal display element sealant immediately after the liquid crystal display element was produced.
  • the liquid crystal alignment disorder was visually confirmed. Orientation disorder is judged from the color unevenness of the display part, and when no display unevenness is seen in the peripheral part of the liquid crystal display element, " ⁇ ", when a slightly light display unevenness is seen, " ⁇ ", it is clear and dark.
  • the display performance of the liquid crystal display element was evaluated as " ⁇ " when there was display unevenness and as "x” when the clear dark display unevenness spread not only to the peripheral part but also to the central part.
  • a sealant for a liquid crystal display element which is excellent in storage stability, adhesiveness, and low liquid crystal contamination. Further, according to the present invention, it is possible to provide a vertically conductive material and a liquid crystal display element using the sealant for a liquid crystal display element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Sealing Material Composition (AREA)

Abstract

A purpose of the present invention is to provide a sealing agent for liquid crystal display elements, said sealing agent having excellent storage stability, adhesiveness and low liquid crystal contamination properties. Another purpose of the present invention is to provide a vertical conduction material and a liquid crystal display element, each of which is obtained using the sealing agent for liquid crystal display elements. The present invention is a sealing agent for liquid crystal display elements, said sealing agent containing a thermosetting resin and a thermal curing agent, wherein: the thermal curing agent contains a hydrazide compound; and the hydrazide compound has a structure represented by formula (1-1) and a structure represented by formula (1-2). In formula (1-1), Ar represents an aromatic ring; and in formula (1-2), R1 represents a hydrogen atom or a methyl group.

Description

液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
本発明は、保存安定性、接着性、及び、低液晶汚染性に優れる液晶表示素子用シール剤に関する。また、本発明は、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子に関する。 The present invention relates to a sealant for a liquid crystal display element, which is excellent in storage stability, adhesiveness, and low liquid crystal contamination. The present invention also relates to a vertically conductive material and a liquid crystal display element using the sealant for a liquid crystal display element.
近年、液晶表示セル等の液晶表示素子の製造方法としては、タクトタイム短縮、使用液晶量の最適化といった観点から、特許文献1、特許文献2に開示されているようなシール剤を用いた滴下工法と呼ばれる液晶滴下方式が用いられている。
滴下工法では、まず、2枚の電極付き基板の一方に、ディスペンスにより枠状のシールパターンを形成する。次いで、シール剤が未硬化の状態で液晶の微小滴をシールパターンの枠内に滴下し、真空下で他方の基板を重ね合わせた後にシール剤を硬化させ、液晶表示素子を作製する。現在この滴下工法が液晶表示素子の製造方法の主流となっている。
In recent years, as a method for manufacturing a liquid crystal display element such as a liquid crystal display cell, dropping using a sealant as disclosed in Patent Document 1 and Patent Document 2 from the viewpoint of shortening the tact time and optimizing the amount of liquid crystal used. A liquid crystal dropping method called a construction method is used.
In the dropping method, first, a frame-shaped seal pattern is formed on one of the two electrode-equipped substrates by dispensing. Next, in a state where the sealant is uncured, fine droplets of liquid crystal are dropped into the frame of the seal pattern, the other substrate is overlapped under vacuum, and then the sealant is cured to produce a liquid crystal display element. Currently, this dropping method is the mainstream method for manufacturing liquid crystal display elements.
ところで、携帯電話、携帯ゲーム機等、各種液晶パネル付きモバイル機器が普及している現代において、機器の小型化は最も求められている課題である。機器の小型化の手法としては、液晶表示部の狭額縁化が挙げられ、例えば、シール部の位置をブラックマトリックス下に配置することが行われている(以下、狭額縁設計ともいう)。 By the way, in the present age when various mobile devices with liquid crystal panels such as mobile phones and portable game machines are widespread, miniaturization of the devices is the most sought after issue. As a method of miniaturizing the device, a narrowing of the frame of the liquid crystal display unit can be mentioned. For example, the position of the seal portion is arranged under the black matrix (hereinafter, also referred to as a narrow frame design).
しかしながら、狭額縁設計ではシール剤がブラックマトリックスの直下に配置されるため、滴下工法を行うと、シール剤を光硬化させる際に照射した光が遮られ、シール剤の内部に光が到達し難く、従来のシール剤では硬化が不充分となる。このようにシール剤の硬化が不充分となると、未硬化のシール剤成分が液晶中に溶出して液晶汚染を発生させやすくなるという問題があった。特に、近年、液晶の高極性化に伴い、シール剤には更なる低液晶汚染性が求められていた。 However, in the narrow frame design, the sealant is placed directly under the black matrix, so if the dropping method is performed, the light emitted when the sealant is photocured is blocked, and it is difficult for the light to reach the inside of the sealant. , The conventional sealant is insufficiently cured. When the sealant is not sufficiently cured in this way, there is a problem that the uncured sealant component elutes into the liquid crystal and easily causes liquid crystal contamination. In particular, in recent years, with the increasing polarity of liquid crystals, the sealant has been required to have further low liquid crystal contamination.
シール剤を光硬化させることが困難となる場合は、加熱によって硬化させることが考えられ、シール剤を加熱によって硬化させるための方法として、シール剤に熱硬化剤を配合することが行われている。しかしながら、シール剤の硬化性や接着性を向上させるために反応性の高い熱硬化剤を用いた場合、得られるシール剤が保存安定性に劣るものとなることがあった。 When it is difficult to photo-cure the sealant, it is considered that the sealant is cured by heating, and as a method for curing the sealant by heating, a thermosetting agent is added to the sealant. .. However, when a highly reactive thermosetting agent is used to improve the curability and adhesiveness of the sealant, the obtained sealant may be inferior in storage stability.
特開2001-133794号公報Japanese Unexamined Patent Publication No. 2001-133794 国際公開第02/092718号International Publication No. 02/092718
本発明は、保存安定性、接着性、及び、低液晶汚染性に優れる液晶表示素子用シール剤を提供することを目的とする。また、本発明は、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することを目的とする。 An object of the present invention is to provide a sealant for a liquid crystal display element, which is excellent in storage stability, adhesiveness, and low liquid crystal contamination. Another object of the present invention is to provide a vertically conductive material and a liquid crystal display element using the sealant for a liquid crystal display element.
本発明は、硬化性樹脂と熱硬化剤とを含有する液晶表示素子用シール剤であって、前記熱硬化剤は、ヒドラジド化合物を含み、前記ヒドラジド化合物は、下記式(1-1)で表される構造と下記式(1-2)で表される構造とを有する液晶表示素子用シール剤である。 The present invention is a sealant for a liquid crystal display element containing a curable resin and a thermosetting agent, wherein the thermosetting agent contains a hydrazide compound, and the hydrazide compound is represented by the following formula (1-1). It is a sealing agent for a liquid crystal display element having a structure to be formed and a structure represented by the following formula (1-2).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
式(1-1)中、Arは、芳香環であり、式(1-2)中、Rは、水素原子又はメチル基である。
以下に本発明を詳述する。
In formula (1-1), Ar is an aromatic ring, and in formula (1-2), R 1 is a hydrogen atom or a methyl group.
The present invention will be described in detail below.
本発明者は鋭意検討した結果、特定の構造を有する熱硬化剤を用いることにより、保存安定性、接着性、及び、低液晶汚染性に優れる液晶表示素子用シール剤が得られることを見出し、本発明を完成させるに至った。 As a result of diligent studies, the present inventor has found that by using a thermosetting agent having a specific structure, a sealant for a liquid crystal display element having excellent storage stability, adhesiveness, and low liquid crystal contamination can be obtained. The present invention has been completed.
本発明の液晶表示素子用シール剤は、熱硬化剤を含有する。
上記熱硬化剤は、ヒドラジド化合物を含む。
上記ヒドラジド化合物は、上記式(1-1)で表される構造と上記式(1-2)で表される構造とを有する。以下、上記式(1-1)で表される構造と上記式(1-2)で表される構造とを有するヒドラジド化合物を「本発明にかかるヒドラジド化合物」ともいう。本発明にかかるヒドラジド化合物を含有することにより、本発明の液晶表示素子用シール剤は、保存安定性、接着性、及び、低液晶汚染性の全てに優れるものとなる。
The sealant for a liquid crystal display element of the present invention contains a thermosetting agent.
The thermosetting agent contains a hydrazide compound.
The hydrazide compound has a structure represented by the above formula (1-1) and a structure represented by the above formula (1-2). Hereinafter, a hydrazide compound having a structure represented by the above formula (1-1) and a structure represented by the above formula (1-2) is also referred to as a “hydrazide compound according to the present invention”. By containing the hydrazide compound according to the present invention, the sealant for a liquid crystal display element of the present invention is excellent in all of storage stability, adhesiveness, and low liquid crystal contamination.
本発明にかかるヒドラジド化合物を用いることにより、得られる液晶表示素子用シール剤が保存安定性、接着性、及び、低液晶汚染性の全てに優れるものとなる理由としては、以下のことが考えられる。
即ち、上記式(1-1)で表される構造を有することにより、ヒドラジド化合物の軟化点を制御することができるため、保存安定性を向上させることができると考えられる。また、第一級アミノ基を含む上記式(1-2)で表される構造を有することにより、得られるシール剤の接着性を向上させることができると考えられる。更に、これらの構造を有することによりヒドラジド化合物の分子量が高くなることで液晶への溶出を抑制することができると考えられる。
The following can be considered as the reason why the obtained sealant for a liquid crystal display element is excellent in storage stability, adhesiveness, and low liquid crystal contamination by using the hydrazide compound according to the present invention. ..
That is, it is considered that the storage stability can be improved because the softening point of the hydrazide compound can be controlled by having the structure represented by the above formula (1-1). Further, it is considered that the adhesiveness of the obtained sealant can be improved by having the structure represented by the above formula (1-2) containing the primary amino group. Further, it is considered that having these structures increases the molecular weight of the hydrazide compound, so that elution into the liquid crystal can be suppressed.
本発明にかかるヒドラジド化合物は、上記式(1-1)で表される構造の割合の好ましい下限が5モル%、好ましい上限が95モル%である。上記式(1-1)で表される構造の割合が5モル%以上であることにより、得られる液晶表示素子用シール剤が保存安定性により優れるものとなる。上記式(1-1)で表される構造の割合が95モル%以下であることにより、得られる液晶表示素子用シール剤が接着性により優れるものとなる。上記式(1-1)で表される構造の割合のより好ましい下限は10モル%、より好ましい上限は90モル%、更に好ましい上限は50モル%である。 In the hydrazide compound according to the present invention, the preferable lower limit of the ratio of the structure represented by the above formula (1-1) is 5 mol%, and the preferable upper limit is 95 mol%. When the ratio of the structure represented by the above formula (1-1) is 5 mol% or more, the obtained sealant for a liquid crystal display element becomes more excellent in storage stability. When the ratio of the structure represented by the above formula (1-1) is 95 mol% or less, the obtained sealant for a liquid crystal display element becomes more excellent in adhesiveness. The more preferable lower limit of the ratio of the structure represented by the above formula (1-1) is 10 mol%, the more preferable upper limit is 90 mol%, and the further preferable upper limit is 50 mol%.
本発明にかかるヒドラジド化合物は、上記式(1-2)で表される構造の割合の好ましい下限が5モル%、好ましい上限が95モル%である。上記式(1-2)で表される構造の割合が5モル%以上であることにより、得られる液晶表示素子用シール剤が接着性により優れるものとなる。上記式(1-2)で表される構造の割合が95モル%以下であることにより、得られる液晶表示素子用シール剤が保存安定性により優れるものとなる。上記式(1-2)で表される構造の割合のより好ましい下限は10モル%、より好ましい上限は90モル%、更に好ましい下限は50モル%である。 In the hydrazide compound according to the present invention, the preferable lower limit of the ratio of the structure represented by the above formula (1-2) is 5 mol%, and the preferable upper limit is 95 mol%. When the ratio of the structure represented by the above formula (1-2) is 5 mol% or more, the obtained sealant for the liquid crystal display element becomes more excellent in adhesiveness. When the ratio of the structure represented by the above formula (1-2) is 95 mol% or less, the obtained sealant for a liquid crystal display element becomes more excellent in storage stability. The more preferable lower limit of the ratio of the structure represented by the above formula (1-2) is 10 mol%, the more preferable upper limit is 90 mol%, and the further preferable lower limit is 50 mol%.
本発明にかかるヒドラジド化合物は、上記式(1-1)で表される構造及び上記式(1-2)で表される構造に加えて、更に、他の構造を有していてもよい。
本発明にかかるヒドラジド化合物は、上記他の構造として、更に、下記式(2)で表される構造を有することが好ましい。下記式(2)で表される構造を有することにより、得られる液晶表示素子用シール剤が接着性により優れるものとなる。
The hydrazide compound according to the present invention may have other structures in addition to the structure represented by the above formula (1-1) and the structure represented by the above formula (1-2).
The hydrazide compound according to the present invention preferably has a structure represented by the following formula (2) as the above-mentioned other structure. By having the structure represented by the following formula (2), the obtained sealant for a liquid crystal display element becomes more excellent in adhesiveness.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
式(2)中、Rは、水素原子又はメチル基であり、Rは、-C(=O)OR基(Rは、水素原子又は炭素数1以上10以下のアルキル基)、-CN基、-OR基(Rは、炭素数1以上10以下のアルキル基)、又は、水素原子である。 In the formula (2), R 2 is a hydrogen atom or a methyl group, R 3 is an −C (= O) OR 4 group (R 4 is a hydrogen atom or an alkyl group having 1 or more and 10 or less carbon atoms). -CN group, -OR 5 group (R 5 is an alkyl group having 1 to 10 carbon atoms), or a hydrogen atom.
本発明にかかるヒドラジド化合物は、重量平均分子量の好ましい下限が2000、好ましい上限が20万である。上記重量平均分子量が2000以上であることにより、得られる液晶表示素子用シール剤が低液晶汚染性により優れるものとなる。上記重量平均分子量が20万以下であることにより、得られる液晶表示素子用シール剤がハンドリング性により優れるものとなる。上記重量平均分子量のより好ましい下限は4000、より好ましい上限は10万である。
なお、本明細書において、上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で溶媒としてテトラヒドロフランを用いて測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による重量平均分子量を測定する際のカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。
The hydrazide compound according to the present invention has a preferable lower limit of 2000 and a preferable upper limit of 200,000 in weight average molecular weight. When the weight average molecular weight is 2000 or more, the obtained sealant for a liquid crystal display element becomes more excellent in low liquid crystal contamination. When the weight average molecular weight is 200,000 or less, the obtained sealant for a liquid crystal display element becomes more excellent in handleability. The more preferable lower limit of the weight average molecular weight is 4000, and the more preferable upper limit is 100,000.
In the present specification, the weight average molecular weight is a value obtained by measuring by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent and converting it into polystyrene. Examples of the column for measuring the weight average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK).
本発明にかかるヒドラジド化合物の軟化点の好ましい下限は65℃、好ましい上限は200℃である。本発明にかかるヒドラジド化合物の軟化点が65℃以上であることにより、得られる液晶表示素子用シール剤が保存安定性により優れるものとなる。本発明にかかるヒドラジド化合物の軟化点が200℃以下であることにより、得られる液晶表示素子用シール剤が接着性により優れるものとなる。本発明にかかるヒドラジド化合物の軟化点のより好ましい下限は90℃、より好ましい上限は160℃である。
なお、上記軟化点は、JIS K 2207に従い、環球法により求めることができる。
The preferable lower limit of the softening point of the hydrazide compound according to the present invention is 65 ° C., and the preferable upper limit is 200 ° C. When the softening point of the hydrazide compound according to the present invention is 65 ° C. or higher, the obtained sealant for a liquid crystal display element becomes more excellent in storage stability. When the softening point of the hydrazide compound according to the present invention is 200 ° C. or lower, the obtained sealant for a liquid crystal display element becomes more excellent in adhesiveness. The more preferable lower limit of the softening point of the hydrazide compound according to the present invention is 90 ° C., and the more preferable upper limit is 160 ° C.
The softening point can be determined by the ring-and-ball method according to JIS K 2207.
本発明にかかるヒドラジド化合物を製造する方法としては、例えば、以下の方法等が挙げられる。
即ち、まず、下記式(3-1)で表される化合物と下記式(3-2)で表される化合物とを、テトラヒドロフラン等の溶媒に溶解させ、アゾビスイソブチロニトリル等の重合開始剤の存在下で、窒素置換しながら加熱撹拌して反応させる。得られた反応物を濃縮した後、エタノール溶液に再沈殿することにより中間体高分子化合物を得る。得られた中間体高分子化合物とヒドラジン水和物とをテトラヒドロフラン等の溶媒に溶解させ、還流下で反応させる。反応終了後、濃縮して固形物を分離することにより、本発明にかかるヒドラジド化合物を得ることができる。
また、下記式(3-1)で表される化合物と下記式(3-2)で表される化合物とに加えて、下記式(4)で表される化合物を用いてもよい。
Examples of the method for producing the hydrazide compound according to the present invention include the following methods.
That is, first, the compound represented by the following formula (3-1) and the compound represented by the following formula (3-2) are dissolved in a solvent such as tetrahydrofuran, and the polymerization of azobisisobutyronitrile or the like is started. In the presence of the agent, the reaction is carried out by heating and stirring while substituting nitrogen. After concentrating the obtained reaction product, it is reprecipitated in an ethanol solution to obtain an intermediate polymer compound. The obtained intermediate polymer compound and hydrazine hydrate are dissolved in a solvent such as tetrahydrofuran and reacted under reflux. After completion of the reaction, the hydrazide compound according to the present invention can be obtained by concentrating and separating the solid matter.
Further, in addition to the compound represented by the following formula (3-1) and the compound represented by the following formula (3-2), a compound represented by the following formula (4) may be used.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
式(3-1)中、Arは、芳香環であり、式(3-2)中、Rは、水素原子又はメチル基であり、Rは、炭素数1以上10以下のアルキル基である。 In formula (3-1), Ar is an aromatic ring, in formula (3-2), R 1 is a hydrogen atom or a methyl group, and R 6 is an alkyl group having 1 to 10 carbon atoms. is there.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
式(4)中、Rは、水素原子又はメチル基であり、Rは、-C(=O)OR基(Rは、水素原子又は炭素数1以上10以下のアルキル基)、-CN基、-OR基(Rは、炭素数1以上10以下のアルキル基)、又は、水素原子である。 In formula (4), R 2 is a hydrogen atom or a methyl group, R 3 is a -C (= O) OR 4 group (R 4 is a hydrogen atom or an alkyl group having 1 or more and 10 or less carbon atoms). -CN group, -OR 5 group (R 5 is an alkyl group having 1 to 10 carbon atoms), or a hydrogen atom.
本発明にかかるヒドラジド化合物の含有量は、硬化性樹脂100重量部に対して、好ましい下限が1重量部、好ましい上限が20重量部である。本発明にかかるヒドラジド化合物の含有量が1重量部以上であることにより、得られる液晶表示素子用シール剤が硬化性や接着性により優れるものとなる。本発明にかかるヒドラジド化合物の含有量が20重量部以下であることにより、得られる液晶表示素子用シール剤が保存安定性及び低液晶汚染性により優れるものとなる。本発明にかかるヒドラジド化合物の含有量のより好ましい下限は2重量部、より好ましい上限は15重量部である。 Regarding the content of the hydrazide compound according to the present invention, the preferable lower limit is 1 part by weight and the preferable upper limit is 20 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the hydrazide compound according to the present invention is 1 part by weight or more, the obtained sealant for a liquid crystal display element becomes excellent in curability and adhesiveness. When the content of the hydrazide compound according to the present invention is 20 parts by weight or less, the obtained sealant for a liquid crystal display element becomes excellent in storage stability and low liquid crystal contamination. The more preferable lower limit of the content of the hydrazide compound according to the present invention is 2 parts by weight, and the more preferable upper limit is 15 parts by weight.
本発明の液晶表示素子用シール剤は、本発明の目的を阻害しない範囲において、本発明にかかるヒドラジド化合物に加えて、その他の熱硬化剤を含有してもよい。
上記熱硬化剤としては、例えば、有機酸ヒドラジド、イミダゾール誘導体、アミン化合物、多価フェノール系化合物、酸無水物等が挙げられる。
The sealant for a liquid crystal display element of the present invention may contain other heat-curing agents in addition to the hydrazide compound according to the present invention as long as the object of the present invention is not impaired.
Examples of the heat-curing agent include organic acid hydrazide, imidazole derivative, amine compound, polyhydric phenol compound, acid anhydride and the like.
本発明の液晶表示素子用シール剤は、硬化性樹脂を含有する。
上記硬化性樹脂は、エポキシ化合物を含むことが好ましい。
上記エポキシ化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’-ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物等が挙げられる。
The sealant for a liquid crystal display element of the present invention contains a curable resin.
The curable resin preferably contains an epoxy compound.
Examples of the epoxy compound include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, 2,2'-diallyl bisphenol A type epoxy resin, and hydrogenated bisphenol type epoxy resin. , Propoxy oxide-added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, phenol novolac type epoxy resin, orthocresol Novolac type epoxy resin, dicyclopentadiene novolac type epoxy resin, biphenyl novolac type epoxy resin, naphthalenephenol novolac type epoxy resin, glycidylamine type epoxy resin, alkyl polyol type epoxy resin, rubber modified epoxy resin, glycidyl ester compound, etc. Be done.
上記ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、jER828EL、jER1004(いずれも三菱ケミカル社製)、EPICLON850(DIC社製)等が挙げられる。
上記ビスフェノールF型エポキシ樹脂のうち市販されているものとしては、例えば、jER806、jER4004(いずれも三菱ケミカル社製)、EPICLON EXA-830CRP(DIC社製)等が挙げられる。
上記ビスフェノールE型エポキシ樹脂のうち市販されているものとしては、例えば、エポミックR710(三井化学社製)等が挙げられる。
上記ビスフェノールS型エポキシ樹脂のうち市販されているものとしては、例えば、EPICLON EXA-1514(DIC社製)等が挙げられる。
上記2,2’-ジアリルビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、RE-810NM(日本化薬社製)等が挙げられる。
上記水添ビスフェノール型エポキシ樹脂のうち市販されているものとしては、例えば、EPICLON EXA-7015(DIC社製)等が挙げられる。
上記プロピレンオキシド付加ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、EP-4000S(ADEKA社製)等が挙げられる。
上記レゾルシノール型エポキシ樹脂のうち市販されているものとしては、例えば、EX-201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ樹脂のうち市販されているものとしては、例えば、jER YX-4000H(三菱ケミカル社製)等が挙げられる。
上記スルフィド型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-50TE(日鉄ケミカル&マテリアル社製)等が挙げられる。
上記ジフェニルエーテル型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-80DE(日鉄ケミカル&マテリアル社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ樹脂のうち市販されているものとしては、例えば、EP-4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ樹脂のうち市販されているものとしては、例えば、EPICLON HP-4032、EPICLON EXA-4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、EPICLON N-770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、EPICLON N-670-EXP-S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、EPICLON HP-7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、NC-3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、ESN-165S(日鉄ケミカル&マテリアル社製)等が挙げられる。
上記グリシジルアミン型エポキシ樹脂のうち市販されているものとしては、例えば、jER630(三菱ケミカル社製)、EPICLON430(DIC社製)、TETRAD-X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ樹脂のうち市販されているものとしては、例えば、ZX-1542(日鉄ケミカル&マテリアル社製)、EPICLON726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX-611(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ樹脂のうち市販されているものとしては、例えば、YR-450、YR-207(いずれも日鉄ケミカル&マテリアル社製)、エポリードPB(ダイセル社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されているものとしては、例えば、デナコールEX-147(ナガセケムテックス社製)等が挙げられる。
上記エポキシ化合物のうちその他に市販されているものとしては、例えば、YDC-1312、YSLV-80XY、YSLV-90CR(いずれも日鉄ケミカル&マテリアル社製)、XAC4151(旭化成社製)、jER1031、jER1032(いずれも三菱ケミカル社製)、EXA-7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
Examples of commercially available bisphenol A type epoxy resins include jER828EL, jER1004 (all manufactured by Mitsubishi Chemical Corporation), EPICLON850 (manufactured by DIC Corporation), and the like.
Examples of commercially available bisphenol F type epoxy resins include jER806, jER4004 (all manufactured by Mitsubishi Chemical Corporation), EPICLON EXA-830CRP (manufactured by DIC Corporation), and the like.
Examples of commercially available bisphenol E-type epoxy resins include Epomic R710 (manufactured by Mitsui Chemicals, Inc.) and the like.
Examples of commercially available bisphenol S-type epoxy resins include EPICLON EXA-1514 (manufactured by DIC Corporation) and the like.
Among the above 2,2'-diallyl bisphenol A type epoxy resins, commercially available ones include, for example, RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
Examples of commercially available hydrogenated bisphenol type epoxy resins include EPICLON EXA-7015 (manufactured by DIC Corporation) and the like.
Examples of commercially available propylene oxide-added bisphenol A type epoxy resins include EP-4000S (manufactured by ADEKA Corporation) and the like.
Examples of commercially available resorcinol type epoxy resins include EX-201 (manufactured by Nagase ChemteX Corporation) and the like.
Examples of commercially available biphenyl type epoxy resins include jER YX-4000H (manufactured by Mitsubishi Chemical Corporation) and the like.
Examples of commercially available sulfide type epoxy resins include YSLV-50TE (manufactured by Nippon Steel Chemical & Materials Co., Ltd.).
Examples of commercially available diphenyl ether type epoxy resins include YSLV-80DE (manufactured by Nippon Steel Chemical & Materials Co., Ltd.).
Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA Corporation) and the like.
Examples of commercially available naphthalene-type epoxy resins include EPICLON HP-4032 and EPICLON EXA-4700 (both manufactured by DIC Corporation).
Examples of commercially available phenol novolac type epoxy resins include EPICLON N-770 (manufactured by DIC Corporation) and the like.
Examples of commercially available orthocresol novolac type epoxy resins include EPICLON N-670-EXP-S (manufactured by DIC Corporation) and the like.
Examples of commercially available dicyclopentadiene novolac type epoxy resins include EPICLON HP-7200 (manufactured by DIC Corporation) and the like.
Examples of commercially available biphenyl novolac type epoxy resins include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.) and the like.
Examples of commercially available naphthalene phenol novolac type epoxy resins include ESN-165S (manufactured by Nippon Steel Chemical & Materials Co., Ltd.).
Examples of commercially available glycidylamine type epoxy resins include jER630 (manufactured by Mitsubishi Chemical Corporation), EPICLON430 (manufactured by DIC Corporation), TETRAD-X (manufactured by Mitsubishi Gas Chemical Company, Inc.) and the like.
Among the above alkyl polyol type epoxy resins, commercially available ones include, for example, ZX-1542 (manufactured by Nippon Steel Chemical & Materials Co., Ltd.), EPICLON726 (manufactured by DIC Corporation), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), and Denacol EX-. 611 (manufactured by Nagase ChemteX Corporation) and the like can be mentioned.
Examples of commercially available rubber-modified epoxy resins include YR-450, YR-207 (all manufactured by Nippon Steel Chemical & Materials Co., Ltd.), Epolide PB (manufactured by Daicel Co., Ltd.), and the like.
Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation) and the like.
Other commercially available epoxy compounds include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel Chemical & Materials), XAC4151 (manufactured by Asahi Kasei Corporation), jER1031 and jER1032. (All manufactured by Mitsubishi Chemical Corporation), EXA-7120 (manufactured by DIC Corporation), TEPIC (manufactured by Nissan Chemical Industries, Ltd.) and the like.
上記エポキシ化合物としては、部分(メタ)アクリル変性エポキシ樹脂も好適に用いられる。
なお、本明細書において上記部分(メタ)アクリル変性エポキシ樹脂とは、2つ以上のエポキシ基を有するエポキシ化合物の一部分のエポキシ基を(メタ)アクリル酸と反応させることによって得ることができる、1分子中にエポキシ基と(メタ)アクリロイル基とをそれぞれ1つ以上有する化合物を意味する。
なお、本明細書において、上記「(メタ)アクリル」とは、アクリル又はメタクリルを意味し、上記「(メタ)アクリロイル」とは、アクリロイル又はメタクリロイルを意味する。
As the epoxy compound, a partially (meth) acrylic-modified epoxy resin is also preferably used.
In the present specification, the partial (meth) acrylic-modified epoxy resin can be obtained by reacting a partial epoxy group of an epoxy compound having two or more epoxy groups with (meth) acrylic acid. It means a compound having one or more epoxy groups and one or more (meth) acryloyl groups in the molecule.
In the present specification, the above-mentioned "(meth) acrylic" means acrylic or methacrylic, and the above-mentioned "(meth) acryloyl" means acryloyl or methacryloyl.
上記部分(メタ)アクリル変性エポキシ樹脂のうち市販されているものとしては、例えば、UVACURE1561、KRM8287(いずれもダイセル・オルネクス社製)等が挙げられる。 Examples of commercially available partial (meth) acrylic-modified epoxy resins include UVACURE1561 and KRM8287 (both manufactured by Daicel Ornex).
また、上記硬化性樹脂は、(メタ)アクリル化合物を含んでいてもよい。
上記(メタ)アクリル化合物としては、例えば、(メタ)アクリル酸エステル化合物、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート等が挙げられる。なかでも、エポキシ(メタ)アクリレートが好ましい。また、上記(メタ)アクリル化合物は、反応性の観点から1分子中に(メタ)アクリロイル基を2個以上有するものが好ましい。
なお、本明細書において、上記「(メタ)アクリル化合物」とは、(メタ)アクリロイル基を有する化合物を意味する。また、上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味し、上記「エポキシ(メタ)アクリレート」とは、エポキシ化合物中の全てのエポキシ基を(メタ)アクリル酸と反応させた化合物のことを表す。
Further, the curable resin may contain a (meth) acrylic compound.
Examples of the (meth) acrylic compound include (meth) acrylic acid ester compounds, epoxy (meth) acrylates, urethane (meth) acrylates, and the like. Of these, epoxy (meth) acrylate is preferable. Further, the (meth) acrylic compound preferably has two or more (meth) acryloyl groups in one molecule from the viewpoint of reactivity.
In the present specification, the above-mentioned "(meth) acrylic compound" means a compound having a (meth) acryloyl group. Further, the above-mentioned "(meth) acrylate" means acrylate or methacrylate, and the above-mentioned "epoxy (meth) acrylate" is a compound obtained by reacting all epoxy groups in an epoxy compound with (meth) acrylic acid. Represents that.
上記(メタ)アクリル酸エステル化合物のうち単官能のものとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル2-ヒドロキシプロピルフタレート、2-(メタ)アクリロイロキシエチルホスフェート、グリシジル(メタ)アクリレート等が挙げられる。 Among the above (meth) acrylic acid ester compounds, monofunctional ones include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate. , T-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, iso Myristyl (meth) acrylate, stearyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, cyclohexyl ( Meta) acrylate, isobornyl (meth) acrylate, bicyclopentenyl (meth) acrylate, benzyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-butoxyethyl (meth) acrylate, 2-Phenoxyethyl (meth) acrylate, methoxyethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, ethylcarbi Thor (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, Imid (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2-( Examples thereof include 2- (meth) acryloyloxyethyl 2-hydroxypropyl phthalate, 2- (meth) acryloyloxyethyl phosphate, and glycidyl (meth) acrylate.
また、上記(メタ)アクリル酸エステル化合物のうち2官能のものとしては、例えば、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。 Examples of the bifunctional one among the above (meth) acrylic acid ester compounds include 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexane. Diol di (meth) acrylate, 1,9-nonane diol di (meth) acrylate, 1,10-decane diol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meta) acrylate, polyethylene glycol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) ) Acrylate, polypropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide-added bisphenol A di (meth) acrylate, propylene oxide-added bisphenol A di (meth) acrylate, ethylene oxide-added bisphenol F di (meth) acrylate , Dimethylol dicyclopentadienyldi (meth) acrylate, ethylene oxide-modified isocyanurate di (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, carbonatediol di (meth) acrylate, Examples thereof include polyether diol di (meth) acrylate, polyester diol di (meth) acrylate, polycaprolactone diol di (meth) acrylate, and polybutadiene diol di (meth) acrylate.
また、上記(メタ)アクリル酸エステル化合物のうち3官能以上のものとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 Among the above (meth) acrylic acid ester compounds, those having trifunctionality or higher include, for example, trimetyl propanetri (meth) acrylate, ethylene oxide-added trimethyl propanetri (meth) acrylate, and propylene oxide-added trimethyl propanetri (meth) acrylate. Meta) acrylate, caprolactone-modified trimethylol propantri (meth) acrylate, ethylene oxide-added isocyanuric acid tri (meth) acrylate, glycerin tri (meth) acrylate, propylene oxide-added glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, Examples thereof include tris (meth) acryloyloxyethyl phosphate, ditrimethylol propanetetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol hexa (meth) acrylate.
上記エポキシ(メタ)アクリレートとしては、例えば、エポキシ化合物と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応させることにより得られるもの等が挙げられる。 Examples of the epoxy (meth) acrylate include those obtained by reacting an epoxy compound and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method.
上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物としては、本発明の液晶表示素子用シール剤の含有する硬化性樹脂として上述したエポキシ化合物と同様のものを用いることができる。 As the epoxy compound used as a raw material for synthesizing the epoxy (meth) acrylate, the same epoxy compound as the above-mentioned epoxy compound can be used as the curable resin contained in the sealant for a liquid crystal display element of the present invention.
上記エポキシ(メタ)アクリレートのうち市販されているものとしては、例えば、ダイセル・オルネクス社製のエポキシ(メタ)アクリレート、新中村化学工業社製のエポキシ(メタ)アクリレート、共栄社化学社製のエポキシ(メタ)アクリレート、ナガセケムテックス社製のエポキシ(メタ)アクリレート等が挙げられる。
上記ダイセル・オルネクス社製のエポキシ(メタ)アクリレートとしては、例えば、EBECRYL860、EBECRYL3200、EBECRYL3201、EBECRYL3412、EBECRYL3600、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL3708、EBECRYL3800、EBECRYL6040、EBECRYL RDX63182等が挙げられる。
上記新中村化学工業社製のエポキシ(メタ)アクリレートとしては、例えば、EA-1010、EA-1020、EA-5323、EA-5520、EA-CHD、EMA-1020等が挙げられる。
上記共栄社化学社製のエポキシ(メタ)アクリレートとしては、例えば、エポキシエステルM-600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、エポキシエステル400EA等が挙げられる。
上記ナガセケムテックス社製のエポキシ(メタ)アクリレートとしては、例えば、デナコールアクリレートDA-141、デナコールアクリレートDA-314、デナコールアクリレートDA-911等が挙げられる。
Among the above-mentioned epoxy (meth) acrylates, commercially available ones include, for example, epoxy (meth) acrylate manufactured by Daicel Ornex, epoxy (meth) acrylate manufactured by Shin-Nakamura Chemical Industry Co., Ltd., and epoxy (meth) acrylate manufactured by Kyoei Co., Ltd. Examples thereof include meta) acrylate and epoxy (meth) acrylate manufactured by Nagase ChemteX Corporation.
Examples of the epoxy (meth) acrylate manufactured by Daicel Ornex include EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3702, EBECRYL3702, EBECRYL3702, EBECRYL3702, EBECRYL3701
Examples of the epoxy (meth) acrylate manufactured by Shin-Nakamura Chemical Industry Co., Ltd. include EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, and EMA-1020.
Examples of the epoxy (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd. include epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, epoxy ester 200PA, epoxy ester 80MFA, epoxy ester 3002M, epoxy ester 3002A, and epoxy ester 1600A. Examples thereof include epoxy ester 3000M, epoxy ester 3000A, epoxy ester 200EA, and epoxy ester 400EA.
Examples of the epoxy (meth) acrylate manufactured by Nagase ChemteX include Denacol acrylate DA-141, Denacol acrylate DA-314, and Denacol acrylate DA-911.
上記ウレタン(メタ)アクリレートは、例えば、イソシアネート化合物に対して水酸基を有する(メタ)アクリル酸誘導体を、触媒量のスズ系化合物存在下で反応させることによって得ることができる。 The urethane (meth) acrylate can be obtained, for example, by reacting a (meth) acrylic acid derivative having a hydroxyl group with respect to an isocyanate compound in the presence of a catalytic amount of a tin-based compound.
上記ウレタン(メタ)アクリレートの原料となるイソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシリレンジイソシアネート、1,6,11-ウンデカントリイソシアネート等が挙げられる。 Examples of the isocyanate compound used as a raw material for the urethane (meth) acrylate include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and diphenylmethane-4,4. '-Diisocyanate (MDI), hydrogenated MDI, polypeptide MDI, 1,5-naphthalenediocyanate, norbornan diisocyanate, trizine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (isocyanate) Phenyl) thiophosphate, tetramethylxylylene diisocyanate, 1,6,11-undecantryisocyanate and the like can be mentioned.
また、上記ウレタン(メタ)アクリレートの原料となるイソシアネート化合物としては、ポリオールと過剰のイソシアネート化合物との反応により得られる鎖延長されたイソシアネート化合物も使用することができる。
上記ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等が挙げられる。
Further, as the isocyanate compound which is a raw material of the urethane (meth) acrylate, a chain-extended isocyanate compound obtained by reacting a polyol with an excess isocyanate compound can also be used.
Examples of the polyol include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, and polycaprolactone diol.
上記水酸基を有する(メタ)アクリル酸誘導体としては、例えば、ヒドロキシアルキルモノ(メタ)アクリレート、二価のアルコールのモノ(メタ)アクリレート、三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げられる。
上記ヒドロキシアルキルモノ(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。
上記二価のアルコールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等が挙げられる。
上記三価のアルコールとしては、例えば、トリメチロールエタン、トリメチロールプロパン、グリセリン等が挙げられる。
上記エポキシ(メタ)アクリレートとしては、例えば、ビスフェノールA型エポキシアクリレート等が挙げられる。
Examples of the (meth) acrylic acid derivative having a hydroxyl group include hydroxyalkyl mono (meth) acrylate, mono (meth) acrylate of dihydric alcohol, mono (meth) acrylate of trihydric alcohol, and di (meth) acrylate. , Epoxy (meth) acrylate and the like.
Examples of the hydroxyalkyl mono (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. Can be mentioned.
Examples of the divalent alcohol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, polyethylene glycol and the like.
Examples of the trihydric alcohol include trimethylolethane, trimethylolpropane, and glycerin.
Examples of the epoxy (meth) acrylate include bisphenol A type epoxy acrylate and the like.
上記ウレタン(メタ)アクリレートのうち市販されているものとしては、例えば、東亞合成社製のウレタン(メタ)アクリレート、ダイセル・オルネクス社製のウレタン(メタ)アクリレート、根上工業社製のウレタン(メタ)アクリレート、新中村化学工業社製のウレタン(メタ)アクリレート、共栄社化学社製のウレタン(メタ)アクリレート等が挙げられる。
上記東亞合成社製のウレタン(メタ)アクリレートとしては、例えば、M-1100、M-1200、M-1210、M-1600等が挙げられる。
上記ダイセル・オルネクス社製のウレタン(メタ)アクリレートとしては、例えば、EBECRYL210、EBECRYL220、EBECRYL230、EBECRYL270、EBECRYL1290、EBECRYL2220、EBECRYL4827、EBECRYL4842、EBECRYL4858、EBECRYL5129、EBECRYL6700、EBECRYL8402、EBECRYL8803、EBECRYL8804、EBECRYL8807、EBECRYL9260等が挙げられる。
上記根上工業社製のウレタン(メタ)アクリレートとしては、例えば、アートレジンUN-330、アートレジンSH-500B、アートレジンUN-1200TPK、アートレジンUN-1255、アートレジンUN-3320HB、アートレジンUN-7100、アートレジンUN-9000A、アートレジンUN-9000H等が挙げられる。
上記新中村化学工業社製のウレタン(メタ)アクリレートとしては、例えば、U-2HA、U-2PHA、U-3HA、U-4HA、U-6H、U-6HA、U-6LPA、U-10H、U-15HA、U-108、U-108A、U-122A、U-122P、U-324A、U-340A、U-340P、U-1084A、U-2061BA、UA-340P、UA-4000、UA-4100、UA-4200、UA-4400、UA-5201P、UA-7100、UA-7200、UA-W2A等が挙げられる。
上記共栄社化学社製のウレタン(メタ)アクリレートとしては、例えば、AH-600、AI-600、AT-600、UA-101I、UA-101T、UA-306H、UA-306I、UA-306T等が挙げられる。
Among the above urethane (meth) acrylates, commercially available ones include, for example, urethane (meth) acrylate manufactured by Toa Synthetic Co., Ltd., urethane (meth) acrylate manufactured by Daicel Ornex, and urethane (meth) manufactured by Negami Kogyo Co., Ltd. Examples thereof include acrylate, urethane (meth) acrylate manufactured by Shin-Nakamura Chemical Industry Co., Ltd., urethane (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd., and the like.
Examples of the urethane (meth) acrylate manufactured by Toagosei Co., Ltd. include M-1100, M-1200, M-1210, and M-1600.
The urethane (meth) acrylate manufactured by the Daicel Orunekusu Inc., for example, EBECRYL210, EBECRYL220, EBECRYL230, EBECRYL270, EBECRYL1290, EBECRYL2220, EBECRYL4827, EBECRYL4842, EBECRYL4858, EBECRYL5129, EBECRYL6700, EBECRYL8402, EBECRYL8803, EBECRYL8804, EBECRYL8807, EBECRYL9260 etc. Can be mentioned.
Examples of the urethane (meth) acrylate manufactured by Negami Kogyo Co., Ltd. include Art Resin UN-330, Art Resin SH-500B, Art Resin UN-1200TPK, Art Resin UN-1255, Art Resin UN-3320HB, and Art Resin UN-. 7100, Art Resin UN-9000A, Art Resin UN-9000H and the like can be mentioned.
Examples of the urethane (meth) acrylate manufactured by Shin-Nakamura Chemical Industry Co., Ltd. include U-2HA, U-2PHA, U-3HA, U-4HA, U-6H, U-6HA, U-6LPA, U-10H, and the like. U-15HA, U-108, U-108A, U-122A, U-122P, U-324A, U-340A, U-340P, U-1084A, U-2061BA, UA-340P, UA-4000, UA- Examples thereof include 4100, UA-4200, UA-4400, UA-5201P, UA-7100, UA-7200, and UA-W2A.
Examples of the urethane (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd. include AH-600, AI-600, AT-600, UA-101I, UA-101T, UA-306H, UA-306I, and UA-306T. Be done.
上記硬化性樹脂として上記エポキシ化合物に加えて上記(メタ)アクリル化合物を含有する場合、又は、上記部分(メタ)アクリル変性エポキシ化合物を含有する場合、上記硬化性樹脂中のエポキシ基と(メタ)アクリロイル基との合計中における(メタ)アクリロイル基の比率を30モル%以上95モル%以下になるようにすることが好ましい。上記(メタ)アクリロイル基の比率がこの範囲であることにより、液晶汚染の発生を抑制しつつ、得られる液晶表示素子用シール剤が接着性により優れるものとなる。 When the curable resin contains the (meth) acrylic compound in addition to the epoxy compound, or when the partial (meth) acrylic-modified epoxy compound is contained, the epoxy group and the (meth) in the curable resin It is preferable that the ratio of the (meth) acryloyl group in the total with the acryloyl group is 30 mol% or more and 95 mol% or less. When the ratio of the (meth) acryloyl group is in this range, the sealant for the liquid crystal display element obtained is excellent in adhesiveness while suppressing the occurrence of liquid crystal contamination.
上記硬化性樹脂は、液晶汚染をより抑制する観点から、-OH基、-NH-基、-NH基等の水素結合性のユニットを有するものが好ましい。 The curable resin preferably has hydrogen-bonding units such as -OH group, -NH- group, and -NH 2 group from the viewpoint of further suppressing liquid crystal contamination.
本発明の液晶表示素子用シール剤は、更に、光ラジカル重合開始剤を含有することが好ましい。
上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン化合物、アセトフェノン化合物、アシルフォスフィンオキサイド化合物、チタノセン化合物、オキシムエステル化合物、ベンゾインエーテル化合物、チオキサントン化合物等が挙げられる。
上記光ラジカル重合開始剤としては、具体的には例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタノン、2-(ジメチルアミノ)-2-((4-メチルフェニル)メチル)-1-(4-(4-モルホリニル)フェニル)-1-ブタノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、1-(4-(2-ヒドロキシエトキシ)-フェニル)-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、1-(4-(フェニルチオ)フェニル)-1,2-オクタンジオン2-(O-ベンゾイルオキシム)、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド等が挙げられる。
上記光ラジカル重合開始剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
The sealant for a liquid crystal display element of the present invention preferably further contains a photoradical polymerization initiator.
Examples of the photoradical polymerization initiator include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanosen compounds, oxime ester compounds, benzoin ether compounds, and thioxanthone compounds.
Specific examples of the photoradical polymerization initiator include 1-hydroxycyclohexylphenyl ketone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone, and 2- (dimethylamino). ) -2-((4-Methylphenyl) methyl) -1- (4- (4-morpholinyl) phenyl) -1-butanone, 2,2-dimethoxy-1,2-diphenylethane-1-one, bis ( 2,4,6-trimethylbenzoyl) phenylphosphenyl oxide, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1-one, 1- (4- (2-hydroxyethoxy) -phenyl) -2-Hydroxy-2-methyl-1-propane-1-one, 1- (4- (phenylthio) phenyl) -1,2-octanedione 2- (O-benzoyloxime), 2,4,6-trimethyl Examples thereof include benzoyldiphenylphosphine oxide.
The photoradical polymerization initiator may be used alone or in combination of two or more.
上記光ラジカル重合開始剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.5重量部、好ましい上限が10重量部である。上記光ラジカル重合開始剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤が液晶汚染を抑制しつつ、保存安定性や光硬化性により優れるものとなる。上記光ラジカル重合開始剤の含有量のより好ましい下限は1重量部、より好ましい上限は7重量部である。 The content of the photoradical polymerization initiator is preferably 0.5 parts by weight and a preferable upper limit is 10 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the photoradical polymerization initiator is in this range, the obtained sealant for a liquid crystal display element is excellent in storage stability and photocurability while suppressing liquid crystal contamination. The more preferable lower limit of the content of the photoradical polymerization initiator is 1 part by weight, and the more preferable upper limit is 7 parts by weight.
本発明の液晶表示素子用シール剤は、熱ラジカル重合開始剤を含有してもよい。
上記熱ラジカル重合開始剤としては、例えば、アゾ化合物や有機過酸化物等で構成されるものが挙げられる。なかでも、液晶汚染を抑制する観点から、アゾ化合物で構成される開始剤(以下、「アゾ開始剤」ともいう)が好ましく、高分子アゾ化合物で構成される開始剤(以下、「高分子アゾ開始剤」ともいう)がより好ましい。
上記熱ラジカル重合開始剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
なお、本明細書において上記「高分子アゾ化合物」とは、アゾ基を有し、熱によって(メタ)アクリロイル基を硬化させることができるラジカルを生成する、数平均分子量が300以上の化合物を意味する。
The sealant for a liquid crystal display element of the present invention may contain a thermal radical polymerization initiator.
Examples of the thermal radical polymerization initiator include those composed of an azo compound, an organic peroxide, or the like. Among them, an initiator composed of an azo compound (hereinafter, also referred to as “azo initiator”) is preferable from the viewpoint of suppressing liquid crystal contamination, and an initiator composed of a polymer azo compound (hereinafter, “polymer azo”) is preferable. Also referred to as "initiator") is more preferred.
The thermal radical polymerization initiator may be used alone or in combination of two or more.
In the present specification, the above-mentioned "polymer azo compound" means a compound having an azo group and having a number average molecular weight of 300 or more, which generates a radical capable of curing a (meth) acryloyl group by heat. To do.
上記高分子アゾ化合物の数平均分子量の好ましい下限は1000、好ましい上限は30万である。上記高分子アゾ化合物の数平均分子量がこの範囲であることにより、液晶への悪影響を防止しつつ、硬化性樹脂へ容易に混合することができる。上記高分子アゾ化合物の数平均分子量のより好ましい下限は5000、より好ましい上限は10万であり、更に好ましい下限は1万、更に好ましい上限は9万である。
なお、本明細書において、上記数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で溶媒としてテトラヒドロフランを用いて測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際のカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。
The preferable lower limit of the number average molecular weight of the polymer azo compound is 1000, and the preferable upper limit is 300,000. When the number average molecular weight of the polymer azo compound is in this range, it can be easily mixed with the curable resin while preventing adverse effects on the liquid crystal. The more preferable lower limit of the number average molecular weight of the polymer azo compound is 5000, the more preferable upper limit is 100,000, the further preferable lower limit is 10,000, and the further preferable upper limit is 90,000.
In the present specification, the number average molecular weight is a value obtained by measuring by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent and converting it into polystyrene. Examples of the column for measuring the number average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK).
上記高分子アゾ化合物としては、例えば、アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有するものが挙げられる。
上記アゾ基を介してポリアルキレンオキサイド等のユニットが複数結合した構造を有する高分子アゾ化合物としては、ポリエチレンオキサイド構造を有するものが好ましい。
上記高分子アゾ化合物としては、具体的には例えば、4,4’-アゾビス(4-シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4’-アゾビス(4-シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられる。
上記高分子アゾ開始剤のうち市販されているものとしては、例えば、VPE-0201、VPE-0401、VPE-0601、VPS-0501、VPS-1001(いずれも富士フイルム和光純薬社製)等が挙げられる。
また、高分子ではないアゾ開始剤としては、例えば、V-65、V-501(いずれも富士フイルム和光純薬社製)等が挙げられる。
Examples of the polymer azo compound include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
As the polymer azo compound having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group, those having a polyethylene oxide structure are preferable.
Specific examples of the polymer azo compound include a polycondensate of 4,4'-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4'-azobis (4-cyanopentanoic acid). And a polycondensate of polydimethylsiloxane having a terminal amino group and the like.
Examples of commercially available polymer azo initiators include VPE-0201, VPE-0401, VPE-0601, VPS-0501, and VPS-1001 (all manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). Can be mentioned.
Examples of the azo initiator that is not a polymer include V-65 and V-501 (both manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.).
上記有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。 Examples of the organic peroxide include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, peroxyesters, diacyl peroxides, peroxydicarbonates and the like.
上記熱ラジカル重合開始剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.1重量部、好ましい上限が10重量部である。上記熱ラジカル重合開始剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤が液晶汚染を抑制しつつ、保存安定性や熱硬化性により優れるものとなる。上記熱ラジカル重合開始剤の含有量のより好ましい下限は0.3重量部、より好ましい上限は5重量部である。 Regarding the content of the thermal radical polymerization initiator, the preferable lower limit is 0.1 parts by weight and the preferable upper limit is 10 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the thermal radical polymerization initiator is in this range, the obtained sealant for a liquid crystal display element is excellent in storage stability and thermosetting property while suppressing liquid crystal contamination. The more preferable lower limit of the content of the thermal radical polymerization initiator is 0.3 parts by weight, and the more preferable upper limit is 5 parts by weight.
本発明の液晶表示素子用シール剤は、粘度の向上、応力分散効果による接着性の改善、線膨張率の改善、硬化物の耐湿性の向上等を目的として充填剤を含有してもよい。 The sealant for a liquid crystal display element of the present invention may contain a filler for the purpose of improving the viscosity, improving the adhesiveness by the stress dispersion effect, improving the coefficient of linear expansion, improving the moisture resistance of the cured product, and the like.
上記充填剤としては、無機充填剤や有機充填剤を用いることができる。
上記無機充填剤としては、例えば、シリカ、タルク、ガラスビーズ、石綿、石膏、珪藻土、スメクタイト、ベントナイト、モンモリロナイト、セリサイト、活性白土、アルミナ、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、水酸化アルミニウム、窒化アルミニウム、窒化珪素、硫酸バリウム、珪酸カルシウム等が挙げられる。
上記有機充填剤としては、例えば、ポリエステル微粒子、ポリウレタン微粒子、ビニル重合体微粒子、アクリル重合体微粒子等が挙げられる。
上記充填剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
As the filler, an inorganic filler or an organic filler can be used.
Examples of the inorganic filler include silica, talc, glass beads, asbestos, gypsum, diatomaceous earth, smectite, bentonite, montmorillonite, sericite, active white clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, and titanium oxide. , Calcium carbonate, magnesium carbonate, magnesium hydroxide, aluminum hydroxide, aluminum nitride, silicon nitride, barium sulfate, calcium silicate and the like.
Examples of the organic filler include polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, and the like.
The above-mentioned filler may be used alone or in combination of two or more.
本発明の液晶表示素子用シール剤100重量部中における上記充填剤の含有量の好ましい下限は10重量部、好ましい上限は70重量部である。上記充填剤の含有量がこの範囲であることにより、塗布性等を悪化させることなく、接着性の改善等の効果により優れるものとなる。上記充填剤の含有量のより好ましい下限は20重量部、より好ましい上限は60重量部である。 The preferable lower limit of the content of the filler in 100 parts by weight of the sealant for a liquid crystal display element of the present invention is 10 parts by weight, and the preferable upper limit is 70 parts by weight. When the content of the filler is in this range, the effect of improving the adhesiveness and the like is excellent without deteriorating the coatability and the like. The more preferable lower limit of the content of the filler is 20 parts by weight, and the more preferable upper limit is 60 parts by weight.
本発明の液晶表示素子用シール剤は、シランカップリング剤を含有してもよい。上記シランカップリング剤は、主に液晶表示素子用シール剤と基板等とを良好に接着するための接着助剤としての役割を有する。 The sealant for a liquid crystal display element of the present invention may contain a silane coupling agent. The silane coupling agent mainly has a role as an adhesive auxiliary for satisfactorily adhering a sealant for a liquid crystal display element and a substrate or the like.
上記シランカップリング剤としては、例えば、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が好適に用いられる。これらは、基板等との接着性を向上させる効果に優れ、硬化性樹脂と化学結合することにより液晶中への硬化性樹脂の流出を抑制することができる。
上記シランカップリング剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
As the silane coupling agent, for example, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatepropyltrimethoxysilane and the like are preferably used. These are excellent in the effect of improving the adhesiveness with the substrate and the like, and can suppress the outflow of the curable resin into the liquid crystal by chemically bonding with the curable resin.
The silane coupling agent may be used alone or in combination of two or more.
本発明の液晶表示素子用シール剤100重量部中における上記シランカップリング剤の含有量の好ましい下限は0.1重量部、好ましい上限は10重量部である。上記シランカップリング剤の含有量がこの範囲であることにより、液晶汚染の発生を抑制しつつ、接着性を向上させる効果により優れるものとなる。上記シランカップリング剤の含有量のより好ましい下限は0.3重量部、より好ましい上限は5重量部である。 The preferable lower limit of the content of the silane coupling agent in 100 parts by weight of the sealant for a liquid crystal display element of the present invention is 0.1 parts by weight, and the preferable upper limit is 10 parts by weight. When the content of the silane coupling agent is within this range, the effect of improving the adhesiveness while suppressing the occurrence of liquid crystal contamination becomes more excellent. The more preferable lower limit of the content of the silane coupling agent is 0.3 parts by weight, and the more preferable upper limit is 5 parts by weight.
本発明の液晶表示素子用シール剤は、遮光剤を含有してもよい。上記遮光剤を含有することにより、本発明の液晶表示素子用シール剤は、遮光シール剤として好適に用いることができる。 The sealant for a liquid crystal display element of the present invention may contain a light-shielding agent. By containing the above-mentioned light-shielding agent, the sealant for a liquid crystal display element of the present invention can be suitably used as a light-shielding sealant.
上記遮光剤としては、例えば、酸化鉄、チタンブラック、アニリンブラック、シアニンブラック、フラーレン、カーボンブラック、樹脂被覆型カーボンブラック等が挙げられる。なかでも、チタンブラックが好ましい。 Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, resin-coated carbon black and the like. Of these, titanium black is preferable.
上記チタンブラックは、波長300nm以上800nm以下の光に対する平均透過率と比較して、紫外線領域付近、特に波長370nm以上450nm以下の光に対する透過率が高くなる物質である。即ち、上記チタンブラックは、可視光領域の波長の光を充分に遮蔽することで本発明の液晶表示素子用シール剤に遮光性を付与する一方、紫外線領域付近の波長の光は透過させる性質を有する遮光剤である。従って、上記光ラジカル重合開始剤として、上記チタンブラックの透過率の高くなる波長の光によって反応を開始可能なものを用いることで、本発明の液晶表示素子用シール剤の光硬化性をより増大させることができる。また一方で、本発明の液晶表示素子用シール剤に含有される遮光剤としては、絶縁性の高い物質が好ましく、絶縁性の高い遮光剤としてもチタンブラックが好適である。
上記チタンブラックは、1μmあたりの光学濃度(OD値)が、3以上であることが好ましく、4以上であることがより好ましい。上記チタンブラックの遮光性は高ければ高いほどよく、上記チタンブラックのOD値に好ましい上限は特にないが、通常は5以下となる。
The titanium black is a substance having a higher transmittance for light in the ultraviolet region, particularly for light having a wavelength of 370 nm or more and 450 nm or less, as compared with the average transmittance for light having a wavelength of 300 nm or more and 800 nm or less. That is, the titanium black has a property of imparting light-shielding property to the sealant for a liquid crystal display element of the present invention by sufficiently blocking light having a wavelength in the visible light region, while transmitting light having a wavelength in the vicinity of the ultraviolet region. It is a light-shielding agent. Therefore, by using the photoradical polymerization initiator that can initiate the reaction with light having a wavelength that increases the transmittance of the titanium black, the photocurability of the sealant for a liquid crystal display element of the present invention is further increased. Can be made to. On the other hand, as the light-shielding agent contained in the sealant for a liquid crystal display element of the present invention, a substance having high insulating properties is preferable, and titanium black is also preferable as the light-shielding agent having high insulating properties.
The titanium black has an optical density (OD value) per μm of preferably 3 or more, and more preferably 4 or more. The higher the light-shielding property of the titanium black, the better, and the OD value of the titanium black has no particular preferable upper limit, but is usually 5 or less.
上記チタンブラックは、表面処理されていないものでも充分な効果を発揮するが、表面がカップリング剤等の有機成分で処理されているものや、酸化ケイ素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等の無機成分で被覆されているもの等、表面処理されたチタンブラックを用いることもできる。なかでも、有機成分で処理されているものは、より絶縁性を向上できる点で好ましい。
また、遮光剤として上記チタンブラックを配合した本発明の液晶表示素子用シール剤を用いて製造した液晶表示素子は、充分な遮光性を有するため、光の漏れ出しがなく高いコントラストを有し、優れた画像表示品質を有する液晶表示素子を実現することができる。
The above titanium black exerts a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, or oxidation. Surface-treated titanium black, such as those coated with an inorganic component such as zirconium or magnesium oxide, can also be used. Among them, those treated with an organic component are preferable in that the insulating property can be further improved.
Further, the liquid crystal display element manufactured by using the sealant for the liquid crystal display element of the present invention containing the above titanium black as a light shielding agent has sufficient light shielding properties, so that there is no light leakage and the contrast is high. A liquid crystal display element having excellent image display quality can be realized.
上記チタンブラックのうち市販されているものとしては、例えば、三菱マテリアル社製のチタンブラック、赤穂化成社製のチタンブラック等が挙げられる。
上記三菱マテリアル社製のチタンブラックとしては、例えば、12S、13M、13M-C、13R-N、14M-C等が挙げられる。
上記赤穂化成社製のチタンブラックとしては、例えば、ティラックD等が挙げられる。
Examples of commercially available titanium blacks include titanium black manufactured by Mitsubishi Materials Corporation and titanium black manufactured by Ako Kasei Co., Ltd.
Examples of the titanium black manufactured by Mitsubishi Materials Corporation include 12S, 13M, 13MC, 13RN, 14MC and the like.
Examples of the titanium black manufactured by Ako Kasei Co., Ltd. include Tilak D and the like.
上記チタンブラックの比表面積の好ましい下限は13m/g、好ましい上限は30m/gであり、より好ましい下限は15m/g、より好ましい上限は25m/gである。
また、上記チタンブラックの体積抵抗の好ましい下限は0.5Ω・cm、好ましい上限は3Ω・cmであり、より好ましい下限は1Ω・cm、より好ましい上限は2.5Ω・cmである。
The preferable lower limit of the specific surface area of the titanium black is 13 m 2 / g, the preferable upper limit is 30 m 2 / g, the more preferable lower limit is 15 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
Further, the preferable lower limit of the volume resistance of the titanium black is 0.5 Ω · cm, the preferable upper limit is 3 Ω · cm, the more preferable lower limit is 1 Ω · cm, and the more preferable upper limit is 2.5 Ω · cm.
上記遮光剤の一次粒子径は、液晶表示素子の基板間の距離以下であれば特に限定されないが、好ましい下限は1nm、好ましい上限は5000nmである。上記遮光剤の一次粒子径がこの範囲であることにより、得られる液晶表示素子用シール剤の塗布性等を悪化させることなく遮光性により優れるものとすることができる。上記遮光剤の一次粒子径のより好ましい下限は5nm、より好ましい上限は200nm、更に好ましい下限は10nm、更に好ましい上限は100nmである。
なお、上記遮光剤の一次粒子径は、NICOMP 380ZLS(PARTICLE SIZING SYSTEMS社製)を用いて、上記遮光剤を溶媒(水、有機溶媒等)に分散させて測定することができる。
The primary particle size of the light-shielding agent is not particularly limited as long as it is equal to or less than the distance between the substrates of the liquid crystal display element, but the preferable lower limit is 1 nm and the preferable upper limit is 5000 nm. When the primary particle size of the light-shielding agent is within this range, the light-shielding property can be improved without deteriorating the coatability of the obtained sealant for the liquid crystal display element. The more preferable lower limit of the primary particle size of the light-shielding agent is 5 nm, the more preferable upper limit is 200 nm, the further preferable lower limit is 10 nm, and the further preferable upper limit is 100 nm.
The primary particle size of the light-shielding agent can be measured by dispersing the light-shielding agent in a solvent (water, organic solvent, etc.) using NICOMP 380ZLS (manufactured by PARTICLE SIZING SYSTEMS).
本発明の液晶表示素子用シール剤100重量部中における上記遮光剤の含有量の好ましい下限は5重量部、好ましい上限は80重量部である。上記遮光剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤の接着性、硬化後の強度、及び、描画性を大きく低下させることなく、より優れた遮光性を発揮することができる。上記遮光剤の含有量のより好ましい下限は10重量部、より好ましい上限は70重量部であり、更に好ましい下限は30重量部、更に好ましい上限は60重量部である。 The preferable lower limit of the content of the light-shielding agent in 100 parts by weight of the sealant for a liquid crystal display element of the present invention is 5 parts by weight, and the preferable upper limit is 80 parts by weight. When the content of the light-shielding agent is within this range, the adhesiveness of the obtained sealant for a liquid crystal display element, the strength after curing, and the drawability are not significantly deteriorated, and more excellent light-shielding property is exhibited. be able to. A more preferable lower limit of the content of the light-shielding agent is 10 parts by weight, a more preferable upper limit is 70 parts by weight, a further preferable lower limit is 30 parts by weight, and a further preferable upper limit is 60 parts by weight.
本発明の液晶表示素子用シール剤は、更に、必要に応じて、応力緩和剤、反応性希釈剤、揺変剤、スペーサー、硬化促進剤、消泡剤、レベリング剤、重合禁止剤等の添加剤を含有してもよい。 The sealant for a liquid crystal display element of the present invention further contains a stress relaxation agent, a reactive diluent, a rocking agent, a spacer, a curing accelerator, a defoaming agent, a leveling agent, a polymerization inhibitor and the like, if necessary. The agent may be contained.
本発明の液晶表示素子用シール剤を製造する方法としては、例えば、混合機を用いて、硬化性樹脂と、熱硬化剤と、必要に応じて添加される熱ラジカル重合開始剤等とを混合する方法等が挙げられる。
上記混合機としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等が挙げられる。
As a method for producing the sealant for a liquid crystal display element of the present invention, for example, a curable resin, a thermosetting agent, a thermal radical polymerization initiator added as needed, and the like are mixed using a mixer. The method of doing this can be mentioned.
Examples of the mixer include a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and three rolls.
本発明の液晶表示素子用シール剤に導電性微粒子を配合することにより、上下導通材料を製造することができる。このような本発明の液晶表示素子用シール剤と導電性微粒子とを含有する上下導通材料もまた、本発明の1つである。 By blending conductive fine particles with the sealant for a liquid crystal display element of the present invention, a vertically conductive material can be produced. Such a vertically conductive material containing the sealant for a liquid crystal display element of the present invention and conductive fine particles is also one of the present inventions.
上記導電性微粒子としては、例えば、金属ボール、樹脂微粒子の表面に導電金属層を形成したもの等を用いることができる。なかでも、樹脂微粒子の表面に導電金属層を形成したものは、樹脂微粒子の優れた弾性により、透明基板等を損傷することなく導電接続が可能であることから好適である。 As the conductive fine particles, for example, a metal ball, a resin fine particle having a conductive metal layer formed on the surface thereof, or the like can be used. Among them, the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the excellent elasticity of the resin fine particles enables conductive connection without damaging the transparent substrate or the like.
本発明の液晶表示素子用シール剤又は本発明の上下導通材料を用いてなる液晶表示素子もまた、本発明の1つである。 A liquid crystal display element made of the sealant for a liquid crystal display element of the present invention or the vertically conductive material of the present invention is also one of the present inventions.
本発明の液晶表示素子としては、狭額縁設計の液晶表示素子が好ましい。具体的には、液晶表示部の周囲の枠部分の幅が2mm以下であることが好ましい。
また、本発明の液晶表示素子を製造する際の本発明の液晶表示素子用シール剤の塗布幅は1mm以下であることが好ましい。
As the liquid crystal display element of the present invention, a liquid crystal display element having a narrow frame design is preferable. Specifically, the width of the frame portion around the liquid crystal display unit is preferably 2 mm or less.
Further, when the liquid crystal display element of the present invention is manufactured, the coating width of the sealant for the liquid crystal display element of the present invention is preferably 1 mm or less.
本発明の液晶表示素子用シール剤は、液晶滴下工法による液晶表示素子の製造に好適に用いることができる。
液晶滴下工法によって本発明の液晶表示素子を製造する方法としては、例えば、以下の方法等が挙げられる。
まず、基板に本発明の液晶表示素子用シール剤をスクリーン印刷、ディスペンサー塗布等により枠状のシールパターンを形成する工程を行う。次いで、本発明の液晶表示素子用シール剤が未硬化の状態で液晶の微小滴をシールパターンの枠内全面に滴下塗布し、すぐに別の基板を重ね合わせる工程を行う。その後、シール剤を加熱して硬化させる工程を行う方法により、液晶表示素子を得ることができる。また、シール剤を加熱して硬化させる工程の前にシールパターン部分に紫外線等の光を照射してシール剤を仮硬化させる工程を行ってもよい。
The sealant for a liquid crystal display element of the present invention can be suitably used for manufacturing a liquid crystal display element by a liquid crystal dropping method.
Examples of the method for manufacturing the liquid crystal display element of the present invention by the liquid crystal dropping method include the following methods.
First, a step of forming a frame-shaped seal pattern on a substrate by screen printing, applying a dispenser, or the like to the sealant for a liquid crystal display element of the present invention is performed. Next, in a state where the sealant for a liquid crystal display element of the present invention is uncured, fine droplets of liquid crystal are dropped and applied to the entire surface of the frame of the seal pattern, and a step of immediately superimposing another substrate is performed. After that, a liquid crystal display element can be obtained by a method of heating and curing the sealant. Further, before the step of heating and curing the sealant, a step of irradiating the seal pattern portion with light such as ultraviolet rays to temporarily cure the sealant may be performed.
本発明によれば、保存安定性、接着性、及び、低液晶汚染性に優れる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することができる。 According to the present invention, it is possible to provide a sealant for a liquid crystal display element, which is excellent in storage stability, adhesiveness, and low liquid crystal contamination. Further, according to the present invention, it is possible to provide a vertically conductive material and a liquid crystal display element using the sealant for a liquid crystal display element.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
(化合物Aの合成)
還流冷却器、温度計、及び、撹拌機を備えた3つ口フラスコ中でスチレン(富士フイルム和光純薬社製)208.3g(2.0モル)と、アクリル酸メチル(東京化成工業社製)172.1g(2.0モル)とをテトラヒドロフラン300mLに溶解させた。得られた溶液に重合開始剤としてアゾビスイソブチロニトリル16.4g(0.1モル)を加え、窒素置換しながら80℃で1時間撹拌して反応させた。得られた反応物を濃縮した後、エタノール溶液に再沈殿することにより中間体高分子化合物を得た。
還流冷却器、温度計、及び、撹拌機を備えた3つ口フラスコ中で得られた中間体高分子化合物とヒドラジン水和物113g(2.3モル)とをテトラヒドロフラン200mLに溶解させ、還流下で3時間反応を行った。反応終了後、濃縮させ固形物を分離することにより、化合物Aを得た。
H-NMR、MS、及び、FT-IRにより、得られた化合物Aは、上記式(1-1)で表される構造(Arはフェニル基)と、上記式(1-2)で表される構造(Rは水素原子)と、上記式(2)で表される構造(Rは水素原子、Rは-C(=O)OCH基)とを有する化合物であることを確認した。また、得られた化合物Aは、上記式(1-1)で表される構造を50モル%有するものであった。更に、得られた化合物Aの重量平均分子量は15000、軟化点は130℃であった。
(Synthesis of Compound A)
208.3 g (2.0 mol) of styrene (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and methyl acrylate (manufactured by Tokyo Chemical Industry Co., Ltd.) in a three-necked flask equipped with a reflux condenser, a thermometer, and a stirrer. ) 172.1 g (2.0 mol) was dissolved in 300 mL of tetrahydrofuran. 16.4 g (0.1 mol) of azobisisobutyronitrile was added to the obtained solution as a polymerization initiator, and the mixture was stirred at 80 ° C. for 1 hour while substituting with nitrogen for reaction. The obtained reaction product was concentrated and then reprecipitated in an ethanol solution to obtain an intermediate polymer compound.
The intermediate polymer compound obtained in a three-necked flask equipped with a reflux condenser, a thermometer, and a stirrer and 113 g (2.3 mol) of hydrazine hydrate were dissolved in 200 mL of tetrahydrofuran and under reflux. The reaction was carried out for 3 hours. After completion of the reaction, the compound A was obtained by concentrating and separating the solid matter.
1 Compound A obtained by 1 H-NMR, MS, and FT-IR is represented by the structure represented by the above formula (1-1) (Ar is a phenyl group) and the above formula (1-2). It is a compound having a structure (R 1 is a hydrogen atom) and a structure represented by the above formula (2) (R 2 is a hydrogen atom and R 3 is -C (= O) OCH 3 groups). confirmed. Further, the obtained compound A had a structure represented by the above formula (1-1) in an amount of 50 mol%. Further, the weight average molecular weight of the obtained compound A was 15,000, and the softening point was 130 ° C.
(化合物Bの合成)
窒素置換しながら80℃で撹拌する際の撹拌時間を4時間に変更したこと以外は上記「(化合物Aの合成)」と同様にして、本発明にかかるヒドラジド化合物として化合物Bを得た。
なお、H-NMR、MS、及び、FT-IRにより、得られた化合物Bは、上記式(1-1)で表される構造(Arはフェニル基)と、上記式(1-2)で表される構造(Rは水素原子)と、上記式(2)で表される構造(Rは水素原子、Rは-C(=O)OCH基)とを有する化合物であることを確認した。また、得られた化合物Bは、上記式(1-1)で表される構造を50モル%有するものであった。更に、得られた化合物Bの重量平均分子量は7万、軟化点は147℃であった。
(Synthesis of Compound B)
Compound B was obtained as the hydrazide compound according to the present invention in the same manner as in the above "(Synthesis of compound A)" except that the stirring time when stirring at 80 ° C. while substituting with nitrogen was changed to 4 hours.
The compound B obtained by 1 H-NMR, MS, and FT-IR has a structure represented by the above formula (1-1) (Ar is a phenyl group) and the above formula (1-2). It is a compound having a structure represented by (R 1 is a hydrogen atom) and a structure represented by the above formula (2) (R 2 is a hydrogen atom and R 3 is -C (= O) OCH 3 groups). It was confirmed. Further, the obtained compound B had a structure represented by the above formula (1-1) in an amount of 50 mol%. Further, the weight average molecular weight of the obtained compound B was 70,000, and the softening point was 147 ° C.
(化合物Cの合成)
窒素置換しながら80℃で撹拌する際の撹拌時間を0.5時間に変更したこと以外は上記「(化合物Aの合成)」と同様にして、本発明にかかるヒドラジド化合物として化合物Cを得た。
なお、H-NMR、MS、及び、FT-IRにより、得られた化合物Cは、上記式(1-1)で表される構造(Arはフェニル基)と、上記式(1-2)で表される構造(Rは水素原子)と、上記式(2)で表される構造(Rは水素原子、Rは-C(=O)OCH基)とを有する化合物であることを確認した。また、得られた化合物Cは、上記式(1-1)で表される構造を50モル%有するものであった。更に、得られた化合物Cの重量平均分子量は3000、軟化点は92℃であった。
(Synthesis of Compound C)
Compound C was obtained as the hydrazide compound according to the present invention in the same manner as in the above "(Synthesis of compound A)" except that the stirring time when stirring at 80 ° C. while substituting with nitrogen was changed to 0.5 hours. ..
The compound C obtained by 1 H-NMR, MS, and FT-IR has a structure represented by the above formula (1-1) (Ar is a phenyl group) and the above formula (1-2). It is a compound having a structure represented by (R 1 is a hydrogen atom) and a structure represented by the above formula (2) (R 2 is a hydrogen atom and R 3 is -C (= O) OCH 3 groups). It was confirmed. Further, the obtained compound C had a structure represented by the above formula (1-1) in an amount of 50 mol%. Further, the weight average molecular weight of the obtained compound C was 3000, and the softening point was 92 ° C.
(化合物Dの合成)
スチレンの配合量を416.6g(4.0モル)に変更し、アクリル酸メチルの配合量を86.0g(1.0モル)に変更し、ヒドラジン水和物の配合量を60g(1.2モル)に変更したこと以外は上記「(化合物Aの合成)」と同様にして、本発明にかかるヒドラジド化合物として化合物Dを得た。
なお、H-NMR、MS、及び、FT-IRにより、得られた化合物Dは、上記式(1-1)で表される構造(Arはフェニル基)と、上記式(1-2)で表される構造(Rは水素原子)と、上記式(2)で表される構造(Rは水素原子、Rは-C(=O)OCH基)とを有する化合物であることを確認した。また、得られた化合物Dは、上記式(1-1)で表される構造を80モル%有するものであった。更に、得られた化合物Dの重量平均分子量は25000、軟化点は156℃であった。
(Synthesis of Compound D)
The compounding amount of styrene was changed to 416.6 g (4.0 mol), the compounded amount of methyl acrylate was changed to 86.0 g (1.0 mol), and the compounded amount of hydrazine hydrate was 60 g (1. Compound D was obtained as the hydrazine compound according to the present invention in the same manner as in the above "(Synthesis of compound A)" except that it was changed to 2 mol).
The compound D obtained by 1 H-NMR, MS, and FT-IR has a structure represented by the above formula (1-1) (Ar is a phenyl group) and the above formula (1-2). It is a compound having a structure represented by (R 1 is a hydrogen atom) and a structure represented by the above formula (2) (R 2 is a hydrogen atom and R 3 is -C (= O) OCH 3 groups). It was confirmed. Further, the obtained compound D had 80 mol% of the structure represented by the above formula (1-1). Further, the weight average molecular weight of the obtained compound D was 25,000, and the softening point was 156 ° C.
(化合物Eの合成)
スチレンの配合量を494.7g(4.75モル)に変更し、アクリル酸メチルの配合量を21.5g(0.25モル)に変更し、ヒドラジン水和物の配合量を20g(0.4モル)に変更したこと以外は上記「(化合物Aの合成)」と同様にして、本発明にかかるヒドラジド化合物として化合物Eを得た。
なお、H-NMR、MS、及び、FT-IRにより、得られた化合物Eは、上記式(1-1)で表される構造(Arはフェニル基)と、上記式(1-2)で表される構造(Rは水素原子)と、上記式(2)で表される構造(Rは水素原子、Rは-C(=O)OCH基)とを有する化合物であることを確認した。また、得られた化合物Eは、上記式(1-1)で表される構造を95モル%有するものであった。更に、得られた化合物Eの重量平均分子量は24000、軟化点は200℃であった。
(Synthesis of compound E)
The compounding amount of styrene was changed to 494.7 g (4.75 mol), the compounding amount of methyl acrylate was changed to 21.5 g (0.25 mol), and the compounding amount of hydrazine hydrate was 20 g (0. Compound E was obtained as the hydrazine compound according to the present invention in the same manner as in the above "(Synthesis of compound A)" except that it was changed to 4 mol).
The compound E obtained by 1 H-NMR, MS, and FT-IR has a structure represented by the above formula (1-1) (Ar is a phenyl group) and the above formula (1-2). It is a compound having a structure represented by (R 1 is a hydrogen atom) and a structure represented by the above formula (2) (R 2 is a hydrogen atom and R 3 is -C (= O) OCH 3 groups). It was confirmed. Further, the obtained compound E had 95 mol% of the structure represented by the above formula (1-1). Further, the weight average molecular weight of the obtained compound E was 24,000, and the softening point was 200 ° C.
(化合物Fの合成)
スチレンの配合量を26.0g(0.25モル)に変更し、アクリル酸メチルの配合量を408.7g(4.75モル)に変更し、ヒドラジン水和物の配合量を275g(5.5モル)に変更したこと以外は上記「(化合物Aの合成)」と同様にして、本発明にかかるヒドラジド化合物として化合物Fを得た。
なお、H-NMR、MS、及び、FT-IRにより、得られた化合物Fは、上記式(1-1)で表される構造(Arはフェニル基)と、上記式(1-2)で表される構造(Rは水素原子)と、上記式(2)で表される構造(Rは水素原子、Rは-C(=O)OCH基)とを有する化合物であることを確認した。また、得られた化合物Fは、上記式(1-1)で表される構造を5モル%有するものであった。更に、得られた化合物Fの重量平均分子量は16000、軟化点は69℃であった。
(Synthesis of Compound F)
The compounding amount of styrene was changed to 26.0 g (0.25 mol), the compounding amount of methyl acrylate was changed to 408.7 g (4.75 mol), and the compounding amount of hydrazine hydrate was 275 g (5. Compound F was obtained as the hydrazine compound according to the present invention in the same manner as in the above "(Synthesis of compound A)" except that it was changed to 5 mol).
The compound F obtained by 1 H-NMR, MS, and FT-IR has a structure represented by the above formula (1-1) (Ar is a phenyl group) and the above formula (1-2). It is a compound having a structure represented by (R 1 is a hydrogen atom) and a structure represented by the above formula (2) (R 2 is a hydrogen atom and R 3 is -C (= O) OCH 3 groups). It was confirmed. Further, the obtained compound F had a structure represented by the above formula (1-1) in an amount of 5 mol%. Further, the weight average molecular weight of the obtained compound F was 16000, and the softening point was 69 ° C.
(化合物Gの合成)
還流冷却器、温度計、及び、撹拌機を備えた3つ口フラスコ中でアクリル酸メチル(東京化成工業社製)86.1g(1.0モル)と2-ヒドロキシエチルアクリレート(東京化成工業社製)116.1g(1.0モル)とをテトラヒドロフラン150mLに溶解させた。得られた溶液に重合開始剤としてアゾビスイソブチロニトリル16.4g(0.1モル)を加え、窒素置換しながら80℃で2時間撹拌して反応させた。得られた反応物を濃縮した後、エタノール溶液に再沈殿することにより中間体高分子化合物を得た。
還流冷却器、温度計、及び、撹拌機を備えた3つ口フラスコ中で得られた中間体高分子化合物とヒドラジン水和物113g(2.3モル)とをメタノール100mL及び水10mLに溶解させ、還流下で3時間反応を行った。反応終了後、濃縮させ固形物を分離することにより、化合物Gを得た。
H-NMR、MS、及び、FT-IRにより、得られた化合物Gは、下記式(5)で表される化合物であることを確認した。また、得られた化合物Gの重量平均分子量は12000、軟化点は64℃であった。
(Synthesis of compound G)
Methyl acrylate (manufactured by Tokyo Chemical Industry Co., Ltd.) 86.1 g (1.0 mol) and 2-hydroxyethyl acrylate (manufactured by Tokyo Chemical Industry Co., Ltd.) in a three-necked flask equipped with a reflux condenser, a thermometer, and a stirrer. 116.1 g (1.0 mol) was dissolved in 150 mL of tetrahydrofuran. Azobisisobutyronitrile (16.4 g (0.1 mol)) was added to the obtained solution as a polymerization initiator, and the mixture was reacted by stirring at 80 ° C. for 2 hours while substituting nitrogen. The obtained reaction product was concentrated and then reprecipitated in an ethanol solution to obtain an intermediate polymer compound.
The intermediate polymer compound obtained in a three-necked flask equipped with a reflux condenser, a thermometer, and a stirrer and 113 g (2.3 mol) of hydrazine hydrate were dissolved in 100 mL of methanol and 10 mL of water. The reaction was carried out under reflux for 3 hours. After completion of the reaction, the compound G was obtained by concentrating and separating the solid matter.
1 It was confirmed by 1 H-NMR, MS and FT-IR that the obtained compound G was a compound represented by the following formula (5). The weight average molecular weight of the obtained compound G was 12000, and the softening point was 64 ° C.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
式(5)中、m及びnは、繰り返し数である。 In formula (5), m and n are repetition numbers.
(実施例1~10、比較例1~3)
表1、2に記載された配合比に従い、各材料を、遊星式撹拌機(シンキー社製、「あわとり練太郎」)を用いて混合した後、更に3本ロールを用いて混合することにより実施例1~10、比較例1~3の各液晶表示素子用シール剤を調製した。
(Examples 1 to 10, Comparative Examples 1 to 3)
According to the compounding ratios shown in Tables 1 and 2, each material is mixed using a planetary stirrer (manufactured by Shinky Co., Ltd., "Awatori Rentaro"), and then further mixed using three rolls. Sealing agents for each liquid crystal display element of Examples 1 to 10 and Comparative Examples 1 to 3 were prepared.
<評価>
実施例及び比較例で得られた各液晶表示素子用シール剤について以下の評価を行った。結果を表1、2に示した。
<Evaluation>
The following evaluations were performed on the sealants for each liquid crystal display element obtained in Examples and Comparative Examples. The results are shown in Tables 1 and 2.
(保存安定性)
実施例及び比較例で得られた各液晶表示素子用シール剤について、製造直後の初期粘度と、製造後に25℃1週間保管した後の粘度とを測定した。(保管後の粘度)/(初期粘度)を増粘率とし、増粘率が1.1未満であったものを「◎」、1.1以上1.5未満であったものを「○」、1.5以上2.0未満であったものを「△」、2.0以上であったものを「×」として保存安定性を評価した。
なお、液晶表示素子用シール剤の粘度は、E型粘度計(BROOK FIELD社製、「DV-III」)を用い、25℃において回転速度1.0rpmの条件で測定した。
(Storage stability)
For each of the sealants for liquid crystal display elements obtained in Examples and Comparative Examples, the initial viscosity immediately after production and the viscosity after storage at 25 ° C. for 1 week after production were measured. (Viscosity after storage) / (Initial viscosity) is defined as the thickening rate, and the thickening rate of less than 1.1 is "◎", and the thickening rate of 1.1 or more and less than 1.5 is "○". , 1.5 or more and less than 2.0 was evaluated as "Δ", and 2.0 or more was evaluated as "x" to evaluate the storage stability.
The viscosity of the sealant for the liquid crystal display element was measured using an E-type viscometer (“DV-III” manufactured by BROOK FIELD) at 25 ° C. under the condition of a rotation speed of 1.0 rpm.
(接着性)
実施例及び比較例で得られた各液晶表示素子用シール剤をディスペンス用のシリンジ(武蔵エンジニアリング社製、「PSY-10E」)に充填し、脱泡処理を行った。脱泡処理後の液晶表示素子用シール剤をディスペンサー(武蔵エンジニアリング社製、「SHOTMASTER300」)にてガラス基板(150mm×150mm)の端から30mm内側四方にディスペンスし、別のガラス基板(110mm×110mm)を真空下で重ねて貼り合わせた。高圧水銀ランプを用いて100mW/cmの紫外線を30秒間照射して液晶表示素子用シール剤を仮硬化させ、次いで、120℃で1時間加熱して液晶表示素子用シール剤を熱硬化させ、接着試験片を得た。得られた接着試験片の基板の端部を半径5mmの金属棒を使って5mm/minの速度で押し込んだときに、パネル剥がれが起こる際の強度(kgf)を測定し、接着力(kg/cm)を算出した。
接着力が3.5kg/cm以上であった場合を「◎」、接着力が3.0kg/cm以上3.5kg/cm未満であった場合を「○」、接着力が2.0kg/cm以上3.0kg/cm未満であった場合を「△」、接着力が2.0kg/cm未満であった場合を「×」として接着性を評価した。
(Adhesiveness)
The sealant for each liquid crystal display element obtained in Examples and Comparative Examples was filled in a syringe for dispensing (“PSY-10E” manufactured by Musashi Engineering Co., Ltd.) and defoamed. Dispens the sealant for the liquid crystal display element after defoaming treatment 30 mm inward from the edge of the glass substrate (150 mm x 150 mm) with a dispenser (Musashi Engineering Co., Ltd., "SHOTMASTER300"), and another glass substrate (110 mm x 110 mm). ) Were overlapped and pasted together under vacuum. A high-pressure mercury lamp is used to irradiate 100 mW / cm 2 ultraviolet rays for 30 seconds to temporarily cure the sealant for the liquid crystal display element, and then heat at 120 ° C. for 1 hour to thermally cure the sealant for the liquid crystal display element. An adhesion test piece was obtained. When the edge of the substrate of the obtained adhesive test piece is pushed in at a speed of 5 mm / min using a metal rod having a radius of 5 mm, the strength (kgf) at the time of panel peeling is measured, and the adhesive strength (kg / kg /) is measured. cm) was calculated.
"◎" when the adhesive strength is 3.5 kg / cm or more, "○" when the adhesive strength is 3.0 kg / cm or more and less than 3.5 kg / cm, and the adhesive strength is 2.0 kg / cm. The adhesiveness was evaluated as "Δ" when the amount was less than 3.0 kg / cm and "x" when the adhesive strength was less than 2.0 kg / cm.
(低液晶汚染性(NI点))
実施例及び比較例で得られた各液晶表示素子用シール剤0.1gと液晶(東京化成工業社製、「4-ペンチル-4-ビフェニルカルボニトリル」)1gとをサンプル瓶に加えた。このサンプル瓶を120℃オーブンに1時間投入し、その後静置して25℃に戻ってから液晶部分を取り出し、0.2μmフィルターによりろ過して評価用液晶サンプルとした。得られた評価用液晶サンプル10mgをアルミサンプルパンに封入し、示差走査型熱量計(TA instrument社製、「DSC-Q100」)を使用し、昇温速度5℃/分の条件でNI点の測定を行った。なお、液晶表示素子用シール剤と未接触の上記液晶10mgをアルミサンプルパンに封入し、昇温速度5℃/分の条件でNI点の測定を行った結果をブランクとした。
評価用液晶サンプルで測定されたNI点とブランクのNI点との差が-2℃以上であった場合を「◎」、-3℃以上-2℃未満であった場合を「○」、-5℃以上-3℃未満であった場合を「△」、-5℃未満であった場合を「×」として低液晶汚染性を評価した。
(Low liquid crystal contamination (NI point))
0.1 g of the sealant for each liquid crystal display element obtained in Examples and Comparative Examples and 1 g of liquid crystal (“4-pentyl-4-biphenylcarbonitrile” manufactured by Tokyo Chemical Industry Co., Ltd.) were added to the sample bottle. This sample bottle was placed in an oven at 120 ° C. for 1 hour, then allowed to stand to return to 25 ° C., and then the liquid crystal portion was taken out and filtered through a 0.2 μm filter to prepare a liquid crystal sample for evaluation. 10 mg of the obtained liquid crystal sample for evaluation was enclosed in an aluminum sample pan, and a differential scanning calorimeter (“DSC-Q100” manufactured by TA instrument) was used to obtain an NI point at a heating rate of 5 ° C./min. The measurement was performed. In addition, 10 mg of the liquid crystal which had not contacted with the sealant for a liquid crystal display element was sealed in an aluminum sample pan, and the result of measuring the NI point under the condition of a heating rate of 5 ° C./min was used as a blank.
When the difference between the NI point measured by the evaluation liquid crystal sample and the NI point of the blank is -2 ° C or higher, it is "◎", when it is -3 ° C or higher and lower than -2 ° C, it is "○",- The low liquid crystal contamination was evaluated as "Δ" when the temperature was 5 ° C. or higher and lower than -3 ° C. and "x" when the temperature was lower than -5 ° C.
(液晶表示素子の表示性能)
実施例及び比較例で得られた各液晶表示素子用シール剤100重量部に平均粒子径5μmのスペーサー微粒子(積水化学工業社製、「ミクロパールSI-H050」)1重量部を分散させ、シリンジに充填し、遠心脱泡機(アワトロンAW-1)にて脱泡した。脱泡処理後の液晶表示素子用シール剤を、ディスペンサーを用いて、ノズル径0.4mmφ、ノズルギャップ42μm、シリンジの吐出圧100~400kPa、塗布速度60mm/secの条件で2枚の配向膜及びITO付き基板の一方に枠状に塗布した。このとき、液晶表示素子用シール剤の線幅が約1.5mmとなるように吐出圧を調整した。続いて液晶(東京化成工業社製、「4-ペンチル-4-ビフェニルカルボニトリル」)の微小滴を、液晶表示素子用シール剤を塗布した基板の液晶表示素子用シール剤の枠内全面に滴下塗布し、真空下でもう一方の基板を貼り合わせた。貼り合わせ後すぐに液晶表示素子用シール剤部分にメタルハライドランプを用いて100mW/cmの紫外線を30秒照射して液晶表示素子用シール剤を仮硬化させた。次いで、120℃で1時間加熱して本硬化を行い、液晶表示素子を作製した。
実施例及び比較例で得られた各液晶表示素子用シール剤について3つの液晶表示素子を作製し、得られたそれぞれの液晶表示素子について、液晶表示素子作製直後における液晶表示素子用シール剤付近の液晶配向乱れを目視によって確認した。配向乱れは表示部の色むらより判断し、液晶表示素子の周辺部に表示むらが全く見られなかった場合を「◎」、少し薄い表示むらが見えた場合を「○」、はっきりとした濃い表示むらがあった場合を「△」、はっきりとした濃い表示むらが周辺部のみではなく、中央部まで広がっていた場合を「×」として液晶表示素子の表示性能を評価した。
(Display performance of liquid crystal display element)
1 part by weight of spacer fine particles (manufactured by Sekisui Chemical Co., Ltd., "Micropearl SI-H050") having an average particle diameter of 5 μm was dispersed in 100 parts by weight of the sealant for each liquid crystal display element obtained in Examples and Comparative Examples, and a syringe was used. And defoamed with a centrifugal defoamer (Awatron AW-1). Using a dispenser, the sealant for the liquid crystal display element after the defoaming treatment is applied to the two alignment films under the conditions of a nozzle diameter of 0.4 mmφ, a nozzle gap of 42 μm, a syringe discharge pressure of 100 to 400 kPa, and a coating speed of 60 mm / sec. It was applied in a frame shape to one of the substrates with ITO. At this time, the discharge pressure was adjusted so that the line width of the sealant for the liquid crystal display element was about 1.5 mm. Subsequently, fine droplets of liquid crystal (“4-pentyl-4-biphenylcarbonitrile” manufactured by Tokyo Chemical Industry Co., Ltd.) are dropped on the entire surface of the liquid crystal display element sealant on the substrate coated with the liquid crystal display element sealant. It was applied and the other substrate was bonded under vacuum. Immediately after the bonding, the sealant for the liquid crystal display element was temporarily cured by irradiating the sealant portion for the liquid crystal display element with ultraviolet rays of 100 mW / cm 2 for 30 seconds using a metal halide lamp. Then, it was heated at 120 ° C. for 1 hour to perform main curing to prepare a liquid crystal display element.
Three liquid crystal display elements were produced for each of the liquid crystal display element sealants obtained in Examples and Comparative Examples, and for each of the obtained liquid crystal display elements, the vicinity of the liquid crystal display element sealant immediately after the liquid crystal display element was produced. The liquid crystal alignment disorder was visually confirmed. Orientation disorder is judged from the color unevenness of the display part, and when no display unevenness is seen in the peripheral part of the liquid crystal display element, "◎", when a slightly light display unevenness is seen, "○", it is clear and dark. The display performance of the liquid crystal display element was evaluated as "Δ" when there was display unevenness and as "x" when the clear dark display unevenness spread not only to the peripheral part but also to the central part.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
本発明によれば、保存安定性、接着性、及び、低液晶汚染性に優れる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することができる。 According to the present invention, it is possible to provide a sealant for a liquid crystal display element, which is excellent in storage stability, adhesiveness, and low liquid crystal contamination. Further, according to the present invention, it is possible to provide a vertically conductive material and a liquid crystal display element using the sealant for a liquid crystal display element.

Claims (8)

  1. 硬化性樹脂と熱硬化剤とを含有する液晶表示素子用シール剤であって、
    前記熱硬化剤は、ヒドラジド化合物を含み、
    前記ヒドラジド化合物は、下記式(1-1)で表される構造と下記式(1-2)で表される構造とを有する
    ことを特徴とする液晶表示素子用シール剤。
    Figure JPOXMLDOC01-appb-C000001
    式(1-1)中、Arは、芳香環であり、式(1-2)中、Rは、水素原子又はメチル基である。
    A sealant for a liquid crystal display element containing a curable resin and a thermosetting agent.
    The thermosetting agent contains a hydrazide compound and contains.
    The hydrazide compound is a sealant for a liquid crystal display element, which has a structure represented by the following formula (1-1) and a structure represented by the following formula (1-2).
    Figure JPOXMLDOC01-appb-C000001
    In formula (1-1), Ar is an aromatic ring, and in formula (1-2), R 1 is a hydrogen atom or a methyl group.
  2. 前記ヒドラジド化合物は、前記式(1-1)で表される構造の割合が5モル%以上95モル%以下である請求項1記載の液晶表示素子用シール剤。 The sealant for a liquid crystal display element according to claim 1, wherein the hydrazide compound has a structure represented by the formula (1-1) in an amount of 5 mol% or more and 95 mol% or less.
  3. 前記ヒドラジド化合物は、更に、下記式(2)で表される構造を有する請求項1又は2記載の液晶表示素子用シール剤。
    Figure JPOXMLDOC01-appb-C000002
    式(2)中、Rは、水素原子又はメチル基であり、Rは、-C(=O)OR基(Rは、水素原子又は炭素数1以上10以下のアルキル基)、-CN基、-OR基(Rは、炭素数1以上10以下のアルキル基)、又は、水素原子である。
    The sealant for a liquid crystal display element according to claim 1 or 2, wherein the hydrazide compound further has a structure represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000002
    In the formula (2), R 2 is a hydrogen atom or a methyl group, R 3 is an −C (= O) OR 4 group (R 4 is a hydrogen atom or an alkyl group having 1 or more and 10 or less carbon atoms). -CN group, -OR 5 group (R 5 is an alkyl group having 1 to 10 carbon atoms), or a hydrogen atom.
  4. 前記ヒドラジド化合物は、重量平均分子量が2000以上20万以下である請求項1、2又は3記載の液晶表示素子用シール剤。 The sealant for a liquid crystal display element according to claim 1, 2 or 3, wherein the hydrazide compound has a weight average molecular weight of 2000 or more and 200,000 or less.
  5. 前記ヒドラジド化合物は、軟化点が65℃以上200℃以下である請求項1、2、3又は4記載の液晶表示素子用シール剤。 The sealant for a liquid crystal display element according to claim 1, 2, 3 or 4, wherein the hydrazide compound has a softening point of 65 ° C. or higher and 200 ° C. or lower.
  6. 更に、光ラジカル重合開始剤を含有する請求項1、2、3、4又は5記載の液晶表示素子用シール剤。 The sealant for a liquid crystal display element according to claim 1, 2, 3, 4 or 5, further comprising a photoradical polymerization initiator.
  7. 請求項1、2、3、4、5又は6記載の液晶表示素子用シール剤と導電性微粒子とを含有する上下導通材料。 A vertically conductive material containing the sealant for a liquid crystal display element according to claim 1, 2, 3, 4, 5 or 6, and conductive fine particles.
  8. 請求項1、2、3、4、5又は6記載の液晶表示素子用シール剤又は請求項7記載の上下導通材料を用いてなる液晶表示素子。 A liquid crystal display element using the sealant for a liquid crystal display element according to claim 1, 2, 3, 4, 5 or 6, or the vertically conductive material according to claim 7.
PCT/JP2020/031221 2019-09-06 2020-08-19 Sealing agent for liquid crystal display elements, vertical conduction material, and liquid crystal display element WO2021044842A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020552920A JP6821102B1 (en) 2019-09-06 2020-08-19 Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
CN202080037785.3A CN113874462B (en) 2019-09-06 2020-08-19 Sealing agent for liquid crystal display element, vertically conductive material, and liquid crystal display element
KR1020217028250A KR20220058488A (en) 2019-09-06 2020-08-19 Sealing agent for liquid crystal display elements, vertical conduction material, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-163155 2019-09-06
JP2019163155 2019-09-06

Publications (1)

Publication Number Publication Date
WO2021044842A1 true WO2021044842A1 (en) 2021-03-11

Family

ID=74852610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031221 WO2021044842A1 (en) 2019-09-06 2020-08-19 Sealing agent for liquid crystal display elements, vertical conduction material, and liquid crystal display element

Country Status (2)

Country Link
TW (1) TW202116838A (en)
WO (1) WO2021044842A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7185103B1 (en) * 2021-06-03 2022-12-06 積水化学工業株式会社 Sealant for liquid crystal display element and liquid crystal display element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017049578A (en) * 2015-09-02 2017-03-09 積水化学工業株式会社 Sealant for liquid crystal display elements, vertical conduction material and liquid crystal display element
JP2017223828A (en) * 2016-06-15 2017-12-21 三井化学株式会社 Sealant for liquid crystal dropping method, liquid crystal display panel, and method for manufacturing liquid crystal display panel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017049578A (en) * 2015-09-02 2017-03-09 積水化学工業株式会社 Sealant for liquid crystal display elements, vertical conduction material and liquid crystal display element
JP2017223828A (en) * 2016-06-15 2017-12-21 三井化学株式会社 Sealant for liquid crystal dropping method, liquid crystal display panel, and method for manufacturing liquid crystal display panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7185103B1 (en) * 2021-06-03 2022-12-06 積水化学工業株式会社 Sealant for liquid crystal display element and liquid crystal display element
WO2022255451A1 (en) * 2021-06-03 2022-12-08 積水化学工業株式会社 Liquid crystal display element sealant and liquid crystal display element

Also Published As

Publication number Publication date
TW202116838A (en) 2021-05-01

Similar Documents

Publication Publication Date Title
JP6730133B2 (en) Liquid crystal display element sealant, vertical conduction material and liquid crystal display element
JP6798978B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6655219B1 (en) Photopolymerization initiator, sealant for display element, vertical conductive material, display element, and compound
JP2018077544A (en) Sealing compound for liquid crystal display element, vertical conduction material, liquid crystal display element, and hydrazide based thermosetting agent
JP7112604B1 (en) Liquid crystal display element sealant, vertical conduction material, and liquid crystal display element
JP2016056361A (en) Polymerizable compound, curable resin composition, sealing agent for liquid crystal display element, vertical conducting material, and liquid crystal display element
WO2021044842A1 (en) Sealing agent for liquid crystal display elements, vertical conduction material, and liquid crystal display element
WO2022071404A1 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP7000164B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6821102B1 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6802147B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6849866B1 (en) Curable resin composition, sealant for liquid crystal display element, vertical conductive material, and liquid crystal display element
JP7007524B1 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JPWO2020171053A1 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP7185103B1 (en) Sealant for liquid crystal display element and liquid crystal display element
JP7231794B1 (en) Hydrazide compound, curable resin composition, sealing agent for liquid crystal display element, and liquid crystal display element
JP2019184730A (en) Liquid crystal display element sealant, epoxy compound, method of manufacturing epoxy compound, vertical conduction material, and liquid crystal display element
JP6609396B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6928177B2 (en) Curable resin composition, sealant for liquid crystal display element, vertical conductive material, and liquid crystal display element
JP7295798B2 (en) liquid crystal display element
WO2023120683A1 (en) Sealing agent for liquid crystal display elements, liquid crystal display element and polyvalent hydrazide compound
JP7148332B2 (en) Liquid crystal display element sealant, vertical conduction material, and liquid crystal display element
JP7088833B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2019225376A1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020552920

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20861710

Country of ref document: EP

Kind code of ref document: A1