WO2023120683A1 - Sealing agent for liquid crystal display elements, liquid crystal display element and polyvalent hydrazide compound - Google Patents

Sealing agent for liquid crystal display elements, liquid crystal display element and polyvalent hydrazide compound Download PDF

Info

Publication number
WO2023120683A1
WO2023120683A1 PCT/JP2022/047508 JP2022047508W WO2023120683A1 WO 2023120683 A1 WO2023120683 A1 WO 2023120683A1 JP 2022047508 W JP2022047508 W JP 2022047508W WO 2023120683 A1 WO2023120683 A1 WO 2023120683A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
compound
sealant
display element
Prior art date
Application number
PCT/JP2022/047508
Other languages
French (fr)
Japanese (ja)
Inventor
勇人 ▲高▼田
達也 草加
唯一 洲上
大輝 山脇
▲高▼岡 恵理奈 山野
大輔 柴田
さやか 脇岡
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2023509428A priority Critical patent/JP7389304B2/en
Priority to CN202280068025.8A priority patent/CN118076916A/en
Publication of WO2023120683A1 publication Critical patent/WO2023120683A1/en
Priority to JP2023195211A priority patent/JP2024020438A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/24Derivatives of hydrazine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to a sealant for liquid crystal display elements.
  • the present invention also relates to a liquid crystal display element using the sealing agent for liquid crystal display elements, and a polyhydric hydrazide compound that can be used for the sealing agent for liquid crystal display elements.
  • narrowing the frame of the liquid crystal display part is mentioned, and for example, the position of the seal part is arranged under the black matrix (hereinafter also referred to as narrow frame design).
  • a sealant for liquid crystal display elements that is excellent in adhesion not only to the substrate but also to the alignment film.
  • a sealing agent for liquid crystal display elements expresses high adhesive strength by photocuring and thermal curing, and as a method of thermal curing, a thermosetting agent is blended into the sealing agent for liquid crystal display elements.
  • a thermosetting agent having a low reaction initiation temperature is used to improve the curability and adhesiveness of the liquid crystal display element sealing agent, the obtained liquid crystal display element sealing agent has poor storage stability. was there.
  • the obtained sealing compound for liquid crystal display elements may be inferior in liquid crystal contamination resistance.
  • the frame becomes narrower or the liquid crystal material is changed, there is a risk that liquid crystal contamination will occur due to the uncured sealant component eluting into the liquid crystal, even if the sealant has no problems in the past. There is Therefore, there has been a demand for a sealant that is more excellent in reducing liquid crystal contamination.
  • Hydrazide compounds are often used as curing agents and cross-linking agents for epoxy resins and acrylic resins in the fields of paints and adhesives. Hydrazide compounds are highly reactive and thus can be cured at low temperature. Moreover, they have high crystallinity and excellent storage stability. Therefore, they are suitable as a curing agent or a cross-linking agent in a one-component curable resin composition. Used. However, conventional hydrazide compounds have insufficient heat resistance, and are difficult to apply to electronic materials and vehicle-mounted materials that require heat resistance. Therefore, for example, Patent Literature 3 discloses a hydrazide compound with improved heat resistance, but when such a hydrazide compound is used in a curable resin composition, storage stability and adhesiveness are deteriorated. However, it was difficult to achieve both.
  • liquid crystal display elements and organic EL display elements have been widely used as display elements having features such as thinness, light weight, and low power consumption.
  • adhesives for electronic materials and sealants for liquid crystal display elements are usually used for adhesion of various members, sealing of liquid crystals and light-emitting layers, and the like.
  • Hydrazide compounds are sometimes used as curing agents or cross-linking agents for adhesives for electronic materials and sealants for liquid crystal display elements because of their excellent storage stability and low-temperature curability (for example, Patent Documents 4 and 5). ), and problems such as liquid crystal contamination.
  • the present disclosure 1 is a sealant for a liquid crystal display element containing a curable resin and a thermosetting agent, wherein the thermosetting agent contains at least one of a primary amino group and a hydrazide group in one molecule.
  • the sealant for a liquid crystal display element contains a compound having two or more and having at least one of a sulfonyl group bonded to an aromatic ring and a carbonyl group bonded to an aromatic ring.
  • the present disclosure 2 is that the thermosetting agent has a total of two or more primary amino groups and hydrazide groups in one molecule, and the following formula (1-1) and the following formula (1-2) ).
  • the present disclosure 3 is that the thermosetting agent has two or more primary amino groups in one molecule and has at least one structure of the above formula (1-1) and the above formula (1-2). It is a sealant for a liquid crystal display element of the present disclosure 2 containing a compound having.
  • the present disclosure 4 includes a compound in which the thermosetting agent has a total of two or more primary amino groups and/or hydrazide groups in one molecule and has the structure of formula (1-2). It is a sealant for a liquid crystal display element of the present disclosure 2.
  • the present disclosure 5 is the sealant for a liquid crystal display element of the present disclosure 4, wherein the thermosetting agent contains a compound having two or more hydrazide groups in one molecule and having the structure of the formula (1-2). be.
  • thermosetting agent has two or more primary amino groups in one molecule, and has the following formulas (2-1), (2-2), (2-3), or A sealant for a liquid crystal display element according to the present disclosure 1, which contains a compound having a structure represented by (2-4).
  • present disclosure 7 has two or more primary amino groups in one molecule, and the above formula (2-1), (2-2), (2-3), or (2-4) The compound having the structure represented by the following formula (3-1), (3-2), or the sealant for a liquid crystal display element of the present disclosure 6 having a structure represented by (3-3) .
  • the present disclosure 8 has two or more primary amino groups in one molecule, and the above formula (2-1), (2-2), (2-3), or (2-4) A compound having a structure represented by the following formulas (4-1), (4-2), (4-3), (4-4), (4-5), or (4-6) It is a sealant for a liquid crystal display element of the present disclosure 7, which is the compound represented.
  • the present disclosure 9 is that the thermosetting agent includes a polyvalent hydrazide compound having two or more hydrazide groups represented by the following formula (5) in one molecule and having a sulfonyl group bonded to an aromatic ring. It is a sealant for a liquid crystal display element of Disclosure 1.
  • the present disclosure 10 is the sealant for a liquid crystal display element according to the present disclosure 9, wherein the polyhydrazide compound has a structure represented by the following formula (6).
  • Present Disclosure 11 is the sealant for a liquid crystal display element according to Present Disclosure 10, wherein at least one of R 1 to R 4 in the structure represented by the above formula (6) contains an amino group or a hydroxyl group.
  • the present disclosure 12 is a sealant for a liquid crystal display element containing a curable resin and a thermosetting agent, wherein the thermosetting agent contains at least one of a primary amino group and a hydrazide group in one molecule. 2 or more, and among the constituent atoms, the average charge is 0.4a. u.
  • the present disclosure 14 is the liquid crystal display element sealant according to the present disclosure 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13, wherein the curable resin contains an epoxy compound. be.
  • the present disclosure 15 is the liquid crystal display of the present disclosure 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14, wherein the curable resin contains a (meth)acrylic compound. It is a sealant for devices.
  • the present disclosure 16 further includes the liquid crystal display element of the present disclosure 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 containing a photopolymerization initiator It is a sealant.
  • This disclosure 17 is the liquid crystal of this disclosure 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or 16, further containing a thermal radical polymerization initiator. It is a sealant for display elements.
  • the present disclosure 18 is present disclosures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11, wherein the 10% weight loss temperature after curing of the sealant for a liquid crystal display element is 350°C or higher. , 12, 13, 14, 15, 16 or 17.
  • the present disclosure 19 is the liquid crystal display element sealant of the present disclosure 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 It is a liquid crystal display element having a cured product.
  • the present disclosure 20 is a polyvalent hydrazide compound having two or more hydrazide groups represented by the following formula (5) in one molecule and having a sulfonyl group bonded to an aromatic ring.
  • the present disclosure 21 is a polyhydric hydrazide compound of the present disclosure 20 having a structure represented by formula (6) below.
  • the present disclosure 22 is the multivalent hydrazide compound of the present disclosure 21, wherein at least one of R 1 to R 4 in the structure represented by the above formula (6) contains an amino group or a hydroxyl group.
  • * represents a binding position
  • R 1 to R 4 are each independently a group containing at least one atom selected from the group consisting of a carbon atom, a nitrogen atom, an oxygen atom, and a nitrogen atom, a hydrogen atom, or , represents a linking group, and at least one of R 1 to R 4 is bonded to the hydrazide group represented by the above formula (5).
  • the liquid crystal display element sealing compound of the present disclosure 1 is also referred to as “the liquid crystal display element sealing compound of the present invention 1".
  • the sealant for liquid crystal display elements of the present disclosure 2 is also referred to as “the sealant for liquid crystal display elements of the first aspect of the present invention”
  • the sealant for liquid crystal display elements of the present disclosure 6 is referred to as the "liquid crystal display of the first aspect of the present invention.
  • the liquid crystal display element sealing compound of the present disclosure 9 is also referred to as the “liquid crystal display element sealing compound of the first aspect 3 of the present invention”.
  • the liquid crystal display element sealing compound of the present disclosure 12 is also referred to as "the liquid crystal display element sealing compound of the present invention 2".
  • the polyhydrazide compound of the present disclosure 20 is also referred to as "the polyhydrazide compound of the present invention".
  • the sealing compound for liquid crystal display elements of Invention 1 including aspects 1 to 3
  • the sealing compound for liquid crystal display elements of Invention 2 refer to "Sealant for liquid crystal display elements of the present invention”. described as
  • thermosetting agent As a thermosetting agent, the present inventors have found that at least one of primary amino groups and hydrazide groups is present in total in one molecule, and a sulfonyl group bonded to an aromatic ring and a carbonyl bonded to an aromatic ring We considered using compounds having at least one of the groups. As a result, the present inventors have found that a sealant for liquid crystal display elements which is excellent in all of storage stability, adhesiveness, and low liquid crystal contamination can be obtained, and have completed the present invention 1. In addition, the present inventors have found that the thermosetting agent has a total of two or more primary amino groups and/or hydrazide groups in one molecule, and that the constituent atoms have an average charge inherent to the atom.
  • the present inventors have found that a sealant for liquid crystal display elements that is excellent in all of storage stability, adhesiveness, and low liquid crystal contamination can be obtained, and have completed Invention 2.
  • the polyhydrazide compound of the present invention and the curable resin composition containing the polyhydrazide compound can be suitably used for adhesives for electronic materials and sealants for liquid crystal display elements, and particularly for liquid crystal display elements. When used as a sealant, a liquid crystal display element with little liquid crystal contamination and excellent long-term reliability can be obtained.
  • the sealant for liquid crystal display elements of the present invention contains a thermosetting agent.
  • the thermosetting agent has a total of two or more primary amino groups or hydrazide groups in one molecule, and a sulfonyl group bonded to an aromatic ring. and a compound having at least one of a carbonyl group bonded to an aromatic ring (hereinafter also referred to as "thermosetting agent according to the first invention").
  • thermosetting agent according to the present invention 1 has a total of two or more of at least one of primary amino groups and hydrazide groups in one molecule. Since the thermosetting agent according to the present invention 1 has a total of two or more of at least one of primary amino groups and hydrazide groups in one molecule, the sealing agent for a liquid crystal display element of the present invention 1 has curability and adhesiveness. It will be excellent in quality.
  • thermosetting agent according to the present invention 1 has at least one of a sulfonyl group bonded to an aromatic ring and a carbonyl group bonded to an aromatic ring.
  • thermosetting agent according to the first aspect of the invention preferably has a sulfonyl group bonded to the aromatic ring.
  • thermosetting agent examples of the aromatic ring bonded to the sulfonyl group or carbonyl group include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring and the like.
  • the aromatic ring may contain heteroatoms such as oxygen, nitrogen, sulfur and phosphorus. Among them, a benzene ring is preferred.
  • the sealant for a liquid crystal display element according to Embodiment 1 of the present invention has, as the thermosetting agent according to the present invention 1, a total of two or more of at least one of primary amino groups and hydrazide groups in one molecule, and It includes a compound having at least one of the structures of formula (1-1) and formula (1-2) (hereinafter also referred to as "thermosetting agent according to aspect 1 of the present invention").
  • the thermosetting agent according to aspect 1 of the present invention has a structure of at least one of the above formula (1-1) and the above formula (1-2), whereby the sealant for a liquid crystal display element of the first aspect 1 of the present invention is excellent in storage stability and low liquid crystal contamination.
  • thermosetting agent according to aspect 1 of the present invention has two or more primary amino groups in one molecule, and at least one of the above formula (1-1) and the above formula (1-2) Compounds with structures are preferred. Further, the thermosetting agent according to the first aspect of the present invention has at least two or more primary amino groups or hydrazide groups in total in one molecule, and has the structure of the above formula (1-2). A compound having two or more hydrazide groups in one molecule and having the structure of the above formula (1-2) is more preferable.
  • thermosetting agent according to aspect 1 of the present invention has an average charge of 0.4 a. u. It is preferable to have atoms larger than .
  • the thermosetting agent according to aspect 1 of the present invention has an average charge of 0.4 a. u.
  • the sealant for a liquid crystal display element of the first aspect of the present invention is excellent in storage stability and low liquid crystal contamination.
  • the thermosetting agent according to aspect 1 of the first aspect of the present invention has an average charge of 0.6 a. u. It is more preferred to have atoms larger than 0.65 a. u. It is even more preferred to have atoms that are larger than or equal to.
  • the above "a.u.” means an atomic unit, and 1a.u.
  • u. is 1.60217653 ⁇ 10 ⁇ 19 C.
  • the average atomic charge can be derived using GAMESS (US) from Iowa State University (the same applies to the thermosetting agent according to the present invention 2, which will be described later).
  • GAMESS US
  • the target molecule is modeled, and after the structural optimization calculation by B3LYP/6-31G(d, p), the RESP charge of the entire molecule is calculated under the same conditions, and the charges of the corresponding atoms are averaged.
  • the theoretical charge peculiar to the atom is calculated using calculation software such as GAMESS (US), Gaussian, Firefly, etc., and the structure optimization calculation of the target molecule and the calculation of the RESP charge are performed by B3LYP / 6-31G (d, p). It is a value indicated by calculation.
  • GAMESS US
  • Gaussian Gaussian
  • Firefly etc.
  • B3LYP / 6-31G B3LYP / 6-31G (d, p). It is a value indicated by calculation.
  • the preferable lower limit of the reaction initiation temperature of the thermosetting agent according to the first aspect of the present invention with bisphenol F diglycidyl ether is 120°C.
  • the reaction initiation temperature is 120° C. or higher, the obtained sealing agent for liquid crystal display elements has excellent storage stability.
  • a more preferable lower limit of the reaction initiation temperature is 130°C, and a further preferable lower limit is 135°C.
  • the upper limit of the reaction initiation temperature is preferably 220°C, more preferably 215°C, and still more preferably 210°C.
  • thermosetting agent starts to react with bisphenol F diglycidyl ether
  • the temperature at which the thermosetting agent starts to react with bisphenol F diglycidyl ether can be measured by the following method (the same applies to the thermosetting agent according to the present invention 2, which will be described later). That is, first, 10 g of a heat curing agent and 100 g of bisphenol F diglycidyl ether are stirred for 1 minute at a stirring speed of 2000 rpm using a planetary stirrer (manufactured by THINKY Co., Ltd., "Awatori Mixer").
  • reaction initiation temperature refers to the temperature at which the calorific value reaches 10% of the calorific value peak, and when there are multiple calorific value peaks, the reaction initiation temperature is the temperature at which the maximum calorific value peak reaches 10%.
  • DSC200 manufactured by Hitachi High-Tech Science
  • thermosetting agent according to aspect 1 of the present invention examples include 4,4′-bis(aminophenoxy)benzophenone, 4,4′-diaminodiphenyl ketone, and compounds represented by the following formula (7). , 4,4′-diaminodiphenyl sulfone, bis(4-(3-aminophenoxy)phenyl) sulfone, bis(3-aminophenyl) sulfone and the like.
  • the preferable lower limit of the content of the thermosetting agent according to the first aspect of the present invention to 100 parts by mass of the curable resin is 2.0 parts by mass, and the preferable upper limit is 14.8. part by mass.
  • the content of the thermosetting agent according to aspect 1 of the present invention is 2.0 parts by mass or more with respect to 100 parts by mass of the curable resin, the obtained sealing agent for liquid crystal display elements is superior in curability and adhesiveness.
  • the content of the thermosetting agent according to aspect 1 of the present invention is 14.8 parts by mass or less with respect to 100 parts by mass of the curable resin, the obtained sealing agent for liquid crystal display elements has low liquid crystal contamination and storage stability. become excellent.
  • a more preferable lower limit of the content of the thermosetting agent according to the first aspect of the present invention is 3.0 parts by mass, and a more preferable upper limit is 9.6 parts by mass with respect to 100 parts by mass of the curable resin.
  • the content of the thermosetting agent according to the first aspect of the present invention with respect to one equivalent of the epoxy compound A preferred lower limit is 0.5 equivalents, and a preferred upper limit is 2.0 equivalents.
  • the content of the thermosetting agent according to aspect 1 of the present invention is 0.5 equivalents or more relative to 1 equivalent of the epoxy compound, the obtained sealing agent for liquid crystal display elements has excellent curability and adhesiveness.
  • thermosetting agent according to the first aspect of the present invention When the content of the thermosetting agent according to the first aspect of the present invention is 2.0 equivalents or less per equivalent of the epoxy compound, the obtained sealing agent for liquid crystal display elements is excellent in low liquid crystal contamination resistance and storage stability. becomes.
  • a more preferable lower limit of the content of the thermosetting agent according to the first aspect of the present invention is 0.8 equivalents, and a more preferable upper limit thereof is 1.3 equivalents relative to 1 equivalent of the epoxy compound.
  • the sealant for a liquid crystal display element according to aspect 2 of the first aspect of the present invention has, as the thermosetting agent according to the first aspect of the present invention, two or more primary amino groups in one molecule, and the above formula (2-1), ( 2-2), (2-3), or a compound having a structure represented by (2-4) (hereinafter also referred to as "thermosetting agent according to aspect 1 of the present invention").
  • thermosetting agent according to aspect 1 of the present invention a compound having a structure represented by (2-4)
  • the sealant for liquid crystal display elements of aspect 2 of the present invention has excellent storage stability, adhesiveness, and low liquid crystal contamination during panel production. become excellent.
  • the thermosetting agent according to aspect 1 of the present invention has a structure represented by formula (2-1), (2-2), (2-3), or (2-4).
  • the structures represented by formulas (2-1), (2-2), (2-3), and (2-4) contain a sulfonyl group and an aromatic ring.
  • the thermosetting agent according to the first aspect of the present invention is less likely to be eluted into the liquid crystal. From the viewpoint of reactivity, it is most preferable that the thermosetting agent according to aspect 1 of the present invention has one sulfonyl group per molecule.
  • the thermosetting agent according to the first aspect of the present invention has excellent thermal latency, and the obtained sealing agent for liquid crystal display elements has excellent storage stability.
  • the thermosetting agent according to the first aspect of the present invention preferably has two or more aromatic rings in one molecule. From the viewpoint of reactivity, it is preferable that the thermosetting agent according to the first aspect of the present invention has 4 or less aromatic rings per molecule.
  • thermosetting agent examples include a benzene ring, a naphthalene ring, an anthracene ring, and the like. Among them, a benzene ring is preferred.
  • thermosetting agent according to aspect 1 of the present invention has two or more primary amino groups ( -NH2 groups) in one molecule. By having two or more primary amino groups in one molecule, the thermosetting agent according to the first aspect of the present invention has excellent adhesiveness. Moreover, from the viewpoint of storage stability, the thermosetting agent according to the first aspect of the present invention preferably has 4 or less primary amino groups per molecule.
  • the thermosetting agent according to aspect 1 of the present invention preferably has the primary amino groups at the ends of the main chain, and more preferably has the primary amino groups at both ends of the main chain.
  • thermosetting agent according to aspect 2 of the first aspect of the present invention can make the obtained sealing agent for liquid crystal display elements more excellent in all of storage stability, adhesiveness, and low liquid crystal contamination during panel production.
  • thermosetting agent according to the first aspect 2 of the present invention includes the above formulas (4-1), (4-2), (4-3), (4-4), (4-5), Alternatively, a compound represented by (4-6) is preferred. Among them, a compound represented by the following formula (4-1) is more preferable.
  • the preferred lower limit of the content of the thermosetting agent according to the first aspect of the present invention 2 to 100 parts by mass of the curable resin is 2.0 parts by mass, and the preferred upper limit is 14.3. part by mass.
  • the content of the thermosetting agent according to aspect 2 of the present invention is 2.0 parts by mass or more relative to 100 parts by mass of the curable resin
  • the obtained sealing agent for liquid crystal display elements is superior in curability and adhesiveness.
  • the content of the thermosetting agent according to aspect 2 of the present invention is 14.3 parts by mass or less with respect to 100 parts by mass of the curable resin, the obtained sealing agent for liquid crystal display elements has low liquid crystal contamination and storage stability. become excellent.
  • a more preferable lower limit of the content of the thermosetting agent according to the first aspect of the present invention 2 is 2.8 parts by mass, and a more preferable upper limit is 10.8 parts by mass with respect to 100 parts by mass of the curable resin.
  • the content of the thermosetting agent according to the first aspect 2 of the present invention with respect to 1 equivalent of the epoxy compound A preferred lower limit is 0.5 equivalents, and a preferred upper limit is 2 equivalents.
  • the content of the thermosetting agent according to aspect 2 of the present invention is 0.5 equivalents or more relative to 1 equivalent of the epoxy compound, the obtained sealing agent for liquid crystal display elements is excellent in curability and adhesiveness.
  • thermosetting agent according to aspect 2 of the present invention When the content of the thermosetting agent according to aspect 2 of the present invention is 2 equivalents or less with respect to 1 equivalent of the epoxy compound, the resulting sealing agent for liquid crystal display elements is excellent in storage stability and low liquid crystal contamination resistance. .
  • a more preferable lower limit of the content of the thermosetting agent according to aspect 2 of the present invention is 0.8 equivalents, and a more preferable upper limit thereof is 1.5 equivalents relative to 1 equivalent of the epoxy compound.
  • the sealant for a liquid crystal display element of the third aspect of the first aspect of the present invention has two or more hydrazide groups represented by the above formula (5) in one molecule as the thermosetting agent according to the first aspect of the present invention, and has an aromatic ring and Includes polyvalent hydrazide compounds with attached sulfonyl groups.
  • a polyvalent hydrazide compound having two or more hydrazide groups represented by the above formula (5) in one molecule and having a sulfonyl group bonded to an aromatic ring is also one aspect of the present invention.
  • the sealant for a liquid crystal display element of the first embodiment of the present invention 3 is excellent in all of storage stability, adhesiveness, low liquid crystal contamination resistance, and heat resistance. .
  • the polyhydrazide compounds of the present invention have a sulfonyl group attached to an aromatic ring.
  • the polyvalent hydrazide compound of the present invention has a strong intermolecular interaction and high crystallinity, and thus has excellent heat resistance as compared with various hydrazide curing agents.
  • the number of sulfonyl groups in the polyhydrazide compound of the present invention is preferably 4 or less per molecule.
  • the polyhydrazide compound of the present invention has excellent compatibility with a curable resin, and the obtained sealing agent for liquid crystal display elements has excellent adhesiveness.
  • the polyhydrazide compound of the present invention preferably has two or more aromatic rings in one molecule. From the viewpoint of adhesiveness, it is preferable that the polyhydrazide compound of the present invention has 6 or less aromatic rings per molecule.
  • aromatic ring of the polyhydrazide compound of the present invention examples include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring and the like.
  • the aromatic ring may contain heteroatoms such as oxygen, nitrogen, sulfur and phosphorus. Among them, a benzene ring is preferred.
  • the polyvalent hydrazide compound of the present invention has two or more hydrazide groups represented by the above formula (5) in one molecule. By having two or more hydrazide groups represented by the above formula (5) in one molecule, the polyvalent hydrazide compound of the present invention has excellent reactivity. Moreover, from the viewpoint of storage stability, the polyhydrazide compound of the present invention preferably has 8 or less hydrazide groups represented by the above formula (5) per molecule.
  • the polyvalent hydrazide compound of the present invention preferably has a hydrazide group represented by the above formula (5) at the end of the main chain, and has a hydrazide group represented by the above formula (5) at all ends of the main chain. It is more preferable to have
  • the polyhydrazide compound of the present invention can make the resulting sealing agent for liquid crystal display elements more excellent in all of storage stability, adhesiveness, and heat resistance. It is preferable to have a structure that
  • polyvalent hydrazide compound of the present invention examples include compounds having 1 to 8 diphenylsulfone skeletons per molecule and 2 to 8 hydrazide groups per molecule. Among them, a compound represented by the following formula (8) is preferable.
  • each R is independently a bond, a saturated hydrocarbon chain, an unsaturated hydrocarbon chain, a heteroatom, or an aromatic ring. Also, an oxygen atom may be present between R and the benzene ring.
  • R in the above formula (8) is an aromatic ring
  • examples of the aromatic ring include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, and perylene ring.
  • the aromatic ring may also contain heteroatoms such as oxygen, nitrogen, sulfur and phosphorus.
  • a compound represented by the following formula (11) is preferable as the polyhydrazide compound of the present invention.
  • Examples of the method for producing the polyhydrazide compound of the present invention include the following methods. That is, first, a compound having a sulfonyl group, an aromatic ring and a carboxyl group is stirred in an alcohol solvent while refluxing with an acid catalyst to synthesize an esterified product. Then, the resulting esterified product is again stirred with hydrazine hydrate in an alcohol solvent at room temperature (1°C to 30°C) to produce the polyhydric hydrazide compound of the present invention.
  • an epoxy compound having a sulfonyl group and an aromatic ring is stirred together with a compound having an ester bond and a phenolic hydroxyl group in the presence of triphenylphosine, and then mixed with hydrazine hydrate at room temperature (1° C. to It can also be produced by stirring under the condition of 30°C.
  • a compound having a sulfonyl group, an aromatic ring and a carboxyl group is stirred together with a compound having an amino group and an ester bond in the presence of a condensing agent, and then mixed with hydrazine hydrate at room temperature (1° C. to It can also be produced by stirring under the condition of 30°C.
  • the preferred lower limit of the content of the polyhydrazide compound of the present invention is 3 parts by mass, and the preferred upper limit thereof is 70 parts by mass relative to 100 parts by mass of the curable resin.
  • the content of the polyhydrazide compound of the present invention with respect to 100 parts by mass of the curable resin is 3 parts by mass or more, the obtained sealing agent for liquid crystal display elements has excellent curability and adhesiveness.
  • the content of the polyhydrazide compound of the present invention is 70 parts by mass or less with respect to 100 parts by mass of the curable resin, the obtained sealing agent for liquid crystal display elements has excellent heat resistance and storage stability.
  • a more preferable lower limit of the content of the polyhydrazide compound of the present invention is 6 parts by mass, and a more preferable upper limit thereof is 35 parts by mass based on 100 parts by mass of the curable resin.
  • the preferred lower limit of the content of the polyhydrazide compound of the present invention with respect to 1 equivalent of the epoxy compound is 0.5 equivalents
  • the preferred upper limit is 2.0 equivalents.
  • the obtained sealing agent for liquid crystal display elements has excellent storage stability.
  • a more preferable lower limit of the content of the polyhydrazide compound of the present invention to 1 equivalent of the epoxy compound is 0.8 equivalents, and a more preferable upper limit thereof is 1.2 equivalents.
  • the thermosetting agent has a total of two or more primary amino groups or hydrazide groups in one molecule, and the constituent atoms have an average charge is 0.4a.d below the atomic intrinsic theoretical charge. u. Including compounds having atoms larger than or equal to (hereinafter also referred to as "thermosetting agent according to the second aspect of the present invention").
  • thermosetting agent according to the second aspect of the present invention Including compounds having atoms larger than or equal to.
  • thermosetting agent according to the second aspect of the present invention has at least two primary amino groups or hydrazide groups in total in one molecule.
  • the thermosetting agent according to the second aspect of the present invention has at least two or more primary amino groups or hydrazide groups in one molecule. It will be excellent in quality.
  • the constituent atoms have an average charge of 0.4 a. u. or larger atoms.
  • the thermosetting agent according to the present invention 2 has an average charge of 0.4 a. u.
  • the sealant for a liquid crystal display element of the present invention 2 is excellent in storage stability and low liquid crystal contamination.
  • the thermosetting agent according to the second aspect of the present invention preferably has an atom whose average charge is 0.6 or more larger than the theoretical charge inherent to the atom, more preferably 0.65 or more, among the constituent atoms. preferable.
  • the thermosetting agent according to the present invention 2 has line symmetry or point symmetry, and the average charge is 0.4 a. u.
  • the larger atom is the center atom of symmetry (or the atom closest to the center if there is no atom at the center).
  • the thermosetting agent according to the present invention 2 has line symmetry or point symmetry, and the average charge is 0.4 a. u. Since the larger atom is the atom at the center of symmetry (the atom closest to the center if there is no atom at the center), the sealant for a liquid crystal display element of the present invention 2 has storage stability and low liquid crystal contamination. become excellent.
  • the preferred lower limit of the reaction initiation temperature of the thermosetting agent according to the second aspect of the invention with bisphenol F diglycidyl ether is 120°C.
  • the reaction initiation temperature is 120° C. or higher, the obtained sealing agent for liquid crystal display elements has excellent storage stability.
  • a more preferable lower limit of the reaction initiation temperature is 130°C, and a further preferable lower limit is 135°C.
  • the upper limit of the reaction initiation temperature is preferably 220°C, more preferably 215°C, and still more preferably 210°C.
  • thermosetting agent according to the present invention 2 preferably has at least one structure represented by the above formula (1-1) or the above formula (1-2). Since the thermosetting agent according to the second aspect of the present invention has a structure represented by at least one of the above formulas (1-1) and (1-2), the sealing agent for liquid crystal display elements of the second aspect of the present invention has storage stability. and low liquid crystal contamination.
  • thermosetting agent examples include, for example, 4,4'-bis(aminophenoxy)benzophenone (atoms (central carbon atoms), reaction initiation temperature with bisphenol F diglycidyl ether 135 ° C.), 4,4'-diaminodiphenyl ketone (atoms whose average charge is 0.41 au or more than the theoretical charge inherent to the atom (center carbon atom), reaction initiation temperature with bisphenol F diglycidyl ether 180 ° C.), the compound represented by the above formula (7) (average charge is 0.68 a.u. than the theoretical charge inherent to the atom) (210° C. at reaction initiation temperature with bisphenol F diglycidyl ether) and the like.
  • the preferable lower limit of the content of the thermosetting agent according to Invention 2 to 100 parts by mass of the curable resin is 2.0 parts by mass, and the preferable upper limit is 14.8 parts by mass. .
  • the content of the thermosetting agent according to the present invention 2 is 2.0 parts by mass or more with respect to 100 parts by mass of the curable resin, the obtained sealing agent for liquid crystal display elements has excellent curability and adhesiveness. Since the content of the thermosetting agent according to the present invention 2 is 14.8 parts by mass or less with respect to 100 parts by mass of the curable resin, the obtained sealing agent for liquid crystal display elements is excellent in low liquid crystal contamination resistance and storage stability. becomes.
  • a more preferable lower limit of the content of the thermosetting agent according to the present invention 2 to 100 parts by mass of the curable resin is 3.0 parts by mass, and a more preferable upper limit is 9.6 parts by mass.
  • the sealing compound for a liquid crystal display element of Invention 2 contains an epoxy compound to be described later as the curable resin
  • the preferred lower limit of the content of the thermosetting agent according to Invention 2 with respect to 1 equivalent of the epoxy compound is 0. .5 equivalents, with a preferred upper limit of 2.0 equivalents.
  • the content of the thermosetting agent according to the present invention 2 is 0.5 equivalents or more relative to 1 equivalent of the epoxy compound, the obtained sealing agent for liquid crystal display elements has excellent curability and adhesiveness.
  • thermosetting agent according to the present invention 2 By setting the content of the thermosetting agent according to the present invention 2 to 1 equivalent of the epoxy compound to be 2.0 equivalents or less, the obtained sealing agent for liquid crystal display elements is excellent in low liquid crystal contamination resistance and storage stability. .
  • a more preferable lower limit of the content of the heat curing agent according to the present invention 2 to 1 equivalent of the epoxy compound is 0.8 equivalents, and a more preferable upper limit thereof is 1.3 equivalents.
  • the sealant for liquid crystal display elements of the present invention contains a curable resin.
  • the curable resin include epoxy compounds, (meth)acrylic compounds, polyurethane compounds, and phenol compounds. Especially, it is preferable that the said curable resin contains an epoxy compound.
  • (meth)acryl means acryl or methacryl.
  • epoxy compounds examples include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol E type epoxy compounds, bisphenol S type epoxy compounds, 2,2′-diallylbisphenol A type epoxy compounds, and hydrogenated bisphenol type epoxy compounds. , propylene oxide-added bisphenol A type epoxy compound, resorcinol type epoxy compound, biphenyl type epoxy compound, sulfide type epoxy compound, diphenyl ether type epoxy compound, dicyclopentadiene type epoxy compound, naphthalene type epoxy compound, phenol novolac type epoxy compound, ortho-cresol Novolak-type epoxy compounds, dicyclopentadiene novolak-type epoxy compounds, biphenyl novolac-type epoxy compounds, naphthalenephenol novolak-type epoxy compounds, glycidylamine-type epoxy compounds, alkylpolyol-type epoxy compounds, rubber-modified epoxy compounds, glycidyl ester compounds, and the like. be done.
  • bisphenol A type epoxy compounds include, for example, jER828EL, jER1004 (all manufactured by Mitsubishi Chemical Corporation), EPICLON850 (manufactured by DIC Corporation), and the like.
  • bisphenol F-type epoxy compounds include, for example, jER806 and jER4004 (both manufactured by Mitsubishi Chemical Corporation) and EPICLON EXA-830CRP (manufactured by DIC Corporation).
  • Examples of commercially available bisphenol E type epoxy compounds include Epomic R710 (manufactured by Mitsui Chemicals, Inc.).
  • Examples of commercially available bisphenol S-type epoxy compounds include EPICLON EXA-1514 (manufactured by DIC Corporation).
  • Examples of commercially available 2,2'-diallylbisphenol A type epoxy compounds include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
  • Commercially available hydrogenated bisphenol epoxy compounds include, for example, EPICLON EXA-7015 (manufactured by DIC).
  • Examples of commercially available propylene oxide-added bisphenol A type epoxy compounds include EP-4000S (manufactured by ADEKA).
  • Commercially available resorcinol-type epoxy compounds include, for example, EX-201 (manufactured by Nagase ChemteX Corporation).
  • Commercially available biphenyl-type epoxy compounds include, for example, jER YX-4000H (manufactured by Mitsubishi Chemical Corporation).
  • Examples of commercially available sulfide-type epoxy compounds include YSLV-50TE (manufactured by Nippon Steel Chemical & Materials Co., Ltd.). Examples of commercially available diphenyl ether type epoxy compounds include YSLV-80DE (manufactured by Nippon Steel Chemical & Materials Co., Ltd.). Examples of commercially available dicyclopentadiene type epoxy compounds include EP-4088S (manufactured by ADEKA). Examples of commercially available naphthalene-type epoxy compounds include EPICLON HP-4032 and EPICLON EXA-4700 (both manufactured by DIC Corporation). Examples of commercially available phenolic novolac type epoxy compounds include EPICLON N-770 (manufactured by DIC Corporation).
  • Examples of commercially available ortho-cresol novolac type epoxy compounds include EPICLON N-670-EXP-S (manufactured by DIC).
  • Commercially available dicyclopentadiene novolac type epoxy compounds include, for example, EPICLON HP-7200 (manufactured by DIC Corporation).
  • Commercially available biphenyl novolac type epoxy compounds include, for example, NC-3000P (manufactured by Nippon Kayaku Co., Ltd.).
  • Examples of commercially available naphthalenephenol novolac type epoxy compounds include ESN-165S (manufactured by Nippon Steel Chemical & Materials Co., Ltd.).
  • Examples of commercially available glycidylamine type epoxy compounds include jER630 (manufactured by Mitsubishi Chemical Corporation), EPICLON430 (manufactured by DIC Corporation), TETRAD-X (manufactured by Mitsubishi Gas Chemical Co., Ltd.), and the like.
  • Examples of commercially available alkyl polyol type epoxy compounds include ZX-1542 (manufactured by Nippon Steel Chemical & Materials), EPICLON726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX- 611 (manufactured by Nagase ChemteX Corporation) and the like.
  • Rubber-modified epoxy compounds include, for example, YR-450 and YR-207 (both manufactured by Nippon Steel Chemical & Materials) and Epolead PB (manufactured by Daicel).
  • examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
  • Other commercially available epoxy compounds include YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel Chemical & Materials), XAC4151 (manufactured by Asahi Kasei), jER1031, and jER1032. (all manufactured by Mitsubishi Chemical), EXA-7120 (manufactured by DIC), TEPIC (manufactured by Nissan Chemical) and the like.
  • Partially (meth)acryl-modified epoxy compounds are also suitably used as the epoxy compound.
  • the partially (meth)acrylic-modified epoxy compound is obtained by reacting a partial epoxy group of an epoxy compound having two or more epoxy groups with (meth)acrylic acid. It means a compound having one or more epoxy groups and one or more (meth)acryloyl groups in the molecule.
  • the said "(meth)acryloyl” means acryloyl or methacryloyl.
  • Examples of commercially available partially (meth)acrylic-modified epoxy compounds include UVACURE1561, KRM8030, and KRM8287 (all manufactured by Daicel Allnex).
  • the curable resin preferably contains the (meth)acrylic compound.
  • the (meth)acrylic compound include (meth)acrylic acid ester compounds, epoxy (meth)acrylates, and urethane (meth)acrylates. Among them, epoxy (meth)acrylate is preferred. From the viewpoint of reactivity, the (meth)acrylic compound preferably has two or more (meth)acryloyl groups in one molecule.
  • the "(meth)acrylic compound” means a compound having a (meth)acryloyl group, excluding the partially (meth)acryl-modified epoxy compound.
  • the above “(meth)acrylate” means acrylate or methacrylate
  • the above "epoxy(meth)acrylate” is a compound obtained by reacting all epoxy groups in an epoxy compound with (meth)acrylic acid. represents
  • monofunctional ones include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate.
  • t-butyl (meth) acrylate 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, iso myristyl (meth) acrylate, stearyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, cyclohexyl ( meth)acrylate, isobornyl (meth)acrylate, bicyclopentenyl (meth)acrylate, benzyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, 2-ethoxyethyl (me
  • bifunctional ones include, for example, 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexane Diol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate (Meth) acrylate, polyethylene glycol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) ) acrylate, polypropylene glycol di(meth)acrylate, neopen
  • trifunctional or higher ones include, for example, trimethylolpropane tri(meth)acrylate, ethylene oxide-added trimethylolpropane tri(meth)acrylate, propylene oxide-added trimethylolpropane tri( meth)acrylate, caprolactone-modified trimethylolpropane tri(meth)acrylate, ethylene oxide-added isocyanuric acid tri(meth)acrylate, glycerin tri(meth)acrylate, propylene oxide-added glycerin tri(meth)acrylate, pentaerythritol tri(meth)acrylate, tris(meth)acryloyloxyethyl phosphate, ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol penta(meth)acryl
  • Examples of the epoxy (meth)acrylate include those obtained by reacting an epoxy compound and (meth)acrylic acid in the presence of a basic catalyst according to a conventional method.
  • the same epoxy compound as the curable resin contained in the sealing agent for liquid crystal display elements of the present invention can be used.
  • epoxy (meth)acrylates include, for example, epoxy (meth)acrylate manufactured by Daicel Allnex, epoxy (meth)acrylate manufactured by Shin-Nakamura Chemical Industry, epoxy (meth)acrylate manufactured by Kyoeisha Chemical Co., Ltd. ( meth) acrylate, epoxy (meth) acrylate manufactured by Nagase ChemteX Corporation, and the like.
  • Examples of epoxy (meth)acrylates manufactured by Daicel Allnex include EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3703, EBECR YL3708, EBECRYL3800, EBECRYL6040, EBECRYL RDX63182, KRM8076 and the like.
  • Examples of epoxy (meth)acrylates manufactured by Shin-Nakamura Chemical Co., Ltd. include EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, and EMA-1020.
  • Examples of the epoxy (meth)acrylate manufactured by Kyoeisha Chemical Co., Ltd. include, for example, Epoxy Ester M-600A, Epoxy Ester 40EM, Epoxy Ester 70PA, Epoxy Ester 200PA, Epoxy Ester 80MFA, Epoxy Ester 3002M, Epoxy Ester 3002A, Epoxy Ester 1600A, Epoxy Ester 3000M, Epoxy Ester 3000A, Epoxy Ester 200EA, Epoxy Ester 400EA and the like.
  • Examples of epoxy (meth)acrylates manufactured by Nagase ChemteX Co., Ltd. include Denacol acrylate DA-141, Denacol acrylate DA-314, Denacol acrylate DA-911, and the like.
  • the urethane (meth)acrylate can be obtained, for example, by reacting an isocyanate compound with a (meth)acrylic acid derivative having a hydroxyl group in the presence of a catalytic amount of a tin compound.
  • MDI diphenylmethane-4,4
  • the isocyanate compound that is a raw material for the urethane (meth)acrylate a chain-extended isocyanate compound obtained by reacting a polyol with an excessive amount of an isocyanate compound can also be used.
  • the polyol include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, polycaprolactone diol and the like.
  • Examples of the (meth)acrylic acid derivative having a hydroxyl group include hydroxyalkyl mono(meth)acrylates, dihydric alcohol mono(meth)acrylates, trihydric alcohol mono(meth)acrylates and di(meth)acrylates. , epoxy (meth)acrylate, and the like.
  • Examples of the hydroxyalkyl mono(meth)acrylates include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate and the like. mentioned.
  • Examples of the dihydric alcohol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol.
  • Examples of the trihydric alcohol include trimethylolethane, trimethylolpropane, glycerin and the like.
  • As said epoxy (meth)acrylate, a bisphenol A type epoxy (meth)acrylate etc. are mentioned, for example.
  • urethane (meth) acrylates examples include urethane (meth) acrylate manufactured by Toagosei Co., Ltd., urethane (meth) acrylate manufactured by Daicel Allnex, and urethane (meth) acrylate manufactured by Negami Kogyo Co., Ltd. acrylate, urethane (meth)acrylate manufactured by Shin-Nakamura Chemical Co., Ltd., urethane (meth)acrylate manufactured by Kyoeisha Chemical Co., Ltd., and the like.
  • Examples of the urethane (meth)acrylates manufactured by Toagosei Co., Ltd. examples include M-1100, M-1200, M-1210 and M-1600.
  • Examples of the urethane (meth)acrylates manufactured by Daicel Allnex include EBECRYL210, EBECRYL220, EBECRYL230, EBECRYL270, EBECRYL1290, EBECRYL2220, EBECRYL4827, EBECRYL4842, EBECRYL4858, and EBECRYL5. 129, EBECRYL6700, EBECRYL8402, EBECRYL8803, EBECRYL8804, EBECRYL8807, EBECRYL9260, etc. mentioned. Examples of the urethane (meth)acrylate manufactured by Neagari Kogyo Co., Ltd.
  • urethane (meth)acrylate manufactured by Kyoeisha Chemical Co., Ltd. include AH-600, AI-600, AT-600, UA-101I, UA-101T, UA-306H, UA-306I, and UA-306T. be done.
  • the epoxy group in the curable resin and the (meth) is 30 mol % or more and 95 mol % or less.
  • the resulting sealing compound for liquid crystal display elements is excellent in adhesiveness while suppressing the occurrence of liquid crystal contamination.
  • the curable resin preferably has a hydrogen-bonding unit such as —OH group, —NH— group, or —NH 2 group.
  • the sealant for liquid crystal display elements of the present invention preferably contains a photopolymerization initiator.
  • the photopolymerization initiator include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, and thioxanthone compounds.
  • photopolymerization initiator examples include 1-hydroxycyclohexylphenyl ketone, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-1-butanone, 2-(dimethylamino) -2-((4-methylphenyl)methyl)-1-(4-(4-morpholinyl)phenyl)-1-butanone, 2,2-dimethoxy-1,2-diphenylethan-1-one, bis(2 ,4,6-trimethylbenzoyl)phenylphosphine oxide, 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one, 1-(4-(2-hydroxyethoxy)-phenyl)- 2-hydroxy-2-methyl-1-propan-1-one, 1-(4-(phenylthio)phenyl)-1,2-octanedione 2-(O-benzoyloxime), 2-(acetoxyimino)-1 -(4-(4-(4-
  • the preferable lower limit of the content of the photopolymerization initiator is 0.5 parts by mass, and the preferable upper limit thereof is 10 parts by mass with respect to 100 parts by mass of the curable resin.
  • the resulting sealing compound for liquid crystal display elements is excellent in storage stability and photocurability while suppressing the occurrence of liquid crystal contamination.
  • a more preferable lower limit for the content of the photopolymerization initiator is 1 part by mass, and a more preferable upper limit is 7 parts by mass.
  • the sealing compound for liquid crystal display elements of the present invention preferably contains a thermal radical polymerization initiator.
  • the thermal radical polymerization initiator include those composed of azo compounds, organic peroxides, and the like. Among them, an initiator composed of an azo compound (hereinafter also referred to as "azo initiator”) is preferable from the viewpoint of suppressing liquid crystal contamination.
  • the thermal radical polymerization initiators may be used alone, or two or more of them may be used in combination.
  • Examples of the azo compound include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
  • the polymer azo compound having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group one having a polyethylene oxide structure is preferable.
  • Specific examples of the azo compound include polycondensates of 4,4′-azobis(4-cyanopentanoic acid) and polyalkylene glycol, 4,4′-azobis(4-cyanopentanoic acid) and terminal Examples include polycondensates of polydimethylsiloxane having amino groups.
  • Examples of the azo initiator include VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001, V-65, V-501 (all manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.). be done.
  • organic peroxides examples include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, peroxyesters, diacyl peroxides and peroxydicarbonates.
  • the content of the thermal radical polymerization initiator has a preferable lower limit of 0.1 parts by mass and a preferable upper limit of 10 parts by mass with respect to 100 parts by mass of the curable resin.
  • the resulting sealing compound for liquid crystal display elements is excellent in storage stability and thermosetting property while suppressing the occurrence of liquid crystal contamination.
  • a more preferable lower limit to the content of the thermal radical polymerization initiator is 0.3 parts by mass, and a more preferable upper limit is 5 parts by mass.
  • the sealant for liquid crystal display elements of the present invention preferably contains a curing accelerator.
  • the curing time can be shortened to improve the productivity, and the obtained sealing compound for liquid crystal display elements has excellent adhesiveness to the substrate and the alignment film.
  • an imidazole-based curing accelerator is preferably used from the viewpoint of reaction speed and adhesiveness.
  • the imidazole curing accelerator include 1-cyanoethyl-2-phenylimidazole, 2,4-diamino-6-(2'-methylimidazolyl-(1'))-ethyl-s-triazine, 2-phenyl -4-methyl-5-hydroxymethylimidazole and the like.
  • the content of the curing accelerator has a preferable lower limit of 0.05 parts by mass and a preferable upper limit of 3 parts by mass with respect to 100 parts by mass of the curable resin.
  • the content of the curing accelerator is within this range, the obtained sealing compound for liquid crystal display elements is excellent in reaction speed and adhesiveness.
  • a more preferable lower limit for the content of the curing accelerator is 0.1 part by mass.
  • the sealant for liquid crystal display elements of the present invention may contain a filler for the purpose of improving viscosity, improving adhesiveness due to stress dispersion effect, improving coefficient of linear expansion, improving moisture resistance of the cured product, and the like.
  • An inorganic filler or an organic filler can be used as the filler.
  • inorganic fillers include silica, talc, glass beads, asbestos, gypsum, diatomaceous earth, smectite, bentonite, montmorillonite, sericite, activated clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, and titanium oxide. , calcium carbonate, magnesium carbonate, magnesium hydroxide, aluminum hydroxide, aluminum nitride, silicon nitride, barium sulfate, calcium silicate and the like.
  • the organic filler include polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, and the like. The above fillers may be used alone, or two or more of them may be used in combination.
  • a preferable lower limit of the content of the filler in 100 parts by mass of the sealing compound for liquid crystal display elements of the present invention is 10 parts by mass, and a preferable upper limit thereof is 70 parts by mass.
  • the content of the filler is within this range, the effect of improving adhesiveness, etc., is excellent without deteriorating coating properties, etc.
  • a more preferable lower limit of the filler content is 20 parts by mass, and a more preferable upper limit is 60 parts by mass.
  • the sealing compound for liquid crystal display elements of the present invention may contain a silane coupling agent.
  • the silane coupling agent mainly functions as an adhesion assistant for good adhesion between the liquid crystal display element sealing compound and the substrate.
  • silane coupling agent for example, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane and the like are preferably used. These are excellent in the effect of improving the adhesiveness to a substrate or the like, and can suppress the outflow of the curable resin into the liquid crystal by chemically bonding with the curable resin. Among them, 3-glycidoxypropyltrimethoxysilane is preferred.
  • the silane coupling agents may be used alone, or two or more of them may be used in combination.
  • a preferable lower limit of the content of the silane coupling agent in 100 parts by mass of the liquid crystal display element sealing compound of the present invention is 0.1 parts by mass, and a preferable upper limit thereof is 10 parts by mass.
  • the content of the silane coupling agent is within this range, the obtained sealing compound for liquid crystal display elements is excellent in the effect of improving adhesiveness while suppressing the occurrence of liquid crystal contamination.
  • a more preferable lower limit to the content of the silane coupling agent is 0.3 parts by mass, and a more preferable upper limit is 5 parts by mass.
  • the sealant for liquid crystal display elements of the present invention may contain a light shielding agent.
  • the sealant for liquid crystal display elements of the present invention can be suitably used as a light shielding sealant.
  • Examples of the light shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black. Among them, titanium black is preferred.
  • Titanium black is a substance that exhibits a higher transmittance for light in the vicinity of the ultraviolet region, particularly light with a wavelength of 370 nm or more and 450 nm or less, than average transmittance for light with a wavelength of 300 nm or more and 800 nm or less. That is, the titanium black has a property of imparting a light-shielding property to the sealing agent for a liquid crystal display element of the present invention by sufficiently shielding light of wavelengths in the visible light region, while transmitting light of wavelengths in the vicinity of the ultraviolet region.
  • the photocuring property of the sealant for a liquid crystal display element of the present invention is further increased. be able to.
  • a highly insulating substance is preferable, and titanium black is also suitable as the highly insulating light shielding agent.
  • the above titanium black preferably has an optical density (OD value) per 1 ⁇ m of 3 or more, more preferably 4 or more. The higher the light shielding property of the titanium black, the better. Although there is no particular upper limit for the OD value of the titanium black, it is usually 5 or less.
  • the above titanium black exerts a sufficient effect even if it is not surface-treated, but it can also be used when the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, oxide.
  • an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, oxide.
  • Surface-treated titanium blacks such as those coated with inorganic components such as zirconium and magnesium oxide, can also be used. Among them, those treated with an organic component are preferable because they can further improve the insulating properties.
  • the liquid crystal display device manufactured using the sealing agent for a liquid crystal display device of the present invention in which the above-described titanium black is blended as a light shielding agent has sufficient light shielding properties, so that light does not leak out and has high contrast. A liquid crystal display element having excellent image display quality can be realized.
  • Examples of commercially available titanium blacks include titanium black manufactured by Mitsubishi Materials Corporation, titanium black manufactured by Ako Kasei Co., Ltd., and the like. Examples of titanium black manufactured by Mitsubishi Materials Corporation include 12S, 13M, 13M-C, 13R-N, and 14M-C. Examples of the titanium black manufactured by Ako Kasei Co., Ltd. include Tilak D and the like.
  • the specific surface area of the titanium black has a preferred lower limit of 13 m 2 /g, a preferred upper limit of 30 m 2 /g, a more preferred lower limit of 15 m 2 /g, and a more preferred upper limit of 25 m 2 /g.
  • the preferred lower limit of the volume resistivity of titanium black is 0.5 ⁇ cm, the preferred upper limit is 3 ⁇ cm, the more preferred lower limit is 1 ⁇ cm, and the more preferred upper limit is 2.5 ⁇ cm.
  • the primary particle size of the light shielding agent is not particularly limited as long as it is equal to or smaller than the distance between the substrates of the liquid crystal display element, but the preferred lower limit is 1 nm and the preferred upper limit is 5000 nm. When the primary particle size of the light shielding agent is within this range, the obtained sealing agent for liquid crystal display elements can be made more excellent in light shielding properties without deteriorating the applicability or the like.
  • the primary particle size of the light shielding agent has a more preferable lower limit of 5 nm, a more preferable upper limit of 200 nm, a still more preferable lower limit of 10 nm, and a still more preferable upper limit of 100 nm.
  • the primary particle size of the light shielding agent can be measured by dispersing the light shielding agent in a solvent (water, organic solvent, etc.) using NICOMP 380ZLS (manufactured by PARTICLE SIZING SYSTEMS).
  • a preferable lower limit of the content of the light shielding agent in 100 parts by mass of the liquid crystal display element sealing compound of the present invention is 5 parts by mass, and a preferable upper limit thereof is 80 parts by mass.
  • the content of the light-shielding agent is within this range, the obtained sealant for liquid crystal display elements exhibits excellent light-shielding properties without significantly deteriorating the adhesiveness, strength after curing, and drawability. be able to.
  • a more preferable lower limit of the content of the light shielding agent is 10 parts by mass, a more preferable upper limit is 70 parts by mass, a still more preferable lower limit is 30 parts by mass, and a further preferable upper limit is 60 parts by mass.
  • the sealant for liquid crystal display elements of the present invention may further contain, if necessary, stress relaxation agents, reactive diluents, thixotropic agents, spacers, curing accelerators, antifoaming agents, leveling agents, polymerization inhibitors, and the like. It may contain an agent.
  • a mixer is used to mix a curable resin, a thermosetting agent, and a photoradical polymerization initiator to be added as necessary. and the like.
  • the mixer include a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and three rolls.
  • the preferable lower limit of the 10% weight loss temperature after curing of the sealant for liquid crystal display elements of the present invention is 350°C. Since the 10% weight loss temperature after curing is 350° C. or higher, the sealant for liquid crystal display elements of the present invention can be suitably used as an adhesive or the like that particularly requires heat resistance. Although there is no particular upper limit for the 10% weight loss temperature after curing, the practical upper limit is 450°C.
  • the 10% weight loss temperature is derived by performing thermogravimetric measurement at a temperature elevation rate of 10°C/min from 30°C to 450°C using a simultaneous differential thermogravimetric measurement device. can be done.
  • the simultaneous differential thermal thermogravimetric measurement device examples include STA7200 (manufactured by Hitachi High-Tech Science Co., Ltd.). Further, as the cured product for measuring the 10% weight loss temperature, the liquid crystal display element sealant is irradiated with ultraviolet rays of 3000 mJ/cm 2 with a metal halide lamp, and then cured by heating at 120 ° C. for 60 minutes. A material having a thickness of 500 ⁇ m is used.
  • a vertically conducting material By blending the conductive fine particles into the liquid crystal display element sealant of the present invention, a vertically conducting material can be produced.
  • the conductive fine particles for example, metal balls, resin fine particles having a conductive metal layer formed on the surface thereof, and the like can be used. Among them, those having a conductive metal layer formed on the surface of the resin fine particles are preferable because the excellent elasticity of the resin fine particles enables conductive connection without damaging the transparent substrate or the like.
  • a liquid crystal display element having a cured product of the sealant for a liquid crystal display element of the present invention is also one aspect of the present invention.
  • a liquid crystal display element having a narrow frame design is preferable. Specifically, it is preferable that the width of the frame portion around the liquid crystal display section is 2 mm or less. Moreover, it is preferable that the coating width of the sealant for a liquid crystal display element of the present invention when manufacturing the liquid crystal display element of the present invention is 1 mm or less.
  • the sealing compound for liquid crystal display elements of the present invention can be suitably used for manufacturing liquid crystal display elements by the liquid crystal dropping method.
  • Examples of the method for manufacturing the liquid crystal display element of the present invention by the liquid crystal dropping method include the following methods. First, a step of forming a frame-shaped seal pattern by applying the sealant for a liquid crystal display element of the present invention to a substrate by screen printing, dispenser coating, or the like is performed. Next, a step of applying liquid crystal microdroplets to the entire surface of the frame of the seal pattern while the sealant for a liquid crystal display element of the present invention is in an uncured state, and immediately superimposing another substrate is performed. After that, a liquid crystal display element can be obtained by a method of performing a step of heating and curing the sealant. Moreover, before the step of heating and curing the sealant, a step of temporarily curing the sealant by irradiating the seal pattern portion with light such as ultraviolet rays may be performed.
  • the sealing compound for liquid crystal display elements which is excellent in storage stability, adhesiveness, and low-liquid-crystal contamination property can be provided. Further, according to the present invention, it is possible to provide a liquid crystal display element using the sealing agent for liquid crystal display elements, and a polyhydric hydrazide compound that can be used for the sealing agent for liquid crystal display elements.
  • FIG. 1 is a polarizing microscope image of a liquid crystal display element produced using the liquid crystal display element sealing compound obtained in Example 7 in the evaluation of "(low liquid crystal contamination)”.
  • FIG. 2 is a polarizing microscope image of a liquid crystal display device produced using the liquid crystal display device sealant obtained in Comparative Example 5 in the evaluation of “(low liquid crystal contamination)”.
  • Examples 1 to 24, Comparative Examples 1 to 13 According to the compounding ratios shown in Tables 1 to 3, each material was mixed using a planetary stirrer (manufactured by Thinky Co., Ltd., "Awatori Mixer"), and then further mixed using three rolls. Sealants for liquid crystal display elements of Examples 1 to 24 and Comparative Examples 1 to 13 were prepared. For all atoms constituting each thermosetting agent used in Examples 1 to 6 and Comparative Examples 1 to 4, the value obtained by subtracting the value of the theoretical charge inherent to the atom from the value of the average charge was calculated. Table 1 shows the maximum value among the values obtained for each atom.
  • thermosetting agent used in Examples 1 to 6 and Comparative Examples 1 to 4 was measured by the following method. That is, first, 10 g of the thermosetting agent and 100 g of bisphenol F diglycidyl ether were stirred at a stirring speed of 2000 rpm for 1 minute using a planetary stirrer (manufactured by THINKY Co., Ltd., "Awatori Mixer").
  • Spacer fine particles 1 part by mass of spacer fine particles was dispersed in 100 parts by mass of each sealing agent for liquid crystal display elements obtained in Examples 1 to 24 and Comparative Examples 1 to 13.
  • Micropearl SI-H050 manufactured by Sekisui Chemical Co., Ltd.
  • a liquid crystal display element sealant in which spacer particles were dispersed was minutely dropped onto one of the two glass substrates (length 4.5 mm, width 2.5 mm) with an ITO thin film.
  • Another ITO thin film-coated glass substrate was attached to this in a cross shape, irradiated with ultraviolet rays of 3000 mJ/cm 2 with a metal halide lamp, and then heated at 120° C.
  • the sealant for liquid crystal display elements after defoaming treatment is applied to two alignment films and under the conditions of a nozzle diameter of 0.4 mm ⁇ , a nozzle gap of 42 ⁇ m, a syringe discharge pressure of 100 to 400 kPa, and a coating speed of 60 mm / sec. It was coated in a frame shape on one side of the glass substrate with the ITO thin film.
  • RB-005 manufactured by Nissan Chemical Industries, Ltd. was used as the alignment film, and alignment treatment was performed by irradiating 300 mJ/cm 2 of polarized light with a wavelength of 254 nm. At this time, the discharge pressure was adjusted so that the line width of the liquid crystal display element sealant was about 1.0 mm.
  • microdroplets of liquid crystal (“JC-7129XX” manufactured by JNC TAIWAN Co., Ltd.) were applied dropwise to the entire surface of the frame of the liquid crystal display element sealing agent on the substrate coated with the liquid crystal display element sealing agent, and then again under vacuum.
  • One substrate was pasted together.
  • the portion of the liquid crystal display element sealing agent was irradiated with ultraviolet rays of 100 mW/cm 2 for 30 seconds using a metal halide lamp to temporarily cure the liquid crystal display element sealing agent.
  • the composition was heated at 120° C. for 1 hour for final curing, thereby producing a liquid crystal display device.
  • FIG. 1 shows a polarizing microscope image of a liquid crystal display element produced using the liquid crystal display element sealing compound obtained in Example 7, and produced using the liquid crystal display element sealing compound obtained in Comparative Example 5.
  • FIG. 2 shows a polarizing microscope image of the liquid crystal display device.
  • the resulting ethyl-esterified compound was stirred in 2 L of methanol solvent together with hydrazine hydrate under room temperature conditions to prepare the compound represented by the above formula (11).
  • the structure of the obtained compound represented by formula (11) was confirmed by 1 H-NMR and FT-IR analysis.
  • Examples 25-30, Comparative Examples 14 and 15 According to the compounding ratio shown in Table 4, each material was mixed using a planetary stirrer (manufactured by THINKY Co., Ltd., "Awatori Mixer"), and then further mixed using three rolls. 25 to 30 and Comparative Examples 14 and 15 were prepared as sealants for liquid crystal display elements.
  • ITO thin film-coated glass substrate was attached to this in a cross shape, irradiated with ultraviolet rays of 3000 mJ/cm 2 with a metal halide lamp, and then heated at 120° C. for 60 minutes to obtain an adhesive test piece.
  • the edge of the substrate in the prepared adhesive test piece was pushed at a speed of 5 mm/min using a metal cylinder with a radius of 5 mm, the strength at which panel peeling occurred was measured.
  • Examples 31-33, Comparative Examples 16 and 17 According to the compounding ratio shown in Table 5, each material was mixed using a planetary stirrer (manufactured by THINKY Co., Ltd., "Awatori Mixer"), and then further mixed using a three-roll roll. Sealants for liquid crystal display elements of 31 to 33 and Comparative Examples 16 and 17 were prepared.
  • the sealant for liquid crystal display elements after defoaming treatment is applied to two alignment films and under the conditions of a nozzle diameter of 0.4 mm ⁇ , a nozzle gap of 42 ⁇ m, a syringe discharge pressure of 100 to 400 kPa, and a coating speed of 60 mm / sec. It was coated in a frame shape on one side of the glass substrate with the ITO thin film.
  • RB-005 manufactured by Nissan Chemical Industries, Ltd. was used as the alignment film, and alignment treatment was performed by irradiating 300 mJ/cm 2 of polarized light with a wavelength of 254 nm. At this time, the discharge pressure was adjusted so that the line width of the liquid crystal display element sealant was about 1.0 mm.
  • microdroplets of liquid crystal (“4-pentyl-4-biphenylcarbonitrile” manufactured by Tokyo Kasei Kogyo Co., Ltd.) were applied to the entire frame of the liquid crystal display element sealing agent of the substrate coated with the liquid crystal display element sealing agent. It was applied dropwise and allowed to stand for 2 hours, and then the other substrate was bonded together under vacuum. The bonded substrates were allowed to stand still for 15 minutes after bonding, and then the liquid crystal display element sealant portion was irradiated with ultraviolet rays of 100 mW/cm 2 for 30 seconds using a metal halide lamp to temporarily remove the liquid crystal display element sealant. Hardened. Next, the composition was heated at 120° C.
  • liquid crystal display device for 1 hour for final curing, thereby producing a liquid crystal display device.
  • the resulting liquid crystal display device was checked for alignment disorder (display unevenness) using a polarizing microscope ("VHX-5000" manufactured by Keyence Corporation). Orientation disorder was judged from color unevenness in the display portion, and the low liquid crystal contamination resistance was evaluated as "O” when no display unevenness was observed in the liquid crystal display element, and as "X” when display unevenness was observed.
  • the sealing compound for liquid crystal display elements which is excellent in storage stability, adhesiveness, and low-liquid-crystal contamination property can be provided. Further, according to the present invention, it is possible to provide a liquid crystal display element using the sealing agent for liquid crystal display elements, and a polyhydric hydrazide compound that can be used for the sealing agent for liquid crystal display elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Sealing Material Composition (AREA)
  • Epoxy Resins (AREA)

Abstract

One purpose of the present invention is to provide a sealing agent for liquid crystal display elements, the sealing agent being excellent in terms of storage stability, adhesive properties, and low liquid crystal contamination properties. Another purpose of the present invention is to provide: a liquid crystal display element which is obtained using the above-described sealing agent for liquid crystal display elements; and a polyvalent hydrazide compound which can be used for the above-described sealing agent for liquid crystal display elements. The present invention provides a sealing agent for liquid crystal display elements, the sealing agent containing a curable resin and a thermal curing agent, wherein the thermal curing agent contains a compound which has primary amino groups and/or hydrazide groups in each molecule, with the number of the groups being 2 or more in total, while having at least either a sulfonyl group bonded to an aromatic ring or a carbonyl group bonded to an aromatic ring.

Description

液晶表示素子用シール剤、液晶表示素子、及び、多価ヒドラジド化合物Sealant for liquid crystal display element, liquid crystal display element, and polyvalent hydrazide compound
本発明は、液晶表示素子用シール剤に関する。また、本発明は、該液晶表示素子用シール剤を用いてなる液晶表示素子、及び、該液晶表示素子用シール剤に用いることができる多価ヒドラジド化合物に関する。 The present invention relates to a sealant for liquid crystal display elements. The present invention also relates to a liquid crystal display element using the sealing agent for liquid crystal display elements, and a polyhydric hydrazide compound that can be used for the sealing agent for liquid crystal display elements.
近年、液晶表示セル等の液晶表示素子の製造方法としては、タクトタイム短縮、使用液晶量の最適化といった観点から、特許文献1、特許文献2に開示されているようなシール剤を用いた滴下工法と呼ばれる液晶滴下方式が用いられている。
滴下工法では、まず、2枚の電極付き基板の一方に、ディスペンスにより枠状のシールパターンを形成する。次いで、シール剤が未硬化の状態で液晶の微小滴をシールパターンの枠内に滴下し、真空下で他方の基板を重ね合わせた後にシール剤を硬化させ、液晶表示素子を作製する。現在この滴下工法が液晶表示素子の製造方法の主流となっている。
In recent years, as a method for manufacturing a liquid crystal display element such as a liquid crystal display cell, from the viewpoint of shortening the tact time and optimizing the amount of liquid crystal used, dropping using a sealing agent as disclosed in Patent Document 1 and Patent Document 2 A liquid crystal dropping method called construction method is used.
In the dropping method, first, a frame-shaped seal pattern is formed on one of the two electrode-attached substrates by dispensing. Next, liquid crystal microdroplets are dropped into the frame of the seal pattern while the sealant is not yet cured, and the other substrate is superimposed under vacuum, and the sealant is cured to fabricate a liquid crystal display element. At present, this dripping method is the mainstream method for manufacturing liquid crystal display elements.
ところで、携帯電話、携帯ゲーム機等、各種液晶パネル付きモバイル機器が普及している現代において、機器の小型化は最も求められている課題である。機器の小型化の手法としては、液晶表示部の狭額縁化が挙げられ、例えば、シール部の位置をブラックマトリックス下に配置することが行われている(以下、狭額縁設計ともいう)。 By the way, in the present age when various mobile devices with liquid crystal panels such as mobile phones and portable game machines are widely used, miniaturization of devices is the most demanded issue. As a method for downsizing the device, narrowing the frame of the liquid crystal display part is mentioned, and for example, the position of the seal part is arranged under the black matrix (hereinafter also referred to as narrow frame design).
特開2001-133794号公報JP-A-2001-133794 国際公開第02/092718号WO 02/092718 特許第3053499号公報Japanese Patent No. 3053499 特許第5796890号公報Japanese Patent No. 5796890 特許第4974344号公報Japanese Patent No. 4974344
狭額縁設計ではシール剤は配向膜上にも配置されることから、基板だけでなく配向膜に対する接着性にも優れる液晶表示素子用シール剤が求められている。このような液晶表示素子用シール剤は、光硬化及び熱硬化により高い接着力を発現しており、熱硬化の方法として、液晶表示素子用シール剤に熱硬化剤を配合することが行われている。しかしながら、液晶表示素子用シール剤の硬化性や接着性を向上させるために反応開始温度の低い熱硬化剤を用いた場合、得られる液晶表示素子用シール剤が保存安定性に劣るものとなることがあった。また、反応開始温度の高い熱硬化剤を用いた場合、得られる液晶表示素子用シール剤が液晶汚染性に劣るものとなることがあった。今後、狭額縁化が進んだり液晶材料が変更されたりする場合、従来は問題のなかったシール剤であっても、未硬化のシール剤成分が液晶中に溶出することによる液晶汚染が発生するおそれがある。そのため、より低液晶汚染性に優れるシール剤が求められていた。 Since the sealant is also placed on the alignment film in the narrow frame design, there is a demand for a sealant for liquid crystal display elements that is excellent in adhesion not only to the substrate but also to the alignment film. Such a sealing agent for liquid crystal display elements expresses high adhesive strength by photocuring and thermal curing, and as a method of thermal curing, a thermosetting agent is blended into the sealing agent for liquid crystal display elements. there is However, when a thermosetting agent having a low reaction initiation temperature is used to improve the curability and adhesiveness of the liquid crystal display element sealing agent, the obtained liquid crystal display element sealing agent has poor storage stability. was there. Moreover, when a thermosetting agent having a high reaction initiation temperature is used, the obtained sealing compound for liquid crystal display elements may be inferior in liquid crystal contamination resistance. In the future, if the frame becomes narrower or the liquid crystal material is changed, there is a risk that liquid crystal contamination will occur due to the uncured sealant component eluting into the liquid crystal, even if the sealant has no problems in the past. There is Therefore, there has been a demand for a sealant that is more excellent in reducing liquid crystal contamination.
ヒドラジド化合物は、塗料や接着剤等の分野において、エポキシ樹脂やアクリル樹脂の硬化剤や架橋剤として多く用いられている。ヒドラジド化合物は、高い反応性を持つため低温硬化が可能であり、かつ、結晶性が高く保存安定性に優れることから、一液型の硬化性樹脂組成物において、硬化剤又は架橋剤として好適に用いられる。しかし、従来のヒドラジド化合物は、耐熱性が不充分であり、耐熱性が求められる電子材料用途や車載材料用途等への適用が困難であった。そのため、例えば、特許文献3には、耐熱性を高めたヒドラジド化合物が開示されているが、このようなヒドラジド化合物を硬化性樹脂組成物に用いた場合、保存安定性や接着性が低下することがあり、これらの両立が困難であった。 Hydrazide compounds are often used as curing agents and cross-linking agents for epoxy resins and acrylic resins in the fields of paints and adhesives. Hydrazide compounds are highly reactive and thus can be cured at low temperature. Moreover, they have high crystallinity and excellent storage stability. Therefore, they are suitable as a curing agent or a cross-linking agent in a one-component curable resin composition. Used. However, conventional hydrazide compounds have insufficient heat resistance, and are difficult to apply to electronic materials and vehicle-mounted materials that require heat resistance. Therefore, for example, Patent Literature 3 discloses a hydrazide compound with improved heat resistance, but when such a hydrazide compound is used in a curable resin composition, storage stability and adhesiveness are deteriorated. However, it was difficult to achieve both.
一方、近年、薄型、軽量、低消費電力等の特徴を有する表示素子として、液晶表示素子や有機EL表示素子が広く利用されている。このような表示素子や他の電子装置では、通常、各種部材の接着、液晶や発光層の封止等に電子材料用接着剤や液晶表示素子用シール剤が用いられている。電子材料用接着剤や液晶表示素子用シール剤には、保存安定性と低温硬化性に優れること等から硬化剤又は架橋剤としてヒドラジド化合物が用いられることがあるが(例えば、特許文献4、5)、液晶汚染等の課題があった。 On the other hand, in recent years, liquid crystal display elements and organic EL display elements have been widely used as display elements having features such as thinness, light weight, and low power consumption. In such display elements and other electronic devices, adhesives for electronic materials and sealants for liquid crystal display elements are usually used for adhesion of various members, sealing of liquid crystals and light-emitting layers, and the like. Hydrazide compounds are sometimes used as curing agents or cross-linking agents for adhesives for electronic materials and sealants for liquid crystal display elements because of their excellent storage stability and low-temperature curability (for example, Patent Documents 4 and 5). ), and problems such as liquid crystal contamination.
本発明は、保存安定性、接着性、及び、低液晶汚染性に優れる液晶表示素子用シール剤を提供することを目的とする。また、本発明は、該液晶表示素子用シール剤を用いてなる液晶表示素子、及び、該液晶表示素子用シール剤に用いることができる多価ヒドラジド化合物を提供することを目的とする。 An object of the present invention is to provide a sealant for liquid crystal display elements which is excellent in storage stability, adhesiveness, and low liquid crystal contamination. Another object of the present invention is to provide a liquid crystal display element using the sealing agent for a liquid crystal display element, and a polyhydric hydrazide compound that can be used for the sealing agent for the liquid crystal display element.
本開示1は、硬化性樹脂と熱硬化剤とを含有する液晶表示素子用シール剤であって、上記熱硬化剤は、第一級アミノ基及びヒドラジド基の少なくともいずれかを1分子中に合計2以上有し、かつ、芳香環と結合したスルホニル基及び芳香環と結合したカルボニル基の少なくともいずれかを有する化合物を含む液晶表示素子用シール剤である。
本開示2は、上記熱硬化剤は、第一級アミノ基及びヒドラジド基の少なくともいずれかを1分子中に合計2以上有し、かつ、下記式(1-1)及び下記式(1-2)の少なくともいずれかの構造を有する化合物を含む本開示1の液晶表示素子用シール剤である。
本開示3は、上記熱硬化剤は、第一級アミノ基を1分子中に2以上有し、かつ、上記式(1-1)及び上記式(1-2)の少なくともいずれかの構造を有する化合物を含む本開示2の液晶表示素子用シール剤である。
本開示4は、上記熱硬化剤は、第一級アミノ基及びヒドラジド基の少なくともいずれかを1分子中に合計2以上有し、かつ、上記式(1-2)の構造を有する化合物を含む本開示2の液晶表示素子用シール剤である。
本開示5は、上記熱硬化剤は、ヒドラジド基を1分子中に2以上有し、かつ、上記式(1-2)の構造を有する化合物を含む本開示4の液晶表示素子用シール剤である。
本開示6は、上記熱硬化剤は、第一級アミノ基を1分子中に2以上有し、かつ、下記式(2-1)、(2-2)、(2-3)、又は、(2-4)で表される構造を有する化合物を含む本開示1の液晶表示素子用シール剤である。
本開示7は、上記第一級アミノ基を1分子中に2以上有し、かつ、上記式(2-1)、(2-2)、(2-3)、又は、(2-4)で表される構造を有する化合物は、下記式(3-1)、(3-2)、又は、(3-3)で表される構造を有する本開示6の液晶表示素子用シール剤である。
本開示8は、上記第一級アミノ基を1分子中に2以上有し、かつ、上記式(2-1)、(2-2)、(2-3)、又は、(2-4)で表される構造を有する化合物は、下記式(4-1)、(4-2)、(4-3)、(4-4)、(4-5)、又は、(4-6)で表される化合物である本開示7の液晶表示素子用シール剤である。
本開示9は、上記熱硬化剤は、下記式(5)で表されるヒドラジド基を1分子中に2以上有し、かつ、芳香環と結合したスルホニル基を有する多価ヒドラジド化合物を含む本開示1の液晶表示素子用シール剤である。
本開示10は、上記多価ヒドラジド化合物は、下記式(6)で表される構造を有する本開示9の液晶表示素子用シール剤である。
本開示11は、上記式(6)で表される構造におけるR~Rのうち少なくとも1つは、アミノ基又は水酸基を含む本開示10の液晶表示素子用シール剤である。
本開示12は、硬化性樹脂と熱硬化剤とを含有する液晶表示素子用シール剤であって、上記熱硬化剤は、第一級アミノ基及びヒドラジド基の少なくともいずれかを1分子中に合計2以上有し、構成する原子の中に、平均電荷が原子固有の理論電荷よりも0.4a.u.以上大きい原子を有する化合物を含む液晶表示素子用シール剤である。
本開示13は、上記熱硬化剤は、ビスフェノールFジグリシジルエーテルとの反応開始温度が120℃以上である本開示12の液晶表示素子用シール剤である。
本開示14は、上記硬化性樹脂は、エポキシ化合物を含む本開示1、2、3、4、5、6、7、8、9、10、11、12又は13の液晶表示素子用シール剤である。
本開示15は、上記硬化性樹脂は、(メタ)アクリル化合物を含む本開示1、2、3、4、5、6、7、8、9、10、11、12、13又は14の液晶表示素子用シール剤である。
本開示16は、更に、光重合開始剤を含有する本開示1、2、3、4、5、6、7、8、9、10、11、12、13、14又は15の液晶表示素子用シール剤である。
本開示17は、更に、熱ラジカル重合開始剤を含有する本開示1、2、3、4、5、6、7、8、9、10、11、12、13、14、15又は16の液晶表示素子用シール剤である。
本開示18は、上記液晶表示素子用シール剤の硬化後の10%重量減少温度が350℃以上である本開示1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16又は17の液晶表示素子用シール剤である。
本開示19は、本開示1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17又は18の液晶表示素子用シール剤の硬化物を有する液晶表示素子である。
本開示20は、下記式(5)で表されるヒドラジド基を1分子中に2以上有し、かつ、芳香環と結合したスルホニル基を有する多価ヒドラジド化合物である。
本開示21は、下記式(6)で表される構造を有する本開示20の多価ヒドラジド化合物である。
本開示22は、上記式(6)で表される構造におけるR~Rのうち少なくとも1つは、アミノ基又は水酸基を含む本開示21の多価ヒドラジド化合物である。
The present disclosure 1 is a sealant for a liquid crystal display element containing a curable resin and a thermosetting agent, wherein the thermosetting agent contains at least one of a primary amino group and a hydrazide group in one molecule. The sealant for a liquid crystal display element contains a compound having two or more and having at least one of a sulfonyl group bonded to an aromatic ring and a carbonyl group bonded to an aromatic ring.
The present disclosure 2 is that the thermosetting agent has a total of two or more primary amino groups and hydrazide groups in one molecule, and the following formula (1-1) and the following formula (1-2) ).
The present disclosure 3 is that the thermosetting agent has two or more primary amino groups in one molecule and has at least one structure of the above formula (1-1) and the above formula (1-2). It is a sealant for a liquid crystal display element of the present disclosure 2 containing a compound having.
The present disclosure 4 includes a compound in which the thermosetting agent has a total of two or more primary amino groups and/or hydrazide groups in one molecule and has the structure of formula (1-2). It is a sealant for a liquid crystal display element of the present disclosure 2.
The present disclosure 5 is the sealant for a liquid crystal display element of the present disclosure 4, wherein the thermosetting agent contains a compound having two or more hydrazide groups in one molecule and having the structure of the formula (1-2). be.
The present disclosure 6 is that the thermosetting agent has two or more primary amino groups in one molecule, and has the following formulas (2-1), (2-2), (2-3), or A sealant for a liquid crystal display element according to the present disclosure 1, which contains a compound having a structure represented by (2-4).
The present disclosure 7 has two or more primary amino groups in one molecule, and the above formula (2-1), (2-2), (2-3), or (2-4) The compound having the structure represented by the following formula (3-1), (3-2), or the sealant for a liquid crystal display element of the present disclosure 6 having a structure represented by (3-3) .
The present disclosure 8 has two or more primary amino groups in one molecule, and the above formula (2-1), (2-2), (2-3), or (2-4) A compound having a structure represented by the following formulas (4-1), (4-2), (4-3), (4-4), (4-5), or (4-6) It is a sealant for a liquid crystal display element of the present disclosure 7, which is the compound represented.
The present disclosure 9 is that the thermosetting agent includes a polyvalent hydrazide compound having two or more hydrazide groups represented by the following formula (5) in one molecule and having a sulfonyl group bonded to an aromatic ring. It is a sealant for a liquid crystal display element of Disclosure 1.
The present disclosure 10 is the sealant for a liquid crystal display element according to the present disclosure 9, wherein the polyhydrazide compound has a structure represented by the following formula (6).
Present Disclosure 11 is the sealant for a liquid crystal display element according to Present Disclosure 10, wherein at least one of R 1 to R 4 in the structure represented by the above formula (6) contains an amino group or a hydroxyl group.
The present disclosure 12 is a sealant for a liquid crystal display element containing a curable resin and a thermosetting agent, wherein the thermosetting agent contains at least one of a primary amino group and a hydrazide group in one molecule. 2 or more, and among the constituent atoms, the average charge is 0.4a. u. It is a sealant for liquid crystal display elements containing a compound having atoms as large as above.
13 of the present disclosure is the sealant for a liquid crystal display element according to 12 of the present disclosure, wherein the thermosetting agent has a reaction initiation temperature with bisphenol F diglycidyl ether of 120° C. or higher.
The present disclosure 14 is the liquid crystal display element sealant according to the present disclosure 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13, wherein the curable resin contains an epoxy compound. be.
The present disclosure 15 is the liquid crystal display of the present disclosure 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14, wherein the curable resin contains a (meth)acrylic compound. It is a sealant for devices.
The present disclosure 16 further includes the liquid crystal display element of the present disclosure 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 containing a photopolymerization initiator It is a sealant.
This disclosure 17 is the liquid crystal of this disclosure 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or 16, further containing a thermal radical polymerization initiator. It is a sealant for display elements.
The present disclosure 18 is present disclosures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11, wherein the 10% weight loss temperature after curing of the sealant for a liquid crystal display element is 350°C or higher. , 12, 13, 14, 15, 16 or 17.
The present disclosure 19 is the liquid crystal display element sealant of the present disclosure 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 It is a liquid crystal display element having a cured product.
The present disclosure 20 is a polyvalent hydrazide compound having two or more hydrazide groups represented by the following formula (5) in one molecule and having a sulfonyl group bonded to an aromatic ring.
The present disclosure 21 is a polyhydric hydrazide compound of the present disclosure 20 having a structure represented by formula (6) below.
The present disclosure 22 is the multivalent hydrazide compound of the present disclosure 21, wherein at least one of R 1 to R 4 in the structure represented by the above formula (6) contains an amino group or a hydroxyl group.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
式(1-1)及び式(1-2)中、*は、結合位置を表す。 In formulas (1-1) and (1-2), * represents a bonding position.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
式(2-1)~(2-4)中、*は、結合位置を表す。 In formulas (2-1) to (2-4), * represents a bonding position.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
式(3-1)~(3-3)中、*は、結合位置を表す。 In formulas (3-1) to (3-3), * represents a bonding position.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
式(5)中、*は、結合位置を表す。 In formula (5), * represents a binding position.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
式(6)中、R~Rは、それぞれ独立して、炭素原子、窒素原子、酸素原子、及び、窒素原子からなる群より選択される少なくとも1つの原子を含む基、水素原子、又は、連結基を表し、R~Rのうち少なくとも1つは、上記式(5)で表されるヒドラジド基と結合する。 In formula (6), R 1 to R 4 are each independently a group containing at least one atom selected from the group consisting of a carbon atom, a nitrogen atom, an oxygen atom, and a nitrogen atom, a hydrogen atom, or , represents a linking group, and at least one of R 1 to R 4 is bonded to the hydrazide group represented by the above formula (5).
以下に本発明を詳述する。
以下、本開示1の液晶表示素子用シール剤を「本発明1の液晶表示素子用シール剤」ともいう。また、本開示2の液晶表示素子用シール剤を「本発明1態様1の液晶表示素子用シール剤」ともいい、本開示6の液晶表示素子用シール剤を「本発明1態様2の液晶表示素子用シール剤」ともいい、本開示9の液晶表示素子用シール剤を「本発明1態様3の液晶表示素子用シール剤」ともいう。更に、本開示12の液晶表示素子用シール剤を「本発明2の液晶表示素子用シール剤」ともいう。加えて、本開示20の多価ヒドラジド化合物を「本発明の多価ヒドラジド化合物」ともいう。
なお、本発明1(態様1~3を含む)の液晶表示素子用シール剤と本発明2の液晶表示素子用シール剤とに共通する事項については、「本発明の液晶表示素子用シール剤」として記載する。
The present invention will be described in detail below.
Hereinafter, the liquid crystal display element sealing compound of the present disclosure 1 is also referred to as "the liquid crystal display element sealing compound of the present invention 1". Further, the sealant for liquid crystal display elements of the present disclosure 2 is also referred to as "the sealant for liquid crystal display elements of the first aspect of the present invention", and the sealant for liquid crystal display elements of the present disclosure 6 is referred to as the "liquid crystal display of the first aspect of the present invention. The liquid crystal display element sealing compound of the present disclosure 9 is also referred to as the "liquid crystal display element sealing compound of the first aspect 3 of the present invention". Further, the liquid crystal display element sealing compound of the present disclosure 12 is also referred to as "the liquid crystal display element sealing compound of the present invention 2". In addition, the polyhydrazide compound of the present disclosure 20 is also referred to as "the polyhydrazide compound of the present invention".
Regarding items common to the sealing compound for liquid crystal display elements of Invention 1 (including aspects 1 to 3) and the sealing compound for liquid crystal display elements of Invention 2, refer to "Sealant for liquid crystal display elements of the present invention". described as
本発明者らは、熱硬化剤として、第一級アミノ基及びヒドラジド基の少なくともいずれかを1分子中に合計2以上有し、かつ、芳香環と結合したスルホニル基及び芳香環と結合したカルボニル基の少なくともいずれかを有する化合物を用いることを検討した。その結果、保存安定性、接着性、及び、低液晶汚染性の全てに優れる液晶表示素子用シール剤を得ることができることを見出し、本発明1を完成させるに至った。
また、本発明者らは、熱硬化剤として、第一級アミノ基及びヒドラジド基の少なくともいずれかを1分子中に合計2以上有し、構成する原子の中に、平均電荷が原子固有の理論電荷よりも特定値以上大きい原子を有する化合物を用いることを検討した。その結果、保存安定性、接着性、及び、低液晶汚染性の全てに優れる液晶表示素子用シール剤を得ることができることを見出し、本発明2を完成させるに至った。
また、本発明の多価ヒドラジド化合物及び該多価ヒドラジド化合物を含有する硬化性樹脂組成物は、電子材料用接着剤及び液晶表示素子用シール剤に好適に用いることができ、特に液晶表示素子用シール剤に用いた場合は、液晶汚染が少なく長期信頼性に優れた液晶表示素子を得ることができる。
As a thermosetting agent, the present inventors have found that at least one of primary amino groups and hydrazide groups is present in total in one molecule, and a sulfonyl group bonded to an aromatic ring and a carbonyl bonded to an aromatic ring We considered using compounds having at least one of the groups. As a result, the present inventors have found that a sealant for liquid crystal display elements which is excellent in all of storage stability, adhesiveness, and low liquid crystal contamination can be obtained, and have completed the present invention 1.
In addition, the present inventors have found that the thermosetting agent has a total of two or more primary amino groups and/or hydrazide groups in one molecule, and that the constituent atoms have an average charge inherent to the atom. We considered using a compound having an atom that is greater than the charge by a specific value or more. As a result, the present inventors have found that a sealant for liquid crystal display elements that is excellent in all of storage stability, adhesiveness, and low liquid crystal contamination can be obtained, and have completed Invention 2.
Further, the polyhydrazide compound of the present invention and the curable resin composition containing the polyhydrazide compound can be suitably used for adhesives for electronic materials and sealants for liquid crystal display elements, and particularly for liquid crystal display elements. When used as a sealant, a liquid crystal display element with little liquid crystal contamination and excellent long-term reliability can be obtained.
本発明の液晶表示素子用シール剤は、熱硬化剤を含有する。
本発明1の液晶表示素子用シール剤において、上記熱硬化剤は、第一級アミノ基及びヒドラジド基の少なくともいずれかを1分子中に合計2以上有し、かつ、芳香環と結合したスルホニル基及び芳香環と結合したカルボニル基の少なくともいずれかを有する化合物(以下、「本発明1にかかる熱硬化剤」ともいう)を含む。
The sealant for liquid crystal display elements of the present invention contains a thermosetting agent.
In the liquid crystal display element sealant of the present invention 1, the thermosetting agent has a total of two or more primary amino groups or hydrazide groups in one molecule, and a sulfonyl group bonded to an aromatic ring. and a compound having at least one of a carbonyl group bonded to an aromatic ring (hereinafter also referred to as "thermosetting agent according to the first invention").
本発明1にかかる熱硬化剤は、第一級アミノ基及びヒドラジド基の少なくともいずれかを1分子中に合計2以上有する。本発明1にかかる熱硬化剤が、第一級アミノ基及びヒドラジド基の少なくともいずれかを1分子中に合計2以上有することにより、本発明1の液晶表示素子用シール剤は、硬化性及び接着性に優れるものとなる。 The thermosetting agent according to the present invention 1 has a total of two or more of at least one of primary amino groups and hydrazide groups in one molecule. Since the thermosetting agent according to the present invention 1 has a total of two or more of at least one of primary amino groups and hydrazide groups in one molecule, the sealing agent for a liquid crystal display element of the present invention 1 has curability and adhesiveness. It will be excellent in quality.
本発明1にかかる熱硬化剤は、芳香環と結合したスルホニル基及び芳香環と結合したカルボニル基の少なくともいずれかを有する。なかでも、本発明1にかかる熱硬化剤は、上記芳香環と結合したスルホニル基を有することが好ましい。 The thermosetting agent according to the present invention 1 has at least one of a sulfonyl group bonded to an aromatic ring and a carbonyl group bonded to an aromatic ring. Among others, the thermosetting agent according to the first aspect of the invention preferably has a sulfonyl group bonded to the aromatic ring.
本発明1にかかる熱硬化剤において、スルホニル基又はカルボニル基と結合する芳香環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環等が挙げられる。また、上記芳香環は、酸素、窒素、硫黄、リン等のヘテロ原子を含んでもよい。なかでも、ベンゼン環が好ましい。 In the thermosetting agent according to the present invention 1, examples of the aromatic ring bonded to the sulfonyl group or carbonyl group include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring and the like. In addition, the aromatic ring may contain heteroatoms such as oxygen, nitrogen, sulfur and phosphorus. Among them, a benzene ring is preferred.
本発明1態様1の液晶表示素子用シール剤は、本発明1にかかる熱硬化剤として、第一級アミノ基及びヒドラジド基の少なくともいずれかを1分子中に合計2以上有し、かつ、上記式(1-1)及び上記式(1-2)の少なくともいずれかの構造を有する化合物(以下、「本発明1態様1にかかる熱硬化剤」ともいう)を含む。本発明1態様1にかかる熱硬化剤が、上記式(1-1)及び上記式(1-2)の少なくともいずれかの構造を有することにより、本発明1態様1の液晶表示素子用シール剤は、保存安定性及び低液晶汚染性に優れるものとなる。 The sealant for a liquid crystal display element according to Embodiment 1 of the present invention has, as the thermosetting agent according to the present invention 1, a total of two or more of at least one of primary amino groups and hydrazide groups in one molecule, and It includes a compound having at least one of the structures of formula (1-1) and formula (1-2) (hereinafter also referred to as "thermosetting agent according to aspect 1 of the present invention"). The thermosetting agent according to aspect 1 of the present invention has a structure of at least one of the above formula (1-1) and the above formula (1-2), whereby the sealant for a liquid crystal display element of the first aspect 1 of the present invention is excellent in storage stability and low liquid crystal contamination.
本発明1態様1にかかる熱硬化剤としては、第一級アミノ基を1分子中に2以上有し、かつ、上記式(1-1)及び上記式(1-2)の少なくともいずれかの構造を有する化合物が好ましい。また、本発明1態様1にかかる熱硬化剤としては、第一級アミノ基及びヒドラジド基の少なくともいずれかを1分子中に合計2以上有し、かつ、上記式(1-2)の構造を有する化合物も好ましく、ヒドラジド基を1分子中に2以上有し、かつ、上記式(1-2)の構造を有する化合物がより好ましい。 The thermosetting agent according to aspect 1 of the present invention has two or more primary amino groups in one molecule, and at least one of the above formula (1-1) and the above formula (1-2) Compounds with structures are preferred. Further, the thermosetting agent according to the first aspect of the present invention has at least two or more primary amino groups or hydrazide groups in total in one molecule, and has the structure of the above formula (1-2). A compound having two or more hydrazide groups in one molecule and having the structure of the above formula (1-2) is more preferable.
本発明1態様1にかかる熱硬化剤は、構成する原子の中に、平均電荷が原子固有の理論電荷よりも0.4a.u.以上大きい原子を有することが好ましい。本発明1態様1にかかる熱硬化剤が、平均電荷が原子固有の理論電荷よりも0.4a.u.以上大きい原子を有することにより、本発明1態様1の液晶表示素子用シール剤は保存安定性及び低液晶汚染性により優れるものとなる。本発明1態様1にかかる熱硬化剤は、構成する原子の中に、平均電荷が原子固有の理論電荷よりも0.6a.u.以上大きい原子を有することがより好ましく、0.65a.u.以上大きい原子を有することが更に好ましい。
なお、上記「a.u.」は、原子単位を意味し、1a.u.の電荷は、1.60217653×10-19Cである。
また、原子の平均電荷は、Iowa州立大学のGAMESS(US)を用いて導出することができる(後述する本発明2にかかる熱硬化剤についても同様である)。具体的には、対象分子のモデリングを行い、B3LYP/6-31G(d,p)による構造最適化計算の後、同条件で分子全体のRESP電荷を算出して、該当原子の電荷を平均することにより導出することができる。また、上記原子固有の理論電荷は、GAMESS(US)やGaussian、Fireflyなどの計算ソフトを用い、対象分子の構造最適化計算及びRESP電荷の算出を、B3LYP/6-31G(d,p)によって計算することで示される値である。
The thermosetting agent according to aspect 1 of the present invention has an average charge of 0.4 a. u. It is preferable to have atoms larger than . The thermosetting agent according to aspect 1 of the present invention has an average charge of 0.4 a. u. By having atoms as large as above, the sealant for a liquid crystal display element of the first aspect of the present invention is excellent in storage stability and low liquid crystal contamination. The thermosetting agent according to aspect 1 of the first aspect of the present invention has an average charge of 0.6 a. u. It is more preferred to have atoms larger than 0.65 a. u. It is even more preferred to have atoms that are larger than or equal to.
In addition, the above "a.u." means an atomic unit, and 1a.u. u. is 1.60217653×10 −19 C.
Also, the average atomic charge can be derived using GAMESS (US) from Iowa State University (the same applies to the thermosetting agent according to the present invention 2, which will be described later). Specifically, the target molecule is modeled, and after the structural optimization calculation by B3LYP/6-31G(d, p), the RESP charge of the entire molecule is calculated under the same conditions, and the charges of the corresponding atoms are averaged. can be derived by In addition, the theoretical charge peculiar to the atom is calculated using calculation software such as GAMESS (US), Gaussian, Firefly, etc., and the structure optimization calculation of the target molecule and the calculation of the RESP charge are performed by B3LYP / 6-31G (d, p). It is a value indicated by calculation.
本発明1態様1にかかる熱硬化剤は、ビスフェノールFジグリシジルエーテルとの反応開始温度の好ましい下限が120℃である。上記反応開始温度が120℃以上であることにより、得られる液晶表示素子用シール剤が保存安定性により優れるものとなる。上記反応開始温度のより好ましい下限は130℃、更に好ましい下限は135℃である。
また、得られる液晶表示素子用シール剤の硬化性等の観点から、上記反応開始温度の好ましい上限は220℃、より好ましい上限は215℃、更に好ましい上限は210℃である。
なお、熱硬化剤におけるビスフェノールFジグリシジルエーテルとの反応開始温度は、以下の方法により測定することができる(後述する本発明2にかかる熱硬化剤についても同様である)。
即ち、まず、熱硬化剤10gとビスフェノールFジグリシジルエーテル100gとを、遊星式撹拌機(シンキー社製、「あわとり練太郎」)を用いて撹拌速度2000rpmで1分間撹拌する。次いで、得られた混合物0.1gをアルミパン(日立ハイテクサイエンス社製、「RDC Pan」、「RDC Pan cover」)に載せ、示差走査熱量計を用いて、40℃~250℃の温度範囲、5℃/minの昇温速度にて示差走査熱量測定を行う。上記反応開始温度は、発熱量が発熱量ピークの10%になった際の温度を指し、発熱量ピークが複数存在する場合は、最大の発熱量ピークの10%になった温度を反応開始温度とすることができる。
上記示差走査熱量計としては、DSC200(日立ハイテクサイエンス社製)等が挙げられる。
The preferable lower limit of the reaction initiation temperature of the thermosetting agent according to the first aspect of the present invention with bisphenol F diglycidyl ether is 120°C. When the reaction initiation temperature is 120° C. or higher, the obtained sealing agent for liquid crystal display elements has excellent storage stability. A more preferable lower limit of the reaction initiation temperature is 130°C, and a further preferable lower limit is 135°C.
From the viewpoint of curability of the obtained sealing agent for liquid crystal display elements, the upper limit of the reaction initiation temperature is preferably 220°C, more preferably 215°C, and still more preferably 210°C.
The temperature at which the thermosetting agent starts to react with bisphenol F diglycidyl ether can be measured by the following method (the same applies to the thermosetting agent according to the present invention 2, which will be described later).
That is, first, 10 g of a heat curing agent and 100 g of bisphenol F diglycidyl ether are stirred for 1 minute at a stirring speed of 2000 rpm using a planetary stirrer (manufactured by THINKY Co., Ltd., "Awatori Mixer"). Next, 0.1 g of the resulting mixture was placed on an aluminum pan (manufactured by Hitachi High-Tech Science, "RDC Pan", "RDC Pan cover") and measured using a differential scanning calorimeter in a temperature range of 40 ° C. to 250 ° C. Differential scanning calorimetry is performed at a heating rate of 5°C/min. The reaction initiation temperature refers to the temperature at which the calorific value reaches 10% of the calorific value peak, and when there are multiple calorific value peaks, the reaction initiation temperature is the temperature at which the maximum calorific value peak reaches 10%. can be
Examples of the differential scanning calorimeter include DSC200 (manufactured by Hitachi High-Tech Science).
本発明1態様1にかかる熱硬化剤としては、具体的には例えば、4,4’-ビス(アミノフェノキシ)ベンゾフェノン、4,4’-ジアミノジフェニルケトン、下記式(7)で表される化合物、4,4’-ジアミノジフェニルスルホン、ビス(4-(3-アミノフェノキシ)フェニル)スルホン、ビス(3-アミノフェニル)スルホン等が挙げられる。 Specific examples of the thermosetting agent according to aspect 1 of the present invention include 4,4′-bis(aminophenoxy)benzophenone, 4,4′-diaminodiphenyl ketone, and compounds represented by the following formula (7). , 4,4′-diaminodiphenyl sulfone, bis(4-(3-aminophenoxy)phenyl) sulfone, bis(3-aminophenyl) sulfone and the like.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
本発明1態様1の液晶表示素子用シール剤において、硬化性樹脂100質量部に対する本発明1態様1にかかる熱硬化剤の含有量の好ましい下限は2.0質量部、好ましい上限は14.8質量部である。硬化性樹脂100質量部に対する本発明1態様1にかかる熱硬化剤の含有量が2.0質量部以上であることにより、得られる液晶表示素子用シール剤が硬化性及び接着性により優れるものとなる。硬化性樹脂100質量部に対する本発明1態様1にかかる熱硬化剤の含有量が14.8質量部以下であることにより、得られる液晶表示素子用シール剤が低液晶汚染性及び保存安定性により優れるものとなる。硬化性樹脂100質量部に対する本発明1態様1にかかる熱硬化剤の含有量のより好ましい下限は3.0質量部、より好ましい上限は9.6質量部である。
また、本発明1態様1の液晶表示素子用シール剤において、上記硬化性樹脂として後述するエポキシ化合物を含有する場合、該エポキシ化合物1当量に対する本発明1態様1にかかる熱硬化剤の含有量の好ましい下限は0.5当量、好ましい上限は2.0当量である。上記エポキシ化合物1当量に対する本発明1態様1にかかる熱硬化剤の含有量が0.5当量以上であることにより、得られる液晶表示素子用シール剤が硬化性及び接着性により優れるものとなる。上記エポキシ化合物1当量に対する本発明1態様1にかかる熱硬化剤の含有量が2.0当量以下であることにより、得られる液晶表示素子用シール剤が低液晶汚染性及び保存安定性により優れるものとなる。上記エポキシ化合物1当量に対する本発明1態様1にかかる熱硬化剤の含有量のより好ましい下限は0.8当量、より好ましい上限は1.3当量である。
In the liquid crystal display element sealant of the first aspect of the present invention, the preferable lower limit of the content of the thermosetting agent according to the first aspect of the present invention to 100 parts by mass of the curable resin is 2.0 parts by mass, and the preferable upper limit is 14.8. part by mass. When the content of the thermosetting agent according to aspect 1 of the present invention is 2.0 parts by mass or more with respect to 100 parts by mass of the curable resin, the obtained sealing agent for liquid crystal display elements is superior in curability and adhesiveness. Become. When the content of the thermosetting agent according to aspect 1 of the present invention is 14.8 parts by mass or less with respect to 100 parts by mass of the curable resin, the obtained sealing agent for liquid crystal display elements has low liquid crystal contamination and storage stability. become excellent. A more preferable lower limit of the content of the thermosetting agent according to the first aspect of the present invention is 3.0 parts by mass, and a more preferable upper limit is 9.6 parts by mass with respect to 100 parts by mass of the curable resin.
Further, in the liquid crystal display element sealant of the first aspect of the present invention, when an epoxy compound described later as the curable resin is contained, the content of the thermosetting agent according to the first aspect of the present invention with respect to one equivalent of the epoxy compound A preferred lower limit is 0.5 equivalents, and a preferred upper limit is 2.0 equivalents. When the content of the thermosetting agent according to aspect 1 of the present invention is 0.5 equivalents or more relative to 1 equivalent of the epoxy compound, the obtained sealing agent for liquid crystal display elements has excellent curability and adhesiveness. When the content of the thermosetting agent according to the first aspect of the present invention is 2.0 equivalents or less per equivalent of the epoxy compound, the obtained sealing agent for liquid crystal display elements is excellent in low liquid crystal contamination resistance and storage stability. becomes. A more preferable lower limit of the content of the thermosetting agent according to the first aspect of the present invention is 0.8 equivalents, and a more preferable upper limit thereof is 1.3 equivalents relative to 1 equivalent of the epoxy compound.
本発明1態様2の液晶表示素子用シール剤は、本発明1にかかる熱硬化剤として、第一級アミノ基を1分子中に2以上有し、かつ、上記式(2-1)、(2-2)、(2-3)、又は、(2-4)で表される構造を有する化合物(以下、「本発明1態様2にかかる熱硬化剤」ともいう)を含む。本発明1態様2にかかる熱硬化剤を含有することにより、本発明1態様2の液晶表示素子用シール剤は、保存安定性、接着性、及び、パネル作製時の低液晶汚染性の全てに優れるものとなる。 The sealant for a liquid crystal display element according to aspect 2 of the first aspect of the present invention has, as the thermosetting agent according to the first aspect of the present invention, two or more primary amino groups in one molecule, and the above formula (2-1), ( 2-2), (2-3), or a compound having a structure represented by (2-4) (hereinafter also referred to as "thermosetting agent according to aspect 1 of the present invention"). By containing the thermosetting agent according to aspect 2 of the present invention, the sealant for liquid crystal display elements of aspect 2 of the present invention has excellent storage stability, adhesiveness, and low liquid crystal contamination during panel production. become excellent.
本発明1態様2にかかる熱硬化剤は、上記式(2-1)、(2-2)、(2-3)、又は、(2-4)で表される構造を有する。上記式(2-1)、(2-2)、(2-3)、又は、(2-4)で表される構造は、スルホニル基と芳香環とを含むものである。上記スルホニル基を有することにより、本発明1態様2にかかる熱硬化剤は、液晶中に溶出し難いものとなる。反応性の観点から、本発明1態様2にかかる熱硬化剤の有する上記スルホニル基は、1分子中に1つであることが最も好ましい。また、上記芳香環を有することにより、本発明1態様2にかかる熱硬化剤は、熱潜在性に優れるものとなり、得られる液晶表示素子用シール剤が、保存安定性に優れるものとなる。本発明1態様2にかかる熱硬化剤は、1分子中に2つ以上の芳香環を有することが好ましい。反応性の観点から、本発明1態様2にかかる熱硬化剤の有する芳香環は、1分子中に4つ以下であることが好ましい。 The thermosetting agent according to aspect 1 of the present invention has a structure represented by formula (2-1), (2-2), (2-3), or (2-4). The structures represented by formulas (2-1), (2-2), (2-3), and (2-4) contain a sulfonyl group and an aromatic ring. By having the sulfonyl group, the thermosetting agent according to the first aspect of the present invention is less likely to be eluted into the liquid crystal. From the viewpoint of reactivity, it is most preferable that the thermosetting agent according to aspect 1 of the present invention has one sulfonyl group per molecule. Moreover, by having the aromatic ring, the thermosetting agent according to the first aspect of the present invention has excellent thermal latency, and the obtained sealing agent for liquid crystal display elements has excellent storage stability. The thermosetting agent according to the first aspect of the present invention preferably has two or more aromatic rings in one molecule. From the viewpoint of reactivity, it is preferable that the thermosetting agent according to the first aspect of the present invention has 4 or less aromatic rings per molecule.
本発明1態様2にかかる熱硬化剤の有する芳香環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環等が挙げられる。なかでも、ベンゼン環が好ましい。 Examples of the aromatic ring possessed by the thermosetting agent according to the first aspect of the present invention include a benzene ring, a naphthalene ring, an anthracene ring, and the like. Among them, a benzene ring is preferred.
本発明1態様2にかかる熱硬化剤は、1分子中に2以上の第一級アミノ基(-NH基)を有する。1分子中に2以上の第一級アミノ基を有することにより、本発明1態様2にかかる熱硬化剤は、接着性に優れるものとなる。
また、保存安定性の観点から、本発明1態様2にかかる熱硬化剤の有する第一級アミノ基は、1分子中に4つ以下であることが好ましい。
本発明1態様2にかかる熱硬化剤は、主鎖の末端に上記第一級アミノ基を有することが好ましく、主鎖の両末端に上記第一級アミノ基を有することがより好ましい。
The thermosetting agent according to aspect 1 of the present invention has two or more primary amino groups ( -NH2 groups) in one molecule. By having two or more primary amino groups in one molecule, the thermosetting agent according to the first aspect of the present invention has excellent adhesiveness.
Moreover, from the viewpoint of storage stability, the thermosetting agent according to the first aspect of the present invention preferably has 4 or less primary amino groups per molecule.
The thermosetting agent according to aspect 1 of the present invention preferably has the primary amino groups at the ends of the main chain, and more preferably has the primary amino groups at both ends of the main chain.
本発明1態様2にかかる熱硬化剤は、得られる液晶表示素子用シール剤を、保存安定性、接着性、及び、パネル作製時の低液晶汚染性の全てにより優れるものとすることができることから、上記式(3-1)、(3-2)、又は、(3-3)で表される構造を有することが好ましい。 The thermosetting agent according to aspect 2 of the first aspect of the present invention can make the obtained sealing agent for liquid crystal display elements more excellent in all of storage stability, adhesiveness, and low liquid crystal contamination during panel production. , preferably have a structure represented by the above formula (3-1), (3-2), or (3-3).
本発明1態様2にかかる熱硬化剤としては、具体的には、上記式(4-1)、(4-2)、(4-3)、(4-4)、(4-5)、又は、(4-6)で表される化合物が好ましい。なかでも、下記式(4-1)で表される化合物がより好ましい。 Specifically, the thermosetting agent according to the first aspect 2 of the present invention includes the above formulas (4-1), (4-2), (4-3), (4-4), (4-5), Alternatively, a compound represented by (4-6) is preferred. Among them, a compound represented by the following formula (4-1) is more preferable.
上記式(4-1)で表される化合物としては、4,4’-ジアミノジフェニルスルホン、ビス(3-アミノフェニル)スルホンが好適に用いられる。 As the compound represented by the above formula (4-1), 4,4'-diaminodiphenylsulfone and bis(3-aminophenyl)sulfone are preferably used.
本発明1態様2の液晶表示素子用シール剤において、硬化性樹脂100質量部に対する本発明1態様2にかかる熱硬化剤の含有量の好ましい下限は2.0質量部、好ましい上限は14.3質量部である。硬化性樹脂100質量部に対する本発明1態様2にかかる熱硬化剤の含有量が2.0質量部以上であることにより、得られる液晶表示素子用シール剤が硬化性及び接着性により優れるものとなる。硬化性樹脂100質量部に対する本発明1態様2にかかる熱硬化剤の含有量が14.3質量部以下であることにより、得られる液晶表示素子用シール剤が低液晶汚染性及び保存安定性により優れるものとなる。硬化性樹脂100質量部に対する本発明1態様2にかかる熱硬化剤の含有量のより好ましい下限は2.8質量部、より好ましい上限は10.8質量部である。
また、本発明1態様2の液晶表示素子用シール剤において、上記硬化性樹脂として後述するエポキシ化合物を含有する場合、該エポキシ化合物1当量に対する本発明1態様2にかかる熱硬化剤の含有量の好ましい下限は0.5当量、好ましい上限は2当量である。上記エポキシ化合物1当量に対する本発明1態様2にかかる熱硬化剤の含有量が0.5当量以上であることにより、得られる液晶表示素子用シール剤が硬化性及び接着性により優れるものとなる。上記エポキシ化合物1当量に対する本発明1態様2にかかる熱硬化剤の含有量が2当量以下であることにより、得られる液晶表示素子用シール剤が保存安定性及び低液晶汚染性により優れるものとなる。上記エポキシ化合物1当量に対する本発明1態様2にかかる熱硬化剤の含有量のより好ましい下限は0.8当量、より好ましい上限は1.5当量である。
In the liquid crystal display element sealant of the first aspect of the present invention, the preferred lower limit of the content of the thermosetting agent according to the first aspect of the present invention 2 to 100 parts by mass of the curable resin is 2.0 parts by mass, and the preferred upper limit is 14.3. part by mass. When the content of the thermosetting agent according to aspect 2 of the present invention is 2.0 parts by mass or more relative to 100 parts by mass of the curable resin, the obtained sealing agent for liquid crystal display elements is superior in curability and adhesiveness. Become. When the content of the thermosetting agent according to aspect 2 of the present invention is 14.3 parts by mass or less with respect to 100 parts by mass of the curable resin, the obtained sealing agent for liquid crystal display elements has low liquid crystal contamination and storage stability. become excellent. A more preferable lower limit of the content of the thermosetting agent according to the first aspect of the present invention 2 is 2.8 parts by mass, and a more preferable upper limit is 10.8 parts by mass with respect to 100 parts by mass of the curable resin.
Further, in the liquid crystal display element sealant of the first aspect 2 of the present invention, when an epoxy compound described later as the curable resin is contained, the content of the thermosetting agent according to the first aspect 2 of the present invention with respect to 1 equivalent of the epoxy compound A preferred lower limit is 0.5 equivalents, and a preferred upper limit is 2 equivalents. When the content of the thermosetting agent according to aspect 2 of the present invention is 0.5 equivalents or more relative to 1 equivalent of the epoxy compound, the obtained sealing agent for liquid crystal display elements is excellent in curability and adhesiveness. When the content of the thermosetting agent according to aspect 2 of the present invention is 2 equivalents or less with respect to 1 equivalent of the epoxy compound, the resulting sealing agent for liquid crystal display elements is excellent in storage stability and low liquid crystal contamination resistance. . A more preferable lower limit of the content of the thermosetting agent according to aspect 2 of the present invention is 0.8 equivalents, and a more preferable upper limit thereof is 1.5 equivalents relative to 1 equivalent of the epoxy compound.
本発明1態様3の液晶表示素子用シール剤は、本発明1にかかる熱硬化剤として、上記式(5)で表されるヒドラジド基を1分子中に2以上有し、かつ、芳香環と結合したスルホニル基を有する多価ヒドラジド化合物を含む。上記式(5)で表されるヒドラジド基を1分子中に2以上有し、かつ、芳香環と結合したスルホニル基を有する多価ヒドラジド化合物もまた、本発明の1つである。
本発明の多価ヒドラジド化合物を含有することにより、本発明1態様3の液晶表示素子用シール剤は、保存安定性、接着性、低液晶汚染性、及び、耐熱性の全てに優れるものとなる。
The sealant for a liquid crystal display element of the third aspect of the first aspect of the present invention has two or more hydrazide groups represented by the above formula (5) in one molecule as the thermosetting agent according to the first aspect of the present invention, and has an aromatic ring and Includes polyvalent hydrazide compounds with attached sulfonyl groups. A polyvalent hydrazide compound having two or more hydrazide groups represented by the above formula (5) in one molecule and having a sulfonyl group bonded to an aromatic ring is also one aspect of the present invention.
By containing the polyhydrazide compound of the present invention, the sealant for a liquid crystal display element of the first embodiment of the present invention 3 is excellent in all of storage stability, adhesiveness, low liquid crystal contamination resistance, and heat resistance. .
本発明の多価ヒドラジド化合物は、芳香環と結合したスルホニル基を有する。上記スルホニル基を有することにより、本発明の多価ヒドラジド化合物は、分子間相互作用が強く結晶性が高くなるため、各種ヒドラジド硬化剤と比較して耐熱性に優れるものとなる。接着性の観点から、本発明の多価ヒドラジド化合物の有するスルホニル基は、1分子中に4つ以下であることが好ましい。
また、上記芳香環を有することにより、本発明の多価ヒドラジド化合物は、硬化性樹脂に対する相溶性に優れるものとなり、得られる液晶表示素子用シール剤が、接着性に優れるものとなる。本発明の多価ヒドラジド化合物は、1分子中に2つ以上の芳香環を有することが好ましい。接着性の観点から、本発明の多価ヒドラジド化合物の有する芳香環は、1分子中に6つ以下であることが好ましい。
The polyhydrazide compounds of the present invention have a sulfonyl group attached to an aromatic ring. By having the sulfonyl group, the polyvalent hydrazide compound of the present invention has a strong intermolecular interaction and high crystallinity, and thus has excellent heat resistance as compared with various hydrazide curing agents. From the viewpoint of adhesiveness, the number of sulfonyl groups in the polyhydrazide compound of the present invention is preferably 4 or less per molecule.
Moreover, by having the aromatic ring, the polyhydrazide compound of the present invention has excellent compatibility with a curable resin, and the obtained sealing agent for liquid crystal display elements has excellent adhesiveness. The polyhydrazide compound of the present invention preferably has two or more aromatic rings in one molecule. From the viewpoint of adhesiveness, it is preferable that the polyhydrazide compound of the present invention has 6 or less aromatic rings per molecule.
本発明の多価ヒドラジド化合物の有する芳香環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環等が挙げられる。また、上記芳香環は、酸素、窒素、硫黄、リン等のヘテロ原子を含んでもよい。なかでも、ベンゼン環が好ましい。 Examples of the aromatic ring of the polyhydrazide compound of the present invention include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring and the like. In addition, the aromatic ring may contain heteroatoms such as oxygen, nitrogen, sulfur and phosphorus. Among them, a benzene ring is preferred.
本発明の多価ヒドラジド化合物は、1分子中に2つ以上の上記式(5)で表されるヒドラジド基を有する。1分子中に2つ以上の上記式(5)で表されるヒドラジド基を有することにより、本発明の多価ヒドラジド化合物は、反応性に優れるものとなる。
また、保存安定性の観点から、本発明の多価ヒドラジド化合物の有する上記式(5)で表されるヒドラジド基は、1分子中に8つ以下であることが好ましい。
本発明の多価ヒドラジド化合物は、主鎖の末端に上記式(5)で表されるヒドラジド基を有することが好ましく、主鎖の全ての末端に上記式(5)で表されるヒドラジド基を有することがより好ましい。
The polyvalent hydrazide compound of the present invention has two or more hydrazide groups represented by the above formula (5) in one molecule. By having two or more hydrazide groups represented by the above formula (5) in one molecule, the polyvalent hydrazide compound of the present invention has excellent reactivity.
Moreover, from the viewpoint of storage stability, the polyhydrazide compound of the present invention preferably has 8 or less hydrazide groups represented by the above formula (5) per molecule.
The polyvalent hydrazide compound of the present invention preferably has a hydrazide group represented by the above formula (5) at the end of the main chain, and has a hydrazide group represented by the above formula (5) at all ends of the main chain. It is more preferable to have
本発明の多価ヒドラジド化合物は、得られる液晶表示素子用シール剤を、保存安定性、接着性、及び、耐熱性の全てにより優れるものとすることができることから、上記式(6)で表される構造を有することが好ましい。 The polyhydrazide compound of the present invention can make the resulting sealing agent for liquid crystal display elements more excellent in all of storage stability, adhesiveness, and heat resistance. It is preferable to have a structure that
本発明の多価ヒドラジド化合物としては、具体的には例えば、ジフェニルスルホン骨格を1分子中に1~8有し、上記ヒドラジド基を1分子中に2~8有する化合物等が挙げられる。なかでも、下記式(8)で表される化合物が好ましい。 Specific examples of the polyvalent hydrazide compound of the present invention include compounds having 1 to 8 diphenylsulfone skeletons per molecule and 2 to 8 hydrazide groups per molecule. Among them, a compound represented by the following formula (8) is preferable.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
式(8)中、Rは、それぞれ独立して、結合手、飽和炭化水素鎖、不飽和炭化水素鎖、ヘテロ原子、又は、芳香環である。また、Rとベンゼン環との間に酸素原子を有していてもよい。 In formula (8), each R is independently a bond, a saturated hydrocarbon chain, an unsaturated hydrocarbon chain, a heteroatom, or an aromatic ring. Also, an oxygen atom may be present between R and the benzene ring.
上記式(8)中のRが芳香環である場合の該芳香環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環等が挙げられる。また、該芳香環は、酸素、窒素、硫黄、リン等のヘテロ原子を含んでもよい。 When R in the above formula (8) is an aromatic ring, examples of the aromatic ring include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, and perylene ring. The aromatic ring may also contain heteroatoms such as oxygen, nitrogen, sulfur and phosphorus.
上記式(8)で表される化合物の中でも、下記式(9)で表される化合物、下記式(10)で表される化合物が好ましい。 Among the compounds represented by the above formula (8), compounds represented by the following formula (9) and compounds represented by the following formula (10) are preferable.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
また、接着性の観点からは、本発明の多価ヒドラジド化合物としては、下記式(11)で表される化合物が好ましい。 From the viewpoint of adhesiveness, a compound represented by the following formula (11) is preferable as the polyhydrazide compound of the present invention.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
本発明の多価ヒドラジド化合物を製造する方法としては、例えば、以下の方法等が挙げられる。
即ち、まず、アルコール溶媒中において、スルホニル基と芳香環とカルボキシル基とを有する化合物を、酸触媒と共に還流させながら撹拌することで、エステル化体を合成する。次いで、得られたエステル化体を再びアルコール溶媒中でヒドラジン水和物と共に室温(1℃~30℃)の条件下で撹拌することにより、本発明の多価ヒドラジド化合物を製造することができる。
また、溶媒中において、スルホニル基と芳香環を有するエポキシ化合物を、エステル結合とフェノール性水酸基とを有する化合物と共にトリフェニルホスィンの存在下で撹拌した後に、ヒドラジン水和物と共に室温(1℃~30℃)の条件下で撹拌することでも製造することができる。
更に、溶媒中において、スルホニル基と芳香環とカルボキシル基とを有する化合物を、アミノ基とエステル結合とを有する化合物と共に縮合剤の存在下で撹拌した後に、ヒドラジン水和物と共に室温(1℃~30℃)の条件下で撹拌することでも製造することができる。
Examples of the method for producing the polyhydrazide compound of the present invention include the following methods.
That is, first, a compound having a sulfonyl group, an aromatic ring and a carboxyl group is stirred in an alcohol solvent while refluxing with an acid catalyst to synthesize an esterified product. Then, the resulting esterified product is again stirred with hydrazine hydrate in an alcohol solvent at room temperature (1°C to 30°C) to produce the polyhydric hydrazide compound of the present invention.
Further, in a solvent, an epoxy compound having a sulfonyl group and an aromatic ring is stirred together with a compound having an ester bond and a phenolic hydroxyl group in the presence of triphenylphosine, and then mixed with hydrazine hydrate at room temperature (1° C. to It can also be produced by stirring under the condition of 30°C.
Furthermore, in a solvent, a compound having a sulfonyl group, an aromatic ring and a carboxyl group is stirred together with a compound having an amino group and an ester bond in the presence of a condensing agent, and then mixed with hydrazine hydrate at room temperature (1° C. to It can also be produced by stirring under the condition of 30°C.
本発明1態様3の液晶表示素子用シール剤において、硬化性樹脂100質量部に対する本発明の多価ヒドラジド化合物の含有量の好ましい下限は3質量部、好ましい上限は70質量部である。硬化性樹脂100質量部に対する本発明の多価ヒドラジド化合物の含有量が3質量部以上であることにより、得られる液晶表示素子用シール剤が硬化性及び接着性により優れるものとなる。硬化性樹脂100質量部に対する本発明の多価ヒドラジド化合物の含有量が70質量部以下であることにより、得られる液晶表示素子用シール剤が耐熱性及び保存安定性により優れるものとなる。硬化性樹脂100質量部に対する本発明の多価ヒドラジド化合物の含有量のより好ましい下限は6質量部、より好ましい上限は35質量部である。
また、本発明1態様3の液晶表示素子用シール剤において、上記硬化性樹脂として後述するエポキシ化合物を含有する場合、該エポキシ化合物1当量に対する本発明の多価ヒドラジド化合物の含有量の好ましい下限は0.5当量、好ましい上限は2.0当量である。上記エポキシ化合物1当量に対する本発明の多価ヒドラジド化合物の含有量が0.5当量以上であることにより、得られる液晶表示素子用シール剤が硬化性及び接着性により優れるものとなる。上記エポキシ化合物1当量に対する本発明の多価ヒドラジド化合物の含有量が2.0当量以下であることにより、得られる液晶表示素子用シール剤が保存安定性により優れるものとなる。上記エポキシ化合物1当量に対する本発明の多価ヒドラジド化合物の含有量のより好ましい下限は0.8当量、より好ましい上限は1.2当量である。
In the liquid crystal display element sealant of the first aspect of the present invention, the preferred lower limit of the content of the polyhydrazide compound of the present invention is 3 parts by mass, and the preferred upper limit thereof is 70 parts by mass relative to 100 parts by mass of the curable resin. When the content of the polyhydrazide compound of the present invention with respect to 100 parts by mass of the curable resin is 3 parts by mass or more, the obtained sealing agent for liquid crystal display elements has excellent curability and adhesiveness. When the content of the polyhydrazide compound of the present invention is 70 parts by mass or less with respect to 100 parts by mass of the curable resin, the obtained sealing agent for liquid crystal display elements has excellent heat resistance and storage stability. A more preferable lower limit of the content of the polyhydrazide compound of the present invention is 6 parts by mass, and a more preferable upper limit thereof is 35 parts by mass based on 100 parts by mass of the curable resin.
Further, in the liquid crystal display element sealant of Embodiment 1 of the present invention 3, when it contains an epoxy compound to be described later as the curable resin, the preferred lower limit of the content of the polyhydrazide compound of the present invention with respect to 1 equivalent of the epoxy compound is 0.5 equivalents, the preferred upper limit is 2.0 equivalents. When the content of the polyhydrazide compound of the present invention is 0.5 equivalents or more relative to 1 equivalent of the epoxy compound, the obtained sealing agent for liquid crystal display elements has excellent curability and adhesiveness. When the content of the polyhydrazide compound of the present invention is 2.0 equivalents or less relative to 1 equivalent of the epoxy compound, the obtained sealing agent for liquid crystal display elements has excellent storage stability. A more preferable lower limit of the content of the polyhydrazide compound of the present invention to 1 equivalent of the epoxy compound is 0.8 equivalents, and a more preferable upper limit thereof is 1.2 equivalents.
本発明2の液晶表示素子用シール剤において、上記熱硬化剤は、第一級アミノ基及びヒドラジド基の少なくともいずれかを1分子中に合計2以上有し、構成する原子の中に、平均電荷が原子固有の理論電荷よりも0.4a.u.以上大きい原子を有する化合物(以下、「本発明2にかかる熱硬化剤」ともいう)を含む。本発明2にかかる熱硬化剤を含有することにより、本発明2の液晶表示素子用シール剤は、保存安定性、接着性、及び、低液晶汚染性の全てに優れるものとなる。 In the sealing compound for a liquid crystal display element of the second aspect of the present invention, the thermosetting agent has a total of two or more primary amino groups or hydrazide groups in one molecule, and the constituent atoms have an average charge is 0.4a.d below the atomic intrinsic theoretical charge. u. Including compounds having atoms larger than or equal to (hereinafter also referred to as "thermosetting agent according to the second aspect of the present invention"). By containing the thermosetting agent according to Invention 2, the sealant for liquid crystal display elements of Invention 2 is excellent in all of storage stability, adhesiveness, and low liquid crystal contamination.
本発明2にかかる熱硬化剤は、第一級アミノ基及びヒドラジド基の少なくともいずれかを1分子中に合計2以上有する。本発明2にかかる熱硬化剤が、第一級アミノ基及びヒドラジド基の少なくともいずれかを1分子中に合計2以上有することにより、本発明2の液晶表示素子用シール剤は、硬化性及び接着性に優れるものとなる。 The thermosetting agent according to the second aspect of the present invention has at least two primary amino groups or hydrazide groups in total in one molecule. The thermosetting agent according to the second aspect of the present invention has at least two or more primary amino groups or hydrazide groups in one molecule. It will be excellent in quality.
本発明2にかかる熱硬化剤は、構成する原子の中に、平均電荷が原子固有の理論電荷よりも0.4a.u.以上大きい原子を有する。本発明2にかかる熱硬化剤が、平均電荷が原子固有の理論電荷よりも0.4a.u.以上大きい原子を有することにより、本発明2の液晶表示素子用シール剤は保存安定性及び低液晶汚染性に優れるものとなる。本発明2にかかる熱硬化剤は、構成する原子の中に、平均電荷が原子固有の理論電荷よりも0.6以上大きい原子を有することが好ましく、0.65以上大きい原子を有することがより好ましい。 In the thermosetting agent according to the second aspect of the present invention, the constituent atoms have an average charge of 0.4 a. u. or larger atoms. The thermosetting agent according to the present invention 2 has an average charge of 0.4 a. u. By having atoms as large as above, the sealant for a liquid crystal display element of the present invention 2 is excellent in storage stability and low liquid crystal contamination. The thermosetting agent according to the second aspect of the present invention preferably has an atom whose average charge is 0.6 or more larger than the theoretical charge inherent to the atom, more preferably 0.65 or more, among the constituent atoms. preferable.
本発明2にかかる熱硬化剤は、線対称性又は点対称性を有し、上記平均電荷が原子固有の理論電荷よりも0.4a.u.以上大きい原子が対称性の中心の原子(中心に原子がない場合は中心に最も近い原子)であることが好ましい。本発明2にかかる熱硬化剤が、線対称性又は点対称性を有し、上記平均電荷が原子固有の理論電荷よりも0.4a.u.以上大きい原子が対称性の中心の原子(中心に原子がない場合は中心に最も近い原子)であることにより、本発明2の液晶表示素子用シール剤は、保存安定性及び低液晶汚染性により優れるものとなる。 The thermosetting agent according to the present invention 2 has line symmetry or point symmetry, and the average charge is 0.4 a. u. Preferably, the larger atom is the center atom of symmetry (or the atom closest to the center if there is no atom at the center). The thermosetting agent according to the present invention 2 has line symmetry or point symmetry, and the average charge is 0.4 a. u. Since the larger atom is the atom at the center of symmetry (the atom closest to the center if there is no atom at the center), the sealant for a liquid crystal display element of the present invention 2 has storage stability and low liquid crystal contamination. become excellent.
本発明2にかかる熱硬化剤は、ビスフェノールFジグリシジルエーテルとの反応開始温度の好ましい下限が120℃である。上記反応開始温度が120℃以上であることにより、得られる液晶表示素子用シール剤が保存安定性により優れるものとなる。上記反応開始温度のより好ましい下限は130℃、更に好ましい下限は135℃である。
また、得られる液晶表示素子用シール剤の硬化性等の観点から、上記反応開始温度の好ましい上限は220℃、より好ましい上限は215℃、更に好ましい上限は210℃である。
The preferred lower limit of the reaction initiation temperature of the thermosetting agent according to the second aspect of the invention with bisphenol F diglycidyl ether is 120°C. When the reaction initiation temperature is 120° C. or higher, the obtained sealing agent for liquid crystal display elements has excellent storage stability. A more preferable lower limit of the reaction initiation temperature is 130°C, and a further preferable lower limit is 135°C.
From the viewpoint of curability of the obtained sealing agent for liquid crystal display elements, the upper limit of the reaction initiation temperature is preferably 220°C, more preferably 215°C, and still more preferably 210°C.
本発明2にかかる熱硬化剤は、上記式(1-1)及び上記式(1-2)の少なくともいずれかの構造を有することが好ましい。本発明2にかかる熱硬化剤が上記式(1-1)及び上記式(1-2)の少なくともいずれかの構造を有することにより、本発明2の液晶表示素子用シール剤は、保存安定性及び低液晶汚染性により優れるものとなる。 The thermosetting agent according to the present invention 2 preferably has at least one structure represented by the above formula (1-1) or the above formula (1-2). Since the thermosetting agent according to the second aspect of the present invention has a structure represented by at least one of the above formulas (1-1) and (1-2), the sealing agent for liquid crystal display elements of the second aspect of the present invention has storage stability. and low liquid crystal contamination.
本発明2にかかる熱硬化剤としては、具体的には例えば、4,4’-ビス(アミノフェノキシ)ベンゾフェノン(平均電荷が原子固有の理論電荷よりも0.42a.u.以上大きい原子(中心の炭素原子)を有し、ビスフェノールFジグリシジルエーテルとの反応開始温度135℃)、4,4’-ジアミノジフェニルケトン(平均電荷が原子固有の理論電荷よりも0.41a.u.以上大きい原子(中心の炭素原子)を有し、ビスフェノールFジグリシジルエーテルとの反応開始温度180℃)、上記式(7)で表される化合物(平均電荷が原子固有の理論電荷よりも0.68a.u.以上大きい原子(中心の硫黄原子)を有し、ビスフェノールFジグリシジルエーテルとの反応開始温度210℃)等が挙げられる。 Specific examples of the thermosetting agent according to the second aspect of the present invention include, for example, 4,4'-bis(aminophenoxy)benzophenone (atoms (central carbon atoms), reaction initiation temperature with bisphenol F diglycidyl ether 135 ° C.), 4,4'-diaminodiphenyl ketone (atoms whose average charge is 0.41 au or more than the theoretical charge inherent to the atom (center carbon atom), reaction initiation temperature with bisphenol F diglycidyl ether 180 ° C.), the compound represented by the above formula (7) (average charge is 0.68 a.u. than the theoretical charge inherent to the atom) (210° C. at reaction initiation temperature with bisphenol F diglycidyl ether) and the like.
本発明2の液晶表示素子用シール剤において、硬化性樹脂100質量部に対する本発明2にかかる熱硬化剤の含有量の好ましい下限は2.0質量部、好ましい上限は14.8質量部である。硬化性樹脂100質量部に対する本発明2にかかる熱硬化剤の含有量が2.0質量部以上であることにより、得られる液晶表示素子用シール剤が硬化性及び接着性により優れるものとなる。硬化性樹脂100質量部に対する本発明2にかかる熱硬化剤の含有量が14.8質量部以下であることにより、得られる液晶表示素子用シール剤が低液晶汚染性及び保存安定性により優れるものとなる。硬化性樹脂100質量部に対する本発明2にかかる熱硬化剤の含有量のより好ましい下限は3.0質量部、より好ましい上限は9.6質量部である。
また、本発明2の液晶表示素子用シール剤において、上記硬化性樹脂として後述するエポキシ化合物を含有する場合、該エポキシ化合物1当量に対する本発明2にかかる熱硬化剤の含有量の好ましい下限は0.5当量、好ましい上限は2.0当量である。上記エポキシ化合物1当量に対する本発明2にかかる熱硬化剤の含有量が0.5当量以上であることにより、得られる液晶表示素子用シール剤が硬化性及び接着性により優れるものとなる。上記エポキシ化合物1当量に対する本発明2にかかる熱硬化剤の含有量が2.0当量以下であることにより、得られる液晶表示素子用シール剤が低液晶汚染性及び保存安定性により優れるものとなる。上記エポキシ化合物1当量に対する本発明2にかかる熱硬化剤の含有量のより好ましい下限は0.8当量、より好ましい上限は1.3当量である。
In the liquid crystal display element sealant of Invention 2, the preferable lower limit of the content of the thermosetting agent according to Invention 2 to 100 parts by mass of the curable resin is 2.0 parts by mass, and the preferable upper limit is 14.8 parts by mass. . When the content of the thermosetting agent according to the present invention 2 is 2.0 parts by mass or more with respect to 100 parts by mass of the curable resin, the obtained sealing agent for liquid crystal display elements has excellent curability and adhesiveness. Since the content of the thermosetting agent according to the present invention 2 is 14.8 parts by mass or less with respect to 100 parts by mass of the curable resin, the obtained sealing agent for liquid crystal display elements is excellent in low liquid crystal contamination resistance and storage stability. becomes. A more preferable lower limit of the content of the thermosetting agent according to the present invention 2 to 100 parts by mass of the curable resin is 3.0 parts by mass, and a more preferable upper limit is 9.6 parts by mass.
In addition, when the sealing compound for a liquid crystal display element of Invention 2 contains an epoxy compound to be described later as the curable resin, the preferred lower limit of the content of the thermosetting agent according to Invention 2 with respect to 1 equivalent of the epoxy compound is 0. .5 equivalents, with a preferred upper limit of 2.0 equivalents. When the content of the thermosetting agent according to the present invention 2 is 0.5 equivalents or more relative to 1 equivalent of the epoxy compound, the obtained sealing agent for liquid crystal display elements has excellent curability and adhesiveness. By setting the content of the thermosetting agent according to the present invention 2 to 1 equivalent of the epoxy compound to be 2.0 equivalents or less, the obtained sealing agent for liquid crystal display elements is excellent in low liquid crystal contamination resistance and storage stability. . A more preferable lower limit of the content of the heat curing agent according to the present invention 2 to 1 equivalent of the epoxy compound is 0.8 equivalents, and a more preferable upper limit thereof is 1.3 equivalents.
本発明の液晶表示素子用シール剤は、硬化性樹脂を含有する。
上記硬化性樹脂としては、例えば、エポキシ化合物、(メタ)アクリル化合物、ポリウレタン化合物、フェノール化合物等が挙げられる。なかでも、上記硬化性樹脂は、エポキシ化合物を含むことが好ましい。
なお、本明細書において上記「(メタ)アクリル」とは、アクリル又はメタクリルを意味する。
The sealant for liquid crystal display elements of the present invention contains a curable resin.
Examples of the curable resin include epoxy compounds, (meth)acrylic compounds, polyurethane compounds, and phenol compounds. Especially, it is preferable that the said curable resin contains an epoxy compound.
In addition, in this specification, the above-mentioned "(meth)acryl" means acryl or methacryl.
上記エポキシ化合物としては、例えば、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールE型エポキシ化合物、ビスフェノールS型エポキシ化合物、2,2’-ジアリルビスフェノールA型エポキシ化合物、水添ビスフェノール型エポキシ化合物、プロピレンオキシド付加ビスフェノールA型エポキシ化合物、レゾルシノール型エポキシ化合物、ビフェニル型エポキシ化合物、スルフィド型エポキシ化合物、ジフェニルエーテル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、ナフタレン型エポキシ化合物、フェノールノボラック型エポキシ化合物、オルトクレゾールノボラック型エポキシ化合物、ジシクロペンタジエンノボラック型エポキシ化合物、ビフェニルノボラック型エポキシ化合物、ナフタレンフェノールノボラック型エポキシ化合物、グリシジルアミン型エポキシ化合物、アルキルポリオール型エポキシ化合物、ゴム変性型エポキシ化合物、グリシジルエステル化合物等が挙げられる。 Examples of the epoxy compounds include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol E type epoxy compounds, bisphenol S type epoxy compounds, 2,2′-diallylbisphenol A type epoxy compounds, and hydrogenated bisphenol type epoxy compounds. , propylene oxide-added bisphenol A type epoxy compound, resorcinol type epoxy compound, biphenyl type epoxy compound, sulfide type epoxy compound, diphenyl ether type epoxy compound, dicyclopentadiene type epoxy compound, naphthalene type epoxy compound, phenol novolac type epoxy compound, ortho-cresol Novolak-type epoxy compounds, dicyclopentadiene novolak-type epoxy compounds, biphenyl novolac-type epoxy compounds, naphthalenephenol novolak-type epoxy compounds, glycidylamine-type epoxy compounds, alkylpolyol-type epoxy compounds, rubber-modified epoxy compounds, glycidyl ester compounds, and the like. be done.
上記ビスフェノールA型エポキシ化合物のうち市販されているものとしては、例えば、jER828EL、jER1004(いずれも三菱ケミカル社製)、EPICLON850(DIC社製)等が挙げられる。
上記ビスフェノールF型エポキシ化合物のうち市販されているものとしては、例えば、jER806、jER4004(いずれも三菱ケミカル社製)、EPICLON EXA-830CRP(DIC社製)等が挙げられる。
上記ビスフェノールE型エポキシ化合物のうち市販されているものとしては、例えば、エポミックR710(三井化学社製)等が挙げられる。
上記ビスフェノールS型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON EXA-1514(DIC社製)等が挙げられる。
上記2,2’-ジアリルビスフェノールA型エポキシ化合物のうち市販されているものとしては、例えば、RE-810NM(日本化薬社製)等が挙げられる。
上記水添ビスフェノール型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON EXA-7015(DIC社製)等が挙げられる。
上記プロピレンオキシド付加ビスフェノールA型エポキシ化合物のうち市販されているものとしては、例えば、EP-4000S(ADEKA社製)等が挙げられる。
上記レゾルシノール型エポキシ化合物のうち市販されているものとしては、例えば、EX-201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ化合物のうち市販されているものとしては、例えば、jER YX-4000H(三菱ケミカル社製)等が挙げられる。
上記スルフィド型エポキシ化合物のうち市販されているものとしては、例えば、YSLV-50TE(日鉄ケミカル&マテリアル社製)等が挙げられる。
上記ジフェニルエーテル型エポキシ化合物のうち市販されているものとしては、例えば、YSLV-80DE(日鉄ケミカル&マテリアル社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ化合物のうち市販されているものとしては、例えば、EP-4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON HP-4032、EPICLON EXA-4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON N-770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON N-670-EXP-S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON HP-7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ化合物のうち市販されているものとしては、例えば、NC-3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ化合物のうち市販されているものとしては、例えば、ESN-165S(日鉄ケミカル&マテリアル社製)等が挙げられる。
上記グリシジルアミン型エポキシ化合物のうち市販されているものとしては、例えば、jER630(三菱ケミカル社製)、EPICLON430(DIC社製)、TETRAD-X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ化合物のうち市販されているものとしては、例えば、ZX-1542(日鉄ケミカル&マテリアル社製)、EPICLON726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX-611(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ化合物のうち市販されているものとしては、例えば、YR-450、YR-207(いずれも日鉄ケミカル&マテリアル社製)、エポリードPB(ダイセル社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されているものとしては、例えば、デナコールEX-147(ナガセケムテックス社製)等が挙げられる。
上記エポキシ化合物のうちその他に市販されているものとしては、例えば、YDC-1312、YSLV-80XY、YSLV-90CR(いずれも日鉄ケミカル&マテリアル社製)、XAC4151(旭化成社製)、jER1031、jER1032(いずれも三菱ケミカル社製)、EXA-7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
Commercially available bisphenol A type epoxy compounds include, for example, jER828EL, jER1004 (all manufactured by Mitsubishi Chemical Corporation), EPICLON850 (manufactured by DIC Corporation), and the like.
Commercially available bisphenol F-type epoxy compounds include, for example, jER806 and jER4004 (both manufactured by Mitsubishi Chemical Corporation) and EPICLON EXA-830CRP (manufactured by DIC Corporation).
Examples of commercially available bisphenol E type epoxy compounds include Epomic R710 (manufactured by Mitsui Chemicals, Inc.).
Examples of commercially available bisphenol S-type epoxy compounds include EPICLON EXA-1514 (manufactured by DIC Corporation).
Examples of commercially available 2,2'-diallylbisphenol A type epoxy compounds include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
Commercially available hydrogenated bisphenol epoxy compounds include, for example, EPICLON EXA-7015 (manufactured by DIC).
Examples of commercially available propylene oxide-added bisphenol A type epoxy compounds include EP-4000S (manufactured by ADEKA).
Commercially available resorcinol-type epoxy compounds include, for example, EX-201 (manufactured by Nagase ChemteX Corporation).
Commercially available biphenyl-type epoxy compounds include, for example, jER YX-4000H (manufactured by Mitsubishi Chemical Corporation).
Examples of commercially available sulfide-type epoxy compounds include YSLV-50TE (manufactured by Nippon Steel Chemical & Materials Co., Ltd.).
Examples of commercially available diphenyl ether type epoxy compounds include YSLV-80DE (manufactured by Nippon Steel Chemical & Materials Co., Ltd.).
Examples of commercially available dicyclopentadiene type epoxy compounds include EP-4088S (manufactured by ADEKA).
Examples of commercially available naphthalene-type epoxy compounds include EPICLON HP-4032 and EPICLON EXA-4700 (both manufactured by DIC Corporation).
Examples of commercially available phenolic novolac type epoxy compounds include EPICLON N-770 (manufactured by DIC Corporation).
Examples of commercially available ortho-cresol novolac type epoxy compounds include EPICLON N-670-EXP-S (manufactured by DIC).
Commercially available dicyclopentadiene novolac type epoxy compounds include, for example, EPICLON HP-7200 (manufactured by DIC Corporation).
Commercially available biphenyl novolac type epoxy compounds include, for example, NC-3000P (manufactured by Nippon Kayaku Co., Ltd.).
Examples of commercially available naphthalenephenol novolac type epoxy compounds include ESN-165S (manufactured by Nippon Steel Chemical & Materials Co., Ltd.).
Examples of commercially available glycidylamine type epoxy compounds include jER630 (manufactured by Mitsubishi Chemical Corporation), EPICLON430 (manufactured by DIC Corporation), TETRAD-X (manufactured by Mitsubishi Gas Chemical Co., Ltd.), and the like.
Examples of commercially available alkyl polyol type epoxy compounds include ZX-1542 (manufactured by Nippon Steel Chemical & Materials), EPICLON726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX- 611 (manufactured by Nagase ChemteX Corporation) and the like.
Commercially available rubber-modified epoxy compounds include, for example, YR-450 and YR-207 (both manufactured by Nippon Steel Chemical & Materials) and Epolead PB (manufactured by Daicel).
Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
Other commercially available epoxy compounds include YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel Chemical & Materials), XAC4151 (manufactured by Asahi Kasei), jER1031, and jER1032. (all manufactured by Mitsubishi Chemical), EXA-7120 (manufactured by DIC), TEPIC (manufactured by Nissan Chemical) and the like.
上記エポキシ化合物としては、部分(メタ)アクリル変性エポキシ化合物も好適に用いられる。
なお、本明細書において上記部分(メタ)アクリル変性エポキシ化合物とは、2つ以上のエポキシ基を有するエポキシ化合物の一部分のエポキシ基を(メタ)アクリル酸と反応させることによって得ることができる、1分子中にエポキシ基と(メタ)アクリロイル基とをそれぞれ1つ以上有する化合物を意味する。
なお、本明細書において、上記「(メタ)アクリロイル」とは、アクリロイル又はメタクリロイルを意味する。
Partially (meth)acryl-modified epoxy compounds are also suitably used as the epoxy compound.
In the present specification, the partially (meth)acrylic-modified epoxy compound is obtained by reacting a partial epoxy group of an epoxy compound having two or more epoxy groups with (meth)acrylic acid. It means a compound having one or more epoxy groups and one or more (meth)acryloyl groups in the molecule.
In addition, in this specification, the said "(meth)acryloyl" means acryloyl or methacryloyl.
上記部分(メタ)アクリル変性エポキシ化合物のうち市販されているものとしては、例えば、UVACURE1561、KRM8030、KRM8287(いずれもダイセル・オルネクス社製)等が挙げられる。 Examples of commercially available partially (meth)acrylic-modified epoxy compounds include UVACURE1561, KRM8030, and KRM8287 (all manufactured by Daicel Allnex).
また、上記硬化性樹脂は、上記(メタ)アクリル化合物を含むことが好ましい。
上記(メタ)アクリル化合物としては、例えば、(メタ)アクリル酸エステル化合物、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート等が挙げられる。なかでも、エポキシ(メタ)アクリレートが好ましい。また、上記(メタ)アクリル化合物は、反応性の観点から1分子中に(メタ)アクリロイル基を2個以上有するものが好ましい。
なお、本明細書において、上記「(メタ)アクリル化合物」とは、上記部分(メタ)アクリル変性エポキシ化合物を除く(メタ)アクリロイル基を有する化合物を意味する。また、上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味し、上記「エポキシ(メタ)アクリレート」とは、エポキシ化合物中の全てのエポキシ基を(メタ)アクリル酸と反応させた化合物のことを表す。
Moreover, the curable resin preferably contains the (meth)acrylic compound.
Examples of the (meth)acrylic compound include (meth)acrylic acid ester compounds, epoxy (meth)acrylates, and urethane (meth)acrylates. Among them, epoxy (meth)acrylate is preferred. From the viewpoint of reactivity, the (meth)acrylic compound preferably has two or more (meth)acryloyl groups in one molecule.
In this specification, the "(meth)acrylic compound" means a compound having a (meth)acryloyl group, excluding the partially (meth)acryl-modified epoxy compound. Further, the above "(meth)acrylate" means acrylate or methacrylate, and the above "epoxy(meth)acrylate" is a compound obtained by reacting all epoxy groups in an epoxy compound with (meth)acrylic acid. represents
上記(メタ)アクリル酸エステル化合物のうち単官能のものとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル2-ヒドロキシプロピルフタレート、2-(メタ)アクリロイロキシエチルホスフェート、グリシジル(メタ)アクリレート等が挙げられる。 Among the above (meth)acrylic acid ester compounds, monofunctional ones include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate. , t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, iso myristyl (meth) acrylate, stearyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, cyclohexyl ( meth)acrylate, isobornyl (meth)acrylate, bicyclopentenyl (meth)acrylate, benzyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, 2-butoxyethyl (meth)acrylate, 2-Phenoxyethyl (meth)acrylate, methoxyethylene glycol (meth)acrylate, methoxypolyethyleneglycol (meth)acrylate, phenoxydiethyleneglycol (meth)acrylate, phenoxypolyethyleneglycol (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, ethyl carbi tall (meth)acrylate, 2,2,2-trifluoroethyl (meth)acrylate, 2,2,3,3-tetrafluoropropyl (meth)acrylate, 1H,1H,5H-octafluoropentyl (meth)acrylate, imido (meth)acrylate, dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, 2-(meth)acryloyloxyethyl succinic acid, 2-(meth)acryloyloxyethylhexahydrophthalate, 2-( meth)acryloyloxyethyl 2-hydroxypropyl phthalate, 2-(meth)acryloyloxyethyl phosphate, glycidyl (meth)acrylate and the like.
また、上記(メタ)アクリル酸エステル化合物のうち2官能のものとしては、例えば、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。 Among the above (meth)acrylic acid ester compounds, bifunctional ones include, for example, 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexane Diol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate (Meth) acrylate, polyethylene glycol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) ) acrylate, polypropylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, ethylene oxide-added bisphenol A di(meth)acrylate, propylene oxide-added bisphenol A di(meth)acrylate, ethylene oxide-added bisphenol F di(meth)acrylate , dimethyloldicyclopentadienyl di(meth)acrylate, ethylene oxide-modified isocyanuric acid di(meth)acrylate, 2-hydroxy-3-(meth)acryloyloxypropyl (meth)acrylate, carbonate diol di(meth)acrylate, polyether diol di(meth)acrylate, polyester diol di(meth)acrylate, polycaprolactone diol di(meth)acrylate, polybutadiene diol di(meth)acrylate and the like.
また、上記(メタ)アクリル酸エステル化合物のうち3官能以上のものとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 Further, among the above (meth)acrylic acid ester compounds, trifunctional or higher ones include, for example, trimethylolpropane tri(meth)acrylate, ethylene oxide-added trimethylolpropane tri(meth)acrylate, propylene oxide-added trimethylolpropane tri( meth)acrylate, caprolactone-modified trimethylolpropane tri(meth)acrylate, ethylene oxide-added isocyanuric acid tri(meth)acrylate, glycerin tri(meth)acrylate, propylene oxide-added glycerin tri(meth)acrylate, pentaerythritol tri(meth)acrylate, tris(meth)acryloyloxyethyl phosphate, ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate and the like.
上記エポキシ(メタ)アクリレートとしては、例えば、エポキシ化合物と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応させることにより得られるもの等が挙げられる。 Examples of the epoxy (meth)acrylate include those obtained by reacting an epoxy compound and (meth)acrylic acid in the presence of a basic catalyst according to a conventional method.
上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物としては、本発明の液晶表示素子用シール剤の含有する硬化性樹脂として上述したエポキシ化合物と同様のものを用いることができる。 As the epoxy compound serving as a raw material for synthesizing the epoxy (meth)acrylate, the same epoxy compound as the curable resin contained in the sealing agent for liquid crystal display elements of the present invention can be used.
上記エポキシ(メタ)アクリレートのうち市販されているものとしては、例えば、ダイセル・オルネクス社製のエポキシ(メタ)アクリレート、新中村化学工業社製のエポキシ(メタ)アクリレート、共栄社化学社製のエポキシ(メタ)アクリレート、ナガセケムテックス社製のエポキシ(メタ)アクリレート等が挙げられる。
上記ダイセル・オルネクス社製のエポキシ(メタ)アクリレートとしては、例えば、EBECRYL860、EBECRYL3200、EBECRYL3201、EBECRYL3412、EBECRYL3600、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL3708、EBECRYL3800、EBECRYL6040、EBECRYL RDX63182、KRM8076等が挙げられる。
上記新中村化学工業社製のエポキシ(メタ)アクリレートとしては、例えば、EA-1010、EA-1020、EA-5323、EA-5520、EA-CHD、EMA-1020等が挙げられる。
上記共栄社化学社製のエポキシ(メタ)アクリレートとしては、例えば、エポキシエステルM-600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、エポキシエステル400EA等が挙げられる。
上記ナガセケムテックス社製のエポキシ(メタ)アクリレートとしては、例えば、デナコールアクリレートDA-141、デナコールアクリレートDA-314、デナコールアクリレートDA-911等が挙げられる。
Commercially available epoxy (meth)acrylates include, for example, epoxy (meth)acrylate manufactured by Daicel Allnex, epoxy (meth)acrylate manufactured by Shin-Nakamura Chemical Industry, epoxy (meth)acrylate manufactured by Kyoeisha Chemical Co., Ltd. ( meth) acrylate, epoxy (meth) acrylate manufactured by Nagase ChemteX Corporation, and the like.
Examples of epoxy (meth)acrylates manufactured by Daicel Allnex include EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3703, EBECR YL3708, EBECRYL3800, EBECRYL6040, EBECRYL RDX63182, KRM8076 and the like.
Examples of epoxy (meth)acrylates manufactured by Shin-Nakamura Chemical Co., Ltd. include EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, and EMA-1020.
Examples of the epoxy (meth)acrylate manufactured by Kyoeisha Chemical Co., Ltd. include, for example, Epoxy Ester M-600A, Epoxy Ester 40EM, Epoxy Ester 70PA, Epoxy Ester 200PA, Epoxy Ester 80MFA, Epoxy Ester 3002M, Epoxy Ester 3002A, Epoxy Ester 1600A, Epoxy Ester 3000M, Epoxy Ester 3000A, Epoxy Ester 200EA, Epoxy Ester 400EA and the like.
Examples of epoxy (meth)acrylates manufactured by Nagase ChemteX Co., Ltd. include Denacol acrylate DA-141, Denacol acrylate DA-314, Denacol acrylate DA-911, and the like.
上記ウレタン(メタ)アクリレートは、例えば、イソシアネート化合物に対して水酸基を有する(メタ)アクリル酸誘導体を、触媒量のスズ系化合物存在下で反応させることによって得ることができる。 The urethane (meth)acrylate can be obtained, for example, by reacting an isocyanate compound with a (meth)acrylic acid derivative having a hydroxyl group in the presence of a catalytic amount of a tin compound.
上記ウレタン(メタ)アクリレートの原料となるイソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシリレンジイソシアネート、1,6,11-ウンデカントリイソシアネート等が挙げられる。 Examples of isocyanate compounds that are raw materials for the urethane (meth)acrylate include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4,4 '-diisocyanate (MDI), hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris(isocyanate phenyl)thiophosphate, tetramethylxylylene diisocyanate, 1,6,11-undecane triisocyanate, and the like.
また、上記ウレタン(メタ)アクリレートの原料となるイソシアネート化合物としては、ポリオールと過剰のイソシアネート化合物との反応により得られる鎖延長されたイソシアネート化合物も使用することができる。
上記ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等が挙げられる。
In addition, as the isocyanate compound that is a raw material for the urethane (meth)acrylate, a chain-extended isocyanate compound obtained by reacting a polyol with an excessive amount of an isocyanate compound can also be used.
Examples of the polyol include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, polycaprolactone diol and the like.
上記水酸基を有する(メタ)アクリル酸誘導体としては、例えば、ヒドロキシアルキルモノ(メタ)アクリレート、二価のアルコールのモノ(メタ)アクリレート、三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げられる。
上記ヒドロキシアルキルモノ(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。
上記二価のアルコールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等が挙げられる。
上記三価のアルコールとしては、例えば、トリメチロールエタン、トリメチロールプロパン、グリセリン等が挙げられる。
上記エポキシ(メタ)アクリレートとしては、例えば、ビスフェノールA型エポキシ(メタ)アクリレート等が挙げられる。
Examples of the (meth)acrylic acid derivative having a hydroxyl group include hydroxyalkyl mono(meth)acrylates, dihydric alcohol mono(meth)acrylates, trihydric alcohol mono(meth)acrylates and di(meth)acrylates. , epoxy (meth)acrylate, and the like.
Examples of the hydroxyalkyl mono(meth)acrylates include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate and the like. mentioned.
Examples of the dihydric alcohol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol.
Examples of the trihydric alcohol include trimethylolethane, trimethylolpropane, glycerin and the like.
As said epoxy (meth)acrylate, a bisphenol A type epoxy (meth)acrylate etc. are mentioned, for example.
上記ウレタン(メタ)アクリレートのうち市販されているものとしては、例えば、東亞合成社製のウレタン(メタ)アクリレート、ダイセル・オルネクス社製のウレタン(メタ)アクリレート、根上工業社製のウレタン(メタ)アクリレート、新中村化学工業社製のウレタン(メタ)アクリレート、共栄社化学社製のウレタン(メタ)アクリレート等が挙げられる。
上記東亞合成社製のウレタン(メタ)アクリレートとしては、例えば、M-1100、M-1200、M-1210、M-1600等が挙げられる。
上記ダイセル・オルネクス社製のウレタン(メタ)アクリレートとしては、例えば、EBECRYL210、EBECRYL220、EBECRYL230、EBECRYL270、EBECRYL1290、EBECRYL2220、EBECRYL4827、EBECRYL4842、EBECRYL4858、EBECRYL5129、EBECRYL6700、EBECRYL8402、EBECRYL8803、EBECRYL8804、EBECRYL8807、EBECRYL9260等が挙げられる。
上記根上工業社製のウレタン(メタ)アクリレートとしては、例えば、アートレジンUN-330、アートレジンSH-500B、アートレジンUN-1200TPK、アートレジンUN-1255、アートレジンUN-3320HB、アートレジンUN-7100、アートレジンUN-9000A、アートレジンUN-9000H等が挙げられる。
上記新中村化学工業社製のウレタン(メタ)アクリレートとしては、例えば、U-2HA、U-2PHA、U-3HA、U-4HA、U-6H、U-6HA、U-6LPA、U-10H、U-15HA、U-108、U-108A、U-122A、U-122P、U-324A、U-340A、U-340P、U-1084A、U-2061BA、UA-340P、UA-4000、UA-4100、UA-4200、UA-4400、UA-5201P、UA-7100、UA-7200、UA-W2A等が挙げられる。
上記共栄社化学社製のウレタン(メタ)アクリレートとしては、例えば、AH-600、AI-600、AT-600、UA-101I、UA-101T、UA-306H、UA-306I、UA-306T等が挙げられる。
Examples of commercially available urethane (meth) acrylates include urethane (meth) acrylate manufactured by Toagosei Co., Ltd., urethane (meth) acrylate manufactured by Daicel Allnex, and urethane (meth) acrylate manufactured by Negami Kogyo Co., Ltd. acrylate, urethane (meth)acrylate manufactured by Shin-Nakamura Chemical Co., Ltd., urethane (meth)acrylate manufactured by Kyoeisha Chemical Co., Ltd., and the like.
Examples of the urethane (meth)acrylates manufactured by Toagosei Co., Ltd. include M-1100, M-1200, M-1210 and M-1600.
Examples of the urethane (meth)acrylates manufactured by Daicel Allnex include EBECRYL210, EBECRYL220, EBECRYL230, EBECRYL270, EBECRYL1290, EBECRYL2220, EBECRYL4827, EBECRYL4842, EBECRYL4858, and EBECRYL5. 129, EBECRYL6700, EBECRYL8402, EBECRYL8803, EBECRYL8804, EBECRYL8807, EBECRYL9260, etc. mentioned.
Examples of the urethane (meth)acrylate manufactured by Neagari Kogyo Co., Ltd. include, for example, Artresin UN-330, Artresin SH-500B, Artresin UN-1200TPK, Artresin UN-1255, Artresin UN-3320HB, Artresin UN- 7100, Artresin UN-9000A, Artresin UN-9000H and the like.
The urethane (meth)acrylates manufactured by Shin-Nakamura Chemical Co., Ltd. include, for example, U-2HA, U-2PHA, U-3HA, U-4HA, U-6H, U-6HA, U-6LPA, U-10H, U-15HA, U-108, U-108A, U-122A, U-122P, U-324A, U-340A, U-340P, U-1084A, U-2061BA, UA-340P, UA-4000, UA- 4100, UA-4200, UA-4400, UA-5201P, UA-7100, UA-7200, UA-W2A and the like.
Examples of the urethane (meth)acrylate manufactured by Kyoeisha Chemical Co., Ltd. include AH-600, AI-600, AT-600, UA-101I, UA-101T, UA-306H, UA-306I, and UA-306T. be done.
上記硬化性樹脂として上記エポキシ化合物に加えて上記(メタ)アクリル化合物を含有する場合、又は、上記部分(メタ)アクリル変性エポキシ化合物を含有する場合、上記硬化性樹脂中のエポキシ基と(メタ)アクリロイル基との合計中における(メタ)アクリロイル基の比率を30モル%以上95モル%以下になるようにすることが好ましい。上記(メタ)アクリロイル基の比率がこの範囲であることにより、得られる液晶表示素子用シール剤が液晶汚染の発生を抑制しつつ、接着性により優れるものとなる。 When the curable resin contains the (meth)acrylic compound in addition to the epoxy compound, or when the partially (meth)acryl-modified epoxy compound is contained, the epoxy group in the curable resin and the (meth) It is preferable that the ratio of (meth)acryloyl groups in the total amount of acryloyl groups is 30 mol % or more and 95 mol % or less. When the ratio of the (meth)acryloyl group is within this range, the resulting sealing compound for liquid crystal display elements is excellent in adhesiveness while suppressing the occurrence of liquid crystal contamination.
上記硬化性樹脂は、液晶汚染をより抑制する観点から、-OH基、-NH-基、-NH基等の水素結合性のユニットを有するものが好ましい。 From the viewpoint of further suppressing liquid crystal contamination, the curable resin preferably has a hydrogen-bonding unit such as —OH group, —NH— group, or —NH 2 group.
本発明の液晶表示素子用シール剤は、光重合開始剤を含有することが好ましい。
上記光重合開始剤としては、例えば、ベンゾフェノン化合物、アセトフェノン化合物、アシルフォスフィンオキサイド化合物、チタノセン化合物、オキシムエステル化合物、ベンゾインエーテル化合物、チオキサントン化合物等が挙げられる。
上記光重合開始剤としては、具体的には例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタノン、2-(ジメチルアミノ)-2-((4-メチルフェニル)メチル)-1-(4-(4-モルホリニル)フェニル)-1-ブタノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、1-(4-(2-ヒドロキシエトキシ)-フェニル)-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、1-(4-(フェニルチオ)フェニル)-1,2-オクタンジオン2-(O-ベンゾイルオキシム)、2-(アセトキシイミノ)-1-(4-(4-(2-ヒドロキシエトキシ)フェニルチオ)フェニル)プロパン-1-オン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド等が挙げられる。
上記光重合開始剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
The sealant for liquid crystal display elements of the present invention preferably contains a photopolymerization initiator.
Examples of the photopolymerization initiator include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, and thioxanthone compounds.
Specific examples of the photopolymerization initiator include 1-hydroxycyclohexylphenyl ketone, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-1-butanone, 2-(dimethylamino) -2-((4-methylphenyl)methyl)-1-(4-(4-morpholinyl)phenyl)-1-butanone, 2,2-dimethoxy-1,2-diphenylethan-1-one, bis(2 ,4,6-trimethylbenzoyl)phenylphosphine oxide, 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one, 1-(4-(2-hydroxyethoxy)-phenyl)- 2-hydroxy-2-methyl-1-propan-1-one, 1-(4-(phenylthio)phenyl)-1,2-octanedione 2-(O-benzoyloxime), 2-(acetoxyimino)-1 -(4-(4-(2-hydroxyethoxy)phenylthio)phenyl)propan-1-one, 2,4,6-trimethylbenzoyldiphenylphosphine oxide and the like.
The photopolymerization initiators may be used alone, or two or more of them may be used in combination.
上記光重合開始剤の含有量は、上記硬化性樹脂100質量部に対して、好ましい下限が0.5質量部、好ましい上限が10質量部である。上記光重合開始剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤が液晶汚染の発生を抑制しつつ、保存安定性や光硬化性により優れるものとなる。上記光重合開始剤の含有量のより好ましい下限は1質量部、より好ましい上限は7質量部である。 The preferable lower limit of the content of the photopolymerization initiator is 0.5 parts by mass, and the preferable upper limit thereof is 10 parts by mass with respect to 100 parts by mass of the curable resin. When the content of the photopolymerization initiator is within this range, the resulting sealing compound for liquid crystal display elements is excellent in storage stability and photocurability while suppressing the occurrence of liquid crystal contamination. A more preferable lower limit for the content of the photopolymerization initiator is 1 part by mass, and a more preferable upper limit is 7 parts by mass.
本発明の液晶表示素子用シール剤は、熱ラジカル重合開始剤を含有することが好ましい。
上記熱ラジカル重合開始剤としては、例えば、アゾ化合物や有機過酸化物等で構成されるものが挙げられる。なかでも、液晶汚染を抑制する観点から、アゾ化合物で構成される開始剤(以下、「アゾ開始剤」ともいう)が好ましい。
上記熱ラジカル重合開始剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
The sealing compound for liquid crystal display elements of the present invention preferably contains a thermal radical polymerization initiator.
Examples of the thermal radical polymerization initiator include those composed of azo compounds, organic peroxides, and the like. Among them, an initiator composed of an azo compound (hereinafter also referred to as "azo initiator") is preferable from the viewpoint of suppressing liquid crystal contamination.
The thermal radical polymerization initiators may be used alone, or two or more of them may be used in combination.
上記アゾ化合物としては、例えば、アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有するものが挙げられる。
上記アゾ基を介してポリアルキレンオキサイド等のユニットが複数結合した構造を有する高分子アゾ化合物としては、ポリエチレンオキサイド構造を有するものが好ましい。
上記アゾ化合物としては、具体的には例えば、4,4’-アゾビス(4-シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4’-アゾビス(4-シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられる。
上記アゾ開始剤としては、例えば、VPE-0201、VPE-0401、VPE-0601、VPS-0501、VPS-1001、V-65、V-501(いずれも富士フイルム和光純薬社製)等が挙げられる。
Examples of the azo compound include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
As the polymer azo compound having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group, one having a polyethylene oxide structure is preferable.
Specific examples of the azo compound include polycondensates of 4,4′-azobis(4-cyanopentanoic acid) and polyalkylene glycol, 4,4′-azobis(4-cyanopentanoic acid) and terminal Examples include polycondensates of polydimethylsiloxane having amino groups.
Examples of the azo initiator include VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001, V-65, V-501 (all manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.). be done.
上記有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。 Examples of the organic peroxides include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, peroxyesters, diacyl peroxides and peroxydicarbonates.
上記熱ラジカル重合開始剤の含有量は、上記硬化性樹脂100質量部に対して、好ましい下限が0.1質量部、好ましい上限が10質量部である。上記熱ラジカル重合開始剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤が液晶汚染の発生を抑制しつつ、保存安定性や熱硬化性により優れるものとなる。上記熱ラジカル重合開始剤の含有量のより好ましい下限は0.3質量部、より好ましい上限は5質量部である。 The content of the thermal radical polymerization initiator has a preferable lower limit of 0.1 parts by mass and a preferable upper limit of 10 parts by mass with respect to 100 parts by mass of the curable resin. When the content of the thermal radical polymerization initiator is within this range, the resulting sealing compound for liquid crystal display elements is excellent in storage stability and thermosetting property while suppressing the occurrence of liquid crystal contamination. A more preferable lower limit to the content of the thermal radical polymerization initiator is 0.3 parts by mass, and a more preferable upper limit is 5 parts by mass.
本発明の液晶表示素子用シール剤は、硬化促進剤を含有することが好ましい。上記硬化促進剤を含有することにより、硬化時間を短縮させて生産性を向上させることができ、かつ、得られる液晶表示素子用シール剤が基板及び配向膜に対する接着性により優れるものとなる。 The sealant for liquid crystal display elements of the present invention preferably contains a curing accelerator. By containing the curing accelerator, the curing time can be shortened to improve the productivity, and the obtained sealing compound for liquid crystal display elements has excellent adhesiveness to the substrate and the alignment film.
上記硬化促進剤としては、反応速度及び接着性の観点から、イミダゾール系硬化促進剤が好適に用いられる。
上記イミダゾール系硬化促進剤としては、例えば、1-シアノエチル-2-フェニルイミダゾール、2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’))-エチル-s-トリアジン、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等が挙げられる。
As the curing accelerator, an imidazole-based curing accelerator is preferably used from the viewpoint of reaction speed and adhesiveness.
Examples of the imidazole curing accelerator include 1-cyanoethyl-2-phenylimidazole, 2,4-diamino-6-(2'-methylimidazolyl-(1'))-ethyl-s-triazine, 2-phenyl -4-methyl-5-hydroxymethylimidazole and the like.
上記硬化促進剤の含有量は、上記硬化性樹脂100質量部に対して、好ましい下限が0.05質量部、好ましい上限が3質量部である。上記硬化促進剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤が反応速度及び接着性により優れるものとなる。上記硬化促進剤の含有量のより好ましい下限は0.1質量部である。 The content of the curing accelerator has a preferable lower limit of 0.05 parts by mass and a preferable upper limit of 3 parts by mass with respect to 100 parts by mass of the curable resin. When the content of the curing accelerator is within this range, the obtained sealing compound for liquid crystal display elements is excellent in reaction speed and adhesiveness. A more preferable lower limit for the content of the curing accelerator is 0.1 part by mass.
本発明の液晶表示素子用シール剤は、粘度の向上、応力分散効果による接着性の改善、線膨張率の改善、硬化物の耐湿性の向上等を目的として充填剤を含有してもよい。 The sealant for liquid crystal display elements of the present invention may contain a filler for the purpose of improving viscosity, improving adhesiveness due to stress dispersion effect, improving coefficient of linear expansion, improving moisture resistance of the cured product, and the like.
上記充填剤としては、無機充填剤や有機充填剤を用いることができる。
上記無機充填剤としては、例えば、シリカ、タルク、ガラスビーズ、石綿、石膏、珪藻土、スメクタイト、ベントナイト、モンモリロナイト、セリサイト、活性白土、アルミナ、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、水酸化アルミニウム、窒化アルミニウム、窒化珪素、硫酸バリウム、珪酸カルシウム等が挙げられる。
上記有機充填剤としては、例えば、ポリエステル微粒子、ポリウレタン微粒子、ビニル重合体微粒子、アクリル重合体微粒子等が挙げられる。
上記充填剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
An inorganic filler or an organic filler can be used as the filler.
Examples of inorganic fillers include silica, talc, glass beads, asbestos, gypsum, diatomaceous earth, smectite, bentonite, montmorillonite, sericite, activated clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, and titanium oxide. , calcium carbonate, magnesium carbonate, magnesium hydroxide, aluminum hydroxide, aluminum nitride, silicon nitride, barium sulfate, calcium silicate and the like.
Examples of the organic filler include polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, and the like.
The above fillers may be used alone, or two or more of them may be used in combination.
本発明の液晶表示素子用シール剤100質量部中における上記充填剤の含有量の好ましい下限は10質量部、好ましい上限は70質量部である。上記充填剤の含有量がこの範囲であることにより、塗布性等を悪化させることなく、接着性の改善等の効果により優れるものとなる。上記充填剤の含有量のより好ましい下限は20質量部、より好ましい上限は60質量部である。 A preferable lower limit of the content of the filler in 100 parts by mass of the sealing compound for liquid crystal display elements of the present invention is 10 parts by mass, and a preferable upper limit thereof is 70 parts by mass. When the content of the filler is within this range, the effect of improving adhesiveness, etc., is excellent without deteriorating coating properties, etc. A more preferable lower limit of the filler content is 20 parts by mass, and a more preferable upper limit is 60 parts by mass.
本発明の液晶表示素子用シール剤は、シランカップリング剤を含有してもよい。上記シランカップリング剤は、主に液晶表示素子用シール剤と基板等とを良好に接着するための接着助剤としての役割を有する。 The sealing compound for liquid crystal display elements of the present invention may contain a silane coupling agent. The silane coupling agent mainly functions as an adhesion assistant for good adhesion between the liquid crystal display element sealing compound and the substrate.
上記シランカップリング剤としては、例えば、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が好適に用いられる。これらは、基板等との接着性を向上させる効果に優れ、硬化性樹脂と化学結合することにより液晶中への硬化性樹脂の流出を抑制することができる。なかでも、3-グリシドキシプロピルトリメトキシシランが好ましい。
上記シランカップリング剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
As the silane coupling agent, for example, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane and the like are preferably used. These are excellent in the effect of improving the adhesiveness to a substrate or the like, and can suppress the outflow of the curable resin into the liquid crystal by chemically bonding with the curable resin. Among them, 3-glycidoxypropyltrimethoxysilane is preferred.
The silane coupling agents may be used alone, or two or more of them may be used in combination.
本発明の液晶表示素子用シール剤100質量部中における上記シランカップリング剤の含有量の好ましい下限は0.1質量部、好ましい上限は10質量部である。上記シランカップリング剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤が液晶汚染の発生を抑制しつつ、接着性を向上させる効果により優れるものとなる。上記シランカップリング剤の含有量のより好ましい下限は0.3質量部、より好ましい上限は5質量部である。 A preferable lower limit of the content of the silane coupling agent in 100 parts by mass of the liquid crystal display element sealing compound of the present invention is 0.1 parts by mass, and a preferable upper limit thereof is 10 parts by mass. When the content of the silane coupling agent is within this range, the obtained sealing compound for liquid crystal display elements is excellent in the effect of improving adhesiveness while suppressing the occurrence of liquid crystal contamination. A more preferable lower limit to the content of the silane coupling agent is 0.3 parts by mass, and a more preferable upper limit is 5 parts by mass.
本発明の液晶表示素子用シール剤は、遮光剤を含有してもよい。上記遮光剤を含有することにより、本発明の液晶表示素子用シール剤を遮光シール剤として好適に用いることができる。 The sealant for liquid crystal display elements of the present invention may contain a light shielding agent. By containing the light shielding agent, the sealant for liquid crystal display elements of the present invention can be suitably used as a light shielding sealant.
上記遮光剤としては、例えば、酸化鉄、チタンブラック、アニリンブラック、シアニンブラック、フラーレン、カーボンブラック、樹脂被覆型カーボンブラック等が挙げられる。なかでも、チタンブラックが好ましい。 Examples of the light shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black. Among them, titanium black is preferred.
上記チタンブラックは、波長300nm以上800nm以下の光に対する平均透過率と比較して、紫外線領域付近、特に波長370nm以上450nm以下の光に対する透過率が高くなる物質である。即ち、上記チタンブラックは、可視光領域の波長の光を充分に遮蔽することで本発明の液晶表示素子用シール剤に遮光性を付与する一方、紫外線領域付近の波長の光は透過させる性質を有する遮光剤である。従って、上記光重合開始剤として、上記チタンブラックの透過率の高くなる波長の光によって反応を開始可能なものを用いることで、本発明の液晶表示素子用シール剤の光硬化性をより増大させることができる。また一方で、本発明の液晶表示素子用シール剤に含有される遮光剤としては、絶縁性の高い物質が好ましく、絶縁性の高い遮光剤としてもチタンブラックが好適である。
上記チタンブラックは、1μmあたりの光学濃度(OD値)が、3以上であることが好ましく、4以上であることがより好ましい。上記チタンブラックの遮光性は高ければ高いほどよく、上記チタンブラックのOD値に好ましい上限は特にないが、通常は5以下となる。
Titanium black is a substance that exhibits a higher transmittance for light in the vicinity of the ultraviolet region, particularly light with a wavelength of 370 nm or more and 450 nm or less, than average transmittance for light with a wavelength of 300 nm or more and 800 nm or less. That is, the titanium black has a property of imparting a light-shielding property to the sealing agent for a liquid crystal display element of the present invention by sufficiently shielding light of wavelengths in the visible light region, while transmitting light of wavelengths in the vicinity of the ultraviolet region. It is a light-shielding agent with Therefore, by using a photopolymerization initiator capable of initiating a reaction by light having a wavelength at which the transmittance of the titanium black increases, the photocuring property of the sealant for a liquid crystal display element of the present invention is further increased. be able to. On the other hand, as the light shielding agent contained in the sealant for liquid crystal display elements of the present invention, a highly insulating substance is preferable, and titanium black is also suitable as the highly insulating light shielding agent.
The above titanium black preferably has an optical density (OD value) per 1 μm of 3 or more, more preferably 4 or more. The higher the light shielding property of the titanium black, the better. Although there is no particular upper limit for the OD value of the titanium black, it is usually 5 or less.
上記チタンブラックは、表面処理されていないものでも充分な効果を発揮するが、表面がカップリング剤等の有機成分で処理されているものや、酸化ケイ素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等の無機成分で被覆されているもの等、表面処理されたチタンブラックを用いることもできる。なかでも、有機成分で処理されているものは、より絶縁性を向上できる点で好ましい。
また、遮光剤として上記チタンブラックを配合した本発明の液晶表示素子用シール剤を用いて製造した液晶表示素子は、充分な遮光性を有するため、光の漏れ出しがなく高いコントラストを有し、優れた画像表示品質を有する液晶表示素子を実現することができる。
The above titanium black exerts a sufficient effect even if it is not surface-treated, but it can also be used when the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, oxide. Surface-treated titanium blacks, such as those coated with inorganic components such as zirconium and magnesium oxide, can also be used. Among them, those treated with an organic component are preferable because they can further improve the insulating properties.
Further, the liquid crystal display device manufactured using the sealing agent for a liquid crystal display device of the present invention in which the above-described titanium black is blended as a light shielding agent has sufficient light shielding properties, so that light does not leak out and has high contrast. A liquid crystal display element having excellent image display quality can be realized.
上記チタンブラックのうち市販されているものとしては、例えば、三菱マテリアル社製のチタンブラック、赤穂化成社製のチタンブラック等が挙げられる。
上記三菱マテリアル社製のチタンブラックとしては、例えば、12S、13M、13M-C、13R-N、14M-C等が挙げられる。
上記赤穂化成社製のチタンブラックとしては、例えば、ティラックD等が挙げられる。
Examples of commercially available titanium blacks include titanium black manufactured by Mitsubishi Materials Corporation, titanium black manufactured by Ako Kasei Co., Ltd., and the like.
Examples of titanium black manufactured by Mitsubishi Materials Corporation include 12S, 13M, 13M-C, 13R-N, and 14M-C.
Examples of the titanium black manufactured by Ako Kasei Co., Ltd. include Tilak D and the like.
上記チタンブラックの比表面積の好ましい下限は13m/g、好ましい上限は30m/gであり、より好ましい下限は15m/g、より好ましい上限は25m/gである。
また、上記チタンブラックの体積抵抗の好ましい下限は0.5Ω・cm、好ましい上限は3Ω・cmであり、より好ましい下限は1Ω・cm、より好ましい上限は2.5Ω・cmである。
The specific surface area of the titanium black has a preferred lower limit of 13 m 2 /g, a preferred upper limit of 30 m 2 /g, a more preferred lower limit of 15 m 2 /g, and a more preferred upper limit of 25 m 2 /g.
The preferred lower limit of the volume resistivity of titanium black is 0.5 Ω·cm, the preferred upper limit is 3 Ω·cm, the more preferred lower limit is 1 Ω·cm, and the more preferred upper limit is 2.5 Ω·cm.
上記遮光剤の一次粒子径は、液晶表示素子の基板間の距離以下であれば特に限定されないが、好ましい下限は1nm、好ましい上限は5000nmである。上記遮光剤の一次粒子径がこの範囲であることにより、得られる液晶表示素子用シール剤の塗布性等を悪化させることなく遮光性により優れるものとすることができる。上記遮光剤の一次粒子径のより好ましい下限は5nm、より好ましい上限は200nm、更に好ましい下限は10nm、更に好ましい上限は100nmである。
なお、上記遮光剤の一次粒子径は、NICOMP 380ZLS(PARTICLE SIZING SYSTEMS社製)を用いて、上記遮光剤を溶媒(水、有機溶媒等)に分散させて測定することができる。
The primary particle size of the light shielding agent is not particularly limited as long as it is equal to or smaller than the distance between the substrates of the liquid crystal display element, but the preferred lower limit is 1 nm and the preferred upper limit is 5000 nm. When the primary particle size of the light shielding agent is within this range, the obtained sealing agent for liquid crystal display elements can be made more excellent in light shielding properties without deteriorating the applicability or the like. The primary particle size of the light shielding agent has a more preferable lower limit of 5 nm, a more preferable upper limit of 200 nm, a still more preferable lower limit of 10 nm, and a still more preferable upper limit of 100 nm.
The primary particle size of the light shielding agent can be measured by dispersing the light shielding agent in a solvent (water, organic solvent, etc.) using NICOMP 380ZLS (manufactured by PARTICLE SIZING SYSTEMS).
本発明の液晶表示素子用シール剤100質量部中における上記遮光剤の含有量の好ましい下限は5質量部、好ましい上限は80質量部である。上記遮光剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤の接着性、硬化後の強度、及び、描画性を大きく低下させることなく、より優れた遮光性を発揮することができる。上記遮光剤の含有量のより好ましい下限は10質量部、より好ましい上限は70質量部であり、更に好ましい下限は30質量部、更に好ましい上限は60質量部である。 A preferable lower limit of the content of the light shielding agent in 100 parts by mass of the liquid crystal display element sealing compound of the present invention is 5 parts by mass, and a preferable upper limit thereof is 80 parts by mass. When the content of the light-shielding agent is within this range, the obtained sealant for liquid crystal display elements exhibits excellent light-shielding properties without significantly deteriorating the adhesiveness, strength after curing, and drawability. be able to. A more preferable lower limit of the content of the light shielding agent is 10 parts by mass, a more preferable upper limit is 70 parts by mass, a still more preferable lower limit is 30 parts by mass, and a further preferable upper limit is 60 parts by mass.
本発明の液晶表示素子用シール剤は、更に、必要に応じて、応力緩和剤、反応性希釈剤、揺変剤、スペーサー、硬化促進剤、消泡剤、レベリング剤、重合禁止剤等の添加剤を含有してもよい。 The sealant for liquid crystal display elements of the present invention may further contain, if necessary, stress relaxation agents, reactive diluents, thixotropic agents, spacers, curing accelerators, antifoaming agents, leveling agents, polymerization inhibitors, and the like. It may contain an agent.
本発明の液晶表示素子用シール剤を製造する方法としては、例えば、混合機を用いて、硬化性樹脂と、熱硬化剤と、必要に応じて添加される光ラジカル重合開始剤等とを混合する方法等が挙げられる。
上記混合機としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等が挙げられる。
As a method for producing the liquid crystal display element sealing compound of the present invention, for example, a mixer is used to mix a curable resin, a thermosetting agent, and a photoradical polymerization initiator to be added as necessary. and the like.
Examples of the mixer include a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and three rolls.
本発明の液晶表示素子用シール剤は、硬化後の10%重量減少温度の好ましい下限が350℃である。上記硬化後の10%重量減少温度が350℃以上であることにより、本発明の液晶表示素子用シール剤は、特に耐熱性を要する接着剤等としても好適に用いることができる。また、上記硬化後の10%重量減少温度の好ましい上限は特にないが、実質的な上限は450℃である。
なお、上記10%重量減少温度は、示差熱熱重量同時測定装置を用いて、昇温速度10℃/minで30℃から450℃までの昇温条件で熱重量測定を行うことにより導出することができる。上記示差熱熱重量同時測定装置としては、例えば、STA7200(日立ハイテクサイエンス社製)等が挙げられる。また、上記10%重量減少温度を測定する硬化物としては、液晶表示素子用シール剤にメタルハライドランプにて3000mJ/cmの紫外線を照射した後、120℃で60分加熱することにより硬化させ、厚さが500μmとなるようにしたものが用いられる。
The preferable lower limit of the 10% weight loss temperature after curing of the sealant for liquid crystal display elements of the present invention is 350°C. Since the 10% weight loss temperature after curing is 350° C. or higher, the sealant for liquid crystal display elements of the present invention can be suitably used as an adhesive or the like that particularly requires heat resistance. Although there is no particular upper limit for the 10% weight loss temperature after curing, the practical upper limit is 450°C.
The 10% weight loss temperature is derived by performing thermogravimetric measurement at a temperature elevation rate of 10°C/min from 30°C to 450°C using a simultaneous differential thermogravimetric measurement device. can be done. Examples of the simultaneous differential thermal thermogravimetric measurement device include STA7200 (manufactured by Hitachi High-Tech Science Co., Ltd.). Further, as the cured product for measuring the 10% weight loss temperature, the liquid crystal display element sealant is irradiated with ultraviolet rays of 3000 mJ/cm 2 with a metal halide lamp, and then cured by heating at 120 ° C. for 60 minutes. A material having a thickness of 500 μm is used.
本発明の液晶表示素子用シール剤に導電性微粒子を配合することにより、上下導通材料を製造することができる。
上記導電性微粒子としては、例えば、金属ボール、樹脂微粒子の表面に導電金属層を形成したもの等を用いることができる。なかでも、樹脂微粒子の表面に導電金属層を形成したものは、樹脂微粒子の優れた弾性により、透明基板等を損傷することなく導電接続が可能であることから好適である。
By blending the conductive fine particles into the liquid crystal display element sealant of the present invention, a vertically conducting material can be produced.
As the conductive fine particles, for example, metal balls, resin fine particles having a conductive metal layer formed on the surface thereof, and the like can be used. Among them, those having a conductive metal layer formed on the surface of the resin fine particles are preferable because the excellent elasticity of the resin fine particles enables conductive connection without damaging the transparent substrate or the like.
本発明の液晶表示素子用シール剤の硬化物を有する液晶表示素子もまた、本発明の1つである。 A liquid crystal display element having a cured product of the sealant for a liquid crystal display element of the present invention is also one aspect of the present invention.
本発明の液晶表示素子としては、狭額縁設計の液晶表示素子が好ましい。具体的には、液晶表示部の周囲の枠部分の幅が2mm以下であることが好ましい。
また、本発明の液晶表示素子を製造する際の本発明の液晶表示素子用シール剤の塗布幅は1mm以下であることが好ましい。
As the liquid crystal display element of the present invention, a liquid crystal display element having a narrow frame design is preferable. Specifically, it is preferable that the width of the frame portion around the liquid crystal display section is 2 mm or less.
Moreover, it is preferable that the coating width of the sealant for a liquid crystal display element of the present invention when manufacturing the liquid crystal display element of the present invention is 1 mm or less.
本発明の液晶表示素子用シール剤は、液晶滴下工法による液晶表示素子の製造に好適に用いることができる。
液晶滴下工法によって本発明の液晶表示素子を製造する方法としては、例えば、以下の方法等が挙げられる。
まず、基板に本発明の液晶表示素子用シール剤を、スクリーン印刷、ディスペンサー塗布等により塗布して枠状のシールパターンを形成する工程を行う。次いで、本発明の液晶表示素子用シール剤が未硬化の状態で液晶の微小滴をシールパターンの枠内全面に滴下塗布し、すぐに別の基板を重ね合わせる工程を行う。その後、シール剤を加熱して硬化させる工程を行う方法により、液晶表示素子を得ることができる。また、シール剤を加熱して硬化させる工程の前にシールパターン部分に紫外線等の光を照射してシール剤を仮硬化させる工程を行ってもよい。
The sealing compound for liquid crystal display elements of the present invention can be suitably used for manufacturing liquid crystal display elements by the liquid crystal dropping method.
Examples of the method for manufacturing the liquid crystal display element of the present invention by the liquid crystal dropping method include the following methods.
First, a step of forming a frame-shaped seal pattern by applying the sealant for a liquid crystal display element of the present invention to a substrate by screen printing, dispenser coating, or the like is performed. Next, a step of applying liquid crystal microdroplets to the entire surface of the frame of the seal pattern while the sealant for a liquid crystal display element of the present invention is in an uncured state, and immediately superimposing another substrate is performed. After that, a liquid crystal display element can be obtained by a method of performing a step of heating and curing the sealant. Moreover, before the step of heating and curing the sealant, a step of temporarily curing the sealant by irradiating the seal pattern portion with light such as ultraviolet rays may be performed.
本発明によれば、保存安定性、接着性、及び、低液晶汚染性に優れる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いてなる液晶表示素子、及び、該液晶表示素子用シール剤に用いることができる多価ヒドラジド化合物を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the sealing compound for liquid crystal display elements which is excellent in storage stability, adhesiveness, and low-liquid-crystal contamination property can be provided. Further, according to the present invention, it is possible to provide a liquid crystal display element using the sealing agent for liquid crystal display elements, and a polyhydric hydrazide compound that can be used for the sealing agent for liquid crystal display elements.
図1は、「(低液晶汚染性)」の評価における実施例7で得られた液晶表示素子用シール剤を用いて作製した液晶表示素子の偏光顕微鏡像である。FIG. 1 is a polarizing microscope image of a liquid crystal display element produced using the liquid crystal display element sealing compound obtained in Example 7 in the evaluation of "(low liquid crystal contamination)". 図2は、「(低液晶汚染性)」の評価における比較例5で得られた液晶表示素子用シール剤を用いて作製した液晶表示素子の偏光顕微鏡像である。FIG. 2 is a polarizing microscope image of a liquid crystal display device produced using the liquid crystal display device sealant obtained in Comparative Example 5 in the evaluation of “(low liquid crystal contamination)”.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 EXAMPLES The present invention will be described in more detail with reference to Examples below, but the present invention is not limited to these Examples.
(式(7)で表される化合物の作製)
メタノール溶媒2L中において、4,4-ジフェニルジカルボキシスルホン酸200gを0.5当量の硫酸と共に還流させながら3日間撹拌することで、メチルエステル化体を合成した。次いで、得られたメチルエステル化体を含む溶液を室温まで降温させた後に炭酸水素カルシウム水溶液で中和した。中和後の溶液から溶媒を減圧留去した後、THF及び食塩水で分液することで、中間体を精製した。得られた中間体を再びメタノール溶媒中でヒドラジン水和物と共に室温条件下で撹拌し、上記式(7)で表される化合物を作製した。
なお、得られた上記式(7)で表される化合物の構造は、H-NMR及びFT-IR分析により確認した。
(Preparation of compound represented by formula (7))
A methyl ester was synthesized by stirring 200 g of 4,4-diphenyldicarboxysulfonic acid with 0.5 equivalent of sulfuric acid in 2 L of methanol solvent under reflux for 3 days. Then, the obtained solution containing the methyl ester was cooled to room temperature and then neutralized with an aqueous calcium hydrogencarbonate solution. After the solvent was distilled off from the neutralized solution under reduced pressure, the intermediate was purified by liquid separation with THF and brine. The resulting intermediate was again stirred in methanol solvent together with hydrazine hydrate under room temperature conditions to prepare the compound represented by the above formula (7).
The structure of the obtained compound represented by formula (7) was confirmed by 1 H-NMR and FT-IR analysis.
(実施例1~24、比較例1~13)
表1~3に記載された配合比に従い、各材料を、遊星式撹拌機(シンキー社製、「あわとり練太郎」)を用いて混合した後、更に3本ロールを用いて混合することにより実施例1~24、比較例1~13の各液晶表示素子用シール剤を調製した。
実施例1~6、比較例1~4で用いた各熱硬化剤を構成する全ての原子について、平均電荷の値から原子固有の理論電荷の値を減じて得られる値を算出した。各原子について得られた値のうち、最大となった値を表1に示した。
また、実施例1~6、比較例1~4で用いた各熱硬化剤におけるビスフェノールFジグリシジルエーテルとの反応開始温度を、以下の方法により測定した。即ち、まず、熱硬化剤10gとビスフェノールFジグリシジルエーテル100gとを、遊星式撹拌機(シンキー社製、「あわとり練太郎」)を用いて撹拌速度2000rpmで1分間撹拌した。次いで、得られた混合物0.1gをアルミパン(日立ハイテクサイエンス社製、「RDC Pan」、「RDC Pan cover」)に載せ、示差走査熱量計(日立ハイテクサイエンス社製、「DSC200」)を用いて、40℃~250℃の温度範囲、5℃/minの昇温速度にて示差走査熱量測定を行った。発熱量が発熱量ピークの10%になった際の温度(発熱量ピークが複数存在する場合は最大の発熱量ピークの10%になった温度)を反応開始温度とした。結果を表1に示した。
(Examples 1 to 24, Comparative Examples 1 to 13)
According to the compounding ratios shown in Tables 1 to 3, each material was mixed using a planetary stirrer (manufactured by Thinky Co., Ltd., "Awatori Mixer"), and then further mixed using three rolls. Sealants for liquid crystal display elements of Examples 1 to 24 and Comparative Examples 1 to 13 were prepared.
For all atoms constituting each thermosetting agent used in Examples 1 to 6 and Comparative Examples 1 to 4, the value obtained by subtracting the value of the theoretical charge inherent to the atom from the value of the average charge was calculated. Table 1 shows the maximum value among the values obtained for each atom.
In addition, the reaction initiation temperature with bisphenol F diglycidyl ether in each thermosetting agent used in Examples 1 to 6 and Comparative Examples 1 to 4 was measured by the following method. That is, first, 10 g of the thermosetting agent and 100 g of bisphenol F diglycidyl ether were stirred at a stirring speed of 2000 rpm for 1 minute using a planetary stirrer (manufactured by THINKY Co., Ltd., "Awatori Mixer"). Next, 0.1 g of the resulting mixture was placed on an aluminum pan (manufactured by Hitachi High-Tech Science, "RDC Pan", "RDC Pan cover"), and a differential scanning calorimeter (manufactured by Hitachi High-Tech Science, "DSC200") was used. Differential scanning calorimetry was performed at a temperature range of 40° C. to 250° C. and a heating rate of 5° C./min. The temperature at which the calorific value reached 10% of the calorific value peak (when there were multiple calorific value peaks, the temperature at which the calorific value reached 10% of the maximum calorific value peak) was defined as the reaction initiation temperature. Table 1 shows the results.
<評価>
実施例1~24、比較例1~13で得られた各液晶表示素子用シール剤について以下の評価を行った。結果を表1~3に示した。
<Evaluation>
The sealants for liquid crystal display elements obtained in Examples 1 to 24 and Comparative Examples 1 to 13 were evaluated as follows. The results are shown in Tables 1-3.
(保存安定性)
実施例1~24、比較例1~13で得られた各液晶表示素子用シール剤について、製造直後の初期粘度と、製造後に25℃で1週間保管した後の粘度とを測定した。(保管後の粘度)/(初期粘度)を増粘率とし、増粘率が2.0未満であったものを「○」、2.0以上3.0未満であったものを「△」、3.0以上であったものを「×」として保存安定性を評価した。
なお、液晶表示素子用シール剤の粘度は、E型粘度計(BROOK FIELD社製、「DV-III」)を用い、25℃において回転速度1.0rpmの条件で測定した。
(Storage stability)
The initial viscosities immediately after production and the viscosities after storage at 25° C. for 1 week after production were measured for each sealing compound for liquid crystal display elements obtained in Examples 1 to 24 and Comparative Examples 1 to 13. (Viscosity after storage) / (initial viscosity) is defined as the viscosity increase rate, and "○" indicates that the viscosity increase rate is less than 2.0, and "△" indicates that the viscosity increase rate is 2.0 or more and less than 3.0. , 3.0 or more, the storage stability was evaluated as "x".
The viscosity of the liquid crystal display element sealant was measured using an E-type viscometer (“DV-III” manufactured by BROOK FIELD) at 25° C. and a rotational speed of 1.0 rpm.
(接着性)
実施例1~24、比較例1~13で得られた各液晶表示素子用シール剤100質量部にスペーサー微粒子1質量部を分散させた。スペーサー微粒子としては、ミクロパールSI-H050(積水化学工業社製)を用いた。次いで、スペーサー粒子を分散させた液晶表示素子用シール剤を、2枚のITO薄膜付きガラス基板(長さ4.5mm、幅2.5mm)のうちの一方に微小滴下した。これにもう一方のITO薄膜付きガラス基板を十字状に貼り合わせ、メタルハライドランプにて3000mJ/cmの紫外線を照射した後、120℃で60分加熱することによって接着性試験片を得た。作製した接着性試験片における基板の端部を半径5mmの金属円柱を使って5mm/minの速度で押し込んだときに、パネル剥がれが起こる際の強度を測定した。
得られた測定値(kgf)をシール直径(cm)で除した値が、3.0kgf/cm以上であった場合を「○」、2.0kgf/cmを超え3.0kgf/cm未満であった場合を「△」、2.0kgf/cm以下であった場合を「×」として接着性を評価した。
また、ITO薄膜付きガラス基板に代えてTN用ポリイミド配向膜(日産化学社製、「SE6414」)付きガラス基板を用いて同様にして接着性を評価した。
(Adhesiveness)
1 part by mass of spacer fine particles was dispersed in 100 parts by mass of each sealing agent for liquid crystal display elements obtained in Examples 1 to 24 and Comparative Examples 1 to 13. Micropearl SI-H050 (manufactured by Sekisui Chemical Co., Ltd.) was used as the spacer fine particles. Next, a liquid crystal display element sealant in which spacer particles were dispersed was minutely dropped onto one of the two glass substrates (length 4.5 mm, width 2.5 mm) with an ITO thin film. Another ITO thin film-coated glass substrate was attached to this in a cross shape, irradiated with ultraviolet rays of 3000 mJ/cm 2 with a metal halide lamp, and then heated at 120° C. for 60 minutes to obtain an adhesive test piece. When the edge of the substrate in the prepared adhesive test piece was pushed at a speed of 5 mm/min using a metal cylinder with a radius of 5 mm, the strength at which panel peeling occurred was measured.
If the value obtained by dividing the obtained measured value (kgf) by the seal diameter (cm) is 3.0 kgf/cm or more, "○", more than 2.0 kgf/cm and less than 3.0 kgf/cm Adhesiveness was evaluated as "Δ" when it was not more than 2.0 kgf/cm, and as "X" when it was 2.0 kgf/cm or less.
Further, a glass substrate with a polyimide alignment film for TN (manufactured by Nissan Chemical Industries, Ltd., "SE6414") was used instead of the glass substrate with the ITO thin film, and the adhesion was evaluated in the same manner.
(低液晶汚染性)
実施例1~24、比較例1~13で得られた各液晶表示素子用シール剤100質量部に平均粒子径7μmのスペーサー微粒子(積水化学工業社製、「ミクロパールSI-H050」)1質量部を分散させ、シリンジに充填し、遠心脱泡機(武蔵エンジニアリング社製、「アワトロンAW-1」)にて脱泡した。脱泡処理後の液晶表示素子用シール剤を、ディスペンサーを用いて、ノズル径0.4mmφ、ノズルギャップ42μm、シリンジの吐出圧100~400kPa、塗布速度60mm/secの条件で2枚の配向膜及びITO薄膜付きガラス基板の一方に枠状に塗布した。配向膜は、日産化学社製のRB-005を使用し、波長254nmの偏向光を300mJ/cm照射して配向処理を行った。このとき、液晶表示素子用シール剤の線幅が約1.0mmとなるように吐出圧を調整した。続いて液晶(JNC TAIWAN社製、「JC-7129XX」)の微小滴を、液晶表示素子用シール剤を塗布した基板の液晶表示素子用シール剤の枠内全面に滴下塗布し、真空下でもう一方の基板を貼り合わせた。貼り合わせた基板について、液晶表示素子用シール剤部分にメタルハライドランプを用いて100mW/cmの紫外線を30秒照射して液晶表示素子用シール剤を仮硬化させた。次いで、120℃で1時間加熱して本硬化を行い、液晶表示素子を作製した。
得られた液晶表示素子について、偏光顕微鏡(キーエンス社製、「VHX-5000」)を用いて、配向乱れ(表示むら)を確認した。配向乱れは表示部の色むらより判断し、液晶表示素子に表示むらが全く見られなかった場合を「○」、表示むらが確認された場合を「×」として低液晶汚染性を評価した。また、実施例7で得られた液晶表示素子用シール剤を用いて作製した液晶表示素子の偏光顕微鏡像を図1に示し、比較例5で得られた液晶表示素子用シール剤を用いて作製した液晶表示素子の偏光顕微鏡像を図2に示した。
(low liquid crystal contamination)
1 mass of spacer fine particles having an average particle diameter of 7 μm (manufactured by Sekisui Chemical Co., Ltd., “Micropearl SI-H050”) was added to 100 parts by mass of each sealing agent for liquid crystal display elements obtained in Examples 1 to 24 and Comparative Examples 1 to 13. The parts were dispersed, filled in a syringe, and defoamed with a centrifugal deaerator (manufactured by Musashi Engineering Co., Ltd., "Awatron AW-1"). Using a dispenser, the sealant for liquid crystal display elements after defoaming treatment is applied to two alignment films and under the conditions of a nozzle diameter of 0.4 mmφ, a nozzle gap of 42 μm, a syringe discharge pressure of 100 to 400 kPa, and a coating speed of 60 mm / sec. It was coated in a frame shape on one side of the glass substrate with the ITO thin film. RB-005 manufactured by Nissan Chemical Industries, Ltd. was used as the alignment film, and alignment treatment was performed by irradiating 300 mJ/cm 2 of polarized light with a wavelength of 254 nm. At this time, the discharge pressure was adjusted so that the line width of the liquid crystal display element sealant was about 1.0 mm. Subsequently, microdroplets of liquid crystal ("JC-7129XX" manufactured by JNC TAIWAN Co., Ltd.) were applied dropwise to the entire surface of the frame of the liquid crystal display element sealing agent on the substrate coated with the liquid crystal display element sealing agent, and then again under vacuum. One substrate was pasted together. With respect to the bonded substrates, the portion of the liquid crystal display element sealing agent was irradiated with ultraviolet rays of 100 mW/cm 2 for 30 seconds using a metal halide lamp to temporarily cure the liquid crystal display element sealing agent. Next, the composition was heated at 120° C. for 1 hour for final curing, thereby producing a liquid crystal display device.
The resulting liquid crystal display device was checked for alignment disorder (display unevenness) using a polarizing microscope ("VHX-5000" manufactured by Keyence Corporation). Orientation disorder was judged from color unevenness in the display portion, and the low liquid crystal contamination resistance was evaluated as "O" when no display unevenness was observed in the liquid crystal display element, and as "X" when display unevenness was observed. FIG. 1 shows a polarizing microscope image of a liquid crystal display element produced using the liquid crystal display element sealing compound obtained in Example 7, and produced using the liquid crystal display element sealing compound obtained in Comparative Example 5. FIG. 2 shows a polarizing microscope image of the liquid crystal display device.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
(式(9)で表される化合物の作製)
メタノール溶媒2L中において、4,4-ジフェニルジカルボキシスルホン酸200gを0.5当量の硫酸と共に還流させながら3日間撹拌することで、メチルエステル化体を合成した。次いで、得られたメチルエステル化体を含む溶液を室温まで降温させた後に炭酸水素カルシウム水溶液で中和した。中和後の溶液から溶媒を減圧留去した後、THF及び食塩水で分液することで、中間体を精製した。得られた中間体を再びメタノール溶媒中でヒドラジン水和物と共に室温条件下で撹拌し、上記式(9)で表される化合物を作製した。
なお、得られた上記式(9)で表される化合物の構造は、H-NMR及びFT-IR分析により確認した。
(Preparation of compound represented by formula (9))
A methyl ester was synthesized by stirring 200 g of 4,4-diphenyldicarboxysulfonic acid with 0.5 equivalent of sulfuric acid in 2 L of methanol solvent under reflux for 3 days. Then, the obtained solution containing the methyl ester was cooled to room temperature and then neutralized with an aqueous calcium hydrogencarbonate solution. After the solvent was distilled off from the neutralized solution under reduced pressure, the intermediate was purified by liquid separation with THF and brine. The resulting intermediate was again stirred in methanol solvent together with hydrazine hydrate under room temperature conditions to prepare the compound represented by the above formula (9).
The structure of the obtained compound represented by formula (9) was confirmed by 1 H-NMR and FT-IR analysis.
(式(10)で表される化合物の作製)
N,N-ジメチルホルムアミド(DMF)溶媒2L中において、2,4-ジヒドロジフェニルスルホン200gを2.5当量のクロロ酢酸エチルと2.5当量の炭酸カリウムと共に80℃で一晩撹拌することで、エチルエステル化体を合成した。次いで、得られたエチルエステル化体を含む溶液を減圧留去することでDMFを除去した。その後、純水を2L添加して撹拌することで炭酸カリウムを溶解させた後に濾過し、エチルエステル化体を精製した。得られたエチルエステル化体をメタノール溶媒2L中でヒドラジン水和物と共に室温条件下で撹拌し、上記式(10)で表される化合物を作製した。
なお、得られた上記式(10)で表される化合物の構造は、H-NMR及びFT-IR分析により確認した。
(Preparation of compound represented by formula (10))
By stirring 200 g of 2,4-dihydrodiphenylsulfone with 2.5 equivalents of ethyl chloroacetate and 2.5 equivalents of potassium carbonate in 2 L of N,N-dimethylformamide (DMF) solvent at 80° C. overnight, An ethyl ester was synthesized. Next, DMF was removed by distilling off the obtained solution containing the ethyl-esterified product under reduced pressure. Thereafter, 2 L of pure water was added and stirred to dissolve potassium carbonate, followed by filtration to purify the ethyl esterified product. The resulting ethyl-esterified product was stirred in 2 L of methanol solvent together with hydrazine hydrate under room temperature conditions to prepare the compound represented by the above formula (10).
The structure of the obtained compound represented by formula (10) was confirmed by 1 H-NMR and FT-IR analysis.
(式(11)で表される化合物の作製)
DMF溶媒2L中において、ビス(3-アミノ-4ヒドロキシフェニル)スルホン200gを2.5当量のクロロ酢酸エチルと2.5当量の炭酸カリウムと共に80℃で一晩撹拌することで、エチルエステル化体を合成した。次いで、得られたエチルエステル化体を含む溶液を減圧留去することでDMFを除去した。その後、純水を2L添加して撹拌することで炭酸カリウムを溶解させた後に濾過し、エチルエステル化体を精製した。得られたエチルエステル化体をメタノール溶媒2L中でヒドラジン水和物と共に室温条件下で撹拌し、上記式(11)で表される化合物を作製した。
なお、得られた上記式(11)で表される化合物の構造は、H-NMR及びFT-IR分析により確認した。
(Preparation of compound represented by formula (11))
In 2 L of DMF solvent, 200 g of bis(3-amino-4-hydroxyphenyl)sulfone was stirred with 2.5 equivalents of ethyl chloroacetate and 2.5 equivalents of potassium carbonate at 80° C. overnight to give the ethyl ester. was synthesized. Next, DMF was removed by distilling off the obtained solution containing the ethyl-esterified product under reduced pressure. Thereafter, 2 L of pure water was added and stirred to dissolve potassium carbonate, followed by filtration to purify the ethyl esterified product. The resulting ethyl-esterified compound was stirred in 2 L of methanol solvent together with hydrazine hydrate under room temperature conditions to prepare the compound represented by the above formula (11).
The structure of the obtained compound represented by formula (11) was confirmed by 1 H-NMR and FT-IR analysis.
(実施例25~30、比較例14、15)
表4に記載された配合比に従い、各材料を、遊星式撹拌機(シンキー社製、「あわとり練太郎」)を用いて混合した後、更に3本ロールを用いて混合することにより実施例25~30、比較例14、15の各液晶表示素子用シール剤を調製した。
(Examples 25-30, Comparative Examples 14 and 15)
According to the compounding ratio shown in Table 4, each material was mixed using a planetary stirrer (manufactured by THINKY Co., Ltd., "Awatori Mixer"), and then further mixed using three rolls. 25 to 30 and Comparative Examples 14 and 15 were prepared as sealants for liquid crystal display elements.
<評価>
実施例25~30、比較例14、15で得られた各液晶表示素子用シール剤について以下の評価を行った。結果を表4に示した。
<Evaluation>
The sealants for liquid crystal display elements obtained in Examples 25 to 30 and Comparative Examples 14 and 15 were evaluated as follows. Table 4 shows the results.
(保存安定性)
実施例25~30、比較例14、15で得られた各液晶表示素子用シール剤について、製造直後の初期粘度と、製造後に25℃で1週間保管した後の粘度とを測定した。(保管後の粘度)/(初期粘度)を増粘率とし、増粘率が2.5未満であったものを「○」、2.5以上4.0未満であったものを「△」、4.0以上であったものを「×」として保存安定性を評価した。
なお、液晶表示素子用シール剤の粘度は、E型粘度計(BROOK FIELD社製、「DV-III」)を用い、25℃において回転速度1.0rpmの条件で測定した。
(Storage stability)
The initial viscosities immediately after production and the viscosities after storage at 25° C. for 1 week after production were measured for each sealing agent for liquid crystal display elements obtained in Examples 25 to 30 and Comparative Examples 14 and 15. (Viscosity after storage) / (initial viscosity) is defined as the viscosity increase rate, and "○" indicates that the viscosity increase rate is less than 2.5, and "△" indicates that the viscosity increase rate is 2.5 or more and less than 4.0. , 4.0 or more, the storage stability was evaluated as "x".
The viscosity of the liquid crystal display element sealant was measured using an E-type viscometer (“DV-III” manufactured by BROOK FIELD) at 25° C. and a rotational speed of 1.0 rpm.
(接着性)
実施例25~30、比較例14、15で得られた各液晶表示素子用シール剤100質量部にスペーサー微粒子1質量部を分散させた。スペーサー微粒子としては、ミクロパールSI-H050(積水化学工業社製)を用いた。次いで、スペーサー粒子を分散させた液晶表示素子用シール剤を、2枚のITO薄膜付きガラス基板(長さ4.5mm、幅2.5mm)のうちの一方に微小滴下した。これにもう一方のITO薄膜付きガラス基板を十字状に貼り合わせ、メタルハライドランプにて3000mJ/cmの紫外線を照射した後、120℃で60分加熱することによって接着性試験片を得た。作製した接着性試験片における基板の端部を半径5mmの金属円柱を使って5mm/minの速度で押し込んだときに、パネル剥がれが起こる際の強度を測定した。
得られた測定値(kgf)を接合部の直径(cm)で除した値が、2.0kgf/cm以上であった場合を「◎」、1.5kgf/cm以上2.0kgf/cm未満であった場合を「○」、1.5kgf/cm未満であった場合を「×」として接着性を評価した。
(Adhesiveness)
In 100 parts by mass of each sealing agent for liquid crystal display elements obtained in Examples 25 to 30 and Comparative Examples 14 and 15, 1 part by mass of spacer fine particles was dispersed. Micropearl SI-H050 (manufactured by Sekisui Chemical Co., Ltd.) was used as the spacer fine particles. Next, a liquid crystal display element sealant in which spacer particles were dispersed was minutely dropped onto one of the two glass substrates (length 4.5 mm, width 2.5 mm) with an ITO thin film. Another ITO thin film-coated glass substrate was attached to this in a cross shape, irradiated with ultraviolet rays of 3000 mJ/cm 2 with a metal halide lamp, and then heated at 120° C. for 60 minutes to obtain an adhesive test piece. When the edge of the substrate in the prepared adhesive test piece was pushed at a speed of 5 mm/min using a metal cylinder with a radius of 5 mm, the strength at which panel peeling occurred was measured.
If the value obtained by dividing the obtained measured value (kgf) by the diameter (cm) of the joint is 2.0 kgf/cm or more, "◎", 1.5 kgf/cm or more and less than 2.0 kgf/cm Adhesiveness was evaluated as "○" when there was some, and as "X" when less than 1.5 kgf/cm.
(耐熱性)
実施例25~30、比較例14、15で得られた各液晶表示素子用シール剤について、メタルハライドランプにて3000mJ/cmの紫外線を照射した後、120℃で60分加熱することによって厚さ500μmの硬化物を得た。得られた硬化物について、示差熱熱重量同時測定装置(日立ハイテクサイエンス社製、「STA7200」)を用いて30℃~450℃、10℃/minの条件にて昇温した際の10%重量減少温度を測定した。
10%重量減少温度が350℃以上であった場合を「○」、340℃以上350℃未満であった場合を「△」、340℃未満であった場合を「×」として耐熱性を評価した。
(Heat-resistant)
The liquid crystal display element sealing agents obtained in Examples 25 to 30 and Comparative Examples 14 and 15 were irradiated with ultraviolet rays of 3000 mJ/cm 2 with a metal halide lamp, and then heated at 120° C. for 60 minutes to obtain a thickness. A cured product of 500 μm was obtained. 10% weight when the obtained cured product is heated under conditions of 30 ° C. to 450 ° C. and 10 ° C./min using a differential thermal thermogravimetric simultaneous measurement device (manufactured by Hitachi High-Tech Science Co., Ltd., "STA7200") Decay temperature was measured.
The heat resistance was evaluated as "○" when the 10% weight loss temperature was 350 ° C. or higher, "Δ" when it was 340 ° C. or higher and lower than 350 ° C., and "x" when it was lower than 340 ° C. .
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
(実施例31~33、比較例16、17)
表5に記載された配合比に従い、各材料を、遊星式撹拌機(シンキー社製、「あわとり練太郎」)を用いて混合した後、更に3本ロールを用いて混合することにより実施例31~33、比較例16、17の各液晶表示素子用シール剤を調製した。
(Examples 31-33, Comparative Examples 16 and 17)
According to the compounding ratio shown in Table 5, each material was mixed using a planetary stirrer (manufactured by THINKY Co., Ltd., "Awatori Mixer"), and then further mixed using a three-roll roll. Sealants for liquid crystal display elements of 31 to 33 and Comparative Examples 16 and 17 were prepared.
<評価>
実施例31~33、比較例16、17で得られた各液晶表示素子用シール剤について以下の評価を行った。結果を表5に示した。
<Evaluation>
The sealants for liquid crystal display elements obtained in Examples 31 to 33 and Comparative Examples 16 and 17 were evaluated as follows. Table 5 shows the results.
(低液晶汚染性)
実施例31~33、比較例16、17で得られた各液晶表示素子用シール剤100質量部に平均粒子径7μmのスペーサー微粒子(積水化学工業社製、「ミクロパールSI-H050」)1質量部を分散させ、シリンジに充填し、遠心脱泡機(武蔵エンジニアリング社製、「アワトロンAW-1」)にて脱泡した。脱泡処理後の液晶表示素子用シール剤を、ディスペンサーを用いて、ノズル径0.4mmφ、ノズルギャップ42μm、シリンジの吐出圧100~400kPa、塗布速度60mm/secの条件で2枚の配向膜及びITO薄膜付きガラス基板の一方に枠状に塗布した。配向膜は、日産化学社製のRB-005を使用し、波長254nmの偏向光を300mJ/cm照射して配向処理を行った。このとき、液晶表示素子用シール剤の線幅が約1.0mmとなるように吐出圧を調整した。続いて液晶(東京化成工業社製、「4-ペンチル-4-ビフェニルカルボニトリル」)の微小滴を、液晶表示素子用シール剤を塗布した基板の該液晶表示素子用シール剤の枠内全面に滴下塗布し、2時間放置したのち真空下でもう一方の基板を貼り合わせた。貼り合わせた基板について、貼り合わせてから15分間静置した後、液晶表示素子用シール剤部分にメタルハライドランプを用いて100mW/cmの紫外線を30秒照射して液晶表示素子用シール剤を仮硬化させた。次いで、120℃で1時間加熱して本硬化を行い、液晶表示素子を作製した。
得られた液晶表示素子について、偏光顕微鏡(キーエンス社製、「VHX-5000」)を用いて、配向乱れ(表示むら)を確認した。配向乱れは表示部の色むらより判断し、液晶表示素子に表示むらが全く見られなかった場合を「○」、表示むらが確認された場合を「×」として低液晶汚染性を評価した。
(low liquid crystal contamination)
1 mass of spacer fine particles having an average particle diameter of 7 μm (manufactured by Sekisui Chemical Co., Ltd., “Micropearl SI-H050”) was added to 100 parts by mass of each sealing agent for liquid crystal display elements obtained in Examples 31 to 33 and Comparative Examples 16 and 17. The parts were dispersed, filled in a syringe, and defoamed with a centrifugal deaerator (manufactured by Musashi Engineering Co., Ltd., "Awatron AW-1"). Using a dispenser, the sealant for liquid crystal display elements after defoaming treatment is applied to two alignment films and under the conditions of a nozzle diameter of 0.4 mmφ, a nozzle gap of 42 μm, a syringe discharge pressure of 100 to 400 kPa, and a coating speed of 60 mm / sec. It was coated in a frame shape on one side of the glass substrate with the ITO thin film. RB-005 manufactured by Nissan Chemical Industries, Ltd. was used as the alignment film, and alignment treatment was performed by irradiating 300 mJ/cm 2 of polarized light with a wavelength of 254 nm. At this time, the discharge pressure was adjusted so that the line width of the liquid crystal display element sealant was about 1.0 mm. Subsequently, microdroplets of liquid crystal ("4-pentyl-4-biphenylcarbonitrile" manufactured by Tokyo Kasei Kogyo Co., Ltd.) were applied to the entire frame of the liquid crystal display element sealing agent of the substrate coated with the liquid crystal display element sealing agent. It was applied dropwise and allowed to stand for 2 hours, and then the other substrate was bonded together under vacuum. The bonded substrates were allowed to stand still for 15 minutes after bonding, and then the liquid crystal display element sealant portion was irradiated with ultraviolet rays of 100 mW/cm 2 for 30 seconds using a metal halide lamp to temporarily remove the liquid crystal display element sealant. Hardened. Next, the composition was heated at 120° C. for 1 hour for final curing, thereby producing a liquid crystal display device.
The resulting liquid crystal display device was checked for alignment disorder (display unevenness) using a polarizing microscope ("VHX-5000" manufactured by Keyence Corporation). Orientation disorder was judged from color unevenness in the display portion, and the low liquid crystal contamination resistance was evaluated as "O" when no display unevenness was observed in the liquid crystal display element, and as "X" when display unevenness was observed.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
本発明によれば、保存安定性、接着性、及び、低液晶汚染性に優れる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いてなる液晶表示素子、及び、該液晶表示素子用シール剤に用いることができる多価ヒドラジド化合物を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the sealing compound for liquid crystal display elements which is excellent in storage stability, adhesiveness, and low-liquid-crystal contamination property can be provided. Further, according to the present invention, it is possible to provide a liquid crystal display element using the sealing agent for liquid crystal display elements, and a polyhydric hydrazide compound that can be used for the sealing agent for liquid crystal display elements.

Claims (22)

  1. 硬化性樹脂と熱硬化剤とを含有する液晶表示素子用シール剤であって、
    前記熱硬化剤は、第一級アミノ基及びヒドラジド基の少なくともいずれかを1分子中に合計2以上有し、かつ、芳香環と結合したスルホニル基及び芳香環と結合したカルボニル基の少なくともいずれかを有する化合物を含む
    ことを特徴とする液晶表示素子用シール剤。
    A sealant for a liquid crystal display element containing a curable resin and a thermosetting agent,
    The thermosetting agent has a total of two or more primary amino groups and/or hydrazide groups in one molecule, and at least one of a sulfonyl group bonded to an aromatic ring and a carbonyl group bonded to an aromatic ring. A sealing compound for a liquid crystal display element, comprising a compound having
  2. 前記熱硬化剤は、第一級アミノ基及びヒドラジド基の少なくともいずれかを1分子中に合計2以上有し、かつ、下記式(1-1)及び下記式(1-2)の少なくともいずれかの構造を有する化合物を含む請求項1記載の液晶表示素子用シール剤。
    Figure JPOXMLDOC01-appb-C000001
    式(1-1)及び式(1-2)中、*は、結合位置を表す。
    The thermosetting agent has a total of two or more primary amino groups and hydrazide groups in one molecule, and at least one of the following formula (1-1) and the following formula (1-2) 2. The sealant for a liquid crystal display element according to claim 1, comprising a compound having a structure of
    Figure JPOXMLDOC01-appb-C000001
    In formulas (1-1) and (1-2), * represents a bonding position.
  3. 前記熱硬化剤は、第一級アミノ基を1分子中に2以上有し、かつ、前記式(1-1)及び前記式(1-2)の少なくともいずれかの構造を有する化合物を含む請求項2記載の液晶表示素子用シール剤。 The thermosetting agent contains a compound having two or more primary amino groups in one molecule and having at least one structure of the formula (1-1) and the formula (1-2). Item 2. The sealant for liquid crystal display elements according to item 2.
  4. 前記熱硬化剤は、第一級アミノ基及びヒドラジド基の少なくともいずれかを1分子中に合計2以上有し、かつ、前記式(1-2)の構造を有する化合物を含む請求項2記載の液晶表示素子用シール剤。 3. The thermosetting agent according to claim 2, wherein the thermosetting agent includes a compound having a total of two or more primary amino groups and/or hydrazide groups in one molecule and having the structure of the formula (1-2). Sealant for liquid crystal display elements.
  5. 前記熱硬化剤は、ヒドラジド基を1分子中に2以上有し、かつ、前記式(1-2)の構造を有する化合物を含む請求項4記載の液晶表示素子用シール剤。 5. The sealant for a liquid crystal display element according to claim 4, wherein the thermosetting agent contains a compound having two or more hydrazide groups in one molecule and having the structure of formula (1-2).
  6. 前記熱硬化剤は、第一級アミノ基を1分子中に2以上有し、かつ、下記式(2-1)、(2-2)、(2-3)、又は、(2-4)で表される構造を有する化合物を含む請求項1記載の液晶表示素子用シール剤。
    Figure JPOXMLDOC01-appb-C000002
    式(2-1)~(2-4)中、*は、結合位置を表す。
    The thermosetting agent has two or more primary amino groups in one molecule, and has the following formula (2-1), (2-2), (2-3), or (2-4) The sealant for a liquid crystal display element according to claim 1, comprising a compound having a structure represented by:
    Figure JPOXMLDOC01-appb-C000002
    In formulas (2-1) to (2-4), * represents a bonding position.
  7. 前記第一級アミノ基を1分子中に2以上有し、かつ、上記式(2-1)、(2-2)、(2-3)、又は、(2-4)で表される構造を有する化合物は、下記式(3-1)、(3-2)、又は、(3-3)で表される構造を有する請求項6記載の液晶表示素子用シール剤。
    Figure JPOXMLDOC01-appb-C000003
    式(3-1)~(3-3)中、*は、結合位置を表す。
    A structure having two or more of the primary amino groups in one molecule and represented by the above formula (2-1), (2-2), (2-3), or (2-4) The sealing compound for a liquid crystal display element according to claim 6, wherein the compound has a structure represented by the following formula (3-1), (3-2), or (3-3).
    Figure JPOXMLDOC01-appb-C000003
    In formulas (3-1) to (3-3), * represents a bonding position.
  8. 前記第一級アミノ基を1分子中に2以上有し、かつ、上記式(2-1)、(2-2)、(2-3)、又は、(2-4)で表される構造を有する化合物は、下記式(4-1)、(4-2)、(4-3)、(4-4)、(4-5)、又は、(4-6)で表される化合物である請求項7記載の液晶表示素子用シール剤。
    Figure JPOXMLDOC01-appb-C000004
    A structure having two or more of the primary amino groups in one molecule and represented by the above formula (2-1), (2-2), (2-3), or (2-4) is a compound represented by the following formula (4-1), (4-2), (4-3), (4-4), (4-5), or (4-6) The sealant for liquid crystal display elements according to claim 7.
    Figure JPOXMLDOC01-appb-C000004
  9. 前記熱硬化剤は、下記式(5)で表されるヒドラジド基を1分子中に2以上有し、かつ、芳香環と結合したスルホニル基を有する多価ヒドラジド化合物を含む請求項1記載の液晶表示素子用シール剤。
    Figure JPOXMLDOC01-appb-C000005
    式(5)中、*は、結合位置を表す。
    2. The liquid crystal according to claim 1, wherein the thermosetting agent contains a polyvalent hydrazide compound having two or more hydrazide groups represented by the following formula (5) in one molecule and having a sulfonyl group bonded to an aromatic ring. Sealant for display elements.
    Figure JPOXMLDOC01-appb-C000005
    In formula (5), * represents a binding position.
  10. 前記多価ヒドラジド化合物は、下記式(6)で表される構造を有する請求項9記載の液晶表示素子用シール剤。
    Figure JPOXMLDOC01-appb-C000006
    式(6)中、R~Rは、それぞれ独立して、炭素原子、窒素原子、酸素原子、及び、窒素原子からなる群より選択される少なくとも1つの原子を含む基、水素原子、又は、連結基を表し、R~Rのうち少なくとも1つは、前記式(5)で表されるヒドラジド基と結合する。
    10. The sealing compound for liquid crystal display elements according to claim 9, wherein the polyhydrazide compound has a structure represented by the following formula (6).
    Figure JPOXMLDOC01-appb-C000006
    In formula (6), R 1 to R 4 are each independently a group containing at least one atom selected from the group consisting of a carbon atom, a nitrogen atom, an oxygen atom, and a nitrogen atom, a hydrogen atom, or , represents a linking group, and at least one of R 1 to R 4 is bonded to the hydrazide group represented by the formula (5).
  11. 前記式(6)で表される構造におけるR~Rのうち少なくとも1つは、アミノ基又は水酸基を含む請求項10記載の液晶表示素子用シール剤。 11. The sealant for liquid crystal display elements according to claim 10, wherein at least one of R 1 to R 4 in the structure represented by formula (6) contains an amino group or a hydroxyl group.
  12. 硬化性樹脂と熱硬化剤とを含有する液晶表示素子用シール剤であって、
    前記熱硬化剤は、第一級アミノ基及びヒドラジド基の少なくともいずれかを1分子中に合計2以上有し、構成する原子の中に、平均電荷が原子固有の理論電荷よりも0.4a.u.以上大きい原子を有する化合物を含むことを特徴とする液晶表示素子用シール剤。
    A sealant for a liquid crystal display element containing a curable resin and a thermosetting agent,
    The thermosetting agent has a total of two or more primary amino groups and/or hydrazide groups in one molecule, and the average charge among constituent atoms is 0.4 a. u. A sealant for a liquid crystal display element, comprising a compound having an atom larger than the above.
  13. 前記熱硬化剤は、ビスフェノールFジグリシジルエーテルとの反応開始温度が120℃以上である請求項12記載の液晶表示素子用シール剤。 13. The sealing compound for a liquid crystal display element according to claim 12, wherein the thermosetting agent has a reaction initiation temperature with bisphenol F diglycidyl ether of 120[deg.] C. or higher.
  14. 前記硬化性樹脂は、エポキシ化合物を含む請求項1、2、3、4、5、6、7、8、9、10、11、12又は13記載の液晶表示素子用シール剤。 14. The sealing compound for a liquid crystal display element according to claim 1, wherein said curable resin contains an epoxy compound.
  15. 前記硬化性樹脂は、(メタ)アクリル化合物を含む請求項1、2、3、4、5、6、7、8、9、10、11、12、13又は14記載の液晶表示素子用シール剤。 15. The sealant for a liquid crystal display element according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14, wherein the curable resin contains a (meth)acrylic compound. .
  16. 更に、光重合開始剤を含有する請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14又は15記載の液晶表示素子用シール剤。 16. The sealant for liquid crystal display elements according to claim 1, which further contains a photopolymerization initiator.
  17. 更に、熱ラジカル重合開始剤を含有する請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14、15又は16記載の液晶表示素子用シール剤。 17. The seal for liquid crystal display elements according to claim 1, further comprising a thermal radical polymerization initiator, agent.
  18. 前記液晶表示素子用シール剤の硬化後の10%重量減少温度が350℃以上である請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16又は17記載の液晶表示素子用シール剤。 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, wherein the 10% weight loss temperature after curing of the liquid crystal display element sealing compound is 350° C. or higher. 14, 15, 16 or 17, the sealant for liquid crystal display elements.
  19. 請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17又は18記載の液晶表示素子用シール剤の硬化物を有する液晶表示素子。 Claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18. Liquid crystal display element.
  20. 下記式(5)で表されるヒドラジド基を1分子中に2以上有し、かつ、芳香環と結合したスルホニル基を有することを特徴とする多価ヒドラジド化合物。
    Figure JPOXMLDOC01-appb-C000007
    式(5)中、*は、結合位置を表す。
    A polyvalent hydrazide compound having two or more hydrazide groups represented by the following formula (5) in one molecule and having a sulfonyl group bonded to an aromatic ring.
    Figure JPOXMLDOC01-appb-C000007
    In formula (5), * represents a binding position.
  21. 下記式(6)で表される構造を有する請求項20記載の多価ヒドラジド化合物。
    Figure JPOXMLDOC01-appb-C000008
    式(6)中、R~Rは、それぞれ独立して、炭素原子、窒素原子、酸素原子、及び、窒素原子からなる群より選択される少なくとも1つの原子を含む基、水素原子、又は、連結基を表し、R~Rのうち少なくとも1つは、前記式(5)で表されるヒドラジド基と結合する。
    21. The polyhydrazide compound according to claim 20, which has a structure represented by the following formula (6).
    Figure JPOXMLDOC01-appb-C000008
    In formula (6), R 1 to R 4 are each independently a group containing at least one atom selected from the group consisting of a carbon atom, a nitrogen atom, an oxygen atom, and a nitrogen atom, a hydrogen atom, or , represents a linking group, and at least one of R 1 to R 4 is bonded to the hydrazide group represented by the formula (5).
  22. 前記式(6)で表される構造におけるR~Rのうち少なくとも1つは、アミノ基又は水酸基を含む請求項21記載の多価ヒドラジド化合物。

     
    22. The polyhydrazide compound according to claim 21, wherein at least one of R 1 to R 4 in the structure represented by formula (6) contains an amino group or a hydroxyl group.

PCT/JP2022/047508 2021-12-24 2022-12-23 Sealing agent for liquid crystal display elements, liquid crystal display element and polyvalent hydrazide compound WO2023120683A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023509428A JP7389304B2 (en) 2021-12-24 2022-12-23 Sealant for liquid crystal display elements, liquid crystal display elements, and polyvalent hydrazide compounds
CN202280068025.8A CN118076916A (en) 2021-12-24 2022-12-23 Sealing agent for liquid crystal display element, and polyhydrazide compound
JP2023195211A JP2024020438A (en) 2021-12-24 2023-11-16 Sealant for liquid crystal display, liquid crystal display, and polyvalent hydrazide compound

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2021-211475 2021-12-24
JP2021211475 2021-12-24
JP2022-073535 2022-04-27
JP2022073536 2022-04-27
JP2022-073536 2022-04-27
JP2022073535 2022-04-27
JP2022182097 2022-11-14
JP2022-182097 2022-11-14

Publications (1)

Publication Number Publication Date
WO2023120683A1 true WO2023120683A1 (en) 2023-06-29

Family

ID=86902798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047508 WO2023120683A1 (en) 2021-12-24 2022-12-23 Sealing agent for liquid crystal display elements, liquid crystal display element and polyvalent hydrazide compound

Country Status (3)

Country Link
JP (2) JP7389304B2 (en)
TW (1) TW202336205A (en)
WO (1) WO2023120683A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111237A (en) * 1985-07-10 1987-05-22 Hitachi Ltd Ferroelectric liquid crystal element and its production
JP2004037937A (en) * 2002-07-04 2004-02-05 Nippon Kayaku Co Ltd Liquid crystal sealing agent and liquid crystal display cell using same
WO2006009308A1 (en) * 2004-07-22 2006-01-26 Three Bond Co., Ltd. Curable composition
JP2013242526A (en) * 2012-04-26 2013-12-05 Jnc Corp Liquid crystal alignment agent for forming liquid crystal alignment layer for optical alignment, liquid crystal alignment layer, and liquid crystal display element using the same
WO2022045240A1 (en) * 2020-08-28 2022-03-03 積水化学工業株式会社 Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
CN114133904A (en) * 2021-11-01 2022-03-04 苏州润邦半导体材料科技有限公司 Preparation method of frame sealing glue with controllable viscosity

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111237A (en) * 1985-07-10 1987-05-22 Hitachi Ltd Ferroelectric liquid crystal element and its production
JP2004037937A (en) * 2002-07-04 2004-02-05 Nippon Kayaku Co Ltd Liquid crystal sealing agent and liquid crystal display cell using same
WO2006009308A1 (en) * 2004-07-22 2006-01-26 Three Bond Co., Ltd. Curable composition
JP2013242526A (en) * 2012-04-26 2013-12-05 Jnc Corp Liquid crystal alignment agent for forming liquid crystal alignment layer for optical alignment, liquid crystal alignment layer, and liquid crystal display element using the same
WO2022045240A1 (en) * 2020-08-28 2022-03-03 積水化学工業株式会社 Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
CN114133904A (en) * 2021-11-01 2022-03-04 苏州润邦半导体材料科技有限公司 Preparation method of frame sealing glue with controllable viscosity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHAHSAFI, M. A.; MESHKATALSADAT, M. H.; PAREKH, HANSA: "Studies on 4-thiazolidinones. Part III : Preparation and antimicrobial activitiy of p,p'-bis(2-aryl-4-thiazolidinon-3-YL-amidomethylamino)diphenylsulphones", JOURNAL OF THE INSTITUTION OF CHEMISTS (INDIA), INSTITUTION OF CHEMISTS, CALCUTTA, IN, vol. 59, no. 5, 1 January 1987 (1987-01-01), CALCUTTA, IN , pages 218 - 220, XP009122151, ISSN: 0020-3254 *

Also Published As

Publication number Publication date
JP2024020438A (en) 2024-02-14
TW202336205A (en) 2023-09-16
JP7389304B2 (en) 2023-11-29
JPWO2023120683A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
JP6730133B2 (en) Liquid crystal display element sealant, vertical conduction material and liquid crystal display element
TWI801554B (en) Photopolymerization initiator, sealant for display elements, upper and lower conduction materials, display elements and compounds
JP6539160B2 (en) Sealant for liquid crystal display element and vertical conduction material
JP7112604B1 (en) Liquid crystal display element sealant, vertical conduction material, and liquid crystal display element
JP7151003B2 (en) Sealant for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
TWI716440B (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP7160907B2 (en) Sealant for liquid crystal display element for substrate with polyimide alignment film, vertical conduction material, and liquid crystal display element
WO2022102602A1 (en) Sealing agent for liquid crystal display elements, vertically conductive material, and liquid crystal display element
WO2023120683A1 (en) Sealing agent for liquid crystal display elements, liquid crystal display element and polyvalent hydrazide compound
WO2021044842A1 (en) Sealing agent for liquid crystal display elements, vertical conduction material, and liquid crystal display element
TWI823843B (en) Sealants for liquid crystal display elements, upper and lower conductive materials and liquid crystal display elements
JP7231794B1 (en) Hydrazide compound, curable resin composition, sealing agent for liquid crystal display element, and liquid crystal display element
JP7185103B1 (en) Sealant for liquid crystal display element and liquid crystal display element
JP7007524B1 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6821102B1 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6849866B1 (en) Curable resin composition, sealant for liquid crystal display element, vertical conductive material, and liquid crystal display element
JP7148332B2 (en) Liquid crystal display element sealant, vertical conduction material, and liquid crystal display element
JP7385790B1 (en) Sealant for display elements, sealant for liquid crystal display elements, and liquid crystal display elements
JP7144627B2 (en) Thioxanthone compound, photopolymerization initiator, curable resin composition, composition for display element, sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP7295798B2 (en) liquid crystal display element
TWI813686B (en) Sealant for liquid crystal display element, upper and lower conduction material, and liquid crystal display element
JP6676833B1 (en) Method for producing sealant for liquid crystal display element
CN118076916A (en) Sealing agent for liquid crystal display element, and polyhydrazide compound
CN117083263A (en) Hydrazide compound, curable resin composition, sealant for liquid crystal display element, and liquid crystal display element
JPWO2019225376A1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023509428

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911385

Country of ref document: EP

Kind code of ref document: A1