JP6792088B2 - Sealing agent for liquid crystal dropping method, cured product, vertical conductive material, and liquid crystal display element - Google Patents

Sealing agent for liquid crystal dropping method, cured product, vertical conductive material, and liquid crystal display element Download PDF

Info

Publication number
JP6792088B2
JP6792088B2 JP2019556375A JP2019556375A JP6792088B2 JP 6792088 B2 JP6792088 B2 JP 6792088B2 JP 2019556375 A JP2019556375 A JP 2019556375A JP 2019556375 A JP2019556375 A JP 2019556375A JP 6792088 B2 JP6792088 B2 JP 6792088B2
Authority
JP
Japan
Prior art keywords
meth
acrylate
display element
liquid crystal
sealant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019556375A
Other languages
Japanese (ja)
Other versions
JPWO2020085081A1 (en
Inventor
慶枝 松井
慶枝 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Application granted granted Critical
Publication of JP6792088B2 publication Critical patent/JP6792088B2/en
Publication of JPWO2020085081A1 publication Critical patent/JPWO2020085081A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/064Polymers containing more than one epoxy group per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4246Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof polymers with carboxylic terminal groups
    • C08G59/4253Rubbers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal (AREA)
  • Sealing Material Composition (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

本発明は、耐湿熱性に優れ、かつ、耐衝撃性に優れる表示素子を得ることができる表示素子用シール剤に関する。また、本発明は、該表示素子用シール剤の硬化物、並びに、該表示素子用シール剤を用いてなる上下導通材料及び表示素子に関する。 The present invention relates to a sealant for a display element capable of obtaining a display element having excellent moisture and heat resistance and excellent impact resistance. The present invention also relates to a cured product of the sealant for a display element, and a vertically conductive material and a display element using the sealant for the display element.

近年、薄型、軽量、低消費電力等の特徴を有する表示素子として、液晶表示素子や有機EL表示素子等が広く利用されている。これらの表示素子では、通常、硬化性樹脂組成物を用いてなるシール剤によって液晶や発光層等の封止が行われている。
例えば、液晶表示素子として、タクトタイム短縮、使用液晶量の最適化といった観点から、特許文献1、特許文献2に開示されているような、光熱併用硬化型のシール剤を用いた液晶表示素子が開示されている。
In recent years, liquid crystal display elements, organic EL display elements, and the like have been widely used as display elements having features such as thinness, light weight, and low power consumption. In these display elements, the liquid crystal, the light emitting layer, and the like are usually sealed with a sealing agent made of a curable resin composition.
For example, as a liquid crystal display element, a liquid crystal display element using a light-heat combined curing type sealant as disclosed in Patent Document 1 and Patent Document 2 from the viewpoint of shortening the tact time and optimizing the amount of liquid crystal used. It is disclosed.

ところで、携帯電話、携帯ゲーム機等、各種表示パネル付きの携帯端末が普及している現代において、装置の小型化は最も求められている課題である。このような装置の小型化に伴って表示部の狭額縁化が行われている。特に、液晶表示素子においては、画素領域からシール剤までの距離が近くなっており、シール剤が配向膜上に配置されることが多くなっている。 By the way, in the present age when mobile terminals with various display panels such as mobile phones and portable game machines are widespread, miniaturization of devices is the most sought after issue. Along with the miniaturization of such devices, the frame of the display unit has been narrowed. In particular, in a liquid crystal display element, the distance from the pixel region to the sealant is short, and the sealant is often arranged on the alignment film.

また、携帯端末の普及に伴い、表示素子には落下等により外部から衝撃を受けた場合でもパネル剥がれ等を引き起こすことのない耐衝撃性が要求されている。
更に、表示素子には高温高湿環境下での駆動等における高度な信頼性として、121℃、100%RH、2atmの条件におけるプレッシャークッカー試験(PCT)に対応した性能も要求されている。高度な信頼性を有する表示素子を得るためには、シール剤を耐湿熱性に優れるものとする必要がある。
このように、表示素子の耐衝撃性を向上させることができ、かつ、耐湿熱性に優れるシール剤が望まれている。
Further, with the spread of mobile terminals, display elements are required to have impact resistance that does not cause panel peeling or the like even when an impact is received from the outside due to dropping or the like.
Further, the display element is required to have high reliability in driving in a high temperature and high humidity environment, and to have performance corresponding to a pressure cooker test (PCT) under the conditions of 121 ° C., 100% RH, and 2 atm. In order to obtain a display element having a high degree of reliability, it is necessary to make the sealant excellent in moisture and heat resistance.
As described above, a sealant capable of improving the impact resistance of the display element and having excellent moisture and heat resistance is desired.

特開2001−133794号公報Japanese Unexamined Patent Publication No. 2001-133794 国際公開第02/092718号International Publication No. 02/092718

本発明は、耐湿熱性に優れ、かつ、耐衝撃性に優れる表示素子を得ることができる表示素子用シール剤を提供することを目的とする。また、本発明は、該表示素子用シール剤の硬化物、並びに、該表示素子用シール剤を用いてなる上下導通材料及び表示素子を提供することを目的とする。 An object of the present invention is to provide a sealant for a display element capable of obtaining a display element having excellent moisture and heat resistance and excellent impact resistance. Another object of the present invention is to provide a cured product of the sealant for a display element, and a vertically conductive material and a display element using the sealant for the display element.

本発明は、硬化性樹脂と重合開始剤及び熱硬化剤とを含有し、硬化物の25℃における貯蔵弾性率が0.8GPa未満であり、硬化物の121℃における貯蔵弾性率が0.01GPa以上であり、前記硬化性樹脂は、エポキシ基とゴム構造とを有する化合物と、該ゴム構造を有するエポキシ化合物以外のその他のエポキシ化合物と、(メタ)アクリル化合物とを含み、前記エポキシ基とゴム構造とを有する化合物は、エポキシ変性ブタジエンゴムである液晶滴下工法用シール剤である。
以下に本発明を詳述する。
The present invention contains a curable resin, a polymerization initiator and a thermosetting agent, and the stored elastic ratio of the cured product at 25 ° C. is less than 0.8 GPa, and the stored elastic ratio of the cured product at 121 ° C. is 0.01 GPa. or more, the curable resin is a compound having an epoxy group and a rubber structure, and other epoxy compounds other than the epoxy compound having a rubber structure, viewed contains a (meth) acrylic compound, and the epoxy groups The compound having a rubber structure is an epoxy-modified butadiene rubber, which is a sealant for the liquid crystal dropping method.
The present invention will be described in detail below.

本発明者は、硬化物の25℃における貯蔵弾性率を特定値未満となるようにし、かつ、硬化物の121℃における貯蔵弾性率を特定値以上となるようにすることにより、耐湿熱性に優れ、かつ、耐衝撃性に優れる表示素子を得ることができる表示素子用シール剤を得ることができることを見出し、本発明を完成させるに至った。
本発明の表示素子用シール剤における、耐湿熱性に優れ、かつ、耐衝撃性に優れる表示素子を得ることができるという効果は、本発明の表示素子用シール剤が液晶表示素子の配向膜上に配置される場合に特に顕著に発揮される。
The present inventor has excellent moisture and heat resistance by setting the storage elastic modulus of the cured product at 25 ° C. to be less than a specific value and the storage elastic modulus of the cured product at 121 ° C. to be a specific value or more. Moreover, they have found that it is possible to obtain a sealant for a display element capable of obtaining a display element having excellent impact resistance, and have completed the present invention.
The effect of being able to obtain a display element having excellent moisture and heat resistance and impact resistance in the sealant for a display element of the present invention is that the sealant for a display element of the present invention is applied on the alignment film of the liquid crystal display element. It is particularly noticeable when placed.

本発明の表示素子用シール剤は、硬化物の25℃における貯蔵弾性率が0.8GPa未満である。上記硬化物の25℃における貯蔵弾性率が0.8GPa未満であることにより、本発明の表示素子用シール剤は、耐衝撃性に優れる表示素子を得ることができるものとなり、液晶表示素子の配向膜上に配置された場合でも、外部から衝撃によるパネル剥がれ等を抑制することができるものとなる。上記硬化物の25℃における貯蔵弾性率の好ましい上限は0.75GPa、より好ましい上限は0.7GPaである。
また、被着体を貼り合わせた際の接着性等の観点から、上記硬化物の25℃における貯蔵弾性率の好ましい下限は0.05GPa、より好ましい下限は0.07GPaである。
なお、貯蔵弾性率を測定する硬化物としては、シール剤に100mW/cmの紫外線を30秒照射した後、120℃で1時間加熱して硬化させたものが用いられる。
また、上記貯蔵弾性率は、動的粘弾性測定装置を用いて、試験片幅5mm、厚み0.35mm、掴み幅25mm、昇温速度10℃/分、周波数10Hzの条件で測定することができる。上記硬化物の25℃における貯蔵弾性率は、硬化物を0℃から200℃に昇温した場合の25℃における値として求めることができ、後述する硬化物の121℃における貯蔵弾性率は、硬化物を0℃から200℃に昇温した場合の121℃における値として求めることができる。
上記動的粘弾性測定装置としては、例えば、DVA−200(IT計測制御社製)等が挙げられる。
The sealant for a display element of the present invention has a storage elastic modulus of less than 0.8 GPa at 25 ° C. of the cured product. When the storage elastic modulus of the cured product at 25 ° C. is less than 0.8 GPa, the sealant for a display element of the present invention can obtain a display element having excellent impact resistance, and the orientation of the liquid crystal display element can be obtained. Even when it is arranged on the film, it is possible to suppress panel peeling or the like due to an impact from the outside. The preferable upper limit of the storage elastic modulus of the cured product at 25 ° C. is 0.75 GPa, and the more preferable upper limit is 0.7 GPa.
Further, from the viewpoint of adhesiveness when the adherends are bonded together, the preferable lower limit of the storage elastic modulus of the cured product at 25 ° C. is 0.05 GPa, and the more preferable lower limit is 0.07 GPa.
As the cured product for measuring the storage elastic modulus, a sealant is irradiated with ultraviolet rays of 100 mW / cm 2 for 30 seconds and then heated at 120 ° C. for 1 hour to be cured.
The storage elastic modulus can be measured using a dynamic viscoelasticity measuring device under the conditions of a test piece width of 5 mm, a thickness of 0.35 mm, a grip width of 25 mm, a heating rate of 10 ° C./min, and a frequency of 10 Hz. .. The storage elastic modulus of the cured product at 25 ° C. can be obtained as a value at 25 ° C. when the cured product is heated from 0 ° C. to 200 ° C., and the storage elastic modulus of the cured product described later at 121 ° C. is cured. It can be obtained as a value at 121 ° C. when the temperature of the product is raised from 0 ° C. to 200 ° C.
Examples of the dynamic viscoelasticity measuring device include DVA-200 (manufactured by IT Measurement Control Co., Ltd.) and the like.

本発明の表示素子用シール剤は、硬化物の121℃における貯蔵弾性率の下限が0.01GPaである。上記硬化物の121℃における貯蔵弾性率が0.01GPa以上であることにより、本発明の表示素子用シール剤は、耐湿熱性に優れるものとなる。上記硬化物の121℃における貯蔵弾性率の好ましい下限は0.02GPa、より好ましい下限は0.03GPaである。 The sealant for a display element of the present invention has a lower limit of the storage elastic modulus of a cured product at 121 ° C. of 0.01 GPa. When the storage elastic modulus of the cured product at 121 ° C. is 0.01 GPa or more, the sealant for a display element of the present invention has excellent moisture and heat resistance. The preferable lower limit of the storage elastic modulus of the cured product at 121 ° C. is 0.02 GPa, and the more preferable lower limit is 0.03 GPa.

本発明の表示素子用シール剤は、硬化性樹脂を含有する。
本発明の表示素子用シール剤において、硬化物の25℃及び121℃における貯蔵弾性率をそれぞれ上述した範囲とする方法としては、上記硬化性樹脂としてエポキシ基とゴム構造とを有する化合物(以下、「ゴム構造を有するエポキシ化合物」ともいう)を用い、その含有割合を調整する方法が好適である。
なお、本明細書において上記「ゴム構造」は、生ゴムに硫黄を加えることで形成される加硫ゴム構造、付加重合により分子主鎖内に形成された二重結合による合成ゴム構造、過酸化物を用いてポリメチルシロキサンを架橋させること等により形成されるシリコーンゴム構造等、ゴム弾性を発揮する構造を意味する。
The sealant for a display element of the present invention contains a curable resin.
In the sealant for a display element of the present invention, as a method of setting the storage elastic modulus of the cured product at 25 ° C. and 121 ° C. within the above-mentioned ranges, a compound having an epoxy group and a rubber structure as the curable resin (hereinafter, A method of adjusting the content ratio by using "an epoxy compound having a rubber structure") is preferable.
In the present specification, the above-mentioned "rubber structure" refers to a vulcanized rubber structure formed by adding sulfur to raw rubber, a synthetic rubber structure formed in a molecular main chain by addition polymerization, and a peroxide. It means a structure that exhibits rubber elasticity, such as a silicone rubber structure formed by cross-linking polymethyl siloxane with.

上記ゴム構造は、主鎖に不飽和結合を有する構造、又は、主鎖にポリシロキサン骨格を有する構造であることが好ましい。
上記主鎖に不飽和結合を有する構造としては、例えば、主鎖に共役ジエンの重合による骨格を有する構造等が挙げられる。
上記共役ジエンの重合による骨格としては、例えば、ポリブタジエン骨格、ポリイソプレン骨格、スチレン−ブタジエン骨格、ポリイソブチレン骨格、ポリクロロプレン骨格等が挙げられる。
なかでも、上記ゴム構造は、ポリブタジエン骨格、ポリイソプレン骨格、又は、ポリシロキサン骨格を有する構造であることがより好ましい。
The rubber structure is preferably a structure having an unsaturated bond in the main chain or a structure having a polysiloxane skeleton in the main chain.
Examples of the structure having an unsaturated bond in the main chain include a structure having a skeleton in the main chain by polymerization of a conjugated diene.
Examples of the skeleton obtained by polymerizing the conjugated diene include a polybutadiene skeleton, a polyisoprene skeleton, a styrene-butadiene skeleton, a polyisobutylene skeleton, and a polychloroprene skeleton.
Among them, the rubber structure is more preferably a structure having a polybutadiene skeleton, a polyisoprene skeleton, or a polysiloxane skeleton.

上記ゴム構造を有するエポキシ化合物の分子量の好ましい下限は100、好ましい上限は1万である。上記ゴム構造を有するエポキシ化合物の分子量がこの範囲であることにより、得られる表示素子用シール剤が硬化物の柔軟性により優れるものとなる。上記ゴム構造を有するエポキシ化合物の分子量のより好ましい下限は200、より好ましい上限は5000である。
なお、本明細書において上記「分子量」は、分子構造が特定される化合物については、構造式から求められる分子量であるが、重合度の分布が広い化合物及び変性部位が不特定な化合物については、重量平均分子量を用いて表す場合がある。また、上記「重量平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)で溶媒としてテトラヒドロフランを用いて測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による重量平均分子量を測定する際に用いるカラムとしては、例えば、Shodex LF−804(昭和電工社製)等が挙げられる。
The preferable lower limit of the molecular weight of the epoxy compound having a rubber structure is 100, and the preferable upper limit is 10,000. When the molecular weight of the epoxy compound having the rubber structure is in this range, the obtained sealant for a display element becomes more excellent in the flexibility of the cured product. The more preferable lower limit of the molecular weight of the epoxy compound having a rubber structure is 200, and the more preferable upper limit is 5000.
In the present specification, the above-mentioned "molecular weight" is the molecular weight obtained from the structural formula for a compound whose molecular structure is specified, but for a compound having a wide distribution of degree of polymerization and a compound having an unspecified modification site, the above-mentioned "molecular weight" is used. It may be expressed using the weight average molecular weight. Further, the above-mentioned "weight average molecular weight" is a value obtained by measuring by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent and converting it into polystyrene. Examples of the column used when measuring the weight average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK) and the like.

上記ゴム構造を有するエポキシ化合物としては、具体的には例えば、末端アミノ基含有ブタジエン−アクリロニトリル(ATBN)変性エポキシ樹脂、末端カルボキシル基含有ブタジエン−アクリロニトリル(CTBN)変性エポキシ樹脂、アクリロニトリル−ブタジエンゴム(NBR)変性エポキシ樹脂、エポキシ変性イソプレンゴム、エポキシ変性ブタジエンゴム、エポキシ変性クロロプレンゴム、エポキシ変性シリコーンゴム等が挙げられる。上記ゴム構造を有するエポキシ化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。 Specific examples of the epoxy compound having the rubber structure include a terminal amino group-containing butadiene-acrylonitrile (ATBN) -modified epoxy resin, a terminal carboxyl group-containing butadiene-acrylonitrile (CTBN) -modified epoxy resin, and an acrylonitrile-butadiene rubber (NBR). ) Modified epoxy resin, epoxy-modified isoprene rubber, epoxy-modified butadiene rubber, epoxy-modified chloroprene rubber, epoxy-modified silicone rubber and the like can be mentioned. The epoxy compound having the rubber structure may be used alone or in combination of two or more.

上記硬化性樹脂全体100重量部中における上記ゴム構造を有するエポキシ化合物の含有量の好ましい下限は3重量部、好ましい上限は30重量部である。上記ゴム構造を有するエポキシ化合物の含有量がこの範囲であることにより、得られる表示素子用シール剤の硬化物の25℃及び121℃における貯蔵弾性率をそれぞれ上述した範囲とすることが容易となる。上記ゴム構造を有するエポキシ化合物の含有量のより好ましい下限は5重量部、より好ましい上限は25重量部である。 The preferable lower limit of the content of the epoxy compound having the rubber structure in 100 parts by weight of the entire curable resin is 3 parts by weight, and the preferable upper limit is 30 parts by weight. When the content of the epoxy compound having the rubber structure is in this range, it becomes easy to set the storage elastic modulus of the obtained cured product of the sealant for a display element at 25 ° C. and 121 ° C. in the above range, respectively. .. The more preferable lower limit of the content of the epoxy compound having the rubber structure is 5 parts by weight, and the more preferable upper limit is 25 parts by weight.

上記硬化性樹脂は、貯蔵弾性率の調整や、被着体を貼り合わせた際の接着性や液晶表示素子に用いた場合の低液晶汚染性をより向上させる等の目的で、上記ゴム構造を有するエポキシ化合物以外のその他の硬化性樹脂を含有することが好ましい。上記その他の硬化性樹脂としては、上記ゴム構造を有するエポキシ化合物以外のその他のエポキシ化合物や、(メタ)アクリル化合物が好適に用いられる。
なお、本明細書において、上記「(メタ)アクリル」とは、アクリル又はメタクリルを意味し、上記「(メタ)アクリル化合物」とは、(メタ)アクリロイル基を有する化合物を意味する。
The curable resin has a rubber structure for the purpose of adjusting the storage elastic modulus, improving the adhesiveness when an adherend is bonded, and further improving the low liquid crystal contamination property when used for a liquid crystal display element. It is preferable to contain a curable resin other than the epoxy compound having. As the other curable resin, other epoxy compounds other than the epoxy compound having a rubber structure and (meth) acrylic compounds are preferably used.
In the present specification, the above-mentioned "(meth) acrylic" means acrylic or methacrylic, and the above-mentioned "(meth) acrylic compound" means a compound having a (meth) acryloyl group.

上記その他のエポキシ化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’−ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、グリシジルエステル化合物等が挙げられる。 Examples of the other epoxy compounds include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, 2,2'-diallyl bisphenol A type epoxy resin, and hydrogenated bisphenol type. Epoxy resin, propylene oxide-added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, phenol novolac type epoxy resin, Examples thereof include orthocresol novolac type epoxy resin, dicyclopentadiene novolac type epoxy resin, biphenyl novolac type epoxy resin, naphthalenephenol novolac type epoxy resin, glycidylamine type epoxy resin, alkyl polyol type epoxy resin, and glycidyl ester compound.

上記ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、jER828EL、jER1004(いずれも三菱ケミカル社製)、エピクロン850CRP(DIC社製)等が挙げられる。
上記ビスフェノールF型エポキシ樹脂のうち市販されているものとしては、例えば、jER806、jER4004(いずれも三菱ケミカル社製)等が挙げられる。
上記ビスフェノールE型エポキシ樹脂のうち市販されているものとしては、例えば、R710(プリンテック社製)等が挙げられる。
上記ビスフェノールS型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA1514(DIC社製)等が挙げられる。
上記2,2’−ジアリルビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、RE−810NM(日本化薬社製)等が挙げられる。
上記水添ビスフェノール型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA7015(DIC社製)等が挙げられる。
上記プロピレンオキシド付加ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、EP−4000S(ADEKA社製)等が挙げられる。
上記レゾルシノール型エポキシ樹脂のうち市販されているものとしては、例えば、EX−201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ樹脂のうち市販されているものとしては、例えば、jER YX−4000H(三菱ケミカル社製)等が挙げられる。
上記スルフィド型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV−50TE(新日鉄住金化学社製)等が挙げられる。
上記ジフェニルエーテル型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV−80DE(新日鉄住金化学社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ樹脂のうち市販されているものとしては、例えば、EP−4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP4032、エピクロンEXA−4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN−770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN−670−EXP−S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、NC−3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、ESN−165S(新日鉄住金化学社製)等が挙げられる。
上記グリシジルアミン型エポキシ樹脂のうち市販されているものとしては、例えば、jER630(三菱ケミカル社製)、エピクロン430(DIC社製)、TETRAD−X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ樹脂のうち市販されているものとしては、例えば、ZX−1542(新日鉄住金化学社製)、エピクロン726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX−611(ナガセケムテックス社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されているものとしては、例えば、デナコールEX−147(ナガセケムテックス社製)等が挙げられる。
上記エポキシ化合物のうちその他に市販されているものとしては、例えば、YDC−1312、YSLV−80XY、YSLV−90CR(いずれも新日鉄住金化学社製)、XAC4151(旭化成社製)、jER1031、jER1032(いずれも三菱ケミカル社製)、EXA−7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
Examples of commercially available bisphenol A type epoxy resins include jER828EL, jER1004 (all manufactured by Mitsubishi Chemical Corporation), Epicron 850CRP (manufactured by DIC Corporation), and the like.
Examples of commercially available bisphenol F-type epoxy resins include jER806 and jER4004 (both manufactured by Mitsubishi Chemical Corporation).
Examples of commercially available bisphenol E-type epoxy resins include R710 (manufactured by Printec Co., Ltd.) and the like.
Examples of commercially available bisphenol S-type epoxy resins include Epicron EXA1514 (manufactured by DIC Corporation).
Among the above 2,2'-diallyl bisphenol A type epoxy resins, commercially available ones include, for example, RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
Examples of commercially available hydrogenated bisphenol type epoxy resins include Epicron EXA7015 (manufactured by DIC Corporation).
Examples of commercially available propylene oxide-added bisphenol A type epoxy resins include EP-4000S (manufactured by ADEKA Corporation) and the like.
Examples of commercially available resorcinol type epoxy resins include EX-201 (manufactured by Nagase ChemteX Corporation) and the like.
Examples of commercially available biphenyl type epoxy resins include jER YX-4000H (manufactured by Mitsubishi Chemical Corporation) and the like.
Examples of commercially available sulfide-type epoxy resins include YSLV-50TE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available diphenyl ether type epoxy resins include YSLV-80DE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) and the like.
Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA Corporation) and the like.
Examples of commercially available naphthalene-type epoxy resins include Epicron HP4032 and Epicron EXA-4700 (both manufactured by DIC Corporation).
Examples of commercially available phenol novolac type epoxy resins include Epicron N-770 (manufactured by DIC Corporation).
Examples of commercially available orthocresol novolac type epoxy resins include Epicron N-670-EXP-S (manufactured by DIC Corporation).
Examples of commercially available dicyclopentadiene novolac type epoxy resins include Epicron HP7200 (manufactured by DIC Corporation).
Examples of commercially available biphenyl novolac type epoxy resins include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.) and the like.
Examples of commercially available naphthalene phenol novolac type epoxy resins include ESN-165S (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available glycidylamine type epoxy resins include jER630 (manufactured by Mitsubishi Chemical Corporation), Epicron 430 (manufactured by DIC Corporation), TETRAD-X (manufactured by Mitsubishi Gas Chemical Company, Inc.) and the like.
Commercially available alkyl polyol type epoxy resins include, for example, ZX-1542 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epicron 726 (manufactured by DIC Corporation), Epolite 80MFA (manufactured by Kyoei Co., Ltd.), and Denacol EX-611. (Manufactured by Nagase ChemteX Corporation) and the like.
Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation) and the like.
Other commercially available epoxy compounds include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Corporation), jER1031 and jER1032 (all of which are manufactured by Asahi Kasei Corporation). Mitsubishi Chemical Corporation), EXA-7120 (DIC Corporation), TEPIC (Nissan Chemical Industries, Ltd.) and the like.

また、上記硬化性樹脂は、上記その他のエポキシ化合物として、1分子中にエポキシ基と(メタ)アクリロイル基とを有する化合物を含有してもよい。このような化合物としては、例えば、1分子中に2以上のエポキシ基を有するエポキシ化合物の一部分のエポキシ基を(メタ)アクリル酸と反応させることによって得られる部分(メタ)アクリル変性エポキシ樹脂等が挙げられる。 Further, the curable resin may contain a compound having an epoxy group and a (meth) acryloyl group in one molecule as the other epoxy compound. Examples of such a compound include a partial (meth) acrylic-modified epoxy resin obtained by reacting a partial epoxy group of an epoxy compound having two or more epoxy groups in one molecule with (meth) acrylic acid. Can be mentioned.

上記部分(メタ)アクリル変性エポキシ樹脂のうち、市販されているものとしては、例えば、UVACURE1561、KRM8287(いずれもダイセル・オルネクス社製)等が挙げられる Among the above-mentioned partial (meth) acrylic-modified epoxy resins, commercially available ones include, for example, UVACURE1561, KRM8287 (both manufactured by Daicel Ornex) and the like.

上記(メタ)アクリル化合物としては、例えば、エポキシ(メタ)アクリレート、(メタ)アクリル酸エステル化合物、ウレタン(メタ)アクリレート等が挙げられる。なかでも、エポキシ(メタ)アクリレートが好ましい。また、上記その他の(メタ)アクリル化合物は、反応性の高さから分子中に(メタ)アクリロイル基を2個以上有するものが好ましい。
なお、本明細書において上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味し、上記「エポキシ(メタ)アクリレート」とは、エポキシ化合物中の全てのエポキシ基を(メタ)アクリル酸と反応させた化合物のことを表す。
Examples of the (meth) acrylic compound include epoxy (meth) acrylate, (meth) acrylic acid ester compound, and urethane (meth) acrylate. Of these, epoxy (meth) acrylate is preferable. Further, the other (meth) acrylic compound preferably has two or more (meth) acryloyl groups in the molecule due to its high reactivity.
In the present specification, the above-mentioned "(meth) acrylate" means acrylate or methacrylate, and the above-mentioned "epoxy (meth) acrylate" means that all epoxy groups in the epoxy compound are reacted with (meth) acrylic acid. Represents the compound that has been made to.

上記エポキシ(メタ)アクリレートは、エポキシ化合物と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応させることにより合成することができる。 The epoxy (meth) acrylate can be synthesized by reacting an epoxy compound and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method.

上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物としては、上記ゴム構造を有するエポキシ化合物やその他のエポキシ化合物と同様のものを用いることができる。 As the epoxy compound used as a raw material for synthesizing the epoxy (meth) acrylate, the same epoxy compound as the epoxy compound having a rubber structure or other epoxy compounds can be used.

上記エポキシ(メタ)アクリレートのうち市販されているものとしては、例えば、ダイセル・オルネクス社製のエポキシ(メタ)アクリレート、新中村化学工業社製のエポキシ(メタ)アクリレート、共栄社化学社製のエポキシ(メタ)アクリレート、ナガセケムテックス社製のエポキシ(メタ)アクリレート等が挙げられる。
上記ダイセル・オルネクス社製のエポキシ(メタ)アクリレートとしては、例えば、EBECRYL860、EBECRYL3200、EBECRYL3201、EBECRYL3412、EBECRYL3600、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL3708、EBECRYL3800、EBECRYL6040、EBECRYL RDX63182等が挙げられる。
上記新中村化学工業社製のエポキシ(メタ)アクリレートとしては、例えば、EA−1010、EA−1020、EA−5323、EA−5520、EA−CHD、EMA−1020等が挙げられる。
上記共栄社化学社製のエポキシ(メタ)アクリレートとしては、例えば、エポキシエステルM−600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、エポキシエステル400EA等が挙げられる。
上記ナガセケムテックス社製のエポキシ(メタ)アクリレートとしては、例えば、デナコールアクリレートDA−141、デナコールアクリレートDA−314、デナコールアクリレートDA−911等が挙げられる。
Among the above-mentioned epoxy (meth) acrylates, commercially available ones include, for example, epoxy (meth) acrylate manufactured by Daicel Ornex, epoxy (meth) acrylate manufactured by Shin-Nakamura Chemical Industry Co., Ltd., and epoxy (meth) acrylate manufactured by Kyoei Co., Ltd. Examples thereof include meta) acrylate and epoxy (meth) acrylate manufactured by Nagase ChemteX Corporation.
Examples of the epoxy (meth) acrylate manufactured by Daicel Ornex include EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3702, EBECRYL3702, EBECRYL3702, EBECRYL3702, EBECRYL3702, EBECRYL3701
Examples of the epoxy (meth) acrylate manufactured by Shin-Nakamura Chemical Industry Co., Ltd. include EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, and EMA-1020.
Examples of the epoxy (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd. include epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, epoxy ester 200PA, epoxy ester 80MFA, epoxy ester 3002M, epoxy ester 3002A, and epoxy ester 1600A. Examples thereof include epoxy ester 3000M, epoxy ester 3000A, epoxy ester 200EA, and epoxy ester 400EA.
Examples of the epoxy (meth) acrylate manufactured by Nagase ChemteX include Denacol acrylate DA-141, Denacol acrylate DA-314, and Denacol acrylate DA-911.

上記(メタ)アクリル酸エステル化合物のうち単官能のものとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、n−オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−ブトキシエチル(メタ)アクリレート、2−フェノキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、2,2,2−トリフルオロエチル(メタ)アクリレート、2,2,3,3−テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H−オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2−(メタ)アクリロイロキシエチルコハク酸、2−(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2−(メタ)アクリロイロキシエチル2−ヒドロキシプロピルフタレート、2−(メタ)アクリロイロキシエチルホスフェート、グリシジル(メタ)アクリレート等が挙げられる。 Among the above (meth) acrylic acid ester compounds, monofunctional ones include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate. , T-Butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, iso Myristyl (meth) acrylate, stearyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2- Hydroxy-3-phenoxypropyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, bicyclopentenyl (meth) acrylate, benzyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl ( Meta) acrylate, 2-butoxyethyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, methoxyethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) ) Acrylate, tetrahydrofurfuryl (meth) acrylate, ethylcarbitol (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, 1H , 1H, 5H-octafluoropentyl (meth) acrylate, imide (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) ) Acryloyloxyethyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl 2-hydroxypropylphthalate, 2- (meth) acryloyloxyethyl phosphate, glycidyl (meth) acrylate and the like.

また、上記(メタ)アクリル酸エステル化合物のうち2官能のものとしては、例えば、1,3−ブタンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、1,10−デカンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、2−n−ブチル−2−エチル−1,3−プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2−ヒドロキシ−3−(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。 Examples of the bifunctional one among the above (meth) acrylic acid ester compounds include 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexane. Diol di (meth) acrylate, 1,9-nonane diol di (meth) acrylate, 1,10-decane diol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meta) acrylate, polyethylene glycol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) ) Acrylic, Polypropylene glycol di (meth) acrylate, Neopentyl glycol di (meth) acrylate, ethylene oxide-added bisphenol A di (meth) acrylate, propylene oxide-added bisphenol A di (meth) acrylate, ethylene oxide-added bisphenol F di (meth) acrylate , Dimethyloldicyclopentadienyldi (meth) acrylate, ethylene oxide-modified isocyanurate di (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, carbonatediol di (meth) acrylate, Examples thereof include polyether diol di (meth) acrylate, polyester diol di (meth) acrylate, polycaprolactone diol di (meth) acrylate, and polybutadiene diol di (meth) acrylate.

また、上記(メタ)アクリル酸エステル化合物のうち3官能以上のものとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 Among the above (meth) acrylic acid ester compounds, those having trifunctionality or higher include, for example, trimetyl propanetri (meth) acrylate, ethylene oxide-added trimethyl propanetri (meth) acrylate, and propylene oxide-added trimethyl propanetri (meth) acrylate. Meta) acrylate, caprolactone-modified trimethylol propantri (meth) acrylate, ethylene oxide-added isocyanuric acid tri (meth) acrylate, glycerin tri (meth) acrylate, propylene oxide-added glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, Examples thereof include tris (meth) acryloyloxyethyl phosphate, ditrimethylolpropantetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol hexa (meth) acrylate.

上記ウレタン(メタ)アクリレートは、例えば、イソシアネート化合物に対して水酸基を有する(メタ)アクリル酸誘導体を、触媒量のスズ系化合物存在下で反応させることによって得ることができる。 The urethane (meth) acrylate can be obtained, for example, by reacting a (meth) acrylic acid derivative having a hydroxyl group with respect to an isocyanate compound in the presence of a catalytic amount of a tin compound.

上記イソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン−4,4’−ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5−ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシリレンジイソシアネート、1,6,11−ウンデカントリイソシアネート等が挙げられる。 Examples of the isocyanate compound include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4,4'-diisocyanate (MDI), and hydrogenation. MDI, Polymeric MDI, 1,5-naphthalenediocyanate, Norbornan diisocyanate, Trizine diisocyanate, Xylylene diisocyanate (XDI), Hydrogenated XDI, Lysine diisocyanate, Triphenylmethane triisocyanate, Tris (isocyanatephenyl) thiophosphate, Tetramethylxylylene diisocyanate Examples thereof include isocyanates and 1,6,11-undecantry isocyanates.

また、上記イソシアネート化合物としては、ポリオールと過剰のイソシアネート化合物との反応により得られる鎖延長されたイソシアネート化合物も使用することができる。
上記ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等が挙げられる。
Further, as the isocyanate compound, a chain-extended isocyanate compound obtained by reacting a polyol with an excess isocyanate compound can also be used.
Examples of the polyol include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, and polycaprolactone diol.

上記水酸基を有する(メタ)アクリル酸誘導体としては、例えば、ヒドロキシアルキルモノ(メタ)アクリレート、二価のアルコールのモノ(メタ)アクリレート、三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げられる。
上記ヒドロキシアルキルモノ(メタ)アクリレートとしては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート等が挙げられる。
上記二価のアルコールとしては、例えば、エチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ポリエチレングリコール等が挙げられる。
上記三価のアルコールとしては、例えば、トリメチロールエタン、トリメチロールプロパン、グリセリン等が挙げられる。
上記エポキシ(メタ)アクリレートとしては、例えば、ビスフェノールA型エポキシアクリレート等が挙げられる。
Examples of the (meth) acrylic acid derivative having a hydroxyl group include hydroxyalkyl mono (meth) acrylate, mono (meth) acrylate of dihydric alcohol, mono (meth) acrylate of trihydric alcohol, and di (meth) acrylate. , Epoxy (meth) acrylate and the like.
Examples of the hydroxyalkyl mono (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. Can be mentioned.
Examples of the divalent alcohol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, polyethylene glycol and the like.
Examples of the trihydric alcohol include trimethylolethane, trimethylolpropane, and glycerin.
Examples of the epoxy (meth) acrylate include bisphenol A type epoxy acrylate and the like.

上記ウレタン(メタ)アクリレートのうち市販されているものとしては、例えば、東亞合成社製のウレタン(メタ)アクリレート、ダイセル・オルネクス社製のウレタン(メタ)アクリレート、根上工業社製のウレタン(メタ)アクリレート、新中村化学工業社製のウレタン(メタ)アクリレート、共栄社化学社製のウレタン(メタ)アクリレート等が挙げられる。
上記東亞合成社製のウレタン(メタ)アクリレートとしては、例えば、M−1100、M−1200、M−1210、M−1600等が挙げられる。
上記ダイセル・オルネクス社製のウレタン(メタ)アクリレートとしては、例えば、EBECRYL210、EBECRYL220、EBECRYL230、EBECRYL270、EBECRYL1290、EBECRYL2220、EBECRYL4827、EBECRYL4842、EBECRYL4858、EBECRYL5129、EBECRYL6700、EBECRYL8402、EBECRYL8803、EBECRYL8804、EBECRYL8807、EBECRYL9260等が挙げられる。
上記根上工業社製のウレタン(メタ)アクリレートとしては、例えば、アートレジンUN−330、アートレジンSH−500B、アートレジンUN−1200TPK、アートレジンUN−1255、アートレジンUN−3320HB、アートレジンUN−7100、アートレジンUN−9000A、アートレジンUN−9000H等が挙げられる。
上記新中村化学工業社製のウレタン(メタ)アクリレートとしては、例えば、U−2HA、U−2PHA、U−3HA、U−4HA、U−6H、U−6HA、U−6LPA、U−10H、U−15HA、U−108、U−108A、U−122A、U−122P、U−324A、U−340A、U−340P、U−1084A、U−2061BA、UA−340P、UA−4000、UA−4100、UA−4200、UA−4400、UA−5201P、UA−7100、UA−7200、UA−W2A等が挙げられる。
上記共栄社化学社製のウレタン(メタ)アクリレートとしては、例えば、AH−600、AI−600、AT−600、UA−101I、UA−101T、UA−306H、UA−306I、UA−306T等が挙げられる。
Among the above-mentioned urethane (meth) acrylates, commercially available ones include, for example, urethane (meth) acrylate manufactured by Toa Synthetic Co., Ltd., urethane (meth) acrylate manufactured by Daicel Ornex, and urethane (meth) manufactured by Negami Kogyo Co., Ltd. Examples thereof include acrylate, urethane (meth) acrylate manufactured by Shin-Nakamura Chemical Industry Co., Ltd., and urethane (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd.
Examples of the urethane (meth) acrylate manufactured by Toagosei Co., Ltd. include M-1100, M-1200, M-1210, and M-1600.
The urethane (meth) acrylate manufactured by the Daicel Orunekusu Inc., for example, EBECRYL210, EBECRYL220, EBECRYL230, EBECRYL270, EBECRYL1290, EBECRYL2220, EBECRYL4827, EBECRYL4842, EBECRYL4858, EBECRYL5129, EBECRYL6700, EBECRYL8402, EBECRYL8803, EBECRYL8804, EBECRYL8807, EBECRYL9260 etc. Can be mentioned.
Examples of the urethane (meth) acrylate manufactured by Negami Kogyo Co., Ltd. include Art Resin UN-330, Art Resin SH-500B, Art Resin UN-1200TPK, Art Resin UN-1255, Art Resin UN-3320HB, and Art Resin UN-. 7100, Art Resin UN-9000A, Art Resin UN-9000H and the like can be mentioned.
Examples of the urethane (meth) acrylate manufactured by Shin-Nakamura Chemical Industry Co., Ltd. include U-2HA, U-2PHA, U-3HA, U-4HA, U-6H, U-6HA, U-6LPA, U-10H, and the like. U-15HA, U-108, U-108A, U-122A, U-122P, U-324A, U-340A, U-340P, U-1084A, U-2061BA, UA-340P, UA-4000, UA- Examples thereof include 4100, UA-4200, UA-4400, UA-5201P, UA-7100, UA-7200, and UA-W2A.
Examples of the urethane (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd. include AH-600, AI-600, AT-600, UA-101I, UA-101T, UA-306H, UA-306I, and UA-306T. Be done.

上記硬化性樹脂は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。 The curable resin may be used alone or in combination of two or more.

本発明の表示素子用シール剤は、硬化性樹脂中の(メタ)アクリロイル基とエポキシ基との合計中における(メタ)アクリロイル基の含有割合を50モル%以上95モル%以下とすることが好ましい。 In the sealant for a display element of the present invention, the content ratio of the (meth) acryloyl group in the total of the (meth) acryloyl group and the epoxy group in the curable resin is preferably 50 mol% or more and 95 mol% or less. ..

本発明の表示素子用シール剤は、重合開始剤及び/又は熱硬化剤を含有する。
上記重合開始剤としては、例えば、ラジカル重合開始剤、カチオン重合開始剤等が挙げられる。
The sealant for a display element of the present invention contains a polymerization initiator and / or a thermosetting agent.
Examples of the polymerization initiator include radical polymerization initiators, cationic polymerization initiators and the like.

上記ラジカル重合開始剤としては、光照射によりラジカルを発生する光ラジカル重合開始剤、加熱によりラジカルを発生する熱ラジカル重合開始剤等が挙げられる。 Examples of the radical polymerization initiator include a photoradical polymerization initiator that generates radicals by light irradiation, a thermal radical polymerization initiator that generates radicals by heating, and the like.

上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、チオキサントン系化合物等が挙げられる。
上記光ラジカル重合開始剤としては、具体的には例えば、1−ヒドロキシシクロヘキシルフェニルケトン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)ブタノン、1,2−(ジメチルアミノ)−2−((4−メチルフェニル)メチル)−1−(4−(4−モルホリニル)フェニル)−1−ブタノン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキサイド、2−メチル−1−(4−メチルチオフェニル)−2−モルフォリノプロパン−1−オン、1−(4−(2−ヒドロキシエトキシ)−フェニル)−2−ヒドロキシ−2−メチル−1−プロパン−1−オン、1−(4−(フェニルチオ)フェニル)−1,2−オクタンジオン2−(O−ベンゾイルオキシム)、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等が挙げられる。
Examples of the photoradical polymerization initiator include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanosen compounds, oxime ester compounds, benzoin ether compounds, and thioxanthone compounds.
Specific examples of the photoradical polymerization initiator include 1-hydroxycyclohexylphenyl ketone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone, and 1,2- (dimethylamino). -2-((4-Methylphenyl) methyl) -1- (4- (4-morpholinyl) phenyl) -1-butanone, 2,2-dimethoxy-1,2-diphenylethane-1-one, bis (2) , 4,6-trimethylbenzoyl) Phenylphosphenyl oxide, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1-one, 1- (4- (2-hydroxyethoxy) -phenyl)- 2-Hydroxy-2-methyl-1-propane-1-one, 1- (4- (phenylthio) phenyl) -1,2-octanedione 2- (O-benzoyloxime), 2,4,6-trimethylbenzoyl Examples thereof include diphenylphosphine oxide, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether and the like.

上記熱ラジカル重合開始剤としては、例えば、アゾ化合物、有機過酸化物等からなるものが挙げられる。なかでも、高分子アゾ化合物からなる高分子アゾ開始剤が好ましい。
なお、本明細書において高分子アゾ化合物とは、アゾ基を有し、熱によって(メタ)アクリロイルオキシ基を硬化させることができるラジカルを生成する、数平均分子量が300以上の化合物を意味する。
Examples of the thermal radical polymerization initiator include those made of an azo compound, an organic peroxide and the like. Of these, a polymer azo initiator composed of a polymer azo compound is preferable.
In the present specification, the polymer azo compound means a compound having an azo group and having a number average molecular weight of 300 or more, which generates a radical capable of curing the (meth) acryloyloxy group by heat.

上記高分子アゾ化合物の数平均分子量の好ましい下限は1000、好ましい上限は30万である。上記高分子アゾ化合物の数平均分子量がこの範囲であることにより、硬化性樹脂へ容易に混合することができ、得られる表示素子用シール剤を液晶表示素子に用いる場合には液晶への悪影響を防止することができる。上記高分子アゾ化合物の数平均分子量のより好ましい下限は5000、より好ましい上限は10万であり、更に好ましい下限は1万、更に好ましい上限は9万である。
なお、本明細書において、上記数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で溶媒としてテトラヒドロフランを用いて測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際のカラムとしては、例えば、Shodex LF−804(昭和電工社製)等が挙げられる。
The preferable lower limit of the number average molecular weight of the polymer azo compound is 1000, and the preferable upper limit is 300,000. When the number average molecular weight of the polymer azo compound is in this range, it can be easily mixed with the curable resin, and when the obtained sealant for a display element is used for a liquid crystal display element, it adversely affects the liquid crystal. Can be prevented. The more preferable lower limit of the number average molecular weight of the polymer azo compound is 5000, the more preferable upper limit is 100,000, the further preferable lower limit is 10,000, and the further preferable upper limit is 90,000.
In the present specification, the number average molecular weight is a value obtained by measuring by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent and converting it into polystyrene. Examples of the column for measuring the number average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK) and the like.

上記高分子アゾ化合物としては、例えば、アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有するものが挙げられる。
上記アゾ基を介してポリアルキレンオキサイド等のユニットが複数結合した構造を有する高分子アゾ化合物としては、ポリエチレンオキサイド構造を有するものが好ましい。
上記高分子アゾ化合物としては、具体的には例えば、4,4’−アゾビス(4−シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4’−アゾビス(4−シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられる。
上記高分子アゾ化合物のうち市販されているものとしては、例えば、VPE−0201、VPE−0401、VPE−0601、VPS−0501、VPS−1001(いずれも富士フイルム和光純薬社製)等が挙げられる。
また、高分子ではないアゾ化合物として市販されているものとしては、例えば、V−65、V−501(いずれも富士フイルム和光純薬社製)等が挙げられる。
Examples of the polymer azo compound include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
As the polymer azo compound having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group, those having a polyethylene oxide structure are preferable.
Specific examples of the polymer azo compound include a polycondensate of 4,4'-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4'-azobis (4-cyanopentanoic acid). And a polycondensate of polydimethylsiloxane having a terminal amino group and the like.
Examples of commercially available polymer azo compounds include VPE-0201, VPE-0401, VPE-0601, VPS-0501, and VPS-1001 (all manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). Be done.
Examples of commercially available azo compounds that are not polymers include V-65 and V-501 (both manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.).

上記有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。 Examples of the organic peroxide include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, peroxyesters, diacyl peroxides, peroxydicarbonates and the like.

上記カチオン重合開始剤としては、光カチオン重合開始剤を好適に用いることができる。上記光カチオン重合開始剤は、光照射によりプロトン酸又はルイス酸を発生するものであれば特に限定されず、イオン性光酸発生タイプのものであってもよいし、非イオン性光酸発生タイプであってもよい。
上記光カチオン重合開始剤としては、例えば、芳香族ジアゾニウム塩、芳香族ハロニウム塩、芳香族スルホニウム塩等のオニウム塩類、鉄−アレン錯体、チタノセン錯体、アリールシラノール−アルミニウム錯体等の有機金属錯体類等が挙げられる。
As the cationic polymerization initiator, a photocationic polymerization initiator can be preferably used. The photocationic polymerization initiator is not particularly limited as long as it generates protonic acid or Lewis acid by light irradiation, and may be an ionic photoacid generation type or a nonionic photoacid generation type. It may be.
Examples of the photocationic polymerization initiator include onium salts such as aromatic diazonium salt, aromatic halonium salt and aromatic sulfonium salt, and organic metal complexes such as iron-allene complex, titanosen complex and arylsilanol-aluminum complex. Can be mentioned.

上記光カチオン重合開始剤のうち市販されているものとしては、例えば、アデカオプトマーSP−150、アデカオプトマーSP−170(いずれもADEKA社製)等が挙げられる。 Examples of commercially available photocationic polymerization initiators include ADEKA OPTMER SP-150 and ADEKA OPTMER SP-170 (both manufactured by ADEKA).

上記重合開始剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。 The above-mentioned polymerization initiator may be used alone or in combination of two or more.

上記重合開始剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.1重量部、好ましい上限が30重量部である。上記重合開始剤の含有量が0.1重量部以上であることにより、得られる表示素子用シール剤が硬化性により優れるものとなる。上記重合開始剤の含有量が30重量部以下であることにより、得られる表示素子用シール剤が保存安定性により優れるものとなる。上記重合開始剤の含有量のより好ましい下限は1重量部、より好ましい上限は10重量部であり、更に好ましい上限は5重量部である。 The content of the polymerization initiator is preferably 0.1 part by weight and a preferable upper limit is 30 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the polymerization initiator is 0.1 parts by weight or more, the obtained sealant for a display element becomes more excellent in curability. When the content of the polymerization initiator is 30 parts by weight or less, the obtained sealant for a display element becomes more excellent in storage stability. The more preferable lower limit of the content of the polymerization initiator is 1 part by weight, the more preferable upper limit is 10 parts by weight, and the more preferable upper limit is 5 parts by weight.

上記熱硬化剤としては、例えば、有機酸ヒドラジド、イミダゾール誘導体、アミン化合物、多価フェノール系化合物、酸無水物等が挙げられる。なかでも、固形の有機酸ヒドラジドが好適に用いられる。
上記熱硬化剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
Examples of the heat-curing agent include organic acid hydrazide, imidazole derivatives, amine compounds, polyhydric phenolic compounds, acid anhydrides and the like. Of these, solid organic acid hydrazide is preferably used.
The above thermosetting agent may be used alone or in combination of two or more.

上記固形の有機酸ヒドラジドとしては、例えば、1,3−ビス(ヒドラジノカルボエチル)−5−イソプロピルヒダントイン、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド、マロン酸ジヒドラジド等が挙げられる。
上記有機酸ヒドラジドのうち市販されているものとしては、例えば、大塚化学社製の有機酸ヒドラジド、日本ファインケム社製の有機酸ヒドラジド、味の素ファインテクノ社製の有機酸ヒドラジド等が挙げられる。
上記大塚化学社製の有機酸ヒドラジドとしては、例えば、SDH、ADH等が挙げられる。
上記日本ファインケム社製の有機酸ヒドラジドとしては、例えば、MDH等が挙げられる。
上記味の素ファインテクノ社製の有機酸ヒドラジドとしては、例えば、アミキュアVDH、アミキュアVDH−J、アミキュアUDH等が挙げられる。
Examples of the solid organic acid hydrazide include 1,3-bis (hydrazinocarboethyl) -5-isopropylhydrandin, sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, and malonic acid dihydrazide.
Examples of commercially available organic acid hydrazides include organic acid hydrazides manufactured by Otsuka Chemical Co., Ltd., organic acid hydrazides manufactured by Japan Finechem Co., Ltd., and organic acid hydrazides manufactured by Ajinomoto Fine-Techno Co., Ltd.
Examples of the organic acid hydrazide manufactured by Otsuka Chemical Co., Ltd. include SDH and ADH.
Examples of the organic acid hydrazide manufactured by Japan Finechem Co., Ltd. include MDH and the like.
Examples of the organic acid hydrazide manufactured by Ajinomoto Fine-Techno Co., Ltd. include Amicure VDH, Amicure VDH-J, and Amicure UDH.

上記熱硬化剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が1重量部、好ましい上限が50重量部である。上記熱硬化剤の含有量が1重量部以上であることにより、得られる表示素子用シール剤が熱硬化性により優れるものとなる。上記熱硬化剤の含有量が50重量部以下であることにより、得られる表示素子用シール剤が塗布性により優れるものとなる。上記熱硬化剤の含有量のより好ましい上限は30重量部である。 The content of the thermosetting agent is preferably 1 part by weight and a preferable upper limit of 50 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the thermosetting agent is 1 part by weight or more, the obtained sealant for a display element becomes more excellent in thermosetting property. When the content of the thermosetting agent is 50 parts by weight or less, the obtained sealant for a display element becomes more excellent in coatability. A more preferable upper limit of the content of the thermosetting agent is 30 parts by weight.

本発明の表示素子用シール剤は、粘度調整、応力分散効果による接着性の向上、線膨張率の改善、硬化物の耐湿性の向上等を目的として充填剤を含有することが好ましい。 The sealant for a display element of the present invention preferably contains a filler for the purpose of adjusting the viscosity, improving the adhesiveness by the stress dispersion effect, improving the coefficient of linear expansion, improving the moisture resistance of the cured product, and the like.

上記充填剤としては、無機充填剤や有機充填剤を用いることができる。
上記無機充填剤としては、例えば、シリカ、タルク、ガラスビーズ、石綿、石膏、珪藻土、スメクタイト、ベントナイト、モンモリロナイト、セリサイト、活性白土、アルミナ、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、水酸化アルミニウム、窒化アルミニウム、窒化珪素、硫酸バリウム、珪酸カルシウム等が挙げられる。
上記有機充填剤としては、例えば、ポリエステル微粒子、ポリウレタン微粒子、ビニル重合体微粒子、アクリル重合体微粒子等が挙げられる。
As the filler, an inorganic filler or an organic filler can be used.
Examples of the inorganic filler include silica, talc, glass beads, asbestos, gypsum, diatomaceous earth, smectite, bentonite, montmorillonite, sericite, activated clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, and titanium oxide. , Calcium carbonate, magnesium carbonate, magnesium hydroxide, aluminum hydroxide, aluminum nitride, silicon nitride, barium sulfate, calcium silicate and the like.
Examples of the organic filler include polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, and the like.

本発明の表示素子用シール剤100重量部中における上記充填剤の含有量の好ましい下限は10重量部、好ましい上限は70重量部である。上記充填剤の含有量がこの範囲であることにより、塗布性等の悪化を抑制しつつ、接着性の向上等の効果をより発揮することができる。上記充填剤の含有量のより好ましい下限は20重量部、より好ましい上限は60重量部である。 The preferable lower limit of the content of the filler in 100 parts by weight of the sealant for a display element of the present invention is 10 parts by weight, and the preferable upper limit is 70 parts by weight. When the content of the filler is in this range, it is possible to further exert the effect of improving the adhesiveness while suppressing the deterioration of the coatability and the like. The more preferable lower limit of the content of the filler is 20 parts by weight, and the more preferable upper limit is 60 parts by weight.

本発明の表示素子用シール剤は、シランカップリング剤を含有することが好ましい。上記シランカップリング剤は、主にシール剤と基板等とを良好に接着するための接着助剤としての役割を有する。 The sealant for a display element of the present invention preferably contains a silane coupling agent. The silane coupling agent mainly has a role as an adhesive auxiliary for satisfactorily adhering the sealant and the substrate or the like.

上記シランカップリング剤としては、例えば、3−メルカプトプロピルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−イソシアネートプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン等が好適に用いられる。これらのシランカップリング剤は、基板等との接着性を向上させる効果に優れ、得られる表示素子用シール剤を液晶表示素子に用いる場合には液晶中への硬化性樹脂の流出を抑制することができる。
上記シランカップリング剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
As the silane coupling agent, for example, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanuppropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane and the like are preferably used. Be done. These silane coupling agents are excellent in the effect of improving the adhesiveness with a substrate or the like, and when the obtained sealant for a display element is used for a liquid crystal display element, the outflow of the curable resin into the liquid crystal is suppressed. Can be done.
The silane coupling agent may be used alone or in combination of two or more.

本発明の表示素子用シール剤100重量部中における上記シランカップリング剤の含有量の好ましい下限は0.1重量部、好ましい上限は10重量部である。上記シランカップリング剤の含有量がこの範囲であることにより、得られる表示素子用シール剤が接着性により優れるものとなり、得られる表示素子用シール剤を液晶表示素子に用いる場合には液晶汚染の発生を抑制できるものとなる。上記シランカップリング剤の含有量のより好ましい下限は0.3重量部、より好ましい上限は5重量部である。 The preferable lower limit of the content of the silane coupling agent in 100 parts by weight of the sealant for a display element of the present invention is 0.1 parts by weight, and the preferable upper limit is 10 parts by weight. When the content of the silane coupling agent is within this range, the obtained sealant for a display element becomes more excellent in adhesiveness, and when the obtained sealant for a display element is used for a liquid crystal display element, it causes liquid crystal contamination. The occurrence can be suppressed. The more preferable lower limit of the content of the silane coupling agent is 0.3 parts by weight, and the more preferable upper limit is 5 parts by weight.

本発明の表示素子用シール剤は、上記遮光剤を含有してもよい。上記遮光剤を含有することにより、本発明の表示素子用シール剤は、遮光シール剤として好適に用いることができる。 The sealant for a display element of the present invention may contain the above-mentioned light-shielding agent. By containing the above-mentioned light-shielding agent, the sealant for a display element of the present invention can be suitably used as a light-shielding sealant.

上記遮光剤としては、例えば、酸化鉄、チタンブラック、アニリンブラック、シアニンブラック、フラーレン、カーボンブラック、樹脂被覆型カーボンブラック等が挙げられる。なかでも、チタンブラックが好ましい。
上記遮光剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, resin-coated carbon black and the like. Of these, titanium black is preferable.
The light-shielding agent may be used alone or in combination of two or more.

上記チタンブラックは、波長300nm以上800nm以下の光に対する平均透過率と比較して、紫外線領域付近、特に波長370nm以上450nm以下の光に対する透過率が高くなる物質である。即ち、上記チタンブラックは、可視光領域の波長の光を充分に遮蔽することで本発明の表示素子用シール剤に遮光性を付与する一方、紫外線領域付近の波長の光は透過させる性質を有する遮光剤である。本発明の表示素子用シール剤に含有される遮光剤としては、絶縁性の高い物質が好ましく、絶縁性の高い遮光剤としてもチタンブラックが好適である。 The titanium black is a substance having a higher transmittance for light in the ultraviolet region, particularly for light having a wavelength of 370 nm or more and 450 nm or less, as compared with the average transmittance for light having a wavelength of 300 nm or more and 800 nm or less. That is, the titanium black has a property of imparting light-shielding property to the sealant for a display element of the present invention by sufficiently blocking light having a wavelength in the visible light region, while transmitting light having a wavelength near the ultraviolet region. It is a light-shielding agent. As the light-shielding agent contained in the sealant for a display element of the present invention, a substance having a high insulating property is preferable, and titanium black is also preferable as a light-shielding agent having a high insulating property.

上記チタンブラックは、表面処理されていないものでも充分な効果を発揮するが、表面がカップリング剤等の有機成分で処理されているものや、酸化ケイ素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等の無機成分で被覆されているもの等、表面処理されたチタンブラックを用いることもできる。なかでも、有機成分で処理されているものは、より絶縁性を向上できる点で好ましい。
また、遮光剤として上記チタンブラックを含有する本発明の表示素子用シール剤を用いて製造した表示素子は、充分な遮光性を有するため、光の漏れ出しがなく高いコントラストを有し、優れた画像表示品質を有する表示素子を実現することができる。
The above titanium black exerts a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, or oxidation. Surface-treated titanium black, such as those coated with an inorganic component such as zirconium or magnesium oxide, can also be used. Among them, those treated with an organic component are preferable in that the insulating property can be further improved.
Further, the display element manufactured by using the sealant for a display element of the present invention containing the titanium black as a light-shielding agent has a sufficient light-shielding property, so that there is no light leakage and a high contrast is obtained, which is excellent. A display element having image display quality can be realized.

上記チタンブラックのうち市販されているものとしては、例えば、三菱マテリアル社製のチタンブラック、赤穂化成社製のチタンブラック等が挙げられる。
上記三菱マテリアル社製のチタンブラックとしては、例えば、12S、13M、13M−C、13R−N、14M−C等が挙げられる。
上記赤穂化成社製のチタンブラックとしては、例えば、ティラックD等が挙げられる。
Examples of commercially available titanium blacks include titanium black manufactured by Mitsubishi Materials, titanium black manufactured by Ako Kasei Co., Ltd., and the like.
Examples of the titanium black manufactured by Mitsubishi Materials Corporation include 12S, 13M, 13M-C, 13RN, 14M-C and the like.
Examples of the titanium black manufactured by Ako Kasei Co., Ltd. include Tilak D and the like.

上記チタンブラックの比表面積の好ましい下限は13m/g、好ましい上限は30m/gであり、より好ましい下限は15m/g、より好ましい上限は25m/gである。
また、上記チタンブラックの体積抵抗の好ましい下限は0.5Ω・cm、好ましい上限は3Ω・cmであり、より好ましい下限は1Ω・cm、より好ましい上限は2.5Ω・cmである。
The preferable lower limit of the specific surface area of the titanium black is 13 m 2 / g, the preferable upper limit is 30 m 2 / g, the more preferable lower limit is 15 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
The preferable lower limit of the volume resistance of the titanium black is 0.5 Ω · cm, the preferred upper limit is 3 Ω · cm, the more preferable lower limit is 1 Ω · cm, and the more preferable upper limit is 2.5 Ω · cm.

上記遮光剤の一次粒子径は、表示素子の基板間の距離以下であれば特に限定されないが、好ましい下限は1nm、好ましい上限は5000nmである。上記遮光剤の一次粒子径がこの範囲であることにより、得られる表示素子用シール剤の描画性等を悪化させることなく遮光性により優れるものとすることができる。上記遮光剤の一次粒子径のより好ましい下限は5nm、より好ましい上限は200nm、更に好ましい下限は10nm、更に好ましい上限は100nmである。
なお、上記遮光剤の一次粒子径は、NICOMP 380ZLS(PARTICLE SIZING SYSTEMS社製)を用いて、上記遮光剤を溶媒(水、有機溶媒等)に分散させて測定することができる。
The primary particle diameter of the light-shielding agent is not particularly limited as long as it is equal to or less than the distance between the substrates of the display element, but the preferable lower limit is 1 nm and the preferable upper limit is 5000 nm. When the primary particle size of the light-shielding agent is within this range, the light-shielding property can be improved without deteriorating the drawing property of the obtained sealant for a display element. The more preferable lower limit of the primary particle diameter of the light shielding agent is 5 nm, the more preferable upper limit is 200 nm, the further preferable lower limit is 10 nm, and the further preferable upper limit is 100 nm.
The primary particle size of the light-shielding agent can be measured by using NICOMP 380ZLS (manufactured by PARTICLE SIZING SYSTEMS) and dispersing the light-shielding agent in a solvent (water, organic solvent, etc.).

本発明の表示素子用シール剤100重量部中における上記遮光剤の含有量の好ましい下限は5重量部、好ましい上限は80重量部である。上記遮光剤の含有量がこの範囲であることにより、得られる表示素子用シール剤の接着性、硬化後の強度、及び、描画性の悪化を抑制しつつ、遮光性を向上させる効果により優れるものとなる。上記遮光剤の含有量のより好ましい下限は10重量部、より好ましい上限は70重量部であり、更に好ましい下限は30重量部、更に好ましい上限は60重量部である。 The preferable lower limit of the content of the light-shielding agent in 100 parts by weight of the sealant for a display element of the present invention is 5 parts by weight, and the preferable upper limit is 80 parts by weight. When the content of the light-shielding agent is within this range, it is more excellent in the effect of improving the light-shielding property while suppressing the deterioration of the adhesiveness, the strength after curing, and the drawing property of the obtained sealant for the display element. It becomes. The more preferable lower limit of the content of the light-shielding agent is 10 parts by weight, the more preferable upper limit is 70 parts by weight, the more preferable lower limit is 30 parts by weight, and the further preferable upper limit is 60 parts by weight.

本発明の表示素子用シール剤は、更に、必要に応じて、反応性希釈剤、スペーサー、硬化促進剤、消泡剤、レベリング剤、重合禁止剤、その他のカップリング剤等の添加剤を含有してもよい。 The sealant for a display element of the present invention further contains additives such as a reactive diluent, a spacer, a curing accelerator, a defoaming agent, a leveling agent, a polymerization inhibitor, and other coupling agents, if necessary. You may.

本発明の表示素子用シール剤を製造する方法としては、例えば、混合機を用いて、硬化性樹脂と、重合開始剤及び/又は熱硬化剤と、必要に応じて添加するシランカップリング剤等の添加剤とを混合する方法等が挙げられる。
上記混合機としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等が挙げられる。
As a method for producing the sealant for a display element of the present invention, for example, a curable resin, a polymerization initiator and / or a thermosetting agent, a silane coupling agent to be added as needed, and the like using a mixer and the like are used. Examples thereof include a method of mixing with the additive of.
Examples of the mixer include a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and three rolls.

本発明の表示素子用シール剤は、光照射及び/又は加熱により硬化させることができる。本発明の表示素子用シール剤の硬化物もまた、本発明の1つである。 The sealant for a display element of the present invention can be cured by light irradiation and / or heating. A cured product of the sealant for a display element of the present invention is also one of the present inventions.

本発明の表示素子用シール剤に導電性微粒子を配合することにより、上下導通材料を製造することができる。このような本発明の表示素子用シール剤と導電性微粒子とを含有する上下導通材料もまた、本発明の1つである。 By blending conductive fine particles with the sealant for a display element of the present invention, a vertically conductive material can be produced. A vertically conductive material containing such a sealant for a display element and conductive fine particles of the present invention is also one of the present inventions.

上記導電性微粒子は特に限定されず、金属ボール、樹脂微粒子の表面に導電金属層を形成したもの等を用いることができる。なかでも、樹脂微粒子の表面に導電金属層を形成したものは、樹脂微粒子の優れた弾性により、透明基板等を損傷することなく導電接続が可能であることから好適である。 The conductive fine particles are not particularly limited, and metal balls, those having a conductive metal layer formed on the surface of the resin fine particles, and the like can be used. Among them, the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the excellent elasticity of the resin fine particles enables conductive connection without damaging the transparent substrate or the like.

本発明の表示素子用シール剤の硬化物、又は、本発明の上下導通材料の硬化物を有する表示素子もまた、本発明の1つである。本発明の表示素子としては、液晶表示素子が好適である。
本発明の表示素子用シール剤を用いて液晶表示素子を製造する方法としては、液晶滴下工法が好適に用いられ、具体的には例えば、以下の各工程を有する方法等が挙げられる。
まず、ITO薄膜等の電極を有する2枚の透明基板の一方に、本発明の表示素子用シール剤をスクリーン印刷、ディスペンサー塗布等により塗布して枠状のシールパターンを形成する工程を行う。次いで、液晶の微小滴をシールパターンの枠内全面に滴下塗布し、真空下で他方の透明基板を重ね合わせる工程を行う。その後、シールパターン部分に紫外線等の光を照射してシール剤を仮硬化させる工程、及び、仮硬化させたシール剤を加熱して本硬化させる工程を行う方法により、液晶表示素子を得ることができる。
A display element having a cured product of the sealant for a display element of the present invention or a cured product of the vertically conductive material of the present invention is also one of the present inventions. As the display element of the present invention, a liquid crystal display element is suitable.
As a method for manufacturing a liquid crystal display element using the sealant for a display element of the present invention, a liquid crystal dropping method is preferably used, and specific examples thereof include a method having the following steps.
First, a step of applying the sealant for a display element of the present invention to one of two transparent substrates having electrodes such as an ITO thin film by screen printing, dispenser application, or the like to form a frame-shaped seal pattern is performed. Next, a step of dropping and applying fine droplets of liquid crystal on the entire surface of the frame of the seal pattern and superimposing the other transparent substrate under vacuum is performed. After that, the liquid crystal display element can be obtained by a method of irradiating the seal pattern portion with light such as ultraviolet rays to temporarily cure the sealant and a step of heating the temporarily cured sealant to perform main curing. it can.

本発明によれば、耐湿熱性に優れ、かつ、耐衝撃性に優れる表示素子を得ることができる表示素子用シール剤を提供することができる。また、本発明によれば、該表示素子用シール剤の硬化物、並びに、該表示素子用シール剤を用いてなる上下導通材料及び表示素子を提供することができる。 According to the present invention, it is possible to provide a sealant for a display element capable of obtaining a display element having excellent moisture and heat resistance and excellent impact resistance. Further, according to the present invention, it is possible to provide a cured product of the sealant for a display element, and a vertically conductive material and a display element using the sealant for the display element.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

(実施例1、2、4、、参考例3、比較例1〜4)
表1に記載された配合比に従い、各材料を、遊星式撹拌機を用いて混合した後、更に3本ロールを用いて混合することにより実施例1、2、4、、参考例3、比較例1〜4の表示素子用シール剤を調製した。上記遊星式撹拌機としては、あわとり練太郎(シンキー社製)を用いた。
得られた各表示素子用シール剤について、メタルハライドランプを用いて100mW/cmの紫外線(波長365nm)を30秒照射した後、120℃で1時間加熱することにより硬化物を得た。得られた硬化物について、動的粘弾性測定装置を用いて、試験片幅5mm、厚み0.35mm、掴み幅25mm、昇温速度10℃/分周波数5Hzの条件で25℃及び121℃における貯蔵弾性率を測定した。上記動的粘弾性測定装置としては、DVA−200(IT計測制御社製)を用いた。結果を表1に示した。
(Examples 1 , 2, 4, 5 , Reference Example 3 , Comparative Examples 1 to 4)
According to the compounding ratios shown in Table 1, each material was mixed using a planetary stirrer, and then further mixed using three rolls to form Examples 1 , 2, 4, 5 , and Reference Example 3 . Sealing agents for display elements of Comparative Examples 1 to 4 were prepared. As the planetary stirrer, Awatori Rentaro (manufactured by Shinky Co., Ltd.) was used.
The obtained sealant for each display element was irradiated with ultraviolet rays (wavelength 365 nm) of 100 mW / cm 2 for 30 seconds using a metal halide lamp, and then heated at 120 ° C. for 1 hour to obtain a cured product. The obtained cured product was stored at 25 ° C. and 121 ° C. using a dynamic viscoelasticity measuring device under the conditions of a test piece width of 5 mm, a thickness of 0.35 mm, a grip width of 25 mm, a heating rate of 10 ° C./min and a frequency of 5 Hz. The elastic modulus was measured. As the dynamic viscoelasticity measuring device, DVA-200 (manufactured by IT Measurement Control Co., Ltd.) was used. The results are shown in Table 1.

<評価>
実施例、参考例、及び比較例で得られた各表示素子用シール剤について以下の評価を行った。結果を表1に示した。
<Evaluation>
Examples, reference examples, and were evaluated as follows for each display element sealing agent obtained in Comparative Example. The results are shown in Table 1.

(耐湿熱性)
実施例、参考例、及び比較例で得られた各表示素子用シール剤100重量部にスペーサー粒子1重量部を均一に分散させた。スペーサー粒子としては、ミクロパールミクロパールSI−H050(積水化学工業社製)を用いた。スペーサー粒子を分散させたシール剤をディスペンス用のシリンジに充填し、脱泡処理を行ってから、ディスペンサーにて配向膜及びITO薄膜付きの透明基板の配向膜上に長方形の枠を描く様に塗布した。シリンジとしてはPSY−10E(武蔵エンジニアリング社製)を用い、ディスペンサーとしてはSHOTMASTER300(武蔵エンジニアリング社製)を用いた。続いて液晶の微小滴をシール剤の枠内全面に滴下塗布し、すぐに別の透明基板を貼り合わせた。液晶としては、JC−5004LA(チッソ社製)を用いた。透明基板を貼り合わせた直後、シール剤部分にメタルハライドランプを用いて100mW/cmの紫外線(波長365nm)を30秒照射した後、120℃で1時間加熱することにより、液晶表示素子を得た。
得られた液晶表示素子を24時間、PCT条件(121℃、100%RH、2atm)に曝した。PCT条件に曝した後の液晶表示素子について目視観察によって表示ムラ及び気泡の発生について確認し、表示ムラ及び気泡の両方の発生が確認されなかった場合を「○」、表紙ムラ及び気泡のうちの一方の発生が確認された場合を「△」、表示ムラ及び気泡の両方の発生が確認された場合を「×」として、耐湿熱性を評価した。
(Moisture and heat resistance)
Examples, reference examples, and were uniformly dispersed spacer particles 1 part by weight to 100 parts by weight of sealant for each display device obtained in Comparative Example. As the spacer particles, Micropearl Micropearl SI-H050 (manufactured by Sekisui Chemical Co., Ltd.) was used. A sealant in which spacer particles are dispersed is filled in a dispenser syringe, defoamed, and then applied with a dispenser so as to draw a rectangular frame on the alignment film and the alignment film of a transparent substrate with an ITO thin film. did. PSY-10E (manufactured by Musashi Engineering Co., Ltd.) was used as a syringe, and SHOTMASTER 300 (manufactured by Musashi Engineering Co., Ltd.) was used as a dispenser. Subsequently, fine droplets of liquid crystal were dropped and applied to the entire surface of the sealant frame, and another transparent substrate was immediately attached. As the liquid crystal, JC-5004LA (manufactured by Chisso) was used. Immediately after the transparent substrate was bonded, the sealant portion was irradiated with ultraviolet rays (wavelength 365 nm) of 100 mW / cm 2 for 30 seconds using a metal halide lamp, and then heated at 120 ° C. for 1 hour to obtain a liquid crystal display element. ..
The obtained liquid crystal display element was exposed to PCT conditions (121 ° C., 100% RH, 2 atm) for 24 hours. Visual observation of the liquid crystal display element after exposure to PCT conditions confirms the occurrence of display unevenness and bubbles, and when both display unevenness and bubbles are not confirmed, "○" indicates "○", cover unevenness and bubbles. Moisture resistance was evaluated as "Δ" when one of the occurrences was confirmed and "x" when both display unevenness and bubbles were confirmed.

(耐衝撃性)
実施例、参考例、及び比較例で得られた各表示素子用シール剤について、上記「(耐湿熱性)」と同様にして、液晶表示素子をそれぞれ10セルずつ作製した。
得られた各液晶表示素子について、2mの高さから落下させる落下試験を行った。落下試験後、全てのセルに剥がれや割れによる液晶漏れがなかった場合を「◎」、1セル以上4セル未満の表示素子に液晶漏れがあった場合を「○」、4セル以上7セル未満の表示素子に液晶漏れがあった場合を「△」、7セル以上の表示素子に液晶漏れがあった場合を「×」として耐衝撃性を評価した。
(Impact resistance)
Examples, reference examples, and, for each display element sealing agent obtained in Comparative Example, in the same manner as in "(wet heat resistance)", to produce a liquid crystal display device by respectively 10 cells.
Each of the obtained liquid crystal display elements was subjected to a drop test in which the liquid crystal display element was dropped from a height of 2 m. After the drop test, if there is no liquid crystal leakage due to peeling or cracking in all cells, "◎", if there is liquid crystal leakage in the display element of 1 cell or more and less than 4 cells, "○", 4 cells or more and less than 7 cells The impact resistance was evaluated as "Δ" when there was a liquid crystal leak in the display element of 7 cells or more and "x" when there was a liquid crystal leak in the display element of 7 cells or more.

Figure 0006792088
Figure 0006792088

本発明によれば、耐湿熱性に優れ、かつ、耐衝撃性に優れる表示素子を得ることができる表示素子用シール剤を提供することができる。また、本発明によれば、該表示素子用シール剤の硬化物、並びに、該表示素子用シール剤を用いてなる上下導通材料及び表示素子を提供することができる。 According to the present invention, it is possible to provide a sealant for a display element capable of obtaining a display element having excellent moisture and heat resistance and excellent impact resistance. Further, according to the present invention, it is possible to provide a cured product of the sealant for a display element, and a vertically conductive material and a display element using the sealant for the display element.

Claims (4)

硬化性樹脂と重合開始剤及び熱硬化剤とを含有し、
硬化物の25℃における貯蔵弾性率が0.8GPa未満であり、硬化物の121℃における貯蔵弾性率が0.01GPa以上であり、
前記硬化性樹脂は、エポキシ基とゴム構造とを有する化合物と、該ゴム構造を有するエポキシ化合物以外のその他のエポキシ化合物と、(メタ)アクリル化合物とを含み、
前記エポキシ基とゴム構造とを有する化合物は、エポキシ変性ブタジエンゴムである
ことを特徴とする液晶滴下工法用シール剤。
Contains a curable resin, a polymerization initiator and a thermosetting agent,
The storage elastic modulus of the cured product at 25 ° C. is less than 0.8 GPa, and the storage elastic modulus of the cured product at 121 ° C. is 0.01 GPa or more.
The curable resin includes a compound having an epoxy group and a rubber structure, and other epoxy compounds other than the epoxy compound having a rubber structure, viewed contains a (meth) acrylic compound,
The compound having an epoxy group and a rubber structure is an epoxy-modified butadiene rubber, which is a sealant for a liquid crystal dropping method.
請求項1記載の液晶滴下工法用シール剤の硬化物。 A cured product of the sealant for the liquid crystal dropping method according to claim 1. 請求項1記載の液晶滴下工法用シール剤と導電性微粒子とを含有する上下導通材料。 A vertically conductive material containing the sealant for the liquid crystal dropping method according to claim 1 and conductive fine particles. 請求項1の液晶滴下工法用シール剤の硬化物、又は、請求項3記載の上下導通材料の硬化物を有する液晶表示素子。 A liquid crystal display element having a cured product of the sealant for the liquid crystal dropping method according to claim 1 or a cured product of the vertically conductive material according to claim 3.
JP2019556375A 2018-10-23 2019-10-08 Sealing agent for liquid crystal dropping method, cured product, vertical conductive material, and liquid crystal display element Active JP6792088B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018199228 2018-10-23
JP2018199228 2018-10-23
PCT/JP2019/039618 WO2020085081A1 (en) 2018-10-23 2019-10-08 Sealant for display element, cured product, vertical conductive material, and display element

Publications (2)

Publication Number Publication Date
JP6792088B2 true JP6792088B2 (en) 2020-11-25
JPWO2020085081A1 JPWO2020085081A1 (en) 2021-02-15

Family

ID=70331174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019556375A Active JP6792088B2 (en) 2018-10-23 2019-10-08 Sealing agent for liquid crystal dropping method, cured product, vertical conductive material, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP6792088B2 (en)
KR (1) KR20210080355A (en)
CN (1) CN112840267B (en)
TW (1) TWI826548B (en)
WO (1) WO2020085081A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7430911B2 (en) * 2020-11-25 2024-02-14 協立化学産業株式会社 Sealing composition
CN116909061A (en) 2021-03-19 2023-10-20 三井化学株式会社 Liquid crystal sealing agent, method for manufacturing liquid crystal display panel, and liquid crystal display panel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147424A (en) * 1984-01-11 1985-08-03 Nippon Soda Co Ltd Sealing resin composition curable with actinic energy radiation
JP2830531B2 (en) * 1991-08-20 1998-12-02 ソニーケミカル株式会社 Adhesive for liquid crystal sealing material
JP3583326B2 (en) 1999-11-01 2004-11-04 協立化学産業株式会社 Sealant for dripping method of LCD panel
EP1293536A4 (en) * 2000-06-21 2005-03-23 Mitsui Chemicals Inc Sealing material for plastic liquid crystal display cells
CN100487072C (en) 2001-05-16 2009-05-13 积水化学工业株式会社 Curing vesin composition and sealants and end-sealing materials for displays
JP6058890B2 (en) * 2012-01-11 2017-01-11 株式会社Adeka Curable resin composition
JP5876972B1 (en) * 2014-03-31 2016-03-02 協立化学産業株式会社 Curable resin excellent in flexibility after curing, (meth) acrylated curable resin, and liquid crystal sealant composition
JP6391882B1 (en) * 2016-12-27 2018-09-19 積水化学工業株式会社 Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element

Also Published As

Publication number Publication date
KR20210080355A (en) 2021-06-30
CN112840267A (en) 2021-05-25
WO2020085081A1 (en) 2020-04-30
TW202028409A (en) 2020-08-01
CN112840267B (en) 2024-07-12
TWI826548B (en) 2023-12-21
JPWO2020085081A1 (en) 2021-02-15

Similar Documents

Publication Publication Date Title
JP6730133B2 (en) Liquid crystal display element sealant, vertical conduction material and liquid crystal display element
JP6798978B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6910561B2 (en) Sealing agent for display elements, vertical conductive materials, and display elements
JP6391882B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6046866B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6792088B2 (en) Sealing agent for liquid crystal dropping method, cured product, vertical conductive material, and liquid crystal display element
KR20190055015A (en) A sealing agent for a liquid crystal display element, an upper and lower conductive material, and a liquid crystal display element
WO2022071404A1 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP7000164B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JPWO2020171053A1 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6802147B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6378970B2 (en) Curable resin composition, liquid crystal display element sealing agent, vertical conduction material, and liquid crystal display element
JP7029027B1 (en) Sealant for display element, vertical conduction material, and display element
JP6928177B2 (en) Curable resin composition, sealant for liquid crystal display element, vertical conductive material, and liquid crystal display element
JP7088833B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP7088676B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
KR102709510B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2024154662A1 (en) Sealing agent for liquid crystal display element
JP2020042089A (en) Liquid crystal display element sealant, vertical conductive material, and liquid crystal display element
JPWO2017119407A1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200603

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200603

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200603

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201105

R151 Written notification of patent or utility model registration

Ref document number: 6792088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250