JP6978314B2 - Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element - Google Patents

Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element Download PDF

Info

Publication number
JP6978314B2
JP6978314B2 JP2017536979A JP2017536979A JP6978314B2 JP 6978314 B2 JP6978314 B2 JP 6978314B2 JP 2017536979 A JP2017536979 A JP 2017536979A JP 2017536979 A JP2017536979 A JP 2017536979A JP 6978314 B2 JP6978314 B2 JP 6978314B2
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
display element
meth
acrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017536979A
Other languages
Japanese (ja)
Other versions
JPWO2017221936A1 (en
Inventor
祐美子 寺口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of JPWO2017221936A1 publication Critical patent/JPWO2017221936A1/en
Application granted granted Critical
Publication of JP6978314B2 publication Critical patent/JP6978314B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/022Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations
    • C08F299/024Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations the unsaturation being in acrylic or methacrylic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1438Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen
    • C08G59/1455Monocarboxylic acids, anhydrides, halides, or low-molecular-weight esters thereof
    • C08G59/1461Unsaturated monoacids
    • C08G59/1466Acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Sealing Material Composition (AREA)
  • Liquid Crystal (AREA)
  • Epoxy Resins (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

本発明は、接着性と硬化物の透湿防止性とを両立させることができる液晶表示素子用シール剤に関する。また、本発明は、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子に関する。 The present invention relates to a sealant for a liquid crystal display element that can achieve both adhesiveness and moisture permeation prevention of a cured product. The present invention also relates to a vertically conductive material and a liquid crystal display element using the sealant for a liquid crystal display element.

近年、液晶表示セル等の液晶表示素子の製造方法としては、タクトタイム短縮、使用液晶量の最適化といった観点から、特許文献1、特許文献2に開示されているような、硬化性樹脂と光重合開始剤と熱硬化剤とを含有する光熱併用硬化型のシール剤を用いた滴下工法と呼ばれる液晶滴下方式が用いられている。
滴下工法では、まず、2枚の電極付き基板の一方に、ディスペンスにより長方形状のシールパターンを形成する。次いで、シール剤が未硬化の状態で液晶の微小滴を基板のシール枠内に滴下し、真空下で他方の基板を重ね合わせ、シール部に紫外線等の光を照射して仮硬化を行う。その後、加熱して本硬化を行い、液晶表示素子を作製する。現在この滴下工法が液晶表示素子の製造方法の主流となっている。
In recent years, as a method for manufacturing a liquid crystal display element such as a liquid crystal display cell, a curable resin and light as disclosed in Patent Document 1 and Patent Document 2 are used from the viewpoint of shortening the tact time and optimizing the amount of liquid crystal used. A liquid crystal dropping method called a dropping method using a photothermally combined curing type sealant containing a polymerization initiator and a thermosetting agent is used.
In the dropping method, first, a rectangular seal pattern is formed on one of the two substrates with electrodes by dispensing. Next, in a state where the sealant is uncured, fine droplets of liquid crystal are dropped into the seal frame of the substrate, the other substrate is overlapped under vacuum, and the seal portion is irradiated with light such as ultraviolet rays to perform temporary curing. Then, it is heated to perform the main curing, and a liquid crystal display element is manufactured. Currently, this dropping method is the mainstream method for manufacturing liquid crystal display elements.

ところで、携帯電話、携帯ゲーム機等、各種液晶パネル付きモバイル機器が普及している現代において、装置の小型化は最も求められている課題である。小型化の手法として、液晶表示部の狭額縁化が挙げられ、例えば、シール部の位置をブラックマトリックス下に配置することが行われている(以下、狭額縁設計ともいう)。
このような狭額縁設計に伴い、液晶表示素子において、画素領域からシール剤までの距離が近くなっており、シール剤によって液晶が汚染されることによる表示むらが生じやすくなっている。
By the way, in the present age when various mobile devices with liquid crystal panels such as mobile phones and portable game machines are widespread, miniaturization of the devices is the most sought after issue. As a method of miniaturization, a narrowing of the frame of the liquid crystal display unit can be mentioned. For example, the position of the seal portion is arranged under the black matrix (hereinafter, also referred to as a narrow frame design).
With such a narrow frame design, in the liquid crystal display element, the distance from the pixel region to the sealant is short, and display unevenness is likely to occur due to the liquid crystal being contaminated by the sealant.

また、タブレット端末や携帯端末の普及に伴い、液晶表示素子には高温高湿環境下での駆動等における耐湿信頼性がますます要求されており、シール剤には外部からの水の浸入を防止する性能が一層求められている。液晶表示素子の耐湿信頼性を向上させるためには、シール剤と基板等との界面からの水の浸入を防ぐためにシール剤の基板等に対する接着性を向上させ、かつ、シール剤の透湿防止性を向上させる必要がある。シール剤の透湿防止性を向上させる方法としては、例えば、タルク等のフィラーを配合する方法が考えられる。しかしながら、このようにタルク等のフィラーを配合しても、厳しい耐湿信頼性試験を行った場合、液晶表示素子に表示むらが発生する等の問題があった。 In addition, with the widespread use of tablet terminals and mobile terminals, liquid crystal display elements are increasingly required to have moisture resistance and reliability when driven in high temperature and high humidity environments, and the sealant prevents water from entering from the outside. Performance is further required. In order to improve the moisture resistance and reliability of the liquid crystal display element, the adhesiveness of the sealant to the substrate, etc. is improved in order to prevent water from entering from the interface between the sealant and the substrate, and the moisture permeation of the sealant is prevented. It is necessary to improve the sex. As a method for improving the moisture permeation prevention property of the sealing agent, for example, a method of blending a filler such as talc can be considered. However, even if a filler such as talc is blended in this way, there is a problem that display unevenness occurs in the liquid crystal display element when a strict moisture resistance reliability test is performed.

特開2001−133794号公報Japanese Unexamined Patent Publication No. 2001-133794 国際公開第02/092718号International Publication No. 02/092718

本発明は、接着性と硬化物の透湿防止性とを両立させることができる液晶表示素子用シール剤に関する。また、本発明は、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することを目的とする。 The present invention relates to a sealant for a liquid crystal display element that can achieve both adhesiveness and moisture permeation prevention of a cured product. Another object of the present invention is to provide a vertically conductive material and a liquid crystal display element using the sealant for a liquid crystal display element.

本発明は、硬化性樹脂と重合開始剤及び/又は熱硬化剤とを含有する液晶表示素子用シール剤であって、上記硬化性樹脂は、下記式(1)で表される化合物を含有し、上記硬化性樹脂100重量部中における式(1)で表される化合物の含有量が1〜90重量部である液晶表示素子用シール剤である。 The present invention is a sealant for a liquid crystal display element containing a curable resin, a polymerization initiator and / or a thermosetting agent, and the curable resin contains a compound represented by the following formula (1). A sealant for a liquid crystal display element, wherein the content of the compound represented by the formula (1) in 100 parts by weight of the curable resin is 1 to 90 parts by weight.

Figure 0006978314
Figure 0006978314

式(1)中、R、メチル基を表し、Rは、下記式(2−1)、(2−2)、又は、(2−3)で表される基を表し、Arは、置換されていてもよいアリーレン基を表し、Xは、環状ラクトンの開環構造を表し、nは、0〜0.5(平均値)であり、Epは、エポキシ化合物由来の構造を表す。 In formula (1), R 1 represents a methylation group, R 2 is represented by the following formula (2-1), (2-2), or represents a group represented by (2-3), Ar Represents an arylene group which may be substituted, X represents the ring-opening structure of the cyclic lactone, n is 0 to 0.5 (average value), and Ep represents the structure derived from the epoxy compound. ..

Figure 0006978314
Figure 0006978314

式(2−1)〜(2−3)中、*は、結合位置を表し、式(2−2)中、aは、1〜8の整数であり、式(2−3)中、bは、1〜8の整数であり、cは、1〜3の整数であり、dは、1〜8の整数である。
以下に本発明を詳述する。
In equations (2-1) to (2-3), * represents a coupling position, in equation (2-2), a is an integer of 1 to 8, and in equation (2-3), b. Is an integer of 1 to 8, c is an integer of 1 to 3, and d is an integer of 1 to 8.
The present invention will be described in detail below.

本発明者は、驚くべきことに、硬化性樹脂として特定の構造を有する化合物を特定量用いることにより、接着性と硬化物の透湿防止性とを両立させることができる液晶表示素子用シール剤が得られることを見出し、本発明を完成させるに至った。 Surprisingly, the present inventor is a sealing agent for a liquid crystal display element capable of achieving both adhesiveness and moisture permeation prevention property of a cured product by using a specific amount of a compound having a specific structure as a curable resin. It was found that the present invention could be obtained, and the present invention was completed.

本発明の液晶表示素子用シール剤は、硬化性樹脂を含有する。
上記硬化性樹脂は、上記式(1)で表される化合物を含有する。上記式(1)で表される化合物を含有することにより、本発明の液晶表示素子用シール剤は、接着性と硬化物の透湿防止性とを両立させることができるものとなる。
The sealant for a liquid crystal display element of the present invention contains a curable resin.
The curable resin contains a compound represented by the above formula (1). By containing the compound represented by the above formula (1), the sealant for a liquid crystal display element of the present invention can achieve both adhesiveness and moisture permeation prevention property of a cured product.

上記式(1)中、Rは、水素原子又はメチル基を表す。なかでも、得られる液晶表示素子用シール剤の硬化物の透湿防止性の観点から、上記Rは、メチル基であることが好ましい。In the above formula (1), R 1 represents a hydrogen atom or a methyl group. Among them, the R 1 is preferably a methyl group from the viewpoint of preventing moisture permeation of the cured product of the obtained sealant for a liquid crystal display element.

上記式(1)中、Rは、上記式(2−1)、(2−2)、又は、(2−3)で表される基を表す。なかでも、得られる液晶表示素子用シール剤の接着性や硬化物の柔軟性の観点から、上記Rは、上記式(2−2)で表される基であることが好ましく、上記式(2−2)におけるaが2である基(エチレン基)であることがより好ましい。In the above formula (1), R 2 represents a group represented by the above formula (2-1), (2-2), or (2-3). Above all, from the viewpoint of the adhesiveness of the obtained sealant for a liquid crystal display element and the flexibility of the cured product, the above R 2 is preferably a group represented by the above formula (2-2), and the above formula (2-2) is preferable. It is more preferable that a in 2-2) is a group (ethylene group) of 2.

上記式(1)中、Arは、置換されていてもよいアリーレン基を表す。
上記アリーレン基としては、例えば、1,2−フェニレン基、1,3−フェニレン基、1,4−フェニレン基、1,4−ナフチレン基、1,5−ナフチレン基、1,8−ナフチレン基、2,6−ナフチレン基、2,7−ナフチレン基等が挙げられる。なかでも、1,2−フェニレン基、1,8−ナフチレン基が好ましく、1,2−フェニレン基がより好ましい。
In the above formula (1), Ar represents an arylene group which may be substituted.
Examples of the arylene group include a 1,2-phenylene group, a 1,3-phenylene group, a 1,4-phenylene group, a 1,4-naphthylene group, a 1,5-naphthylene group and a 1,8-naphthylene group. Examples thereof include a 2,6-naphthylene group and a 2,7-naphthylene group. Of these, a 1,2-phenylene group and a 1,8-naphthylene group are preferable, and a 1,2-phenylene group is more preferable.

上記式(1)中、Xは、環状ラクトンの開環構造を表す。
上記環状ラクトンとしては、例えば、γ−ウンデカラクトン、ε−カプロラクトン、γ−デカラクトン、σ−ドデカラクトン、γ−ノナラクトン、γ−ノナノラクトン、γ−バレロラクトン、σ−バレロラクトン、β−ブチロラクトン、γ−ブチロラクトン、β−プロピオラクトン、σ−ヘキサノラクトン、7−ブチル−2−オキセパノン等が挙げられる。なかでも、開環したときに主骨格の直鎖部分の炭素数が5〜7となるものが好ましい。
In the above formula (1), X represents the ring-opening structure of the cyclic lactone.
Examples of the cyclic lactone include γ-undecalactone, ε-caprolactone, γ-decalactone, σ-dodecalactone, γ-nononalactone, γ-nonanolactone, γ-valerolactone, σ-valerolactone, β-butyrolactone, and γ. -Butyrolactone, β-propiolactone, σ-hexanolactone, 7-butyl-2-oxepanone and the like can be mentioned. Among them, those having 5 to 7 carbon atoms in the linear portion of the main skeleton when the ring is opened are preferable.

式(1)中、Epはエポキシ化合物由来の構造を表す。
上記Epの由来となるエポキシ化合物としては、例えば、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールE型エポキシ化合物、ビスフェノールS型エポキシ化合物、レゾルシノール型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、ナフタレン型エポキシ化合物、ゴム変性型エポキシ化合物、グリシジルエステル化合物等が挙げられる。
なかでも、上記式(1)で表される化合物は、nが0であり、かつ、EpがビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、又は、ビスフェノールE型エポキシ化合物由来の構造であることが好ましい。
In formula (1), Ep represents a structure derived from an epoxy compound.
Examples of the epoxy compound from which the above Ep is derived include bisphenol A type epoxy compound, bisphenol F type epoxy compound, bisphenol E type epoxy compound, bisphenol S type epoxy compound, resorcinol type epoxy compound, dicyclopentadiene type epoxy compound, and naphthalene. Examples thereof include type epoxy compounds, rubber-modified epoxy compounds, and glycidyl ester compounds.
Among them, the compound represented by the above formula (1) has a structure in which n is 0 and Ep is derived from a bisphenol A type epoxy compound, a bisphenol F type epoxy compound, or a bisphenol E type epoxy compound. Is preferable.

上記式(1)で表される化合物を製造する方法としては、例えば、2−ヒドロキシエチルアクリレート等のヒドロキシアルキル(メタ)アクリレートと、無水フタル酸やナフタル酸無水物等の芳香族カルボン酸無水物とを、ハイドロキノンやp−メトキシフェノール等の重合禁止剤の存在下で加熱撹拌すること等により反応させる工程と、得られた反応物に、エポキシ樹脂を加えて加熱撹拌すること等により反応させる工程とを有する方法等が挙げられる。上記ヒドロキシアルキル(メタ)アクリレートは、上記芳香族カルボン酸無水物と反応させる前に一部をε−カプロラクトン等の環状ラクトンと反応させていてもよい。
なお、本明細書において、上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。
Examples of the method for producing the compound represented by the above formula (1) include hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl acrylate and aromatic carboxylic acid anhydrides such as phthalic anhydride and naphthalic anhydride. And a step of reacting by heating and stirring in the presence of a polymerization inhibitor such as hydroquinone and p-methoxyphenol, and a step of reacting by adding an epoxy resin to the obtained reactant and heating and stirring. A method having and the like can be mentioned. The hydroxyalkyl (meth) acrylate may be partially reacted with a cyclic lactone such as ε-caprolactone before being reacted with the aromatic carboxylic acid anhydride.
In addition, in this specification, the said "(meth) acrylate" means acrylate or methacrylate.

上記硬化性樹脂100重量部中における上記式(1)で表される化合物の含有量の下限は1重量部、上限は90重量部である。上記式(1)で表される化合物の含有量が1重量部以上であることにより、得られる液晶表示素子用シール剤が接着性に優れるものとなる。上記式(1)で表される化合物の含有量が90重量部以下であることにより、得られる液晶表示素子用シール剤が塗布性等、液晶表示素子製造時の各工程における作業性に優れるものとなる。上記式(1)で表される化合物の含有量の好ましい下限は5重量部、好ましい上限は85重量部、より好ましい下限は10重量部、より好ましい上限は80重量部、更に好ましい下限は12重量部、更に好ましい上限は75重量部である。 The lower limit of the content of the compound represented by the above formula (1) in 100 parts by weight of the curable resin is 1 part by weight, and the upper limit is 90 parts by weight. When the content of the compound represented by the above formula (1) is 1 part by weight or more, the obtained sealing agent for a liquid crystal display element has excellent adhesiveness. When the content of the compound represented by the above formula (1) is 90 parts by weight or less, the obtained sealant for a liquid crystal display element is excellent in workability in each process during manufacturing of a liquid crystal display element such as coatability. It becomes. The preferable lower limit of the content of the compound represented by the above formula (1) is 5 parts by weight, the preferable upper limit is 85 parts by weight, the more preferable lower limit is 10 parts by weight, the more preferable upper limit is 80 parts by weight, and the further preferable lower limit is 12 parts by weight. The upper limit is 75 parts by weight.

上記硬化性樹脂は、接着性をより向上させる等の観点から、エポキシ化合物を含有することが好ましい。
上記エポキシ化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物等が挙げられる。
The curable resin preferably contains an epoxy compound from the viewpoint of further improving the adhesiveness.
Examples of the epoxy compound include bisphenol A type epoxy resin, bisphenol S type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, and naphthalene type epoxy. Resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, dicyclopentadiene novolac type epoxy resin, biphenyl novolac type epoxy resin, naphthalenephenol novolac type epoxy resin, glycidylamine type epoxy resin, alkyl polyol type epoxy resin, rubber modification Examples thereof include type epoxy resins and glycidyl ester compounds.

上記ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、jER828、jER1001(いずれも三菱化学社製)等が挙げられる。
上記ビスフェノールS型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA1514(DIC社製)等が挙げられる。
上記レゾルシノール型エポキシ樹脂のうち市販されているものとしては、例えば、EX−201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ樹脂のうち市販されているものとしては、例えば、jER YX−4000H(三菱化学社製)等が挙げられる。
上記スルフィド型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV−50TE(新日鉄住金化学社製)等が挙げられる。
上記ジフェニルエーテル型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV−80DE(新日鉄住金化学社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ樹脂のうち市販されているものとしては、例えば、EP−4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP4032、エピクロンEXA−4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN−770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN−670−EXP−S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、NC−3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、ESN−165S(新日鉄住金化学社製)等が挙げられる。
上記グリシジルアミン型エポキシ樹脂のうち市販されているものとしては、例えば、jER630(三菱化学社製)、エピクロン430(DIC社製)、TETRAD−X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ樹脂のうち市販されているものとしては、例えば、ZX−1542(新日鉄住金化学社製)、エピクロン726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX−611(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ樹脂のうち市販されているものとしては、例えば、YR−450、YR−207(いずれも新日鉄住金化学社製)、エポリードPB(ダイセル社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されているものとしては、例えば、デナコールEX−147(ナガセケムテックス社製)等が挙げられる。
上記エポキシ樹脂のうちその他に市販されているものとしては、例えば、YDC−1312、YSLV−80XY、YSLV−90CR(いずれも新日鉄住金化学社製)、XAC4151(旭化成社製)、jER1031、jER1032(いずれも三菱化学社製)、EXA−7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
Examples of commercially available bisphenol A type epoxy resins include jER828 and jER1001 (both manufactured by Mitsubishi Chemical Corporation).
Examples of commercially available bisphenol S-type epoxy resins include Epicron EXA1514 (manufactured by DIC Corporation).
Examples of commercially available resorcinol-type epoxy resins include EX-201 (manufactured by Nagase ChemteX Corporation) and the like.
Examples of commercially available biphenyl type epoxy resins include jER YX-4000H (manufactured by Mitsubishi Chemical Corporation).
Examples of commercially available sulfide-type epoxy resins include YSLV-50TE (manufactured by Nippon Steel & Sumitomo Metal Corporation).
Examples of commercially available diphenyl ether type epoxy resins include YSLV-80DE (manufactured by Nippon Steel & Sumitomo Metal Corporation).
Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA Corporation) and the like.
Examples of commercially available naphthalene-type epoxy resins include Epicron HP4032 and Epicron EXA-4700 (both manufactured by DIC Corporation).
Examples of commercially available phenol novolac type epoxy resins include Epicron N-770 (manufactured by DIC Corporation).
Examples of commercially available orthocresol novolak type epoxy resins include Epicron N-670-EXP-S (manufactured by DIC Corporation).
Examples of commercially available dicyclopentadiene novolak type epoxy resins include Epicron HP7200 (manufactured by DIC Corporation).
Examples of commercially available biphenyl novolac type epoxy resins include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.) and the like.
Examples of commercially available naphthalene phenol novolac type epoxy resins include ESN-165S (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available glycidylamine type epoxy resins include jER630 (manufactured by Mitsubishi Chemical Corporation), Epicron 430 (manufactured by DIC Corporation), TETRAD-X (manufactured by Mitsubishi Gas Chemical Corporation), and the like.
Among the above-mentioned alkyl polyol type epoxy resins, those commercially available include, for example, ZX-1542 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epicron 726 (manufactured by DIC Corporation), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), and Denacol EX-611. (Manufactured by Nagase ChemteX) and the like.
Examples of commercially available rubber-modified epoxy resins include YR-450, YR-207 (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epolide PB (manufactured by Daicel Co., Ltd.), and the like.
Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation) and the like.
Other commercially available epoxy resins include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nissan Chemical Industries, Ltd.), XAC4151 (manufactured by Asahi Kasei Corporation), jER1031, and jER1032 (all of which are manufactured by Asahi Kasei Corporation). Also includes Mitsubishi Chemical Corporation), EXA-7120 (DIC Corporation), TEPIC (Nissan Chemical Industries), and the like.

また、上記硬化性樹脂は、上記エポキシ化合物として部分(メタ)アクリル変性エポキシ樹脂を含有してもよい。
なお、本明細書において上記部分(メタ)アクリル変性エポキシ樹脂とは、1分子中に1つ以上のエポキシ基と1つ以上の(メタ)アクリロイル基とを有する化合物を意味し、例えば、1分子中に2つ以上のエポキシ基を有するエポキシ化合物の一部分のエポキシ基を(メタ)アクリル酸と反応させることによって得ることができる。
Further, the curable resin may contain a partially (meth) acrylic-modified epoxy resin as the epoxy compound.
In the present specification, the partial (meth) acrylic-modified epoxy resin means a compound having one or more epoxy groups and one or more (meth) acryloyl groups in one molecule, for example, one molecule. It can be obtained by reacting an epoxy group of a part of an epoxy compound having two or more epoxy groups with (meth) acrylic acid.

上記硬化性樹脂100重量部中における上記エポキシ化合物の含有量の好ましい下限は1重量部、好ましい上限は80重量部である。上記エポキシ化合物の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤が、液晶汚染の発生を抑制しつつ、接着性により優れるものとなる。上記エポキシ化合物の含有量のより好ましい下限は5重量部、より好ましい上限は70重量部である。 The preferable lower limit of the content of the epoxy compound in 100 parts by weight of the curable resin is 1 part by weight, and the preferable upper limit is 80 parts by weight. When the content of the epoxy compound is in this range, the obtained sealant for a liquid crystal display element becomes more excellent in adhesiveness while suppressing the occurrence of liquid crystal contamination. The more preferable lower limit of the content of the epoxy compound is 5 parts by weight, and the more preferable upper limit is 70 parts by weight.

上記硬化性樹脂は、本発明の目的を阻害しない範囲において、その他の硬化性樹脂を含有してもよい。
上記その他の硬化性樹脂としては、例えば、式(1)で表される化合物以外のその他の(メタ)アクリル化合物等が挙げられる。
なお、本明細書において、上記「(メタ)アクリル」とは、アクリル又はメタクリルを意味し、上記「(メタ)アクリル化合物」とは、(メタ)アクリロイル基を有する化合物を意味し、上記「(メタ)アクリロイル」とは、アクリロイル又はメタクリロイルを意味する。
The curable resin may contain other curable resins as long as the object of the present invention is not impaired.
Examples of the other curable resin include other (meth) acrylic compounds other than the compound represented by the formula (1).
In the present specification, the above-mentioned "(meth) acrylic" means acrylic or methacrylic, and the above-mentioned "(meth) acrylic compound" means a compound having a (meth) acryloyl group, and the above-mentioned "((meth) acryloyl group". "Meta) acryloyl" means acryloyl or methacryloyl.

上記その他の(メタ)アクリル化合物としては、例えば、(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られる(メタ)アクリル酸エステル化合物、(メタ)アクリル酸とエポキシ化合物とを反応させることにより得られるエポキシ(メタ)アクリレート、イソシアネート化合物に水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレート等が挙げられる。なかでも、エポキシ(メタ)アクリレートが好ましい。また、上記(メタ)アクリル化合物は、反応性の観点から、1分子中に(メタ)アクリロイル基を2個以上有するものが好ましい。
なお、本明細書において、上記「エポキシ(メタ)アクリレート」とは、エポキシ化合物中の全てのエポキシ基を(メタ)アクリル酸と反応させた化合物のことを表す。
Examples of the other (meth) acrylic compound include a (meth) acrylic acid ester compound obtained by reacting (meth) acrylic acid with a compound having a hydroxyl group, and (meth) acrylic acid and an epoxy compound are reacted. Examples thereof include epoxy (meth) acrylate obtained thereby, urethane (meth) acrylate obtained by reacting an isocyanate compound with a (meth) acrylic acid derivative having a hydroxyl group, and the like. Of these, epoxy (meth) acrylate is preferable. Further, the (meth) acrylic compound preferably has two or more (meth) acryloyl groups in one molecule from the viewpoint of reactivity.
In addition, in this specification, the said "epoxy (meth) acrylate" means a compound which reacted all the epoxy groups in an epoxy compound with (meth) acrylic acid.

上記(メタ)アクリル酸エステル化合物のうち単官能のものとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、n−オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−ブトキシエチル(メタ)アクリレート、2−フェノキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、2,2,2−トリフルオロエチル(メタ)アクリレート、2,2,3,3−テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H−オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2−(メタ)アクリロイロキシエチルコハク酸、2−(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2−(メタ)アクリロイロキシエチル2−ヒドロキシプロピルフタレート、2−(メタ)アクリロイロキシエチルホスフェート、グリシジル(メタ)アクリレート等が挙げられる。 Among the above (meth) acrylic acid ester compounds, monofunctional ones include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate. , T-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, iso Myristyl (meth) acrylate, stearyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, cyclohexyl ( Meta) acrylate, isobornyl (meth) acrylate, bicyclopentenyl (meth) acrylate, benzyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-butoxyethyl (meth) acrylate, 2-Phenoxyethyl (meth) acrylate, methoxyethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, ethylcarbi Thor (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, Imid (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2- ( Examples thereof include 2- (meth) acryloyloxyethyl phosphate, 2- (meth) acryloyloxyethyl phosphate, and glycidyl (meth) acrylate.

また、上記(メタ)アクリル酸エステル化合物のうち2官能のものとしては、例えば、1,3−ブタンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、1,10−デカンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、2−n−ブチル−2−エチル−1,3−プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2−ヒドロキシ−3−(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。 Among the above (meth) acrylic acid ester compounds, bifunctional ones include, for example, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexane. Didiol di (meth) acrylate, 1,9-nonane diol di (meth) acrylate, 1,10-decane diol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meta) acrylate, polyethylene glycol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate ) Acrylate, polypropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide-added bisphenol A di (meth) acrylate, propylene oxide-added bisphenol A di (meth) acrylate, ethylene oxide-added bisphenol F di (meth) acrylate. , Dimethylol dicyclopentadienyldi (meth) acrylate, ethylene oxide modified isocyanuric acid di (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, carbonate diol di (meth) acrylate, Examples thereof include polyether diol di (meth) acrylate, polyester diol di (meth) acrylate, polycaprolactone diol di (meth) acrylate, and polybutadiene diol di (meth) acrylate.

また、上記(メタ)アクリル酸エステル化合物のうち3官能以上のものとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 Among the above (meth) acrylic acid ester compounds, those having trifunctionality or higher include, for example, trimethylol propanetri (meth) acrylate, ethylene oxide-added trimethylol propanetri (meth) acrylate, and propylene oxide-added trimethylol propanetri (meth) acrylate. Meta) acrylate, caprolactone-modified trimethylol propantri (meth) acrylate, ethylene oxide-added isocyanuric acid tri (meth) acrylate, glycerintri (meth) acrylate, propylene oxide-added glycerintri (meth) acrylate, pentaerythritol tri (meth) acrylate, Examples thereof include tris (meth) acryloyloxyethyl phosphate, ditrimethylol propanetetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol hexa (meth) acrylate.

上記エポキシ(メタ)アクリレートとしては、例えば、エポキシ化合物と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応させることにより得られるもの等が挙げられる。 Examples of the epoxy (meth) acrylate include those obtained by reacting an epoxy compound and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method.

上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物としては、上述したエポキシ化合物と同様のものを用いることができる。 As the epoxy compound used as a raw material for synthesizing the epoxy (meth) acrylate, the same epoxy compound as the above-mentioned epoxy compound can be used.

上記エポキシ(メタ)アクリレートのうち市販されているものとしては、例えば、EBECRYL860、EBECRYL3200、EBECRYL3201、EBECRYL3412、EBECRYL3600、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL3800、EBECRYL6040、EBECRYL RDX63182(いずれもダイセル・オルネクス社製)、EA−1010、EA−1020、EA−5323、EA−5520、EA−CHD、EMA−1020(いずれも新中村化学工業社製)、エポキシエステルM−600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、エポキシエステル400EA(いずれも共栄社化学社製)、デナコールアクリレートDA−141、デナコールアクリレートDA−314、デナコールアクリレートDA−911(いずれもナガセケムテックス社製)等が挙げられる。 Among the above epoxy (meth) acrylates, commercially available ones include, for example, EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3702, EBECRYL3702, EBECRYL370 ), EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, EMA-1020 (all manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), Epoxy Ester M-600A, Epoxy Ester 40EM, Epoxy Ester 70PA, Epoxy Ester 200PA, Epoxy Ester 80MFA, Ester Ester 3002M, Epoxy Ester 3002A, Ester Ester 1600A, Ester Ester 3000M, Ester Ester 3000A, Ester Ester 200EA, Ester Ester 400EA (all manufactured by Kyoeisha Chemical Co., Ltd.), Denacol Acrylate DA-141 , Denacol acrylate DA-314, Denacol acrylate DA-911 (all manufactured by Nagase ChemteX Corporation) and the like.

上記ウレタン(メタ)アクリレートは、例えば、2つのイソシアネート基を有するイソシアネート化合物1当量に対して、水酸基を有する(メタ)アクリル酸誘導体2当量を、触媒量のスズ系化合物存在下で反応させること等によって得ることができる。 In the urethane (meth) acrylate, for example, 1 equivalent of an isocyanate compound having two isocyanate groups is reacted with 2 equivalents of a (meth) acrylic acid derivative having a hydroxyl group in the presence of a catalytic amount of a tin compound. Can be obtained by.

上記イソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン−4,4’−ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5−ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシリレンジイソシアネート、1,6,11−ウンデカントリイソシアネート等が挙げられる。 Examples of the isocyanate compound include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4,4'-diisocyanate (MDI), and hydrogenated products. MDI, Polymeric MDI, 1,5-naphthalenediocyanate, norbornan diisocyanate, trizine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (isocyanatephenyl) thiophosphate, tetramethylxylylene diisocyanate Examples thereof include isocyanate, 1,6,11-undecantry isocyanate and the like.

また、上記イソシアネート化合物としては、例えば、エチレングリコール、プロピレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等のポリオールと過剰のイソシアネート化合物との反応により得られる鎖延長されたイソシアネート化合物も使用することができる。 The isocyanate compound can be obtained by reacting a polyol such as ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, or polycaprolactone diol with an excess of isocyanate compound. Glycol-extended isocyanate compounds can also be used.

上記水酸基を有する(メタ)アクリル酸誘導体としては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキルモノ(メタ)アクリレートや、エチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ポリエチレングリコール等の二価のアルコールのモノ(メタ)アクリレートや、トリメチロールエタン、トリメチロールプロパン、グリセリン等の三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレートや、ビスフェノールA型エポキシアクリレート等のエポキシ(メタ)アクリレート等が挙げられる。 Examples of the (meth) acrylic acid derivative having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. Hydroxyalkyl mono (meth) acrylates such as, and divalent alcohol mono (meth) such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol. ) Acrylate, mono (meth) acrylate or di (meth) acrylate of trivalent alcohol such as trimethylol ethane, trimethylol propane, glycerin, and epoxy (meth) acrylate such as bisphenol A type epoxy acrylate can be mentioned.

上記ウレタン(メタ)アクリレートのうち市販されているものとしては、例えば、M−1100、M−1200、M−1210、M−1600(いずれも東亞合成社製)、EBECRYL210、EBECRYL220、EBECRYL230、EBECRYL270、EBECRYL1290、EBECRYL2220、EBECRYL4827、EBECRYL4842、EBECRYL4858、EBECRYL5129、EBECRYL6700、EBECRYL8402、EBECRYL8803、EBECRYL8804、EBECRYL8807、EBECRYL9260(いずれもダイセル・オルネクス社製)、アートレジンUN−330、アートレジンSH−500B、アートレジンUN−1200TPK、アートレジンUN−1255、アートレジンUN−3320HB、アートレジンUN−7100、アートレジンUN−9000A、アートレジンUN−9000H(いずれも根上工業社製)、U−2HA、U−2PHA、U−3HA、U−4HA、U−6H、U−6HA、U−6LPA、U−10H、U−15HA、U−108、U−108A、U−122A、U−122P、U−324A、U−340A、U−340P、U−1084A、U−2061BA、UA−340P、UA−4000、UA−4100、UA−4200、UA−4400、UA−5201P、UA−7100、UA−7200、UA−W2A(いずれも新中村化学工業社製)、AH−600、AI−600、AT−600、UA−101I、UA−101T、UA−306H、UA−306I、UA−306T(いずれも共栄社化学社製)等が挙げられる。 Commercially available urethane (meth) acrylates include, for example, M-1100, M-1200, M-1210, M-1600 (all manufactured by Toa Synthetic Co., Ltd.), EBECRYL210, EBECRYL220, EBECRYL230, EBECRYL270. EBECRYL1290, EBECRYL2220, EBECRYL4827, EBECRYL4842, EBECRYL4858, EBECRYL5129, EBECRYL6700, EBECRYL8402, EBECRYL8803, EBECRYL8803, EBECRYL8804 , Art Resin UN-1255, Art Resin UN-3320HB, Art Resin UN-7100, Art Resin UN-9000A, Art Resin UN-9000H (all manufactured by Negami Kogyo Co., Ltd.), U-2HA, U-2PHA, U-3HA , U-4HA, U-6H, U-6HA, U-6LPA, U-10H, U-15HA, U-108, U-108A, U-122A, U-122P, U-324A, U-340A, U -340P, U-1084A, U-2061BA, UA-340P, UA-4000, UA-4100, UA-4200, UA-4400, UA-5201P, UA-7100, UA-7200, UA-W2A (all new Nakamura Chemical Industry Co., Ltd.), AH-600, AI-600, AT-600, UA-101I, UA-101T, UA-306H, UA-306I, UA-306T (all manufactured by Kyoeisha Chemical Co., Ltd.) and the like. ..

上記その他の硬化性樹脂は、液晶汚染を抑制する観点から、−OH基、−NH−基、−NH基等の水素結合性のユニットを有するものが好ましい。The other curable resin preferably has a hydrogen-bonding unit such as an -OH group, an -NH- group, or -NH 2 group from the viewpoint of suppressing liquid crystal contamination.

本発明の液晶表示素子用シール剤は、重合開始剤及び/又は熱硬化剤を含有する。
上記重合開始剤としては、ラジカル重合開始剤が好適に用いられる。
The sealant for a liquid crystal display element of the present invention contains a polymerization initiator and / or a thermosetting agent.
As the polymerization initiator, a radical polymerization initiator is preferably used.

上記ラジカル重合開始剤としては、光照射によりラジカルを発生する光ラジカル重合開始剤、加熱によりラジカルを発生する熱ラジカル重合開始剤等が挙げられる。 Examples of the radical polymerization initiator include a photoradical polymerization initiator that generates radicals by light irradiation, a thermal radical polymerization initiator that generates radicals by heating, and the like.

上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、チオキサントン等が挙げられる。 Examples of the photoradical polymerization initiator include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanosen compounds, oxime ester compounds, benzoin ether compounds, thioxanthone and the like.

上記光ラジカル重合開始剤のうち市販されているものとしては、例えば、IRGACURE 184、IRGACURE 369、IRGACURE 379、IRGACURE 651、IRGACURE 819、IRGACURE 907、IRGACURE 2959、IRGACURE OXE01、ルシリンTPO(いずれもBASF社製)、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル(いずれも東京化成工業社製)等が挙げられる。 Commercially available photoradical polymerization initiators include, for example, IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE 2959, IRGACURE OXE01, and Lucyrin TPO. ), Benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether (all manufactured by Tokyo Kasei Kogyo Co., Ltd.) and the like.

上記熱ラジカル重合開始剤としては、例えば、アゾ化合物、有機過酸化物等からなるものが挙げられる。なかでも、高分子アゾ化合物からなる高分子アゾ開始剤が好ましい。
なお、本明細書において高分子アゾ化合物とは、アゾ基を有し、熱によって(メタ)アクリロイルオキシ基を硬化させることができるラジカルを生成する、数平均分子量が300以上の化合物を意味する。
Examples of the thermal radical polymerization initiator include those made of an azo compound, an organic peroxide and the like. Of these, a polymer azo initiator composed of a polymer azo compound is preferable.
In the present specification, the polymer azo compound means a compound having an azo group and having a number average molecular weight of 300 or more, which generates a radical capable of curing the (meth) acryloyloxy group by heat.

上記高分子アゾ開始剤の数平均分子量の好ましい下限は1000、好ましい上限は30万である。上記高分子アゾ開始剤の数平均分子量がこの範囲であることにより、液晶への悪影響を防止しつつ、硬化性樹脂へ容易に混合することができる。上記高分子アゾ開始剤の数平均分子量のより好ましい下限は5000、より好ましい上限は10万であり、更に好ましい下限は1万、更に好ましい上限は9万である。
なお、本明細書において、上記数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際のカラムとしては、例えば、Shodex LF−804(昭和電工社製)等が挙げられる。
The preferred lower limit of the number average molecular weight of the polymer azo initiator is 1000, and the preferred upper limit is 300,000. When the number average molecular weight of the polymer azo initiator is in this range, it can be easily mixed with the curable resin while preventing adverse effects on the liquid crystal display. The more preferable lower limit of the number average molecular weight of the polymer azo initiator is 5000, the more preferable upper limit is 100,000, the further preferable lower limit is 10,000, and the further preferable upper limit is 90,000.
In the present specification, the number average molecular weight is a value obtained by measuring by gel permeation chromatography (GPC) and converting into polystyrene. Examples of the column for measuring the number average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK) and the like.

上記高分子アゾ開始剤としては、例えば、アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有するものが挙げられる。
上記アゾ基を介してポリアルキレンオキサイド等のユニットが複数結合した構造を有する高分子アゾ開始剤としては、ポリエチレンオキサイド構造を有するものが好ましい。このような高分子アゾ開始剤としては、例えば、4,4’−アゾビス(4−シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4’−アゾビス(4−シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられ、具体的には例えば、VPE−0201、VPE−0401、VPE−0601、VPS−0501、VPS−1001(いずれも和光純薬工業社製)等が挙げられる。
また、高分子ではないアゾ化合物の例としては、V−65、V−501(いずれも和光純薬工業社製)等が挙げられる。
Examples of the polymer azo initiator include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
As the polymer azo initiator having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group, those having a polyethylene oxide structure are preferable. Examples of such a polymer azo initiator include a polycondensate of 4,4'-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4'-azobis (4-cyanopentanoic acid). Examples thereof include polycondensates of polydimethylsiloxane having a terminal amino group, and specific examples thereof include VPE-0201, VPE-0401, VPE-0601, VPS-0501, and VPS-1001 (all of which are Wako Pure Chemical Industries, Ltd.). Made) and the like.
Examples of non-polymer azo compounds include V-65 and V-501 (both manufactured by Wako Pure Chemical Industries, Ltd.).

上記有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。 Examples of the organic peroxide include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, peroxyesters, diacyl peroxides, peroxydicarbonates and the like.

上記重合開始剤の含有量は、硬化性樹脂全体100重量部に対して、好ましい下限が0.1重量部、好ましい上限が30重量部である。上記重合開始剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤が優れた保存安定性を維持したまま、硬化性により優れるものとなる。上記重合開始剤の含有量のより好ましい下限は1重量部、より好ましい上限は10重量部であり、更に好ましい上限は5重量部である。 The content of the polymerization initiator is preferably 0.1 part by weight and a preferable upper limit is 30 parts by weight with respect to 100 parts by weight of the entire curable resin. When the content of the polymerization initiator is in this range, the obtained sealant for a liquid crystal display element becomes more excellent in curability while maintaining excellent storage stability. The more preferable lower limit of the content of the polymerization initiator is 1 part by weight, the more preferable upper limit is 10 parts by weight, and the further preferable upper limit is 5 parts by weight.

上記熱硬化剤としては、例えば、有機酸ヒドラジド、イミダゾール誘導体、アミン化合物、多価フェノール系化合物、酸無水物等が挙げられる。なかでも、固形の有機酸ヒドラジドが好適に用いられる。 Examples of the heat-curing agent include organic acid hydrazide, imidazole derivative, amine compound, polyvalent phenolic compound, acid anhydride and the like. Of these, solid organic acid hydrazide is preferably used.

上記固形の有機酸ヒドラジドとしては、例えば、1,3−ビス(ヒドラジノカルボエチル)−5−イソプロピルヒダントイン、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド、マロン酸ジヒドラジド等が挙げられ、市販されているものとしては、例えば、SDH、ADH(大塚化学社製)、MDH(日本ファインケム社製)、アミキュアVDH、アミキュアVDH−J、アミキュアUDH(いずれも味の素ファインテクノ社製)等が挙げられる。 Examples of the solid organic acid hydrazide include 1,3-bis (hydrazinocarboethyl) -5-isopropylhydrandine, sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide and the like, which are commercially available. Examples thereof include SDH, ADH (manufactured by Otsuka Chemical Co., Ltd.), MDH (manufactured by Japan Finechem Co., Ltd.), Amicure VDH, Amicure VDH-J, Amicure UDH (all manufactured by Ajinomoto Fine Techno Co., Ltd.) and the like.

上記熱硬化剤の含有量は、硬化性樹脂全体100重量部に対して、好ましい下限が1重量部、好ましい上限が50重量部である。上記熱硬化剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤が優れた塗布性や保存安定性を維持したまま、硬化性により優れるものとなる。上記熱硬化剤の含有量のより好ましい上限は30重量部である。 The content of the thermosetting agent is preferably 1 part by weight and a preferable upper limit of 50 parts by weight with respect to 100 parts by weight of the entire curable resin. When the content of the thermosetting agent is in this range, the obtained sealant for a liquid crystal display element becomes more excellent in curability while maintaining excellent coatability and storage stability. A more preferable upper limit of the content of the thermosetting agent is 30 parts by weight.

本発明の液晶表示素子用シール剤は、粘度の向上、応力分散効果による更なる接着性の向上、線膨張率の改善、硬化物の耐湿性の向上等を目的として充填剤を含有することが好ましい。 The sealant for a liquid crystal display element of the present invention may contain a filler for the purpose of improving the viscosity, further improving the adhesiveness by the stress dispersion effect, improving the coefficient of linear expansion, improving the moisture resistance of the cured product, and the like. preferable.

上記充填剤としては、例えば、シリカ、タルク、ガラスビーズ、石綿、石膏、珪藻土、スメクタイト、ベントナイト、モンモリロナイト、セリサイト、活性白土、アルミナ、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、水酸化アルミニウム、窒化アルミニウム、窒化珪素、硫酸バリウム、珪酸カルシウム等の無機充填剤や、ポリエステル微粒子、ポリウレタン微粒子、ビニル重合体微粒子、アクリル重合体微粒子等の有機充填剤が挙げられる。 Examples of the filler include silica, talc, glass beads, asbestos, gypsum, diatomaceous soil, smectite, bentonite, montmorillonite, sericite, active white clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide, and the like. Inorganic fillers such as calcium carbonate, magnesium carbonate, magnesium hydroxide, aluminum hydroxide, aluminum nitride, silicon nitride, barium sulfate, calcium silicate, and organics such as polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, etc. Examples include fillers.

本発明の液晶表示素子用シール剤100重量部中における上記充填剤の含有量の好ましい下限は10重量部、好ましい上限は70重量部である。上記充填剤の含有量がこの範囲であることにより、塗布性等の悪化を抑制しつつ、接着性の向上等の効果をより発揮することができる。上記充填剤の含有量のより好ましい下限は20重量部、より好ましい上限は60重量部である。 The preferable lower limit of the content of the filler in 100 parts by weight of the sealant for a liquid crystal display element of the present invention is 10 parts by weight, and the preferable upper limit is 70 parts by weight. When the content of the filler is in this range, it is possible to further exert the effect of improving the adhesiveness while suppressing the deterioration of the coatability and the like. The more preferable lower limit of the content of the filler is 20 parts by weight, and the more preferable upper limit is 60 parts by weight.

本発明の液晶表示素子用シール剤は、接着性を更に向上させることを目的として、シランカップリング剤を含有することが好ましい。上記シランカップリング剤は、主にシール剤と基板等とを良好に接着するための接着助剤としての役割を有する。
上記シランカップリング剤としては、例えば、3−アミノプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン等が好適に用いられる。
The sealant for a liquid crystal display element of the present invention preferably contains a silane coupling agent for the purpose of further improving the adhesiveness. The silane coupling agent mainly has a role as an adhesive auxiliary for satisfactorily adhering the sealant to the substrate or the like.
As the silane coupling agent, for example, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane and the like are preferably used.

本発明の液晶表示素子用シール剤100重量部中における上記シランカップリング剤の含有量の好ましい下限は0.1重量部、好ましい上限は10重量部である。上記シランカップリング剤の含有量がこの範囲であることにより、液晶汚染の発生を抑制しつつ、接着性を向上させる効果をより発揮することができる。上記シランカップリング剤の含有量のより好ましい下限は0.3重量部、より好ましい上限は5重量部である。 The preferable lower limit of the content of the silane coupling agent in 100 parts by weight of the sealant for a liquid crystal display element of the present invention is 0.1 parts by weight, and the preferable upper limit is 10 parts by weight. When the content of the silane coupling agent is within this range, the effect of improving the adhesiveness can be further exhibited while suppressing the occurrence of liquid crystal contamination. The more preferable lower limit of the content of the silane coupling agent is 0.3 parts by weight, and the more preferable upper limit is 5 parts by weight.

本発明の液晶表示素子用シール剤は、遮光剤を含有してもよい。上記遮光剤を含有することにより、本発明の液晶表示素子用シール剤は、遮光シール剤として好適に用いることができる。 The sealing agent for a liquid crystal display element of the present invention may contain a light-shielding agent. By containing the above-mentioned light-shielding agent, the sealant for a liquid crystal display element of the present invention can be suitably used as a light-shielding sealant.

上記遮光剤としては、例えば、酸化鉄、チタンブラック、アニリンブラック、シアニンブラック、フラーレン、カーボンブラック、樹脂被覆型カーボンブラック等が挙げられる。なかでも、チタンブラックが好ましい。 Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black. Of these, titanium black is preferable.

上記チタンブラックは、波長300〜800nmの光に対する平均透過率と比較して、紫外線領域付近、特に波長370〜450nmの光に対する透過率が高くなる物質である。即ち、上記チタンブラックは、可視光領域の波長の光を充分に遮蔽することで本発明の液晶表示素子用シール剤に遮光性を付与する一方、紫外線領域付近の波長の光は透過させる性質を有する遮光剤である。本発明の液晶表示素子用シール剤に含有される遮光剤としては、絶縁性の高い物質が好ましく、絶縁性の高い遮光剤としてもチタンブラックが好適である。 The titanium black is a substance having a higher transmittance in the vicinity of the ultraviolet region, particularly for light having a wavelength of 370 to 450 nm, as compared with the average transmittance for light having a wavelength of 300 to 800 nm. That is, the titanium black has a property of imparting a light-shielding property to the sealant for a liquid crystal display element of the present invention by sufficiently blocking light having a wavelength in the visible light region, while transmitting light having a wavelength in the vicinity of the ultraviolet region. It is a light-shielding agent. As the light-shielding agent contained in the sealant for a liquid crystal display element of the present invention, a substance having a high insulating property is preferable, and as a light-shielding agent having a high insulating property, titanium black is suitable.

上記チタンブラックは、表面処理されていないものでも充分な効果を発揮するが、表面がカップリング剤等の有機成分で処理されているものや、酸化ケイ素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等の無機成分で被覆されているもの等、表面処理されたチタンブラックを用いることもできる。なかでも、有機成分で処理されているものは、より絶縁性を向上できる点で好ましい。
また、遮光剤として上記チタンブラックを含有する本発明の液晶表示素子用シール剤を用いて製造した液晶表示素子は、充分な遮光性を有するため、光の漏れ出しがなく高いコントラストを有し、優れた画像表示品質を有する液晶表示素子を実現することができる。
The above titanium black exerts a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, and oxidation. Surface-treated titanium black, such as those coated with an inorganic component such as zirconium or magnesium oxide, can also be used. Among them, those treated with an organic component are preferable in that the insulating property can be further improved.
Further, the liquid crystal display element manufactured by using the sealant for a liquid crystal display element of the present invention containing the titanium black as a light shielding agent has sufficient light shielding properties, so that there is no light leakage and a high contrast is obtained. It is possible to realize a liquid crystal display element having excellent image display quality.

上記チタンブラックのうち市販されているものとしては、例えば、12S、13M、13M−C、13R−N、14M−C(いずれも三菱マテリアル社製)、ティラックD(赤穂化成社製)等が挙げられる。 Among the above titanium blacks, commercially available ones include, for example, 12S, 13M, 13M-C, 13RN, 14M-C (all manufactured by Mitsubishi Materials), Tyrac D (manufactured by Ako Kasei Co., Ltd.) and the like. Can be mentioned.

上記チタンブラックの比表面積の好ましい下限は13m/g、好ましい上限は30m/gであり、より好ましい下限は15m/g、より好ましい上限は25m/gである。
また、上記チタンブラックの体積抵抗の好ましい下限は0.5Ω・cm、好ましい上限は3Ω・cmであり、より好ましい下限は1Ω・cm、より好ましい上限は2.5Ω・cmである。
The preferable lower limit of the specific surface area of the titanium black is 13 m 2 / g, the preferable upper limit is 30 m 2 / g, the more preferable lower limit is 15 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
Further, the preferable lower limit of the volume resistance of the titanium black is 0.5 Ω · cm, the preferable upper limit is 3 Ω · cm, the more preferable lower limit is 1 Ω · cm, and the more preferable upper limit is 2.5 Ω · cm.

上記遮光剤の一次粒子径は、液晶表示素子の基板間の距離以下であれば特に限定されないが、好ましい下限は1nm、好ましい上限は5μmである。上記遮光剤の一次粒子径がこの範囲であることにより、得られる液晶表示素子用シール剤の粘度やチクソトロピーが大きく増大することなく、塗布性により優れるものとなる。上記遮光剤の一次粒子径のより好ましい下限は5nm、より好ましい上限は200nm、更に好ましい下限は10nm、更に好ましい上限は100nmである。
なお、上記遮光剤の一次粒子径は、粒度分布計(例えば、PARTICLE SIZING SYSTEMS社製、「NICOMP 380ZLS」)を用いて測定することができる。
The primary particle size of the light-shielding agent is not particularly limited as long as it is equal to or less than the distance between the substrates of the liquid crystal display element, but the preferable lower limit is 1 nm and the preferable upper limit is 5 μm. When the primary particle size of the light-shielding agent is in this range, the viscosity and thixotropy of the obtained sealant for a liquid crystal display element do not increase significantly, and the coatability is improved. The more preferable lower limit of the primary particle size of the light-shielding agent is 5 nm, the more preferable upper limit is 200 nm, the further preferable lower limit is 10 nm, and the further preferable upper limit is 100 nm.
The primary particle size of the light-shielding agent can be measured using a particle size distribution meter (for example, "NICOMP 380ZLS" manufactured by PARTICLE SIZING SYSTEMS).

本発明の液晶表示素子用シール剤100重量部中における上記遮光剤の含有量の好ましい下限は5重量部、好ましい上限は80重量部である。上記遮光剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤の接着性、硬化後の強度、及び、描画性が低下することなく、遮光性を向上させる効果をより発揮できる。上記遮光剤の含有量のより好ましい下限は10重量部、より好ましい上限は70重量部であり、更に好ましい下限は30重量部、更に好ましい上限は60重量部である。 The preferable lower limit of the content of the light-shielding agent in 100 parts by weight of the sealant for a liquid crystal display element of the present invention is 5 parts by weight, and the preferable upper limit is 80 parts by weight. When the content of the light-shielding agent is within this range, the effect of improving the light-shielding property is further exhibited without deteriorating the adhesiveness, the strength after curing, and the drawability of the obtained sealant for the liquid crystal display element. can. A more preferable lower limit of the content of the light-shielding agent is 10 parts by weight, a more preferable upper limit is 70 parts by weight, a further preferable lower limit is 30 parts by weight, and a further preferable upper limit is 60 parts by weight.

本発明の液晶表示素子用シール剤は、更に、必要に応じて、応力緩和剤、反応性希釈剤、揺変剤、スペーサー、硬化促進剤、消泡剤、レベリング剤、重合禁止剤等の添加剤を含有してもよい。 The sealant for a liquid crystal display element of the present invention further contains, if necessary, a stress relaxation agent, a reactive diluent, a rocking agent, a spacer, a curing accelerator, a defoaming agent, a leveling agent, a polymerization inhibitor and the like. It may contain an agent.

本発明の液晶表示素子用シール剤を製造する方法としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等の混合機を用いて、硬化性樹脂と、重合開始剤及び/又は熱硬化剤と、必要に応じて添加するシランカップリング剤等の添加剤とを混合する方法等が挙げられる。 As a method for producing the sealant for a liquid crystal display element of the present invention, for example, a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three-roll mixer is used to polymerize with a curable resin. Examples thereof include a method of mixing an initiator and / or a thermosetting agent with an additive such as a silane coupling agent to be added as needed.

本発明の液晶表示素子用シール剤に、導電性微粒子を配合することにより、上下導通材料を製造することができる。本発明の液晶表示素子用シール剤と導電性微粒子とを含有する上下導通材料もまた、本発明の1つである。 By blending conductive fine particles with the sealing agent for a liquid crystal display element of the present invention, a vertically conductive material can be manufactured. A vertically conductive material containing a sealing agent for a liquid crystal display element of the present invention and conductive fine particles is also one of the present inventions.

上記導電性微粒子としては、金属ボール、樹脂微粒子の表面に導電金属層を形成したもの等を用いることができる。なかでも、樹脂微粒子の表面に導電金属層を形成したものは、樹脂微粒子の優れた弾性により、透明基板等を損傷することなく導電接続が可能であることから好適である。 As the conductive fine particles, a metal ball, a resin fine particle having a conductive metal layer formed on the surface thereof, or the like can be used. Among them, the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the excellent elasticity of the resin fine particles enables conductive connection without damaging the transparent substrate or the like.

本発明の液晶表示素子用シール剤又は本発明の上下導通材料を用いてなる液晶表示素子もまた、本発明の1つである。 A liquid crystal display element using the sealant for a liquid crystal display element of the present invention or the vertically conductive material of the present invention is also one of the present inventions.

本発明の液晶表示素子用シール剤は、液晶滴下工法による液晶表示素子の製造に好適に用いることができる。
液晶滴下工法によって本発明の液晶表示素子を製造する方法としては、具体的には例えば、基板に本発明の液晶表示素子用シール剤等をスクリーン印刷、ディスペンサー塗布等により長方形状のシールパターンを形成する工程、本発明の液晶表示素子用シール剤等が未硬化の状態で液晶の微小滴を透明基板の枠内全面に滴下塗布し、すぐに別の基板を重ね合わせる工程、及び、本発明の液晶表示素子用シール剤等のシールパターン部分に紫外線等の光を照射してシール剤を仮硬化させる工程、及び、仮硬化させたシール剤を加熱して本硬化させる工程を有する方法等が挙げられる。
The sealant for a liquid crystal display element of the present invention can be suitably used for manufacturing a liquid crystal display element by a liquid crystal dropping method.
As a method for manufacturing the liquid crystal display element of the present invention by the liquid crystal dropping method, specifically, for example, a sealing agent for the liquid crystal display element of the present invention is screen-printed on a substrate, a dispenser is applied, or the like to form a rectangular seal pattern. The step of applying a small drop of liquid crystal on the entire surface of the frame of the transparent substrate in a state where the sealant for the liquid crystal display element of the present invention is uncured, and immediately superimposing another substrate, and the step of the present invention. Examples thereof include a method of irradiating a seal pattern portion of a sealant for a liquid crystal display element with light such as ultraviolet rays to temporarily cure the sealant, and a method of heating the temporarily cured sealant to perform main curing. Be done.

本発明によれば、接着性と硬化物の透湿防止性とを両立させることができる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することができる。 According to the present invention, it is possible to provide a sealant for a liquid crystal display element that can achieve both adhesiveness and moisture permeation prevention property of a cured product. Further, according to the present invention, it is possible to provide a vertically conductive material and a liquid crystal display element using the sealant for a liquid crystal display element.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

(硬化性樹脂Aの作製)
反応フラスコに、2−ヒドロキシエチルメタクリレート130重量部と、無水フタル酸148重量部と、重合禁止剤としてp−メトキシフェノール0.3重量部とを加え、マントルヒーターを用いて90℃で5時間撹拌した。次いで、得られた反応物にビスフェノールAジグリシジルエーテル170重量部を加え、90℃で5時間撹拌することにより、硬化性樹脂Aを得た。
H−NMR及び13C−NMRにより、硬化性樹脂Aは、上記式(1)で表される化合物(Rがメチル基、Rがエチレン基、Arが1,2−フェニレン基、n=0、EpがビスフェノールAジグリシジルエーテル由来の構造)であることを確認した。
(Preparation of curable resin A)
To the reaction flask, 130 parts by weight of 2-hydroxyethyl methacrylate, 148 parts by weight of phthalic anhydride, and 0.3 parts by weight of p-methoxyphenol as a polymerization inhibitor were added, and the mixture was stirred at 90 ° C. for 5 hours using a mantle heater. did. Next, 170 parts by weight of bisphenol A diglycidyl ether was added to the obtained reaction product, and the mixture was stirred at 90 ° C. for 5 hours to obtain a curable resin A.
By 1 H-NMR and 13 C-NMR, the curable resin A is a compound represented by the above formula (1) (R 1 is a methyl group, R 2 is an ethylene group, Ar is a 1,2-phenylene group, n. = 0, Ep is a structure derived from bisphenol A diglycidyl ether).

(硬化性樹脂Bの作製)
反応フラスコに、2−ヒドロキシエチルメタクリレート130重量部と、ε−カプロラクトン57重量部と、重合禁止剤としてハイドロキノン0.3重量部とを加え、マントルヒーターを用いて90℃で5時間撹拌した後、無水フタル酸148重量部を加えて更に5時間撹拌した。次いで、得られた反応物にビスフェノールAジグリシジルエーテル170重量部を加え、90℃で5時間撹拌することにより、硬化性樹脂Bを得た。
H−NMR及び13C−NMRにより、硬化性樹脂Bは、上記式(1)で表される化合物(Rがメチル基、Rがエチレン基、Arが1,2−フェニレン基、Xがε−カプロラクトンの開環構造、n=0.48(平均値)、EpがビスフェノールAジグリシジルエーテル由来の構造)であることを確認した。
(Preparation of curable resin B)
To the reaction flask, 130 parts by weight of 2-hydroxyethyl methacrylate, 57 parts by weight of ε-caprolactone, and 0.3 parts by weight of hydroquinone as a polymerization inhibitor were added, and the mixture was stirred at 90 ° C. for 5 hours using a mantle heater. 148 parts by weight of phthalic anhydride was added, and the mixture was further stirred for 5 hours. Next, 170 parts by weight of bisphenol A diglycidyl ether was added to the obtained reaction product, and the mixture was stirred at 90 ° C. for 5 hours to obtain a curable resin B.
By 1 H-NMR and 13 C-NMR, the curable resin B is a compound represented by the above formula (1) (R 1 is a methyl group, R 2 is an ethylene group, Ar is a 1,2-phenylene group, X. Is the ring-opening structure of ε-caprolactone, n = 0.48 (average value), and Ep is the structure derived from bisphenol A diglycidyl ether).

(硬化性樹脂Cの作製)
反応フラスコに、2−ヒドロキシエチルアクリレート116重量部と、ε−カプロラクトン57重量部と、重合禁止剤としてp−メトキシフェノール0.3重量部とを加え、マントルヒーターを用いて90℃で5時間撹拌した後、ナフタル酸無水物198重量部を加えて更に5時間撹拌した。次いで、得られた反応物にビスフェノールAジグリシジルエーテル170重量部を加え、90℃で5時間撹拌することにより、硬化性樹脂Cを得た。
H−NMR及び13C−NMRにより、硬化性樹脂Cは、上記式(1)で表される化合物(Rが水素原子、Rがエチレン基、Arが1,8−ナフチレン基、Xがε−カプロラクトンの開環構造、n=0.47(平均値)、EpがビスフェノールAジグリシジルエーテル由来の構造)であることを確認した。
(Preparation of curable resin C)
To the reaction flask, 116 parts by weight of 2-hydroxyethyl acrylate, 57 parts by weight of ε-caprolactone, and 0.3 parts by weight of p-methoxyphenol as a polymerization inhibitor were added, and the mixture was stirred at 90 ° C. for 5 hours using a mantle heater. After that, 198 parts by weight of naphthalic anhydride was added, and the mixture was further stirred for 5 hours. Next, 170 parts by weight of bisphenol A diglycidyl ether was added to the obtained reaction product, and the mixture was stirred at 90 ° C. for 5 hours to obtain a curable resin C.
By 1 H-NMR and 13 C-NMR, the curable resin C is a compound represented by the above formula (1) (R 1 is a hydrogen atom, R 2 is an ethylene group, Ar is a 1,8-naphthylene group, X. Is the ring-opening structure of ε-caprolactone, n = 0.47 (average value), and Ep is the structure derived from bisphenol A diglycidyl ether).

(硬化性樹脂Dの作製)
反応フラスコに、2−ヒドロキシエチルアクリレート116重量部と、無水フタル酸148重量部と、重合禁止剤としてp−メトキシフェノール0.3重量部とを加え、マントルヒーターを用いて90℃で5時間撹拌した。次いで、得られた反応物にビスフェノールAジグリシジルエーテル170重量部を加え、90℃で5時間撹拌することにより、硬化性樹脂Dを得た。
H−NMR及び13C−NMRにより、硬化性樹脂Dは、上記式(1)で表される化合物(Rが水素、Rがエチレン基、Arが1,2−フェニレン基、n=0、EpがビスフェノールAジグリシジルエーテル由来の構造)であることを確認した。
(Preparation of curable resin D)
To the reaction flask, 116 parts by weight of 2-hydroxyethyl acrylate, 148 parts by weight of phthalic anhydride, and 0.3 parts by weight of p-methoxyphenol as a polymerization inhibitor were added, and the mixture was stirred at 90 ° C. for 5 hours using a mantle heater. did. Next, 170 parts by weight of bisphenol A diglycidyl ether was added to the obtained reaction product, and the mixture was stirred at 90 ° C. for 5 hours to obtain a curable resin D.
By 1 1 H-NMR and 13 C-NMR, the curable resin D is a compound represented by the above formula (1) (R 1 is hydrogen, R 2 is an ethylene group, Ar is 1,2-phenylene group, n =. It was confirmed that 0 and Ep were structures derived from bisphenol A diglycidyl ether).

(硬化性樹脂Eの作製)
反応フラスコに、2−ヒドロキシエチルメタクリレート130重量部と、ε−カプロラクトン114重量部と、重合禁止剤としてハイドロキノン0.3重量部とを加え、マントルヒーターを用いて90℃で5時間撹拌した後、無水フタル酸148重量部を加えて更に5時間撹拌した。次いで、得られた反応物にビスフェノールAジグリシジルエーテル170重量部を加え、90℃で5時間撹拌することにより、硬化性樹脂Eを得た。
H−NMR及び13C−NMRにより、硬化性樹脂Eは、上記式(1)における、Rがメチル基、Rがエチレン基、Arが1,2−フェニレン基、Xがε−カプロラクトンの開環構造、n=1.02(平均値)、EpがビスフェノールAジグリシジルエーテル由来の構造である化合物であることを確認した。
(Preparation of curable resin E)
To the reaction flask, 130 parts by weight of 2-hydroxyethyl methacrylate, 114 parts by weight of ε-caprolactone, and 0.3 parts by weight of hydroquinone as a polymerization inhibitor were added, and the mixture was stirred at 90 ° C. for 5 hours using a mantle heater. 148 parts by weight of phthalic anhydride was added, and the mixture was further stirred for 5 hours. Next, 170 parts by weight of bisphenol A diglycidyl ether was added to the obtained reaction product, and the mixture was stirred at 90 ° C. for 5 hours to obtain a curable resin E.
By 1 H-NMR and 13 C-NMR, in the curable resin E, in the above formula (1), R 1 is a methyl group, R 2 is an ethylene group, Ar is a 1,2-phenylene group, and X is ε-caprolactone. It was confirmed that the ring-opening structure, n = 1.02 (average value), and Ep are compounds derived from bisphenol A diglycidyl ether.

(実施例1〜4、、参考例5、6、比較例1〜3)
表1に記載された配合比に従い、各材料を、遊星式撹拌装置(シンキー社製、「あわとり練太郎」)にて撹拌した後、セラミック3本ロールにて均一に混合して実施例1〜4、、参考例5、6、比較例1〜3の液晶表示素子用シール剤を得た。
(Examples 1 to 4, 7 , Reference Examples 5 , 6, Comparative Examples 1 to 3)
According to the compounding ratios shown in Table 1, each material is stirred with a planetary stirrer (manufactured by Shinky Co., Ltd., "Awatori Rentaro"), and then uniformly mixed with three ceramic rolls in Example 1. ~ 4, 7 , Reference Examples 5 and 6, and Comparative Examples 1 to 3 were obtained as sealants for liquid crystal display elements.

<評価>
実施例、参考例、及び比較例で得られた各液晶表示素子用シール剤について以下の評価を行った。結果を表1に示した。
<Evaluation>
Examples, reference examples, and were evaluated as described below each of the liquid crystal display element sealing agent obtained in Comparative Example. The results are shown in Table 1.

(接着性)
実施例、参考例、及び比較例で得られた各液晶表示素子用シール剤に、シリカスペーサー(積水化学工業社製、「SI−H055」)を1重量%配合し、2枚のITO薄膜付きガラス基板(25×45mm)のうちの一方に微小滴下した。この基板にもう一方のITO薄膜付きガラス基板を十字状に貼り合わせ、メタルハライドランプにて3000mJ/cmの紫外線を照射した後、120℃で60分加熱することによって接着性試験片を得た。作製した接着試験片における基板の端部を半径5mmの金属円柱を使って5mm/minの速度で押し込んだときに、パネル剥がれが起こる際の強度を測定した。得られた測定値(kgf)をシール直径(cm)で除した値が、3.5kgf/cm以上であった場合を「◎」、3.0kgf/cm以上3.5kgf/cm未満であった場合を「○」、2.5kgf/cm以上3.0kgf/cm未満であった場合を「△」、2.5kgf/cm未満であった場合を「×」として接着性を評価した。
(Adhesiveness)
Examples, reference examples, and, in the liquid crystal display element sealing agent obtained in Comparative Example, a silica spacer (Sekisui Chemical Co., Ltd., "SI-H055") was blended 1 weight percent, of the two ITO films A small amount was dropped on one of the attached glass substrates (25 × 45 mm). The other glass substrate with an ITO thin film was attached to this substrate in a cross shape, irradiated with ultraviolet rays of 3000 mJ / cm 2 with a metal halide lamp, and then heated at 120 ° C. for 60 minutes to obtain an adhesive test piece. When the end of the substrate in the produced adhesion test piece was pushed in at a speed of 5 mm / min using a metal cylinder having a radius of 5 mm, the strength at which the panel peeled off was measured. The value obtained by dividing the obtained measured value (kgf) by the seal diameter (cm) was "◎" when it was 3.5 kgf / cm or more, and it was 3.0 kgf / cm or more and less than 3.5 kgf / cm. The case was evaluated as "◯", the case of 2.5 kgf / cm or more and less than 3.0 kgf / cm was evaluated as "Δ", and the case of less than 2.5 kgf / cm was evaluated as "x".

(透湿防止性)
実施例、参考例、及び比較例で得られた各液晶表示素子用シール剤を、平滑な離型フィルム上にコーターを用いて厚さ200〜300μmとなるように塗布した。次いで、メタルハライドランプを用いて3000mJ/cmの紫外線を照射した後、120℃で60分加熱することによって透湿度測定用フィルムを得た。JIS Z 0208の防湿包装材料の透湿度試験方法(カップ法)に準じた方法で透湿度試験用カップを作製し、得られた透湿度測定用フィルムを取り付け、温度80℃湿度90%RHの恒温恒湿オーブンに投入して透湿度を測定した。得られた透湿度の値が、50g/m・24hr未満であった場合を「◎」、50g/m・24hr以上60g/m・24hr未満であった場合を「○」、60g/m・24hr以上70g/m・24hr未満であった場合を「△」、70g/m・24hr以上であった場合を「×」として透湿防止性を評価した。
(Moisture prevention)
Examples, reference examples, and the respective liquid crystal display elements sealing agent obtained in Comparative Examples were coated to a thickness of 200~300μm using coater smooth release film. Then, after irradiating with an ultraviolet ray of 3000 mJ / cm 2 using a metal halide lamp, the film was heated at 120 ° C. for 60 minutes to obtain a film for measuring moisture permeability. A moisture permeability test cup is prepared by a method according to the moisture permeability test method (cup method) of the moisture-proof packaging material of JIS Z 0208, the obtained moisture permeability measurement film is attached, and a constant temperature of 80 ° C. and 90% humidity RH is attached. It was put into a constant humidity oven and the moisture permeability was measured. The obtained value of the moisture permeability, the case was less than 50g / m 2 · 24hr "◎", the case was less than 50g / m 2 · 24hr or more 60g / m 2 · 24hr "○", 60g / m 2 · 24 hr or more 70 g / m where the a was less than 2 · 24 hr or "△", was evaluated anti-moisture permeability as "×" the case was 70g / m 2 · 24hr or more.

(液晶表示素子の表示性能)
実施例、参考例、及び比較例で得られた各液晶表示素子用シール剤に、シリカスペーサー(積水化学工業社製、「SI−H055」)を1重量%配合し、脱泡処理をしてシール剤中の泡を取り除いた後、ディスペンス用のシリンジ(武蔵エンジニアリング社製、「PSY−10E」)に充填し、再び脱泡処理を行った。次いで、ディスペンサー(武蔵エンジニアリング社製、「SHOTMASTER300」)を用いて、2枚のITO薄膜付きガラス基板のうちの一方に枠を描く様にシール剤を塗布した。続いて、TN液晶(チッソ社製、「JC−5001LA」)の微小滴を液晶滴下装置にてシール剤の枠内に滴下塗布し、他方のITO薄膜付きガラス基板を重ね、真空貼り合わせ装置にて5Paの減圧下にて2枚の基板を貼り合わせた。貼り合わせた後のセルにメタルハライドランプにて3000mJ/cmの紫外線を照射した後、120℃で60分加熱することによってシール剤を熱硬化させ、液晶表示素子を作製した。得られた液晶表示素子を温度80℃、湿度90%RHの環境下にて72時間保管した後、AC3.5Vの電圧駆動をさせ、表示むら(色むら)の有無を目視で観察した。液晶表示素子の周辺部に表示むらが全く見られなかった場合を「◎」、少し薄い表示むらが見えた場合を「○」、はっきりとした濃い表示むらがあった場合を「△」、はっきりとした濃い表示むらが周辺部のみではなく、中央部まで広がっていた場合を「×」として液晶表示素子の表示性能を評価した。
なお、評価が「◎」、「○」の液晶表示素子は実用に全く問題のないレベルである。
(Display performance of liquid crystal display element)
Examples, reference examples, and, in the liquid crystal display element sealing agent obtained in Comparative Example, a silica spacer (Sekisui Chemical Co., Ltd., "SI-H055") was blended 1 weight%, the defoaming treatment After removing the foam in the sealant, it was filled in a syringe for dispensing (“PSY-10E” manufactured by Musashi Engineering Co., Ltd.) and defoamed again. Next, using a dispenser (manufactured by Musashi Engineering Co., Ltd., "SHOTMASTER300"), a sealing agent was applied to one of the two glass substrates with an ITO thin film so as to draw a frame. Subsequently, minute droplets of TN liquid crystal display (manufactured by Chisso, "JC-5001LA") are dropped and applied into the frame of the sealant by a liquid crystal dropping device, and the other glass substrate with an ITO thin film is laminated and used as a vacuum bonding device. The two substrates were bonded together under a reduced pressure of 5 Pa. After irradiating the bonded cells with ultraviolet rays of 3000 mJ / cm 2 with a metal halide lamp, the sealant was thermally cured by heating at 120 ° C. for 60 minutes to prepare a liquid crystal display element. The obtained liquid crystal display element was stored for 72 hours in an environment of a temperature of 80 ° C. and a humidity of 90% RH, and then driven with a voltage of AC3.5V, and the presence or absence of display unevenness (color unevenness) was visually observed. "◎" is when there is no display unevenness around the liquid crystal display element, "○" is when a slightly faint display unevenness is seen, and "△" is when there is a clear dark display unevenness. The display performance of the liquid crystal display element was evaluated as "x" when the dark display unevenness spread not only to the peripheral part but also to the central part.
The liquid crystal display elements with evaluations of "◎" and "○" are at a level where there is no problem in practical use.

Figure 0006978314
Figure 0006978314

本発明によれば、接着性と硬化物の透湿防止性とを両立させることができる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することができる。 According to the present invention, it is possible to provide a sealant for a liquid crystal display element that can achieve both adhesiveness and moisture permeation prevention property of a cured product. Further, according to the present invention, it is possible to provide a vertically conductive material and a liquid crystal display element using the sealant for a liquid crystal display element.

Claims (6)

硬化性樹脂と重合開始剤及び/又は熱硬化剤とを含有する液晶表示素子用シール剤であって、
前記硬化性樹脂は、下記式(1)で表される化合物を含有し、
前記硬化性樹脂100重量部中における式(1)で表される化合物の含有量が1〜90重量部である
ことを特徴とする液晶表示素子用シール剤。
Figure 0006978314
式(1)中、R、メチル基を表し、Rは、下記式(2−1)、(2−2)、又は、(2−3)で表される基を表し、Arは、置換されていてもよいアリーレン基を表し、Xは、環状ラクトンの開環構造を表し、nは、0〜0.5(平均値)であり、Epは、エポキシ化合物由来の構造を表す。
Figure 0006978314
式(2−1)〜(2−3)中、*は、結合位置を表し、式(2−2)中、aは、1〜8の整数であり、式(2−3)中、bは、1〜8の整数であり、cは、1〜3の整数であり、dは、1〜8の整数である。
A sealant for a liquid crystal display element containing a curable resin and a polymerization initiator and / or a thermosetting agent.
The curable resin contains a compound represented by the following formula (1) and contains.
A sealing agent for a liquid crystal display element, wherein the content of the compound represented by the formula (1) in 100 parts by weight of the curable resin is 1 to 90 parts by weight.
Figure 0006978314
In formula (1), R 1 represents a methylation group, R 2 is represented by the following formula (2-1), (2-2), or represents a group represented by (2-3), Ar Represents an arylene group which may be substituted, X represents the ring-opening structure of the cyclic lactone, n is 0 to 0.5 (average value), and Ep represents the structure derived from the epoxy compound. ..
Figure 0006978314
In equations (2-1) to (2-3), * represents a coupling position, in equation (2-2), a is an integer of 1 to 8, and in equation (2-3), b. Is an integer of 1 to 8, c is an integer of 1 to 3, and d is an integer of 1 to 8.
式(1)で表される化合物は、nが0であり、かつ、EpがビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、又は、ビスフェノールE型エポキシ化合物由来の構造であることを特徴とする請求項1記載の液晶表示素子用シール剤。 The compound represented by the formula (1) is characterized in that n is 0 and Ep is a structure derived from a bisphenol A type epoxy compound, a bisphenol F type epoxy compound, or a bisphenol E type epoxy compound. The sealant for a liquid crystal display element according to claim 1. 硬化性樹脂は、エポキシ化合物を含有することを特徴とする請求項1又は2記載の液晶表示素子用シール剤。 The sealant for a liquid crystal display element according to claim 1 or 2, wherein the curable resin contains an epoxy compound. 遮光剤を含有することを特徴とする請求項1、2又は3記載の液晶表示素子用シール剤。 The sealant for a liquid crystal display element according to claim 1, 2 or 3, which contains a light-shielding agent. 請求項1、2、3又は4記載の液晶表示素子用シール剤と導電性微粒子とを含有することを特徴とする上下導通材料。 A vertically conductive material comprising the sealant for a liquid crystal display element according to claim 1, 2, 3 or 4, and conductive fine particles. 請求項1、2、3又は4記載の液晶表示素子用シール剤又は請求項5記載の上下導通材料を用いてなることを特徴とする液晶表示素子。 A liquid crystal display element according to claim 1, 2, 3 or 4, wherein the sealant for a liquid crystal display element or the vertically conductive material according to claim 5 is used.
JP2017536979A 2016-06-21 2017-06-20 Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element Active JP6978314B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016122751 2016-06-21
JP2016122751 2016-06-21
PCT/JP2017/022717 WO2017221936A1 (en) 2016-06-21 2017-06-20 Sealant for liquid crystal display elements, vertical conduction material, and liquid crystal display element

Publications (2)

Publication Number Publication Date
JPWO2017221936A1 JPWO2017221936A1 (en) 2019-04-11
JP6978314B2 true JP6978314B2 (en) 2021-12-08

Family

ID=60784602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017536979A Active JP6978314B2 (en) 2016-06-21 2017-06-20 Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP6978314B2 (en)
KR (2) KR102531223B1 (en)
CN (1) CN108292067B (en)
TW (1) TWI797083B (en)
WO (1) WO2017221936A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7160907B2 (en) * 2019-02-18 2022-10-25 積水化学工業株式会社 Sealant for liquid crystal display element for substrate with polyimide alignment film, vertical conduction material, and liquid crystal display element
WO2020204029A1 (en) * 2019-04-02 2020-10-08 積水化学工業株式会社 Curable resin composition, sealing agent for liquid crystal display element, vertical conductive material, and liquid crystal display element

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3583326B2 (en) 1999-11-01 2004-11-04 協立化学産業株式会社 Sealant for dripping method of LCD panel
KR100906926B1 (en) 2001-05-16 2009-07-10 세키스이가가쿠 고교가부시키가이샤 Curing Resin Composition and Sealants and End-Sealing Materials for Displays
JP4591994B2 (en) * 2003-05-29 2010-12-01 株式会社カネカ Curable composition
CN101176033B (en) * 2005-05-09 2010-05-26 积水化学工业株式会社 Sealing material for liquid crystal dropping method, vertically conducting material, and liquid crystal display element
JP4157896B2 (en) * 2005-07-06 2008-10-01 積水化学工業株式会社 Sealant for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
JP2010230713A (en) * 2009-03-25 2010-10-14 Sekisui Chem Co Ltd Sealing agent for liquid crystal one-drop-fill method, vertical conducting material and liquid crystal display element
JP6163045B2 (en) * 2013-08-20 2017-07-12 積水化学工業株式会社 Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
CN106662781B (en) * 2014-07-24 2020-05-15 三井化学株式会社 Liquid crystal sealing agent and method for manufacturing liquid crystal display panel
CN106164761B (en) * 2014-11-17 2020-09-15 积水化学工业株式会社 Sealing agent for liquid crystal dropping process, vertical conduction material, and liquid crystal display element

Also Published As

Publication number Publication date
JPWO2017221936A1 (en) 2019-04-11
KR20220066190A (en) 2022-05-23
TWI797083B (en) 2023-04-01
WO2017221936A1 (en) 2017-12-28
KR20190016931A (en) 2019-02-19
CN108292067A (en) 2018-07-17
KR102531223B1 (en) 2023-05-10
TW201829511A (en) 2018-08-16
CN108292067B (en) 2021-11-12

Similar Documents

Publication Publication Date Title
JP5827752B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP2017049578A (en) Sealant for liquid crystal display elements, vertical conduction material and liquid crystal display element
JP6798978B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6910561B2 (en) Sealing agent for display elements, vertical conductive materials, and display elements
JP6795400B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6114893B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP2014115639A (en) Sealing compound for liquid crystal display elements, vertical conduction material, liquid crystal display element, and hydrazide based thermosetting agent
JP7000158B2 (en) Sealing agent for liquid crystal display element, vertical conduction material and liquid crystal display element
JP2015034844A (en) Sealant for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
JP6978314B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6918693B2 (en) Light-shielding sealant for liquid crystal display elements, vertical conductive materials, and liquid crystal display elements
JP2014001340A (en) Sealing agent for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
JP6126756B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6046868B1 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
KR20190055015A (en) A sealing agent for a liquid crystal display element, an upper and lower conductive material, and a liquid crystal display element
JP7160907B2 (en) Sealant for liquid crystal display element for substrate with polyimide alignment film, vertical conduction material, and liquid crystal display element
JP7127990B2 (en) Liquid crystal display element sealant, vertical conduction material, and liquid crystal display element
JP7000164B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP7000159B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6078698B1 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP6928177B2 (en) Curable resin composition, sealant for liquid crystal display element, vertical conductive material, and liquid crystal display element
JPWO2017119260A1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6978311B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211111

R151 Written notification of patent or utility model registration

Ref document number: 6978314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151