WO2020203688A1 - 複合体の製造方法 - Google Patents

複合体の製造方法 Download PDF

Info

Publication number
WO2020203688A1
WO2020203688A1 PCT/JP2020/013804 JP2020013804W WO2020203688A1 WO 2020203688 A1 WO2020203688 A1 WO 2020203688A1 JP 2020013804 W JP2020013804 W JP 2020013804W WO 2020203688 A1 WO2020203688 A1 WO 2020203688A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
sintered body
nitride sintered
resin
less
Prior art date
Application number
PCT/JP2020/013804
Other languages
English (en)
French (fr)
Inventor
紗緒梨 井之上
翔二 岩切
仁孝 南方
亮 吉松
竜士 古賀
智也 山口
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to CN202080022270.6A priority Critical patent/CN113614051A/zh
Priority to EP20783991.1A priority patent/EP3950643B1/en
Priority to US17/441,746 priority patent/US20220250994A1/en
Priority to JP2021511947A priority patent/JPWO2020203688A1/ja
Publication of WO2020203688A1 publication Critical patent/WO2020203688A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/488Other macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • C04B41/4884Polyurethanes; Polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • C04B41/83Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/62635Mixing details
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0054Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity the pores being microsized or nanosized
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/4853Epoxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3895Non-oxides with a defined oxygen content, e.g. SiOC, TiON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles

Definitions

  • the present invention relates to a method for producing a complex.
  • an object of the present invention is to provide a method for producing a composite having excellent insulating properties.
  • One aspect of the present invention is that a porous boron nitride sintered body is placed under pressure conditions while being immersed in the resin composition, and then the boron nitride sintered body is pressurized while being immersed in the resin composition.
  • This is a method for producing a composite, which comprises a step of placing the mixture under pressure conditions lower than the conditions, and repeats the above steps a plurality of times.
  • the boron nitride sintered body is placed in a resin composition under reduced pressure conditions, and then the boron nitride sintered body is immersed in the resin composition under reduced pressure conditions. Further may be provided with a step of placing under high pressure conditions.
  • the average pore size of the boron nitride sintered body may be 3.5 ⁇ m or less.
  • One embodiment of the present invention is a composite comprising a porous boron nitride sintered body (hereinafter, also simply referred to as “boron nitride sintered body”) and a resin filled in the pores of the boron nitride sintered body. It is a manufacturing method of.
  • the boron nitride sintered body is impregnated with the resin composition (impregnation step).
  • the impregnation step includes the step S1 of preparing the boron nitride sintered body and the resin composition, and the boron nitride sintered body being immersed in the resin composition and placed under reduced pressure conditions, and then baked with boron nitride.
  • Step S2 in which the body is immersed in the resin composition and placed under pressure conditions higher than the above reduced pressure conditions, and the boron nitride sintered body is placed in the resin composition under pressure conditions and then boron nitride.
  • step S1 for example, a boron nitride sintered body and a resin composition are prepared in an impregnation device whose pressure can be controlled.
  • the boron nitride sintered body is made by sintering primary particles of boron nitride.
  • the boron nitride sintered body is a porous sintered body having a plurality of pores (pores).
  • the average pore diameter of the boron nitride sintered body may be, for example, 0.1 ⁇ m or more, and is preferably 0.5 ⁇ m or more, more preferably 0.8 ⁇ m or more, and further, from the viewpoint that the resin composition can be suitably filled in the pores. It is preferably 1 ⁇ m or more.
  • the average pore size of the boron nitride sintered body may be, for example, 5 ⁇ m or less or 4 ⁇ m or less, and a composite having better insulating properties can be obtained (the effect of improving the insulating properties by repeating step S3 described later can be obtained more remarkably). From the viewpoint, it is preferably 3.5 ⁇ m or less, more preferably 3 ⁇ m or less, still more preferably 2 ⁇ m or less, and particularly preferably 1.5 ⁇ m or less.
  • the average pore size of the boron nitride sintered body is such that the cumulative pore volume is 50% of the total pore volume in the pore size distribution (horizontal axis: pore diameter, vertical axis: cumulative pore volume) measured using a mercury porosimeter. Is defined as the pore size that reaches.
  • a mercury porosimeter for example, a mercury porosimeter manufactured by Shimadzu Corporation can be used, and the measurement can be performed by pressurizing while increasing the pressure from 0.03 atm to 4000 atm.
  • the ratio of pores to the boron nitride sintered body is preferably 10% by volume from the viewpoint that the strength of the composite can be preferably improved by filling with resin based on the total volume of the boron nitride sintered body. From the viewpoint of further improving the insulating property and thermal conductivity of the composite, the content is preferably 70% by volume or less, more preferably 50% by volume or less.
  • the boron nitride sintered body is obtained by molding the boron nitride powder and then sintering it. That is, in one embodiment, before the impregnation step, a molding step of molding the boron nitride powder to obtain a boron nitride molded body and a sintering step of sintering the boron nitride molded body to obtain a boron nitride sintered body are performed. It may be carried out.
  • a spherical boron nitride powder obtained by spheroidizing a slurry containing a boron nitride powder with a spray dryer or the like is subjected to a press molding method or a cold isotropic pressure method (CIP).
  • CIP cold isotropic pressure method
  • the pressure during molding in the molding step is not particularly limited, but the higher the pressure, the smaller the average pore size of the obtained boron nitride sintered body, and the lower the pressure, the larger the average pore size of the obtained boron nitride sintered body.
  • the sintering aid may be, for example, a carbonate of an alkali metal such as lithium carbonate, sodium carbonate, calcium carbonate or an alkaline earth metal, boric acid, or a combination thereof.
  • the amount of the sintering aid added may be, for example, 0.5 parts by mass or more and 25 parts by mass or less with respect to 100 parts by mass of the total of the boron nitride powder and the sintering aid.
  • boron nitride sintered body having the average pore size it is preferably 20 parts by mass or less, more preferably 15 parts by mass or less, still more preferably 10 parts by mass or less, and particularly preferably 5 parts by mass or less.
  • the boron nitride molded body obtained in the molding process is sintered.
  • the sintering temperature may be, for example, 1600 ° C. or higher, and may be 2200 ° C. or lower.
  • the sintering time may be, for example, 1 hour or more and 30 hours or less.
  • the atmosphere at the time of sintering may be, for example, an atmosphere of an inert gas such as nitrogen, helium, or argon.
  • the resin composition contains at least a resin.
  • the resin include epoxy resin, silicone resin, cyanate resin, silicone rubber, acrylonitrile resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyimide, polyamideimide, polyetherimide, and polybutylene terephthalate.
  • the resin preferably contains an epoxy resin from the viewpoint of excellent heat resistance and adhesive strength to the circuit.
  • the composite is suitably used for the insulating layer of the printed wiring board.
  • the resin preferably contains a silicone resin from the viewpoint of excellent heat resistance, flexibility, and adhesion to a heat sink or the like.
  • the composite is preferably used as a thermal interface material.
  • the resin composition may further contain a curing agent, an inorganic filler, a silane coupling agent, a defoaming agent, a surface conditioner, a wet dispersant and the like.
  • the resin composition is preferably one or two selected from the group consisting of aluminum oxide, silicon oxide, zinc oxide, silicon nitride, aluminum nitride and aluminum hydroxide from the viewpoint of obtaining a composite having excellent thermal conductivity. Contains the above inorganic filler (ceramic powder).
  • the resin composition may further contain one or more of the solvents.
  • the solvent include aliphatic alcohols such as ethanol and isopropanol, 2-methoxyethanol, 1-methoxyethanol, 2-ethoxyethanol, 1-ethoxy-2-propanol, 2-butoxyethanol, 2- (2-methoxyethoxy).
  • ketones such as ketones and hydrocarbons such as toluene and xylene.
  • step S2 the pressure inside the impregnation device is lowered and the pressure is reduced.
  • the pressure P1 under this depressurized condition may be, for example, 2000 Pa or less, 1000 Pa or less, 500 Pa or less, 100 Pa or less, or 50 Pa or less.
  • step S2 the boron nitride sintered body is immersed in the resin composition under the above-mentioned reduced pressure conditions, and the immersed state is placed at T1 under the reduced pressure conditions for a predetermined time.
  • the predetermined time T1 may be, for example, 10 minutes or more, and may be 720 minutes or less.
  • the temperature of the resin composition at this time may be, for example, 20 ° C. or higher, and may be 150 ° C. or lower.
  • step S2 the pressure in the impregnation device is subsequently increased to a pressure condition higher than the pressure P1 under the above decompression condition.
  • the pressure P2 under this pressure condition may be, for example, 0.01 MPa or more, 0.05 MPa or more, 0.08 MPa or more, or 0.1 MPa or more, 0.5 MPa or less, 0.4 MPa or less, 0.3 MPa or less, Alternatively, it may be 0.2 MPa or less, and may be atmospheric pressure (0.101325 MPa).
  • step S2 the boron nitride sintered body is placed in T2 for a predetermined time under the above pressure conditions while being immersed in the resin composition.
  • the predetermined time T2 may be, for example, 1 minute or more, and may be 60 minutes or less.
  • the temperature of the resin composition at this time may be, for example, 20 ° C. or higher, and may be 150 ° C. or lower.
  • step S3 the pressure inside the impregnation device is increased to set the pressurizing condition.
  • the pressure P3 under this pressurizing condition may be, for example, 0.2 MPa or more, 0.5 MPa or more, 0.7 MPa or more, 1 MPa or more, 2 MPa or more, 3 MPa or more, 4 MPa or more, or 5 MPa or more, and 100 MPa or less, 50 MPa or more.
  • it may be 20 MPa or less, 10 MPa or less, or 5 MPa or less.
  • step S3 the boron nitride sintered body is placed in T3 for a predetermined time under the above-mentioned pressure conditions in a state of being immersed in the resin composition.
  • the predetermined time T3 may be, for example, 5 minutes or more, 15 minutes or more, and 720 minutes or less.
  • the temperature of the resin composition at this time may be, for example, 20 ° C. or higher, and may be 150 ° C. or lower.
  • step S3 the pressure in the impregnation device is subsequently lowered to a pressure condition lower than the pressure P3 under the above pressurization condition.
  • the pressure P4 under this pressure condition may be, for example, 0.01 MPa or more, 0.05 MPa or more, 0.08 MPa or more, or 0.1 MPa or more, 0.5 MPa or less, 0.4 MPa or less, 0.3 MPa or less, Alternatively, it may be 0.2 MPa or less, and may be atmospheric pressure.
  • step S3 the boron nitride sintered body is placed in T4 for a predetermined time under the above pressure conditions in a state of being immersed in the resin composition.
  • the predetermined time T4 may be, for example, 1 minute or more, and may be 60 minutes or less.
  • the temperature of the resin composition at this time may be, for example, 20 ° C. or higher, and may be 150 ° C. or lower.
  • step S3 is repeated a plurality of times.
  • the number of times of the step S3 may be 2 times or more, 4 times or more, 5 times or more, 6 times or more, 7 times or more, 8 times or more, 9 times or more, or 10 times or more, 20 times or less, 15 times. It may be less than or equal to 13 times or less.
  • This production method may further include a step (curing step) of curing the resin in the resin composition filled in the pores of the boron nitride sintered body, following the impregnation step.
  • a step (curing step) of curing the resin in the resin composition filled in the pores of the boron nitride sintered body following the impregnation step.
  • the curing step for example, the boron nitride sintered body and the resin composition filled therein are taken out from the impregnation apparatus, and heated and / or irradiated with light depending on the type of resin (or the curing agent added as needed). Cures the resin.
  • a part of the resin may be cured (so-called B stage formation), or the entire resin may be cured.
  • the conditions for heating and light irradiation can be appropriately set according to the type of resin (or a curing agent added as needed), the desired degree of curing, and the like.
  • the impregnation step includes the step S2, but in another embodiment, the impregnation step does not have to include the step S2.
  • the impregnation step includes the step S2, and it is more preferable that the step S2 is repeated a plurality of times in the impregnation step.
  • the step S2 is repeated a plurality of times, the number of times of the step S2 is 2 times or more, 4 times or more, 5 times or more, 6 times or more, 7 times or more, 8 times or more, 9 times or more, or 10 times or more. It may be 20 times or less, 15 times or less, or 13 times or less.
  • the composite obtained by the production method described above contains a porous boron nitride sintered body and a resin filled in the pores of the boron nitride sintered body.
  • the content of the boron nitride sintered body in the composite is not particularly limited, but may be, for example, 30% by volume or more, 40% by volume or more, or 50% by volume or more based on the total volume of the composite. It may be 90% by volume or less, 80% by volume or less, 70% by volume or less, or 60% by volume or less.
  • the content of the resin in the composite is not particularly limited, but may be, for example, 20% by volume or more, 25% by volume or more, 30% by volume or more, or 35% by volume or more based on the total volume of the composite. , 75% by volume or less, 70% by volume or less, 65% by volume or less, 60% by volume or less, or 55% by volume or less.
  • the content of the resin in the composite can be measured by the method described in Examples.
  • the composite may further contain other components (including impurities) in addition to the boron nitride sintered body and the resin.
  • the content of other components may be 10% by volume or less, 5% by volume or less, 3% by volume or less, or 1% by volume or less based on the total volume of the complex.
  • polyvinyl alcohol (“Gosenol”, manufactured by Nippon Synthetic Chemical Co., Ltd.) is added to the water slurry so as to be 0.5% by mass, heated and stirred at 50 ° C. until dissolved, and then spray-dried.
  • the spheroidizing treatment was performed at a drying temperature of 230 ° C.
  • a rotary atomizer was used as the spheroidizing device of the spray dryer.
  • the obtained processed product was filled in a boron nitride container and pressed at 20 MPa by a cold isotropic pressure method (CIP) for molding.
  • CIP cold isotropic pressure method
  • the boron nitride sintered body was taken out from the boron nitride container after sintering for 10 hours under the conditions of normal pressure, nitrogen flow rate of 5 L / min, and 2050 ° C. in a batch type high frequency furnace.
  • ⁇ Impregnated resin composition The obtained boron nitride sintered body was impregnated with the resin composition by the following procedure. 61 parts by mass of cyanate resin ("TA-CN", manufactured by Mitsubishi Gas Chemical Co., Ltd.), 11 parts by mass of maleimide resin ("BMI-80", manufactured by DIC Corporation), and epoxy resin ("HP-4032D”). 28 parts by mass (manufactured by DIC Corporation) was mixed at 130 ° C. for 1 hour to obtain a resin composition.
  • TA-CN cyanate resin
  • BMI-80 maleimide resin
  • HP-4032D epoxy resin
  • Step S2 in which the body is immersed in the resin composition and placed under pressure condition P2 (atmospheric pressure) higher than the pressure reducing condition P1 for a predetermined time T2 (30 minutes), and a state in which the boron nitride sintered body is immersed in the resin composition.
  • P2 atmospheric pressure
  • Step S3 After placing the boron nitride sintered body under the pressure condition P3 (0.8 MPa) for a predetermined time for a predetermined time (90 minutes), the pressure condition P4 (0.) lower than the pressure condition P3 in a state where the boron nitride sintered body is immersed in the resin composition.
  • Step S3 of placing T4 (10 minutes) under 2 MPa) for a predetermined time was carried out.
  • step S2 and step S3 were carried out once each. As described above, a resin-filled boron nitride sintered body (composite) was obtained.
  • the content of the resin in the obtained composite was measured by the following procedure. The results are shown in Table 1.
  • the content (% by volume) of the resin in the composite was determined by measuring the bulk density of the boron nitride sintered body and the bulk density of the composite shown below.
  • Resin content in the composite (%) ((composite bulk density-boron nitride sintered bulk density) / (complex theoretical density-boron nitride sintered bulk density)) x 100
  • the theoretical complex density was calculated from the following formula.
  • Composite theoretical density Boron nitride true density + Resin true density x (1-Boron nitride sintered body bulk density / Boron nitride true density)
  • the bulk density of the boron nitride sintered body and the composite conforms to the method of measuring the density and specific gravity by geometric measurement of JIS Z 8807: 2012, and the bulk density of each side of the boron nitride sintered body or the composite having a regular hexahedron shape. It was determined based on the volume calculated from the length (measured by calipers) and the mass of the boron nitride sintered body or composite measured by an electronic balance (see Section 9 of JIS Z 8807: 2012).
  • the true density of the boron nitride sintered body and the resin conforms to the method of measuring the density and specific gravity by the gas substitution method of JIS Z 8807: 2012, and the volume of the boron nitride sintered body and the resin measured by using a dry automatic densitometer. And the mass (see equations (14) to (17) of paragraph 11 of JIS Z 8807: 2012).
  • Example 1 A composite was prepared in the same manner as in Comparative Example 1 except that step S3 was repeated 10 times, and the resin content was measured and the insulating property was evaluated. The results are shown in Table 1.
  • Example 2 A boron nitride sintered body was produced in the same manner as in Example 1 except that the compounding ratios of amorphous boron nitride powder, hexagonal boron nitride powder, calcium carbonate and boric acid, and the pressure of CIP were changed as shown in Table 1. ..
  • the average pore diameter and porosity of the obtained boron nitride sintered body were measured in the same manner as in Example 1, and the results were as shown in Table 1.
  • the resin composition is impregnated in the same manner as in Example 1 except that the pressure conditions in steps S2 and S3, the time placed under each pressure condition, and the number of times each step is performed are changed as shown in Table 1. As a result, a complex was obtained.
  • the results are as shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明の一側面は、多孔性の窒化ホウ素焼結体を樹脂組成物に浸漬した状態で加圧条件下に置いた後、窒化ホウ素焼結体を前記樹脂組成物に浸漬した状態で加圧条件より低い圧力条件下に置く工程を備え、上記工程を複数回繰り返す、複合体の製造方法である。

Description

複合体の製造方法
 本発明は、複合体の製造方法に関する。
 パワーデバイス、トランジスタ、サイリスタ、CPU等の電子部品においては、使用時に発生する熱を効率的に放熱することが課題となっている。この課題に対して、従来、電子部品を実装するプリント配線板の絶縁層の高熱伝導化や、電子部品又はプリント配線板を電気絶縁性の熱インターフェース材(Thermal Interface Materials)を介してヒートシンクに取り付けることが行われてきた。このような絶縁層及び熱インターフェース材には、樹脂と窒化ホウ素等のセラミックスとで構成される複合体(放熱部材)が用いられる。
 このような複合体として、従来、樹脂中にセラミックスの粉末を分散させたものが用いられているが、近年では、多孔性のセラミックス焼結体(例えば窒化ホウ素焼結体)に樹脂を含浸させた複合体も検討されている(例えば特許文献1)。
国際公開第2014/196496号
 本発明者らの検討によれば、上述したような多孔性の窒化ホウ素焼結体に樹脂を含浸させた複合体においては、高い電圧にも耐え得る絶縁性を有するために更なる改善の余地がある。
 そこで、本発明は、絶縁性に優れる複合体の製造方法を提供することを目的とする。
 本発明の一側面は、多孔性の窒化ホウ素焼結体を樹脂組成物に浸漬した状態で加圧条件下に置いた後、窒化ホウ素焼結体を前記樹脂組成物に浸漬した状態で加圧条件より低い圧力条件下に置く工程を備え、上記工程を複数回繰り返す、複合体の製造方法である。
 上記製造方法は、上記工程の前に、窒化ホウ素焼結体を樹脂組成物に浸漬した状態で減圧条件下に置いた後、窒化ホウ素焼結体を樹脂組成物に浸漬した状態で減圧条件より高い圧力条件下に置く工程を更に備えていてよい。
 窒化ホウ素焼結体の平均孔径は、3.5μm以下であってよい。
 本発明によれば、絶縁性に優れる複合体の製造方法を提供することができる。
 以下、本発明の実施形態について詳細に説明する。
 本発明の一実施形態は、多孔性の窒化ホウ素焼結体(以下、単に「窒化ホウ素焼結体」ともいう)と、窒化ホウ素焼結体の孔内に充填された樹脂とを備える複合体の製造方法である。
 この製造方法では、まず、窒化ホウ素焼結体に樹脂組成物を含浸させる(含浸工程)。含浸工程は、一実施形態において、窒化ホウ素焼結体及び樹脂組成物を用意する工程S1と、窒化ホウ素焼結体を樹脂組成物に浸漬した状態で減圧条件下に置いた後、窒化ホウ素焼結体を樹脂組成物に浸漬した状態で上記減圧条件より高い圧力条件下に置く工程S2と、窒化ホウ素焼結体を樹脂組成物に浸漬した状態で加圧条件下に置いた後、窒化ホウ素焼結体を樹脂組成物に浸漬した状態で上記加圧条件より低い圧力条件下に置く工程S3と、を含む。
 工程S1では、例えば圧力を制御可能な含浸装置内に、窒化ホウ素焼結体及び樹脂組成物をそれぞれ用意する。
 窒化ホウ素焼結体は、窒化ホウ素の一次粒子同士が焼結されてなるものである。窒化ホウ素焼結体は、複数の孔(細孔)を有する多孔性の焼結体である。窒化ホウ素焼結体の平均孔径は、例えば0.1μm以上であってよく、孔内に樹脂組成物を好適に充填できる観点から、好ましくは0.5μm以上、より好ましくは0.8μm以上、更に好ましくは1μm以上である。窒化ホウ素焼結体の平均孔径は、例えば5μm以下又は4μm以下であってよく、絶縁性により優れる複合体が得られる(後述する工程S3の繰返しによる絶縁性の向上効果がより顕著に得られる)観点から、好ましくは3.5μm以下、より好ましくは3μm以下、更に好ましくは2μm以下、特に好ましくは1.5μm以下である。
 窒化ホウ素焼結体の平均孔径は、水銀ポロシメーターを用いて測定される細孔径分布(横軸:細孔径、縦軸:累積細孔容積)において、累積細孔容積が全細孔容積の50%に達する細孔径として定義される。水銀ポロシメーターとしては、例えば、島津製作所社製の水銀ポロシメーターを用いることができ、0.03気圧から4000気圧まで圧力を増やしながら加圧して測定することができる。
 窒化ホウ素焼結体に占める孔の割合(気孔率)は、窒化ホウ素焼結体の全体積を基準として、樹脂の充填による複合体の強度向上が好適に図られる観点から、好ましくは10体積%以上であり、複合体の絶縁性及び熱伝導率を更に向上させる観点から、好ましくは70体積%以下、より好ましくは50体積%以下である。当該割合(気孔率)は、窒化ホウ素焼結体の体積及び質量から求められるかさ密度(D;g/cm)と窒化ホウ素の理論密度(2.28g/cm)とから、下記式:
 気孔率(体積%)=[1-(D/2.28)]×100
に従って算出される。
 窒化ホウ素焼結体は、窒化ホウ素粉末を成型した後、焼結させることにより得られる。すなわち、一実施形態において、含浸工程の前に、窒化ホウ素粉末を成型して窒化ホウ素成型体を得る成型工程と、窒化ホウ素成型体を焼結させて窒化ホウ素焼結体を得る焼結工程が実施されてもよい。より具体的には、成型工程では、例えば、窒化ホウ素粉末を含むスラリーを噴霧乾燥機等で球状化処理して得た球状の窒化ホウ素粉末を、プレス成型法や冷間等方加圧法(CIP)により成型することができる。成型工程における成型時の圧力は特に制限されないが、圧力が高いほど得られる窒化ホウ素焼結体の平均孔径が小さくなり、圧力が低いほど得られる窒化ホウ素焼結体の平均孔径は大きくなる。
 成型工程における成型時には、焼結助剤を添加することが好ましい。焼結助剤は、例えば、炭酸リチウム、炭酸ナトリウム、炭酸カルシウム等のアルカリ金属若しくはアルカリ土類金属の炭酸塩、ホウ酸、又はそれらの組み合わせであってよい。焼結助剤の添加量は、窒化ホウ素粉末と焼結助剤との合計100質量部に対して、例えば、0.5質量部以上であってよく、25質量部以下であってよく、上述した平均孔径を有する窒化ホウ素焼結体が好適に得られる観点から、好ましくは20質量部以下、より好ましくは15質量部以下、更に好ましくは10質量部以下、特に好ましく5質量部以下である。
 焼結工程では、成型工程で得られた窒化ホウ素成型体を焼結させる。焼結温度は、例えば、1600℃以上であってよく、2200℃以下であってよい。焼結時間は、例えば、1時間以上であってよく、30時間以下であってよい。焼結時の雰囲気は、例えば、窒素、ヘリウム、アルゴン等の不活性ガス雰囲気であってよい。
 樹脂組成物は、少なくとも樹脂を含有する。樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、シアネート樹脂、シリコーンゴム、アクリル樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンエーテル、ポリフェニレンサルファイド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド樹脂、マレイミド変性樹脂、ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、AAS(アクリロニトリル-アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂、ポリグリコール酸樹脂、ポリフタルアミド、ポリアセタール等を用いることができる。
 樹脂は、一実施形態において、耐熱性及び回路への接着強度に優れる観点から、好ましくはエポキシ樹脂を含む。この場合、複合体は、プリント配線板の絶縁層に好適に用いられる。樹脂は、他の一実施形態において、耐熱性、柔軟性及びヒートシンク等への密着性に優れる観点から、好ましくはシリコーン樹脂を含む。この場合、複合体は、熱インターフェース材に好適に用いられる。
 樹脂組成物は、硬化剤、無機フィラー、シランカップリング剤、消泡剤、表面調整剤、湿潤分散剤等を更に含有してもよい。樹脂組成物は、熱伝導率に優れる複合体が得られる観点から、好ましくは、酸化アルミニウム、酸化ケイ素、酸化亜鉛、窒化ケイ素、窒化アルミニウム及び水酸化アルミニウムからなる群より選ばれる1種又は2種以上の無機フィラー(セラミックス粉末)を含有する。
 樹脂組成物は、溶剤の1種又は2種以上を更に含有してもよい。溶剤としては、例えば、エタノール、イソプロパノール等の脂肪族アルコール、2-メトキシエタノール、1-メトキシエタノール、2-エトキシエタノール、1-エトキシ-2-プロパノール、2-ブトキシエタノール、2-(2-メトキシエトキシ)エタノール、2-(2-エトキシエトキシ)エタノール、2-(2-ブトキシエトキシ)エタノール等のエーテルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル等のグリコールエーテル、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトンケトン等のケトン、トルエン、キシレン等の炭化水素が挙げられる。
 工程S2では、含浸装置内の圧力を低くし減圧条件とする。この減圧条件における圧力P1は、例えば、2000Pa以下、1000Pa以下、500Pa以下、100Pa以下、又は50Pa以下であってよい。
 工程S2では、上記のような減圧条件下において、窒化ホウ素焼結体を樹脂組成物に浸漬し、浸漬した状態で減圧条件下に所定の時間T1置く。当該所定の時間T1は、例えば、10分間以上であってよく、720分間以下であってよい。このときの樹脂組成物の温度は、例えば、20℃以上であってよく、150℃以下であってよい。
 工程S2では、続いて、含浸装置内の圧力を高くし、上記の減圧条件における圧力P1より高い圧力条件とする。この圧力条件における圧力P2は、例えば、0.01MPa以上、0.05MPa以上、0.08MPa以上、又は0.1MPa以上であってよく、0.5MPa以下、0.4MPa以下、0.3MPa以下、又は0.2MPa以下であってよく、大気圧(0.101325MPa)であってもよい。
 工程S2では、窒化ホウ素焼結体を樹脂組成物に浸漬した状態で上記のような圧力条件下に所定の時間T2置く。当該所定の時間T2は、例えば、1分間以上であってよく、60分間以下であってよい。このときの樹脂組成物の温度は、例えば、20℃以上であってよく、150℃以下であってよい。
 工程S3では、含浸装置内の圧力を高くし、加圧条件とする。この加圧条件における圧力P3は、例えば、0.2MPa以上、0.5MPa以上、0.7MPa以上、1MPa以上、2MPa以上、3MPa以上、4MPa以上、又は5MPa以上であってよく、100MPa以下、50MPa以下、20MPa以下、10MPa以下、又は5MPa以下であってよい。
 工程S3では、窒化ホウ素焼結体を樹脂組成物に浸漬した状態で上記のような加圧条件下に所定の時間T3置く。当該所定の時間T3は、例えば、5分間以上又は15分間以上であってよく、720分間以下であってよい。このときの樹脂組成物の温度は、例えば、20℃以上であってよく、150℃以下であってよい。
 工程S3では、続いて、含浸装置内の圧力を低くし、上記の加圧条件における圧力P3より低い圧力条件とする。この圧力条件における圧力P4は、例えば、0.01MPa以上、0.05MPa以上、0.08MPa以上、又は0.1MPa以上であってよく、0.5MPa以下、0.4MPa以下、0.3MPa以下、又は0.2MPa以下であってよく、大気圧であってもよい。
 工程S3では、窒化ホウ素焼結体を樹脂組成物に浸漬した状態で上記のような圧力条件下に所定の時間T4置く。当該所定の時間T4は、例えば、1分間以上であってよく、60分間以下であってよい。このときの樹脂組成物の温度は、例えば、20℃以上であってよく、150℃以下であってよい。
 以上説明した含浸工程においては、工程S3を複数回繰り返し実施する。工程S3の実施回数は、2回以上、4回以上、5回以上、6回以上、7回以上、8回以上、9回以上、又は10回以上であってよく、20回以下、15回以下、又は13回以下であってよい。このように工程S3を複数回繰り返すことにより、絶縁性に優れる複合体を得ることができる。その理由は明らかではないが、窒化ホウ素焼結体を樹脂組成物に浸漬した状態で加圧条件下及びそれより低い圧力条件下に繰り返し置くことにより、樹脂組成物が好適に流動し、硬化収縮に伴う複合体中でのボイド形成が分散化する結果、絶縁性の向上が図られると本発明者らは推察している。
 この製造方法は、含浸工程に続いて、窒化ホウ素焼結体の孔内に充填された樹脂組成物中の樹脂を硬化させる工程(硬化工程)を更に備えてもよい。硬化工程では、例えば、窒化ホウ素焼結体及びそこに充填された樹脂組成物を含浸装置から取り出し、樹脂(又は必要に応じて添加される硬化剤)の種類に応じて、加熱及び/光照射により、樹脂を硬化させる。硬化工程では、樹脂の一部を硬化(いわゆるBステージ化)させてよく、樹脂の全部を硬化させてもよい。加熱及び光照射の条件は、樹脂(又は必要に応じて添加される硬化剤)の種類、所望の硬化の程度等に応じて適宜設定できる。
 上記実施形態では、含浸工程が工程S2を含んでいるが、他の一実施形態では、含浸工程は工程S2を含んでいなくてもよい。窒化ホウ素焼結体に樹脂組成物を更に好適に含浸できる観点からは、含浸工程が工程S2を含んでいることが好ましく、含浸工程において工程S2が複数回繰り返し実施されることがより好ましい。工程S2が複数回繰り返される場合、工程S2の実施回数は、2回以上、4回以上、5回以上、6回以上、7回以上、8回以上、9回以上、又は10回以上であってよく、20回以下、15回以下、又は13回以下であってよい。
 以上説明した製造方法によって得られる複合体は、多孔性の窒化ホウ素焼結体と、窒化ホウ素焼結体の孔内に充填された樹脂とを含有している。複合体中の窒化ホウ素焼結体の含有量は、特に限定されないが、複合体の全体積を基準として、例えば、30体積%以上、40体積%以上、又は50体積%以上であってよく、90体積%以下、80体積%以下、70体積%以下、又は60体積%以下であってよい。
 複合体中の樹脂の含有量は、特に限定されないが、複合体の全体積を基準として、例えば、20体積%以上、25体積%以上、30体積%以上、又は35体積%以上であってよく、75体積%以下、70体積%以下、65体積%以下、60体積%以下、又は55体積%以下であってよい。複合体中の樹脂の含有量は、実施例に記載の方法により測定できる。
 複合体は、窒化ホウ素焼結体及び樹脂に加えて、その他の成分(不純物を含む)を更に含有してもよい。その他の成分の含有量は、複合体の全体積を基準として、10体積%以下、5体積%以下、3体積%以下、又は1体積%以下であってよい。
 以下、実施例に基づき本発明を更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(比較例1)
<窒化ホウ素焼結体の作製>
 酸素含有量2.0%、平均粒径3.4μmであるアモルファス窒化ホウ素粉末8質量部と、酸素含有量0.3%、平均粒径12.5μmである六方晶窒化ホウ素粉末13質量部と、炭酸カルシウム(「PC-700」、白石工業社製)1.1質量部と、ホウ酸2質量部とを、ヘンシェルミキサーを用いて混合した後、水76.0質量部を添加してボールミルで5時間粉砕し、水スラリーを得た。さらに、水スラリーに対して、ポリビニルアルコール(「ゴーセノール」、日本合成化学社製)を0.5質量%となるように添加し、溶解するまで50℃で加熱撹拌した後、噴霧乾燥機にて乾燥温度230℃で球状化処理を行った。なお、噴霧乾燥機の球状化装置としては、回転式アトマイザーを使用した。得られた処理物を窒化ホウ素製容器に充填し、冷間等方加圧法(CIP)により20MPaで加圧して成型を行った。続いて、バッチ式高周波炉にて、常圧、窒素流量5L/分、2050℃の条件で10時間焼結させた後、窒化ホウ素容器から窒化ホウ素焼結体を取り出した。
<平均孔径の測定>
 得られた窒化ホウ素焼結体について、島津製作所社製の水銀ポロシメーターを用い、0.03気圧から4000気圧まで圧力を増やしながら加圧したときの細孔径分布(横軸:細孔径、縦軸:累積細孔容積)を測定した。その細孔径分布から、累積細孔容積が全細孔容積の50%に達する細孔径として平均孔径を算出した。結果を表1に示す。
<気孔率の測定>
 得られた窒化ホウ素焼結体の体積及び質量を測定し、当該体積及び質量からかさ密度(D;g/cm)を算出した。このかさ密度と窒化ホウ素の理論密度(2.28g/cm)とから、下記式:
 気孔率(体積%)=[1-(D/2.28)]×100
に従って、気孔率を算出した。結果を表1に示す。
<樹脂組成物の含浸>
 得られた窒化ホウ素焼結体に対して、以下の手順で樹脂組成物の含浸を行った。
 シアネート樹脂(「TA-CN」、三菱ガス化学株式会社製)61質量部と、マレイミド樹脂(「BMI-80)ケイ・アイ化成株式会社製)11質量部と、エポキシ樹脂(「HP-4032D)DIC株式会社製)28質量部とを、130℃で1時間混合して樹脂組成物を得た。
 続いて、圧力を制御可能な含浸装置内で、窒化ホウ素焼結体を樹脂組成物に浸漬した状態で減圧条件P1(30Pa)下に所定時間T1(120分間)置いた後、窒化ホウ素焼結体を樹脂組成物に浸漬した状態で上記減圧条件P1より高い圧力条件P2(大気圧)下に所定時間T2(30分間)置く工程S2と、窒化ホウ素焼結体を樹脂組成物に浸漬した状態で加圧条件P3(0.8MPa)下に所定時間T3(90分間)置いた後、窒化ホウ素焼結体を樹脂組成物に浸漬した状態で上記加圧条件P3より低い圧力条件P4(0.2MPa)下に所定時間T4(10分間)置く工程S3とを実施した。なお、工程S2及び工程S3は、1回ずつ実施した。
 以上のようにして、樹脂が充填された窒化ホウ素焼結体(複合体)を得た。
<樹脂の含有量の測定>
 得られた複合体中の樹脂の含有量を以下の手順で測定した。結果を表1に示す。
 複合体中の樹脂の含有量(体積%)は、以下に示す窒化ホウ素焼結体のかさ密度と複合体のかさ密度とを測定することにより求めた。
 複合体中の樹脂の含有量(%)=((複合体かさ密度-窒化ホウ素焼結体かさ密度)/(複合体理論密度-窒化ホウ素焼結体かさ密度))×100
なお、複合体理論密度は、下記式より求めた。
 複合体理論密度=窒化ホウ素真密度+樹脂真密度×(1-窒化ホウ素焼結体かさ密度/窒化ホウ素真密度)
窒化ホウ素焼結体及び複合体のかさ密度は、JIS Z 8807:2012の幾何学的測定による密度及び比重の測定方法に準拠し、正六面体形状の窒化ホウ素焼結体又は複合体の各辺の長さ(ノギスにより測定)から計算した体積と、電子天秤により測定した窒化ホウ素焼結体又は複合体の質量に基づいて求めた(JIS Z 8807:2012の9項参照)。窒化ホウ素焼結体及び樹脂の真密度は、JIS Z 8807:2012の気体置換法による密度及び比重の測定方法に準拠し、乾式自動密度計を用いて測定した窒化ホウ素焼結体及び樹脂の体積及び質量より求めた(JIS Z 8807:2012の11項の式(14)~(17)参照)。
<絶縁性の評価>
 得られた各複合体を20mm×20mmの大きさに切り出し、これに対して16mm×16mmの大きさの導電テープを接着したものを評価用試料とした。菊水電子工業社製のTOS5101を用いて、評価用試料に対して、0.5kV/30sの昇圧条件で絶縁破壊電圧(kV)を測定した。結果を表1に示す。絶縁破壊電圧が高いほど、絶縁性に優れている。
(実施例1)
 工程S3を10回繰り返した以外は、比較例1と同様にして、複合体を作製し、樹脂の含有量の測定及び絶縁性の評価を行った。結果を表1に示す。
(実施例2~10)
 アモルファス窒化ホウ素粉末、六方晶窒化ホウ素粉末、炭酸カルシウム及びホウ酸の配合比、並びにCIPの圧力を表1に示すとおりに変更した以外は、実施例1と同様に窒化ホウ素焼結体を作製した。得られた窒化ホウ素焼結体について、実施例1と同様に平均孔径及び気孔率を測定したところ、表1に示すとおりとなった。
 続いて、工程S2及び工程S3における圧力条件、各圧力条件に置かれる時間、及び各工程の実施回数を表1に示すとおりに変更した以外は、実施例1と同様に樹脂組成物を含浸させることにより、複合体を得た。得られた複合体について、実施例1と同様に樹脂の含有量の測定及び絶縁性の評価を行ったところ、表1に示すとおりとなった。
Figure JPOXMLDOC01-appb-T000001

Claims (3)

  1.  多孔性の窒化ホウ素焼結体を樹脂組成物に浸漬した状態で加圧条件下に置いた後、前記窒化ホウ素焼結体を前記樹脂組成物に浸漬した状態で前記加圧条件より低い圧力条件下に置く工程を備え、
     前記工程を複数回繰り返す、複合体の製造方法。
  2.  前記工程の前に、前記窒化ホウ素焼結体を前記樹脂組成物に浸漬した状態で減圧条件下に置いた後、前記窒化ホウ素焼結体を前記樹脂組成物に浸漬した状態で前記減圧条件より高い圧力条件下に置く工程を更に備える、請求項1に記載の複合体の製造方法。
  3.  前記窒化ホウ素焼結体の平均孔径が3.5μm以下である、請求項1又は2に記載の複合体の製造方法。
PCT/JP2020/013804 2019-03-29 2020-03-26 複合体の製造方法 WO2020203688A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080022270.6A CN113614051A (zh) 2019-03-29 2020-03-26 复合体的制造方法
EP20783991.1A EP3950643B1 (en) 2019-03-29 2020-03-26 Method for producing composite body
US17/441,746 US20220250994A1 (en) 2019-03-29 2020-03-26 Method for producing composite body
JP2021511947A JPWO2020203688A1 (ja) 2019-03-29 2020-03-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-067120 2019-03-29
JP2019067120 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203688A1 true WO2020203688A1 (ja) 2020-10-08

Family

ID=72667843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013804 WO2020203688A1 (ja) 2019-03-29 2020-03-26 複合体の製造方法

Country Status (5)

Country Link
US (1) US20220250994A1 (ja)
EP (1) EP3950643B1 (ja)
JP (1) JPWO2020203688A1 (ja)
CN (1) CN113614051A (ja)
WO (1) WO2020203688A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230106510A1 (en) * 2020-03-31 2023-04-06 Denka Company Limited Boron nitride sintered body, composite, methods for producing same, and heat dissipation member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08244163A (ja) * 1994-11-30 1996-09-24 Mitsubishi Gas Chem Co Inc 金属箔張複合セラミックス板及びその製造法
WO2014196496A1 (ja) 2013-06-03 2014-12-11 電気化学工業株式会社 樹脂含浸窒化ホウ素焼結体およびその用途
WO2017155110A1 (ja) * 2016-03-10 2017-09-14 デンカ株式会社 セラミックス樹脂複合体

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4885973A (en) * 1988-12-14 1989-12-12 Airfoil Textron Inc. Method of making composite articles
JP2981906B2 (ja) * 1990-05-16 1999-11-22 太平洋セメント株式会社 高強度炭化けい素焼結体の製造方法
US6451385B1 (en) * 1999-05-04 2002-09-17 Purdue Research Foundation pressure infiltration for production of composites
CN1240640C (zh) * 2004-04-14 2006-02-08 哈尔滨工业大学 先驱体浸渍裂解制备BN/SiO2复合陶瓷的方法
US7166550B2 (en) * 2005-01-07 2007-01-23 Xin Chen Ceramic composite body of silicon carbide/boron nitride/carbon
JP2010180343A (ja) * 2009-02-06 2010-08-19 Sumitomo Bakelite Co Ltd プリプレグ、プリプレグの製造方法および積層板
TWI406424B (zh) * 2010-04-26 2013-08-21 Nat Univ Tsing Hua 將光陽極的光敏染料含浸於一導電基材的方法
WO2015022956A1 (ja) * 2013-08-14 2015-02-19 電気化学工業株式会社 窒化ホウ素-樹脂複合体回路基板、窒化ホウ素-樹脂複合体放熱板一体型回路基板
EP3068924B8 (en) * 2013-11-14 2021-04-28 Raytheon Technologies Corporation Ceramic coated articles and manufacture methods
JP6262522B2 (ja) * 2013-12-26 2018-01-17 デンカ株式会社 樹脂含浸窒化ホウ素焼結体およびその用途
KR20170002465A (ko) * 2014-04-30 2017-01-06 로저스코포레이션 열전도성 복합체, 이의 제조 방법, 및 상기 복합체를 함유하는 물품
EP3326989A1 (en) * 2016-11-28 2018-05-30 Infineon Technologies AG Resin-impregnated boron nitride body and a method for producing the same
CN109384470B (zh) * 2018-11-08 2021-06-22 中南大学 一种c/c复合材料的快速制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08244163A (ja) * 1994-11-30 1996-09-24 Mitsubishi Gas Chem Co Inc 金属箔張複合セラミックス板及びその製造法
WO2014196496A1 (ja) 2013-06-03 2014-12-11 電気化学工業株式会社 樹脂含浸窒化ホウ素焼結体およびその用途
WO2017155110A1 (ja) * 2016-03-10 2017-09-14 デンカ株式会社 セラミックス樹脂複合体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3950643A4

Also Published As

Publication number Publication date
CN113614051A (zh) 2021-11-05
EP3950643A4 (en) 2022-06-01
EP3950643A1 (en) 2022-02-09
JPWO2020203688A1 (ja) 2020-10-08
EP3950643B1 (en) 2023-06-28
US20220250994A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
JP7069314B2 (ja) 塊状窒化ホウ素粒子、窒化ホウ素粉末、窒化ホウ素粉末の製造方法、樹脂組成物、及び放熱部材
JP6351585B2 (ja) 樹脂含浸窒化ホウ素焼結体およびその用途
EP2966036A1 (en) Boron-nitride powder and resin composition containing same
JP6125273B2 (ja) 窒化ホウ素成形体、その製造方法及び用途
US20220041445A1 (en) Hexagonal boron nitride powder, resin composition, resin sheet, and method for producing hexagonal boron nitride powder
WO2020203692A1 (ja) 複合体
WO2021200966A1 (ja) 窒化ホウ素焼結体及び複合体、並びに放熱部材
WO2021200969A1 (ja) 窒化ホウ素焼結体、複合体及びこれらの製造方法、並びに放熱部材
WO2020203688A1 (ja) 複合体の製造方法
WO2021200973A1 (ja) 複合体の製造方法
WO2021200724A1 (ja) 窒化ホウ素焼結体、複合体及びこれらの製造方法、並びに放熱部材
WO2021200967A1 (ja) 複合体、及び放熱部材
WO2021201012A1 (ja) 複合体の製造方法
WO2021200719A1 (ja) 窒化ホウ素焼結体、複合体及びこれらの製造方法、並びに放熱部材
WO2021200971A1 (ja) 窒化ホウ素焼結体、複合体及びこれらの製造方法、並びに放熱部材
WO2022071247A1 (ja) 複合シート及びその製造方法、並びに、積層体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783991

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511947

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020783991

Country of ref document: EP

Effective date: 20211029