WO2020202624A1 - 無段変速機および無段変速機の制御方法 - Google Patents

無段変速機および無段変速機の制御方法 Download PDF

Info

Publication number
WO2020202624A1
WO2020202624A1 PCT/JP2019/043125 JP2019043125W WO2020202624A1 WO 2020202624 A1 WO2020202624 A1 WO 2020202624A1 JP 2019043125 W JP2019043125 W JP 2019043125W WO 2020202624 A1 WO2020202624 A1 WO 2020202624A1
Authority
WO
WIPO (PCT)
Prior art keywords
continuously variable
variable transmission
ring
controller
belt
Prior art date
Application number
PCT/JP2019/043125
Other languages
English (en)
French (fr)
Inventor
山崎 正典
耕平 豊原
義輝 金山
隆志 斎藤
忠明 平岡
智滋 大畑
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Priority to US17/433,094 priority Critical patent/US11692625B2/en
Priority to CN201980093467.6A priority patent/CN113544404B/zh
Priority to JP2021511091A priority patent/JP7360448B2/ja
Publication of WO2020202624A1 publication Critical patent/WO2020202624A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/04Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes
    • F16H9/12Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members
    • F16H9/16Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts
    • F16H9/18Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts only one flange of each pulley being adjustable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/107Infinitely variable gearings with endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/16V-belts, i.e. belts of tapered cross-section consisting of several parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/124Limiting the input power, torque or speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/1272Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is a part of the final output mechanism, e.g. shift rods or forks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/1276Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is a friction device, e.g. clutches or brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H2061/6604Special control features generally applicable to continuously variable gearings
    • F16H2061/6607Controls concerning lubrication or cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • F16H2061/66277Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing by optimising the clamping force exerted on the endless flexible member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/48Inputs being a function of acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/50Inputs being a function of the status of the machine, e.g. position of doors or safety belts
    • F16H59/58Inputs being a function of the status of the machine, e.g. position of doors or safety belts dependent on signals from the steering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/60Inputs being a function of ambient conditions
    • F16H59/66Road conditions, e.g. slope, slippery

Definitions

  • the present invention relates to a continuously variable transmission and a control method thereof, and particularly to a technique for suppressing the element from falling off of the belt of the continuously variable transmission.
  • JP2017-516966A discloses a belt applied to such a continuously variable transmission, which includes an element formed in a substantially U shape (paragraphs 0025 to 0027). This element has a base portion and a pair of pillar portions extending in the same direction from both ends of the base portion, and is mounted on one ring through an opening between the pillar portions.
  • the gap between adjacent elements may increase, increasing the total amount of end play over the entire circumference of the belt.
  • end play is locally concentrated, and there is a concern that the element may fall out of the ring due to the lateral force applied to the element.
  • a hook is provided on the pillar portion of the element, and the element is locked to the ring by this hook.
  • a lateral force is applied to the element, and the element laterally to the ring. This is because the lock by the hook is released by moving.
  • the expansion of the end play is caused by the extension of the ring, the elements being pressed by other elements, and the elements rubbing against each other and being worn.
  • an object of the present invention is to provide a continuously variable transmission and a control method thereof capable of suppressing the element whose receiving portion receiving the ring opens in the radial direction of the belt from falling off from the ring. To do.
  • the present invention is, in one form, a continuously variable transmission mounted on a vehicle, the continuously variable transmission including a primary pulley, a secondary pulley, a belt hung on the primary pulley and the secondary pulley, and a controller.
  • the belt has a ring and a plurality of elements bound by the ring, each having a receiving portion that opens in the radial direction of the belt, and an element that receives the ring at the receiving portion.
  • the controller detects the lateral relative movement of the element with respect to the ring, with the direction perpendicular to the circumferential and radial directions of the belt as the lateral direction, or detects that there is a lateral force acting on the element, and the element.
  • a predetermined element dropout countermeasure control is executed.
  • the present invention provides, in another embodiment, a method for controlling a continuously variable transmission, which receives a ring at a receiving portion that opens in the radial direction of the belt and controls a continuously variable transmission having a plurality of elements bound by the ring.
  • the lateral direction is the direction perpendicular to the circumferential direction and the radial direction of the belt, and the relative movement of the element in the lateral direction with respect to the ring is detected, or the action of the lateral force on the element is detected.
  • a predetermined element dropout countermeasure control is executed.
  • a predetermined dropout countermeasure is taken. By executing the control, it is possible to suppress the element from falling out of the ring.
  • FIG. 1 is a schematic view showing a configuration of a power transmission system of a vehicle including a continuously variable transmission according to an embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line II-II of FIG.
  • FIG. 3 is a cross-sectional view showing the configuration of a belt provided in the continuously variable transmission.
  • FIG. 4A is an explanatory diagram showing a belt assembly method (element mounting procedure) of the same as above.
  • FIG. 4B is an explanatory view showing an assembling method (element mounting procedure) of the same belt.
  • FIG. 4C is an explanatory diagram showing a belt assembly method (element mounting procedure) of the same as above.
  • FIG. 5 is an explanatory diagram schematically showing a state in which end play is concentrated.
  • FIG. 1 is a schematic view showing a configuration of a power transmission system of a vehicle including a continuously variable transmission according to an embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line II-II
  • FIG. 6 is a flowchart showing a basic flow of dropout countermeasure control according to an embodiment of the present invention.
  • FIG. 7 is a flowchart showing a flow of a modified example of the dropout countermeasure control according to the same embodiment.
  • FIG. 8 is a flowchart showing the flow of another modification of the dropout countermeasure control according to the same embodiment.
  • FIG. 9A is an explanatory diagram showing a method of detecting an element misalignment using a laser sensor.
  • FIG. 9B is an explanatory diagram showing a method of detecting an element misalignment using a laser sensor.
  • FIG. 10 is a schematic view showing a configuration of a vehicle power transmission system according to another embodiment of the present invention.
  • FIG. 11 is a schematic view showing a configuration of a vehicle power transmission system according to still another embodiment of the present invention.
  • FIG. 12 is an explanatory diagram showing a method of suppressing the element from falling off by spraying lubricating oil.
  • FIG. 1 schematically shows an overall configuration of a power transmission system (hereinafter referred to as “drive system”) P1 of a vehicle including a continuously variable transmission (CVT) 2 according to an embodiment of the present invention.
  • drive system power transmission system
  • CVT continuously variable transmission
  • the drive system P1 includes an internal combustion engine (hereinafter, simply referred to as “engine”) 1 as a vehicle drive source, and CVT2 is provided on a power transmission path connecting the engine 1 and the left and right drive wheels 5 and 5. Be prepared.
  • the engine 1 and the CVT 2 can be connected via a torque converter.
  • the CVT 2 converts the rotational power input from the engine 1 at a predetermined gear ratio and outputs the rotational power to the drive wheels 5 via the differential gear 3.
  • the CVT2 is provided with a primary pulley 21 on the input side and a secondary pulley 22 on the output side as a speed change element.
  • the CVT 2 includes a metal belt 23 hung on the primary pulley 21 and the secondary pulley 22, and changes the gear ratio steplessly by changing the ratio of the contact radius of the metal belt 23 on these pulleys 21 and 22. It is possible to do.
  • the primary pulley 21 and the secondary pulley 22 are movable so as to be coaxial with the fixed sheaves 211 and 221 and axially along the rotation center axes Cp and Cs (FIG. 2) of the fixed sheaves. It includes sheaves 212 and 222.
  • the fixed sheave 211 of the primary pulley 21 is connected to the input shaft of the CVT 2
  • the fixed sheave 221 of the secondary pulley 22 is connected to the output shaft.
  • the gear ratio of the CVT2 adjusts the pressure of the hydraulic oil acting on the movable sheaves 212 and 222 of the primary pulley 21 and the secondary pulley 22, and the V groove formed between the fixed sheaves 211 and 221 and the movable sheaves 212 and 222. It is controlled by changing the width of.
  • an oil pump 6 powered by an engine 1 or an electric motor (not shown) is provided as a source of operating pressure of the CVT 2.
  • the oil pump 6 boosts the hydraulic oil stored in the transmission oil pan, and uses this as the original pressure to transfer the hydraulic oil of a predetermined pressure to the hydraulic chambers of the movable sheaves 212 and 222 via the hydraulic control circuit 7. Supply.
  • FIG. 1 the hydraulic pressure supply path from the hydraulic pressure control circuit 7 to the hydraulic pressure chamber is shown by a dotted line with an arrow.
  • the rotational power output from the CVT 2 is transmitted to the drive shaft 4 via the final gear train or auxiliary transmission (neither shown) and the differential gear 3 set to a predetermined reduction ratio, and rotates the drive wheels 5. Let me.
  • Both the engine controller 101 and the transmission controller 201 are configured as electronic control units, and include a central processing unit (CPU), various storage devices such as RAM and ROM, and a microcomputer provided with input / output interfaces and the like.
  • CPU central processing unit
  • RAM random access memory
  • ROM read-only memory
  • microcomputer microcomputer provided with input / output interfaces and the like.
  • the engine controller 101 inputs a detection signal of an operating state sensor that detects the operating state of the engine 1, executes a predetermined calculation based on the operating state, and executes a predetermined calculation based on the operating state, such as the fuel injection amount, the fuel injection timing, and the ignition timing of the engine 1.
  • the accelerator sensor 111 detects the amount of operation of the accelerator pedal by the driver (hereinafter referred to as "accelerator opening")
  • the rotation speed sensor 112 detects the rotation speed of the engine 1, and detects the temperature of the engine cooling water.
  • an air flow meter, a throttle sensor, a fuel pressure sensor, an air fuel ratio sensor and the like are provided.
  • the engine controller 101 inputs the detection signals of these sensors.
  • the transmission controller 201 is connected to the engine controller 101 so as to be able to communicate with each other via a CAN standard bus. Further, in relation to the control of CVT2, the vehicle speed sensor 209 that detects the traveling speed of the vehicle, the input side rotation speed sensor 210 that detects the rotation speed of the input shaft of CVT2, and the output side that detects the rotation speed of the output shaft of CVT2.
  • a rotation speed sensor 213, an oil temperature sensor 214 for detecting the temperature of the hydraulic oil of the CVT 2, a shift position sensor 215 for detecting the position of the shift lever, and the like are provided.
  • an acceleration sensor 216 a steering angle sensor 217, a suspension stroke sensor 218, a camera sensor 219, a laser sensor 220, a car navigation device 223, and the like are provided.
  • the transmission controller 201 inputs information on the operating state of the engine 1, such as the accelerator opening degree, from the engine controller 101, and also inputs detection signals of these sensors.
  • the acceleration sensor 216 detects acceleration (hereinafter referred to as "lateral acceleration") acting in the lateral direction (that is, a direction that is horizontal and perpendicular to the straight direction of the vehicle) with respect to the vehicle body.
  • lateral acceleration acceleration
  • the extension direction of the metal belt 23 in other words, the horizontal direction perpendicular to the rotation center axes Cp and Cs of the primary pulley 21 or the secondary pulley 22 coincides with the straight direction of the vehicle, and the circumferential direction of the metal belt 23.
  • the direction perpendicular to the radial direction coincides with the lateral direction of the vehicle. Therefore, the lateral acceleration detected by the acceleration sensor 216 indicates the magnitude of the acceleration or force (that is, inertial force) acting laterally on the metal belt 23 or the element which is the power transmission medium thereof.
  • the steering angle sensor 217 detects the steering angle of the vehicle.
  • the rotation angle that is, the turning angle of the steering wheel
  • the reference angle position of the steering wheel is detected.
  • the suspension stroke sensor 218 is provided as a means for detecting the posture of the vehicle, and in the present embodiment, it is composed of a pair of stroke sensors attached to the suspension devices on both the left and right sides of the front wheels or the rear wheels.
  • the lateral sway (hereinafter, may be referred to as "rolling") occurring in the vehicle is determined based on the detection signal of the suspension stroke sensor 218 composed of a pair of left and right stroke sensors.
  • stroke sensors may be attached to the left and right suspension devices of both the front wheels and the rear wheels, respectively, and this makes it possible to eliminate the influence of the tilt in the front-rear direction on the determination of rolling.
  • the suspension stroke sensor 218 can be embodied by a displacement sensor that detects the displacement of the piston rod provided in the shock absorber, and can also be realized by an angle sensor that detects the angle of the suspension arm.
  • the camera sensor 219 is provided as a means for detecting the state of the road or road surface on which the vehicle is currently traveling. By analyzing the image or video captured by the camera sensor 219, it is possible to determine the presence or absence of unevenness on the road surface and its size as the state of the road or road surface.
  • the laser sensor 220 is provided as a means for detecting the displacement of the element of the metal belt 23 with respect to the ring. In the present embodiment, the lateral movement with respect to the ring is detected as the positional deviation of the element.
  • the laser sensor 220 is provided on the side of the metal belt 23 where the element is displaced, and in the present embodiment, the laser sensor 220 is provided on both sides of the metal belt 23 due to the method of mounting the element.
  • the car navigation device 223 has road map information and has a built-in GPS sensor, and collates the current position of the vehicle (for example, the absolute position displayed by latitude and longitude) acquired by the GPS sensor with the road map information. Detects the position of the vehicle on the road map. In the present embodiment, the car navigation device 223 replaces or complements the camera sensor 219 as another means of detecting the condition of the road or road surface.
  • the transmission controller 201 determines the shift range selected by the driver based on the signal from the shift position sensor 215 as basic control related to the shift, and also determines the target gear ratio of the CVT 2 based on the accelerator opening and the vehicle speed. To set. Then, the transmission controller 201 uses the hydraulic pressure generated by the oil pump 6 as the main pressure so that a predetermined hydraulic pressure corresponding to the target gear ratio acts on the movable sheaves 212 and 222 of the primary pulley 21 and the secondary pulley 22. , A control signal is output to the hydraulic control circuit 7.
  • FIG. 2 shows the configuration of CVT2 according to the present embodiment by the II-II line cross section shown in FIG.
  • the CVT 2 includes a pair of variable pulleys, specifically, a primary pulley 21 and a secondary pulley 22, and a metal belt 23 hung on the pair of pulleys 21 and 22.
  • FIG. 2 shows a movable sheave 212 of the primary pulley 21, a fixed sheave 221 of the secondary pulley 22, and a metal belt 23 for convenience shown in a cross section.
  • the CVT 2 is a push belt type, and the metal belt 23 arranges a plurality of elements 231 which are power transmission media in the thickness direction thereof and binds them to each other by a ring 232 (sometimes referred to as a "hoop" or "band"). Consists of
  • FIG. 3 shows the configuration of the element 231 according to the present embodiment by a cross section perpendicular to the circumferential direction of the metal belt 23.
  • the ring 232 of the metal belt 23 is one ring (sometimes referred to as a "ring set") formed by laminating a plurality of ring members 232a to 232d, and the one ring or the ring A plurality of elements 231 are attached to the ring set 232 to form a metal belt 23. Since there is only one ring 232, the metal belt 23 according to this embodiment may be referred to as a monoring type metal belt or simply a "monobelt".
  • FIG. 3 shows a case where the number of ring members is four (232a to 232d), but it goes without saying that the number of ring members is not limited to this.
  • the element 231 is generally composed of a base portion 231a and a pair of side portions 231b and 231b extending in the same direction as the base portion 231a extending in the extending direction, and in the present embodiment, the element 231 has a substantially U-shape as a whole. I'm doing it.
  • the base portion 231a also called a saddle portion, has a length sufficient to cross the ring 232, and contact surfaces of the primary pulley 21 and the secondary pulley 22 with respect to the sheaves 211, 212, 222, 222 are formed at both ends thereof. ing.
  • the stretching direction of the base portion 231a is the width direction of the element 231 and coincides with the lateral direction L of the metal belt 23.
  • the side portion 231b also called a pillar portion, is connected to the base portion 231a on each side sandwiching the ring 232, and its extending direction is the height direction of the element 231 and coincides with the radial direction R of the metal belt 23.
  • the inner surfaces of the pair of side portions 231b and 231b facing each other and the upper surface of the base portion 231a form a receiving portion 231r of the element 231 that opens in the direction perpendicular to the lateral direction L, that is, in the radial direction R of the metal belt 23. ..
  • the opening direction of the receiving portion 231r is outward with respect to the radial direction R of the metal belt 23.
  • the element 231 is attached to the ring 232 from the inner peripheral side of the metal belt 23 in a state where the ring 232 is received by the receiving portion 231r.
  • the element 231 has hooks or holding pieces f protruding inward from the inner surface of the left and right side portions 231b forming the receiving portion 231r, and the base portion 231a and these hooks are attached to the ring 232.
  • a ring 232 is held between the ring and f.
  • the element 231 has a pair of notches n on both the left and right side portions 231b and 231b, and the pair of notches n partially expand the space of the receiving portion 231r in the lateral direction L.
  • the notch n gives flexibility to the hook f, imparts a force for pressing the ring 232, and forms a space for the ring 232 to escape when the element 231 is attached.
  • FIGS. 4A to 4C show the assembly method of the metal belt 23, specifically, the attachment procedure of the element 231 to the ring 232 in chronological order.
  • 4A to 4C show the procedure by changing the posture of the ring 232 for convenience of illustration, but it goes without saying that the orientation of the element 231 can be changed at the time of actual mounting.
  • the element 231 is tilted with respect to the ring 232 and arranged on the inner peripheral side of the ring 232, and one side edge of the ring 232 is inserted into the receiving portion 231r of the element 231. Then, the element 231 is moved so that the base portion 231a is brought closer to the ring 232, and as shown in FIG. 4A, the hook provided on the base portion 231a and one side portion 231b (in the state shown in FIG. 4A, on the left side portion 231b). The side edge of the ring 232 is made to reach the notch n through the hook) f provided.
  • the element 231 is rotated about the portion of the ring 232 located between the base 231a and the hook f (in the state shown in FIG. 4B, it is rotated in the opposite direction to the clockwise direction). , The inclination of the element 231 with respect to the ring 232 is eliminated. In this state, the base 231a of the element 231 is parallel to the ring 232.
  • the element 231 After the base portion 231a of the element 231 is in a state parallel to the ring 232, the element 231 is moved relative to the ring 232 in the direction in which the side edge of the ring 232 comes out from the notch n, as shown in FIG. 4C. (In the state shown in FIG. 4C, the element 231 is moved to the left side), and the ring 232 is arranged at the center of the base portion 231a. As a result, the mounting of one element 231 is completed.
  • the metal belt 23 is completed by repeating such a procedure for all the elements 231 over the entire circumference of the metal belt 23.
  • the tension of the ring 232 further binds the front and rear elements 231 to each other by engaging the convex portion p (FIG. 3) provided on the front surface of the element 231 with the concave portion provided on the back surface of the adjacent element 231. ..
  • the end play which is a gap between the adjacent elements 231 may be expanded, and the total amount of the end play over the entire circumference of the metal belt 23 may be increased.
  • the ring 232 that bundles the elements 231 is stretched due to elastic or plastic deformation, the element 231 is pressed by another element 231 and crushed, or the elements 231 rub against each other and wear. It is a case of doing.
  • the end play is locally concentrated, and when a force is applied to the element 231 in the direction perpendicular to the circumferential direction and the radial direction (that is, the lateral direction) of the metal belt 23, the element 231 rings. It moves laterally with respect to 232. Therefore, there is a concern that the element 231 may fall off from the ring 232 by a procedure opposite to the procedure described above with reference to FIGS. 4A to 4C.
  • FIG. 2 shows a state in which end play is concentrated (end play EP)
  • FIG. 5 schematically shows a portion of the metal belt 23 in which end play EP is concentrated in a magnified view for ease of understanding. There is.
  • the receiving portion 231r of the element 231 since the opening direction of the element 231 and specifically, the receiving portion 231r of the element 231 is outward with respect to the radial direction R of the metal belt 23, the receiving portion of the element 231 of the metal belt 23
  • the portion where 231r faces downward in the vertical direction in other words, the portion below the straight line X connecting the rotation center axis Cp of the primary pulley 21 and the rotation center axis Cs of the secondary pulley 22, is tentatively end. Even if play EP occurs, the element 231 is suppressed from falling off. On the other hand, in the portion where the receiving portion 231r faces upward, there is a possibility of falling off.
  • the end play EP tends to occur in the ranges A and B shown in FIG. 2 due to the force applied from the pulleys 21 and 22 to the metal belt 23.
  • the element 231 advances in the direction of being sandwiched between the pulleys 21 and 22 according to the direction in which the pulleys 21 and 22 rotate, in other words, the metal belt 23 of the pulleys 21 and 22 A distinction is made between the case where the metal belt 23 advances in the direction of entering the space between the pulleys and the case where the metal belt 23 advances in the direction of exiting the space between the pulleys 21 and 22.
  • range B in the example shown in FIG.
  • the element 231 is sandwiched between the pulleys 21 and 22 even if the end play EP occurs, so that the element 231 is suppressed from falling off.
  • the element 231 may fall off when the end play EP occurs, and countermeasures are required.
  • the element 231 has a lateral displacement or relative movement with respect to the ring 232, or has a force acting on the element 231 to cause such a displacement.
  • a predetermined control for suppressing the dropout from the ring 232 (hereinafter referred to as “dropout suppression control”) is executed.
  • the dropout suppression control is embodied as a control for avoiding driving of the vehicle or CVT2 under conditions where expansion or concentration of end play occurs, and suppressing the misalignment of the element 231 by a more direct method. Then, the torque of the engine 1 is reduced as compared with the operation by the normal control, and the torque input to the primary pulley 21 is reduced.
  • the dropout suppression control is a control corresponding to the “dropout countermeasure control”.
  • FIG. 6 shows the basic flow of the dropout suppression control according to the present embodiment by a flowchart.
  • the dropout suppression control is executed by the transmission controller 201, and the transmission controller 201 is programmed to execute the control routine shown in FIG. 6 at a predetermined cycle. It is not limited to the transmission controller 201 that executes the dropout suppression control, but it may be an engine controller 101 or another controller other than these.
  • the driving state of the vehicle is read.
  • the steering angle Astr and the vehicle speed VSP are read as the driving state related to the dropout suppression control.
  • the lateral acceleration ACCl of the vehicle is calculated based on the steering angle Astr and the vehicle speed VSP.
  • the calculation of the lateral acceleration ACCl is based on calculating the turning radius ⁇ trn of the vehicle from the steering angle Astr and substituting the turning radius ⁇ trn and the vehicle speed VSP into the following equation (1).
  • the lateral acceleration ACCl is the acceleration acting laterally on the metal belt 23 and the element 231 and the magnitude of the force acting in the same direction on the element 231.
  • VSP / ⁇ trn ACCl ... (1)
  • S103 it is determined whether or not the lateral acceleration ACCl is equal to or higher than the predetermined value ACCthr. If the lateral acceleration ACCl is greater than or equal to the predetermined value ACCthr, the process proceeds to S104, and if it is less than the predetermined value ACCthr, the process proceeds to S105.
  • the dropout suppression control is executed on the assumption that the element 231 has an action of a force that causes a lateral displacement with respect to the ring 232 if the end play is expanded and concentrated (such as this).
  • the situation may be abbreviated below as "there is a lateral force acting on the element").
  • the operating state of the CVT 2 is changed in order to avoid the operation of the CVT 2 under the condition that the end play is expanded and the total amount of the end play over the entire circumference of the metal belt 23 tends to increase.
  • the torque input to the primary pulley 21 is reduced by reducing the torque of the engine 1 as compared with the operation under normal control.
  • the transmission controller 201 constitutes the "controller" of the CVT2.
  • the dropout suppression control is executed. By doing so, it is possible to prevent the element 231 from falling off from the ring 232.
  • the dropout suppression control by reducing the torque of the engine 1 as compared with the operation by the normal control, the expansion of the end play can be suppressed by a relatively simple method, and the dropout of the element 231 can be suppressed. This is because if there is no expansion in the end play, there will not be a gap enough for the element 231 to fall off even under the condition that the end play is concentrated.
  • the torque of the engine 1 is reduced to reduce the torque input to the primary pulley 21, which makes it possible to suppress the collapse of the element 231 due to the compression, and end play. Can be effectively suppressed.
  • the steering angle Astr was detected, and the lateral acceleration ACCl was detected by the calculation based on this.
  • the detection of lateral acceleration ACCl is not limited to this, and it is also possible to use the output value of the acceleration sensor 216. As a result, the lateral acceleration ACCl can be detected more directly, and the calculation load can be reduced.
  • the turning radius ⁇ trn of the vehicle is calculated from the steering angle Astr
  • the lateral acceleration ACCl is calculated from the turning radius ⁇ str and the vehicle speed VSP.
  • the radius of curvature of the road is replaced with the turning radius ⁇ trn of the vehicle. May be adopted, and the lateral acceleration ACCl may be calculated from the radius of curvature and the vehicle speed VSP in the same manner as in the case of the turning radius ⁇ trn.
  • the torque of the engine 1 can be reduced and the expansion of the end play can be suppressed in advance before the vehicle enters the road having a large radius of curvature.
  • the radius of curvature of the road can be obtained from the car navigation device 223 as navigation information accompanying the road map information.
  • FIG. 7 shows a flow chart of a modified example of the dropout suppression control according to the present embodiment.
  • the stroke amounts STRr and STRl of the suspension device provided on the front wheel or the rear wheel are read as the driving state of the vehicle related to the dropout suppression control. Specifically, the suspension stroke amount of the right front wheel and the left front wheel or the suspension stroke amount of the right rear wheel and the left rear wheel is detected.
  • the suspension stroke amounts STRr and STRl are detected by the suspension stroke sensor 218.
  • the left and right suspension stroke amounts STRfr, STRfl, STRrr, and STRrr of both the front wheels and the rear wheels may be detected.
  • the roll display value Irll is calculated based on the suspension stroke amounts STRr and STRl.
  • the roll display value Irll is an index showing the magnitude of the lateral shake occurring in the vehicle body, and the larger this is, the larger the roll is.
  • the dropout suppression control is executed on the assumption that the rolling motion is large and the element 231 has an action of a force that causes a lateral displacement with respect to the ring 232. Similar to the above, by reducing the torque of the engine 1 as compared with the operation by the normal control, the torque input to the primary pulley 21 is reduced and the expansion of the end play is suppressed.
  • the dropout suppression control for example, By executing (reducing the torque of the engine 1), it is determined whether or not there is an action of force due to the condition of the road or road surface currently being driven. For example, when there is an action of force due to the unevenness of the road surface, It is possible to prevent the element 231 from falling off from the ring 232.
  • the state of the road or road surface can also be determined by analyzing the image or video taken by the camera sensor 219. As a result, it is possible to predict that a lateral force acts on the element 231 and execute the dropout suppression control at a more appropriate time before actually traveling on the road or the road surface that causes rolling.
  • the state of the road or the road surface can be determined not only by the camera sensor 219 but also by the navigation information obtained from the car navigation device 223. For example, when there is a road under construction in the traveling direction of the vehicle, or there is a road where the road surface is uneven or undulating, it is predicted that a lateral force acts on the element 231.
  • the element 231 has an action of a force that causes a lateral displacement with respect to the ring 232 based on the lateral acceleration ACCl or the rolling display value Irll, and the element 231 is determined. It was decided to execute the dropout suppression control when there is such an action of force.
  • the determination as to whether or not to execute the dropout suppression control is not limited to determining whether or not a force acts on the element 231 and determines whether or not the element 231 is laterally displaced with respect to the ring 232. It is also possible by judging. When such a misalignment actually occurs in the element 231, the dropout suppression control is executed.
  • FIG. 8 shows a flow chart of another modification of the dropout countermeasure control according to the present embodiment.
  • the signal of the laser sensor 220 is input.
  • the laser sensor 220 is provided as a means for detecting the misalignment of the element 231 and can of course be replaced by another means capable of detecting the misalignment of the element 231.
  • FIG. 9A and 9B show the arrangement of the laser sensor 220 and the operation of detecting the misalignment of the element 231 by the laser sensor 220.
  • FIG. 9A shows a state before the misalignment occurs in the element 231 and
  • FIG. 9B shows a state after the misalignment occurs.
  • the laser sensors 220a and 220b are arranged on both sides of the metal belt 23, and the laser sensors 220a and 220b include light emitting units 220a1 and 220b1 and light receiving units 220a2 and 220b2.
  • the laser emitted by the light emitting units 220a1 and 220b1 is blocked by the element 231 and the occurrence of the displacement is detected.
  • the dropout suppression control is executed to avoid unnecessary execution of the dropout suppression control and the vehicle. It is possible to reduce the influence on the drivability of the vehicle (for example, a decrease in acceleration response).
  • the misalignment of the element 231 can be reliably detected by a relatively simple method.
  • FIG. 10 schematically shows the overall configuration of the vehicle drive system P2 according to another embodiment of the present invention.
  • the electric motor 81 which is the second drive source is provided.
  • the electric motor 81 is a motor generator that can operate as both a generator and a motor, and is arranged so that power can be transmitted to the drive wheels 5 and 5 without going through the CVT 2.
  • "without going through CVT2" means not going through shifting by CVT2, and on the power transmission path connecting the engine 1 and the drive wheels 5 and 5, the CVT2 and the drive wheels 5 and 5 It is not limited to the case where it is arranged between the two, and includes the case where it is substantially on the power transmission path on the downstream side of the CVT 2 by being connected to the output shaft of the secondary pulley 22.
  • FIG. 10 shows an example of the latter.
  • the dropout suppression control according to the present embodiment is when the element 231 is displaced in the lateral direction with respect to the ring 232 or the element 231 is acted on by a force that causes such a displacement. It is embodied as a control that increases the torque of the electric motor 81.
  • FIG. 11 schematically shows the overall configuration of the vehicle drive system P3 according to still another embodiment of the present invention.
  • the electric motor 82 which is the second drive source, is not the first drive wheels 51, 51 that receive the power transmission from the engine 1, but the second drive wheels 52, which are different from the first drive wheels 51, 51. It differs from the drive system P2 according to the previous embodiment in that power can be transmitted to the 52.
  • the electric motor 82 is in a state where power can be transmitted to the drive wheels (that is, the first drive wheels) 51 and 51 without going through the CVT2, similarly to the electric motor 81 of the drive system P2.
  • the dropout suppression control according to this embodiment is the same as that of the previous embodiment. Specifically, the torque of the electric motor 82 is increased, the ratio or distribution of the engine torque to the required drive torque is reduced, and the expansion of the end play is suppressed by reducing the torque input to the primary pulley 21. It is possible.
  • the dropout suppression control is not limited to reducing the torque of the engine 1, in other words, reducing the input torque to the primary pulley 21, and the pressure of the hydraulic oil of the CVT 2 that generates the pulley thrust is controlled during normal operation. It may be to increase more than.
  • the tension of the ring 232 can be increased, the torque shared by the element 231 among the torque transmitted by the belt 23 can be reduced, the collapse of the element 231 can be suppressed, and the expansion of the end play can be suppressed.
  • the increase in tension promotes the elongation of the ring 232, it suppresses the expansion of the end play without reducing the engine torque by suppressing the collapse of the element, which has a more remarkable effect on the expansion of the end play. It is possible.
  • the dropout suppression control is not only due to the change in the operating state of the CVT2, but also to lubricate the CVT2 toward the portion of the metal belt 23 where the end play is concentrated (the portion in the range A shown by the dotted line in FIG. 2). It can also be realized by spraying oil.
  • FIG. 12 schematically shows the dropout suppression control when the lubricating oil is sprayed.
  • a plurality of oil injectors INJ1 to INJ3 are arranged so that the lubricating oil of CVT2 can be injected toward the metal belt 23.
  • three oil injectors INJ1 to INJ3 are provided, and the oil injectors INJ1 and INJ2 are located at positions where the lubricating oil is sprayed onto the element 231 in the direction opposite to the direction in which the displacement occurs.
  • the receiving portion 231r is provided at a position where the lubricating oil is sprayed in the direction opposite to the opening direction, respectively.
  • the pressure of the lubricating oil sprayed from the side by the oil injectors INJ1 and INJ2 to the element 231 suppresses the misalignment of the element 231 itself, and the pressure of the lubricating oil sprayed from below by the oil injector INJ3 supports the element 231. However, it is possible to prevent the ring 232 from falling off.
  • the dropout suppression control may be to increase the supply amount by the oil injector.
  • the dropout suppression control is always executed, but the present invention is not limited to this, and the metal belt 23 is not limited to this. It may be determined whether or not the end play is expanded or whether or not it is under a predetermined condition as a condition for concentrating, and the dropout suppression control may be executed only when such a condition is met. As a result, it is possible to avoid unnecessary execution of the dropout suppression control and reduce the influence of the dropout suppression control on the drivability of the vehicle, such as reduction of engine torque.
  • Whether or not the end play is in an expanding condition can be determined from the torque of the engine 1, and whether or not the end play is concentrated can be determined from the running condition of the vehicle.
  • the traveling condition of the vehicle traveling on the slope road is in the end play generation region predetermined with respect to the accelerator opening degree and the vehicle speed.
  • the end play generation region solves the equation of motion regarding the balance of the forces applied to the metal belt 23, and causes the end play EP for the target element 231 (specifically, the element in the range A shown in FIG. 2). It is possible to set by determining whether or not a moderate force is applied in the direction of opening between adjacent elements 231.
  • an end play sensor that can detect the concentration of the end play
  • dropout suppression control is performed when the concentration of the end play is actually occurring. It is also possible to execute.
  • an eddy current sensor can be exemplified in addition to an optical sensor such as a laser sensor.
  • the end play sensor is installed at a place where the end play is concentrated (for example, the portion of the range A shown by the dotted line in FIG. 2), and the concentration of the end play is detected from the signal waveform.
  • the direction in which the receiving portion 231r opens while the element 231 is mounted on the ring 232 may be the outer peripheral side (that is, the radial outer side) of the metal belt 23, or the inner peripheral side (diameter direction). (Inside) may be.
  • the direction in which the lubricating oil is sprayed by the oil injector INJ3 is the direction shown in FIG. 12 when the element 231 is suppressed from falling off by spraying the lubricating oil. The opposite is true.
  • the "lateral direction" defined for the metal belt 23 is not limited to the straight direction of the vehicle, that is, the direction perpendicular to the front-rear direction, and may be the straight direction of the vehicle.
  • the extending direction of the metal belt 23 is perpendicular to the straight-ahead direction of the vehicle, and the direction parallel to the rotation center axes Cp and Cs of the pulleys 21 and 22 coincides with the straight-ahead direction of the vehicle.
  • the first drive source and the second drive source arranged so as to be able to transmit power to the drive wheels 5 and 5 without going through the CVT 2 are provided, and the engine 1 is used as the first drive source.
  • 2 Electric motors 81 and 82 were adopted as the drive source.
  • the first drive source can be configured not only by the internal combustion engine but also by an electric motor (for example, a motor generator) or by a combination of the internal combustion engine and the electric motor.

Abstract

無段変速機は、プライマリプーリと、セカンダリプーリと、金属ベルトと、コントローラと、を備える。金属ベルトは、リングと、リングにより結束された複数のエレメントと、を備える。エレメントは、金属ベルトの径方向に開口する受容部を有し、受容部にリングを受ける。コントローラは、金属ベルトの周方向および径方向に垂直な方向を横方向Lとして、エレメントのリングに対する横方向Lの相対移動を検知するか、エレメントに対してそのような相対移動を生じさせる力の作用があることを検知した場合に、エレメントの脱落対策制御を実行する。

Description

無段変速機および無段変速機の制御方法
 本発明は、無段変速機およびその制御方法に関し、特に無段変速機のベルトに備わるエレメントの脱落を抑制する技術に関する。
 一対の可変プーリに対するベルトの接触径を変化させることにより変速比を無段階に調整可能な無段変速機として、動力を伝達する媒体ないしエレメントである複数の横方向部材を、リングまたは環状のバンドにより結束して構成されたベルトを備えるものが知られている。JP2017-516966Aには、このような無段変速機に適用されるベルトとして、概略U字状に形成されたエレメントを備えるものが開示されている(段落0025~0027)。このエレメントは、ベース部分と、ベース部分の両端から同方向に延びる一対のピラー部分と、を有し、1つのリングに対し、ピラー部分の間の開口を通じて装着される。
 エレメントを介して動力を伝達する無段変速機では、隣り合うエレメントの隙間(「エンドプレー」と呼ばれる)が拡大し、ベルトの全周にわたるエンドプレーの総量が増大する場合がある。このような状態では、エンドプレーが局所的に集中し、さらに、エレメントに横方向の力が加わることで、エレメントがリングから脱落することが懸念される。JP2017-516966Aにおいては、エレメントのピラー部分にフックが設けられ、リングに対してこのフックによりエレメントを係止させているが、エレメントに横方向の力がかかり、エレメントがリングに対して横方向に移動することで、フックによる係止が解除されるためである。エンドプレーの拡大は、リングに伸びが生じることによるほか、エレメントが他のエレメントにより圧迫されたり、エレメント同士が擦れて摩耗したりすることにより発生する。
 本発明は、以上の問題を考慮し、リングを受ける受容部がベルトの径方向に開口するエレメントの、リングからの脱落を抑制可能な無段変速機およびその制御方法を提供することを目的とする。
 本発明は、一形態において、車両に搭載される無段変速機であって、プライマリプーリと、セカンダリプーリと、プライマリプーリおよびセカンダリプーリに掛け渡されたベルトと、コントローラと、を備える無段変速機を提供する。本形態において、ベルトは、リングと、リングにより結束された複数のエレメントであって、ベルトの径方向に開口する受容部を夫々有し、この受容部にリングを受けるエレメントと、を有する。コントローラは、ベルトの周方向および径方向に垂直な方向を横方向として、エレメントの、リングに対する横方向の相対移動を検知するか、エレメントに対する横方向の力の作用があることを検知し、エレメントの相対移動を検知するか、エレメントに対する力の作用があることを検知した場合に、予め定められたエレメントの脱落対策制御を実行するように構成される。
 本発明は、他の形態において、ベルトの径方向に開口する受容部にリングを受け、リングにより結束される複数のエレメントを有する無段変速機を制御する、無段変速機の制御方法を提供する。本形態では、ベルトの周方向および径方向に垂直な方向を横方向として、エレメントの、リングに対する横方向の相対移動を検知するか、エレメントに対する横方向の力の作用があることを検知し、エレメントの相対移動を検知するか、エレメントに対する力の作用があることを検知した場合に、予め定められたエレメントの脱落対策制御を実行する。
 これらの形態によれば、リングに対するエレメントの相対移動を検知するか、そのような相対移動を生じさせる力(エレメントに対する横方向の力)の作用があることを検知した場合に、所定の脱落対策制御を実行することで、エレメントのリングからの脱落を抑制することが可能となる。
図1は、本発明の一実施形態に係る無段変速機を備える車両の動力伝達系の構成を示す概略図である。 図2は、図1のII-II断面図である。 図3は、同上無段変速機に備わるベルトの構成を示す断面図である。 図4Aは、同上ベルトの組立方法(エレメントの装着手順)を示す説明図である。 図4Bは、同上ベルトの組立方法(エレメントの装着手順)を示す説明図である。 図4Cは、同上ベルトの組立方法(エレメントの装着手順)を示す説明図である。 図5は、エンドプレーが集中した状態を模式的に示す説明図である。 図6は、本発明の一実施形態に係る脱落対策制御の基本的な流れを示すフローチャートである。 図7は、同上実施形態に係る脱落対策制御の変形例の流れを示すフローチャートである。 図8は、同上実施形態に係る脱落対策制御の他の変形例の流れを示すフローチャートである。 図9Aは、レーザセンサを用いたエレメントの位置ずれ検出方法を示す説明図である。 図9Bは、レーザセンサを用いたエレメントの位置ずれ検出方法を示す説明図である。 図10は、本発明の他の実施形態に係る車両の動力伝達系の構成を示す概略図である。 図11は、本発明の更に別の実施形態に係る車両の動力伝達系の構成を示す概略図である。 図12は、潤滑油の吹付けによるエレメントの脱落抑制方法を示す説明図である。
 以下、図面を参照して、本発明の実施形態について説明する。
(車両駆動系の構成)
 図1は、本発明の一実施形態に係る無段変速機(CVT)2を備える車両の動力伝達系(以下「駆動系」という)P1の全体構成を概略的に示している。
 本実施形態に係る駆動系P1は、車両の駆動源として内燃エンジン(以下、単に「エンジン」という)1を備え、エンジン1と左右の駆動輪5、5とをつなぐ動力伝達経路上にCVT2を備える。エンジン1とCVT2とは、トルクコンバータを介して接続することが可能である。CVT2は、エンジン1から入力した回転動力を所定の変速比で変換し、ディファレンシャルギア3を介して駆動輪5に出力する。
 CVT2は、変速要素として入力側にプライマリプーリ21を備えるとともに、出力側にセカンダリプーリ22を備える。CVT2は、プライマリプーリ21およびセカンダリプーリ22に掛け渡された金属ベルト23を備え、これらのプーリ21、22における金属ベルト23の接触部半径の比を変化させることで、変速比を無段階に変更することが可能である。
 プライマリプーリ21およびセカンダリプーリ22は、固定シーブ211、221と、固定シーブに対して同軸に、固定シーブの回転中心軸Cp、Cs(図2)に沿って軸方向に移動可能に設けられた可動シーブ212、222と、を備える。CVT2の入力軸に対してプライマリプーリ21の固定シーブ211が接続され、出力軸に対してセカンダリプーリ22の固定シーブ221が接続されている。CVT2の変速比は、プライマリプーリ21およびセカンダリプーリ22の可動シーブ212、222に作用する作動油の圧力を調整し、固定シーブ211、221と可動シーブ212、222との間に形成されるV溝の幅を変化させることで制御される。
 本実施形態では、CVT2の作動圧の発生源として、エンジン1または図示しない電動モータを動力源とするオイルポンプ6を備える。オイルポンプ6は、変速機オイルパンに貯蔵されている作動油を昇圧させ、これを元圧として、所定の圧力の作動油を、油圧制御回路7を介して可動シーブ212、222の油圧室に供給する。図1は、油圧制御回路7から油圧室への油圧供給経路を、矢印付きの点線により示している。
 CVT2から出力された回転動力は、所定の減速比に設定された最終ギア列または副変速機(いずれも図示せず)およびディファレンシャルギア3を介して駆動軸4に伝達され、駆動輪5を回転させる。
(制御システムの構成および基本動作)
 エンジン1およびCVT2の動作は、エンジンコントローラ101、変速機コントローラ201により夫々制御される。エンジンコントローラ101および変速機コントローラ201は、いずれも電子制御ユニットとして構成され、中央演算装置(CPU)、RAMおよびROM等の各種記憶装置、入出力インターフェース等を備えたマイクロコンピュータからなる。
 エンジンコントローラ101は、エンジン1の運転状態を検出する運転状態センサの検出信号を入力し、運転状態をもとに所定の演算を実行し、エンジン1の燃料噴射量、燃料噴射時期および点火時期等を設定する。運転状態センサとして、運転者によるアクセルペダルの操作量(以下「アクセル開度」という)を検出するアクセルセンサ111、エンジン1の回転速度を検出する回転速度センサ112、エンジン冷却水の温度を検出する冷却水温度センサ113等が設けられるほか、図示しないエアフローメータ、スロットルセンサ、燃料圧力センサおよび空燃比センサ等が設けられている。エンジンコントローラ101は、これらのセンサの検出信号を入力する。
 変速機コントローラ201は、エンジンコントローラ101に対し、CAN規格のバスを介して互いに通信可能に接続されている。さらに、CVT2の制御に関連して、車両の走行速度を検出する車速センサ209、CVT2の入力軸の回転速度を検出する入力側回転速度センサ210、CVT2の出力軸の回転速度を検出する出力側回転速度センサ213、CVT2の作動油の温度を検出する油温センサ214、シフトレバーの位置を検出するシフト位置センサ215等が設けられている。本実施形態では、以上に加え、加速度センサ216、操舵角センサ217、サスペンションストロークセンサ218、カメラセンサ219、レーザセンサ220およびカーナビゲーション装置223等が設けられている。変速機コントローラ201は、エンジンコントローラ101から、アクセル開度等、エンジン1の運転状態に関する情報を入力するほか、これらのセンサの検出信号を入力する。
 加速度センサ216は、車体に対して横方向(つまり、水平であり、車両の直進方向に垂直な方向)に作用する加速度(以下「横方向加速度」という)を検出する。本実施形態では、金属ベルト23の延伸方向、換言すれば、プライマリプーリ21またはセカンダリプーリ22の回転中心軸Cp、Csに垂直な水平方向が車両の直進方向と一致し、金属ベルト23の周方向および径方向に垂直な方向が車両の横方向に一致する。よって、加速度センサ216により検出される横方向加速度は、金属ベルト23またはその動力伝達媒体であるエレメントに対して横方向に作用する加速度ないし力(つまり、慣性力)の大きさを示す。
 操舵角センサ217は、車両の操舵角を検出する。本実施形態では、ステアリングホイールの基準角位置に対する回転角(つまり、ステアリングホイールの切れ角)を検出する。
 サスペンションストロークセンサ218は、車両の姿勢を検出する手段として設けられ、本実施形態では、前輪または後輪の左右両側のサスペンション装置に取り付けられた一対のストロークセンサにより構成される。本実施形態では、左右一対のストロークセンサからなるサスペンションストロークセンサ218の検出信号をもとに、車両に生じている横方向の揺れ(以下「横揺れ」という場合がある)を判定するが、サスペンションストロークセンサ218として、前輪および後輪双方の左右サスペンション装置にストロークセンサが夫々取り付けられてもよく、これにより、横揺れの判定に対する前後方向の揺れないし傾きの影響を排除することが可能となる。サスペンションストロークセンサ218は、ショックアブソーバに備わるピストンロッドの変位を検出する変位センサにより具現可能であり、サスペンションアームの角度を検出する角度センサによっても可能である。
 カメラセンサ219は、車両が現在走行中の道路または路面の状態を検出する手段として設けられている。カメラセンサ219により撮影された画像または映像を解析することで、道路または路面の状態として、路面の凹凸の有無およびその大きさを判断することが可能である。
 レーザセンサ220は、金属ベルト23のエレメントの、リングに対する位置ずれを検出する手段として設けられている。本実施形態では、エレメントの位置ずれとして、リングに対する横方向の相対移動を検出する。レーザセンサ220は、金属ベルト23に対し、エレメントの位置ずれが生じる側に設けられ、本実施形態では、エレメントの装着方法に起因して、金属ベルト23の両側に夫々設けられている。
 カーナビゲーション装置223は、道路地図情報を有するとともに、GPSセンサを内蔵し、GPSセンサにより取得される車両の現在位置(例えば、緯度および経度により表示される絶対位置)を道路地図情報と照合することで、車両の道路地図上での位置を検出する。本実施形態において、カーナビゲーション装置223は、道路または路面の状態を検出する他の手段として、カメラセンサ219に代替するかまたはこれを補完する。
 変速機コントローラ201は、変速に関する基本的な制御として、シフト位置センサ215からの信号に基づき運転者により選択されたシフトレンジを判定するとともに、アクセル開度および車速等に基づき、CVT2の目標変速比を設定する。そして、変速機コントローラ201は、オイルポンプ6が生じさせる油圧を元圧として、プライマリプーリ21およびセカンダリプーリ22の可動シーブ212、222に対して目標変速比に応じた所定の油圧が作用するように、油圧制御回路7に制御信号を出力する。
(CVT2の構成)
 図2は、本実施形態に係るCVT2の構成を、図1に示すII-II線断面により示している。
 本実施形態において、CVT2は、一対の可変プーリ、具体的には、プライマリプーリ21およびセカンダリプーリ22と、これら一対のプーリ21、22に掛け渡された金属ベルト23と、を備える。図2は、断面で示す都合上、プライマリプーリ21の可動シーブ212と、セカンダリプーリ22の固定シーブ221と、金属ベルト23と、を示している。CVT2は、プッシュベルト式であり、金属ベルト23は、動力伝達媒体である複数のエレメント231をその板厚方向に並べ、リング232(「フープ」または「バンド」と呼ばれる場合もある)により互いに結束することで構成される。
 図3は、本実施形態に係るエレメント231の構成を、金属ベルト23の周方向に垂直な断面により示している。
 本実施形態において、金属ベルト23のリング232は、複数のリング部材232a~232dを互いに積層して構成された1つのリング(「リングセット」と呼ばれる場合もある)であり、この1つのリングまたはリングセット232に複数のエレメント231が装着されて、金属ベルト23が構成される。リング232が1つであることから、本実施形態に係る金属ベルト23は、モノリング式の金属ベルトまたは単に「モノベルト」と呼ばれる場合がある。図3は、リング部材が4つ(232a~232d)の場合を示すが、リング部材の数がこれに限定されるものでないことは、いうまでもない。
 エレメント231は、概して、基部231aと、基部231aの延伸方向に垂直に、互いに同方向に延びる一対の側部231b、231bと、から構成され、本実施形態では、全体として、概略U字状をなしている。基部231aは、サドル部分とも呼ばれ、リング232を横断するだけの長さを有し、その両端に、プライマリプーリ21およびセカンダリプーリ22の各シーブ211、212、221、222に対する接触面が形成されている。基部231aの延伸方向は、エレメント231の幅方向であり、金属ベルト23の横方向Lに一致する。側部231bは、ピラー部分とも呼ばれ、リング232を挟む各側で基部231aに接続し、その延伸方向は、エレメント231の高さ方向であり、金属ベルト23の径方向Rに一致する。これら一対の側部231b、231bの互いに向き合う内面と基部231aの上面とにより、横方向Lに垂直な方向、つまり、金属ベルト23の径方向Rに開口するエレメント231の受容部231rが形成される。本実施形態において、受容部231rが開口する方向は、金属ベルト23の径方向Rに関して外向きである。エレメント231は、受容部231rにリング232を受ける状態で、金属ベルト23の内周側からリング232に装着される。
 エレメント231は、受容部231rを形成する左右夫々の側部231bに、その内面から内向きに突出するフックないし挟持片fを有し、リング232に装着された状態で、基部231aとこれらのフックfとの間にリング232が保持される。エレメント231は、左右両方の側部231b、231bに一対の切欠きnを有し、一対の切欠きnは受容部231rの空間を部分的に横方向Lに拡張させる、する。切欠きnは、フックfに可撓性を持たせ、リング232を押さえ付ける力を付与するとともに、エレメント231の装着時にリング232の逃げとなる空間を形成するものである。
 図4A~4Cは、金属ベルト23の組立方法、具体的には、エレメント231のリング232に対する装着手順を時系列に示している。図4A~4Cは、図示の便宜上、リング232の姿勢を変えて手順を示すが、実際の装着時では、エレメント231の向きが変えられることは、いうまでもない。
 初めに、エレメント231をリング232に対して傾けた状態として、リング232の内周側に配置し、エレメント231の受容部231rに、リング232の一方の側縁を挿入する。そして、エレメント231を、基部231aをリング232に近付けるように移動させ、図4Aに示すように、基部231aと一方の側部231bに備わるフック(図4Aに示す状態では、左側の側部231bに備わるフック)fとの間を通じて、リング232の側縁を切欠きnに到達させる。
 次いで、図4Bに示すように、エレメント231を、基部231aとフックfとの間に位置するリング232の部分を中心として回転させ(図4Bに示す状態では、時計回りとは反対に回転させ)、エレメント231のリング232に対する傾斜を解消させる。この状態で、エレメント231は、基部231aがリング232に平行となる。
 エレメント231の基部231aをリング232に平行な状態とした後、図4Cに示すように、エレメント231を、リング232に対し、リング232の側縁を切欠きnから出す方向に相対的に移動させ(図4Cに示す状態では、エレメント231を左側に移動させ)、リング232を基部231aの中心に配置させる。これにより、1つのエレメント231の装着が完了する。
 このような手順を金属ベルト23の全周にわたる全てのエレメント231に対して繰り返すことで、金属ベルト23が完成する。リング232の張力により、さらに、エレメント231の前面に設けられた凸部p(図3)と隣り合うエレメント231の背面に設けられた凹部との係合により、前後のエレメント231が互いに結束される。
 ここで、エレメント231を動力伝達媒体とするCVT2では、隣り合うエレメント231の隙間であるエンドプレーが拡大し、金属ベルト23の全周にわたるエンドプレーの総量が増大する場合がある。具体的には、エレメント231を束ねるリング232に弾性的または塑性的な変形による伸びが生じた場合や、エレメント231が他のエレメント231により圧迫されて押し潰されたり、エレメント231同士が擦れて摩耗したりする場合である。
 このような状態でエンドプレーが局所的に集中し、さらに、エレメント231に対し、金属ベルト23の周方向および径方向に垂直な方向(つまり、横方向)の力が加わると、エレメント231がリング232に対して横方向に移動する。よって、図4A~4Cを参照して先に説明した手順とは逆の手順により、エレメント231がリング232から脱落する懸念がある。
 図2は、エンドプレーが集中した状態(エンドプレーEP)を示し、図5は、理解を容易にするため、エンドプレーEPが集中した金属ベルト23の部分を、拡大視により模式的に示している。
 本実施形態では、エレメント231、具体的には、エレメント231の受容部231rの開口する方向が、金属ベルト23の径方向Rに関して外向きであるため、金属ベルト23のうち、エレメント231の受容部231rが鉛直方向に関して下側に向く部分、換言すれば、プライマリプーリ21の回転中心軸Cpと、セカンダリプーリ22の回転中心軸Csと、を結ぶ直線Xよりも下側にある部分では、仮にエンドプレーEPが発生したとしてもエレメント231の脱落は抑制される。これに対し、受容部231rが上側に向く部分では、脱落の可能性がある。
 さらに、金属ベルト23の上側部分のうち、金属ベルト23に対してプーリ21、22から加わる力により図2に示す範囲AおよびBでエンドプレーEPが発生する傾向がある。その際、範囲A、Bは、プーリ21、22が回転する方向に応じて、エレメント231がプーリ21、22の間に挟まる方向に進む場合、換言すれば、金属ベルト23がプーリ21、22の間の空間に進入する方向に進む場合と、金属ベルト23がプーリ21、22の間の空間から脱出する方向に進む場合と、で区別される。進入方向に進む場合(図2に示す例では、範囲B)は、エンドプレーEPが生じてもエレメント231がプーリ21、22に挟まれることになるため、脱落は抑制される。他方で、脱出方向に進む場合(範囲A)は、プーリ21、22による支えがなくなるため、エンドプレーEPが生じるとエレメント231が脱落する可能性があり、対策の必要がある。
 本実施形態では、エレメント231に、リング232に対する横方向の位置ずれないし相対移動が生じていたり、エレメント231に対してそのような位置ずれを生じさせる力の作用があったりする場合に、エレメント231のリング232からの脱落を抑制するための所定の制御(以下「脱落抑制制御」という)を実行する。脱落抑制制御は、エンドプレーの拡大または集中が生じる条件での車両またはCVT2の運転を回避したり、エレメント231の位置ずれをより直接的な方法で抑制したりする制御として具現され、本実施形態では、エンジン1のトルクを通常制御による運転時よりも低減させ、プライマリプーリ21に入力されるトルクを低減させることによる。脱落抑制制御は、「脱落対策制御」に対応する制御である。
 図6は、本実施形態に係る脱落抑制制御の基本的な流れをフローチャートにより示している。
 本実施形態において、脱落抑制制御は、変速機コントローラ201により実行され、変速機コントローラ201は、図6に示す制御ルーチンを所定の周期で実行するようにプログラムされている。脱落抑制制御を実行するのは、変速機コントローラ201に限らず、エンジンコントローラ101であってもよいし、これら以外の他のコントローラであってもよい。
 S101では、車両の運転状態を読み込む。本実施形態では、脱落抑制制御に関する運転状態として、操舵角Astrおよび車速VSPを読み込む。
 S102では、操舵角Astrおよび車速VSPをもとに、車両の横方向加速度ACClを算出する。横方向加速度ACClの計算は、操舵角Astrから車両の旋回半径φtrnを算出し、旋回半径φtrnおよび車速VSPを、次式(1)に代入することによる。先に述べたように、CVT2の配置により、横方向加速度ACClは、金属ベルト23およびエレメント231に対して横方向に作用する加速度であり、エレメント231に対して同方向に作用する力の大きさを規定する。
 VSP/φtrn=ACCl …(1)
 S103では、横方向加速度ACClが所定値ACCthr以上であるか否かを判定する。横方向加速度ACClが所定値ACCthr以上である場合は、S104へ進み、所定値ACCthr未満である場合は、S105へ進む。
 S104では、エレメント231に対し、エンドプレーが拡大し、集中しているとしたならばリング232に対する横方向の位置ずれを生じさせる力の作用があるとして、脱落抑制制御を実行する(このような状況を、以下「エレメントに対する横方向の力の作用がある」と略して表す場合がある)。本実施形態では、エンドプレーが拡大し、金属ベルト23の全周にわたるエンドプレーの総量が増大する傾向にある条件でのCVT2の運転を回避すべく、CVT2の運転状態を変更する。具体的には、エンジン1のトルクを通常制御による運転時よりも低減させることで、プライマリプーリ21に入力されるトルクを低減させる。
 S105では、脱落抑制制御を行わず、通常制御を維持する。
 本実施形態では、変速機コントローラ201によりCVT2の「コントローラ」が構成される。
(作用効果の説明)
 本実施形態に係るCVT2およびこれを備える駆動系P1は、以上のように構成され、以下、本実施形態により得られる効果について述べる。
 第1に、金属ベルト23のエレメント231に対し、リング232に対する横方向の位置ずれを生じさせる力(エレメント231に対する横方向の力)の作用があることを検知した場合に、脱落抑制制御を実行することで、エレメント231のリング232からの脱落を抑制することが可能となる。
 ここで、脱落抑制制御として、通常制御による運転時よりもエンジン1のトルクを低減させることで、比較的簡単な方法でエンドプレーの拡大を抑制し、エレメント231の脱落を抑制することができる。エンドプレーに拡大がなければ、例えエンドプレーが集中するような条件にあったとしてもエレメント231が脱落するほどの隙間は生じないからである。
 第2に、脱落抑制制御として、エンジン1のトルクを低減させることで、プライマリプーリ21に入力されるトルクを低減させ、これにより、エレメント231の圧迫による潰れを抑制することを可能として、エンドプレーの拡大を効果的に抑制することができる。
 第3に、脱落抑制制御に関する運転状態として、操舵角Astrおよび車速VSPを検出することで、車両に既に備わるセンサを用いてエレメント231に対する横方向の力の作用があることを判定し、脱落抑制制御を実行することができる。
 本実施形態では、操舵角Astrを検出し、これに基づく計算により、横方向加速度ACClを検出した。しかし、横方向加速度ACClの検出は、これに限定されるものではなく、加速度センサ216の出力値によることも可能である。これにより、横方向加速度ACClをより直接的に検出し、演算負荷の軽減を図ることができる。
 さらに、本実施形態では、操舵角Astrから車両の旋回半径φtrnを算出し、旋回半径φstrと車速VSPとから、横方向加速度ACClを算出したが、車両の旋回半径φtrnに代えて道路の曲率半径を採用し、曲率半径と車速VSPとから、旋回半径φtrnによる場合と同様にして横方向加速度ACClを算出してもよい。これにより、エレメント231に対する横方向の力の作用があることを予測し、脱落抑制制御をより適切な時期に実行することが可能となる。例えば、車両が大きな曲率半径の道路に進入する前に、エンジン1のトルクを低減させ、エンドプレーの拡大を予め抑制しておくことができる。道路の曲率半径は、道路地図情報に付随するナビゲーション情報として、カーナビゲーション装置223から取得することが可能である。
 以上の説明では、横方向加速度ACClをもとに、エレメント231に対する横方向の力の作用があるか否かを判定した。しかし、この判定は、横方向加速度ACClによるばかりでなく、車体の横揺れの有無およびその大きさを判定することにより行うことも可能である。
 図7は、この場合の例として、本実施形態に係る脱落抑制制御の変形例の流れをフローチャートにより示している。
 S201では、脱落抑制制御に関する車両の運転状態として、前輪または後輪に備わるサスペンション装置のストローク量STRr、STRlを読み込む。具体的には、右前輪および左前輪のサスペンションストローク量か、右後輪および左後輪のサスペンションストローク量か、を検出する。サスペンションストローク量STRr、STRlの検出は、サスペンションストロークセンサ218による。既に述べたように、前輪および後輪双方の左右サスペンションストローク量STRfr、STRfl、STRrr、STRrlを検出してもよい。
 S202では、サスペンションストローク量STRr、STRlをもとに、横揺れ表示値Irllを算出する。横揺れ表示値Irllは、車体に生じている横方向の揺れの大きさを示す指標であり、これが大きいほど、横揺れが大きいことを示す。本実施形態では、右側のサスペンションストローク量STRrの単位時間当たりの変化量(以下「サスペンションストローク変化量」という)ΔSTRrと、左側のサスペンションストローク変化量ΔSTRlと、の差(=ΔSTRr-ΔSTRl)を算出し、このストローク変化量偏差Dstrを横揺れ表示値Irllに設定する。
 S203では、横揺れ表示値Irllが所定値Ithr以上であるか否かを判定する。横揺れ表示値Irllが所定値Ithr以上である場合は、S204へ進み、所定値Ithr未満である場合は、S205へ進む。
 S204では、横揺れが大きく、エレメント231に対し、リング232に対する横方向の位置ずれを生じさせる力の作用があるとして、脱落抑制制御を実行する。先に述べたのと同様に、エンジン1のトルクを通常制御による運転時よりも低減させることで、プライマリプーリ21に入力されるトルクを低減させ、エンドプレーの拡大を抑制する。
 S205では、脱落抑制制御を行わず、通常制御を維持する。
 このように、車体に生じている横揺れの大きさを判定し、横揺れが大きく、エレメント231に対して横方向の位置ずれを生じさせる力の作用がある場合に、脱落抑制制御(例えば、エンジン1のトルクを低減させること)を実行することで、現在走行中の道路または路面の状態に起因した力の作用の有無を判定し、例えば、路面の凹凸により力の作用がある場合に、エレメント231のリング232からの脱落を抑制することが可能となる。
 そして、横揺れの大きさを示す横揺れ表示値Irllの算出に、サスペンションストローク量STRr、STRlを採用したことで、車体に生じている横揺れをより確実に検出し、エレメント231の脱落を抑制することができる。
 道路または路面の状態は、カメラセンサ219により撮影された画像または映像を解析することによっても判定することが可能である。これにより、横揺れを生じさせる道路または路面を実際に走行する前に、エレメント231に対する横方向の力の作用があることを予測し、脱落抑制制御をより適切な時期に実行することができる。
 さらに、道路または路面の状態は、カメラセンサ219によるばかりでなく、カーナビゲーション装置223から得られるナビゲーション情報によっても判断することが可能である。例えば、車両の進行方向に工事中の道路があったり、路面の凹凸または起伏が続く道路があったりする場合に、エレメント231に対する横方向の力の作用があることを予測するのである。
 以上の説明では、エレメント231に対し、リング232に対する横方向の位置ずれを生じさせる力の作用があることを、横方向加速度ACClまたは横揺れ表示値Irllをもとに判定し、エレメント231に対してそのような力の作用がある場合に、脱落抑制制御を実行することとした。しかし、脱落抑制制御を実行するか否かの判定は、エレメント231に対する力の作用の有無を判定することに限らず、エレメント231に、リング232に対する横方向の位置ずれが生じているか否かを判定することによっても可能である。エレメント231にそのような位置ずれが現に生じている場合に、脱落抑制制御を実行するのである。
 図8は、この場合の例として、本実施形態に係る脱落対策制御の他の変形例の流れをフローチャートにより示している。
 S301では、レーザセンサ220の信号を入力する。レーザセンサ220は、エレメント231の位置ずれを検出する手段として設けられており、エレメント231の位置ずれを検出可能な他の手段により代替することも勿論可能である。
 S302では、エレメント231に、リング232に対する横方向の位置ずれが生じているか否かを判定する。エレメント231に位置ずれが生じている場合は、S303へ進み、生じていない場合は、S304へ進む。
 図9A、9Bは、レーザセンサ220の配置およびレーザセンサ220によりエレメント231の位置ずれを検出する動作を示している。図9Aは、エレメント231に位置ずれが生じる前の状態を、図9Bは、位置ずれが生じた後の状態を夫々示している。
 本実施形態では、金属ベルト23の両側にレーザセンサ220a、220bが配置されており、レーザセンサ220a、220bは、発光部220a1、220b1と受光部220a2、220b2とからなる。エレメント231に規定値以上の位置ずれが生じた場合は、発光部220a1、220b1により放射されたレーザがエレメント231により遮られ、位置ずれの発生が検出される。
 S303では、脱落抑制制御として、エンジン1のトルクを通常制御による運転時よりも低減させる。
 S304では、脱落抑制制御を行わず、通常制御を維持する。
 このように、エレメント231に位置ずれが生じているか否かを判定し、位置ずれが現に生じている場合に、脱落抑制制御を実行することで、脱落抑制制御の不要な実行を回避し、車両の運転性に及ぼす影響(例えば、加速応答性の低下)を軽減することが可能となる。
 ここで、エレメント231の位置ずれの検出にレーザセンサ220を用いることで、エレメント231の位置ずれを比較的簡易な方法により、確実に検出することができる。
(他の実施形態の説明)
 図10は、本発明の他の実施形態に係る車両の駆動系P2の全体構成を概略的に示している。
 本実施形態では、車両の駆動源として、第1駆動源であるエンジン1に加え、第2駆動源である電動モータ81を備える。電動モータ81は、発電機としても、発動機としても動作可能なモータジェネレータであり、駆動輪5、5に対し、CVT2を介さずに動力を伝達可能に配設されている。ここで、「CVT2を介さずに」とは、CVT2による変速を介さない、という意味であり、エンジン1と駆動輪5、5とをつなぐ動力伝達経路上で、CVT2と駆動輪5、5との間に配置される場合に限らず、セカンダリプーリ22の出力軸に接続されることで、実質的にCVT2よりも下流側の動力伝達経路上にある場合を包含する。図10は、後者の例を示す。
 本実施形態に係る脱落抑制制御は、エレメント231に、リング232に対する横方向の位置ずれが生じていたり、エレメント231に対してそのような位置ずれを生じさせる力の作用があったりする場合に、電動モータ81のトルクを増大させる制御として具現される。
 このように、電動モータ81のトルクを増大させることで、車両の要求加速度の達成に必要なトルクのうち、エンジン1に分担させるトルク、換言すれば、プライマリプーリ21に入力されるトルクを減少させ、エンドプレーの拡大を抑制することができる。
 図11は、本発明の更に別の実施形態に係る車両の駆動系P3の全体構成を概略的に示している。
 本実施形態に係る駆動系P3は、第2駆動源である電動モータ82が、エンジン1からの動力の伝達を受ける第1駆動輪51、51ではなく、これとは異なる第2駆動輪52、52に対して動力を伝達可能に設けられている点で、先の実施形態に係る駆動系P2とは相違する。ここで、電動モータ82は、駆動系P2の電動モータ81と同様に、駆動輪(つまり、第1駆動輪)51、51に対し、CVT2を介さずに動力を伝達可能な状態にある。
 本実施形態に係る脱落抑制制御も、先の実施形態と同様である。具体的には、電動モータ82のトルクを増大させ、要求駆動トルクに対してエンジントルクが占める割合ないし配分を減少させ、プライマリプーリ21に入力されるトルクの減少を通じて、エンドプレーの拡大を抑制することが可能である。
 脱落抑制制御は、エンジン1のトルクを低減させること、換言すれば、プライマリプーリ21に対する入力トルクを低減させることに限らず、プーリ推力を生じさせるCVT2の作動油の圧力を、通常制御による運転時よりも増大させることであってもよい。
 これにより、リング232の張力を増大させ、ベルト23により伝達させるトルクのうち、エレメント231に分担させるトルクを減少させ、エレメント231の潰れを抑制し、エンドプレーの拡大を抑制することができる。張力の増大により、リング232の伸びが促進されるものの、エンドプレーの拡大に対する影響がより顕著に現れるエレメントの潰れを抑制することで、エンジントルクの低減によることなく、エンドプレーの拡大を抑制することが可能である。
 さらに、脱落抑制制御は、CVT2の運転状態の変更によるばかりでなく、金属ベルト23のうち、エンドプレーの集中が生じる部分(図2に点線で示す範囲Aにある部分)に向けてCVT2の潤滑油を吹き付けることによっても具現可能である。
 図12は、潤滑油の吹付けによる場合の脱落抑制制御を模式的に示している。
 金属ベルト23に向けてCVT2の潤滑油を噴射可能に、複数のオイルインジェクタINJ1~INJ3が配置されている。本実施形態では、3つのオイルインジェクタINJ1~INJ3が設けられ、オイルインジェクタINJ1、INJ2は、エレメント231に対し、その位置ずれが生じる方向とは逆方向に潤滑油を吹き付ける位置に、オイルインジェクタINJ3は、受容部231rが開口する方向とは逆方向に潤滑油を吹き付ける位置に、夫々設けられている。エレメント231に対してオイルインジェクタINJ1、INJ2により側方から吹き付けられる潤滑油の圧力により、エレメント231の位置ずれ自体を抑制し、オイルインジェクタINJ3により下方から吹き付けられる潤滑油の圧力により、エレメント231を支持し、リング232からの脱落を抑制することができる。
 ここで、オイルインジェクタINJ1~INJ3のいずれかにより潤滑油が既に供給されている場合は、脱落抑制制御は、そのオイルインジェクタによる供給量を増大させることであってもよい。
 以上の説明では、エレメント231に対し、リング232に対する横方向の位置ずれを生じさせる力の作用がある場合に、常に脱落抑制制御を実行することとしたが、これに限らず、金属ベルト23のエンドプレーが拡大するか、集中する条件として予め定められた条件にあるか否かを判定し、そのような条件にある場合にのみ、脱落抑制制御を実行するようにしてもよい。これにより、脱落抑制制御の不要な実行を回避し、エンジントルクの低減等、脱落抑制制御が車両の運転性に及ぼす影響を軽減することが可能となる。
 エンドプレーが拡大する条件にあるか否かは、エンジン1のトルクから判定することができ、エンドプレーが集中する条件にあるか否かは、車両の走行条件から判定することができる。エンドプレーが集中する条件として、勾配路を走行している車両の走行条件が、アクセル開度および車速に対して予め定められたエンドプレー発生領域にあることを例示することができる。エンドプレー発生領域は、金属ベルト23に加わる力のつり合いに関する運動方程式を解き、対象とするエレメント231(具体的には、図2に示す範囲Aにあるエレメント)に対し、エンドプレーEPを生じさせるほどの力が隣り合うエレメント231同士の間を開く方向に加わるか否かを判断することで、設定することが可能である。
 さらに、エンドプレーが集中する条件にあるか否かの判定によるばかりでなく、エンドプレーの集中を検出可能なエンドプレーセンサを設置し、エンドプレーの集中が現に生じている場合に、脱落抑制制御を実行することも可能である。エンドプレーセンサに適用可能なセンサとして、レーザセンサ等の光学的センサのほか、渦電流センサを例示することができる。エンドプレーセンサをエンドプレーが集中する箇所(例えば、図2に点線で示す範囲Aの部分)に設置し、その信号波形から、エンドプレーの集中を検出する。
 以上に加え、エレメント231がリング232に装着された状態で受容部231rが開口する方向は、金属ベルト23の外周側(つまり、径方向外側)であってもよいし、内周側(径方向内側)であってもよい。受容部231rが金属ベルト23の径方向内側に開口する場合は、潤滑油の吹付けによりエレメント231の脱落を抑制する場合に、オイルインジェクタINJ3により潤滑油を吹き付ける方向が図12に示す方向とは逆である。
 さらに、金属ベルト23について規定される「横方向」は、車両の直進方向、つまり、前後方向に垂直な方向に限らず、車両の直進方向であってもよい。この場合は、金属ベルト23の延伸方向が車両の直進方向と垂直な関係にあり、プーリ21、22の回転中心軸Cp、Csに平行な方向が車両の直進方向に一致する。
 以上の説明では、第1駆動源と、CVT2を介さずに駆動輪5、5に動力を伝達可能に配設された第2駆動源と、を設け、第1駆動源としてエンジン1を、第2駆動源として電動モータ81、82を採用した。しかし、第1駆動源は、内燃エンジンばかりでなく、電動モータ(例えば、モータジェネレータ)によっても、内燃エンジンと電動モータとの組合せによっても構成可能である。
 以上、本発明の実施形態について説明したが、本発明は、これに限定されるものではなく、特許請求の範囲に記載した事項の範囲内において、様々な変更および修正を成し得ることはいうまでもない。
 本願は日本国特許庁に2019年4月2日に出願された特願2019-70606号に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (13)

  1.  車両に搭載される無段変速機であって、
     プライマリプーリと、
     セカンダリプーリと、
     前記プライマリプーリおよび前記セカンダリプーリに掛け渡されたベルトであって、
      リングと、
      前記リングにより結束された複数のエレメントであって、前記ベルトの径方向に開口する受容部を夫々有し、前記受容部に前記リングを受けるエレメントと、
    を有するベルトと、
     コントローラと、を含んで構成され、
     前記コントローラは、
      前記ベルトの周方向および径方向に垂直な方向を横方向として、前記エレメントの、前記リングに対する前記横方向の相対移動を検知するか、前記エレメントに対する前記横方向の力の作用があることを検知し、
      前記エレメントの相対移動を検知するか、前記エレメントに対する前記力の作用があることを検知した場合に、予め定められた前記エレメントの脱落対策制御を実行する、
    ように構成される、無段変速機。
  2.  前記コントローラは、加速度センサにより検出された加速度をもとに、前記力の作用があることを検知する、
    請求項1に記載の無段変速機。
  3.  前記コントローラは、操舵角センサにより検出された操舵角をもとに、前記力の作用があることを検知する、
    請求項1に記載の無段変速機。
  4.  前記コントローラは、ナビゲーション情報をもとに、前記力の作用があることを検知する、
    請求項1に記載の無段変速機。
  5.  前記コントローラは、走行中の道路または路面の状態を判断し、前記道路または路面の状態から、前記力の作用があることを検知する、
    請求項1に記載の無段変速機。
  6.  前記コントローラは、カメラセンサからの信号をもとに、前記道路または路面の状態を判断する、
    請求項5に記載の無段変速機。
  7.  前記コントローラは、レーザセンサからの信号をもとに、前記エレメントの相対移動を検知する、
    請求項1に記載の無段変速機。
  8.  前記コントローラは、前記脱落対策制御として、前記プライマリプーリに入力されるトルクを低減させる、
    請求項1~7のいずれか一項に記載の無段変速機。
  9.  前記車両の駆動源として、
      第1駆動源と、
      前記無段変速機を介さずに駆動輪に動力を伝達可能に配設された、前記第1駆動源とは異なる第2駆動源と、
    を備える前記車両に搭載される、請求項1~7のいずれか一項に記載の無段変速機であって、
     前記コントローラは、前記脱落対策制御として、前記第2駆動源のトルクを増大させる、
    無段変速機。
  10.  前記コントローラは、前記脱落対策制御として、プーリ推力を生じさせる前記無段変速機の作動油の圧力を増大させる、
    請求項1~7のいずれか一項に記載の無段変速機。
  11.  前記コントローラは、前記脱落対策制御として、前記ベルトのうちエンドプレーの集中が生じる部分として予め定められた部分に向け、前記無段変速機の潤滑油を吹き付ける、
    請求項1~7のいずれか一項に記載の無段変速機。
  12.  前記コントローラは、前記ベルトにエンドプレーの拡大または集中が生じる条件として予め設定された条件にあるときに、前記脱落対策制御を実行する、
    請求項1~11のいずれか一項に記載の無段変速機。
  13.  ベルトの径方向に開口する受容部にリングを受け、前記リングにより結束される複数のエレメントを有する無段変速機を制御する、無段変速機の制御方法であって、
     前記ベルトの周方向および径方向に垂直な方向を横方向として、前記エレメントの、前記リングに対する前記横方向の相対移動を検知するか、前記エレメントに対する前記横方向の力の作用があることを検知し、
     前記エレメントの相対移動を検知するか、前記エレメントに対する前記力の作用があることを検知した場合に、予め定められた前記エレメントの脱落対策制御を実行する、
    無段変速機の制御方法。
PCT/JP2019/043125 2019-04-02 2019-11-01 無段変速機および無段変速機の制御方法 WO2020202624A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/433,094 US11692625B2 (en) 2019-04-02 2019-11-01 Continuously variable transmission and control method for continuously variable transmission
CN201980093467.6A CN113544404B (zh) 2019-04-02 2019-11-01 无级变速器及无级变速器的控制方法
JP2021511091A JP7360448B2 (ja) 2019-04-02 2019-11-01 無段変速機および無段変速機の制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-070606 2019-04-02
JP2019070606 2019-04-02

Publications (1)

Publication Number Publication Date
WO2020202624A1 true WO2020202624A1 (ja) 2020-10-08

Family

ID=72667826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043125 WO2020202624A1 (ja) 2019-04-02 2019-11-01 無段変速機および無段変速機の制御方法

Country Status (4)

Country Link
US (1) US11692625B2 (ja)
JP (1) JP7360448B2 (ja)
CN (1) CN113544404B (ja)
WO (1) WO2020202624A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153607A (ja) * 1999-09-16 2001-06-08 Toyota Motor Corp 伝動ベルトのフープずれ量計測装置
JP2010266048A (ja) * 2009-05-18 2010-11-25 Toyota Motor Corp 伝動ベルト
JP2018123838A (ja) * 2017-01-30 2018-08-09 ジヤトコ株式会社 無段変速機

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4201197B2 (ja) * 2004-08-05 2008-12-24 ジヤトコ株式会社 無段変速機用ベルトの検査方法及び無段変速機用ベルトの検査装置
WO2012124626A1 (ja) * 2011-03-12 2012-09-20 本田技研工業株式会社 駆動源のトルク制御装置
JP5342585B2 (ja) * 2011-03-23 2013-11-13 ジヤトコ株式会社 ベルト式無段変速機
NL1040811B1 (en) 2014-05-22 2016-03-07 Bosch Gmbh Robert Drive belt for a continuously variable transmission with generally V-shaped transverse members.
JP6360185B2 (ja) * 2014-10-15 2018-07-18 本田技研工業株式会社 無段変速機の異常判定装置
JP6297016B2 (ja) * 2015-10-23 2018-03-20 本田技研工業株式会社 作業機用ベルト式無段変速機
US9890857B2 (en) * 2015-12-22 2018-02-13 GM Global Technology Operations LLC CVT and method for mitigating variator gross slip of the same
CN106594269B (zh) * 2016-12-30 2018-05-22 湘潭大学 无级变速器金属带传动可靠度补偿控制装置及控制方法
US10539234B2 (en) * 2017-05-15 2020-01-21 Honda Motor Co., Ltd. Vehicle and vehicle control method
JP2019023504A (ja) * 2017-07-25 2019-02-14 ジヤトコ株式会社 無段変速機用ベルト

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153607A (ja) * 1999-09-16 2001-06-08 Toyota Motor Corp 伝動ベルトのフープずれ量計測装置
JP2010266048A (ja) * 2009-05-18 2010-11-25 Toyota Motor Corp 伝動ベルト
JP2018123838A (ja) * 2017-01-30 2018-08-09 ジヤトコ株式会社 無段変速機

Also Published As

Publication number Publication date
JPWO2020202624A1 (ja) 2021-12-16
CN113544404B (zh) 2023-02-24
US20220145988A1 (en) 2022-05-12
CN113544404A (zh) 2021-10-22
JP7360448B2 (ja) 2023-10-12
US11692625B2 (en) 2023-07-04

Similar Documents

Publication Publication Date Title
JP5162218B2 (ja) 無段変速装置の制御装置、無段変速装置、およびそれを備えた車両
JP7171493B2 (ja) 車両の制御装置および車両の制御方法
JP7343995B2 (ja) 車両の制御装置および車両の制御方法
JP4065139B2 (ja) ベルト式無段変速機
WO2020202624A1 (ja) 無段変速機および無段変速機の制御方法
US9586587B2 (en) Control system for vehicle
JP7303656B2 (ja) 車両及び車両の制御方法
JP2009255618A (ja) 車両用駆動装置の制御装置
JP7222791B2 (ja) 無段変速機及び無段変速機の制御方法
US8965647B2 (en) Control apparatus for continuously variable transmission
JP2009234292A (ja) 車両用駆動装置の制御装置
WO2020202625A1 (ja) 無段変速機および無段変速機の制御方法
EP3901021B1 (en) Leaning vehicle
JP2009280133A (ja) 車両用駆動装置の制御装置
US20010039225A1 (en) Endless metal belt for metal belt type nonstep variable-speed transmission
JP7427331B2 (ja) 無段変速機の制御装置
JP2009234291A (ja) 車両用駆動装置の制御装置
JP6645382B2 (ja) ベルト式無段変速機
JP2009261178A (ja) 車両用駆動装置の制御装置
JP6837772B2 (ja) 車両用制御装置
EP1130283A2 (en) Thin metal ring for metal belt type nonstep variable-speed transmission
JP2009227001A (ja) 車両用駆動装置の制御装置
JP4203391B2 (ja) 無段変速機制御装置
JP2001099294A (ja) 無段変速機の変速制御装置
JP2009220756A (ja) 車両用駆動装置の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922401

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511091

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922401

Country of ref document: EP

Kind code of ref document: A1