WO2020199438A1 - 3d玻璃及其制作方法、模具以及3d玻璃坯料 - Google Patents

3d玻璃及其制作方法、模具以及3d玻璃坯料 Download PDF

Info

Publication number
WO2020199438A1
WO2020199438A1 PCT/CN2019/098561 CN2019098561W WO2020199438A1 WO 2020199438 A1 WO2020199438 A1 WO 2020199438A1 CN 2019098561 W CN2019098561 W CN 2019098561W WO 2020199438 A1 WO2020199438 A1 WO 2020199438A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
mold
flat
blank
manufacturing
Prior art date
Application number
PCT/CN2019/098561
Other languages
English (en)
French (fr)
Inventor
张锡强
汤金慧
王京岱
Original Assignee
拓米(成都)应用技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 拓米(成都)应用技术研究院有限公司 filed Critical 拓米(成都)应用技术研究院有限公司
Publication of WO2020199438A1 publication Critical patent/WO2020199438A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B21/00Severing glass sheets, tubes or rods while still plastic
    • C03B21/04Severing glass sheets, tubes or rods while still plastic by punching out
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/035Re-forming glass sheets by bending using a gas cushion or by changing gas pressure, e.g. by applying vacuum or blowing for supporting the glass while bending
    • C03B23/0352Re-forming glass sheets by bending using a gas cushion or by changing gas pressure, e.g. by applying vacuum or blowing for supporting the glass while bending by suction or blowing out for providing the deformation force to bend the glass sheet
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/08Severing cooled glass by fusing, i.e. by melting through the glass
    • C03B33/082Severing cooled glass by fusing, i.e. by melting through the glass using a focussed radiation beam, e.g. laser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the invention relates to the technical field of electronic equipment, in particular to a 3D glass and a manufacturing method thereof, a mold and a 3D glass blank for implementing the manufacturing method.
  • Step S10 cutting: cutting a large piece of glass substrate into small pieces of square glass of a preset size.
  • Step S20 CNC engraving: the square glass is processed by the engraving machine on the shape, hole, and chamfer to form 2D glass of high precision size.
  • Step S30 hot press molding: accurately put the 2D glass into the groove of the mold.
  • the mold has at least a convex mold and a concave mold.
  • the mold is heated to 700-750°C by a molding machine at a high temperature. After the glass plate is softened, the molded part is lowered. It is transferred to the hot bending mold to apply pressure, and the glass plate is hot bent in the hot bending mold to form 3D glass.
  • Step S40 Grinding: During the hot press forming, the mold concave mold and the convex mold are in pressure contact with the glass, resulting in the formation of mold marks on the glass surface. It is necessary to perform scanning treatment on the convex and concave surfaces of the 3D glass after the hot press molding. The surface of the 3D glass is smoother and rounder, enhancing the three-dimensional effect.
  • the 2D glass in the mold will be unqualified in size due to the offset of the placement position or uneven molding pressure, such as the unequal height of the left and right arcs.
  • the mold has heavy impression and high grinding cost
  • the convex and concave molds are in contact with the surface of the glass during molding, the convex and concave surfaces are subjected to stamping. As a result, the convex surface of the glass needs to be polished for 35 minutes, and the concave surface needs to be polished for 55 minutes, which increases the processing cost.
  • the molds are pressed and rubbed against each other, resulting in a reduction in the life of the mold surface, easily falling dust particles attached to the glass surface, forming pits and other irreparable defects.
  • the convex mold and the concave mold are formed by high-temperature compression molding.
  • the bending angle of 3D glass is required to be close to 90°, uneven forces on the side and curved surface will occur, resulting in defects such as broken glass or uneven thickness of the curved surface.
  • the bending angle of 3D glass is required to be greater than 90 degrees, it is necessary to perform multiple pressing and develop a more complex mold structure.
  • thermoforming analysis reversely derive the unfolded 2D glass shape size, then make the mold, form the test, correct the 2D glass size after testing, usually after 3-5 repeated corrections, In the process, mold processing, trial molding, and testing, the development cycle is long.
  • the technical problem to be solved by the present invention is to provide a 3D glass and a manufacturing method thereof, as well as a mold for implementing the method, and a 3D glass blank in view of at least some of the above-mentioned problems, so as to improve product yield and reduce cost.
  • the present invention provides a 3D glass manufacturing method, which includes the following steps:
  • Step 1 Place the reserved flat glass in the mold
  • Step 2 Adopt the heat absorption process to paste the flat glass on the upper surface of the concave mold of the mold to obtain a 3D glass blank;
  • Step 3 Cutting the 3D glass blank to obtain a 3D glass semi-finished product
  • Step 4 Perform, for example, grinding and chamfering the 3D glass semi-finished product by CNC engraving to obtain 3D glass wool;
  • Step 5 Perform a scanning process on the surface of the 3D glass wool material to obtain, for example, a 3D glass having a side wall portion, a curved portion and a window portion.
  • the plate glass with a margin may include a 2D expansion part, a stretching part, and a clamping part that are sequentially arranged from the inside to the outside.
  • the shape and area of the 2D expansion part It may be the same shape and area as the 3D glass after 2D expansion; in some embodiments, the width of the stretched portion may not exceed the length of the longer arc of the stretched section of the 3D glass blank; In some embodiments, the width of the clamping part is 3-15mm.
  • the clamping part can be pressed against the concave forming the lower mold by the upper mold which plays a pressing role in the heat absorption process. On the mold, thereby pressing the flat glass.
  • the mold may be made of a gas-permeable material, the mold may include an upper mold and a lower mold, and the upper mold may be used to cooperate with the lower mold to press the clamping part of the plate glass,
  • the lower mold is a concave mold; the lower surface of the concave mold may be provided with a suction groove opening downward; the suction groove may include a suction groove corresponding to the curved portion of the 3D glass and a suction groove corresponding to the 3D glass The second suction slot of the window.
  • a set of molds can be used to perform the heat absorption process in step 2, wherein the curvature of the upper surface of the concave mold of the mold can be the same as that of the 3D glass; the step 2 includes the following Substep:
  • Step 2.11 heating the flat glass to the glass bending temperature
  • Step 2.12 in the glass bending temperature range, the lower surface of the concave mold is evacuated to form a pressure difference between the upper surface and the lower surface of the plate glass, and therefore the plate glass is bonded to the upper surface of the concave mold of the mold ;
  • Step 2.13 Slowly cool down the flat glass after being pasted to form a 3D glass blank.
  • two sets of molds may be used to perform the heat absorption process, wherein the two sets of molds used include: the upper surface of the concave mold may have a curvature smaller than that of the 3D glass. And mold two where the curvature of the upper surface of the concave mold may be the same as that of the 3D glass; in some embodiments, the step 2 may include sequentially using mold one and mold two to perform the following sub-steps:
  • Step 2.11 heating the flat glass to the glass bending temperature
  • Step 2.12 in the glass bending temperature range, evacuate the lower surface of the concave mold of the mold to form a pressure difference between the upper surface and the lower surface of the plate glass, and thus make the plate glass be bonded to the concave mold of the mold On the surface
  • Step 2.13 Slowly cool down the flat glass after being pasted to form a 3D glass blank.
  • the step 2.12 includes:
  • the lower surface of the concave mold can be evacuated to form a pressure difference between the upper surface and the lower surface of the flat glass, and the flat glass can be laminated on the upper surface of the concave mold of the mold at one time;
  • the lower surface of the cavity can be pumped from the middle to the outside for multiple times, so that a pressure difference is formed between the upper surface and the lower surface of the flat glass corresponding to the pumping area during each pumping ,
  • the flat glass is bent and formed until the flat glass is glued to the upper surface of the concave mold of the mold.
  • positive pressure gas may be passed to the upper surface of the plate glass.
  • a laser or CNC may be used to cut the 3D glass blank to obtain a 3D glass semi-finished product.
  • the 3D glass semi-finished product may have a reserved size for CNC precision carving.
  • the step 4 includes the following sub-steps:
  • Step 4.1 fix the 3D glass semi-finished product
  • Step 4.2 progressively mill the upper end of the 3D glass semi-finished product into a flat angle
  • Step 4.3 Polish the flat angle to the chamfer angle of the required 3D glass to obtain 3D glass wool.
  • the step 5 includes the following sub-steps:
  • Step 5.1 polish the side walls and curved parts of the 3D glass wool on the outside;
  • Step 5.2 polish the side walls and curved parts of the 3D glass wool on the inside;
  • Step 5.3 polish the window part of the 3D glass wool on the inside and outside.
  • the 3D glass manufacturing method further includes:
  • step 6 the 3D glass obtained in step 5 may be strengthened, so that a strengthened 3D glass is obtained.
  • the strengthening treatment may include: putting the 3D glass obtained in step 5 into a strengthening frame, and then sequentially preheating, strengthening, cooling, soaking in water, and then transferring the 3D glass into the cleaning frame for cleaning , After the cleaning is completed, the strengthened 3D glass is obtained.
  • the present invention also provides a 3D glass, the 3D glass includes a window portion, a curved portion and a side wall portion; the window portion and the side wall portion are connected to each other by the curved portion on all sides, thus forming a four-curved 3D glass;
  • the 3D glass is made by the 3D glass manufacturing method of the present invention.
  • the bending angle n of the bending portion may be 0° ⁇ n ⁇ 90°, and in some embodiments, n is 88° ⁇ n ⁇ 90°.
  • the sum m of the height of the side wall portion and the curved portion perpendicular to the window portion may be 0 ⁇ m ⁇ 10mm, and in some embodiments, m is 6 ⁇ m ⁇ 7.5mm.
  • the side wall portion and/or the window portion may be provided with openings.
  • the thickness of the 3D glass may be 0.25 to 1.2 mm.
  • the present invention also provides a mold for implementing the 3D glass manufacturing method of the present invention.
  • the mold may have a concave mold, but may not have a convex mold.
  • the concave mold may be configured to The reserved flat glass is pasted on the upper surface of the concave mold using a heat absorption process to obtain a 3D glass blank.
  • the concave mold may be configured as a lower mold, and an upper mold is also provided.
  • the upper mold can be used to cooperate with the lower mold in the heat absorption process to compress the plate glass with a reserved margin.
  • the outer clamping part may be configured as a lower mold, and an upper mold is also provided.
  • the concave mold may be made of a gas-permeable material, and the lower surface of the concave mold may be provided with a suction groove opening downward.
  • the arrangement of the suction grooves and/or the wall thickness of the suction grooves to the upper surface of the cavity can be set differently.
  • the suction groove may include suction groove 1 corresponding to the curved portion of the 3D glass and suction groove 2 corresponding to the window portion of the 3D glass.
  • the wall thickness of the second suction groove to the upper surface of the cavity increases sequentially from the inside to the outside.
  • the present invention also provides a 3D glass blank, the 3D glass blank is made by using the mold according to the present invention, the 3D glass blank includes a marginal margin, and the marginal margin corresponds to a reserved margin for flat glass .
  • the present invention reserves a margin in the flat glass, and then through the process of forming, cutting, carving and sweeping through the heat absorption process, the yield rate of 3D glass can be increased to Close to 100%, avoiding the process of pre-designing the size of flat glass in the traditional 3D glass manufacturing method and then performing hot press molding and fine carving.
  • the 3D after molding is caused by the offset of the placement position or uneven molding pressure. The problem of unqualified glass size.
  • the heat absorption process used in the present invention does not require the use of a convex mold, avoids the process of frictional contact between the convex mold and the concave mold, reduces mold wear, improves mold service life, and is equivalent to half Set molds, saving costs.
  • the contact stress between the 3D glass and the convex mold is avoided, the mold printing defects and the glass convex mold printing are alleviated, the glass scanning time is reduced, and the cost is saved.
  • the 3D glass manufacturing method of the present invention can manufacture four-curved 3D glass with a bending angle of 0-90°.
  • FIG. 1 is a schematic flow chart of a method for manufacturing 3D glass in the prior art.
  • Fig. 2 is a flow chart of the 3D glass manufacturing method of the present invention.
  • Fig. 3 is a schematic cross-sectional view of a 3D glass structure manufactured by the 3D glass manufacturing method of the present invention.
  • Figures 4-5 are schematic diagrams of the structure of flat glass with reserved margin of the present invention.
  • Figure 6 is a schematic diagram of the structure of the flat glass of the present invention placed in a mold.
  • Fig. 7 is a schematic diagram of the heat absorption process of 3D glass when the heat absorption process is performed by using a set of molds according to the present invention.
  • 8a-8b are schematic diagrams of the heat absorption process of 3D glass when the heat absorption process is performed with two sets of molds using the present invention.
  • FIG. 9 is a schematic diagram of the heat absorption process of 3D glass using the heat absorption process of segmented molding according to the present invention.
  • Fig. 10 is a schematic diagram of the structure of the 3D glass blank of the present invention.
  • 11 is a schematic diagram of the cutting process of the 3D glass manufacturing method of the present invention.
  • Fig. 12 is a schematic diagram of the chamfering process of the 3D glass manufacturing method of the present invention.
  • FIG. 13 is a block diagram of the strengthening process of the 3D glass manufacturing method of the present invention.
  • FIG. 14 is a three-dimensional schematic diagram of the 3D glass structure of the present invention.
  • a 3D glass manufacturing method of the present invention includes the following steps:
  • Step 1 Place the reserved flat glass 1 in the mold;
  • Step 2 Adopt the heat absorption process to paste the plate glass 1 into the upper surface of the concave mold of the mold to obtain a 3D glass blank 2;
  • Step 3 Cutting the 3D glass blank 2 to obtain a 3D glass semi-finished product 3;
  • Step 4 Perform, for example, grinding and chamfering the 3D glass semi-finished product 3 by CNC engraving to obtain 3D glass wool 4;
  • step 5 the surface of the 3D glass wool 4 is scanned to obtain, for example, a 3D glass having a side wall portion 101, a curved portion 102 and a window portion 103.
  • the 3D glass includes a window portion 103, a curved portion 102, and a side wall portion 101; the window portion 103 and the side wall portion 101 are connected by the curved portion 102; the bending angle of the curved portion 102 is n It is 0° ⁇ n ⁇ 90°; the sum m of the height of the side wall portion 101 and the bending portion 102 perpendicular to the window portion is 0 ⁇ m ⁇ 10mm.
  • the present invention reserves a margin in the plate glass 1, and then through the process flow of heat absorption process forming, cutting, carving and sweeping, the yield rate of 3D glass can be increased to nearly 100%, avoiding the process flow of pre-designing the size of plate glass 1 in the traditional 3D glass production method and then performing hot pressing and precision carving. During the hot pressing, the position offset or uneven molding pressure will cause 3D after molding. The problem of unqualified glass size.
  • Step 1 Place the reserved flat glass 1 in the mold:
  • a reserved amount of flat glass 1 can be obtained by cutting a large piece of glass.
  • the material of the large piece of glass can be the raw material of commonly used electronic equipment glass cover plates, such as high-alumina silica white glass, Asahi Glass, Corning Glass Or panda glass, etc., in some embodiments, the thickness of the flat glass is 0.25 to 1.2 mm.
  • the flat glass 1 with a margin includes: a 2D unfolding portion 11, a stretching portion 12, and a clamping portion 13 arranged in order from the inside to the outside; among them:
  • the shape and area of the 2D expanded portion 11 are the same as those of the 3D glass after 2D expansion, that is, the cross-sectional width a of the 2D expanded portion 11 is the same as the cross-sectional width of the 3D glass after 2D expansion,
  • the finite element differential calculation method can be used to calculate the shape and size of the 3D glass.
  • the width b of the stretched portion 12 does not exceed the length of the longer arc of the stretched section of the 3D glass blank 2, that is, during the heat absorption process, the stretched portion 12 bends and deforms outward to form the 3D glass blank 2
  • the arc surface along the bending deformation direction of the stretching portion 12 is the inner arc surface of the stretching section of the 3D glass blank 2
  • the arc surface opposite to the bending deformation direction is the arc surface of the 3D glass blank 2
  • the outer arc surface of the stretching section; the longer arc of the stretching section of the 3D glass blank 2 is the section arc length of the outer arc surface of the stretching section of the 3D glass blank 2, which is marked as d in Figure 10 The arc.
  • the stretching part 12 When the stretching part 12 is too large: the glass consumption area is increased, and the cost is increased; when the stretching part 12 is too small: the material can flow and the stretching section is less, which is easy to drive the clamping part 13 to stretch greatly, which may cause the thickness of the product Defects such as unevenness, uneven concave surface, cracks, and ripples.
  • the width c of the clamping portion 13 is set according to the product dimensions of the 3D glass. Generally, the width c of the clamping portion 13 is set to 3-15 mm, which is used to compress the flat plate through a mold in the heat absorption process. glass.
  • the clamping portion 13 is too large: the glass consumption area increases, and the cost increases.
  • the clamping part 13 is too small: the pressing edge slips off during the heat absorption process, the material flows abnormally, and defects such as improper molding, uneven thickness, wrinkles, and corrugation may occur.
  • the reserved margin of the plate glass 1 with a reserved margin refers to the processing margin of the flat glass having the stretching part 12 and the clamping part 13 before the heat absorption process.
  • the margin of the edge of the 3D glass blank obtained after the hot suction molding corresponds to the reserved margin of the plate glass.
  • Step 2 Adopt the heat absorption process to paste the flat glass 1 into the upper surface of the concave mold of the mold to obtain a 3D glass blank 2:
  • the mold is made of a gas-permeable material, such as a graphite material, which not only has gas-permeability, but can also meet the glass bending temperature condition.
  • the mold includes an upper mold 21 and a lower mold 22.
  • the upper mold 21 is used to cooperate with the lower mold 22 to press the clamping portion 13 of the plate glass 1
  • the lower mold 22 is a concave mold, and the lower surface of the concave mold is provided with A suction groove that opens downward;
  • the suction groove includes a suction groove 231 corresponding to the curved portion 102 of the 3D glass and a suction groove two 232 corresponding to the window portion 103 of the 3D glass.
  • step 1 the process of placing the reserved plate glass 1 in the mold is: the clamping portion 13 of the reserved plate glass 1 is pressed by the upper mold 21 and the lower mold 22, that is, Among the molds used in the present invention, the upper mold 21 will only generate pressure on the clamping portion 13, and will not generate pressure on the upper surface of the entire plate glass 1, so that the present invention does not require the use of protrusions compared with traditional hot pressing.
  • the mold avoids the frictional contact between the male mold and the female mold, reduces mold wear, improves the service life of the mold, and is equivalent to a half set of molds, which saves costs; at the same time, it avoids the contact force between the 3D glass and the punch , It reduces the mold printing defects and the glass convex surface mold printing, so that the glass scanning time is reduced, and the cost is saved.
  • the shape of the suction groove is not limited, and the pressure difference between the upper surface and the lower surface of the glass in the mold is controlled by setting the arrangement of the suction groove and the wall thickness of the suction groove to the upper surface of the concave mold In this way, different positions of the upper surface of the concave mold are adjusted to receive different suction forces, so that the glass is evenly pressed to the upper surface of the concave mold, and 3D glass with various bending angles can be easily developed.
  • the mold has a concave mold but not a convex mold.
  • the concave mold is used to form a flat glass with a reserved margin placed in the mold on the upper surface of the concave mold by a heat absorption process to obtain a 3D glass blank.
  • the concave mold is configured as a lower mold, and an upper mold is also provided.
  • the upper mold is used to cooperate with the lower mold to press the outermost plate glass with a reserved margin in the heat absorption process. Clamping section.
  • the concave mold is made of a gas-permeable material, and the lower surface of the concave mold is provided with a suction groove opening downward.
  • the arrangement of the suction grooves and/or the wall thickness of the suction grooves to the upper surface of the cavity can be set differently.
  • the suction groove includes a suction groove 1 corresponding to the curved portion of the 3D glass and a suction groove 2 corresponding to the window portion of the 3D glass.
  • the wall thickness of the second suction groove to the upper surface of the cavity increases sequentially from the inside to the outside.
  • the step 2 can use a set of molds or two sets of molds to perform the heat absorption process:
  • step 2 when the step 2 adopts a set of molds for the heat absorption process, the curvature of the upper surface of the concave mold of the mold is the same as that of the 3D glass; then the step 2 include the following sub-steps:
  • Step 2.11 heating to the glass bending temperature to soften the flat glass to a certain degree of fluidity
  • Step 2.12 in the glass bending temperature range, evacuate the lower surface of the concave mold to form a pressure difference between the upper surface and the lower surface of the flat glass, and then paste the composite form on the upper surface of the concave mold of the mold;
  • Step 2.13 slowly lower the temperature to obtain 3D glass blank 2.
  • slow cooling means that the glass is slowly cooled in the equipment after being molded at a high temperature of 700-800 degrees, and the cooling rate is in the range of 50-150°C/min. If the temperature drops rapidly, the glass will generate stress, warp, or even break.
  • the two sets of molds used include: the upper surface of the concave mold has a smaller curvature than the 3D glass 1. And mold two whose upper surface of the concave mold has the same curvature as that of the 3D glass; then the step 2 includes: first use mold one to perform a heat absorption process to obtain a curvature less than that of the 3D glass The 3D glass blank 2; the 3D glass blank 2 with a curvature less than the curvature of the 3D glass is taken out of the mold one, and then the mold two is used for the heat absorption process to obtain a curvature with the same curvature as the 3D glass 3D glass blank 2;
  • the process of using mold one or mold two to perform the heat absorption process is the same as the process of using a set of molds to perform the heat absorption process, including the above-mentioned steps 2.11 to 2.13.
  • step 2.12 when one set of molds or two sets of molds are used for the heat absorption process, the method of step 2.12 is:
  • the wall thickness of the suction groove 232 and the upper surface of the cavity increases sequentially from the inside to the outside.
  • the suction force during each pumping can also be divided according to section The number and the number of pumping times, and the curvature of the 3D glass are set.
  • the heat absorption process of segmented molding can also improve the thickness uniformity of the required 3D glass.
  • the invention can ensure that the thickness uniformity of the required 3D glass reaches ⁇ 0.05 mm by adopting a set of molds or two sets of molds for the heat absorption process and the segmented heat absorption process.
  • step 3 a laser or CNC is used to cut the 3D glass blank 2 to obtain a 3D glass semi-finished product 3, as shown in FIG. 11, step 3 is to cut the reserved margin on the flat glass before the heat absorption process , Namely the stretching part 12 and the clamping part 13.
  • the use of laser or CNC to cut glass in the present invention is only because of the current cutting method that can be used in the field, but it is not limited thereto.
  • the method for cutting the 3D glass blank 2 in the step 3 to obtain the 3D glass semi-finished product 3 is:
  • Step 3.2 cutting: through multi-axis linkage, the 3D glass blank 2 fixed in the profiling jig is positioned on the linkage mechanism, and the product is multiplied by the motion control system of the cutting equipment (laser cutting machine or CNC machine tool).
  • Angle, multi-position multi-axis linkage including: two-axis, three-axis, four-axis, five-axis, six-axis), so as to meet the cutting requirements of the product;
  • Step 3.3 unloading: release the product by breaking the vacuum or by controlling the electric or pneumatic control, and the position of the fixed block is translated, and then the product is taken out by a suction cup or a human hand.
  • the 3D glass semi-finished product 3 obtained by cutting the 3D glass blank 2 in the step 3 has a reserved size for CNC carving.
  • the reserved size is to prevent CNC carving from grinding and chamfering the 3D
  • the glass size is not enough to improve the yield rate.
  • step 3 not only the reserved margin is cut, but also the 3D glass leather material can be punched according to needs, such as button holes, charging holes and charging holes provided on the side wall.
  • the step 4 includes the following sub-steps:
  • Step 4.1 fix the 3D glass semi-finished product 3: place the 3D glass semi-finished product 3 in the profiling jig and fix it by vacuum adsorption.
  • Step 4.2 progressively mill the upper end of the 3D glass semi-finished product 3 into a flat angle: use the bottom of the grinding head to contact the upper end of the product, and then progressively mill it into a flat angle.
  • step 4.3 the flat angle is polished to the chamfer angle of the required 3D glass, and the obtained 3D glass wool 4 is shown in Figure 12.
  • the step 5 includes the following sub-steps:
  • Step 5.1 polishing the side wall portion 101 and the outer side of the curved portion 102 of the 3D glass wool 4;
  • Step 5.2 polishing the side wall portion 101 and the inner side of the curved portion 102 of the 3D glass wool 4;
  • Step 5.3 polishing the inside and outside of the window portion 103 of the 3D glass wool 4.
  • the 3D glass manufacturing method further includes: step 6, performing strengthening treatment on the 3D glass having the sidewall portion 101, the bending portion 102 and the window portion 103 obtained in step 5, to obtain a strengthened 3D glass.
  • the strengthening treatment includes: putting the 3D glass with the side wall portion 101, the curved portion 102 and the window portion 103 obtained in step 5 into the strengthening frame for preheating, strengthening, cooling, soaking in water, and then transferring to cleaning The frame is cleaned, and the strengthened 3D glass is obtained after the cleaning is completed.
  • a 3D glass produced by a 3D glass production method of the present invention includes a window portion 103, a curved portion 102 and a side wall portion 101; the window portion 103 and the side The walls 101 are all connected by curved portions 102 around to form a four-curved 3D glass; the bending angle n of the curved portion 102 is 0° ⁇ n ⁇ 90°; the side walls 101 and the curved portion 102 are perpendicular to the window portion The sum of the height m is 0 ⁇ m ⁇ 10mm.
  • the angle between the window portion 103 and the side wall portion 101 is equal to the bending angle n of the curved portion 102, that is, the window portion 103 smoothly transitions to the side wall portion 101 through the curved portion 102.
  • the bending angle n of the bending portion 102 is 88° ⁇ n ⁇ 90°, which makes the 3D glass more beautiful.
  • the side wall 101 and the curved portion 102 are perpendicular
  • the sum m of the height of the window portion 103 is 6 ⁇ m ⁇ 7.5mm.
  • the side wall portion 101 and/or the window portion 103 are provided with openings, for example, a button hole, a charging hole, and a speaker hole are provided on the side wall portion 101;
  • An earphone hole is provided on the electronic device that requires a 3.5mm earphone hole;
  • a camera hole is provided on the window portion 103 for the front camera of an electronic device such as a mobile phone.
  • the 3D glass manufacturing method of the present invention is applied to produce a 3D glass.
  • the 3D glass includes a window portion 103, a curved portion 102 and a side wall portion 101; the window portion 103 and the side wall portion 101 are bent
  • the portion 102 is connected; the bending angle n of the bending portion 102 is 0° ⁇ n ⁇ 10°, for example, n is 3°, 5°, 7°, 9°, 10°; the side wall portion 101 and the bending portion 102
  • the sum m of heights perpendicular to the window portion 103 is 0 ⁇ m ⁇ 1mm, for example, m is 0.3mm, 0.5mm, 0.7mm, 0.9mm, 1mm.
  • Step 1 Place the reserved flat glass 1 in the mold.
  • the reserved margin of the flat glass 1 is designed according to the external dimensions of the 3D glass; then, a high alumina silica white glass with a thickness of 0.25 mm is selected as the raw material, and the material is cut according to the reserved margin of the flat glass 1.
  • Step 2 Use a set of molds to perform a heat absorption process to paste the flat glass 1 on the surface of the concave mold of the mold to obtain a 3D glass blank 2.
  • the curvature of the upper surface of the concave mold of the mold is the same as that of the 3D glass. Same degree:
  • Step 2.11 After the flat glass 1 is placed in the mold, it is heated to 550°C to 600°C over 4 minutes, so that the flat glass 1 is softened to a certain degree of fluidity;
  • Step 2.12 in the temperature range of 550°C ⁇ 600°C, evacuate the lower surface of the concave mold for 30 seconds to form a pressure difference between the upper surface and the lower surface of the plate glass 1, and then paste it on the concave mold of the mold once. Surface; Among them, the pressure difference is maintained at 0.090 ⁇ 0.098Mpa.
  • Step 2.13 slowly lower the temperature to obtain 3D glass blank 2.
  • Step 3 Cut the 3D glass blank 2 to obtain the 3D glass semi-finished product 3: Use laser cutting, and fix the 3D glass blank 2 laterally during the cutting process, and the obtained 3D glass semi-finished product 3 has the reserved size of CNC carving 0.02 ⁇ 0.1mm.
  • Step 4 Perform CNC carving and chamfering on the 3D glass semi-finished product 3 to obtain 3D glass wool 4:
  • the diameter of the grinding head is 6-8mm, and the sand is 300# ⁇ 500#.
  • Step 5 Scan the surface of the 3D glass wool 4:
  • Step 5.1 polish the side wall portion 101 and the outer side of the curved portion 102 of the 3D glass wool 4. Place the 3D glass wool 4 on the pad.
  • the pad can be profiled silica gel with a Shore hardness of 60-65, plug steel or bakelite; use a brush for polishing, which can be fine wool, fine wool and polishing Leather blend, or polished leather with a Shore hardness of 65 to 70.
  • Set the rotating speed of the brush to 400rpm; the up and down throwing speed is 5mm/min; the workpiece speed is 10rpm.
  • Step 5.2 polish the side wall 101 and the inner side of the curved part 102 of the 3D glass wool 4; place the 3D glass wool 4 in the profiling fixture, and use the CNC machining operation mode to polish, and polish the bending angle between the grinding head and the curved part 102 Matching, its material is composed of polyurethane sponge and damping cloth.
  • Step 5.3 polishing the inside and outside of the window portion 103 of the 3D glass wool 4.
  • a brush is used for single-sided scanning.
  • the brush used on the inside of the polishing window 103 can be polished leather, polyurethane sponge, or a mixture of polished leather and polyurethane sponge;
  • the brush used on the outside of the polishing window 103 can be polyurethane sponge or polishing Leather mixed with sponge;
  • Step 6 Strengthen the 3D glass with side walls, bends and windows obtained in step 5 to obtain strengthened 3D glass: combine the 3D glass with side walls, bends and windows obtained in step 5 The glass is put into the strengthening frame to be preheated to 300°C, then heated to 380°C, strengthened, cooled, and soaked in water, and then transferred to the cleaning frame for cleaning. After cleaning, the finished 3D glass is obtained.
  • the 3D glass manufacturing method of the present invention is applied to produce a 3D glass.
  • the 3D glass includes a window portion 103, a curved portion 102 and a side wall portion 101; the window portion 103 and the side wall portion 101 are bent
  • the portion 102 is connected;
  • the bending angle n of the bending portion 102 is 30° ⁇ n ⁇ 80°, for example, n is 30°40°, 45°, 50°, 55°, 60°, 65°, 70°, 75° , 80°;
  • the sum m of the height of the side wall portion 101 and the curved portion 102 perpendicular to the window portion is 1 ⁇ m ⁇ 5mm, for example, m is 1.5mm, 2mm, 3mm, 4mm, 5mm.
  • Step 1 Place the reserved flat glass 1 in the mold.
  • the reserved margin of the flat glass 1 is designed according to the external dimensions of the 3D glass; then, Corning glass with a thickness of 0.4 mm is selected as the raw material, and the material is cut according to the reserved margin of the flat glass 1.
  • Step 2 Use a set of molds to perform a heat absorption process to paste the flat glass 1 on the surface of the concave mold of the mold to obtain a 3D glass blank 2.
  • the curvature of the upper surface of the concave mold of the mold is the same as that of the 3D glass. Same degree:
  • Step 2.11 After the flat glass 1 is placed in the mold, it is heated to 600°C to 770°C over 8 minutes, so that the flat glass 1 is softened to a certain degree of fluidity;
  • Step 2.12 in the temperature range of 600°C ⁇ 770°C, the lower surface of the cavity is pumped from the middle to the outside for 3 times, each pumping for 50-60 seconds, so that the pumping area corresponding to each pumping
  • the pressure difference between the upper surface and the lower surface of the plate glass 1 is bent and formed until the plate glass 1 is attached to the upper surface of the concave mold of the mold; the pressure difference formed during each pumping is 0 ⁇ 0.036Mpa. , 0.036 ⁇ 0.052Mpa, 0.052Mpa ⁇ 0.098Mpa;
  • the temperature of each pumping is 600°C ⁇ 670°C, 670°C ⁇ 700°C, 700°C ⁇ 770°C.
  • Step 2.13 slowly lower the temperature to obtain 3D glass blank 2.
  • Step 3 Cut the 3D glass blank 2 to obtain the 3D glass semi-finished product 3: Use laser cutting, and fix the 3D glass blank 2 laterally during the cutting process, and the obtained 3D glass semi-finished product 3 has the reserved size of CNC carving 0.05 ⁇ 1.5mm.
  • Step 4 Perform CNC carving and chamfering on the 3D glass semi-finished product 3 to obtain 3D glass wool 4:
  • the diameter of the grinding head is 9-12mm, and the sand grain is 600#.
  • Step 5 Scan the surface of the 3D glass wool 4:
  • Step 5.1 polish the side wall portion 101 and the outer side of the curved portion 102 of the 3D glass wool 4.
  • the pad can be profiled silica gel with a Shore hardness of 65 to 75, plug steel or bakelite; use a brush for polishing, which can be fine wool, fine wool and polishing Leather blend, or polished leather with a Shore hardness of 65 to 75.
  • Set the rotational speed of the brush to 600rpm; the up and down throwing speed is 30mm/min; the workpiece speed is 5rpm.
  • Step 5.2 polish the side wall 101 and the inner side of the curved part 102 of the 3D glass wool 4; place the 3D glass wool 4 in the profiling fixture, and use the CNC machining operation mode to polish, and polish the bending angle between the grinding head and the curved part 102 Matching, its material is composed of polyurethane sponge and damping cloth.
  • Step 5.3 polishing the inside and outside of the window portion 103 of the 3D glass wool 4.
  • a brush is used for single-sided scanning.
  • the brush used on the inside of the polishing window 103 can be polished leather, polyurethane sponge, or a mixture of polished leather and polyurethane sponge;
  • the brush used on the outside of the polishing window 103 can be polyurethane sponge or polishing Leather mixed with sponge;
  • Step 6 Strengthen the 3D glass with side walls, bends and windows obtained in step 5 to obtain strengthened 3D glass: combine the 3D glass with side walls, bends and windows obtained in step 5 The glass is put into the strengthening frame to be preheated to 330°C, then heated to 400°C, strengthened, cooled, and soaked in water, then transferred to the cleaning frame for cleaning. After cleaning, the finished 3D glass is obtained.
  • the 3D glass manufacturing method of the present invention is applied to produce a 3D glass.
  • the 3D glass includes a window portion 103, a curved portion 102 and a side wall portion 101; the window portion 103 and the side wall portion 101 are bent
  • the portion 102 is connected; the bending angle n of the bending portion 102 is 80° ⁇ n ⁇ 90°, for example, n is 81°, 82°, 83°, 84°, 85°, 86°, 87°, 88°, 89 °;
  • the sum of the height m of the side wall portion 101 and the curved portion 102 perpendicular to the window portion is 5 ⁇ m ⁇ 7.5mm, for example, m is 5.5mm, 6mm, 6.5mm, 7mm, 7.5mm.
  • Step 1 Place the reserved flat glass 1 in the mold.
  • the reserved margin of the flat glass 1 is designed according to the external dimensions of the 3D glass; then, panda glass with a thickness of 1.1 mm is selected as the raw material, and the material is cut according to the reserved margin of the flat glass 1.
  • Step 2 Two sets of molds are used for the heat absorption process, so that the flat glass 1 is pasted on the surface of the concave mold of the mold to obtain a 3D glass blank 2.
  • the two sets of molds used include: the upper surface of the concave mold has a curvature smaller than the 3D Mold 1 for the curvature of the glass, and mold 2 with the curvature of the upper surface of the concave mold the same as that of the 3D glass:
  • Step 2.11 After the plate glass 1 is placed in the mold, it is heated to 700°C to 850°C in 4 to 10 minutes, so that the plate glass 1 is softened to a certain degree of fluidity;
  • Step 2.12 in the temperature range of 700°C ⁇ 850°C, evacuate the lower surface of the concave mold for 90 seconds to form a pressure difference between the upper surface and the lower surface of the plate glass 1, and then paste it on the concave mold of the mold once. Surface; Among them, the pressure difference is maintained at 0.090 ⁇ 0.098Mpa.
  • Step 2.13 slowly lower the temperature to obtain 3D glass blank 2.
  • Step 3 Cut the 3D glass blank 2 to obtain the 3D glass semi-finished product 3: Use laser cutting, and fix the 3D glass blank 2 laterally during the cutting process, and the obtained 3D glass semi-finished product 3 has the reserved size of CNC carving 0.2mm.
  • Step 4 Perform CNC precision carving and chamfering on the 3D glass semi-finished product 3 to obtain 3D glass wool 4:
  • the diameter of the grinding head used is 12-15mm, and the sand grain is 1000#.
  • Step 5 Scan the surface of the 3D glass wool 4:
  • Step 5.1 polish the side wall portion 101 and the outer side of the curved portion 102 of the 3D glass wool 4. Place the 3D glass wool 4 on the pad.
  • the pad can be profiled silica gel with a Shore hardness of 75-80, plug steel or bakelite; use a brush for polishing, which can be fine wool, fine wool and polishing Leather blend, or polished leather with a Shore hardness of 70 to 75.
  • Set the rotating speed of the brush to 1000rpm; the up and down throwing speed is 100mm/min; the workpiece speed is 1rpm.
  • Step 5.2 polish the side wall 101 and the inner side of the curved part 102 of the 3D glass wool 4; place the 3D glass wool 4 in the profiling fixture, and use the CNC machining operation mode to polish, and polish the bending angle between the grinding head and the curved part 102 Matching, its material is composed of polyurethane sponge and damping cloth.
  • Step 5.3 polishing the inside and outside of the window portion 103 of the 3D glass wool 4.
  • a brush is used for single-sided scanning.
  • the brush used on the inside of the polishing window 103 can be polished leather, polyurethane sponge, or a mixture of polished leather and polyurethane sponge;
  • the brush used on the outside of the polishing window 103 can be polyurethane sponge or polishing Leather mixed with sponge;
  • Step 6 Strengthen the 3D glass with side walls, bends and windows obtained in step 5 to obtain strengthened 3D glass: combine the 3D glass with side walls, bends and windows obtained in step 5 The glass is put into the strengthening frame to be preheated to 360°C, then heated to 460°C, strengthened, cooled, and soaked in water, then transferred to the cleaning frame for cleaning. After cleaning, the finished 3D glass is obtained.
  • the 3D glass manufacturing method of the present invention is applied to produce a 3D glass.
  • the 3D glass includes a window portion 103, a curved portion 102 and a side wall portion 101; the window portion 103 and the side wall portion 101 are bent
  • the portion 102 is connected; the bending angle n of the bending portion 102 is 90°; the sum of the height m of the side wall portion 101 and the bending portion 102 perpendicular to the window portion is 5 ⁇ m ⁇ 7.5mm, for example, m is 5.5mm, 6mm, 6.5mm, 7mm, 7.5mm.
  • Step 1 Place the reserved flat glass 1 in the mold.
  • the reserved margin of the flat glass 1 is designed according to the external dimensions of the 3D glass; then, Corning glass with a thickness of 0.8 mm is selected as the raw material, and the material is cut according to the reserved margin of the flat glass 1.
  • Step 2 Two sets of molds are used for the heat absorption process, so that the flat glass 1 is pasted on the surface of the concave mold of the mold to obtain a 3D glass blank 2.
  • the two sets of molds used include: the upper surface of the concave mold has a curvature smaller than the 3D Mold 1 for the curvature of the glass, and mold 2 with the curvature of the upper surface of the concave mold the same as that of the 3D glass:
  • Step 2.11 After the flat glass 1 is placed in the mold, it is heated to 550°C to 850°C in 10 minutes, so that the flat glass 1 is softened to a certain degree of fluidity;
  • Step 2.12 in the temperature range of 550°C to 850°C, pump the lower surface of the cavity from the middle to the outside for 5 times, each pumping for 110 to 120 seconds, so that each pumping area corresponds to The pressure difference between the upper surface and the lower surface of the plate glass 1 is bent and formed until the plate glass 1 is attached to the upper surface of the concave mold of the mold; the pressure difference formed during each pumping is 0 ⁇ 0.024Mpa.
  • each pumping is 550°C ⁇ 600°C, 600°C ⁇ 670°C, 670°C ⁇ 700°C, 700°C ⁇ 770°C, 770°C ⁇ 800°C.
  • Step 2.13 slowly lower the temperature to obtain 3D glass blank 2.
  • Step 3 Cut the 3D glass blank 2 to obtain the 3D glass semi-finished product 3: Use laser cutting, and fix the 3D glass blank 2 laterally during the cutting process, and the obtained 3D glass semi-finished product 3 has the reserved size of CNC carving 0.2mm.
  • Step 4 Perform CNC precision carving and chamfering on the 3D glass semi-finished product 3 to obtain 3D glass wool 4:
  • the diameter of the grinding head used is 12-15mm, and the sand grain is 1200#.
  • Step 5 Scan the surface of the 3D glass wool 4:
  • Step 5.1 polish the side wall portion 101 and the outer side of the curved portion 102 of the 3D glass wool 4.
  • the pad can be profiled silica gel with a Shore hardness of 80, plug steel or bakelite; use a brush for polishing.
  • the brush can be fine wool, mixed with polished leather , Or polished leather with a Shore hardness of 75. Set the rotating speed of the brush to 1200rpm; the up and down throwing speed is 180mm/min; the workpiece speed is 10rpm.
  • Step 5.2 polish the side wall 101 and the inner side of the curved part 102 of the 3D glass wool 4; place the 3D glass wool 4 in the profiling fixture, and use the CNC machining operation mode to polish, and polish the bending angle between the grinding head and the curved part 102 Matching, its material is composed of polyurethane sponge and damping cloth.
  • Step 5.3 polishing the inside and outside of the window portion 103 of the 3D glass wool 4.
  • a brush is used for single-sided scanning.
  • the brush used on the inside of the polishing window 103 can be polished leather, polyurethane sponge, or a mixture of polished leather and polyurethane sponge;
  • the brush used on the outside of the polishing window 103 can be polyurethane sponge or polishing Leather mixed with sponge;
  • Step 6 Strengthen the 3D glass with side walls, bends and windows obtained in step 5 to obtain strengthened 3D glass: combine the 3D glass with side walls, bends and windows obtained in step 5 The glass is put into the strengthening frame to be preheated to 340°C, then heated to 440°C, strengthened, cooled and soaked in water, then transferred to the cleaning frame for cleaning. After cleaning, the finished 3D glass is obtained.
  • the 3D glass manufacturing method of the present invention is applied to produce a 3D glass.
  • the 3D glass includes a window portion 103, a curved portion 102 and a side wall portion 101; the window portion 103 and the side wall portion 101 are bent
  • the portion 102 is connected; the bending angle n of the bending portion 102 is 88° ⁇ n ⁇ 90°, for example, n is 88°, 89°, 90°; the side wall portion 101 and the bending portion 102 are perpendicular to the height of the window portion
  • the sum m is 7.5 ⁇ m ⁇ 10mm, for example, m is 8mm, 8.5mm, 9mm, 9.5mm, 10mm.
  • Step 1 Place the reserved flat glass 1 in the mold.
  • the reserved margin of the plate glass 1 is designed according to the external dimensions of the 3D glass; then, Asahi Glass with a thickness of 1.2 mm is selected as the raw material, and the plate glass 1 is cut according to the reserved margin.
  • Step 2 Two sets of molds are used for the heat absorption process, so that the flat glass 1 is pasted on the surface of the concave mold of the mold to obtain a 3D glass blank 2.
  • the two sets of molds used include: the upper surface of the concave mold has a curvature smaller than the 3D Mold 1 for the curvature of the glass, and mold 2 with the curvature of the upper surface of the concave mold the same as that of the 3D glass:
  • Step 2.11 After the flat glass 1 is placed in the mold, it is heated to 550°C to 850°C in 8 minutes, so that the flat glass 1 is softened to a certain degree of fluidity;
  • Step 2.12 in the temperature range of 700°C ⁇ 850°C, the lower surface of the cavity is pumped from the middle to the outside for 4 times, each pumping for 100 seconds, so that the pumping area corresponds to the plate glass during each pumping A pressure difference is formed between the upper surface and the lower surface of 1 and then bend into shape until the plate glass 1 is attached to the upper surface of the concave mold of the mold; wherein, the pressure difference formed during each pumping is 0 ⁇ 0.024Mpa, 0.024 ⁇ 0.048Mpa, 0.048 ⁇ 0.074Mpa, 0.074 ⁇ 0.098Mpa; the temperature of each pumping is 700°C ⁇ 730°C, 730°C ⁇ 770°C, 770°C ⁇ 800°C, 800°C ⁇ 850°C.
  • Step 2.13 slowly lower the temperature to obtain 3D glass blank 2.
  • the step 2.12 performed by the mold two is: in the temperature range of 700 °C ⁇ 850 °C, the lower surface of the concave mold is evacuated for 70 seconds to make the plate After the pressure difference is formed between the upper surface and the lower surface of the glass, the upper surface of the concave mold of the mold is formed by one-time bonding.
  • Step 3 Cut the 3D glass blank 2 to obtain the 3D glass semi-finished product 3: Use laser cutting, and fix the 3D glass blank 2 laterally during the cutting process, and the obtained 3D glass semi-finished product 3 has the reserved size of CNC carving 3mm.
  • Step 4 Perform CNC precision carving and chamfering on the 3D glass semi-finished product 3 to obtain 3D glass wool 4:
  • the diameter of the grinding head is 6-15mm, and the sand is 300# ⁇ 1200#.
  • Step 5 Scan the surface of the 3D glass wool 4:
  • Step 5.1 polish the side wall portion 101 and the outer side of the curved portion 102 of the 3D glass wool 4.
  • the pad can be profiled silica gel with a Shore hardness of 80, plug steel or bakelite; use a brush for polishing.
  • the brush can be fine wool, mixed with polished leather , Or polished leather with a Shore hardness of 75. Set the rotating speed of the brush to 1100rpm; the up and down throwing speed is 5mm/min; the workpiece speed is 4rpm.
  • Step 5.2 polish the side wall 101 and the inner side of the curved part 102 of the 3D glass wool 4; place the 3D glass wool 4 in the profiling fixture, and use the CNC machining operation mode to polish, and polish the bending angle between the grinding head and the curved part 102 Matching, its material is composed of polyurethane sponge and damping cloth.
  • Step 5.3 polishing the inside and outside of the window portion 103 of the 3D glass wool 4.
  • a brush is used for single-sided scanning.
  • the brush used on the inside of the polishing window 103 can be polished leather, polyurethane sponge, or a mixture of polished leather and polyurethane sponge;
  • the brush used on the outside of the polishing window 103 can be polyurethane sponge or polishing Leather mixed with sponge;
  • Step 6 Strengthen the 3D glass with side walls, bends and windows obtained in step 5 to obtain strengthened 3D glass: combine the 3D glass with side walls, bends and windows obtained in step 5 The glass is put into the strengthening frame to be preheated to 300-320°C and then heated to 380-420°C, strengthened, cooled and soaked in water, then transferred to the cleaning frame for cleaning. After cleaning, the finished 3D glass is obtained.
  • the 3D glass manufacturing method of the present invention is applied to produce a 3D glass.
  • the 3D glass includes a window portion 103, a curved portion 102 and a side wall portion 101; the window portion 103 and the side wall portion 101 are bent
  • the portion 102 is connected; the bending angle n of the bending portion 102 is 88° ⁇ n ⁇ 90°; the sum of the height m of the sidewall portion 101 and the bending portion 102 perpendicular to the window portion is 6 ⁇ m ⁇ 7.5mm.
  • Step 1 Place the reserved flat glass 1 in the mold.
  • the reserved margin of the flat glass 1 is designed according to the external dimensions of the 3D glass; then, panda glass with a thickness of 0.6 mm is selected as the raw material, and the material is cut according to the reserved margin of the flat glass 1.
  • Step 2 Two sets of molds are used for the heat absorption process, so that the flat glass 1 is pasted on the surface of the concave mold of the mold to obtain a 3D glass blank 2.
  • the two sets of molds used include: the upper surface of the concave mold has a curvature smaller than the 3D Mold 1 for the curvature of the glass, and mold 2 with the curvature of the upper surface of the concave mold the same as that of the 3D glass:
  • Step 2.11 After the plate glass 1 is placed in the mold, it is heated to 550°C to 850°C over 4 minutes, so that the plate glass 1 is softened to a certain degree of fluidity;
  • Step 2.12 in the temperature range of 550°C ⁇ 850°C, evacuate the lower surface of the concave mold for 70-90 seconds to form a pressure difference between the upper surface and the lower surface of the plate glass 1.
  • the upper surface of the mold in the temperature range of 550°C ⁇ 850°C, evacuate the lower surface of the concave mold for 70-90 seconds to form a pressure difference between the upper surface and the lower surface of the plate glass 1. The upper surface of the mold.
  • Step 2.13 slowly lower the temperature to obtain 3D glass blank 2.
  • step 2.12 of mold two is: in the temperature range of 550°C ⁇ 850°C, perform 5 times on the lower surface of the concave mold from the middle to the outside.
  • Step 3 Cut the 3D glass blank 2 to obtain the 3D glass semi-finished product 3: Use laser cutting, and fix the 3D glass blank 2 laterally during the cutting process, and the obtained 3D glass semi-finished product 3 has the reserved size of CNC carving 2mm.
  • Step 4 Perform CNC precision carving and chamfering on the 3D glass semi-finished product 3 to obtain 3D glass wool 4:
  • the diameter of the grinding head is 6-15mm, and the sand is 300# ⁇ 1200#.
  • Step 5 Scan the surface of the 3D glass wool 4:
  • Step 5.1 polish the side wall portion 101 and the outer side of the curved portion 102 of the 3D glass wool 4. Place the 3D glass wool 4 on the pad.
  • the pad can be profiled silica gel with a Shore hardness of 70, plug steel or bakelite; use a brush for polishing.
  • the brush can be fine wool, mixed with polished leather , Or polished leather with a Shore hardness of 70. Set the rotating speed of the brush to 800rpm; the up and down throwing speed is 90mm/min; the workpiece speed is 6rpm.
  • Step 5.2 polish the side wall 101 and the inner side of the curved part 102 of the 3D glass wool 4; place the 3D glass wool 4 in the profiling fixture, and use the CNC machining operation mode to polish, and polish the bending angle between the grinding head and the curved part 102 Matching, its material is composed of polyurethane sponge and damping cloth.
  • Step 5.3 polishing the inside and outside of the window portion 103 of the 3D glass wool 4.
  • a brush is used for single-sided scanning.
  • the brush used on the inside of the polishing window 103 can be polished leather, polyurethane sponge, or a mixture of polished leather and polyurethane sponge;
  • the brush used on the outside of the polishing window 103 can be polyurethane sponge or polishing Leather mixed with sponge;
  • Step 6 Strengthen the 3D glass with side walls, bends and windows obtained in step 5 to obtain strengthened 3D glass: combine the 3D glass with side walls, bends and windows obtained in step 5 The glass is put into the strengthening frame to be preheated to 340-360°C and then heated to 420-460°C, strengthened, cooled and soaked in water, and then transferred to the cleaning frame for cleaning. After cleaning, the finished 3D glass is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

提供一种3D玻璃制作方法,包括:步骤1,将预留余量的平板玻璃放置在模具中;步骤2,采用热吸工艺使平板玻璃贴合在模具的凹模上表面上,成型,得到3D玻璃坯料;步骤3,对3D玻璃坯料进行切割,得到3D玻璃半成品;步骤4,对3D玻璃半成品进行打磨倒角,得到3D玻璃毛料;步骤5,对3D玻璃毛料的表面进行扫光处理,得到3D玻璃。该方法可以使制作3D玻璃的良品率提高到接近100%,避免在热压成型时因为摆放位置偏移或成型压力不均导致成型后3D玻璃尺寸不合格的问题,并且不用凸模也避免了凸模带来的问题。还提供一种3D玻璃和用于实施3D玻璃制作方法的模具以及一种3D玻璃坯料。

Description

3D玻璃及其制作方法、模具以及3D玻璃坯料 技术领域
本发明涉及电子设备技术领域,尤其是一种3D玻璃及其制作方法以及用于实施制作方法的模具和3D玻璃坯料。
背景技术
随着电子设备的迅速发展,为了提高电子设备的美感,3D玻璃的应用越来越多。现有的3D玻璃制作方法大多如图1所示,包括以下步骤:
步骤S10,开料:将大块的玻璃基材切割成预设尺寸的小块方形玻璃。
步骤S20,CNC精雕:方形玻璃经过精雕机对外形、孔、倒角加工,形成高精度尺寸的2D玻璃。
步骤S30,热压成型:将2D玻璃精准的放入模具凹槽内,模具至少有凸模和凹模,模具经过成型机高温加热至700~750℃,待玻璃板软化后,将成型部件下移给所述热弯模具以施加压力,将玻璃板在所述热弯模具内热弯加工成型为3D玻璃。
步骤S40,研磨:因热压成型中,模具凹模和凸模与玻璃有压力接触,导致玻璃表面形成模具印记,需要对热压成型后的3D玻璃的凸面和凹面均进行扫光处理,使3D玻璃的表面更加光滑、圆润,增强立体感。
现有的3D玻璃制作方法存在的问题:
1、良率低
热压成型时,2D玻璃在模具中会因为摆放位置偏移或成型压力不均导致成型后3D玻璃尺寸不合格,如左右弧高不相等。
2、模具压印重,研磨成本高
因成型中凸模和凹模均与玻璃表面接触受力,导致凸面和凹面产生模印,导致玻璃凸面需要研磨35分钟,凹面需要研磨55分钟,加重了加工成本。
3、模具寿命低,生产成本高
成型中,模具受压相互摩擦,导致模具表面寿命降低,易脱落粉尘颗粒附着在玻璃表面,形成麻点等不可修复缺陷。
4、大角度等新产品开发困难
凸模和凹模高温压合成型,当要求3D玻璃弯曲角度接近90°时,会出现侧面和弧面受力不均,导致玻璃破碎或弧面厚度不均匀等不良。当要求3D玻璃弯曲角度大于90度 时,需要进行多次压型,开发更复杂的模具结构。
5、新产品开发周期长
现有的技术方案:根据3D玻璃尺寸,热成型分析,逆向推导出展开后2D玻璃外形尺寸,再制作模具,成型试验,检测后修正2D玻璃尺寸,一般会经过3-5次的反复修正,过程中模具加工、试成型、检测,开发周期长。
发明内容
本发明所要解决的技术问题是:针对至少一些上述存在的问题,提供一种3D玻璃及其制作方法,以及用于实施该方法的模具,以及一种3D玻璃坯料,提高产品良率,同时降低成本。
本发明提供一种3D玻璃制作方法,其包括以下步骤:
步骤1,将预留余量的平板玻璃放置在模具中;
步骤2,采用热吸工艺使平板玻璃贴合成型在模具的凹模上表面上,得到3D玻璃坯料;
步骤3,对3D玻璃坯料进行切割,得到3D玻璃半成品;
步骤4,对3D玻璃半成品进行例如以CNC精雕方式打磨倒角,得到3D玻璃毛料;
步骤5,对3D玻璃毛料的表面进行扫光处理,得到例如具有侧壁部、弯曲部和视窗部的3D玻璃。
在一些实施方式中,所述预留余量的平板玻璃可以包括由内向外依次设置的2D展开部、拉伸部和夹持部,在一些实施方式中,所述2D展开部的形状和面积可以与所述3D玻璃进行2D展开后的形状和面积相同;在一些实施方式中,所述拉伸部的宽度可以不超过所述3D玻璃坯料的拉伸段的较长弧线的长度;在一些实施方式中,所述夹持部的宽度为3~15mm,在一些实施方式中,所述夹持部在热吸工艺中可以被起压紧作用的上模压靠到构成为下模的凹模上,从而压紧平板玻璃。
在一些实施方式中,所述模具可以采用具有透气性的材料制成,所述模具可以包括上模和下模,所述上模可以用于与下模配合压紧平板玻璃的夹持部,所述下模为凹模;凹模下表面可以设置有向下开口的吸气槽;所述吸气槽可以包括对应所述3D玻璃的弯曲部的吸气槽一和对应所述3D玻璃的视窗部的吸气槽二。
在一些实施方式中,在步骤2中可以采用一套模具进行热吸工艺,其中,所述模具的凹模上表面的弯曲度可以与所述3D玻璃的弯曲度相同;所述步骤2包括以下子步骤:
步骤2.11,将平板玻璃加热至玻璃热弯温度;
步骤2.12,在玻璃热弯温度范围内,对凹模下表面抽气,使平板玻璃的上表面与下 表面之间形成压力差,并且因此使得平板玻璃贴合成型在模具的凹模上表面上;
步骤2.13,将贴合成型后的平板玻璃缓慢降温,得到3D玻璃坯料。
在一些实施方式中,在步骤2中,可以采用两套模具进行热吸工艺,其中,采用的两套模具包括:凹模上表面的弯曲度可以小于所述3D玻璃的弯曲度的模具一,以及凹模上表面的弯曲度可以与所述3D玻璃的弯曲度相同的模具二;在一些实施方式中,所述步骤2可以包括依次采用模具一和模具二执行以下子步骤:
步骤2.11,将平板玻璃加热至玻璃热弯温度;
步骤2.12,在玻璃热弯温度范围内,对模具的凹模下表面抽气,使平板玻璃的上表面与下表面之间形成压力差,并且因此使得平板玻璃贴合成型在模具的凹模上表面上;
步骤2.13,将贴合成型后的平板玻璃缓慢降温,得到3D玻璃坯料。
在一些实施方式中,所述步骤2.12包括:
在玻璃热弯温度范围内,可以对凹模下表面抽气,使平板玻璃的上表面与下表面之间形成压力差,平板玻璃可以一次贴合成型在模具的凹模上表面上;或者
在玻璃热弯温度范围内,可以对凹模下表面由中部向外进行多次抽气,使得在每次抽气时与抽气区域对应的平板玻璃的上表面与下表面之间形成压力差,平板玻璃弯曲成型,直至平板玻璃贴合成型在模具的凹模上表面上。
在一些实施方式中,在对凹模下表面抽气的同时,可以对平板玻璃上表面通正压气体。
在一些实施方式中,在步骤3中可以采用激光或CNC对3D玻璃坯料进行切割,得到3D玻璃半成品。
在一些实施方式中,所述3D玻璃半成品可以具有用于CNC精雕的预留尺寸。
在一些实施方式中,所述步骤4包括以下子步骤:
步骤4.1,将3D玻璃半成品固定;
步骤4.2,将3D玻璃半成品上端部位渐进式铣削成平角;
步骤4.3,将平角打磨成所需3D玻璃的倒角角度,得到3D玻璃毛料。
在一些实施方式中,所述步骤5包括以下子步骤:
步骤5.1,对3D玻璃毛料的侧壁部和弯曲部在外侧抛光;
步骤5.2,对3D玻璃毛料的侧壁部和弯曲部在内侧抛光;
步骤5.3,对3D玻璃毛料的视窗部在内侧和外部抛光。
在一些实施方式中,所述3D玻璃制作方法还包括:
步骤6,可以对在步骤5中得到的3D玻璃进行强化处理,因此得到强化后的3D玻璃。
在一些实施方式中,所述强化处理可以包括:将在步骤5中得到的3D玻璃放入强化框,然后依次进行预热、强化、冷却、泡水,然后将3D玻璃转入清洗框进行清洗,在清洗完成后得到所述强化后的3D玻璃。
本发明还提供一种3D玻璃,所述3D玻璃包括视窗部、弯曲部和侧壁部;所述视窗部和侧壁部在四周均通过弯曲部互相连接,因此形成四曲面3D玻璃;所述3D玻璃采用本发明的3D玻璃制作方法制得。
在一些实施方式中,所述弯曲部的弯曲角度n可以为0°<n≤90°,在一些实施方式中,n为88°≤n≤90°。
在一些实施方式中,所述侧壁部和弯曲部垂直于视窗部的高度之和m可为0<m≤10mm,在一些实施方式中,m为6≤m≤7.5mm。
在一些实施方式中,所述侧壁部和/或视窗部可以设置有开孔。
在一些实施方式中,所述3D玻璃的厚度可以为0.25~1.2mm。
本发明还提供一种模具,其用于实施本发明的3D玻璃制作方法,所述模具可以具有凹模,但可以不具有凸模,所述凹模可以构成用于,将放置在模具中的预留余量的平板玻璃采用热吸工艺贴合成型在凹模上表面上,从而得到3D玻璃坯料。
在一些实施方式中,所述凹模可以构成为下模,还设有上模,所述上模可以用于在热吸工艺中与下模配合压紧预留余量的平板玻璃的位于最外侧的夹持部。
在一些实施方式中,所述凹模可以由透气性的材料制成,所述凹模下表面可以设置有向下开口的吸气槽。
在一些实施方式中,吸气槽的排列方式和/或吸气槽到凹模上表面的壁厚能够被不同地设置。
在一些实施方式中,所述吸气槽可以包括对应所述3D玻璃的弯曲部的吸气槽一和对应所述3D玻璃的视窗部的吸气槽二。
在一些实施方式中,所述吸气槽二到凹模上表面的壁厚由内向外依次增加。
本发明还提供一种3D玻璃坯料,所述3D玻璃坯料利用根据本发明的模具制成,所述3D玻璃坯料包括边部余量,所述边部余量相应于平板玻璃的预留余量。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1、本发明根据所需3D玻璃的设计尺寸,在平板玻璃就预留余量,然后通过热吸工艺成型、切割、精雕和扫光的工艺流程,可以使制作3D玻璃的良品率提高到接近100%,避免了传统3D玻璃制作方法中预先设计平板玻璃尺寸再进行热压成型和精雕的工艺流程中,在热压成型时因为摆放位置偏移或成型压力不均导致成型后3D玻璃尺寸不合格的问 题。
2、本发明采用的热吸工艺相比传统的热压成型,不需要使用凸模,避免了凸模和凹模摩擦接触的过程,减少了模具磨损,提升了模具使用寿命,并且相当于半套模具,节约了成本。同时,避免了3D玻璃与凸模的接触受力,减轻了模印缺陷和玻璃凸面模印,使玻璃扫光时间减少,节约了成本。
3.本发明的3D玻璃制作方法可以制作弯曲角度为0~90°的四曲面3D玻璃。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为现有技术的3D玻璃制作方法的流程示意图。
图2为本发明的3D玻璃制作方法的流程框图。
图3为应用本发明的3D玻璃制作方法制作的3D玻璃结构截面示意图。
图4-5为本发明的预留余量的平板玻璃结构示意图。
图6为本发明的平板玻璃放置在模具中的结构示意图。
图7为应用本发明采用一套模具进行热吸工艺时的3D玻璃的热吸过程示意图。
图8a-8b为应用本发明采用两套模具进行热吸工艺时的3D玻璃的热吸过程示意图。
图9为应用本发明进行分段成型的热吸工艺的3D玻璃的热吸过程示意图。
图10为本发明的3D玻璃坯料的结构示意图。
图11为本发明的3D玻璃制作方法的切割过程示意图。
图12为本发明的3D玻璃制作方法的倒角过程示意图。
图13为本发明的3D玻璃制作方法的强化流程框图。
图14为本发明的3D玻璃结构立体示意图。
附图标记:1-平板玻璃,2-3D玻璃坯料,3-3D玻璃半成品,4-3D玻璃毛料,11-2D展开部,12-拉伸部,13-夹持部,101-侧壁部,102-弯曲部,103-视窗部,21-上模,22-下模,231-吸气槽一,232-吸气槽二。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明,即所描述的实施例仅仅是本发明一部分实施例,而不是全部的实 施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下通过应用本发明的一种3D玻璃制作方法制作一种3D玻璃的实施例对本发明的特征和性能作进一步的详细描述。
如图2所示,本发明的一种3D玻璃制作方法,包括以下步骤:
步骤1,将预留余量的平板玻璃1放置在模具中;
步骤2,采用热吸工艺使平板玻璃1贴合成型在模具的凹模上表面,得到3D玻璃坯料2;
步骤3,对3D玻璃坯料2进行切割,得到3D玻璃半成品3;
步骤4,对3D玻璃半成品3进行例如以CNC精雕方式打磨倒角,得到3D玻璃毛料4;
步骤5,对3D玻璃毛料4的表面进行扫光处理,得到例如具有侧壁部101、弯曲部102和视窗部103的3D玻璃。
如图3所示,所述3D玻璃,包括视窗部103、弯曲部102和侧壁部101;所述视窗部103和侧壁部101通过弯曲部102连接;所述弯曲部102的弯曲角度n为0°<n≤90°;所述侧壁部101和弯曲部102垂直于视窗部的高度之和m为0<m≤10mm。
本发明根据所需3D玻璃的设计尺寸,在平板玻璃1就预留余量,然后通过热吸工艺成型、切割、精雕和扫光的工艺流程,可以使制作3D玻璃的良品率提高到接近100%,避免了传统3D玻璃制作方法中预先设计平板玻璃1尺寸再进行热压成型和精雕的工艺流程中,在热压成型时因为摆放位置偏移或成型压力不均导致成型后3D玻璃尺寸不合格的问题。
具体地,
步骤1,将预留余量的平板玻璃1放置在模具中:
步骤1中可以通过对大块玻璃开料得到预留余量的平板玻璃1,大块玻璃的材质可以是常用的电子设备玻璃盖板的原材料,如高铝硅白玻璃、旭硝子玻璃、康宁玻璃或熊猫玻璃等,在一些实施方式中,所述平板玻璃的厚度为0.25~1.2mm。如图4-5所示,所述预留余量的平板玻璃1包括:由内向外依次设置的2D展开部11、拉伸部12和夹持部13;其中:
所述2D展开部11的形状和面积与所述3D玻璃进行2D展开后的形状和面积相同, 即所述2D展开部11的截面宽度a与所述3D玻璃进行2D展开后的截面宽度相同,可以利用有限元微分计算方式根据所述3D玻璃的外形尺寸进行推算得到。
所述拉伸部12的宽度b不超过所述3D玻璃坯料2的拉伸段的较长弧线的长度,即在进行热吸工艺时,拉伸部12向外侧弯曲变形形成3D玻璃坯料2的拉伸段,其中,沿拉伸部12弯曲变形方向的弧面为所述3D玻璃坯料2的拉伸段的内弧面,与弯曲变形方向相反的弧面为所述3D玻璃坯料2的拉伸段的外弧面;则所述3D玻璃坯料2的拉伸段的较长弧线为3D玻璃坯料2的拉伸段的外弧面的截面弧线长度,如图10中标注为d的弧线。拉伸部12过大时:玻璃耗用面积加大,成本升高;拉伸部12过小时:材料可流动拉伸段较少,易带动夹持部13大幅度拉伸,可能造成产品厚度不均、凹面不平整、裂纹、波纹状等缺陷。
所述夹持部13的宽度c根据所述3D玻璃的产品外形尺寸设置,一般地,所述夹持部13的宽度c设置为3~15mm,用于在热吸工艺中通过模具压紧平板玻璃。夹持部13过大时:玻璃耗用面积加大,成本升高。夹持部13过小时:在热吸工艺中压边滑脱,材料流动异常,可能出现成型不到位、厚度不均、褶皱、波纹状等缺陷。
由上述可知,所述预留余量的平板玻璃1的预留余量,是指在进行热吸工艺前的平板玻璃具有拉伸部12和夹持部13的加工余量。热吸成型之后获得的3D玻璃坯料的边部余量相应于平板玻璃的预留余量。通过对大块玻璃开料得到预留余量的平板玻璃1,所述预留余量的平板玻璃1的尺寸大于2D展开部11、拉伸部12和夹持部13的尺寸之和即可,其外形形状可以是方形或异形等。
开料得到所述预留余量的平板玻璃1后,经超声波清洗后进行热吸工艺。需要说明的是,清洗作为3D玻璃制作方法的辅助程序,不仅在热吸工艺前需要进行清洗,在切割后、扫光后、强化后都需要进行清洗。
步骤2,采用热吸工艺使平板玻璃1贴合成型在模具的凹模上表面,得到3D玻璃坯料2:
如图6所示,步骤2中,所述模具采用具有透气性的材料制成,如石墨材料,不仅具有透气性,还能够满足玻璃热弯温度条件。所述模具包括上模21和下模22,所述上模21用于与下模22配合压紧平板玻璃1的夹持部13,所述下模22为凹模,凹模下表面设置有向下开口的吸气槽;所述吸气槽包括对应所述3D玻璃的弯曲部102的吸气槽一231和对应所述3D玻璃的视窗部103的吸气槽二232。由此,步骤1将预留余量的平板玻璃1放置在模具中的过程为:预留余量的平板玻璃1的夹持部13通过上模21和下模22压紧,也就是说,本发明采用的模具中,上模21只会对夹持部13产生压力,而不会对整 个平板玻璃1的上表面产生压力,从而使本发明相比传统的热压成型,不需要使用凸模,避免了凸模和凹模摩擦接触的过程,减少了模具磨损,提升了模具使用寿命,并且相当于半套模具,节约了成本;同时,又避免了3D玻璃与凸模的接触受力,减轻了模印缺陷和玻璃凸面模印,使玻璃扫光时间减少,节约了成本。在本实施例中,吸气槽的形状不受限制,通过设置吸气槽的排列方式,以及吸气槽到凹模上表面的壁厚,来控制模具中玻璃上表面和下表面的压力差,以此调节凹模上表面不同位置受到不同的吸力,使玻璃均匀受力贴合到凹模上表面,能轻易开发各种弯曲角度的3D玻璃。
在本发明的模具中,所述模具具有凹模,但不具有凸模。凹模构成用于,将放置在模具中的预留余量的平板玻璃采用热吸工艺贴合成型在凹模上表面上,从而得到3D玻璃坯料。
在一些实施方式中,所述凹模构成为下模,还设有上模,所述上模用于在热吸工艺中与下模配合压紧预留余量的平板玻璃的位于最外侧的夹持部。
在一些实施方式中,所述凹模由透气性的材料制成,所述凹模下表面设置有向下开口的吸气槽。
在本发明中,吸气槽的排列方式和/或吸气槽到凹模上表面的壁厚能够被不同地设置。
在一些实施方式中,所述吸气槽包括对应所述3D玻璃的弯曲部的吸气槽一和对应所述3D玻璃的视窗部的吸气槽二。在一些实施方式中,所述吸气槽二到凹模上表面的壁厚由内向外依次增加。
所述步骤2可以采用一套模具或两套模具进行热吸工艺:
(1)如图7所示,当所述步骤2采用一套模具进行热吸工艺时,所述模具的凹模上表面的弯曲度与所述3D玻璃的弯曲度相同;则所述步骤2包括以下子步骤:
步骤2.11,加热至玻璃热弯温度,使平板玻璃软化至具有一定流动性;
步骤2.12,在玻璃热弯温度范围内,对凹模下表面抽气,使平板玻璃的上表面与下表面之间形成压力差后贴合成型在模具的凹模上表面;
步骤2.13,缓慢降温,得到3D玻璃坯料2。
在本发明中,缓慢降温是指,玻璃在700-800度高温下成型后在设备内缓慢降温,降温速度在50-150℃/min的范围内。如果急速降温,则玻璃会产生应力,发生翘曲,甚至破裂。
(2)如图8a和8b所示,当所述步骤2采用两套模具进行热吸工艺时;采用的两套模具包括:凹模上表面的弯曲度小于所述3D玻璃的弯曲度的模具一,以及凹模上表面的弯曲度与所述3D玻璃的弯曲度相同的模具二;则所述步骤2包括:先采用模具一进行热 吸工艺,得到弯曲度小于所述3D玻璃的弯曲度的3D玻璃坯料2;将弯曲度小于所述3D玻璃的弯曲度的3D玻璃坯料2从模具一中取出,再采用模具二进行热吸工艺,得到弯曲度与所述3D玻璃的弯曲度相同的3D玻璃坯料2;
其中,采用模具一或模具二进行热吸工艺的过程与采用一套模具进行热吸工艺的过程相同,包括上述的步骤2.11~2.13。
需要说明的是,所述3D玻璃的侧壁部101和弯曲部102垂直于视窗部103的高度之和m为0<m≤10mm时,均可以采用一套模具或两套模具进行热吸工艺。在实际应用中,可以根据m值或所需求的3D玻璃的厚度均匀性等进行选择,一般地,当m值较小或对所需求的3D玻璃的厚度均匀性要求较低时,采用一套模具进行热吸工艺,当m值较大或对所需求的3D玻璃的厚度均匀性要求较高时,采用两套模具进行热吸工艺。
进一步地,在采用一套模具或两套模具进行热吸工艺时,所述步骤2.12的方法为:
(1)一次成型:如图7、8a和8b所示,在玻璃热弯温度范围内,对凹模下表面抽气,使平板玻璃的上表面与下表面之间形成压力差后一次贴合成型在模具的凹模上表面;或者
(2)分段成型:如图9所示,在玻璃热弯温度范围内,对凹模下表面由中部向外进行多次抽气,使每次抽气时的抽气区域对应的平板玻璃的上表面与下表面之间形成压力差后弯曲成型,直至平板玻璃贴合成型在模具的凹模上表面;其中,每次抽气时的温度以及所述压力差根据抽气次数进行调整。
其中,为了使每次抽气弯曲成型的厚度均匀性更好,吸气槽二232与凹模上表面的壁厚由内向外依次增加,同时,每次抽气时的吸力也可以根据分段数和抽气次数,以及所述3D玻璃的弯曲度进行设置。所述分段成型的热吸工艺也可以提高所需求的3D玻璃的厚度均匀性。本发明通过采用一套模具或两套模具进行热吸工艺,以及分段的热吸工艺,可以保证所需求的3D玻璃的厚度均匀性达到±0.05mm。
上述过程在凹模下表面抽气时,上表面与大气连通,通过上述过程得到的3D玻璃坯料如图10所示。可选地,在对凹模下表面抽气的同时,对平板玻璃1上表面通正压气体,有助于使玻璃上表面与下表面之间形成压力差。
进一步地,所述步骤3中采用激光或CNC对3D玻璃坯料2进行切割,得到3D玻璃半成品3,如图11所示,步骤3是对热吸工艺前平板玻璃上的预留余量进行切割,即拉伸部12和夹持部13。需要说明的是,本发明采用激光或CNC的方式切割玻璃仅仅是因为本领域现阶段所能够使用的切割方式,但并不以此限定。具体地,所述步骤3中对3D玻璃坯料2进行切割,得到3D玻璃半成品3的方法为:
步骤3.1,定位:将3D玻璃坯料2放置仿形治具中,通过仿形治具内设计的导向机构,先将3D玻璃坯料2进行初步定位,再通过真空吸附或者电动夹持或气动夹持,将3D玻璃坯料2进行固定,最后通过阻挡块将3D玻璃坯料2完全定位;
步骤3.2,切割:通过多轴联动,将固定在仿形治具内的3D玻璃坯料2定位于联动机构上,通过切割设备(激光切割机或CNC数控机床)的运动控制系统,将产品进行多角度、多位置的多轴联动(包括:两轴、三轴、四轴、五轴、六轴),从而满足产品的切割要求;
步骤3.3,下料:通过破真空或者控制电动或者控制气动,释放产品,平移固定块位置,再通过吸盘或者人手将产品取出。
进一步地,所述步骤3中对3D玻璃坯料2进行切割后得到的3D玻璃半成品3上具有CNC精雕的预留尺寸,该预留尺寸是为了防止CNC精雕使打磨倒角后得到的3D玻璃尺寸不够,提高良品率。
需要说明的是,步骤3中不仅是对预留余量进行切割,根据需要,还可以对3D玻璃皮料进行打孔等操作,如在所述侧壁部上设置的按键孔、充电孔和扬声器孔,在所述侧壁部上设置的耳机孔,和/或者在所述视窗部103设置的摄像孔。
所述步骤4包括以下子步骤:
步骤4.1,将3D玻璃半成品3固定:将3D玻璃半成品3放置在仿形治具中,通过真空吸附固定。
步骤4.2,将3D玻璃半成品3上端部位进行渐进式铣削成平角:使用磨头底部与产品上端部位接触,渐进式铣削成平角。
步骤4.3,将平角打磨成所需3D玻璃的倒角角度,得到的3D玻璃毛料4如图12所示。
所述步骤5包括以下子步骤:
步骤5.1,对3D玻璃毛料4的侧壁部101和弯曲部102外侧抛光;
步骤5.2,对3D玻璃毛料4的侧壁部101和弯曲部102内侧抛光;
步骤5.3,对3D玻璃毛料4的视窗部103内侧和外部抛光。
如图13所示,所述3D玻璃制作方法还包括:步骤6,对步骤5得到的具有侧壁部101、弯曲部102和视窗部103的3D玻璃进行强化处理,得到强化后的3D玻璃。具体地,所述强化处理包括:将步骤5得到的具有侧壁部101、弯曲部102和视窗部103的3D玻璃放入强化框依次进行预热、强化、冷却、泡水后,转入清洗框进行清洗,清洗完成后得到强化后的3D玻璃。
通过上述过程可知,本发明的一种3D玻璃制作方法制作的一种3D玻璃,如图3和14所示,包括视窗部103、弯曲部102和侧壁部101;所述视窗部103和侧壁部101四周均通过弯曲部102连接,形成四曲面3D玻璃;所述弯曲部102的弯曲角度n为0°<n≤90°;所述侧壁部101和弯曲部102垂直于视窗部部的高度之和m为0<m≤10mm。其中,所述视窗部103与侧壁部101之间的夹角等于所述弯曲部102的弯曲角度n,即所述视窗部103通过弯曲部102平滑地过度到侧壁部101。
在一些实施方式中,所述弯曲部102的弯曲角度n为88°≤n≤90°,使得3D玻璃更加美观。
将所述3D玻璃用于手机、平板等电子设备时,为了使侧壁部101可以用于显示和操作,又满足目前电子设备市场对轻薄的需求,所述侧壁部101和弯曲部102垂直于视窗部103的高度之和m为6≤m≤7.5mm。
在一些实施方式中,所述侧壁部101和/或视窗部103设置有开孔,如在所述侧壁部101上设置有按键孔、充电孔和扬声器孔;在所述侧壁部101上设置有耳机孔,用于需要3.5mm耳机孔的电子设备;在所述视窗部103设置有摄像孔,用于手机等电子设备的前置摄像头。
实施例1:
应用本发明的一种3D玻璃制作方法制作一种3D玻璃,所述的一种3D玻璃,包括视窗部103、弯曲部102和侧壁部101;所述视窗部103和侧壁部101通过弯曲部102连接;所述弯曲部102的弯曲角度n为0°<n≤10°,例如n为3°,5°,7°,9°,10°;所述侧壁部101和弯曲部102垂直于视窗部103的高度之和m为0<m≤1mm,例如m为0.3mm,0.5mm,0.7mm,0.9mm,1mm。
步骤1,将预留余量的平板玻璃1放置在模具中。所述平板玻璃1的预留余量根据所述3D玻璃的外形尺寸设计;然后选取厚度为0.25mm的高铝硅白玻璃作为原材料,根据所述平板玻璃1的预留余量开料。
步骤2,采用一套模具进行热吸工艺,使平板玻璃1贴合成型在模具的凹模表面,得到3D玻璃坯料2,所述模具的凹模上表面的弯曲度与所述3D玻璃的弯曲度相同:
步骤2.11,平板玻璃1放置在模具中后,经过4分钟升温至550℃~600℃,使平板玻璃1软化至具有一定流动性;
步骤2.12,在温度为550℃~600℃范围内,对凹模下表面抽气30秒,使平板玻璃1的上表面和下表面之间形成压力差后一次贴合成型在模具的凹模上表面;其中,压力差维持在0.090~0.098Mpa。
步骤2.13,缓慢降温,得到3D玻璃坯料2。
步骤3,对3D玻璃坯料2进行切割,得到3D玻璃半成品3:采用激光切割,并在切割过程中使3D玻璃坯料2横向固定,得到的3D玻璃半成品3上具有CNC精雕的预留尺寸为0.02~0.1mm。
步骤4,对3D玻璃半成品3进行CNC精雕打磨倒角,得到3D玻璃毛料4:采用的磨头直径为6~8mm,砂粒为300#~500#。将3D玻璃半成品3固定;设置CNC数控机床工作参数:主轴转速为20000rpm;切削进给速度为300m/min;每次路径加工量为0.02mm。
步骤5,对3D玻璃毛料4的表面进行扫光处理:
步骤5.1,对3D玻璃毛料4的侧壁部101和弯曲部102外侧抛光。将3D玻璃毛料4放置在垫块上,垫块可以是邵氏硬度为60~65的仿形硅胶,塞钢或电木;采用毛刷进行抛光,毛刷可以是精毛,精毛与抛光革混合,或者邵氏硬度为65~70的抛光革。设置毛刷的转速为400rpm;上下抛动速度为5mm/min;工件速度为10rpm。
步骤5.2,对3D玻璃毛料4的侧壁部101和弯曲部102内侧抛光;将3D玻璃毛料4放置在仿形夹具中,可使用CNC加工运行方式抛光,抛光磨头与弯曲部102的弯曲角度相匹配,其材质由聚氨酯海绵和阻尼布组成。
步骤5.3,对3D玻璃毛料4的视窗部103内侧和外侧抛光。采用毛刷进行单面扫光工艺,抛光视窗部103内侧使用的毛刷可以是抛光革,聚氨酯海绵,或者抛光革与聚氨酯海绵混合;抛光视窗部103外侧使用的毛刷可以是聚氨酯海绵或者抛光革与海绵混合;
步骤6,对步骤5得到的具有侧壁部、弯曲部和视窗部的3D玻璃进行强化处理,得到强化后的3D玻璃:将将步骤5得到的具有侧壁部、弯曲部和视窗部的3D玻璃放入强化框依次进行预热至300℃、再加热至380℃时强化、冷却、泡水后,转入清洗框进行清洗,清洗完成后得到3D玻璃成品。
实施例2:
应用本发明的一种3D玻璃制作方法制作一种3D玻璃,所述的一种3D玻璃,包括视窗部103、弯曲部102和侧壁部101;所述视窗部103和侧壁部101通过弯曲部102连接;所述弯曲部102的弯曲角度n为30°≤n≤80°,例如n为30°40°,45°,50°,55°,60°,65°,70°,75°,80°;所述侧壁部101和弯曲部102垂直于视窗部的高度之和m为1<m≤5mm,例如m为1.5mm,2mm,3mm,4mm,5mm。
步骤1,将预留余量的平板玻璃1放置在模具中。所述平板玻璃1的预留余量根据所述3D玻璃的外形尺寸设计;然后选取厚度为0.4mm的康宁玻璃作为原材料,根据所述平板玻璃1的预留余量开料。
步骤2,采用一套模具进行热吸工艺,使平板玻璃1贴合成型在模具的凹模表面,得到3D玻璃坯料2,所述模具的凹模上表面的弯曲度与所述3D玻璃的弯曲度相同:
步骤2.11,平板玻璃1放置在模具中后,经过8分钟升温至600℃~770℃,使平板玻璃1软化至具有一定流动性;
步骤2.12,在温度为600℃~770℃范围内,对凹模下表面由中部向外进行3次抽气,每次抽气50~60秒,使每次抽气时的抽气区域对应的平板玻璃1的上表面与下表面之间形成压力差后弯曲成型,直至平板玻璃1贴合成型在模具的凹模上表面;其中,每次抽气时形成的压力差依次为0~0.036Mpa,0.036~0.052Mpa,0.052Mpa~0.098Mpa;每次抽气时的温度依次为600℃~670℃,670℃~700℃,700℃~770℃。
步骤2.13,缓慢降温,得到3D玻璃坯料2。
步骤3,对3D玻璃坯料2进行切割,得到3D玻璃半成品3:采用激光切割,并在切割过程中使3D玻璃坯料2横向固定,得到的3D玻璃半成品3上具有CNC精雕的预留尺寸为0.05~1.5mm。
步骤4,对3D玻璃半成品3进行CNC精雕打磨倒角,得到3D玻璃毛料4:采用的磨头直径为9~12mm,砂粒为600#。将3D玻璃半成品3固定;设置CNC数控机床工作参数:主轴转速为30000rpm;切削进给速度为500m/min;每次路径加工量为0.05mm。
步骤5,对3D玻璃毛料4的表面进行扫光处理:
步骤5.1,对3D玻璃毛料4的侧壁部101和弯曲部102外侧抛光。将3D玻璃毛料4放置在垫块上,垫块可以是邵氏硬度为65~75的仿形硅胶,塞钢或电木;采用毛刷进行抛光,毛刷可以是精毛,精毛与抛光革混合,或者邵氏硬度为65~75的抛光革。设置毛刷的转速为600rpm;上下抛动速度为30mm/min;工件速度为5rpm。
步骤5.2,对3D玻璃毛料4的侧壁部101和弯曲部102内侧抛光;将3D玻璃毛料4放置在仿形夹具中,可使用CNC加工运行方式抛光,抛光磨头与弯曲部102的弯曲角度相匹配,其材质由聚氨酯海绵和阻尼布组成。
步骤5.3,对3D玻璃毛料4的视窗部103内侧和外侧抛光。采用毛刷进行单面扫光工艺,抛光视窗部103内侧使用的毛刷可以是抛光革,聚氨酯海绵,或者抛光革与聚氨酯海绵混合;抛光视窗部103外侧使用的毛刷可以是聚氨酯海绵或者抛光革与海绵混合;
步骤6,对步骤5得到的具有侧壁部、弯曲部和视窗部的3D玻璃进行强化处理,得到强化后的3D玻璃:将将步骤5得到的具有侧壁部、弯曲部和视窗部的3D玻璃放入强化框依次进行预热至330℃、再加热至400℃时强化、冷却、泡水后,转入清洗框进行清洗,清洗完成后得到3D玻璃成品。
实施例3:
应用本发明的一种3D玻璃制作方法制作一种3D玻璃,所述的一种3D玻璃,包括视窗部103、弯曲部102和侧壁部101;所述视窗部103和侧壁部101通过弯曲部102连接;所述弯曲部102的弯曲角度n为80°<n<90°,例如n为81°,82°,83°,84°,85°,86°,87°,88°,89°;所述侧壁部101和弯曲部102垂直于视窗部的高度之和m为5<m≤7.5mm,例如m为5.5mm,6mm,6.5mm,7mm,7.5mm。
步骤1,将预留余量的平板玻璃1放置在模具中。所述平板玻璃1的预留余量根据所述3D玻璃的外形尺寸设计;然后选取厚度为1.1mm的熊猫玻璃作为原材料,根据所述平板玻璃1的预留余量开料。
步骤2,采用两套模具进行热吸工艺,使平板玻璃1贴合成型在模具的凹模表面,得到3D玻璃坯料2,采用的两套模具包括:凹模上表面的弯曲度小于所述3D玻璃的弯曲度的模具一,以及凹模上表面的弯曲度与所述3D玻璃的弯曲度相同的模具二:
(1)采用模具一进行热吸工艺,得到弯曲度小于所述3D玻璃的弯曲度的3D玻璃坯料2:
步骤2.11,平板玻璃1放置在模具中后,经过4~10分钟升温至700℃~850℃,使平板玻璃1软化至具有一定流动性;
步骤2.12,在温度为700℃~850℃范围内,对凹模下表面抽气90秒,使平板玻璃1的上表面和下表面之间形成压力差后一次贴合成型在模具的凹模上表面;其中,压力差维持在0.090~0.098Mpa。
步骤2.13,缓慢降温,得到3D玻璃坯料2。
(2)将弯曲度小于所述3D玻璃的弯曲度的3D玻璃坯料2从模具一中取出,再采用模具二进行步骤2.11~2.13的热吸工艺,得到弯曲度与所述3D玻璃的弯曲度相同的3D玻璃坯料2。
步骤3,对3D玻璃坯料2进行切割,得到3D玻璃半成品3:采用激光切割,并在切割过程中使3D玻璃坯料2横向固定,得到的3D玻璃半成品3上具有CNC精雕的预留尺寸为0.2mm。
步骤4,对3D玻璃半成品3进行CNC精雕打磨倒角,得到3D玻璃毛料4:采用的磨头直径为12~15mm,砂粒为1000#。将3D玻璃半成品3固定;设置CNC数控机床工作参数:主轴转速为45000rpm;切削进给速度为900m/min;每次路径加工量为0.05mm。
步骤5,对3D玻璃毛料4的表面进行扫光处理:
步骤5.1,对3D玻璃毛料4的侧壁部101和弯曲部102外侧抛光。将3D玻璃毛料4 放置在垫块上,垫块可以是邵氏硬度为75~80的仿形硅胶,塞钢或电木;采用毛刷进行抛光,毛刷可以是精毛,精毛与抛光革混合,或者邵氏硬度为70~75的抛光革。设置毛刷的转速为1000rpm;上下抛动速度为100mm/min;工件速度为1rpm。
步骤5.2,对3D玻璃毛料4的侧壁部101和弯曲部102内侧抛光;将3D玻璃毛料4放置在仿形夹具中,可使用CNC加工运行方式抛光,抛光磨头与弯曲部102的弯曲角度相匹配,其材质由聚氨酯海绵和阻尼布组成。
步骤5.3,对3D玻璃毛料4的视窗部103内侧和外侧抛光。采用毛刷进行单面扫光工艺,抛光视窗部103内侧使用的毛刷可以是抛光革,聚氨酯海绵,或者抛光革与聚氨酯海绵混合;抛光视窗部103外侧使用的毛刷可以是聚氨酯海绵或者抛光革与海绵混合;
步骤6,对步骤5得到的具有侧壁部、弯曲部和视窗部的3D玻璃进行强化处理,得到强化后的3D玻璃:将将步骤5得到的具有侧壁部、弯曲部和视窗部的3D玻璃放入强化框依次进行预热至360℃、再加热至460℃时强化、冷却、泡水后,转入清洗框进行清洗,清洗完成后得到3D玻璃成品。
实施例4:
应用本发明的一种3D玻璃制作方法制作一种3D玻璃,所述的一种3D玻璃,包括视窗部103、弯曲部102和侧壁部101;所述视窗部103和侧壁部101通过弯曲部102连接;所述弯曲部102的弯曲角度n为90°;所述侧壁部101和弯曲部102垂直于视窗部的高度之和m为5<m≤7.5mm,例如m为5.5mm,6mm,6.5mm,7mm,7.5mm。
步骤1,将预留余量的平板玻璃1放置在模具中。所述平板玻璃1的预留余量根据所述3D玻璃的外形尺寸设计;然后选取厚度为0.8mm的康宁玻璃作为原材料,根据所述平板玻璃1的预留余量开料。
步骤2,采用两套模具进行热吸工艺,使平板玻璃1贴合成型在模具的凹模表面,得到3D玻璃坯料2,采用的两套模具包括:凹模上表面的弯曲度小于所述3D玻璃的弯曲度的模具一,以及凹模上表面的弯曲度与所述3D玻璃的弯曲度相同的模具二:
(1)采用模具一进行热吸工艺,得到弯曲度小于所述3D玻璃的弯曲度的3D玻璃坯料2:
步骤2.11,平板玻璃1放置在模具中后,经过10分钟升温至550℃~850℃,使平板玻璃1软化至具有一定流动性;
步骤2.12,在温度为550℃~850℃范围内,对凹模下表面由中部向外进行5次抽气,每次抽气110~120秒,使每次抽气时的抽气区域对应的平板玻璃1的上表面与下表面之间形成压力差后弯曲成型,直至平板玻璃1贴合成型在模具的凹模上表面;其中,每次 抽气时形成的压力差依次为0~0.024Mpa,0.024~0.036Mpa,0.036~0.052Mpa,0.052~0.074Mpa,0.074~0.098Mpa;每次抽气时的温度依次为550℃~600℃,600℃~670℃,670℃~700℃,700℃~770℃,770℃~800℃。
步骤2.13,缓慢降温,得到3D玻璃坯料2。
(2)将弯曲度小于所述3D玻璃的弯曲度的3D玻璃坯料2从模具一中取出,再采用模具二进行步骤2.11~2.13的热吸工艺,得到弯曲度与所述3D玻璃的弯曲度相同的3D玻璃坯料2。
步骤3,对3D玻璃坯料2进行切割,得到3D玻璃半成品3:采用激光切割,并在切割过程中使3D玻璃坯料2横向固定,得到的3D玻璃半成品3上具有CNC精雕的预留尺寸为0.2mm。
步骤4,对3D玻璃半成品3进行CNC精雕打磨倒角,得到3D玻璃毛料4:采用的磨头直径为12~15mm,砂粒为1200#。将3D玻璃半成品3固定;设置CNC数控机床工作参数:主轴转速为60000rpm;切削进给速度为1500m/min;每次路径加工量为0.2mm。
步骤5,对3D玻璃毛料4的表面进行扫光处理:
步骤5.1,对3D玻璃毛料4的侧壁部101和弯曲部102外侧抛光。将3D玻璃毛料4放置在垫块上,垫块可以是邵氏硬度为80的仿形硅胶,塞钢或电木;采用毛刷进行抛光,毛刷可以是精毛,精毛与抛光革混合,或者邵氏硬度为75的抛光革。设置毛刷的转速为1200rpm;上下抛动速度为180mm/min;工件速度为10rpm。
步骤5.2,对3D玻璃毛料4的侧壁部101和弯曲部102内侧抛光;将3D玻璃毛料4放置在仿形夹具中,可使用CNC加工运行方式抛光,抛光磨头与弯曲部102的弯曲角度相匹配,其材质由聚氨酯海绵和阻尼布组成。
步骤5.3,对3D玻璃毛料4的视窗部103内侧和外侧抛光。采用毛刷进行单面扫光工艺,抛光视窗部103内侧使用的毛刷可以是抛光革,聚氨酯海绵,或者抛光革与聚氨酯海绵混合;抛光视窗部103外侧使用的毛刷可以是聚氨酯海绵或者抛光革与海绵混合;
步骤6,对步骤5得到的具有侧壁部、弯曲部和视窗部的3D玻璃进行强化处理,得到强化后的3D玻璃:将将步骤5得到的具有侧壁部、弯曲部和视窗部的3D玻璃放入强化框依次进行预热至340℃、再加热至440℃时强化、冷却、泡水后,转入清洗框进行清洗,清洗完成后得到3D玻璃成品。
实施例5:
应用本发明的一种3D玻璃制作方法制作一种3D玻璃,所述的一种3D玻璃,包括视窗部103、弯曲部102和侧壁部101;所述视窗部103和侧壁部101通过弯曲部102连接; 所述弯曲部102的弯曲角度n为88°≤n≤90°,例如n为88°,89°,90°;所述侧壁部101和弯曲部102垂直于视窗部的高度之和m为7.5<m≤10mm,例如m为8mm,8.5mm,9mm,9.5mm,10mm。
步骤1,将预留余量的平板玻璃1放置在模具中。所述平板玻璃1的预留余量根据所述3D玻璃的外形尺寸设计;然后选取厚度为1.2mm的旭硝子玻璃作为原材料,根据所述平板玻璃1的预留余量开料。
步骤2,采用两套模具进行热吸工艺,使平板玻璃1贴合成型在模具的凹模表面,得到3D玻璃坯料2,采用的两套模具包括:凹模上表面的弯曲度小于所述3D玻璃的弯曲度的模具一,以及凹模上表面的弯曲度与所述3D玻璃的弯曲度相同的模具二:
(1)采用模具一进行热吸工艺,得到弯曲度小于所述3D玻璃的弯曲度的3D玻璃坯料2:
步骤2.11,平板玻璃1放置在模具中后,经过8分钟升温至550℃~850℃,使平板玻璃1软化至具有一定流动性;
步骤2.12,在温度为700℃~850℃范围内,对凹模下表面由中部向外进行4次抽气,每次抽气100秒,使每次抽气时的抽气区域对应的平板玻璃1的上表面与下表面之间形成压力差后弯曲成型,直至平板玻璃1贴合成型在模具的凹模上表面;其中,每次抽气时形成的压力差依次为0~0.024Mpa,0.024~0.048Mpa,0.048~0.074Mpa,0.074~0.098Mpa;每次抽气时的温度依次为700℃~730℃,730℃~770℃,770℃~800℃,800℃~850℃。
步骤2.13,缓慢降温,得到3D玻璃坯料2。
(2)将弯曲度小于所述3D玻璃的弯曲度的3D玻璃坯料2从模具一中取出,再采用模具二进行步骤2.11~2.13的热吸工艺,得到弯曲度与所述3D玻璃的弯曲度相同的3D玻璃坯料2;与模具一进行的热吸工艺不同的是,模具二进行的步骤2.12为:在温度为700℃~850℃范围内,对凹模下表面抽气70秒,使平板玻璃的上表面与下表面之间形成压力差后一次贴合成型在模具的凹模上表面。
步骤3,对3D玻璃坯料2进行切割,得到3D玻璃半成品3:采用激光切割,并在切割过程中使3D玻璃坯料2横向固定,得到的3D玻璃半成品3上具有CNC精雕的预留尺寸为3mm。
步骤4,对3D玻璃半成品3进行CNC精雕打磨倒角,得到3D玻璃毛料4:采用的磨头直径为6~15mm,砂粒为300#~1200#。将3D玻璃半成品3固定;设置CNC数控机床工作参数:主轴转速为20000~60000rpm;切削进给速度为300~1500m/min;每次路径 加工量为0.3mm。
步骤5,对3D玻璃毛料4的表面进行扫光处理:
步骤5.1,对3D玻璃毛料4的侧壁部101和弯曲部102外侧抛光。将3D玻璃毛料4放置在垫块上,垫块可以是邵氏硬度为80的仿形硅胶,塞钢或电木;采用毛刷进行抛光,毛刷可以是精毛,精毛与抛光革混合,或者邵氏硬度为75的抛光革。设置毛刷的转速为1100rpm;上下抛动速度为5mm/min;工件速度为4rpm。
步骤5.2,对3D玻璃毛料4的侧壁部101和弯曲部102内侧抛光;将3D玻璃毛料4放置在仿形夹具中,可使用CNC加工运行方式抛光,抛光磨头与弯曲部102的弯曲角度相匹配,其材质由聚氨酯海绵和阻尼布组成。
步骤5.3,对3D玻璃毛料4的视窗部103内侧和外侧抛光。采用毛刷进行单面扫光工艺,抛光视窗部103内侧使用的毛刷可以是抛光革,聚氨酯海绵,或者抛光革与聚氨酯海绵混合;抛光视窗部103外侧使用的毛刷可以是聚氨酯海绵或者抛光革与海绵混合;
步骤6,对步骤5得到的具有侧壁部、弯曲部和视窗部的3D玻璃进行强化处理,得到强化后的3D玻璃:将将步骤5得到的具有侧壁部、弯曲部和视窗部的3D玻璃放入强化框依次进行预热至300~320℃、再加热至380~420℃时强化、冷却、泡水后,转入清洗框进行清洗,清洗完成后得到3D玻璃成品。
实施例6:
应用本发明的一种3D玻璃制作方法制作一种3D玻璃,所述的一种3D玻璃,包括视窗部103、弯曲部102和侧壁部101;所述视窗部103和侧壁部101通过弯曲部102连接;所述弯曲部102的弯曲角度n为88°≤n≤90°;所述侧壁部101和弯曲部102垂直于视窗部的高度之和m为6<m≤7.5mm。
步骤1,将预留余量的平板玻璃1放置在模具中。所述平板玻璃1的预留余量根据所述3D玻璃的外形尺寸设计;然后选取厚度为0.6mm的熊猫玻璃作为原材料,根据所述平板玻璃1的预留余量开料。
步骤2,采用两套模具进行热吸工艺,使平板玻璃1贴合成型在模具的凹模表面,得到3D玻璃坯料2,采用的两套模具包括:凹模上表面的弯曲度小于所述3D玻璃的弯曲度的模具一,以及凹模上表面的弯曲度与所述3D玻璃的弯曲度相同的模具二:
(1)采用模具一进行热吸工艺,得到弯曲度小于所述3D玻璃的弯曲度的3D玻璃坯料2:
步骤2.11,平板玻璃1放置在模具中后,经过4分钟升温至550℃~850℃,使平板玻璃1软化至具有一定流动性;
步骤2.12,在温度为550℃~850℃范围内,对凹模下表面抽气70~90秒,使平板玻璃1的上表面与下表面之间形成压力差后一次贴合成型在模具的凹模上表面。
步骤2.13,缓慢降温,得到3D玻璃坯料2。
(2)将弯曲度小于所述3D玻璃的弯曲度的3D玻璃坯料2从模具一中取出,再采用模具二进行步骤2.11~2.13的热吸工艺,得到弯曲度与所述3D玻璃的弯曲度相同的3D玻璃坯料2;与模具一进行的热吸工艺不同的是,模具二进行的步骤2.12为:在温度为550℃~850℃范围内,对凹模下表面由中部向外进行5次抽气,每次抽气30~120秒,使每次抽气时的抽气区域对应的平板玻璃1的上表面与下表面之间形成压力差后弯曲成型,直至平板玻璃1贴合成型在模具的凹模上表面;其中,每次抽气时形成的压力差依次为0~0.024Mpa,0.024~0.036Mpa,0.036~0.052Mpa,0.052~0.074Mpa,0.074~0.098Mpa;每次抽气时的温度依次为550℃~600℃,600℃~670℃,670℃~700℃,700℃~770℃,770℃~800℃。
步骤3,对3D玻璃坯料2进行切割,得到3D玻璃半成品3:采用激光切割,并在切割过程中使3D玻璃坯料2横向固定,得到的3D玻璃半成品3上具有CNC精雕的预留尺寸为2mm。
步骤4,对3D玻璃半成品3进行CNC精雕打磨倒角,得到3D玻璃毛料4:采用的磨头直径为6~15mm,砂粒为300#~1200#。将3D玻璃半成品3固定;设置CNC数控机床工作参数:主轴转速为20000~60000rpm;切削进给速度为300~1500m/min;每次路径加工量为0.1mm。
步骤5,对3D玻璃毛料4的表面进行扫光处理:
步骤5.1,对3D玻璃毛料4的侧壁部101和弯曲部102外侧抛光。将3D玻璃毛料4放置在垫块上,垫块可以是邵氏硬度为70的仿形硅胶,塞钢或电木;采用毛刷进行抛光,毛刷可以是精毛,精毛与抛光革混合,或者邵氏硬度为70的抛光革。设置毛刷的转速为800rpm;上下抛动速度为90mm/min;工件速度为6rpm。
步骤5.2,对3D玻璃毛料4的侧壁部101和弯曲部102内侧抛光;将3D玻璃毛料4放置在仿形夹具中,可使用CNC加工运行方式抛光,抛光磨头与弯曲部102的弯曲角度相匹配,其材质由聚氨酯海绵和阻尼布组成。
步骤5.3,对3D玻璃毛料4的视窗部103内侧和外侧抛光。采用毛刷进行单面扫光工艺,抛光视窗部103内侧使用的毛刷可以是抛光革,聚氨酯海绵,或者抛光革与聚氨酯海绵混合;抛光视窗部103外侧使用的毛刷可以是聚氨酯海绵或者抛光革与海绵混合;
步骤6,对步骤5得到的具有侧壁部、弯曲部和视窗部的3D玻璃进行强化处理,得 到强化后的3D玻璃:将将步骤5得到的具有侧壁部、弯曲部和视窗部的3D玻璃放入强化框依次进行预热至340~360℃、再加热至420~460℃时强化、冷却、泡水后,转入清洗框进行清洗,清洗完成后得到3D玻璃成品。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (25)

  1. 一种3D玻璃制作方法,其特征在于,所述方法包括以下步骤:
    步骤1,将预留余量的平板玻璃放置在模具中;
    步骤2,采用热吸工艺使平板玻璃贴合成型在模具的凹模上表面上,得到3D玻璃坯料;
    步骤3,对3D玻璃坯料进行切割,得到3D玻璃半成品;
    步骤4,对3D玻璃半成品进行例如以CNC精雕方式打磨倒角,得到3D玻璃毛料;
    步骤5,对3D玻璃毛料的表面进行扫光处理,得到例如具有侧壁部、弯曲部和视窗部的3D玻璃。
  2. 根据权利要求1所述的3D玻璃制作方法,其特征在于,所述预留余量的平板玻璃包括由内向外依次设置的2D展开部、拉伸部和夹持部,优选地,所述2D展开部的形状和面积与所述3D玻璃进行2D展开后的形状和面积相同;优选地,所述拉伸部的宽度不超过所述3D玻璃坯料的拉伸段的较长弧线的长度;优选地,所述夹持部的宽度为3~15mm,优选地,所述夹持部在热吸工艺中被起压紧作用的上模压靠到构成为下模的凹模上,从而压紧平板玻璃。
  3. 根据权利要求1所述的3D玻璃制作方法,其特征在于,所述预留余量的平板玻璃通过对大块玻璃开料得到。
  4. 根据权利要求1所述的3D玻璃制作方法,其特征在于,在步骤2中,采用一套模具进行热吸工艺,其中,所述模具的凹模上表面的弯曲度与所述3D玻璃的弯曲度相同;所述步骤2包括以下子步骤:
    步骤2.11,将平板玻璃加热至玻璃热弯温度;
    步骤2.12,在玻璃热弯温度范围内,对凹模下表面抽气,使平板玻璃的上表面与下表面之间形成压力差,并且因此使得平板玻璃贴合成型在模具的凹模上表面上;
    步骤2.13,将贴合成型后的平板玻璃缓慢降温,得到3D玻璃坯料。
  5. 根据权利要求1所述的3D玻璃制作方法,其特征在于,在步骤2中,采用两套模具进行热吸工艺,其中,采用的两套模具包括:凹模上表面的弯曲度小于所述3D玻璃的弯曲度的模具一,以及凹模上表面的弯曲度与所述3D玻璃的弯曲度相同的模具二;优选地,所述步骤2包括依次采用模具一和模具二执行以下子步骤:
    步骤2.11,将平板玻璃加热至玻璃热弯温度;
    步骤2.12,在玻璃热弯温度范围内,对模具的凹模下表面抽气,使平板玻璃的上表 面与下表面之间形成压力差,并且因此使得平板玻璃贴合成型在模具的凹模上表面上;
    步骤2.13,将贴合成型后的平板玻璃缓慢降温,得到3D玻璃坯料。
  6. 根据权利要求4或5所述的3D玻璃制作方法,其特征在于,所述步骤2.12包括:
    在玻璃热弯温度范围内,对凹模下表面抽气,使平板玻璃的上表面与下表面之间形成压力差,平板玻璃一次贴合成型在模具的凹模上表面上;或者
    在玻璃热弯温度范围内,对凹模下表面由中部向外进行多次抽气,使得在每次抽气时与抽气区域对应的平板玻璃的上表面与下表面之间形成压力差,平板玻璃弯曲成型,直至平板玻璃贴合成型在模具的凹模上表面上。
  7. 根据权利要求6所述的3D玻璃制作方法,其特征在于,在对凹模下表面抽气的同时,对平板玻璃上表面通正压气体。
  8. 根据权利要求1所述的3D玻璃制作方法,其特征在于,在步骤3中采用激光或CNC对3D玻璃坯料进行切割,得到3D玻璃半成品。
  9. 根据权利要求8所述的3D玻璃制作方法,其特征在于,所述3D玻璃半成品具有用于CNC精雕的预留尺寸。
  10. 根据权利要求1所述的3D玻璃制作方法,其特征在于,所述步骤4包括以下子步骤:
    步骤4.1,将3D玻璃半成品固定;
    步骤4.2,将3D玻璃半成品上端部位渐进式铣削成平角;
    步骤4.3,将平角打磨成所需3D玻璃的倒角角度,得到3D玻璃毛料。
  11. 根据权利要求1所述的3D玻璃制作方法,其特征在于,所述步骤5包括以下子步骤:
    步骤5.1,对3D玻璃毛料的侧壁部和弯曲部在外侧抛光;
    步骤5.2,对3D玻璃毛料的侧壁部和弯曲部在内侧抛光;
    步骤5.3,对3D玻璃毛料的视窗部在内侧和外部抛光。
  12. 根据权利要求1所述的3D玻璃制作方法,其特征在于,所述3D玻璃制作方法还包括:
    步骤6,对在步骤5中得到的3D玻璃进行强化处理,因此得到强化后的3D玻璃。
  13. 根据权利要求12所述的3D玻璃制作方法,其特征在于,所述强化处理包括:将在步骤5中得到的3D玻璃放入强化框,然后依次进行预热、强化、冷却、泡水,然后将3D玻璃转入清洗框进行清洗,在清洗完成后得到所述强化后的3D玻璃。
  14. 一种3D玻璃,其特征在于,所述3D玻璃包括视窗部、弯曲部和侧壁部;所述视窗部和侧壁部在四周均通过弯曲部互相连接,因此形成四曲面3D玻璃;所述3D玻璃采用权利要求1-13任一项所述的3D玻璃制作方法制得。
  15. 根据权利要求14所述的3D玻璃,其特征在于,所述弯曲部的弯曲角度n为0°<n≤90°,优选地,n为88°≤n≤90°。
  16. 根据权利要求14所述的3D玻璃,其特征在于,所述侧壁部和弯曲部垂直于视窗部的高度之和m为0<m≤10mm,优选地,m为6≤m≤7.5mm。
  17. 根据权利要求14所述的3D玻璃,其特征在于,所述侧壁部和/或视窗部设置有开孔。
  18. 根据权利要求14所述的3D玻璃,其特征在于,所述3D玻璃的厚度为0.25~1.2mm。
  19. 一种模具,用于实施权利要求1至13任一项所述的3D玻璃制作方法,其特征在于,所述模具具有凹模,但不具有凸模,所述凹模构成用于,将放置在模具中的预留余量的平板玻璃采用热吸工艺贴合成型在凹模上表面上,从而得到3D玻璃坯料。
  20. 根据权利要求19所述的模具,其特征在于,所述凹模构成为下模,还设有上模,所述上模用于在热吸工艺中与下模配合压紧预留余量的平板玻璃的位于最外侧的夹持部。
  21. 根据权利要求19所述的模具,其特征在于,所述凹模由透气性的材料制成,所述凹模下表面设置有向下开口的吸气槽。
  22. 根据权利要求21所述的模具,其特征在于,吸气槽的排列方式和/或吸气槽到凹模上表面的壁厚能够被不同地设置。
  23. 根据权利要求21所述的模具,其特征在于,所述吸气槽包括对应所述3D玻璃的弯曲部的吸气槽一和对应所述3D玻璃的视窗部的吸气槽二。
  24. 根据权利要求23所述的模具,其特征在于,所述吸气槽二到凹模上表面的壁厚由内向外依次增加。
  25. 一种3D玻璃坯料,其特征在于,所述3D玻璃坯料利用根据权利要求19至24中任意一项所述的模具制成,所述3D玻璃坯料包括边部余量,所述边部余量相应于平板玻璃的预留余量。
PCT/CN2019/098561 2019-04-04 2019-07-31 3d玻璃及其制作方法、模具以及3d玻璃坯料 WO2020199438A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910270423.8A CN109824249A (zh) 2019-04-04 2019-04-04 一种3d玻璃制作方法
CN201910270423.8 2019-04-04
CN201910585521.0A CN110272187B (zh) 2019-04-04 2019-07-01 一种3d玻璃及其制作方法
CN201910585521.0 2019-07-01

Publications (1)

Publication Number Publication Date
WO2020199438A1 true WO2020199438A1 (zh) 2020-10-08

Family

ID=66874832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098561 WO2020199438A1 (zh) 2019-04-04 2019-07-31 3d玻璃及其制作方法、模具以及3d玻璃坯料

Country Status (2)

Country Link
CN (3) CN109824249A (zh)
WO (1) WO2020199438A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109824249A (zh) * 2019-04-04 2019-05-31 拓米(成都)应用技术研究院有限公司 一种3d玻璃制作方法
CN110395887A (zh) * 2019-08-05 2019-11-01 重庆两江联创电子有限公司 曲面玻璃成型方法
CN110950525B (zh) * 2019-12-10 2022-10-25 Oppo广东移动通信有限公司 二面曲玻璃及其制备方法和电子设备
CN113121126A (zh) * 2019-12-31 2021-07-16 上海雷佳科学仪器有限公司 一种新型高硼硅层析展开缸的制作工艺
CN113402160A (zh) * 2020-03-17 2021-09-17 宁波江东丰汇锦瑞物联网科技有限公司 复杂形状的曲面玻璃的加工方法、曲面玻璃
CN113402159A (zh) * 2020-03-17 2021-09-17 烟台科慧科技服务有限公司 曲面玻璃的成型加工方法、曲面玻璃、玻璃制品
CN113997469A (zh) * 2020-07-27 2022-02-01 Oppo广东移动通信有限公司 制备曲面板材的模具、方法、曲面板材、壳体组件和电子设备
CN112358170A (zh) * 2020-11-12 2021-02-12 科立视材料科技有限公司 一种3d玻璃成型装置及其3d玻璃的制备方法
CN112429948B (zh) * 2020-12-02 2022-04-12 万津实业(赤壁)有限公司 曲面玻璃加工方法
CN112520995A (zh) * 2020-12-15 2021-03-19 深圳沃特佳科技有限公司 激光辅助提升cnc效率技术
CN113741098B (zh) * 2021-11-04 2022-03-01 拓米(成都)应用技术研究院有限公司 一种utg-qd型mini-led板及其应用、制备方法和光学架构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101321443A (zh) * 2008-07-04 2008-12-10 福州高意通讯有限公司 异型玻璃作为外壳的制造方法及其在电子产品中的应用
CN106102980A (zh) * 2013-12-17 2016-11-09 康宁股份有限公司 加工3d形状透明脆性基材
CN106746525A (zh) * 2016-11-24 2017-05-31 东莞市圆美精密电子有限公司 一种热弯3d玻璃白片的制造方法
CN208250154U (zh) * 2018-04-24 2018-12-18 湖南三兴精密工业股份有限公司 一种3d玻璃热吸模具
CN109095786A (zh) * 2018-11-06 2018-12-28 江苏优视光学科技股份有限公司 一种新型手机玻璃
CN109824249A (zh) * 2019-04-04 2019-05-31 拓米(成都)应用技术研究院有限公司 一种3d玻璃制作方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101258403B1 (ko) * 2011-12-09 2013-04-30 로체 시스템즈(주) 강화유리 기판 절단방법
CN107056027B (zh) * 2017-03-06 2019-11-19 瑞声科技(新加坡)有限公司 3d玻璃产品的加工方法及电子设备
CN109455906B (zh) * 2017-09-06 2022-12-13 Agc株式会社 3d罩盖玻璃及其成形用模具、及3d罩盖玻璃的制造方法
CN109437524A (zh) * 2018-12-17 2019-03-08 苏州胜禹材料科技股份有限公司 不等厚玻璃3d热弯机及3d玻璃成型方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101321443A (zh) * 2008-07-04 2008-12-10 福州高意通讯有限公司 异型玻璃作为外壳的制造方法及其在电子产品中的应用
CN106102980A (zh) * 2013-12-17 2016-11-09 康宁股份有限公司 加工3d形状透明脆性基材
CN106746525A (zh) * 2016-11-24 2017-05-31 东莞市圆美精密电子有限公司 一种热弯3d玻璃白片的制造方法
CN208250154U (zh) * 2018-04-24 2018-12-18 湖南三兴精密工业股份有限公司 一种3d玻璃热吸模具
CN109095786A (zh) * 2018-11-06 2018-12-28 江苏优视光学科技股份有限公司 一种新型手机玻璃
CN109824249A (zh) * 2019-04-04 2019-05-31 拓米(成都)应用技术研究院有限公司 一种3d玻璃制作方法
CN110272187A (zh) * 2019-04-04 2019-09-24 拓米(成都)应用技术研究院有限公司 一种3d玻璃及其制作方法

Also Published As

Publication number Publication date
CN210974401U (zh) 2020-07-10
CN110272187B (zh) 2020-07-10
CN109824249A (zh) 2019-05-31
CN110272187A (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
WO2020199438A1 (zh) 3d玻璃及其制作方法、模具以及3d玻璃坯料
CN105731772A (zh) 玻璃盖板热弯模具、玻璃盖板热弯制备系统及其工艺
CN110255870A (zh) 热弯设备及壳体的热弯成型方法
CN206230381U (zh) 一种玻璃板材夹具
CN112551872A (zh) 一种单面纹理的弧形玻璃的制作方法
CN110577354A (zh) 3d玻璃产品加工工艺、3d玻璃产品和电子设备
CN115741111A (zh) 一种钛合金异形曲面件热压超塑一体化成形方法
CN109226398A (zh) 一种翼子板以及其轮口处的小舌头翻边凹陷的处理方法
JPH10193010A (ja) 金属パネルのコーナー加工方法
CN107759056A (zh) 一种盖板玻璃模具
JPH0897111A (ja) Soi基板の製造方法
WO2021042940A1 (zh) 电子设备、电池盖、及其制造方法
CN110315363B (zh) 工件的加工方法及夹具组件
CN110539208B (zh) 陶瓷盖板加工方法和陶瓷盖板
TWI277466B (en) Manufacturing method for aluminum alloy rim
CN111055092A (zh) 光滑曲面板模具的加工方法以及光滑曲面板模具
CN106391860B (zh) 用于工件折弯和成型的集成模具
WO2021042939A1 (zh) 电子设备、电池盖、及其制造方法
CN110903036A (zh) 一种水切玻璃装配烤箱门玻璃的加工工艺
CN212888910U (zh) 成型膜片、曲面玻璃膜片复合体、模具和硅胶组件
CN212581753U (zh) 负压成型设备
CN117102978A (zh) 一种3d玻璃的抛光方法
CN113582525B (zh) 盖板及其制作方法和终端
CN112624583B (zh) 一种玻璃熔接方法
CN206828364U (zh) 一种智能手机3d曲面玻璃及其成型模具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922506

Country of ref document: EP

Kind code of ref document: A1