WO2020196134A1 - 透明表示装置、透明表示装置付きガラス板、透明表示装置付き合わせガラス、及び移動体 - Google Patents

透明表示装置、透明表示装置付きガラス板、透明表示装置付き合わせガラス、及び移動体 Download PDF

Info

Publication number
WO2020196134A1
WO2020196134A1 PCT/JP2020/011888 JP2020011888W WO2020196134A1 WO 2020196134 A1 WO2020196134 A1 WO 2020196134A1 JP 2020011888 W JP2020011888 W JP 2020011888W WO 2020196134 A1 WO2020196134 A1 WO 2020196134A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
area
light emitting
wiring
transparent
Prior art date
Application number
PCT/JP2020/011888
Other languages
English (en)
French (fr)
Inventor
幸宏 垰
将英 古賀
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2021509244A priority Critical patent/JP7420136B2/ja
Publication of WO2020196134A1 publication Critical patent/WO2020196134A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Definitions

  • the present invention relates to a transparent display device, a glass plate with a transparent display device, a laminated glass with a transparent display device, and a moving body.
  • a display device using a light emitting diode (LED) as a display pixel is known.
  • This display device includes a transparent display device that allows the image on the back side to be visually recognized through the device.
  • the drive circuit In order to manufacture a display device, it is necessary not only to make the drive circuit to be an active matrix such as a light emitting unit and a TFT smaller, but also to make the wiring itself thinner. Since the background can be seen through the transparent display device, it is necessary to make the image brightness brighter than that of a normal display device.
  • the current density per wiring tends to be high, and heat is likely to be generated in the wiring.
  • the part where the amount of current is the largest is the connection part between the main line whose base end is connected to the circuit part and supplies current to each LED and the branch line which is branched from the main line and connected to each LED.
  • a temperature distribution is generated in the display area, which causes distortion due to thermal expansion of the transparent base material of the display device, and in the worst case, cracks may occur and damage may occur. ..
  • Patent Document 1 discloses a display device having a configuration in which an electrode belonging to one of a plurality of light emitting diode rows and an electrode belonging to another light emitting diode row overlap each other in the longitudinal direction (zigza arrangement). Has been done. Further, Patent Document 2 discloses a display device for setting the lateral dimensions and average thickness of electrical interconnections, or the heat capacity and thermal conductivity to predetermined values.
  • Patent Document 1 Although it is disclosed that the heat generated from the optical elements is dispersed by evenly arranging the optical elements, the heat generated from the wiring itself is not considered.
  • Patent Document 2 there is no description or suggestion regarding the temperature rise of the member other than the LED, and when the current concentrates on the member other than the LED, that is, the wiring portion and generates heat, the temperature of the display area may increase. There is sex.
  • one embodiment of the present invention includes a transparent base material, a plurality of light emitting parts arranged on the transparent base material, wiring parts connected to each of the light emitting parts, and an electric circuit.
  • a transparent display device composed of a substrate, including a control unit that supplies a current to the light emitting unit through the wiring unit and returns a current from the light emitting unit, and the light emitting unit and the wiring unit are arranged in a display area.
  • Each of the light emitting portions includes a light emitting diode having an area of 1 mm 2 or less, and the wiring portion arranged in the display region is located in a region obtained by dividing the display region into a plurality of regions so as to have the same predetermined area.
  • the variation of the individual values of the divided regions with respect to the average value of the regions is within 30%, and the area of the region having a visible light transmittance of 20% or less in the display region is 60% or less.
  • the average of the divided regions of the product (Vn Ln / Dn) of the reciprocal (1 / Dn) of the cross section (Dn) of the wiring portion in the display region and the length (Ln).
  • the variation of individual values in the region with respect to the value falls within a predetermined range. Therefore, it is possible to prevent the display region from becoming hot due to the heat generated by the wiring portion and damaging the transparent base material.
  • FIG. 6 is a schematic view in a plan view showing a part of the transparent display device in the first embodiment in an enlarged manner.
  • FIG. 5 is a cross-sectional view showing a part of an automobile according to a fourth embodiment of the present invention.
  • FIG. 6 is a schematic view of the windshield in the fourth embodiment and the modified example when viewed from the inside of the vehicle.
  • the schematic view in plan view which shows the basic structure of the transparent display device which concerns on 5th Embodiment of this invention.
  • One embodiment of the present invention is a transparent display device including a transparent base material, a light emitting unit arranged on the transparent base material, and a wiring unit connected to each of the light emitting units.
  • Each of the light emitting portions includes a light emitting diode having an area of 1 mm 2 or less, and the area of the region having a visible light transmittance of 20% or less in the display region including the light emitting portion and the wiring portion is 60% or less.
  • the "transparent display device” refers to a display device capable of visually recognizing visual information such as a person and a background located on the back side (opposite side of the observer) of the display device under a desired usage environment. .. Note that “visible” is determined at least when the display device is in a non-display state, that is, in a state where it is not energized.
  • translucency means that the transmittance of visible light is 40% or more, preferably 60% or more, and more preferably 70% or more. .. Further, it may refer to a material having a transmittance of 5% or more and a haze (cloudiness) of 10 or less. If the transmittance is 5% or more, when you look at the outdoors during the daytime from the room, you can see the outdoors with the same or higher brightness as the indoors, so it is possible to ensure sufficient visibility. Become.
  • the transmittance is 40% or more, even if the brightness of the observer side and the other side (rear side) of the transparent display device is the same, the other side of the transparent display device can be visually recognized without any problem. It becomes possible to do. Further, when the haze is 10 or less, the contrast of the background can be secured at 10, so that the other side of the transparent display device can be visually recognized without any problem.
  • transparent means whether or not a color is applied, that is, it may be colorless and transparent, or it may be colored and transparent.
  • the "visible light transmittance" is incident in a display region having a fixed area including a portion of a transparent display device that transmits light and a portion that does not transmit light, such as a portion where an element is arranged.
  • the visible light transmittance refers to a value (%) measured by a method conforming to ISO9050.
  • Haze cloudiness refers to a value measured by a method conforming to ISO14782.
  • the transmittance measurement of visible light is performed under the condition that the area through which the light bundle transmits the display area of the transparent display device is at least one pixel, preferably a plurality of pixels.
  • the "display area” is an area in which an image (including characters) is displayed on the transparent display device, and is the maximum range in which the brightness can be changed depending on the light emitting unit, and the wiring for driving the light emitting unit. Refers to the area including the area where the part is arranged.
  • the "display area” in the present specification refers to the maximum range in which the brightness can be changed by the light emitting unit.
  • the "glass plate” includes both inorganic glass and organic glass.
  • inorganic glass include soda lime glass, non-alkali glass, and borosilicate glass
  • organic glass include transparent resins such as polycarbonate and acrylic resin.
  • the transparent display device 1 includes a transparent base material 10, a light emitting unit 20, an IC chip 30, a wiring unit 40, a row data line 43, a column data line 44, a driver 50, a control unit 60, and a connection unit.
  • a wiring unit 70 is provided.
  • the control unit 60 is composed of an electric circuit board.
  • the connection wiring unit 70 connects the control unit 60 and the wiring unit 40.
  • the transparent display device 1 has a display area A.
  • the display area A includes a light emitting unit 20, an IC chip 30, a wiring unit 40, a row data line 43, and a column data line 44 when viewed in a plan view.
  • the display area A is shown as a flat rectangular shape, but the present embodiment is not limited to this shape.
  • the driver 50 controls the drive of the IC chip 30 by the control of the control unit 60.
  • the driver 50 is connected to the IC chips 30 arranged in the column direction to control the driving of the IC chips 30, and a row driver 51 connected to the IC chips 30 arranged in the row direction to control the driving of the IC chips 30. It is equipped with a driver 52.
  • At least one of the row driver 51 and the column driver 52 may be made of a transparent material and arranged on the transparent base material 10. If the row driver 51 and the column driver 52 are not made of a transparent material, a portion other than the transparent base material 10 may be provided. It may be placed in.
  • the control unit 60 is arranged outside the display area A.
  • a peripheral area B is provided between the control unit 60 and a portion of the outer circumference of the display area A that faces the control unit 60, and the connection wiring unit 70 is arranged in the peripheral area B. Even outside the display area A, the area where the connection wiring portion 70 is not arranged does not form the peripheral area B.
  • the light emitting units 20 are arranged in a matrix (lattice) in the display area A in the row direction and the column direction, that is, in the X direction and the Y direction of FIG.
  • the arrangement format of the light emitting units 20 is not limited to the matrix shape, and may be another arrangement format in which light emitting units of the same color are arranged in a specific direction at substantially constant intervals, such as a houndstooth shape (offset shape).
  • the IC chip 30 is connected to the light emitting unit 20 and drives the light emitting unit 20.
  • the IC chip 30 may be omitted.
  • the wiring unit 40 includes a power supply line 41 and a ground line 42, which are linear bodies, respectively.
  • the power supply line 41 and the ground line 42 are arranged in the same plane forming the display area A, that is, in the plane at the same position in the plate thickness direction of the transparent base material 10. Since these wirings are arranged in the same plane, the work of forming the wiring portion 40 becomes easy.
  • the power supply line 41 includes a first power supply main line 411, a second power supply main line 412, a first power supply branch line 413, and a second power supply branch line 414.
  • the first power main line 411 extends upward (row direction) in FIG. 1 from the control unit 60.
  • the second power main line 412 extends to the right (row direction) from the tip of the first power main line 411.
  • the first power supply branch line 413 extends downward (row direction) from a plurality of locations of the second power supply main line 412.
  • the second power supply branch line 414 extends in the right direction (row direction) from each of the plurality of locations of the first power supply main line 411 and the first power supply branch line 413 and is connected to the light emitting unit 20 and the IC chip 30, respectively. There is.
  • the second power main line 412 is a linear portion that connects two linear portions 412A that face each other and whose base end side is electrically connected to the control unit 60 and the portions of the linear portions 412A that face each other. It has a connection portion 412B of. As a result, since the second power main line 412 is composed of the two linear portions 412A, the places where heat is generated are separated, and uneven distribution of heat distribution can be suppressed even with the same amount of heat generated.
  • the connecting portion 412B has a linear tip connecting portion 412C that connects the tip portions of the two linear portions 412A, and a linear intermediate connecting portion 412D that connects the intermediate portions.
  • the intermediate connection portion 412D has as many as the number of the first power supply branch lines 413 along the longitudinal direction of the second power supply main line 412, and the intermediate connection portion 412D is arranged on the straight line of the first power supply branch line 413. Has been done. Since the tip connecting portion 412C is connected to the tips of the two linear portions 412A, the second power main line 412 becomes a loop shape, and a current is supplied to the predetermined light emitting unit 20 by two routes, and the light emitting unit 20 is supplied. The current is fed back from.
  • the second power main line 412 is formed in a ladder shape, and there are many routes for supplying current to the light emitting unit 20 and returning. .. Therefore, since the current flows through the shortest route among the plurality of routes, if the light emitting unit 20 far from the control unit 60 does not emit light, it becomes difficult for the current to flow through the light emitting unit 20 portion of the second power main line 412. , Fever can be suppressed.
  • the ground line 42 includes a first ground main line 421, a second ground main line 422, a first ground branch line 423, and a second ground branch line 424.
  • the first ground main line 421 extends from the control unit 60 in the upward direction (row direction) in FIG.
  • the second ground main line 422 extends to the right (row direction) from the tip of the first ground main line 421.
  • the first ground branch line 423 extends upward (row direction) from a plurality of locations of the second ground main line 422.
  • the second ground branch line 424 extends leftward (row direction) from a plurality of locations of the first ground branch line 423 and is connected to the light emitting unit 20 and the IC chip 30, respectively.
  • the second ground main line 422 is not electrically directly connected to the first power supply branch line 413.
  • the first ground branch line 423 is not electrically directly connected to the second power main line 412.
  • the second ground main line 422 is a linear portion that connects two linear portions 422A that face each other and whose base end side is electrically connected to the control unit 60 and the portions of the linear portions 422A that face each other. It has a connection portion 422B of.
  • the connecting portion 422B has a linear tip connecting portion 422C that connects the tip portions of the two linear portions 422A to each other, and a linear intermediate connecting portion 422D that connects the intermediate portions.
  • the intermediate connecting portion 422D has as many as the number of the first ground branch lines 423 along the longitudinal direction of the second ground main line 422, and the intermediate connecting portion 422D is arranged on the straight line of the first ground branch line 423. Has been done. Since the second ground main line 422 has the same configuration as the second power main line 412, it has the same effect as the second power main line 412.
  • the connection wiring unit 70 has a first wiring unit 71 that connects the control unit 60 and the first power supply main line 411, and a second wiring unit 72 that connects the control unit 60 and the first ground main line 421. .. With such a configuration, the current supplied from the control unit 60 flows to each light emitting unit 20 and each IC chip 30 via the first wiring unit 71 and the power supply line 41, and connects the ground wire 42 and the second wiring unit 72. It returns to the control unit 60 via.
  • the row data line 43 and the column data line 44 are formed on a plane different from the plane on which the power supply line 41 and the ground line 42 are formed.
  • the row data line 43 is electrically connected to the row driver 51 and the IC chips 30 arranged in the row direction.
  • the column data line 44 is electrically connected to the column driver 52 and the IC chips 30 arranged in the column direction.
  • the control unit 60 and the row driver 51 are connected by a linear first connection line unit 73.
  • the control unit 60 and the row driver 52 are connected by a linear second connection line unit 74.
  • a light emitting unit 20, an IC chip 30, a wiring unit 40, and an insulating layer 14 that insulates them are arranged on the main surface of the transparent base material 10.
  • the insulating layer 14 is formed of a halogen-free material, that is, an insulating member containing a halogen-free material.
  • the halogen-free material is, for example, an epoxy resin, a phenol resin, a polyolefin resin, a polycycloolefin resin, or a polyester, which does not contain a halogen-based flame retardant that may generate dioxin or has no halogen group in its molecular skeleton.
  • thermoplastic resins and resins obtained by curing polyfunctional monomers are also included as candidates. As a result, even if the transparent base material 10 is damaged due to overheating, since a halogen-free material is used as the insulating layer 14, inconveniences such as scattering of harmful substances can be avoided.
  • each of the plurality of light emitting units 20 is provided for each pixel (also referred to as a pixel or display pixel) of the transparent display device 1. That is, each light emitting unit 20 corresponds to each pixel of the transparent display device 1, and one light emitting unit 20 constitutes one pixel. In addition, one light emitting unit 20 may form a plurality of pixels.
  • Each light emitting unit 20 includes at least one light emitting diode (LED). Therefore, in this embodiment, at least one LED constitutes each pixel of the transparent display device 1.
  • the transparent display device 1 according to the present embodiment is a display device that uses LEDs as pixels, and is a so-called LED display (LED display device).
  • Each light emitting unit 20 may include two or more LEDs.
  • Each light emitting unit 20 may include a red LED 21R, a green LED 21G, and a blue LED 21B. Then, each LED corresponds to each sub-pixel (sub-pixel) constituting one pixel. Further, each light emitting unit 20 may include two or more LEDs of similar colors. This makes it possible to increase the dynamics range of the image.
  • the LED used in the present embodiment is preferably a micro-sized so-called mini LED, and more preferably a micro LED that is even smaller than the mini LED.
  • the length of the mini LED in the row direction (X direction) may be 1 mm or less
  • the length in the column direction (Y direction) may be 1 mm or less.
  • the length of the micro LED in the row direction may be 100 ⁇ m or less, preferably 50 ⁇ m or less, and more preferably 20 ⁇ m or less.
  • the length of the micro LEDs in the row direction may be 100 ⁇ m or less, preferably 50 ⁇ m or less, and more preferably 20 ⁇ m or less. There is no particular limitation on the lower limit of the length of the LED in the row direction and the column direction.
  • each is 1 ⁇ m or more in order to reduce the edge effect.
  • the area occupied by one LED on the transparent base material 10 may be 1 mm 2 or less. This area is preferably 10,000 ⁇ m 2 or less, more preferably 1,000 ⁇ m 2 or less, and even more preferably 100 ⁇ m 2 or less.
  • the lower limit of the area occupied by one LED on the transparent substrate 10 can be set to 10 ⁇ m 2 or more due to various manufacturing conditions and the like.
  • the limit at which a person with a visual acuity of 1.5 can visually recognize the thickness in an image 1 m away is 50 ⁇ m, and it is said that it is difficult to directly visually recognize the thickness when it is 15 ⁇ m or less. Therefore, by using the above-mentioned minute-sized LED, the LED is not visually recognized even when the observer observes the display device at a relatively close distance, for example, a distance of several tens of centimeters to 2 m. Or, even if it is visually recognized, its existence is inconspicuous. Therefore, the visibility of the image on the back side of the display device is improved.
  • the display device according to the present embodiment is attached to a glass plate having a curved surface, for example, a glass plate bent in two directions orthogonal to each other, or sealed between such two glass plates. Even when used, the display device is not easily damaged.
  • the transparency of the LED itself is low, for example, its transmittance is about 10% or less.
  • a micro-sized LED it is possible to reduce the region where the LED obstructs the transmission of light, and it is possible to reduce the region where the transmittance is low, for example, the region where the transmittance is 20% or less in the display region.
  • the minute size LED the region where the transmittance is high in the pixel is increased, so that the transparency of the display device is improved and the visibility of the image on the back side is improved.
  • the type of LED used is not limited, but it can be a chip type.
  • the LED may be in an unpackaged state, may be entirely enclosed in a package, or at least partially covered with resin.
  • the covered resin may have a lens function to increase the light utilization rate and the efficiency of taking out light to the outside.
  • the area occupied by the above-mentioned one LED and the LED dimensions refer to the area and dimensions in the state after packaging.
  • the area of each LED can be less than one-third of the total area of the package.
  • the shape of the LED is not particularly limited, but may be a rectangle, a square, a hexagon, a cone structure, a pillar shape, or the like.
  • the LED can be mounted by growing and cutting the LED by a liquid phase growth method, an HDVPE method, a MOCVD method, or the like.
  • the LED may be peeled off from the semiconductor wafer by microtransfer printing or the like and transferred onto the substrate.
  • the material of the LED is not particularly limited, but it is preferably an inorganic material.
  • AlGaAs, GaAsP, GaP and the like are preferable as long as it is a red LED.
  • InGaN, GaN, AlGaN, GaP, AlGaInP, ZnSe and the like are preferable.
  • InGaN, GaN, AlGaN, ZnSe and the like are preferable.
  • the luminous efficiency (energy conversion efficiency) of the LED is preferably 1% or more, more preferably 5% or more, and further preferably 15% or more.
  • the luminous efficiency of the LED is preferably 1% or more, more preferably 5% or more, and further preferably 15% or more.
  • the light emitting units 20 are provided at predetermined intervals.
  • the pitch between the light emitting units 20 corresponds to the pitch of the pixels.
  • the pixel pitch in the X direction by P px showing the pixel pitch in the Y direction P py.
  • the pixel pitch refers to at least one of the pixel pitch Ppx in the X direction and the pixel pitch in the Y direction Ppy .
  • the P px is, for example, 30 mm or less, preferably 100 ⁇ m or more and 5000 ⁇ m or less, more preferably 180 ⁇ m or more and 3000 ⁇ m or less, and further preferably 250 ⁇ m or more and 1000 ⁇ m or less.
  • the Ppy is, for example, 30 mm or less, preferably 100 ⁇ m or more and 5000 ⁇ m or less, more preferably 180 ⁇ m or more and 3000 ⁇ m or less, and further preferably 250 ⁇ m or more and 1000 ⁇ m or less.
  • the area of the region P of one pixel is represented by P px ⁇ P py .
  • the area of one pixel is, for example, 900 mm 2 or less, preferably 1 ⁇ 10 4 ⁇ m 2 or more and 2.5 ⁇ 10 7 ⁇ m 2 or less, and more preferably 3 ⁇ 10 4 ⁇ m 2 or more 9 ⁇ 10 6 ⁇ m 2. It is more preferably 6 ⁇ 10 4 ⁇ m 2 or more and 1 ⁇ 10 6 ⁇ m 2 or less.
  • the pixel density in the display area A may be 0.8 ppi or more, preferably 5 ppi or more, more preferably 10 ppi or more, and further preferably 25 ppi or more.
  • the pixel pitch may correspond to the pitch of LEDs of the same color included in each light emitting unit 20.
  • the pixel pitch P px in the X direction corresponds to the pitch in the X direction for red LED21R
  • the pixel pitch P py in the Y direction may correspond to a pitch in the Y direction reddish LED21R.
  • the area of one pixel can be appropriately selected depending on the size of the screen or display area, the application, the viewing distance, and the like. By setting the area of one pixel to 1 ⁇ 10 4 ⁇ m 2 or more and 2.5 ⁇ 10 7 ⁇ m 2 or less, the transparency of the display device is improved while ensuring an appropriate display capability.
  • the area of each LED is preferably 30% or less, preferably 10% or less, more preferably 5% or less, and further preferably 1% or less with respect to the area of one pixel.
  • the area of one LED is preferably 30% or less, preferably 10% or less, more preferably 5% or less, and further preferably 1% or less.
  • each light emitting unit 20 includes a plurality of LEDs
  • the distance between the LEDs (in each light emitting unit 20) in each pixel is preferably 3 mm or less, more preferably 1 mm or less, and 100 ⁇ m or less. More preferably, it is more preferably 10 ⁇ m or less.
  • a plurality of LEDs may be arranged in contact with each other. This makes it easier to standardize the power supply wiring and improves the aperture ratio.
  • Each IC chip 30 is arranged for each pixel, that is, for each light emitting unit 20, corresponding to each pixel, and drives each pixel. Further, each IC chip 30 is arranged corresponding to a plurality of pixels, that is, for each of the plurality of pixels, and can drive the plurality of pixels.
  • the IC chip 30 may be arranged on the transparent base material 10, but a metal pad such as copper, silver, or gold is arranged on the transparent base material 10, and the IC chip is arranged on the pad. May be good.
  • the LEDs described above may also be arranged on the pads as well.
  • the area occupied by the pads preferable to be 80 [mu] m 2 or more 40000Myuemu 2 or less, more preferably 300 [mu] m 2 or more 2000 .mu.m 2 or less.
  • a hybrid IC or the like having an analog part and a logic part can be used.
  • Area of the IC chip 30 may be at 100,000Myuemu 2 or less, preferable to be 10,000 2 or less, more preferably 5,000 .mu.m 2 below.
  • the analog portion of the IC chip 30 may include a transformer circuit or the like in addition to the circuit for controlling the amount of current. Since the transparency of the IC chip 30 itself is low, by using the IC chip 30 of the above size, the region where the IC chip 30 obstructs the transmission of light can be reduced, and the region having low transmittance in the display region A, for example, transmission It can contribute to reducing the region where the rate is 20% or less. Further, by using the IC chip 30 having an area of 20,000 ⁇ m 2 or less, the region having high transmittance is increased, so that the transparency of the display device is improved and the visibility of the image on the back side is improved.
  • the wiring unit 40 is connected to each light emitting unit 20 as described above, and each light emitting unit 20 can be individually controlled.
  • Materials for the wiring unit 40, row data line 43, column data line 44, first wiring unit 71 and second wiring unit 72 include metals such as copper, aluminum, silver and gold, carbon nanotubes and the like, and ITO (tin-doped indium oxide oxide).
  • ITO titanium oxide
  • ATO Antimony Tin oxide
  • PTO Phosphorus Tin oxide
  • the wiring portion 40 may be coated with a material such as Ti, Mo, copper oxide, or carbon for the purpose of reducing the reflectance. Further, the surface of the coated material may have irregularities.
  • the width of each wiring included in the wiring portion 40 is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and further preferably 15 ⁇ m or less.
  • the limit at which a person with a visual acuity of 1.5 can visually recognize the thickness in an image 1 m away is 50 ⁇ m, and it is said that it is difficult to directly visually recognize the thickness when it is 15 ⁇ m or less. Therefore, by setting the width of the line to 100 ⁇ m or less, preferably 50 ⁇ m or less, even when the observer observes the display device at a relatively close distance, for example, a distance of several tens of centimeters or more and 2 m or less.
  • the wiring part is not visible, or even if it is visually recognized, it is not noticeable. Therefore, the visibility of the image on the back side of the display device is improved.
  • the transparent display device 1 When the transparent display device 1 is irradiated with light from the outside, diffuse reflection occurs, and in some cases diffraction or the like may occur, so that the visibility of the image on the other side of the transparent display device 1 may decrease.
  • the wiring when the wiring extends mainly in the X and Y directions, a cross-shaped diffraction image extending in the X and Y directions tends to appear.
  • the width of each wiring it is possible to reduce or prevent the diffraction phenomenon that may occur due to the light from the back side of the transparent display device, thereby further improving the visibility of the image on the back side.
  • the width of each wiring is preferably 50 ⁇ m or less, more preferably 10 ⁇ m or less, still more preferably 5 ⁇ m or less.
  • the light from the back side of the above-mentioned transparent display device is light emitted from a light source different from the light emitting unit included in the transparent display device.
  • the width of each wiring included in the wiring portion 40 is preferably 0.5 ⁇ m or more.
  • the electrical resistivity of the wires constituting the wiring portion 40 is preferably 1.0 ⁇ 10 -6 ⁇ m or less, more preferably 2.0 ⁇ 10 -8 ⁇ m or less.
  • the thermal conductivity of the wires constituting the wiring portion 40 is preferably 150 W / (m ⁇ K) or more and 5500 W / (m ⁇ K) or less, and 350 W / (m ⁇ K) or more and 450 W / (m ⁇ K) or more. ) The following is more preferable.
  • the distance between adjacent wirings is, for example, 5 ⁇ m or more and 50,000 ⁇ m or less, preferably 10 ⁇ m or more and 3000 ⁇ m or less, and more preferably 100 ⁇ m or more and 2000 ⁇ m or less.
  • the distance between adjacent wirings in at least one of the X direction and the Y direction is set to, for example, 5 ⁇ m or more and 50,000 ⁇ m or less, preferably 10 ⁇ m or more and 3000 ⁇ m or less, and more preferably 100 ⁇ m or more and 2000 ⁇ m or less.
  • the distance between the wirings having the same function for example, the distance between the power supply lines is preferably 150 ⁇ m or more and 5000 ⁇ m or less, and more preferably 300 ⁇ m or more and 3000 ⁇ m or less. Further, when the power supply line and the ground line are formed in a grid pattern, the spacing between the adjacent wirings in the grid pattern can be the same, and the sheet resistance of the wiring formed in the grid pattern is preferably 10 ⁇ / ⁇ or less. 5, ⁇ / ⁇ or less is more preferable.
  • the lines are dense, or if there is an area where the lines are dense, it may hinder the visibility of the image on the back side. Therefore, by setting the distance between adjacent lines to 5 ⁇ m or more, it is possible to reduce such obstruction of visual recognition. However, if the width of the wiring is as small as 5 ⁇ m or less, and if the transparency of the display device can be ensured, the wiring may be shielded from light by a black matrix or the like so as to have a size equal to or less than the wavelength of light. Further, by setting the distance between adjacent lines to 3000 ⁇ m or less, it is possible to configure wiring for ensuring sufficient display capability.
  • the above-mentioned spacing between adjacent wirings is the maximum value of the spacing between adjacent wirings when the spacing between the wirings is not constant, such as when the wirings are curved or the wirings are not arranged in parallel. Can be done. In this case, as the wiring, it is preferable to pay attention to the wiring extending over a plurality of pixels.
  • each display area has the same area as the area of one pixel (pixel) corresponding to the light emitting unit 20, for example, about 0.1 cm 2.
  • the area in the case where the predetermined area as the unit area of 1 cm 2, the range of 1 cm 2 of unit area, the total nine pixels 3 pixels in the X direction (pixels), Y direction 3 pixels (pixels) (pixels) It corresponds roughly to. Therefore, the display area A is divided into 600 pieces so as to have the same unit area.
  • the wiring portion 40 is included in each of the 600 divided regions.
  • the variation refers to the variation in the region where the desired light is emitted, and the abnormal value in the region where the light is not emitted due to a defect such as disconnection is not included in the range of the variation.
  • the cross-sectional area Dn of the wiring portion 40 is the product of the width w and the height t (see FIGS. 2 and 3) of each wiring constituting the wiring portion 40.
  • the width w and the height t of the wiring constituting the wiring portion 40 may be a design value or a measured value.
  • the predetermined area is not limited to the unit area (1 cm 2 ) corresponding to 9 pixels of the light emitting unit 20, and may be, for example, an area corresponding to 1 pixel.
  • the area is divided so as to have the same area as the area of one pixel (pixel) corresponding to each light emitting unit 20, and the wiring unit 40 and the divided area are divided.
  • the wiring area of the connection wiring unit 70 is set to 0.8. In this case, it is preferable to set the ratio of the area of the wiring other than the wiring portion 40 and the connection wiring portion 70 to be 1: 0.8 or less. It is more preferable to set it to be 1:10 or more, and further preferably to set it to be 1:10 or more and 1: 0.8 or less.
  • 1: 0.8 or less means that the wiring area of the wiring portion 40 and the connection wiring portion 70 is 0.8 times or more the area of the wiring other than the wiring portion 40 and the connection wiring portion 70.
  • 1: 1 means that the area of the wiring of the wiring unit 40 and the connection wiring unit 70 and the area of the wiring other than the wiring unit 40 and the connection wiring unit 70 are the same.
  • 1:10 means that the area of the wiring other than the wiring portion 40 and the connection wiring portion 70 is 10 when the wiring area of the wiring portion 40 and the connection wiring portion 70 is 1.
  • 1:10 or more means that the wiring area of the wiring portion 40 and the connection wiring portion 70 is 10 times or less the area of the wiring other than the wiring portion 40 and the connection wiring portion 70.
  • the display area A is divided into n pieces, for example, 5400 pieces so that each display area A has the same area as the area of one pixel corresponding to the light emitting unit 20.
  • a plurality of peripheral regions B are divided into two regions, B 1 and B 2 in FIG. 1, so that each region has the same area as one pixel corresponding to the light emitting unit 20. ..
  • An of the display area A is 1:10 or more and 1: 0.8 or less ( 0.8 ⁇ S1 / S2 ⁇ 10).
  • the area is the product of the width dimension and the length of each wiring.
  • the ratio (T1: T2) of the wiring area T1 of the connection wiring portion 70 in the peripheral region B to the wiring area T2 other than the connection wiring portion 70 is 1:10 or more and 1: 0.8.
  • the following (0.8 ⁇ T1 / T2 ⁇ 10) is preferable. That is, the ratio (T1: T2) is the ratio (S1: S2) of the wiring area (S1) of the wiring portion 40 of the divided region An in the display region A to the wiring area (S2) other than the wiring portion 40. It is preferably about the same.
  • the row data line 43 extending over the plurality of pixels is arranged in the X direction, and the column data line 44 is arranged in the Y direction. Such a configuration is preferable from the viewpoint of increasing the area of the panel. It is not necessary to arrange the row data line 43 or the column data line 44.
  • the area occupied by the wiring portion 40 in the area of one pixel is preferably 30% or less, preferably 10% or less, more preferably 5% or less, and 3% or less with respect to the area of one pixel. It is even more preferable to have it. Further, the area occupied by the wiring portion 40 in the entire display area is also preferably 30% or less, preferably 10% or less, more preferably 5% or less, and 3% or less with respect to the area of the display area.
  • the area of the region having a transmittance of 20% or less is 60% or less, preferably 30% or less, and more preferably 10% or less. As a result, the region where the wiring portion 40 obstructs the transmission of light can be reduced.
  • the area occupied by the light emitting unit 20, the IC chip 30, and the wiring unit 40 in the one-pixel region is preferably 30% or less, more preferably 20% or less, and 10% or less with respect to the area of one pixel. It is even more preferable to have it.
  • the area occupied by the light emitting unit 20, the IC chip 30, and the wiring unit 40 is preferably 30% or less, more preferably 20% or less, and more preferably 10% or less with respect to the area of the display area A. More preferred.
  • the transparent display device 1 does not include the IC chip 30, the area occupied by the light emitting unit 20 and the wiring unit 40 with respect to the area of one pixel or the display area A is the same value as when the IC chip 30 is provided. Is preferable.
  • the transparent base material 10 is not particularly limited as long as it has insulating properties and is transparent, but those containing a resin are preferable, and those mainly made of a resin are preferable.
  • the resin used for the transparent base material include polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), olefin resins such as cycloolefin polymer (COP) and cycloolefin copolymer (COC), and cellulose.
  • Cellular resins such as acetyl cellulose and triacetyl cellulose (TAC), imide resins such as polyimide (PI), polyethylene (PE), polyvinyl chloride (PVC), polystyrene (PS), polyvinyl acetate (PVAc), polyvinyl Vinyl resins such as alcohol (PVA) and polyvinyl butyral (PVB), acrylic resins such as polymethylmethacrylate (PMMA) and those with cross-linked skeletons, ethylene / vinyl acetate copolymer resins (EVA), urethane resins, etc.
  • TAC triacetyl cellulose
  • imide resins such as polyimide (PI), polyethylene (PE), polyvinyl chloride (PVC), polystyrene (PS), polyvinyl acetate (PVAc), polyvinyl Vinyl resins such as alcohol (PVA) and polyvinyl butyral (PVB), acrylic resins such as polymethylmethacrylate (PMMA)
  • polyethylene naphthalate (PEN) and polyimide (PI) are preferable from the viewpoint of improving heat resistance.
  • PEN polyethylene naphthalate
  • PI polyimide
  • cycloolefin polymer (COP), cycloolefin copolymer (COC), polyvinyl butyral (PVB) and the like are preferable in that the double refractive index is low and distortion and bleeding of the image seen through the transparent substrate can be reduced.
  • the above materials can be used alone or in combination of two or more, that is, in a form in which different materials are mixed, or in a laminated state of a flat base material made of different materials.
  • the total thickness of the transparent substrate 10 is preferably 3 ⁇ m or more and 1000 ⁇ m or less, and more preferably 5 ⁇ m or more and 200 ⁇ m or less.
  • the internal transmittance of visible light of the transparent base material 10 is preferably 50% or more, more preferably 70% or more, and further preferably 90% or more.
  • the transparent substrate 10 preferably has flexibility. As a result, for example, when the transparent display device 1 is attached to a curved glass plate or sandwiched between two curved glass plates, the transparent display device 1 can be easily made to follow the curvature of the glass plate. Further, it is still preferable that the material exhibits shrinkage behavior when heated at 100 ° C. or higher.
  • the transparent substrate 10 preferably has a passivation layer.
  • the passivation layer is an inorganic layer such as SiO x , SiN x , AlN, SiAlO x , SiON, a resin layer such as cycloolefin, polyimide-based, epoxy-based, acrylic-based, or novolac-based, a laminate of an inorganic layer and a resin layer, and a siloxane. It is a layer made of a silicon-based polymer such as a system or a silazane system, or an organic and inorganic hybrid material.
  • the wiring portion 40 arranged in the display area A is the product Vn of the reciprocal (1 / Dn) of the cross-sectional area Dn per unit area and the length Ln in the area An in which the display area A is divided into a plurality of parts.
  • a plurality of areas including the display area A and the peripheral area B in which the connection wiring unit 70 is arranged are divided into a plurality of areas so that each area has the same area as the area of the pixel corresponding to the light emitting unit 20.
  • the wiring area of the wiring portion 40 and the connection wiring portion 70 in the divided region is set to 0.8.
  • the ratio of the area of the wiring other than the wiring portion 40 and the connection wiring portion 70 is within a certain range of 1:10 or more and 1: 0.8 or less. Therefore, damage to the transparent base material 10 can be prevented because a specific portion does not overheat in a range including not only the display area A but also the peripheral area B.
  • the second power main line 412 and the second ground main line 422 are configured to include two linear portions 412A and 422A, but this configuration may be applied to only one of them, or the first one. It may be applied to the power main line 411 and the first ground main line 421. Further, the number of linear portions 412A and 422A may be three or more. Further, the intermediate connection portion may be omitted.
  • the transparent display device 1B of the second embodiment shown in FIGS. 5 and 6 is different in configuration from the transparent display device 1 of the first embodiment in the following points. That is, the first and second power main lines 411, 421, the first and second power branch lines 413, 414, the first and second ground main lines 421, 422, and the first and second ground branch lines 423. 424 and 424 are arranged on different planes of the transparent base material 10 in the plate thickness direction.
  • the first power supply branch line 413, the second power supply branch line 414, the first ground main line 421, the second ground main line 422, A first ground branch line 423, a second ground branch line 424, a light emitting unit 20, and an IC chip 30 are arranged. These are covered with an insulating layer 14.
  • a first power supply main line 411, a second power supply main line 412, a first power supply branch line 413, and a second power supply branch line 414 are arranged on the insulating layer 14.
  • the second power main line 412 and the first ground branch line 423 are connected by a conductive portion (not shown).
  • the variation with respect to the average value of the current densities of the divided areas is within 10 times. It is preferably within a fold, and more preferably within a fold.
  • the current density is a current that flows per unit area on a minute plane perpendicular to the current.
  • the variation in the divided region refers to the variation in the region controlled to the desired current density, and does not include the variation in the region where a defect such as disconnection occurs. If the variation is within 10 times, local heating can be suppressed by heat transfer of the member itself, stress generation due to the expansion difference can be suppressed, and as a result, thermal cracking of the glass can be suppressed.
  • the second power main line 412 is arranged so as to pass through a substantially central portion of the display area A, but the arrangement position of the display area A in the plane is not limited.
  • the first power supply main line 411 and the second power supply main line 412, and the first power supply branch line 413 and the second power supply branch line 414 are formed on different planes in the thickness direction of the transparent base material 10. Have been placed. Therefore, the layout can be diversified as compared with the first embodiment in which these are arranged in the same plane of the transparent base material 10.
  • the first power supply main line 411 and the second power supply main line 412 and the first power supply branch line 413 and the second power supply branch line 414 are arranged on different planes in the plate thickness direction of the transparent base material 10. It has the above configuration.
  • the first ground main line 421 and the second ground main line 422 and the first ground branch line 423 and the second ground branch line 424 are formed on a plate of the transparent base material 10. It may be arranged on different planes in the thickness direction.
  • the second power supply branch line 414 and the second ground branch line 424 are formed in the same plane, that is, in the plane at the same position in the plate thickness direction of the transparent base material 10. You may. Then, a plurality of second power supply main lines 412 may be arranged on a different plane, and a grid pattern may be formed in the same plane as the first power supply branch line 413. Further, the second ground main line 422 and the first ground branch line 423 may be arranged in the display area A in a grid pattern on a plane different from these two planes.
  • the third embodiment will be described with reference to FIG.
  • the third embodiment is a configuration in which the transparent display device 1 of the first embodiment is attached to a glass plate, a moving body, or the like by a mounting member such as an adhesive sheet. It can also be used as a laminated glass with a transparent display device by enclosing it between two glass plates. Such a glass plate is preferably transparent.
  • the laminated glass 100F with the transparent display device of the third embodiment shown in FIG. 7 includes the transparent display device 1 of the first embodiment, the first glass plate 101F and the second glass plate 102F that sandwich the transparent display device 1. It has.
  • the first glass plate 101F is a transparent plate material arranged on a surface of the transparent base material 10 opposite to the surface on which the light emitting portion 20 and the wiring portion 40 are provided.
  • the second glass plate 102F is formed by joining two glass plates 10E with a second adhesive layer 104F.
  • the transparent display device 1 In order to manufacture the transparent display device 1, the transparent display device 1 is placed on the first glass plate 101F via the first adhesive layer 103F, and the glass plate 10E is further superposed on the transparent display device 1. , The glass plate 10E is arranged via the second adhesive layer 104F. As a result, the transparent display device 1 can be stabilized in the laminated glass 100F with the transparent display device.
  • the first glass plate 101F and the second glass plate 102F may be either inorganic glass or organic glass. Examples of the inorganic glass include soda lime glass and the like.
  • the thickness of both the first glass plate 101F and the second glass plate 102F is preferably 0.5 mm or more and 5 mm or less, and more preferably 1.5 mm or more and 2.5 mm or less.
  • the materials, configurations, and thicknesses of the first glass plate 101F and the second glass plate 102F may be the same or different.
  • first adhesive layer 103F and the second adhesive layer 104F examples include an interlayer film containing cycloolefin copolymer (COP), vinyl acetate copolymer (EVA), polyvinyl butyral (PVB) and the like as main components.
  • the first adhesive layer 103F and the second adhesive layer 104F are provided on the entire surface or a part of the transparent display device 1.
  • the laminated glass 100F with a transparent display device is not limited to a flat surface, and may have a curved surface. That is, the laminated glass 100F with a transparent display device may be curved. This curvature may be curved in one direction, or may be curved in two directions, a first direction and a second direction orthogonal to the first direction.
  • the transparent display device 1 When obtaining a laminated glass 100F with a curved transparent display device, the transparent display device 1 is placed on the curved first glass plate 101F, the curved second glass plate 102F is overlapped, and then heated. , Pressurize. As a result, a laminated glass 100F with a curved transparent display device can be obtained.
  • the second glass plate 102F is sufficiently thinner than the first glass plate 101F, the second glass plate 102F does not have to be curved in advance.
  • the laminated glass 100F with a transparent display device can be suitably used in applications where the viewing distance (distance from the observer to the display screen) is, for example, 0.25 m or more and 4.0 m or less.
  • Specific uses include automobiles as moving bodies, vehicles such as railroad vehicles, airplanes, buildings, transparent housings, and the like.
  • windowpanes such as front windows, rear windows and side windows in automobiles, windowpanes in other means of transportation such as trains, medium-print advertisements, store show windows, showcases, windows of display shelves with doors, etc.
  • Laminated glass 100F with a transparent display device can be incorporated and used in at least a part of them.
  • the small size LED is used as described above, and the region having low transmittance is set to a predetermined ratio. It is possible to ensure transparency so that the image on the back side can be visually recognized while maintaining the function.
  • the automobile 110H as the moving body of the fourth embodiment shown in FIG. 8 includes a laminated glass 100F with a curved transparent display device as a windshield.
  • the laminated glass 100F with a transparent display device constituting the windshield is provided with a concealing layer 101H provided on the outer peripheral portion thereof.
  • the concealing layer 101H is provided inside the vehicle and has a function of concealing the inside of the vehicle from the outside of the vehicle.
  • the transparent display device 1 is formed smaller than the windshield, and is enclosed in a part of the lower left side when viewed from the inside of the vehicle.
  • the range in which the transparent display device 1 is provided may be 50% or less or 30% or less of the area of the windshield.
  • the size of the transparent display device 1 may be substantially the same as that of the windshield.
  • the transparent display device 1C includes a transparent base material 10, a light emitting unit 20, a wiring unit 40, and a control unit (not shown).
  • the display area A of the transparent display device 1B includes a light emitting unit 20 and a wiring unit 40 when viewed in a plan view.
  • a plurality of light emitting units 20 are arranged in a straight line along the row direction (X direction in the drawing) in the display area A, and the plurality of light emitting units 20 arranged on these straight lines are arranged in two columns. Has been done.
  • the wiring unit 40 includes a power supply line 41 and a ground line 42, which are linear bodies, respectively.
  • the power line 41 and the ground line 42 are arranged in the same plane.
  • the power supply line 41 includes a power supply main line 410 and a power supply branch line 415.
  • the power main line 410 is connected to a control unit (not shown) and is arranged along the row direction (X direction) on both sides of the two rows of light emitting units 20.
  • the power supply branch line 415 extends in the vertical direction (row direction) from a plurality of locations of the power supply main line 410 and is connected to each of the light emitting units 20.
  • the ground line 42 includes one first ground main line 421, a second ground main line 422, and a ground branch line 425.
  • the first ground main line 421 is connected to a control unit (not shown) and extends in the vertical direction (Y direction).
  • the second ground main line 422 extends in the left direction (row direction) from the middle of the first ground main line 421.
  • the ground branch line 425 extends upward (row direction) from a plurality of locations of the second ground main line 422, and is connected to the light emitting unit 20 respectively.
  • the second ground main line 422 has two linear portions 422A facing each other and a linear connecting portion 422B connecting the portions of the linear portions 422A facing each other. Since the base end of each of the two linear portions 422A is connected to the first ground main line 421, a part of the first ground main wire 421, the two linear portions 422A, and the connecting portion 422B It is said to be a ring. In FIG. 10, as the connecting portion 422B, only the linear tip connecting portion 422C connecting the tip portions of the two linear portions 422A is shown, but the line connecting the intermediate portion and the end of the linear portion 422A. An intermediate connection portion may be provided.
  • the power main line 410 and the ground line 42 have the same width dimension.
  • the wiring portion 40 has a variation with respect to the average value of the product of the reciprocal of the cross section and the length per unit area in the region where the display area A is divided into n pieces. It is within 30%.
  • the abnormal value in the region where light is not emitted due to a defect such as disconnection is not included in the range of variation.
  • the transparent display device 1D includes a transparent base material 10, a light emitting unit 20, a wiring unit 40, and a control unit (not shown).
  • the ground line 42 includes a first ground main line 421, a second ground main line 422, and a ground branch line 425.
  • the first ground main line 421 has two linear portions 421A that oppose each other and a linear intermediate connecting portion 421D that connects the intermediate portions of these linear portions 421A.
  • the second ground main line 422 has a linear portion 422A that faces each other and has a base end connected to the linear portion 421A. Further, in the fifth embodiment, the tips of the linear portions 422A facing each other, that is, the ends opposite to the ends to which the linear portions 421A are connected and the intermediate portions of the linear portions 422A facing each other are connected. A linear intermediate connection may be provided.
  • the power main line 410 and the ground line 42 have the same width dimension.
  • the wiring portion 40 has a variation with respect to the average value of the product of the reciprocal of the cross section and the length per unit area in the region where the display area A is divided into n pieces. It is within 30%. Also in the sixth embodiment, the abnormal value in the region where the light is not emitted due to the defect is not included in the range of variation.
  • 1,1B, 1C ... Transparent display device, 10 ... Transparent base material, 14 ... Insulation layer, 20 ... Light emitting part, 30 ... IC chip, 40 ... Wiring part, 41 ... Power line, 410 ... Power main line, 411 ... First Power main line, 412 ... Second power main line, 412A, 421A, 422A ... Linear part, 412B ... Connection part, 412C ... Tip connection part, 412D, 421D ... Intermediate connection part, 60 ... Control unit, 70 ... For connection Wiring unit, 71 ... 1st wiring unit, 72 ... 2nd wiring unit, A ... display area, B ... peripheral area

Abstract

透明基材(10)と、透明基材(10)上に配置された複数の発光部(20)と、発光部(20)の各々に接続された配線部(40)と、電気回路基板で構成され配線部(40)を通じて発光部(20)に電流を供給し発光部(20)から電流が戻る制御部(60)と、を備えた透明表示装置。発光部(20)及び配線部(40)が表示領域(A)に配置されている。発光部(20)の各々は、1mm2以下の面積を有する発光ダイオードを含む。表示領域(A)に配置された配線部(40)は、表示領域(A)を同じ所定面積になるように複数に分割した領域に位置する部分の配線部(40)の断面積の逆数と長さの積の、分割した領域の平均値に対する分割した領域の個々の値のバラツキが30%以内である。可視光線の透過率が20%以下の領域の面積が60%以下である。

Description

透明表示装置、透明表示装置付きガラス板、透明表示装置付き合わせガラス、及び移動体
 本発明は、透明表示装置、透明表示装置付きガラス板、透明表示装置付き合わせガラス、及び移動体に関する。
 発光ダイオード(LED)を表示画素として利用した表示装置が知られている。この表示装置には、装置を通して背面側の像を視認できる透明表示装置がある。
 表示装置を製造するためには、発光部やTFTのようなアクティブマトリクスにする駆動回路を小さくするだけでなく、配線自体も細くする必要がある。そして、透明表示装置では、背景が透けて見えるため、通常の表示装置よりも映像輝度を明るくする必要がある。
 以上のことから、1本の配線当たりの電流密度が高くなりやすく、配線に熱が発生し易い。この場合、電流量が最も大きくなる部分は、回路部に基端が接続され各LEDに電流を供給する主線と、主線から複数に分岐されてLEDにそれぞれ接続される分岐線との接続部分となる。一部分で熱が発生すると、表示領域内で温度分布が発生してしまい、それによって表示装置の透明基材の熱膨張によって歪みが発生して、最悪は、割れが発生して破損する虞もある。
 発光ダイオードからの発熱を効率よく放散する表示装置が知られている。
 特許文献1には、複数の発光ダイオード列のうち一の発光ダイオード列に属する電極と、他の発光ダイオード列に属する電極とが長手方向に互いに重なり合う(ジグザク配置)構成を備えた表示装置が開示されている。
 また、特許文献2には、電気的相互接続の横方向の寸法や平均厚さ、あるいは、熱容量や熱伝導率を所定の値にする表示装置が開示されている。
特開2013-47737号公報 米国特許第9765934号明細書
 しかしながら、特許文献1の従来例では、光学素子を均等配置することで、光学素子から発生する熱を分散させることが開示されているものの、配線自体から発生する熱は考慮されていない。
 特許文献2の従来例では、LED以外の部材の温度上昇に関する記載や示唆がなく、当該LED以外の部材、つまり、配線部に電流が集中して発熱した場合、表示領域の温度が高くなる可能性がある。
 上記の点に鑑みて、本発明は、透明表示装置において、配線部からの発熱に起因する透明基材の破損を防止することを課題とする。
 上記課題を解決するために、本発明の一形態は、透明基材と、前記透明基材上に配置された複数の発光部と、前記発光部の各々に接続された配線部と、電気回路基板で構成され前記配線部を通じて前記発光部に電流を供給し前記発光部から電流が戻る制御部と、を備え、前記発光部及び前記配線部が表示領域に配置された透明表示装置であって、前記発光部の各々は、1mm以下の面積を有する発光ダイオードを含み、前記表示領域に配置された前記配線部は、前記表示領域を同じ所定面積になるように複数に分割した領域に位置する部分の前記配線部の長手方向と直交する断面積(Dn)の逆数(1/Dn)と前記長手方向に沿った長さ(Ln)の積(Vn=Ln/Dn)の、前記分割した領域の平均値に対する前記分割した領域の個々の値のバラツキが30%以内であり、前記表示領域において、可視光線の透過率が20%以下の領域の面積が60%以下である。
 本発明の一形態によれば、表示領域内の配線部の断面積(Dn)の逆数(1/Dn)と長さ(Ln)の積(Vn=Ln/Dn)の、分割した領域の平均値に対する領域の個々の値のバラツキが所定範囲に収まる。そのため、配線部の発熱により表示領域が高温となって、透明基材を破損などすることを防止できる。
本発明の第1実施形態に係る透明表示装置の基本構成を示す平面視での模式図。 第1実施形態に係る透明表示装置の一部を示す断面図。 第1実施形態に係る透明表示装置の一部を示すもので図2とは異なる位置での断面図。 第1実施形態における透明表示装置の一部を拡大して示す平面視での模式図。 本発明の第2実施形態に係る透明表示装置の基本構成を示す平面視での模式図。 第2実施形態に係る透明表示装置の一部を示す断面図。 本発明の第3実施形態に係る透明表示装置の一部を示す断面図。 本発明の第4実施形態に係る自動車の一部を示す断面図。 第4実施形態及び変形例におけるフロントガラスを車内側から見たときの模式図。 本発明の第5実施形態に係る透明表示装置の基本構成を示す平面視での模式図。 本発明の第6実施形態に係る透明表示装置の基本構成を示す平面視での模式図。
 以下、本発明を実施するための形態について説明する。各図面において、同一の又は対応する構成には、同一の又は対応する符号を付して説明を省略する場合がある。また、本発明は、下記の実施形態に限定されることはない。
 本発明の一形態は、透明基材と、透明基材上に配置された発光部と、発光部の各々に接続された配線部とを備えた透明表示装置である。発光部の各々は、1mm以下の面積を有する発光ダイオードを含み、発光部及び配線部を含む表示領域において可視光線の透過率が20%以下の領域の面積は60%以内である。
 本明細書において「透明表示装置」とは、表示装置の背面側(観察者とは反対側)に位置する人物や背景等の視覚情報を、所望の使用環境下で視認可能な表示装置を指す。なお、視認可能とは、少なくとも表示装置が非表示状態、すなわち通電されていない状態で判定されるものである。
 また、本明細書において、「透明」である(あるいは透光性を有する)とは、可視光線の透過率が40%以上、好ましくは60%以上、より好ましくは70%以上であることを指す。また、透過率5%以上であり、かつ、ヘイズ(曇り度)が10以下のものを指していてもよい。透過率が5%以上あれば、室内から日中の屋外を見た際に、室内と同じ程度、若しくはそれ以上の明るさで屋外を見られるため、十分な視認性を確保することが可能となる。また、透過率が40%以上あれば、観察者側と透明表示装置の向こう側(背面側)の明るさが同程度であったとしても、透明表示装置の向こう側を実質的に問題なく視認することが可能となる。また、ヘイズが10以下であれば、背景のコントラストを10に確保できるため、実質的に透明表示装置の向こう側を問題なく視認することが可能となる。「透明」とは、色が付与されているか否かは問わず、つまり無色透明でもよく、有色透明でもよい。
 本明細書において、「可視光線の透過率」とは、透明表示装置の光を透過する部分と、素子が配置される部分など光を透過しない部分とを含む一定面積の表示領域において、入射する可視光線が透過する割合を指す。なお、可視光線の透過率は、ISO9050に準拠する方法により測定された値(%)を指す。ヘイズ(曇り度)は、ISO14782に準拠する方法により測定された値を指す。また、可視光線の透過率測定は、光線束が透明表示装置の表示領域を透過する面積が少なくとも1画素以上、好ましくは複数の画素を含む条件で行う。
 また、本明細書において、「表示領域」とは、透明表示装置において画像(文字を含む)が表示される領域であって発光部によって輝度が変化し得る最大範囲と、発光部駆動用の配線部が配置された範囲とを含む領域を指す。発光部のドライバが透明部材で構成され、透明基材上に配置されている場合、本明細書の「表示領域」は、発光部によって輝度が変化し得る最大範囲を指す。
 また、本明細書において、「ガラス板」は、無機ガラスと有機ガラスとの両方を含む。例えば、無機ガラスとしては、ソーダライムガラス、無アルカリガラス、ホウ珪酸ガラス等が挙げられ、有機ガラスとしては、ポリカーボネート、アクリル樹脂等の透明樹脂が挙げられる。
[第1実施形態]
 まず、本発明の第1実施形態に係る透明表示装置の概略構成を説明する。
<透明表示装置の構成>
 図1に示すように、透明表示装置1は、透明基材10、発光部20、ICチップ30、配線部40、行データ線43、列データ線44、ドライバ50、制御部60、及び接続用配線部70を備えている。ここで、制御部60は電気回路基板で構成されている。接続用配線部70は、制御部60と配線部40とを接続している。
 透明表示装置1は表示領域Aを有する。表示領域Aは、平面視で見た場合、発光部20及びICチップ30と、配線部40と、行データ線43及び列データ線44とを含む。図1では、表示領域Aは、平面矩形状として示されているが、本実施形態では、この形状に限定されない。
 ドライバ50は、制御部60の制御によってICチップ30の駆動を制御する。ドライバ50は、列方向に並ぶICチップ30に接続され、当該ICチップ30の駆動を制御する行ドライバ51と、行方向に並ぶICチップ30に接続され、当該ICチップ30の駆動を制御する列ドライバ52とを備えている。なお、行ドライバ51及び列ドライバ52のうち少なくとも一方を透明材料で構成して、透明基材10上に配置してもよいし、透明材料で構成されていない場合、透明基材10以外の箇所に配置してもよい。
 制御部60は、表示領域Aの領域外に配置されている。制御部60と表示領域Aの外周のうち制御部60に対向する部分との間に周辺領域Bが設けられており、周辺領域Bには接続用配線部70が配置されている。なお、表示領域Aの領域外でも、接続用配線部70が配置されない領域は周辺領域Bを構成しない。
 発光部20は、表示領域A内において、行方向及び列方向、つまり、図1のX方向及びY方向にマトリクス状(格子状)に配置されている。発光部20の配置形式はマトリクス状に限られず、千鳥格子状(オフセット状)等、同色の発光部が特定の方向に略一定の間隔で配置される別の配置形式でもよい。
 ICチップ30は、発光部20に接続され、当該発光部20を駆動する。なお、ICチップ30はなくてもよい。
 配線部40は、それぞれ線状体である、電源線41と、グランド線42とを備えている。本実施形態では、電源線41及びグランド線42は、表示領域Aを構成する同一平面内、つまり、透明基材10の板厚方向で同一の位置にある平面内に配置されている。これらの配線が同一平面内に配置されているので、配線部40の形成作業が容易となる。
 電源線41は、第1の電源主線411、第2の電源主線412、第1の電源分岐線413、及び第2の電源分岐線414を備えている。第1の電源主線411は、制御部60から図1における上方向(列方向)に延びている。第2の電源主線412は、第1の電源主線411の先端から右方向(行方向)に延びている。第1の電源分岐線413は、第2の電源主線412の複数箇所から下方向(列方向)にそれぞれ延びている。第2の電源分岐線414は、第1の電源主線411及び第1の電源分岐線413のそれぞれの複数箇所から右方向(行方向)に延びて発光部20及びICチップ30にそれぞれ接続されている。
 第2の電源主線412は、互いに対向し、かつ、基端側が制御部60に電気的に接続される2本の線状部412Aと、線状部412Aの互いに対向する部分を接続する線状の接続部412Bとを有する。これにより、第2の電源主線412を2本の線状部412Aから構成するので、熱が発生する場所が離れることになり、同じ熱の発生量でも熱分布の偏在を抑制できる。
 接続部412Bは、2本の線状部412Aの先端部同士を接続する線状の先端接続部412Cと、中間部分を接続する線状の中間接続部412Dとを有する。
 中間接続部412Dは、第2の電源主線412の長手方向に沿って第1の電源分岐線413の数だけ有するものであり、中間接続部412Dは第1の電源分岐線413の直線上に配置されている。2本の線状部412Aの先端に先端接続部412Cが接続されるので、第2の電源主線412がループ状となり、2つのルートによって所定の発光部20に電流を供給すると共に、発光部20から電流を帰還させる。さらに、先端接続部412Cに加えて複数の中間接続部412Dがあることから、第2の電源主線412がはしご状に形成されることになり、発光部20に電流を供給し戻るルートが多くなる。そのため、複数のルートのうち最短のルートを電流が流れるので、制御部60から遠い発光部20が発光しない場合、第2の電源主線412のうち当該発光部20の部分には電流が流れ難くなり、発熱を抑制できる。
 グランド線42は、第1のグランド主線421、第2のグランド主線422、第1のグランド分岐線423、及び第2のグランド分岐線424を備えている。第1のグランド主線421は、制御部60から図1における上方向(列方向)に延びている。第2のグランド主線422は、第1のグランド主線421の先端から右方向(行方向)に延びている。第1のグランド分岐線423は、第2のグランド主線422の複数箇所から上方向(列方向)にそれぞれ延びている。第2のグランド分岐線424は、第1のグランド分岐線423の複数箇所から左方向(行方向)に延びて発光部20及びICチップ30にそれぞれ接続されている。第2のグランド主線422は、第1の電源分岐線413と電気的に、直接接続されていない。第1のグランド分岐線423は、第2の電源主線412と電気的に、直接接続されていない。
 第2のグランド主線422は、互いに対向し、かつ、基端側が制御部60に電気的に接続される2本の線状部422Aと、線状部422Aの互いに対向する部分を接続する線状の接続部422Bとを有する。
 接続部422Bは、2本の線状部422Aの先端部同士を接続する線状の先端接続部422Cと、中間部分を接続する線状の中間接続部422Dとを有する。中間接続部422Dは、第2のグランド主線422の長手方向に沿って第1のグランド分岐線423の数だけ有するものであり、中間接続部422Dは第1のグランド分岐線423の直線上に配置されている。
 第2のグランド主線422は、第2の電源主線412と同様の構成であるため、第2の電源主線412と同様の効果を奏する。
 接続用配線部70は、制御部60と第1の電源主線411とを接続する第一配線部71と、制御部60と第1のグランド主線421とを接続する第二配線部72とを有する。
 このような構成によって、制御部60から供給される電流は、第一配線部71及び電源線41を介して各発光部20及び各ICチップ30に流れ、グランド線42及び第二配線部72を介して制御部60に戻る。
 行データ線43及び列データ線44は、電源線41及びグランド線42が形成される平面とは異なる平面に形成されている。
 行データ線43は、行ドライバ51と、行方向に並ぶICチップ30とに電気的に接続されている。列データ線44は、列ドライバ52と、列方向に並ぶICチップ30とに電気的に接続されている。
 制御部60と行ドライバ51とは、線状の第一接続線部73で接続されている。制御部60と列ドライバ52とは、線状の第二接続線部74で接続されている。
 図2及び図3に示すように、透明基材10の主面上には、発光部20と、ICチップ30と、配線部40と、これらを絶縁する絶縁層14とが配置されている。絶縁層14としては、ハロゲンが含まれない材料、つまり、ハロゲンフリーの材料を含む絶縁部材から形成されている。ハロゲンフリーの材料は、例えば、ダイオキシン発生が懸念されるハロゲン系難燃剤を含有しない、又は、その分子骨格中にハロゲン基を有さないエポキシ樹脂やフェノール樹脂又はポリオレフィン樹脂、ポリシクロオレフィン樹脂、ポリエステル樹脂、アクリル樹脂、ポリイミド樹脂、それらのコポリマーなどが挙げられる。その他、各種熱可塑性樹脂、多官能モノマーを硬化させた樹脂についても候補に含まれる。これにより、仮に、透明基材10が過熱に伴って破損することがあったとしても、絶縁層14としてハロゲンフリーの材料を用いているので、有害物質が散乱するなどの不都合を回避できる。
 図4に示すように、複数の発光部20の各々は、透明表示装置1の画素(ピクセル、表示画素とも呼ばれる)毎に設けられている。すなわち、各発光部20は、透明表示装置1の各画素に対応し、1つの発光部20が1つの画素を構成するようになっている。なお、1つの発光部20が複数の画素を構成するようにしてもよい。
 各発光部20は、少なくとも1つの発光ダイオード(LED)を含む。よって、本形態では、少なくとも1つのLEDが透明表示装置1の各画素を構成している。このように、本形態による透明表示装置1は、LEDを画素として用いる表示装置であり、いわゆるLEDディスプレイ(LED表示装置)と呼ばれるものである。
 各発光部20は2以上のLEDを含んでいてよい。各発光部20が、赤色系LED21R、緑色系LED21G、及び青色系LED21Bを含んでいてよい。そして、各LEDが、1つの画素を構成する各副画素(サブピクセル)に対応している。また、各発光部20に同系色のLEDを2つ以上含んでいてもよい。これにより、映像のダイナミクスレンジを大きくしたりすることが可能となる。
 本実施形態で用いられるLEDは、微小サイズの、いわゆるミニLEDと呼ばれるものであることが好ましく、ミニLEDよりもさらに小さいマイクロLEDと呼ばれるものであることがより好ましい。具体的には、ミニLEDの行方向(X方向)の長さは、1mm以下でもよく、列方向(Y方向)の長さは1mm以下でもよい。マイクロLEDの行方向の長さは100μm以下であってよく、好ましくは50μm以下であり、より好ましくは20μm以下である。マイクロLEDの列方向の長さは100μm以下でもよく、好ましくは50μm以下であり、より好ましくは20μm以下である。LEDの行方向及び列方向の長さの下限に特に限定はない。但し、同じ輝度を小さい面積で得ようとした場合、発熱量がLEDの面積に反比例して上昇するため、ある一定以上のサイズである方が、熱対策的に好ましい。また、製造上の諸条件等から、特にエッジ効果を低減するためにそれぞれ1μm以上であることが好ましい。
 また、透明基材10上で1つのLEDが占める面積は、1mm以下でもよい。この面積は、好ましくは10,000μm以下であり、より好ましくは1,000μm以下であり、さらに好ましくは100μm以下である。なお、透明基材10上での1つのLEDが占める面積の下限は、製造上の諸条件等から10μm以上にできる。
 通常、視力1.5の人が1m離れた画像において太さを視認できる限界は50μmであり、15μm以下となると直接視認することが困難であると言われている。よって、上述のような微小サイズのLEDを用いることによって、比較的近接して、例えば数10cm~2m程度の距離を置いて、観察者が表示装置を観察するような場合でも、LEDは視認されないか、又は、視認されたとしてもその存在が目立たない。そのため、表示装置の背面側の像の視認性が向上する。
 透明基材10として可撓性を有する材料を用いた場合、得られた表示装置が曲げられても、上述のような微小サイズのLEDを用いているため、LEDが損傷することなく、画素として適切に機能する。そのため、本実施形態による表示装置を、曲面を有するガラス板、例えば互いに直交する2方向に曲げられたガラス板に装着して使用する場合、又は、そのような2つのガラス板間に封入して使用する場合でも、表示装置が損傷し難い。
 LED自体の透明性は低く、例えばその透過率は10%以下程度である。微小サイズのLEDを用いることにより、LEDが光の透過を妨げる領域を低減でき、表示領域において透過率が低い領域、例えば、透過率が20%以下の領域を低減できる。また、微小サイズのLEDを用いることにより、画素において透過率が高い領域が増加するので、表示装置の透明性が向上し、背面側の像の視認性が向上する。
 用いられるLEDのタイプに限定はないが、チップ型にできる。LEDは、パッケージングされていない状態のものでもよいし、全体がパッケージ内に封入されたもの、あるいは少なくとも一部が樹脂で覆われたものでもよい。覆った樹脂がレンズ機能を備えることで光の利用率や、外部への取り出し効率を上げるようなものでもよい。なお、LEDがパッケージングされている場合、上述の1つのLEDが占める面積、LEDの寸法(X方向寸法及びY方向寸法)は、パッケージ後の状態での面積及び寸法を指す。3つのLEDが1つのパッケージ内に封入されている場合、各LEDの面積はパッケージ全体の面積の3分の1以下にできる。
 LEDの形状は特に限定されないが、長方形、正方形、六角形、錐構造、ピラー形状等であってよい。
 LEDは、液相成長法、HDVPE法、MOCVD法等により成長させ、切断されて得られたものを実装できる。LEDは、マイクロトランスファープリンティング等によって、半導体ウェハから剥離し、基材上に転写してもよい。
 LEDの材料は特に限定されないが、無機材料であると好ましい。例えば、発光層の材料としては、赤色系LEDであれば、AlGaAs、GaAsP、GaP等が好ましい。緑色系LEDでは、InGaN、GaN、AlGaN、GaP、AlGaInP、ZnSe等が好ましい。青色系LEDでは、InGaN、GaN、AlGaN、ZnSe等が好ましい。
 LEDの発光効率(エネルギー変換効率)は、1%以上であると好ましく、5%以上であるとより好ましく、15%以上であるとさらに好ましい。発光効率が1%以上であるLEDを用いることで、上述のようにLEDのサイズが微小でも十分な輝度が得られ、日中に表示部材としての利用も可能となる。また、LEDの発光効率が15%以上であると、発熱量等を小さくでき、樹脂接着層を用いた合わせガラス内部への封入が容易になる。
 各発光部20は所定の間隔を置いて設けられている。発光部20間のピッチは、画素のピッチに相当する。図4においては、X方向における画素ピッチをPpxで、Y方向における画素ピッチをPpyで示す。本明細書において画素ピッチは、X方向における画素ピッチPpx及びY方向における画素ピッチをPpyの少なくとも一方を指す。
 Ppxは、例えば30mm以下であり、好ましくは100μm以上5000μm以下であり、より好ましくは180μm以上3000μm以下であり、さらに好ましくは250μm以上1000μm以下である。Ppyは、例えば30mm以下であり、好ましくは100μm以上5000μm以下であり、より好ましくは180μm以上3000μm以下であり、さらに好ましくは250μm以上1000μm以下である。また、一画素の領域Pの面積はPpx×Ppyで表される。一画素の面積は、例えば900mm以下であり、好ましくは1×10μm以上2.5×10μm以下であり、より好ましくは3×10μm以上9×10μm以下であり、さらに好ましくは6×10μm以上1×10μm以下である。
 画素ピッチを上記範囲とすることによって、十分な表示能を確保しつつ、高い透光性を実現できる。また、透明表示装置の背面側からの光によって生じ得る回折現象を低減又は防止できる。
 図1において、表示領域Aにおける画素密度は、0.8ppi以上でもよく、好ましくは5ppi以上、より好ましくは10ppi以上、さらに好ましくは25ppi以上にできる。
 上記画素ピッチは、各発光部20に含まれる同色のLEDのピッチに相当し得る。例えば、X方向の画素ピッチPpxは、赤色系LED21RのX方向でのピッチに相当し、Y方向の画素ピッチPpyは、赤色系LED21RのY方向でのピッチに相当し得る。
 一画素の面積は、画面又は表示領域のサイズ、用途、視認距離等にもよって適宜選択できる。一画素の面積を1×10μm以上2.5×10μm以下とすることで、適切な表示能を確保しつつ、表示装置の透明性が向上する。
 各LEDの面積は、一画素の面積に対して、30%以下であるとよく、10%以下であると好ましく、5%以下であるとより好ましく、1%以下であるとさらに好ましい。一画素の面積に対して1つのLEDの面積を30%以下とすることで、透明性、及び表示装置の背面側の像の視認性が向上する。
 また、表示領域AにおいてLEDが占める面積の合計は、30%以下であるとよく、10%以下であると好ましく、5%以下であるとより好ましく、1%以下であるとさらに好ましい。
 各発光部20が複数のLEDを備えている場合、各画素における(各発光部20における)LED同士の間隔は、3mm以下であると好ましく、1mm以下であるとより好ましく、100μm以下であるとさらに好ましく、10μm以下であるとさらに好ましい。また、各発光部20において、複数のLED同士が互いに接して配置されていてもよい。これにより、電源配線を共通化しやすくなり、開口率が向上する。
 各ICチップ30は、各画素に対応して、画素毎に、つまり、発光部20毎に配置されて、各画素を駆動する。また、各ICチップ30は、複数の画素に対応して、すなわち複数の画素毎に配置されて、複数の画素を駆動できる。
 ICチップ30は、透明基材10上に配置されていてもよいが、透明基材10上に、銅、銀、金製等の金属のパッドを配置し、その上にICチップを配置してもよい。上述のLEDも、同様に、パッド上に配置されていてよい。また、パッドが占める面積は、80μm以上40000μm以下であると好ましく、300μm以上2000μm以下であるとより好ましい。
 ICチップ30としては、アナログ部分と論理部分とを備えたハイブリッドIC等を使用できる。ICチップ30の面積は、100,000μm以下であってよく、10,000μm以下であると好ましく、5,000μm以下であるとより好ましい。ICチップ30のアナログ部分は、電流量を制御する回路の他に、変圧回路等を含んでいてもよい。ICチップ30自体の透明性は低いので、上記のサイズのICチップ30を用いることにより、ICチップ30が光の透過を妨げる領域を低減でき、表示領域Aにおいて透過率の低い領域、例えば、透過率が20%以下の領域を低減することに寄与できる。また、面積が20,000μm以下のICチップ30を用いることにより、透過率の高い領域が増加するので、表示装置の透明性が向上し、背面側の像の視認性が向上する。
 配線部40は、上述のように各発光部20に接続されており、各発光部20は個別に制御可能である。
 配線部40、行データ線43、列データ線44、第一配線部71及び第二配線部72の材料としては、銅、アルミニウム、銀、金等の金属、カーボンナノチューブ等、ITO(スズドープ酸化インジウム(Indium Tin oxide))、ATO(アンチモンドープ酸化スズ(Antimony Tin oxide))、PTO(リンドープ酸化スズ(Phosphorus Tin oxide))、ZnO、ZSO((ZnO)・(SiO(1-X))等の透明導電材料が挙げられる。これらの材料のうち、低抵抗率であることから銅が好ましい。また、配線部40は、反射率を低減することを目的として、Ti、Mo、酸化銅、カーボン等の材料で被覆されていてもよい。また、被覆した材料の表面に凹凸が形成されていてもよい。
 配線部40に含まれる各配線の幅はいずれも、100μm以下であると好ましく、50μm以下であるとより好ましく、15μm以下であるとさらに好ましい。上述のように、視力1.5の人が1m離れた画像において太さを視認できる限界は50μmであり、15μm以下となると直接視認することが困難であると言われている。よって、線の幅を100μm以下、好ましくは50μm以下とすることで、比較的近接して、例えば数10cm以上2m以下程度の距離を置いて、観察者が表示装置を観察するような場合でも、配線部が視認されないか、又は、視認されても目立たない。そのため、表示装置の背面側の像の視認性が向上する。
 透明表示装置1に外部から光が照射された場合には乱反射が生じ、場合によっては回折等が生じ得るので、透明表示装置1の向こう側の像の視認性が低下する場合がある。特に、図示の例のように、配線が、主としてX方向及びY方向に延在している場合、X方向及びY方向に延びる十字型の回折像が現れ易い傾向がある。これに対し、各配線の幅を小さくすることで、透明表示装置の背面側からの光によって生じ得る回折現象を低減又は防止でき、これにより、背面側の像の視認性がさらに向上する。回折を低減する観点では、各配線の幅を好ましくは50μm以下、より好ましくは10μm以下、さらに好ましくは5μm以下とするとよい。なお、上述の透明表示装置の背面側からの光は、透明表示装置に含まれる発光部とは別の光源から発せられる光である。
 配線部40に含まれる各配線の幅は0.5μm以上であると好ましい。線の幅を0.5μm以上にすることで、配線抵抗が過度に上昇することを防止でき、これにより、電源の電圧降下や信号強度の低下を防止できる。また、同時に熱伝導性が向上するため、好ましい。
 配線部40を構成する線の電気抵抗率は、1.0×10-6Ωm以下が好ましく、2.0×10-8Ωm以下がより好ましい。また、配線部40を構成する線の熱伝導率は、150W/(m・K)以上5500W/(m・K)以下であると好ましく、350W/(m・K)以上450W/(m・K)以下であるとより好ましい。
 配線部40において、隣り合う配線同士の間隔(異なる機能を有する配線同士の間隔を含む)は、例えば5μm以上50000μm以下であり、好ましくは10μm以上3000μm以下、より好ましくは100μm以上2000μm以下である。また、X方向及びY方向の少なくとも一方で、隣り合う配線同士の間隔を、例えば5μm以上50000μm以下とし、好ましくは10μm以上3000μm以下、より好ましくは100μm以上2000μm以下とする。同じ機能を有する配線同士の間隔、例えば電源線同士の間隔は、好ましくは150μm以上5000μm以下であり、より好ましくは300μm以上3000μm以下である。また、電源線やグラウンド線が格子状に形成される場合も、格子の隣り合う配線同士の間隔は同様とすることができ、格子状に形成された配線のシート抵抗は10Ω/□以下が好ましく、5Ω/□以下がさらに好ましい。
 線が密になっていると、又は、線が密になっている領域があると、背面側の像の視認を妨げる場合がある。そのため、隣り合う線同士の間隔を5μm以上とすることで、そのような視認の妨げを低減できる。但し、配線の幅が5μm以下と小さい場合、また、表示装置の透明性を確保できるのであれば、配線間を光の波長以下のサイズになるようにブラックマトリクス等で遮光してもよい。また、隣り合う線同士の間隔を3000μm以下とすることで、十分な表示能を確保するための配線を構成できる。
 配線部40の線同士の間隔を、X方向及びY方向の少なくとも一方において100μm以上とすることにより、乱反射や回折等による視認性の低下を防止できる。
 なお、上述の隣り合う配線同士の間隔は、配線が湾曲していたり、配線同士が平行に配置されていなかったりするなど、配線同士の間隔が一定でない場合、隣り合う配線同士の間隔の最大値にできる。この場合、配線としては、複数の画素に跨って延在する配線に着目することが好ましい。
 図1において、表示領域Aを、1個あたりが発光部20に対応する1画素(ピクセル)の面積、例えば0.1cm程度と同じ面積となるように、X方向に90個、Y方向に60個の合計5400個に分割する。その場合、分割した領域An(n=1~5400)は、A、A、A、…A59、A60、…A5399,A5400となる。ここで、所定面積を1cmの単位面積とした場合、単位面積の1cmの範囲は、X方向に3画素(ピクセル)、Y方向に3画素(ピクセル)の合計9画素(ピクセル)の面積に略対応する。そのため、表示領域Aは、同じ単位面積となるように600個に分割されることになる。なお、600個に分割した領域には、それぞれ配線部40が含まれている。
 本実施形態では、表示領域Aを単位面積(1cm)と同じ面積となるように分割した領域において、配線部40の長手方向と直交する断面積Dnの逆数(1/Dn)と長手方向に沿った長さLnの積の値(Vn=Ln/Dn)の領域の平均値に対する個々の領域の値のバラツキ(相対標準偏差)が30%以内である。ここで、バラツキは、所望の発光をしている領域でのバラツキを指し、断線等の不具合により発光していない領域の異常値はバラツキの範囲に含まない。
 配線部40の断面積Dnは、配線部40を構成する各配線の幅wと高さt(図2及び図3参照)との積である。配線部40を構成する配線の幅wと高さtは、設計値でもよく、測定値でもよい。
 なお、所定面積は、発光部20の9画素に相当する単位面積(1cm)に限定されるものではなく、例えば、1画素に相当する面積でもよい。
 また、表示領域Aと周辺領域Bを合わせた領域において、1つあたりの発光部20に対応する1画素(ピクセル)の面積と同じ面積となるように分割し、分割した領域の配線部40及び接続用配線部70の配線の面積を0.8とする。この場合、配線部40及び接続用配線部70以外の配線の面積の比を、1:0.8以下となるように設定することが好ましい。1:20以上となるように設定することがより好ましく、1:10以上1:0.8以下となるように設定することがさらに好ましい。
 ここで、1:0.8以下とは、配線部40及び接続用配線部70の配線の面積が、配線部40及び接続用配線部70以外の配線の面積の0.8倍以上を意味する。1:1とは、配線部40及び接続用配線部70の配線の面積と配線部40及び接続用配線部70以外の配線の面積とが同じことを意味する。1:10とは、配線部40及び接続用配線部70の配線の面積を1とした場合、配線部40及び接続用配線部70以外の配線の面積が10であることを意味するものである。1:10以上とは、配線部40及び接続用配線部70の配線の面積が、配線部40及び接続用配線部70以外の配線の面積の10倍以下であることと同じ意味である。
 図1において、表示領域Aは、1つあたりが発光部20に対応する1画素の面積と同じ面積となるように、n個、例えば、5400個に分割されている。
 周辺領域Bは、1つあたりが発光部20に対応する1画素(ピクセル)の面積と同じ面積となるように複数個、図1では、領域Bと領域Bの2個分割されている。
 表示領域Aの分割した領域Anにおける配線部40の配線の面積S1と配線部40ではない部分の配線の面積S2との比(S1:S2)は、1:10以上1:0.8以下(0.8≦S1/S2≦10)である。
 ここで、面積は、配線のそれぞれの幅寸法と長さとの積である。
 本実施形態では、周辺領域Bにおける接続用配線部70の配線の面積T1と接続用配線部70以外の配線の面積T2との比(T1:T2)は、1:10以上1:0.8以下(0.8≦T1/T2≦10)であることが好ましい。すなわち、比(T1:T2)は、表示領域Aにおける分割した領域Anの配線部40の配線の面積(S1)と配線部40以外の配線の面積(S2)との比(S1:S2)と同程度であることが好ましい。
 複数の画素に跨って延在する行データ線43がX方向に配置され、列データ線44がY方向に配置されている。このような構成は、パネルの大面積化の観点から好ましい。行データ線43又は列データ線44を配置しなくてもよい。
 一画素の領域において配線部40が占める面積は、一画素の面積に対して、30%以下であると良く、10%以下であると好ましく、5%以下であるとより好ましく、3%以下であるとさらに好ましい。また、表示領域全体において配線部40が占める面積も、表示領域の面積に対して30%以下であると良く、10%以下であると好ましく、5%以下であるとより好ましく、3%以下であるとさらに好ましい。
 表示領域Aにおいて、透過率が20%以下の領域の面積は60%以下であり、好ましくは、30%以下であり、より好ましくは、10%以下である。これにより、配線部40が光の透過を妨げる領域を低減できる。
 一画素の領域において、発光部20、ICチップ30及び配線部40が占める面積は、一画素の面積に対して30%以下であると好ましく、20%以下であるとより好ましく、10%以下であるとさらに好ましい。また、発光部20、ICチップ30及び配線部40が占める面積は、表示領域Aの面積に対して、30%以下であると好ましく、20%以下であるとより好ましく、10%以下であるとさらに好ましい。透明表示装置1がICチップ30を備えていない場合、一画素あるいは表示領域Aの面積に対する発光部20及び配線部40が占める面積は、ICチップ30を備えている場合と同様の値であることが好ましい。
 透明基材10は、絶縁性を有し透明であれば特に限定されないが、樹脂を含むものが好ましく、主として樹脂からなるものが好ましい。透明基材に使用される樹脂としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル系樹脂、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)等のオレフィン系樹脂、セルロース、アセチルセルロース、トリアセチルセルロース(TAC)等のセルロース系樹脂、ポリイミド(PI)等のイミド系樹脂、ポリエチレン(PE)、ポリ塩化ビニル(PVC)、ポリスチレン(PS)、ポリ酢酸ビニル(PVAc)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)等のビニル樹脂、ポリメタクリル酸メチル(PMMA)等のアクリル樹脂やその骨格に架橋がされたもの、エチレン・酢酸ビニル共重合樹脂(EVA)、ウレタン樹脂等が挙げられる。また、透明基材10としては、薄手のガラス、例えば200μm以下、好ましくは100μm以下のガラス等も使用できる。
 透明基材10に用いられる材料のうち、耐熱性向上の観点からはポリエチレンナフタレート(PEN)、ポリイミド(PI)が好ましい。また、複屈折率が低く、透明基材を通して見た像の歪みや滲みを低減できる点では、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)、ポリビニルブチラール(PVB)等が好ましい。
 上記材料は、単独で、又は、2種以上を組み合わせて、すなわち異なる材料が混合された形態で、又は、異なる材料からなる平面状の基材を積層させて使用できる。透明基材10全体の厚さは、3μm以上1000μm以下であると好ましく、5μm以上200μm以下であるとより好ましい。透明基材10の可視光の内部透過率は、50%以上であると好ましく、70%以上であるとより好ましく、90%以上であるとさらに好ましい。
 透明基材10は可撓性を有していると好ましい。これにより、例えば透明表示装置1を湾曲したガラス板に装着したり、湾曲した2つのガラス板で挟んで使用する場合、透明表示装置1をガラス板の湾曲に容易に追従させられる。また、100℃以上の加熱時に収縮挙動を示す素材であると、なお好ましい。
 透明基材10は、パッシベーション層を有することが好ましい。パッシベーション層とは、SiO、SiN、AlN、SiAlO、SiON等の無機層、シクロオレフィン、ポリイミド系、エポキシ系、アクリル系、ノボラック系等の樹脂層、無機層と樹脂層の積層、シロキサン系、シラザン系等ケイ素系ポリマー、又は有機及び無機のハイブリッド材料等からなる層である。
<第1実施形態の効果>
 第1実施形態では、表示領域Aに配置された配線部40は、表示領域Aを複数に分割した領域Anにおける単位面積当たりの断面積Dnの逆数(1/Dn)と長さLnの積Vnの値(Vn=Ln/Dn)の平均値Vaveに対するバラツキが30%以内である。そのため、電源線41及びグランド線42に電流が流れて発熱しても、表示領域Aの特定の部分が過熱することがないので、透明基材10の破損を防止できる。
 さらに、表示領域Aと接続用配線部70が配置される周辺領域Bとを合わせた領域を、1つあたりが発光部20に対応するピクセル(画素)の面積と同じ面積となるように複数分割し、分割した領域の配線部40及び接続用配線部70の配線の面積を0.8とする。その場合、配線部40及び接続用配線部70以外の配線の面積の比が1:10以上1:0.8以下の一定範囲である。そのため、表示領域Aのみならず、周辺領域Bも含めた範囲において、特定の部分が過熱することがないので、透明基材10の損傷を防止できる。
<第1実施形態の変形>
 第2の電源主線412と第2のグランド主線422とを2つの線状部412A、422Aを備えた構成としたが、この構成をいずれか一方のみに適用してもよく、又は、第1の電源主線411と第1のグランド主線421とに適用してもよい。
 さらに、線状部412A,422Aを3本以上の複数としてもよい。また、中間接続部を省略してもよい。
[第2実施形態]
 図5及び図6に示す第2実施形態の透明表示装置1Bは、次の点で、第1実施形態の透明表示装置1と構成が相違する。すなわち、第1及び第2の電源主線411、412、第1及び第2の電源分岐線413、414と、第1及び第2のグランド主線421、422、第1及び第2のグランド分岐線423、424とが透明基材10の板厚方向の異なる平面に配置されている。
 図5及び図6で示すように、透明基材10の主面上に、第1の電源分岐線413、第2の電源分岐線414、第1のグランド主線421、第2のグランド主線422、第1のグランド分岐線423、第2のグランド分岐線424、発光部20、及びICチップ30が配置されている。これらは、絶縁層14で覆われている。
 絶縁層14の上には、第1の電源主線411、第2の電源主線412、第1の電源分岐線413及び第2の電源分岐線414が配置されている。
 第2の電源主線412と第1のグランド分岐線423とは図示しない導電部で接続されている。
 また、表示領域Aを含む平面内を同じ所定面積となるように複数個、例えば、600個に分割した場合、分割した領域の電流密度の平均値に対するバラツキが10倍以内であるとよく、5倍以内であると好ましく、2倍以内であるとより好ましい。ここで、電流密度とは、電流と垂直な微小平面上の単位面積当たりに換算して流れる電流である。また、分割した領域のバラツキは、所望の電流密度に制御されている領域でのバラツキを指し、断線等の不具合が生じている領域のバラツキは含まない。
 バラツキが10倍以内であれば、部材自体の熱伝達によって局所的な加熱を抑制でき、膨張差による応力の発生が抑制され、その結果、ガラスの熱割れを抑制できる。
 第2の電源主線412は、図5では、表示領域Aの略中心部を通るように配置されているが、表示領域Aの平面内での配置位置は限定されない。
 第2実施形態では、第1の電源主線411及び第2の電源主線412と、第1の電源分岐線413及び第2の電源分岐線414とが透明基材10の板厚方向の異なる平面に配置されている。そのため、これらが透明基材10の同一平面内に配置されている第1実施形態に比べて、レイアウトの多様化が図れる。
<第2実施形態の変形>
 第2実施形態では、第1の電源主線411及び第2の電源主線412と第1の電源分岐線413及び第2の電源分岐線414とを透明基材10の板厚方向の異なる平面に配置した構成を備えている。当該構成に加え、又は、当該構成に代えて、第1のグランド主線421及び第2のグランド主線422と第1のグランド分岐線423及び第2のグランド分岐線424とを透明基材10の板厚方向の異なる平面に配置してもよい。
 また、第2実施形態では、第2の電源分岐線414と第2のグランド分岐線424とが同一平面、つまり、透明基材10の板厚方向で同一の位置にある平面内に形成されていてもよい。そして、それとは異なる平面に、第2の電源主線412が複数本配置され、第1の電源分岐線413と格子状のパターンが同一平面内に形成されていてもよい。さらに、これらの2つの平面とは異なる平面に、第2のグランド主線422と第1のグランド分岐線423が表示領域A内に格子状のパターンを形成して配置されてもよい。
[第3実施形態]
 第3実施形態を図7に基づいて説明する。
 第3実施形態は第1実施形態の透明表示装置1を接着シート等の取付部材によってガラス板や移動体等に装着して使用した構成である。また、2つのガラス板間に封入して透明表示装置付き合わせガラスとしても使用できる。そのようなガラス板は透明のものが好ましい。
 図7に示す第3実施形態の透明表示装置付き合わせガラス100Fは、第1実施形態の透明表示装置1と、透明表示装置1を挟持する第1のガラス板101F及び第2のガラス板102Fとを備えている。第1のガラス板101Fは、透明基材10の発光部20及び配線部40が設けられる面とは反対側の面に配置される透明板材である。
 第2のガラス板102Fは、2枚のガラス板10Eを第2の接着層104Fで接合したものである。
 透明表示装置1を製造するために、第1のガラス板101F上に第1の接着層103Fを介して透明表示装置1を載置し、さらに、透明表示装置1の上にガラス板10Eを重ね、第2の接着層104Fを介してガラス板10Eを配置する。これにより、透明表示装置付き合わせガラス100F内で透明表示装置1を安定させられる。
 第1のガラス板101F及び第2のガラス板102Fとしては、無機ガラス及び有機ガラスのいずれでもよい。無機ガラスとしては、例えばソーダライムガラス等が挙げられる。
 第1のガラス板101F及び第2のガラス板102Fのいずれについても、厚さは0.5mm以上5mm以下であると好ましく、1.5mm以上2.5mm以下であるとより好ましい。なお、第1のガラス板101F及び第2のガラス板102Fの材質、構成、及び厚さはそれぞれ、同じでもよく異なっていてもよい。
 第1の接着層103F及び第2の接着層104Fの材料は、シクロオレフィンコポリマー(COP)、酢酸ビニル共重合体(EVA)、ポリビニルブチラール(PVB)等を主成分とする中間膜が挙げられる。第1の接着層103F及び第2の接着層104Fは、透明表示装置1の全面又は一部に設けられる。
 透明表示装置付き合わせガラス100Fは、平面状のものに限られず、曲面を有していてもよい。すなわち、透明表示装置付き合わせガラス100Fは湾曲していてもよい。この湾曲は一方向でもよいし、第1の方向とそれに直交する第2の方向との2方向で湾曲されていてもよい。
 湾曲した透明表示装置付き合わせガラス100Fを得る場合、湾曲処理された第1のガラス板101F上に透明表示装置1を載置し、湾曲処理された第2のガラス板102Fを重ねた後、加熱、加圧処理する。これにより、湾曲した透明表示装置付き合わせガラス100Fが得られる。なお、第2のガラス板102Fが第1のガラス板101Fに対し、板厚が十分に薄い場合、第2のガラス板102Fを予め湾曲処理しなくてもよい。
 透明表示装置付き合わせガラス100Fは、視認距離(観察者から表示画面までの距離)が、例えば0.25m以上4.0m以下となるような用途で好適に使用できる。具体的な用途としては、移動体としての自動車、鉄道車両等の車両、飛行機、建物、透明な筐体等における使用が挙げられる。例えば、自動車におけるフロントウィンドウ、リアウィンドウ、サイドウィンドウ等の窓ガラス、電車等のその他の交通機関における窓ガラス、中刷り広告等、店舗のショーウィンドウ、ショーケース、扉付の陳列棚の窓等が挙げられる。それらの少なくとも一部に透明表示装置付き合わせガラス100Fを組み込んで使用できる。
 このように、透明表示装置付き合わせガラス100Fは、視認距離が比較的近い用途で用いても、上述のように微小サイズのLEDを用い、透過率の低い領域を所定の割合としているため、表示能を維持しつつ、背面側の像を視認できる透明性を確保できる。
[第4実施形態]
 第4実施形態を図8及び図9に基づいて説明する。
 図8に示す第4実施形態の移動体としての自動車110Hは、湾曲した透明表示装置付き合わせガラス100Fをフロントガラスとして備えている。
 フロントガラスを構成する透明表示装置付き合わせガラス100Fは、図9に示すように、その外周部に設けられた隠蔽層101Hを備えている。隠蔽層101Hは、車内側に設けられ、車外から車内を隠す機能を有している。また、透明表示装置1は、フロントガラスよりも小さく形成されており、車内側から見て左下側の一部の範囲に封入されている。透明表示装置1が設けられる範囲は、フロントガラスの面積の50%以下、30%以下でもよい。
<第4実施形態の変形例>
 透明表示装置1の大きさはフロントガラスと略同じ大きさでもよい。
[第5実施形態]
 第5実施形態を図10に基づいて説明する。
 図10に示すように、透明表示装置1Cは、透明基材10と、発光部20と、配線部40と、図示しない制御部とを備えている。
 透明表示装置1Bの表示領域Aは、平面視で見た場合、発光部20及び配線部40を含む。
 発光部20は、表示領域A内において、行方向(図面のX方向)に沿って複数が直線上に配置されており、これらの直線上に配置される複数の発光部20は、2列配置されている。
 配線部40は、それぞれ線状体である、電源線41と、グランド線42とを備えている。電源線41及びグランド線42は同一平面内に配置されている。
 電源線41は、電源主線410及び電源分岐線415を備えている。電源主線410は、図示しない制御部に接続され2列の発光部20の両側において行方向(X方向)に沿って配置されている。電源分岐線415は、電源主線410の複数箇所から上下方向(列方向)に延びて発光部20にそれぞれ接続されている。
 グランド線42は、1本の第1のグランド主線421、第2のグランド主線422、及びグランド分岐線425を備えている。第1のグランド主線421は、図示しない制御部に接続され上下方向(Y方向)に延びている。第2のグランド主線422は、第1のグランド主線421の途中から左方向(行方向)に延びている。グランド分岐線425は、第2のグランド主線422の複数箇所から上方向(列方向)にそれぞれ延び、発光部20にそれぞれ接続されている。
 第2のグランド主線422は、互いに対向する2本の線状部422Aと、線状部422Aの互いに対向する部分を接続する線状の接続部422Bとを有する。2本の線状部422Aは、それぞれ基端部が第1のグランド主線421に接続されているので、第1のグランド主線421の一部と2本の線状部422Aと接続部422Bとから環状とされている。
 図10では、接続部422Bは、2本の線状部422Aの先端部同士を接続する線状の先端接続部422Cのみ示されているが、線状部422Aの中間部分や末端を接続する線状の中間接続部を設けてもよい。
 電源主線410と、グランド線42とは同じ幅寸法を有する。
 本実施形態では、第1実施形態と同様に、配線部40は、表示領域Aをn個に分割した領域における単位面積当たりの断面積の逆数と長さの積の値の平均値に対するバラツキが30%以内である。ここで、前述の通り、断線等の不具合により発光していない領域の異常値は、バラツキの範囲に含まれない。
[第6実施形態]
 第6実施形態を図11に基づいて説明する。
 第6実施形態は第5実施形態とはグランド線42の形状が異なる。
 図11に示すように、透明表示装置1Dは、透明基材10と、発光部20と、配線部40と、図示しない制御部とを備えている。
 グランド線42は、第1のグランド主線421と、第2のグランド主線422と、グランド分岐線425とを備えている。
 第1のグランド主線421は、互いに対抗する2本の線状部421Aと、これらの線状部421Aの中間部分を接続する線状の中間接続部421Dとを有する。
 第2のグランド主線422は、互いに対向し線状部421Aに基端が接続された線状部422Aを有する。また、第5実施形態では、互いに対向する線状部422Aの先端、つまり、線状部421Aが接続された末端とは反対側の末端や、互いに対向する線状部422Aの中間部分を接続する線状の中間接続部を設けてもよい。
 電源主線410と、グランド線42とは同じ幅寸法を有する。
 本実施形態では、第1実施形態と同様に、配線部40は、表示領域Aをn個に分割した領域における単位面積当たりの断面積の逆数と長さの積の値の平均値に対するバラツキが30%以内である。第6実施形態においても、不具合により発光していない領域の異常値は、バラツキの範囲に含まれない。
<その他の変形例>
 本発明の他の実施形態において、第1実施形態から第6実施形態及び変形例を、可能な範囲で必要に応じて組み合わせてもよい。
 この出願は、2019年3月22日に出願された日本出願特願2019-054428を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1,1B,1C…透明表示装置、10…透明基材、14…絶縁層、20…発光部、30…ICチップ、40…配線部、41…電源線、410…電源主線、411…第1の電源主線、412…第2の電源主線、412A,421A,422A…線状部、412B…接続部、412C…先端接続部、412D、421D…中間接続部、60…制御部、70…接続用配線部、71…第一配線部、72…第二配線部、A…表示領域、B…周辺領域

Claims (13)

  1.  透明基材と、前記透明基材上に配置された複数の発光部と、前記発光部の各々に接続された配線部と、電気回路基板で構成され前記配線部を通じて前記発光部に電流を供給し前記発光部から電流が戻る制御部と、を備え、前記発光部及び前記配線部が表示領域に配置された透明表示装置であって、
     前記発光部の各々は、1mm以下の面積を有する発光ダイオードを含み、
     前記表示領域に配置された前記配線部は、前記表示領域を同じ所定面積になるように複数に分割した領域に位置する部分の前記配線部の長手方向と直交する断面積(Dn)の逆数(1/Dn)と前記長手方向に沿った長さ(Ln)の積(Vn=Ln/Dn)の、前記分割した領域の平均値に対する前記分割した領域の個々の値のバラツキが30%以内であり、
     前記表示領域において、可視光線の透過率が20%以下の領域の面積が60%以下である
     ことを特徴とする透明表示装置。
  2.  前記表示領域の領域外に前記制御部が配置され、前記制御部と前記表示領域に配置された前記配線部とが接続用配線部で接続され、前記表示領域と、前記接続用配線部が配置される周辺領域とを合わせた領域を、1つあたりが前記発光部に対応するピクセルの面積と同じ面積となるように複数分割した場合、分割した領域の個々において、前記配線部及び前記接続用配線部の配線の面積を0.8とした場合、前記配線部及び前記接続用配線部以外の配線の面積の比が1以下である
     請求項1に記載の透明表示装置。
  3.  前記配線部は、主線と、前記主線から分岐され前記発光部にそれぞれ接続される分岐線とを備え、前記主線は、互いに対向し、かつ、基端側が前記制御部に接続される複数の線状部と、前記線状部の互いに対向する部分を接続する接続部とを有する請求項1又は2に記載の透明表示装置。
  4.  前記主線と前記分岐線とは前記透明基材の板厚方向で同一の位置にある平面内に配置されている請求項3に記載の透明表示装置。
  5.  前記主線と前記分岐線とは前記透明基材の板厚方向の異なる平面に配置されている請求項3に記載の透明表示装置。
  6.  前記表示領域に配置された前記配線部は、電流密度が前記分割した領域の平均値に対する前記分割した領域の個々の値のバラツキが10倍以内である請求項1又は5に記載の透明表示装置。
  7.  前記接続部は、前記複数の線状部の先端部同士を接続する先端接続部を有する請求項3~5のいずれか1項に記載の透明表示装置。
  8.  前記接続部は、前記複数の線状部の中間部分を接続する中間接続部を前記主線の長手方向に沿って複数有する請求項7に記載の透明表示装置。
  9.  前記透明基材には前記発光部と前記配線部とを絶縁する絶縁部材が設けられ、前記絶縁部材は、ハロゲンフリーの材料から形成されている請求項1~8のいずれか1項に記載の透明表示装置。
  10.  前記透明基材の前記発光部及び前記配線部を挟んで反対側に透明板材が配置され、前記透明板材と前記透明基材との間に前記発光部及び前記配線部が挟まれている請求項1~9のいずれか1項に記載の透明表示装置。
  11.  前記透明基材は、移動体に組みつけられるガラス板を有する請求項1~10のいずれか1項に記載の透明表示装置を備える透明表示装置付きガラス板。
  12.  請求項1~10のいずれか1項に記載の透明表示装置と、
     前記透明基材を配置するガラス板と、当該ガラス板とで前記透明表示装置を挟持する他のガラス板とを備える透明表示装置付き合わせガラス。
  13.  請求項1~10のいずれか1項に記載の透明表示装置を備えた移動体。
PCT/JP2020/011888 2019-03-22 2020-03-18 透明表示装置、透明表示装置付きガラス板、透明表示装置付き合わせガラス、及び移動体 WO2020196134A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021509244A JP7420136B2 (ja) 2019-03-22 2020-03-18 透明表示装置、透明表示装置付きガラス板、透明表示装置付き合わせガラス、及び移動体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019054428 2019-03-22
JP2019-054428 2019-03-22

Publications (1)

Publication Number Publication Date
WO2020196134A1 true WO2020196134A1 (ja) 2020-10-01

Family

ID=72610909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011888 WO2020196134A1 (ja) 2019-03-22 2020-03-18 透明表示装置、透明表示装置付きガラス板、透明表示装置付き合わせガラス、及び移動体

Country Status (2)

Country Link
JP (1) JP7420136B2 (ja)
WO (1) WO2020196134A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091999A1 (ja) * 2020-10-28 2022-05-05 Agc株式会社 透明電子デバイス、合わせガラス、及び透明電子デバイスの製造方法
WO2022124169A1 (ja) * 2020-12-07 2022-06-16 Agc株式会社 透明表示デバイス、合わせガラス、及び透明表示デバイスの製造方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261335A (ja) * 2000-07-18 2002-09-13 Sony Corp 画像表示装置及び画像表示装置の製造方法
US20020149547A1 (en) * 2001-01-29 2002-10-17 Robertson John A. Transparent programmable LED display panel and method
JP2006301639A (ja) * 2005-04-21 2006-11-02 Crf Soc Consortile Per Azioni 透明ledディスプレイ
JP2006301650A (ja) * 2005-04-21 2006-11-02 Crf Soc Consortile Per Azioni 透明なledディスプレイ及びその製造方法
JP2006303509A (ja) * 2005-04-21 2006-11-02 Crf Soc Consortile Per Azioni 発光ダイオードを有する透明デバイスの製造方法
JP2015166756A (ja) * 2014-03-03 2015-09-24 株式会社ラパンクリエイト 表示ユニットおよび表示装置
JP2017116885A (ja) * 2015-12-25 2017-06-29 大日本印刷株式会社 Led表示装置
JP2017521859A (ja) * 2014-06-18 2017-08-03 エックス−セレプリント リミテッドX−Celeprint Limited マイクロ組立ledディスプレイ
JP2018004733A (ja) * 2016-06-28 2018-01-11 株式会社ジャパンディスプレイ 入力機能付き表示装置
JP2018010169A (ja) * 2016-07-13 2018-01-18 大日本印刷株式会社 Led表示装置
JP2018087927A (ja) * 2016-11-29 2018-06-07 Its合同会社 Ledディスプレイ装置
CN109742132A (zh) * 2019-02-28 2019-05-10 京东方科技集团股份有限公司 显示面板和显示装置
WO2019146634A1 (ja) * 2018-01-25 2019-08-01 Agc株式会社 透明表示装置、及び透明表示装置を備えた合わせガラス

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261335A (ja) * 2000-07-18 2002-09-13 Sony Corp 画像表示装置及び画像表示装置の製造方法
US20020149547A1 (en) * 2001-01-29 2002-10-17 Robertson John A. Transparent programmable LED display panel and method
JP2006301639A (ja) * 2005-04-21 2006-11-02 Crf Soc Consortile Per Azioni 透明ledディスプレイ
JP2006301650A (ja) * 2005-04-21 2006-11-02 Crf Soc Consortile Per Azioni 透明なledディスプレイ及びその製造方法
JP2006303509A (ja) * 2005-04-21 2006-11-02 Crf Soc Consortile Per Azioni 発光ダイオードを有する透明デバイスの製造方法
JP2015166756A (ja) * 2014-03-03 2015-09-24 株式会社ラパンクリエイト 表示ユニットおよび表示装置
JP2017521859A (ja) * 2014-06-18 2017-08-03 エックス−セレプリント リミテッドX−Celeprint Limited マイクロ組立ledディスプレイ
JP2017116885A (ja) * 2015-12-25 2017-06-29 大日本印刷株式会社 Led表示装置
JP2018004733A (ja) * 2016-06-28 2018-01-11 株式会社ジャパンディスプレイ 入力機能付き表示装置
JP2018010169A (ja) * 2016-07-13 2018-01-18 大日本印刷株式会社 Led表示装置
JP2018087927A (ja) * 2016-11-29 2018-06-07 Its合同会社 Ledディスプレイ装置
WO2019146634A1 (ja) * 2018-01-25 2019-08-01 Agc株式会社 透明表示装置、及び透明表示装置を備えた合わせガラス
CN109742132A (zh) * 2019-02-28 2019-05-10 京东方科技集团股份有限公司 显示面板和显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091999A1 (ja) * 2020-10-28 2022-05-05 Agc株式会社 透明電子デバイス、合わせガラス、及び透明電子デバイスの製造方法
WO2022124169A1 (ja) * 2020-12-07 2022-06-16 Agc株式会社 透明表示デバイス、合わせガラス、及び透明表示デバイスの製造方法

Also Published As

Publication number Publication date
JP7420136B2 (ja) 2024-01-23
JPWO2020196134A1 (ja) 2020-10-01

Similar Documents

Publication Publication Date Title
US20210183943A1 (en) Transparent display device, glass plate with transparent display device, laminated glass with transparent display device, and vehicle
US20210316535A1 (en) Transparent display device and vehicle
WO2020196134A1 (ja) 透明表示装置、透明表示装置付きガラス板、透明表示装置付き合わせガラス、及び移動体
EP2960760A1 (en) Touch panel with a printing layer of a certain surface roughness
JP2019522613A (ja) ヘッドアップディスプレイのための乗り物のウィンドシールド及びそれを組み込んだ乗り物並びに前記ウィンドシールドの製造
KR20230047339A (ko) 배선 필름 및 그를 포함한 표시 장치
KR20190135272A (ko) 유리 조립체
JP7449280B2 (ja) マイクロled素子基板および表示装置
CN114762024A (zh) 柔性透明电子器件的制造方法以及物品
JP6872769B2 (ja) Ledディスプレイ装置
US20220352126A1 (en) Light-emitting window element and motor vehicle comprising a light-emitting window element
TWI781466B (zh) 顯示裝置及顯示裝置之製造方法
CN117813198A (zh) 交通工具窗及其制造方法
JP6582794B2 (ja) 融雪機能付led情報表示パネル及びled情報表示装置
WO2021132092A1 (ja) フレキシブル透明電子デバイスの製造方法及び物品
WO2021010217A1 (ja) 透明表示装置、合わせガラス、及び透明表示装置の製造方法
US20230299058A1 (en) Transparent display device, laminated glass, and manufacturing method of transparent display device
US20220261106A1 (en) Display device
WO2022091999A1 (ja) 透明電子デバイス、合わせガラス、及び透明電子デバイスの製造方法
WO2021010219A1 (ja) 透明センシングデバイス、合わせガラス、及び透明センシングデバイスの製造方法
WO2023090335A1 (ja) 透明電子デバイス、合わせガラス、及び透明電子デバイスの製造方法
JP2021015262A (ja) 透明表示装置、合わせガラス、及び透明表示装置の製造方法
CN117915712A (zh) 透明显示面板及透明拼接显示装置
CN117120254A (zh) 光电子发光设备和方法
JP2024065379A (ja) 透明電子デバイス及び合わせガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509244

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20777955

Country of ref document: EP

Kind code of ref document: A1