WO2023090335A1 - 透明電子デバイス、合わせガラス、及び透明電子デバイスの製造方法 - Google Patents

透明電子デバイス、合わせガラス、及び透明電子デバイスの製造方法 Download PDF

Info

Publication number
WO2023090335A1
WO2023090335A1 PCT/JP2022/042470 JP2022042470W WO2023090335A1 WO 2023090335 A1 WO2023090335 A1 WO 2023090335A1 JP 2022042470 W JP2022042470 W JP 2022042470W WO 2023090335 A1 WO2023090335 A1 WO 2023090335A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
wiring
electronic device
less
transparent substrate
Prior art date
Application number
PCT/JP2022/042470
Other languages
English (en)
French (fr)
Inventor
諒 江口
雄太 石橋
幸宏 垰
将英 古賀
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023090335A1 publication Critical patent/WO2023090335A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Definitions

  • the present invention relates to a transparent electronic device, laminated glass, and a method for manufacturing a transparent electronic device.
  • Patent Document 1 As disclosed in Patent Document 1, the inventors have developed a transparent display device using fine light emitting diode (LED) elements formed on a transparent substrate as pixels. Such a transparent display device is provided on a transparent member such as a window or a partition of a vehicle or a building, since the rear side can be visually recognized through the transparent display device.
  • a transparent sensing device in which a microsensor is provided on a transparent substrate.
  • transparent electronic devices such as transparent display devices and transparent sensing devices, in which electronic elements are formed on a transparent substrate and the rear side of which is visible.
  • the inventors have found the following problems with such transparent electronic devices.
  • the width of the wiring is narrowed to make the wiring inconspicuous, but there is a limit from the viewpoint of electrical resistance and the like. Therefore, the inventors studied a method of changing the color of the wiring to make the wiring less conspicuous.
  • the present invention has been made in view of such circumstances, and provides a transparent electronic device in which wiring is less conspicuous.
  • the present invention provides a transparent electronic device having the configuration [1].
  • a transparent substrate having an electronic element disposed on the main surface of the transparent substrate and having an area of 250000 ⁇ m 2 or less; a wiring with a width of 100 ⁇ m or less connected to the electronic element, a surface of the wiring opposite to the transparent substrate is coated with an electroless plating film;
  • the color of the wiring observed from the electroless plated film side satisfies L * ⁇ 50, a * ⁇ 10, and b * ⁇ 10 in the CIE L * a * b * color space.
  • the present invention provides a laminated glass having the configuration of [9].
  • [9] a pair of glass plates;
  • a transparent electronic device provided between the pair of glass plates, and a laminated glass comprising:
  • the transparent electronic device is a transparent substrate; an electronic element formed on the main surface of the transparent substrate and having an area of 250000 ⁇ m 2 or less; a wiring with a width of 100 ⁇ m or less connected to the electronic element, a surface of the wiring opposite to the transparent substrate is coated with an electroless plating film;
  • the color of the wiring observed from the electroless plated film side satisfies L * ⁇ 50, a * ⁇ 10, and b * ⁇ 10 in the CIE L * a * b * color space. laminated glass.
  • the pair of glass plates includes an opaque shielding portion provided on the periphery
  • the transparent electronic device includes an opaque region provided around the transparent region
  • the opaque region of the transparent electronic device The laminated glass according to [9], at least part of which is provided in the shielding portions of the pair of glass plates.
  • the present invention provides a method for manufacturing a transparent electronic device having the configuration [12] below.
  • [12] Disposing an electronic element having an area of 250000 ⁇ m 2 or less on the main surface of the transparent substrate, A method for manufacturing a transparent electronic device, wherein a wiring having a width of 100 ⁇ m or less is connected to the electronic element, covering the surface of the wiring on the side opposite to the transparent substrate with an electroless plating film; The color of the wiring observed from the electroless plated film side satisfies L * ⁇ 50, a * ⁇ 10, and b * ⁇ 10 in the CIE L * a * b * color space.
  • a method for manufacturing a transparent electronic device is
  • FIG. 1 is a schematic partial plan view showing an example of a transparent display device according to a first embodiment
  • FIG. FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1
  • 4A to 4C are cross-sectional views showing an example of a method for manufacturing the transparent display device according to the first embodiment
  • 4A to 4C are cross-sectional views showing an example of a method for manufacturing the transparent display device according to the first embodiment
  • 4A to 4C are cross-sectional views showing an example of a method for manufacturing the transparent display device according to the first embodiment
  • 4A to 4C are cross-sectional views showing an example of a method for manufacturing the transparent display device according to the first embodiment
  • 4A to 4C are cross-sectional views showing an example of a method for manufacturing the transparent display device according to the first embodiment
  • 4A to 4C are cross-sectional views showing an example of a method for manufacturing the transparent display device according to the first embodiment
  • 4A to 4C are cross-sectional views showing an example
  • FIG. 5 is a schematic plan view showing an example of laminated glass according to a second embodiment
  • FIG. 5 is a schematic cross-sectional view showing an example of laminated glass according to a second embodiment
  • FIG. 5 is a schematic cross-sectional view showing another example of the laminated glass according to the second embodiment
  • FIG. 11 is a schematic partial plan view showing an example of a transparent display device according to a third embodiment
  • FIG. 11 is a schematic partial plan view showing an example of a transparent sensing device according to a fourth embodiment
  • 4 is a schematic cross-sectional view of a sensor 70
  • FIG. 5 is a graph showing distributions of chromaticities a * and b * of wiring of transparent display devices according to Examples 1 to 5.
  • FIG. 5 is a graph showing the reflectance of light with a wavelength of 360 to 740 nm by wiring of transparent display devices according to Examples 1 to 5.
  • FIG. 5 is a graph showing the reflectance of light with a wavelength of 360 to 740 nm by wiring of transparent
  • transparent electronic device refers to an electronic element formed on a transparent base material, which allows visual information such as a person or background located on the back side of the electronic device to be visible under a desired usage environment. Refers to electronic devices.
  • transparent display device refers to a display device that allows visual information such as a person or background located on the back side of the display device to be visible under a desired usage environment. It should be noted that being visible is determined at least when the display device is in a non-display state, that is, in a non-energized state.
  • a “transparent display device” is one form of a “transparent electronic device.”
  • transparent sensing device refers to a sensing device that allows visual information such as a person or background located on the back side of the sensing device to be visible under a desired usage environment.
  • sensing device refers to a device that can acquire various types of information using a sensor.
  • transparent sensing device is one form of a “transparent electronic device.”
  • the term “transparent” means that the area of a region through which visible light is transmitted with a haze value of 20 or less is 30% or more, preferably 50% or more, more preferably 50% or more of the entire display region or sensing region. means 70% or more. It may also refer to a transmittance of 1% or more and a haze value of 20 or less. If the transmittance is 1% or more, when viewing the outdoors in the daytime from indoors, the outdoors can be seen with a brightness equal to or higher than that of the indoors, and sufficient visibility can be ensured.
  • transmittance 40% or more, even if the brightness on the front side and the back side of the transparent display device is about the same, the back side of the transparent display device can be visually recognized without substantially any problem. Further, when the haze value is 10 or less, sufficient background contrast can be ensured.
  • transparent refers to whether or not a color is imparted, that is, it may be colorless and transparent, and may be colored and transparent.
  • transmittance refers to the value (%) measured by the method based on ISO9050. A haze value points out the value measured by the method based on ISO14782.
  • FIG. 1 is a schematic partial plan view showing an example of the transparent display device according to the first embodiment.
  • FIG. 2 is a cross-sectional view taken along the line II--II in FIG. It should be noted that the right-handed xyz orthogonal coordinates shown in FIGS. 1 and 2 are, of course, for convenience in explaining the positional relationship of the constituent elements. Normally, the positive direction of the z-axis is vertically upward, and the xy plane is the horizontal plane.
  • the transparent display device includes a transparent substrate 10, a light emitting section 20, an IC (Integrated Circuit) chip 30, wiring 40, and a protective layer 50.
  • a display area 101 in a transparent display device is an area in which an image is displayed, which is composed of a plurality of pixels. Note that the image includes characters.
  • the display area 101 is composed of a plurality of pixels arranged in a row direction (x-axis direction) and a column direction (y-axis direction).
  • FIG. 1 shows a part of the display area 101, showing a total of 4 pixels, 2 pixels each in the row direction and the column direction.
  • one pixel PIX is surrounded by a dashed line.
  • the transparent substrate 10 and protective layer 50 shown in FIG. 2 are omitted.
  • FIG. 1 is a plan view, the light-emitting portion 20 and the IC chip 30 are indicated by dots for easy understanding.
  • each pixel PIX has a light emitting section 20 and an IC chip 30 .
  • the light emitting units 20 and the IC chips 30 are arranged in a matrix with a pixel pitch Px in the row direction (x-axis direction) and a pixel pitch Py in the column direction (y-axis direction).
  • the arrangement form of the pixels PIX that is, the light emitting units 20 is not limited to a matrix as long as they are arranged at a prescribed pixel pitch in a prescribed direction.
  • the light emitting section 20 in each pixel PIX includes at least one light emitting diode element (hereinafter referred to as LED element). That is, the transparent display device according to this embodiment is a display device using an LED element for each pixel PIX, and is called an LED display or the like.
  • LED element light emitting diode element
  • each light emitting unit 20 includes a red LED element 21 , a green LED element 22 , and a blue LED element 23 .
  • the LED elements 21 to 23 correspond to sub-pixels forming one pixel.
  • the transparent display device since each light-emitting section 20 has the LED elements 21 to 23 that emit the three primary colors of light, red, green, and blue, the transparent display device according to this embodiment can display a full-color image.
  • each light emitting unit 20 may include two or more LED elements of similar colors. This makes it possible to expand the dynamics range of the image.
  • the LED elements 21 to 23 are so-called micro LED elements, which are semiconductor chips having an area of 10000 ⁇ m 2 or less, for example.
  • the width (length in the x-axis direction) and the length (length in the y-axis direction) of the LED element 21 on the transparent substrate 10 are, for example, 100 ⁇ m or less, preferably 50 ⁇ m or less, and more preferably 20 ⁇ m. It is below.
  • the lower limits of the width and length of the LED element are, for example, 3 ⁇ m or more due to manufacturing conditions and the like.
  • the dimensions of the LED elements 21 to 23 in FIG. 1, that is, width and length, are the same, they may be different from each other.
  • the area occupied by each of the LED elements 21 to 23 on the transparent substrate 10 is preferably 3000 ⁇ m 2 or less, more preferably 500 ⁇ m 2 or less. It should be noted that the lower limit of the area occupied by one LED element is, for example, 10 ⁇ m 2 or more from various manufacturing conditions.
  • the area of the LED element and the area of the constituent members such as the wiring refer to the area occupied by the constituent members such as the LED element and the wiring in the xy plan view in FIG.
  • the shape of the LED elements 21 to 23 shown in FIG. 1 is rectangular (including square), but is not particularly limited.
  • the LED elements 21 to 23 have, for example, a mirror structure for efficiently extracting light to the viewing side. Therefore, the transmittance of the LED elements 21 to 23 is as low as about 10% or less, for example.
  • the transparent display device according to the present embodiment as described above, micro-sized LED elements 21 to 23 having an area of 10000 ⁇ m 2 or less are used. Therefore, even when observing the transparent display device from a short distance of, for example, several tens of centimeters to 2 meters, the LED elements 21 to 23 are hardly visible.
  • the display area 101 has a narrow area with low transmittance, and the visibility on the back side is excellent.
  • the wiring 40 and the like can be arranged with a high degree of freedom. It should be noted that the “area with low transmittance in the display area 101” is, for example, an area with a transmittance of 20% or less. The same applies hereinafter.
  • the transparent display device according to this embodiment can be used by being attached to a curved transparent plate such as an automobile window glass, or enclosed between two curved transparent plates.
  • the transparent display device according to this embodiment can be curved.
  • the LED elements 21 to 23 are not particularly limited, they are inorganic materials, for example.
  • the red LED element 21 is, for example, AlGaAs, GaAsP, GaP, or the like.
  • the green LED element 22 is, for example, InGaN, GaN, AlGaN, GaP, AlGaInP, ZnSe, or the like.
  • the blue LED element 23 is, for example, InGaN, GaN, AlGaN, ZnSe, or the like.
  • the luminous efficiency that is, the energy conversion efficiency of the LED elements 21 to 23 is, for example, 1% or higher, preferably 5% or higher, and more preferably 15% or higher.
  • the luminous efficiency of the LED elements 21 to 23 is 1% or more, the LED elements 21 to 23 having a very small size can provide sufficient luminance as described above, and can be used as a display device even during the daytime. Further, when the luminous efficiency of the LED element is 15% or more, heat generation is suppressed, and it becomes easy to enclose the LED element inside the laminated glass using the resin adhesive layer.
  • Pixel pitches Px and Py are, for example, 100 to 3000 ⁇ m, preferably 180 to 1000 ⁇ m, and more preferably 250 to 400 ⁇ m. By setting the pixel pitches Px and Py within the above range, high transparency can be achieved while ensuring sufficient display performance. Moreover, it is possible to suppress the diffraction phenomenon that may occur due to the light from the back side of the transparent display device. Also, the pixel density in the display region 101 of the transparent display device according to this embodiment is, for example, 10 ppi or more, preferably 30 ppi or more, and more preferably 60 ppi or more.
  • the area of one pixel PIX is Px ⁇ Py.
  • the area of one pixel is, for example, 1 ⁇ 10 4 ⁇ m 2 to 9 ⁇ 10 6 ⁇ m 2 , preferably 3 ⁇ 10 4 to 1 ⁇ 10 6 ⁇ m 2 , more preferably 6 ⁇ 10 4 to 2 ⁇ 10 5 ⁇ m 2 . be.
  • the area of one pixel may be appropriately selected depending on the size of the display region 101, the application, the viewing distance, and the like.
  • the ratio of the area occupied by the LED elements 21 to 23 to the area of one pixel is, for example, 30% or less, preferably 10% or less, more preferably 5% or less, further preferably 1% or less. If the ratio of the area occupied by the LED elements 21 to 23 to the area of one pixel is 30% or less, the transparency and the visibility on the back side are improved.
  • the three LED elements 21 to 23 are arranged in a row in this order in the positive direction of the x-axis, but the present invention is not limited to this.
  • the arrangement order of the three LED elements 21 to 23 may be changed.
  • the three LED elements 21 to 23 may be arranged in the y-axis direction.
  • the three LED elements 21-23 may be arranged at the vertices of the triangle.
  • each light emitting section 20 includes a plurality of LED elements 21 to 23
  • the distance between the LED elements 21 to 23 in the light emitting section 20 is, for example, 100 ⁇ m or less, preferably 10 ⁇ m or less. be.
  • the LED elements 21 to 23 may be arranged so as to be in contact with each other. As a result, the first power supply branch line 41a can be easily shared, and the aperture ratio can be improved.
  • each light emitting unit 20 includes three LED elements that emit light with different wavelengths, some of the light emitting units 20 have the LED elements arranged side by side in the x-axis direction or the y-axis direction, and other light emitting units 20 , the LED elements of each color may be arranged at the vertices of the triangle.
  • the IC chip 30 is arranged for each pixel PIX and drives the light emitting section 20. Specifically, the IC chip 30 is connected to each of the LED elements 21 to 23 via a drive line 45, and can drive the LED elements 21 to 23 individually.
  • IC chip 30 is, for example, a hybrid IC comprising an analog domain and a logic domain.
  • the analog domain includes, for example, current control circuits, transformer circuits, and the like.
  • the IC chip 30 may be arranged for each of a plurality of pixels, and the plurality of pixels to which each IC chip 30 is connected may be driven. For example, if one IC chip 30 is arranged every four pixels, the number of IC chips 30 can be reduced to 1/4 of the example in FIG. 1, and the area occupied by the IC chips 30 can be reduced.
  • the IC chip 30 is not essential, and a driving method that does not use the IC chip 30, such as passive matrix driving, or a TFT (Thin Film Transistor) instead of the IC chip 30 may be used for driving.
  • the area of the IC chip 30 is, for example, 100000 ⁇ m 2 or less, preferably 10000 ⁇ m 2 or less, more preferably 5000 ⁇ m 2 or less.
  • the transmittance of the IC chip 30 is as low as about 20% or less, but if the IC chip 30 of the above size is used, the area of the display area 101 with low transmittance becomes narrower, improving the visibility on the rear side.
  • the area of the TFT is, for example, 500000 ⁇ m 2 or less, preferably 30000 ⁇ m 2 or less.
  • the wiring 40 includes multiple power supply lines 41, ground lines 42, row data lines 43, column data lines 44, and drive lines 45, respectively.
  • the power line 41, ground line 42, and column data line 44 extend in the y-axis direction.
  • the row data line 43 extends in the x-axis direction.
  • the power supply line 41 and the column data line 44 are provided closer to the x-axis negative side than the light emitting unit 20 and the IC chip 30, and the ground line 42 is closer to the light emitting unit 20 and the IC chip 30. is also provided on the positive x-axis side.
  • the power supply line 41 is provided on the negative side of the x-axis with respect to the column data line 44 .
  • the row data line 43 is provided on the y-axis negative direction side relative to the light emitting section 20 and the IC chip 30 .
  • the power supply line 41 includes a first power supply branch line 41a and a second power supply branch line 41b, which will be described later in detail.
  • the ground line 42 has a ground branch line 42a.
  • the row data line 43 has a row data branch line 43a.
  • the column data line 44 has a column data branch line 44a. Each of these branch lines is included in the wiring 40 .
  • each power supply line 41 extending in the y-axis direction is connected to the light emitting section 20 and the IC chip 30 of each pixel PIX arranged in parallel in the y-axis direction. More specifically, in each pixel PIX, the LED elements 21 to 23 are arranged side by side in the positive x-axis direction in this order on the positive x-axis side of the power supply line 41 . Therefore, a first power supply branch line 41a branched from the power supply line 41 in the positive direction of the x-axis is connected to the ends of the LED elements 21 to 23 on the positive side of the y-axis.
  • the IC chip 30 is arranged on the negative y-axis side of the LED elements 21 to 23 . Therefore, between the LED element 21 and the column data line 44, a second power supply branch line 41b branched from the first power supply branch line 41a in the negative direction of the y-axis extends linearly. It is connected to the x-axis negative direction side of the positive direction side end.
  • each ground line 42 extending in the y-axis direction is connected to the IC chip 30 of each pixel PIX arranged in parallel in the y-axis direction.
  • a ground branch line 42 a branched from the ground line 42 in the x-axis negative direction extends linearly and is connected to the end of the IC chip 30 on the x-axis positive direction side.
  • the ground line 42 is connected to the LED elements 21 to 23 via the ground branch line 42a, the IC chip 30, and the drive line 45.
  • each row data line 43 extending in the x-axis direction is connected to the IC chip 30 of each pixel PIX arranged in parallel in the x-axis direction (row direction).
  • a row data branch line 43a branched from the row data line 43 in the positive y-axis direction extends linearly and is connected to the end of the IC chip 30 on the negative y-axis direction.
  • the row data line 43 is connected to the LED elements 21 to 23 via the row data branch line 43a, the IC chip 30, and the drive line 45.
  • each column data line 44 extending in the y-axis direction is connected to the IC chip 30 of each pixel PIX arranged in parallel in the y-axis direction (column direction).
  • a column data branch line 44a branched from the column data line 44 in the x-axis positive direction extends linearly and is connected to the end of the IC chip 30 on the x-axis negative direction side.
  • the column data line 44 is connected to the LED elements 21-23 via the column data branch line 44a, the IC chip 30, and the drive line 45.
  • the drive line 45 connects the LED elements 21 to 23 and the IC chip 30 in each pixel PIX. Specifically, in each pixel PIX, three drive lines 45 are extended in the y-axis direction, and are connected to the ends of the LED elements 21 to 23 on the negative y-axis side and the IC chip 30 on the positive y-axis side. connected to the ends.
  • the arrangement of the power supply line 41, the ground line 42, the row data line 43, the column data line 44, their branch lines, and the drive line 45 shown in FIG. 1 is merely an example, and can be changed as appropriate.
  • at least one of the power line 41 and the ground line 42 may extend in the x-axis direction instead of the y-axis direction.
  • the power supply line 41 and the column data line 44 may be interchanged.
  • FIG. 1 may be vertically inverted or horizontally inverted. Furthermore, row data lines 43, column data lines 44 and their branch lines, and drive lines 45 are not essential.
  • the wiring 40 is made of metal such as chromium (Cr), titanium (Ti), tungsten (W), molybdenum (Mo), copper (Cu), aluminum (Al), silver (Ag), gold (Au), or They are compounds or laminates thereof. Among these, from the viewpoint of cost, it is preferable to use a metal mainly composed of copper or aluminum, which has a low resistivity. Although not shown in FIG. 1, the surface of the wiring 40 is covered with a displacement plating film PF, which will be described later with reference to FIG. 2, in order to make the wiring 40 inconspicuous.
  • a displacement plating film PF which will be described later with reference to FIG. 2, in order to make the wiring 40 inconspicuous.
  • the width of the wiring 40 in the display area 101 shown in FIG. 1 is, for example, 1 to 300 ⁇ m, preferably 100 ⁇ m or less, and more preferably 3 to 20 ⁇ m. Since the width of the wiring 40 is 100 ⁇ m or less, even when observing the transparent display device from a short distance of, for example, several tens of centimeters to 2 m, the wiring 40 is hardly visible, and the visibility on the back side is excellent. . On the other hand, in the thickness range described later, if the width of the wiring 40 is 1 ⁇ m or more, an excessive increase in the resistance of the wiring 40 can be suppressed, and a voltage drop and a decrease in signal strength can be suppressed. In addition, a decrease in heat conduction due to the wiring 40 can be suppressed.
  • the width of the wiring 40 may be 50 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the surface roughness (arithmetic mean roughness) Ra of the wiring 40 is preferably 1 nm or more, more preferably 5 nm or more.
  • the surface roughness Ra of the wiring 40 is preferably 20 nm or less, more preferably 15 nm or less.
  • the electrical resistivity of the wiring 40 is, for example, 1.0 ⁇ 10 ⁇ 6 ⁇ m or less, preferably 2.0 ⁇ 10 ⁇ 8 ⁇ m or less. Also, the thermal conductivity of the wiring 40 is, for example, 150 to 5,500 W/(m ⁇ K), preferably 350 to 450 W/(m ⁇ K).
  • the interval between adjacent wirings 40 in the display area 101 shown in FIG. 1 is, for example, 3 to 100 ⁇ m, preferably 5 to 30 ⁇ m. If there is an area where the wiring 40 is dense, it may hinder visibility of the back side. If the interval between adjacent wirings 40 is set to 3 ⁇ m or more, such hindrance to visual recognition can be suppressed. On the other hand, if the distance between adjacent wirings 40 is set to 100 ⁇ m or less, sufficient display performance can be secured. Note that if the spacing between the wirings 40 is not constant due to the wirings 40 being curved or the like, the spacing between the adjacent wirings 40 described above refers to the minimum value.
  • the ratio of the area occupied by the wiring 40 to the area of one pixel is, for example, 30% or less, preferably 10% or less, more preferably 5% or less, and even more preferably 3% or less.
  • the transmittance of the wiring 40 is as low as, for example, 20% or less, or 10% or less. However, if the ratio of the area occupied by the wiring 40 in one pixel is set to 30% or less, the region with low transmittance in the display region 101 becomes narrower, and the visibility on the back side is improved. Further, the total area occupied by the light emitting section 20, the IC chip 30, and the wiring 40 with respect to the area of one pixel is, for example, 30% or less, preferably 20% or less, and more preferably 10% or less.
  • the transparent substrate 10 is an insulating transparent substrate.
  • the transparent substrate 10 has a two-layer structure consisting of a main substrate 11 and an adhesive layer 12 .
  • the main substrate 11 is, for example, a transparent resin, as described later in detail.
  • the adhesive layer 12 is, for example, a transparent resin adhesive such as epoxy, acrylic, olefin, polyimide, or novolak.
  • the main substrate 11 may be a thin glass plate having a thickness of, for example, 200 ⁇ m or less, preferably 100 ⁇ m or less. Also, the adhesive layer 12 is not essential.
  • polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), olefin resins such as cycloolefin polymer (COP) and cycloolefin copolymer (COC), cellulose, and acetyl.
  • olefin resins such as cycloolefin polymer (COP) and cycloolefin copolymer (COC)
  • cellulose and acetyl.
  • Cellulose resins such as cellulose and triacetyl cellulose (TAC)
  • imide resins such as polyimide (PI)
  • amide resins such as polyamide (PA)
  • PAI polyamide imide
  • PC polycarbonate
  • sulfone resins such as polyethersulfone (PES), paraxylene silicon resins such as polyparaxylene, polyethylene (PE), polyvinyl chloride (PVC), polystyrene (PS), polyvinyl acetate (PVAc ), polyvinyl alcohol (PVA), polyvinyl butyral (PVB) and other vinyl resins, polymethyl methacrylate (PMMA) and other acrylic resins, ethylene-vinyl acetate copolymer resin (EVA), thermoplastic polyurethane (TPU), etc. urethane-based resins, epoxy-based resins, and the like can be exemplified.
  • PES polyethersulfone
  • PVC polyvinyl chloride
  • PS polystyrene
  • PVAc polyvinyl acetate
  • PVA polyvinyl alcohol
  • PVB polyvinyl butyral
  • EVA ethylene-vinyl acetate copolymer resin
  • TPU thermoplastic
  • polyethylene naphthalate (PEN) and polyimide (PI) are preferable from the viewpoint of improving heat resistance.
  • PEN polyethylene naphthalate
  • PI polyimide
  • cycloolefin polymer (COP), cycloolefin copolymer (COC), polyvinyl butyral (PVB), and the like are preferable because they have a low birefringence index and can reduce distortion and blurring of an image viewed through a transparent substrate.
  • the above materials may be used singly, or two or more materials may be mixed and used.
  • the main substrate 11 may be configured by stacking flat plates made of different materials.
  • the thickness of the entire transparent substrate 10 is, for example, 1-1000 ⁇ m, preferably 5-200 ⁇ m.
  • the visible light internal transmittance of the transparent substrate 10 is, for example, 50% or more, preferably 70% or more, and more preferably 90% or more.
  • the transparent substrate 10 may have flexibility.
  • the transparent display device can be attached to a curved transparent plate or sandwiched between two curved transparent plates for use. Also, a material that shrinks when heated to 100° C. or higher may be used.
  • the LED elements 21 to 23 and the IC chip 30 are provided on the transparent substrate 10, that is, the adhesive layer 12, and are connected to the wiring 40 arranged on the transparent substrate 10.
  • the wiring 40 is composed of a first metal layer M1 formed on the main substrate 11 and a second metal layer M2 formed on the adhesive layer 12.
  • the visible side surface of the IC chip 30 is coated with a resin containing inorganic pigments such as carbon black or titanium black, organic black pigments, or dyes. At least a portion may be covered. Thereby, the IC chip 30 can be made inconspicuous.
  • the back surface of the IC chip 30 may be covered with the resin, or both surfaces may be covered with the resin.
  • 50% or more of the surface of the visible side of the IC chip 30 may be covered with the wiring 40 and the displacement plating film PF described later may be formed on the surface of the wiring 40 .
  • the diffraction effect is added, and the glossiness of the visible side surface of the IC chip 30 is suppressed. It is more preferable that the ratio of the surface of the IC chip 30 covered by the wiring 40 is 60% or more, and it is even more preferable if it is 70% or more.
  • the thickness of the wiring 40 that is, the sum of the thickness of the first metal layer M1 and the thickness of the second metal layer M2 is, for example, 0.1 to 10 ⁇ m, preferably 0.5 to 5 ⁇ m.
  • the thickness of the first metal layer M1 is, for example, about 0.5 ⁇ m
  • the thickness of the second metal layer M2 is, for example, about 3 ⁇ m.
  • the ground line 42 extending in the y-axis direction has a two-layer structure including a first metal layer M1 and a second metal layer M2 because the amount of current is large.
  • the adhesive layer 12 is removed at the site where the ground line 42 is provided, and the second metal layer M2 is formed on the first metal layer M1.
  • the power supply line 41, row data line 43, and column data line 44 shown in FIG. 1 also have a two-layer structure including a first metal layer M1 and a second metal layer M2. have.
  • the power supply line 41, the ground line 42, and the column data line 44 extending in the y-axis direction and the row data line 43 extending in the x-axis direction cross each other.
  • the row data lines 43 are composed only of the first metal layer M1
  • the power supply lines 41, the ground lines 42, and the column data lines 44 are composed only of the second metal layer M2.
  • an adhesive layer 12 is provided between the first metal layer M1 and the second metal layer M2 to insulate the first metal layer M1 and the second metal layer M2.
  • the first power supply branch lines 41a are composed only of the first metal layer M1, and the column data lines 44 It consists only of layer M2.
  • the ground branch line 42a, the drive line 45, and the first power supply branch line 41a are composed only of the second metal layer M2, and cover the ends of the LED elements 21 to 23 and the IC chip 30. is formed in Although not shown in FIG. 2, the second power supply branch line 41b, the row data branch line 43a, and the column data branch line 44a are similarly composed only of the second metal layer M2.
  • the first power supply branch line 41a is composed only of the first metal layer M1 at the intersection with the column data line 44, and is composed only of the second metal layer M2 at other portions.
  • a metal pad made of copper, silver, gold, or the like may be placed on the wiring 40 formed on the transparent substrate 10, and at least one of the LED elements 21 to 23 and the IC chip 30 may be placed thereon.
  • the displacement plating film PF is formed so as to cover the entire surface of the second metal layer M2 on the viewing side (that is, the side opposite to the transparent substrate 10) in order to make the wiring 40 inconspicuous.
  • fine irregularities may be formed on the surface of the displacement plating film PF.
  • the displacement plating film PF is not particularly limited as long as it is a film that discolors the wiring 40 so as to make it inconspicuous, but it is, for example, a blackening treatment film.
  • the displacement plating film PF may also be formed so as to cover the entire surface of the first metal layer M1 on the viewing side (that is, the side opposite to the transparent substrate 10).
  • the transparent substrate 10 side may be the viewing side, and the opposite side may be the rear side.
  • the wiring 40 observed from the rear side can be made inconspicuous.
  • the thickness of the displacement plating film PF is not particularly limited, it is, for example, 200 nm or less, preferably 100 nm or less. If the thickness is at least 10 nm or more, a desired color can be exhibited, which is preferable.
  • the thickness of the displacement plating film PF is preferably uniform regardless of the type and position of the base.
  • the difference in thickness of the displacement plating film PF between the surface parallel to the main surface of the wiring 40 and the side surface inclined with respect to the main surface is preferably 40% or less, more preferably 30% or less, and further preferably 20% or less. preferable.
  • the main component of the displacement plating film PF is metal, the wiring 40 becomes less conspicuous as the displacement plating film PF becomes thicker.
  • the displacement plating film PF has a uniform thickness, variations in the resistance value inside the wiring 40 are reduced, and deterioration of high-frequency components and phase shift can be reduced.
  • the displacement plating film PF is made of a metal that has a lower ionization tendency than the underlying second metal layer M2 (or first metal layer M1).
  • the second metal layer M2 (or the first metal layer M1) underlying the displacement plating film PF is a metal containing copper or aluminum as a main component, for example. , Pt, Os, Ir, Re, and Rh.
  • the displacement plating film PF may contain halides such as chlorides of the above metals.
  • Displacement plating does not damage the LED elements 21 to 23 and the IC chip 30 connected to the wiring 40 compared to blackening treatment for forming an oxide film, for example, and leaves a displacement plating film only on the surface of the second metal layer M2. PF can be formed. Moreover, since the width of the wiring 40 hardly changes even when the displacement plating film PF is formed, deterioration of the visibility on the back side can be suppressed. Furthermore, since the displacement plating film PF is a metal film, it is possible to suppress an increase in the resistance and parasitic capacitance of the wiring 40 compared to the blackening treatment for forming an oxide film, for example.
  • a plating film may be provided using reduction plating.
  • an oxidizing agent emits electrons to form a reduction plating film. can be formed. If it is electroless plating, even if it is reduction plating, it is possible to form a plating film without passing an electric current, and it has the same effect as displacement plating.
  • the color of the wiring 40 having the displacement plating film PF formed on its surface (the color of the wiring 40 observed from the side of the displacement plating film PF) is CIE L * a * standardized by the International Commission on Illumination (CIE) in 1976. It can be expressed using the b * color space.
  • the color of the wiring 40 is measured by a reflection colorimeter using a CIE standard light source D65, for example, with the wiring 40 having the displacement plating film PF formed on its surface exposed.
  • the lightness L * of the wiring 40 on which the displacement plating film PF is formed satisfies L * ⁇ 50.
  • the lightness L * of the wiring 40 preferably satisfies L * ⁇ 45.
  • the chromaticities a * and b * of the wiring 40 on which the displacement plating film PF is formed satisfy a * ⁇ 10 and b * ⁇ 10.
  • the chromaticities a * and b * of the wiring 40 preferably satisfy a * ⁇ 5 and b * ⁇ 5.
  • the chromaticities a * and b * preferably satisfy ⁇ 40 ⁇ a * and ⁇ 40 ⁇ b * , more preferably ⁇ 30 ⁇ a * and ⁇ 30 ⁇ b * , and ⁇ 10 ⁇ a * , more preferably -10 ⁇ b * .
  • the wiring 40 is made of, for example, chromium (Cr), titanium (Ti), tungsten (W), molybdenum (Mo), copper (Cu), aluminum (Al), silver (Ag), gold (Au), or the like. They are metals, their compounds, or laminates.
  • the surface of the wiring 40 on the side where the displacement plating film PF is not formed (the back surface of the first metal layer M1 and the second metal layer M2 in FIG. 2) has a low reflectance or yellow or red color. Metals with low taste are preferred.
  • the surface is preferably chromium, titanium, molybdenum, tungsten, or an alloy containing these metals.
  • the surface may be an oxide of chromium, titanium, molybdenum, tungsten, copper, aluminum.
  • the wiring 40 can be made inconspicuous even when viewed from the rear side (that is, the transparent substrate 10 side).
  • the chromaticities a * and b * of the surface preferably satisfy ⁇ 40 ⁇ a * and ⁇ 40 ⁇ b * , more preferably ⁇ 30 ⁇ a * and ⁇ 30 ⁇ b * , and ⁇ 10 ⁇ More preferably, a * and -10 ⁇ b * are satisfied.
  • the protective layer 50 is a transparent resin formed on substantially the entire surface of the transparent substrate 10 so as to cover and protect the light emitting section 20 , the IC chip 30 and the wiring 40 .
  • the thickness of the protective layer 50 is, for example, 3-1000 ⁇ m, preferably 200-400 ⁇ m. When the thickness is 200 ⁇ m or more, the durability of the wiring 40 under high temperature and high humidity can be enhanced, and when the thickness is 300 ⁇ m or more, more favorable results can be obtained.
  • the tensile elastic modulus of the protective layer 50 is, for example, 10 GPa or less.
  • a lower tensile modulus of elasticity can reduce the stress generated when the resin expands and contracts due to environmental changes such as temperature and humidity, and can suppress damage to the wiring 40 and deterioration of the displacement plating film PF.
  • the visible light internal transmittance of the protective layer 50 is, for example, 50% or more, preferably 70% or more, and more preferably 90% or more.
  • a vinyl-based resin such as polyethylene (PE), polyvinyl chloride (PVC), polystyrene (PS), polyvinyl acetate (PVAc), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), etc.
  • olefin resins such as cycloolefin polymer (COP) and cycloolefin copolymer (COC), urethane resins such as thermoplastic polyurethane (TPU), polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), Various acrylic resins such as polymethyl methacrylate (PMMA), ethylene-vinyl acetate copolymer resin (EVA), etc., or thermoplastic resins of copolymers thereof can be exemplified.
  • COP cycloolefin polymer
  • COC cycloolefin copolymer
  • TPU thermoplastic polyurethane
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • acrylic resins such as polymethyl methacrylate (PMMA), ethylene-vinyl acetate copolymer resin (EVA), etc., or thermoplastic resins of copolymers thereof can be exemplified
  • FIG. 3 to 11 are cross-sectional views showing an example of the method for manufacturing the transparent display device according to the first embodiment.
  • 3 to 11 are sectional views corresponding to FIG.
  • the LED elements 21 to 23 are formed by growing a crystal on a wafer using, for example, a liquid phase growth method, a HVPE (Hydride Vapor Phase Epitaxy) method, a MOCVD (Metal Organic Chemical Vapor Deposition) method, and then patterning. obtained by The LED elements 21 to 23 patterned on the wafer are transferred onto the transparent substrate 10 using, for example, microtransfer printing technology.
  • the IC chip 30 patterned on a Si wafer for example, is transferred onto the transparent substrate 10 using the microtransfer printing technique.
  • the photoresist FR1 on the first metal layer M1 is patterned. Remove.
  • the photoresist FR1 at the intersections of the row data lines 43 with the power supply lines 41, the ground lines 42, and the column data lines 44 shown in FIG. 1 is not removed.
  • the portions of the adhesive layer 12 where the photoresist FR1 has been removed are removed by dry etching to expose the first metal layer M1, that is, the lower wiring.
  • the photoresist FR1 on the transparent substrate 10 is completely removed. After that, a plating seed layer (not shown) is formed on substantially the entire surface of the transparent substrate 10 .
  • the photoresist FR2 is removed by patterning from the portion where the upper wiring is to be formed, exposing the seed layer.
  • a second metal layer M2 is formed by plating on the seed layer where the photoresist FR2 has been removed. As a result, the upper layer wiring is formed by the second metal layer M2.
  • a displacement plating film PF is formed on the second metal layer M2 by displacement plating.
  • a protective layer 50 is formed on substantially the entire surface of the transparent substrate 10 to obtain a transparent display device.
  • FIG. 12 is a schematic plan view showing an example of laminated glass according to the second embodiment.
  • FIG. 13 is a schematic cross-sectional view showing an example of laminated glass according to the second embodiment.
  • the laminated glass 200 shown in FIGS. 12 and 13 is used for windshields of automobile window glasses, but is not particularly limited.
  • the laminated glass according to the present embodiment can be used as window glass for moving bodies, ie, vehicles in general, including trains, ships, aircraft, and the like.
  • Window glass includes, for example, rear glass, side glass, roof glass, etc., in addition to the windshield.
  • a black opaque shielding portion 201 is provided on the entire peripheral edge of the laminated glass 200 .
  • the shielding part 201 blocks sunlight and protects the adhesive for assembling the laminated glass 200 to the automobile from ultraviolet rays. Moreover, the shielding portion 201 prevents the adhesive from being visually recognized from the outside.
  • the transparent display device 100 includes a non-display area 102 provided around the display area in addition to the display area 101 shown in FIG.
  • the display area 101 is composed of a large number of pixels and is an area in which an image is displayed, so detailed description thereof will be omitted.
  • FIG. 12 is a plan view, the non-display area 102 and the shielding portion 201 are indicated by dots for easy understanding.
  • a non-display area 102 is an area that does not have pixels and does not display an image.
  • thick wires connected to the power supply lines 41, the ground lines 42, the row data lines 43, and the column data lines 44 shown in FIG. 1 are densely provided.
  • the width of the wiring in the non-display area 102 is, for example, 100-10000 ⁇ m, preferably 100-5000 ⁇ m.
  • the spacing between wirings is, for example, 3 to 5000 ⁇ m, preferably 50 to 1500 ⁇ m.
  • the non-display area 102 is an opaque area and can be seen from inside the vehicle.
  • the design of the laminated glass 200 is degraded. Therefore, in the laminated glass 200 according to the second embodiment, at least part of the non-display area 102 of the transparent display device 100 is provided in the shielding portion 201 .
  • the non-display area 102 provided in the shielding portion 201 is hidden by the shielding portion 201 and cannot be visually recognized. Therefore, compared to the case where the entire non-display area 102 is visible, the design of the laminated glass 200 is improved.
  • FIG. 13 is a cross-sectional view of the display area 101 of the transparent display device 100.
  • FIG. 13 the laminated glass 200 according to the second embodiment is obtained by laminating a pair of glass plates 220a and 220b via an intermediate film.
  • the laminated glass 200 includes the transparent display device 100 according to the first embodiment between the pair of glass plates 220a and 220b via intermediate films 210a and 210b.
  • the intermediate films 210a and 210b are made of polyvinyl butyral (PVB), for example.
  • the total thickness of the protective layer 50 and the intermediate film 210a is, for example, 3-1000 ⁇ m, preferably 200-400 ⁇ m.
  • the thickness is 200 ⁇ m or more, the durability of the wiring 40 under high temperature and high humidity can be enhanced, and when the thickness is 300 ⁇ m or more, more favorable results can be obtained.
  • the weighted average of the tensile elastic moduli according to the thicknesses of the protective layer 50 and the intermediate film a is, for example, 10 GPa or less.
  • a lower tensile modulus of elasticity can reduce the stress generated when the resin expands and contracts due to environmental changes such as temperature and humidity, and can suppress damage to the wiring 40 and deterioration of the displacement plating film PF.
  • FIG. 14 is a schematic cross-sectional view showing another example of the laminated glass according to the second embodiment.
  • the protective layer 50 in the transparent display device 100 is made of polyvinyl butyral (PVB), for example, and also functions as an intermediate film. Therefore, in the laminated glass 200 shown in FIG. 14, the intermediate film 210a formed on the protective layer 50 in FIG. 13 can be omitted. Thus, the protective layer 50 may also serve as the intermediate film 210a.
  • PVB polyvinyl butyral
  • FIG. 15 is a schematic partial plan view showing an example of the transparent display device according to the third embodiment.
  • the transparent display device according to this embodiment includes a sensor 70 in the display area 101 in addition to the structure of the transparent display device according to the first embodiment shown in FIG. That is, it has a function as a transparent sensing device.
  • the senor 70 is provided between predetermined pixels PIX and connected to the power line 41 and ground line 42 . Data detected by the sensor 70 is output via a data output line 46 extending from the sensor 70 in the y-axis direction.
  • a control signal is input to the sensor 70 via the control signal line 47 extending in the y-axis direction to the sensor 70 to control the sensor 70 .
  • the sensor 70 may be singular or plural. A plurality of sensors 70 may be arranged at predetermined intervals, for example, in the x-axis direction or the y-axis direction.
  • the transparent display device according to the present embodiment is mounted on the windshield of the window glass of an automobile. That is, the transparent display device according to this embodiment can also be applied to the laminated glass according to the second embodiment.
  • the sensor 70 is, for example, an illuminance sensor (for example, a light receiving element) for detecting illuminance inside and outside the vehicle.
  • the luminance of the display area 101 by the LED elements 21 to 23 is controlled according to the illuminance detected by the sensor 70 .
  • the brightness of the display area 101 by the LED elements 21 to 23 is increased as the illuminance outside the vehicle is higher than the illuminance inside the vehicle. Such a configuration further improves the visibility of the transparent display device.
  • the senor 70 may be an infrared sensor (for example, a light receiving element) or an image sensor (for example, a CMOS (Complementary Metal-Oxide-Semiconductor) image sensor) for sensing the line of sight of an observer (for example, a driver).
  • the transparent display device is activated only when the sensor 70 senses line of sight.
  • the transparent display device does not block the observer's field of vision unless the observer directs his or her line of sight to the transparent display device, which is preferable.
  • the senor 70 which is an image sensor, may have a function of detecting an observer's motion and, for example, turning on/off a transparent display device or switching a display screen based on the motion.
  • Other configurations are the same as those of the transparent display device according to the first embodiment.
  • FIG. 16 is a schematic partial plan view showing one example of the transparent sensing device according to the fourth embodiment.
  • the transparent sensing device according to this embodiment in the configuration of the transparent display device according to the first embodiment shown in FIG.
  • This configuration includes a sensor 70 . That is, the transparent sensing device shown in FIG. 16 does not have the light emitting section 20 and does not have a display function.
  • Transparent sensing devices are one aspect of transparent electronic devices. Note that the sensing area of the transparent sensing device may correspond to the display area 101 of the transparent display device 100 .
  • the senor 70 is not particularly limited, it is a CMOS image sensor in the transparent sensing device shown in FIG. That is, the transparent sensing device shown in FIG. 16 has an imaging region 301 composed of a plurality of pixels PIX arranged in the row direction (x-axis direction) and column direction (y-axis direction), and has an imaging function.
  • FIG. 16 shows a part of the imaging region 301, showing a total of 4 pixels, 2 pixels each in the row direction and the column direction.
  • one pixel PIX is surrounded by a dashed line. 16
  • the transparent substrate 10 and the protective layer 50 are omitted in the same manner as in FIG.
  • FIG. 16 is a plan view, the sensors 70 are indicated by dots for easy understanding.
  • one sensor 70 is provided for each pixel PIX, arranged between a power line 41 and a ground line 42 extending in the y-axis direction, and connected to both. Data detected by the sensor 70 is output via a data output line 46 extending from the sensor 70 in the y-axis direction.
  • a control signal is input to the sensor 70 via the control signal line 47 extending in the y-axis direction to the sensor 70 to control the sensor 70 .
  • the control signal is, for example, a synchronization signal, a reset signal, or the like.
  • the power line 41 may be connected to a battery (not shown).
  • FIG. 17 is a schematic cross-sectional view of the sensor 70.
  • the sensor 70 shown in FIG. 17 is a back-illuminated CMOS image sensor.
  • the sensor 70 as an image sensor is also not particularly limited, and may be a front side illuminated CMOS image sensor or a CCD (Charge-Coupled Device) image sensor.
  • CCD Charge-Coupled Device
  • each sensor 70 includes a wiring layer, a semiconductor substrate, color filters CF1 to CF3, and microlenses ML1 to ML3.
  • an internal wiring IW is formed inside the wiring layer.
  • photodiodes PD1 to PD3 are formed inside the semiconductor substrate.
  • a semiconductor substrate for example, a silicon substrate is formed on the wiring layer.
  • the internal wiring IW formed inside the wiring layer connects the wiring 40 (the power supply line 41, the ground line 42, the data output line 46, and the control signal line 47) and the photodiodes PD1 to PD3.
  • the photodiodes PD1 to PD3 are irradiated with light, currents are output from the photodiodes PD1 to PD3.
  • the currents output from the photodiodes PD1 to PD3 are amplified by amplifier circuits (not shown) and output via the internal wiring IW and the data output line .
  • the color filters CF1 to CF3 are respectively formed on photodiodes PD1 to PD3 formed inside the semiconductor substrate.
  • the color filters CF1 to CF3 are, for example, red filters, green filters, and blue filters, respectively.
  • Microlenses ML1 to ML3 are placed on color filters CF1 to CF3, respectively.
  • the sensor 70 is a microsensor having a minute size of 250000 ⁇ m 2 or less on the transparent substrate 10 .
  • a microsensor is a sensor having a minute size of 250000 ⁇ m 2 or less in plan view.
  • the occupied area of the sensor 70 is, for example, preferably 25000 ⁇ m 2 or less, more preferably 2500 ⁇ m 2 or less. It should be noted that the lower limit of the area occupied by the sensor 70 is, for example, 10 ⁇ m 2 or more due to manufacturing conditions and the like. Note that the shape of the sensor 70 shown in FIG. 16 is rectangular, but is not particularly limited.
  • the transparent sensing device according to this embodiment can also be applied to the laminated glass according to the second embodiment.
  • the sensor 70 can acquire at least one image of the interior and exterior of the vehicle, for example. That is, the transparent sensing device according to this embodiment functions as a drive recorder.
  • a single sensor 70 may be provided in the transparent sensing device according to the fourth embodiment.
  • the sensor 70 in the transparent sensing device according to the fourth embodiment is not limited to an image sensor, and may be an illuminance sensor, an infrared sensor, or the like exemplified in the third embodiment. Additionally, the sensor 70 may be a radar sensor, lidar sensor, or the like. Vehicle window glass equipped with a transparent sensing device using these sensors 70 can monitor, for example, the interior and exterior of the vehicle.
  • the senor 70 according to the fourth embodiment is not particularly limited as long as it is a microsensor having a minute size of 250000 ⁇ m 2 or less on the transparent substrate 10 .
  • sensor 70 may be a temperature sensor, ultraviolet sensor, radio wave sensor, pressure sensor, sound sensor, speed/acceleration sensor, or the like.
  • Other configurations are the same as those of the transparent display device according to the first embodiment.
  • Examples according to the present invention are shown below, but the present invention should not be construed as being limited to the following examples.
  • the color of the wiring observed from the opposite side of the transparent substrate 10 and the light reflectance due to the wiring were measured during the manufacturing process. Then, each wiring of the manufactured transparent display device was energized to confirm the operation of the LED element and the IC chip.
  • Examples 1 and 2 are comparative examples, and Examples 3 to 6 are examples of the present invention.
  • Example 1 A method for manufacturing the transparent display device according to Example 1 will be described below with reference to FIGS. First, as shown in FIG. 3, a glass plate having a thickness of 0.7 mm is used as the main substrate 11, and a W-10Ti alloy film having a thickness of 0.1 ⁇ m and a W-10Ti alloy film having a thickness of 0.30 ⁇ m are formed on substantially the entire surface of the main substrate 11. A first metal layer M1 having a three-layer structure including a Cu film and a W-10Ti alloy film having a thickness of 0.1 ⁇ m was formed in this order. After that, the first metal layer M1 was patterned by photolithography to form a lower layer wiring.
  • the portion of the adhesive layer 12 where the photoresist FR1 was removed was removed by dry etching to expose the first metal layer M1, ie, the lower wiring.
  • the photoresist FR1 on the transparent substrate 10 is completely removed. After that, a plating seed layer containing a W-10Ti alloy film with a thickness of 0.1 ⁇ m and a Cu film with a thickness of 0.15 ⁇ m was formed on substantially the entire surface of the transparent substrate 10 .
  • the photoresist FR2 was removed by patterning from the portion where the upper wiring was to be formed, exposing the seed layer.
  • a second metal layer M2 containing Cu and having a thickness of 2.0 to 3.0 ⁇ m was formed as an upper layer wiring by plating on the portion where the photoresist FR2 was removed, that is, the seed layer. .
  • photoresist FR2 is removed. Furthermore, the seed layer exposed by removing the photoresist FR2 was removed by etching. In the transparent display device according to Example 1, the displacement plating film PF was not formed on the second metal layer M2.
  • the color of the wiring 40 and the reflectance of light with a wavelength of 360 to 740 nm were measured by a reflection colorimeter using a CIE standard light source D65.
  • a cycloolefin polymer having a thickness of 300 ⁇ m was placed on substantially the entire surface of the transparent substrate 10 to form a protective layer 50 .
  • a soda-lime glass plate having a thickness of 2.0 mm was arranged on the protective layer 50 shown in FIG. 2, using the protective layer 50 as an intermediate film.
  • the color difference between the wiring 40 and the glass plate 220a was large, and the copper-colored wiring 40 was conspicuous.
  • each wiring 40 of the transparent display device according to Example 1 was energized and the operations of the LED elements 21 to 23 and the IC chip 30 were checked, they were found to operate normally.
  • Example 2 In the transparent display device according to Example 2, after the process shown in FIG. 10, the displacement plating film PF was formed on the second metal layer M2 as shown in FIG. Specifically, first, after the step shown in FIG. 10, the transparent substrate 10 was washed with dilute sulfuric acid having a concentration of 1.0% by mass for 0.5 minutes as a pretreatment for displacement plating.
  • a displacement plating solution prepared by adding a small amount of an organic acid having a concentration of 0.05% by mass or less to an aqueous solution of palladium chloride having a concentration of 0.1% by mass in an acidic atmosphere of hydrochloric acid of pH 3.5. It was immersed for minutes to form displacement plating film PF. The transparent substrate 10 removed from the displacement plating solution was immersed in an aqueous solution of triethanolamine having a concentration of 3.5% by mass for 1 minute.
  • the color of the wiring 40 was measured by a reflection colorimeter using a CIE standard light source D65.
  • the protective layer 50 was formed in the same manner as in Example 1, and the glass plate 220a was placed on the protective layer 50 .
  • the transparent display device according to Example 2 although the color difference between the color of the wiring 40 and the color of the glass plate 220a was smaller than that of Example 1, the wiring 40 was still somewhat conspicuous.
  • each wiring 40 of the transparent display device according to Example 2 was energized and the operations of the LED elements 21 to 23 and the IC chip 30 were confirmed, they were found to operate normally.
  • Example 3 A transparent display device was manufactured in the same manner as in Example 2, except that the immersion time in the displacement plating solution was changed to 1.5 minutes.
  • the color of the wiring 40 was measured with a reflection colorimeter using the CIE standard light source D65 for the transparent substrate 10 in the manufacturing process shown in FIG.
  • the color difference between the color of the wiring 40 and the color of the glass plate 220a was smaller than in Examples 1 and 2, and the wiring 40 was not conspicuous.
  • each wiring 40 of the transparent display device according to Example 3 was energized and the operations of the LED elements 21 to 23 and the IC chip 30 were confirmed, they were found to operate normally.
  • Example 4 A transparent display device was manufactured in the same manner as in Example 2, except that the immersion time in the displacement plating solution was changed to 2.5 minutes.
  • the color of the wiring 40 was measured with a reflection colorimeter using the CIE standard light source D65 for the transparent substrate 10 in the manufacturing process shown in FIG.
  • the color difference between the color of the wiring 40 and the color of the glass plate 220a was smaller than those of Examples 1 to 3, and the wiring 40 was inconspicuous.
  • each wiring 40 of the transparent display device according to Example 4 was energized and the operations of the LED elements 21 to 23 and the IC chip 30 were confirmed, they were found to operate normally.
  • Example 5 A transparent display device was manufactured in the same manner as in Example 2, except that the immersion time in the displacement plating solution was changed to 3.5 minutes.
  • the color of the wiring 40 was measured with a reflection colorimeter using the CIE standard light source D65 for the transparent substrate 10 in the manufacturing process shown in FIG.
  • the color difference between the color of the wiring 40 and the color of the glass plate 220a was smaller than those of Examples 1 to 3, and the wiring 40 was inconspicuous.
  • each wiring 40 of the transparent display device according to Example 5 was energized and the operations of the LED elements 21 to 23 and the IC chip 30 were confirmed, they were found to operate normally.
  • Example 5 a durability test was conducted in which the sample was stored in an environment with a temperature of 85°C and a humidity of 85% for 1200 hours.
  • the amount of change in lightness ⁇ L* ⁇ 7
  • the amount of change in chromaticity ⁇ a* 16
  • Example 5 depth direction analysis of the displacement plating film PF formed on the wiring 40 was performed using X-ray Photoelectron Spectroscopy (XPS). As a result, Pd forming the displacement plating film PF was detected up to a depth of about 70 nm. That is, the thickness of displacement plating film PF is also estimated to be about 70 nm.
  • XPS X-ray Photoelectron Spectroscopy
  • Example 6 A transparent display device was manufactured in the same manner as in Example 5, except that the pretreatment for displacement plating (cleaning of the transparent substrate 10 with dilute sulfuric acid having a concentration of 1.0% by mass for 0.5 minutes) was omitted.
  • the color of the wiring 40 was measured with a reflection colorimeter using the CIE standard light source D65 for the transparent substrate 10 in the manufacturing process shown in FIG.
  • the lightness L * of the wiring 40 will be explained.
  • the lightness L * of the wiring 40 exceeded 80, and the wiring 40 was conspicuous.
  • the lightness L * of the wiring 40 satisfied L * ⁇ 50, and the wiring 40 was inconspicuous.
  • the lightness L * of the wirings 40 satisfied L * ⁇ 45, and the wirings 40 were less conspicuous.
  • FIG. 18 is a graph showing the distribution of the chromaticities a * and b * of the wiring of the transparent display devices according to Examples 1-6.
  • the horizontal axis indicates chromaticity a * and the vertical axis indicates chromaticity b * .
  • the chromaticities a * and b * of the wiring 40 both exceeded 10, and the wiring 40 was conspicuous.
  • the chromaticities a * and b * of the wiring 40 satisfied a * ⁇ 10 and b * ⁇ 10, and the wiring 40 was inconspicuous.
  • the chromaticities a * and b * of the wiring 40 satisfied a * ⁇ 5 and b * ⁇ 5, and the wiring 40 was less conspicuous.
  • FIG. 19 is a graph showing the reflectance of light with a wavelength of 360 to 740 nm due to the wiring of the transparent display devices according to Examples 1 to 6.
  • the horizontal axis indicates the wavelength of light [nm]
  • the vertical axis indicates the reflectance [%].
  • the reflectance of light having a wavelength of 600 nm or more is particularly high, exceeding 80%.
  • the light reflectance is lower than that of the transparent display devices according to Examples 1 and 2 in the entire wavelength range of 360 to 740 nm shown in FIG. 19, and is 40% or less. It has become.
  • the reflectance of light is 30% or less in the entire wavelength range of 360 to 740 nm shown in FIG.
  • the reflectance of light increased sharply in the vicinity of wavelengths of 550 to 600 nm.
  • the transparent display devices according to Examples 4 to 6 a drop in light reflectance was confirmed in the vicinity of wavelengths of 550 to 600 nm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本発明の一態様に係る透明電子デバイスは、透明基板(10)と、透明基板(10)の主面上に配置され、250000μm2以下の面積を有する電子素子(20)と、電子素子(20)に接続された幅100μm以下の配線(40)と、を備える。配線(40)における透明基板(10)と反対側の表面は、無電解めっき膜(PF)によって被覆されており、無電解めっき膜(PF)側から観察した配線(40)の色が、CIE L*a*b*色空間において、L*≦50、a*≦10、b*≦10を満たす。

Description

透明電子デバイス、合わせガラス、及び透明電子デバイスの製造方法
 本発明は、透明電子デバイス、合わせガラス、及び透明電子デバイスの製造方法に関する。
 特許文献1に開示されているように、発明者らは、透明基板上に形成された微細な発光ダイオード(LED:Light Emitting Diode)素子を画素に用いた透明表示デバイスを開発してきた。このような透明表示デバイスは、当該透明表示デバイスを介して背面側を視認可能であるため、例えば車両や建築物の窓あるいはパーティション等の透明部材に設けられる。関連技術として、透明基板上にマイクロセンサが設けられた透明センシングデバイスが知られている。
 本明細書では、透明表示デバイスや透明センシングデバイス等のように、透明基板上に電子素子が形成され、背面側を視認可能な電子デバイスを「透明電子デバイス」と呼ぶ。
国際公開第2019/146634号
 発明者らは、このような透明電子デバイスに関し、以下の問題点を見出した。
 透明電子デバイスでは、配線の幅を狭くして配線を目立たなくしているが、電気抵抗等の観点から限界がある。
 そこで、発明者らは、配線の色を変化させて配線を目立たなくする手法を検討した。
 本発明は、このような事情に鑑みなされたものであって、配線がより目立たない透明電子デバイスを提供する。
 本発明は、[1]の構成を有する透明電子デバイスを提供する。
[1]
 透明基板と、
 前記透明基板の主面上に配置され、250000μm以下の面積を有する電子素子と、
 前記電子素子に接続された幅100μm以下の配線と、を備え、
 前記配線における前記透明基板と反対側の表面は、無電解めっき膜によって被覆されており、
 前記無電解めっき膜側から観察した前記配線の色が、CIE L色空間において、L≦50、a≦10、b≦10を満たす、
透明電子デバイス。
[2]前記無電解めっき膜が、置換めっき膜である[1]に記載の透明電子デバイス。
[3]前記配線が、銅を主成分として含む、[1]又は[2]に記載の透明電子デバイス。
[4]前記無電解めっき膜が、Pd、Ru、Pt、Os、Ir、Re、Rhのいずれかを主成分として含む、[1]~[3]のいずれか一項に記載の透明電子デバイス。
[5]前記配線の前記表面による波長360~740nmの光の反射率が、40%以下である、[1]~[4]のいずれか一項に記載の透明電子デバイス。
[6]前記透明基板上において前記電子素子を覆う透明な保護層をさらに備える、
[1]~[5]のいずれか一項に記載の透明電子デバイス。
[7]前記保護層の厚さが、200~400μmである、[6]に記載の透明電子デバイス。
[8]前記電子素子は、10000μm以下の面積を有する発光ダイオード素子であり、当該透明電子デバイスが、透明表示デバイスである、[1]~[7]のいずれか一項に記載の透明電子デバイス。
 本発明は、[9]の構成を有する合わせガラスを提供する。
[9]
 一対のガラス板と、
 前記一対のガラス板との間に設けられた透明電子デバイスと、を備えた合わせガラスであって、
 前記透明電子デバイスは、
 透明基板と、
 前記透明基板の主面上に形成され、250000μm以下の面積を有する電子素子と、
 前記電子素子に接続された幅100μm以下の配線と、を備え、
 前記配線における前記透明基板と反対側の表面は、無電解めっき膜によって被覆されており、
 前記無電解めっき膜側から観察した前記配線の色は、CIE L色空間において、L≦50、a≦10、b≦10を満たす、
合わせガラス。
[10]前記一対のガラス板は、周縁に設けられた不透明な遮蔽部を備え、前記透明電子デバイスは、透明領域の周囲に設けられた不透明領域を備え、前記透明電子デバイスの前記不透明領域の少なくとも一部が、前記一対のガラス板の前記遮蔽部に設けられている、[9]に記載の合わせガラス。
[11]自動車のウインドウガラスに用いられる、[9]又は[10]に記載の合わせガラス。
 本発明は、以下[12]の構成を有する透明電子デバイスの製造方法を提供する。
[12]
 透明基板の主面上に、250000μm以下の面積を有する電子素子を配置し、
 前記電子素子に幅100μm以下の配線を接続する、透明電子デバイスの製造方法であって、
 前記配線における前記透明基板と反対側の表面を無電解めっき膜によって被覆し、
 前記無電解めっき膜側から観察した前記配線の色が、CIE L色空間において、L≦50、a≦10、b≦10を満たす、
透明電子デバイスの製造方法。
 本発明によれば、配線がより目立たない透明電子デバイスを提供できる。
第1の実施形態に係る透明表示デバイスの一例を示す模式的な部分平面図である。 図1におけるII-II切断線による断面図である。 第1の実施形態に係る透明表示デバイスの製造方法の一例を示す断面図である。 第1の実施形態に係る透明表示デバイスの製造方法の一例を示す断面図である。 第1の実施形態に係る透明表示デバイスの製造方法の一例を示す断面図である。 第1の実施形態に係る透明表示デバイスの製造方法の一例を示す断面図である。 第1の実施形態に係る透明表示デバイスの製造方法の一例を示す断面図である。 第1の実施形態に係る透明表示デバイスの製造方法の一例を示す断面図である。 第1の実施形態に係る透明表示デバイスの製造方法の一例を示す断面図である。 第1の実施形態に係る透明表示デバイスの製造方法の一例を示す断面図である。 第1の実施形態に係る透明表示デバイスの製造方法の一例を示す断面図である。 第2の実施形態に係る合わせガラスの一例を示す模式的な平面図である。 第2の実施形態に係る合わせガラスの一例を示す模式的な断面図である。 第2の実施形態に係る合わせガラスの他の一例を示す模式的な断面図である。 第3の実施形態に係る透明表示デバイスの一例を示す模式的な部分平面図である。 第4の実施形態に係る透明センシングデバイスの一例を示す模式的な部分平面図である。 センサ70の模式断面図である。 例1~5に係る透明表示デバイスの配線の色度a、bの分布を示すグラフである。 例1~5に係る透明表示デバイスの配線による波長360~740nmの光の反射率を示すグラフである。
 以下、本発明を適用した具体的な実施形態について、図面を参照しながら詳細に説明する。但し、本発明が以下の実施形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。
 本明細書において「透明電子デバイス」とは、透明基材上に電子素子が形成され、当該電子デバイスの背面側に位置する人物や背景等の視覚情報を、所望の使用環境下で視認可能な電子デバイスを指す。
 本明細書において「透明表示デバイス」とは、表示デバイスの背面側に位置する人物や背景等の視覚情報を、所望の使用環境下で視認可能な表示デバイスを指す。なお、視認可能とは、少なくとも表示デバイスが非表示状態、すなわち通電されていない状態で判定される。「透明表示デバイス」は、「透明電子デバイス」の一形態である。
 同様に、本明細書において「透明センシングデバイス」とは、センシングデバイスの背面側に位置する人物や背景等の視覚情報を、所望の使用環境下で視認可能なセンシングデバイスを指す。「センシングデバイス」とは、センサを利用して、各種情報を取得可能なデバイスを指す。「透明センシングデバイス」は、「透明電子デバイス」の一形態である。
 本明細書において、「透明」とは、ヘイズ値が20以下にて可視光が透過する領域の面積が、表示領域全体又はセンシング領域全体に対し、30%以上、好ましくは50%以上、より好ましくは70%以上であることを指す。また、透過率1%以上かつヘイズ値が20以下であることを指していてもよい。透過率が1%以上であれば、室内から日中の屋外を見た際に、室内と同程度以上の明るさで屋外を見られ、充分な視認性を確保できる。
 また、透過率が40%以上であれば、透明表示デバイスの前面側と背面側との明るさが同程度であっても、透明表示デバイスの背面側を実質的に問題なく視認できる。また、ヘイズ値が10以下であれば、背景のコントラストを充分に確保できる。
 「透明」とは、色が付与されているか否かは問わず、つまり無色透明であってもよく、有色透明であってもよい。
 なお、透過率は、ISO9050に準拠する方法により測定された値(%)を指す。ヘイズ値は、ISO14782に準拠する方法により測定された値を指す。
(第1の実施形態)
<透明表示デバイスの構成>
 まず、図1及び図2を参照して、第1の実施形態に係る透明表示デバイスの構成について説明する。図1は、第1の実施形態に係る透明表示デバイスの一例を示す模式的な部分平面図である。図2は、図1におけるII-II切断線による断面図である。
 なお、当然のことながら、図1及び図2に示した右手系xyz直交座標は、構成要素の位置関係を説明するための便宜的なものである。通常、z軸正向きが鉛直上向き、xy平面が水平面である。
 図1及び図2に示すように、本実施形態に係る透明表示デバイスは、透明基板10、発光部20、IC(Integrated Circuit)チップ30、配線40、保護層50を備えている。透明表示デバイスにおける表示領域101は、複数の画素から構成され、画像が表示される領域である。なお、画像は文字を含む。図1に示すように、表示領域101は、行方向(x軸方向)及び列方向(y軸方向)に並んだ複数の画素から構成されている。図1には、表示領域101の一部が示されており、行方向及び列方向に2画素ずつ計4画素が示されている。ここで、1つの画素PIXが一点鎖線によって囲んで示されている。また、図1では、図2に示した透明基板10及び保護層50が省略されている。さらに、図1は平面図だが、理解を容易にするため、発光部20及びICチップ30がドット表示されている。
<発光部20、ICチップ30、及び配線40の平面配置>
 まず、図1を参照して、発光部20、ICチップ30、及び配線40の平面配置について説明する。
 図1に示すように、一点鎖線によって囲まれた画素PIXが、行方向(x軸方向)に画素ピッチPxで、列方向(y軸方向)に画素ピッチPyで、マトリクス状に配置されている。ここで、図1に示すように、各画素PIXは、発光部20及びICチップ30を備えている。すなわち、発光部20及びICチップ30は、行方向(x軸方向)に画素ピッチPxで、列方向(y軸方向)に画素ピッチPyで、マトリクス状に配置されている。
 なお、所定の方向に所定の画素ピッチで配置されれば、画素PIXすなわち発光部20の配置形式はマトリクス状に限らない。
 図1に示すように、各画素PIXにおける発光部20は、少なくとも1つの発光ダイオード素子(以下、LED素子)を含む。すなわち、本実施形態による透明表示デバイスは、各画素PIXにLED素子を用いる表示デバイスであり、LEDディスプレイ等と呼ばれる。
 図1の例では、各発光部20が、赤色系のLED素子21、緑色系のLED素子22、及び青色系のLED素子23を含んでいる。LED素子21~23は、1つの画素を構成する副画素(サブピクセル)に対応する。このように、各発光部20が、光の三原色である赤、緑、青を発光するLED素子21~23を有するため、本実施形態に係る透明表示デバイスは、フルカラー画像を表示できる。
 なお、各発光部20は同系色のLED素子を2つ以上含んでいてもよい。これにより、画像のダイナミクスレンジを拡大できる。
 LED素子21~23は、いわゆるマイクロLED素子であり、例えば10000μm以下の面積を有する半導体チップである。具体的には、透明基板10上におけるLED素子21の幅(x軸方向の長さ)及び長さ(y軸方向の長さ)はそれぞれ、例えば100μm以下、好ましくは50μm以下、より好ましくは20μm以下である。LED素子22、23についても同様である。LED素子の幅及び長さの下限は、製造上の諸条件等から例えば3μm以上である。
 なお、図1におけるLED素子21~23の寸法すなわち幅及び長さは同一であるが、互いに異なっていてもよい。
 また、透明基板10上においてLED素子21~23のそれぞれが占める面積は、好ましくは3000μm以下、より好ましくは500μm以下である。なお、1つのLED素子が占める面積の下限は、製造上の諸条件等から例えば10μm以上である。ここで、本明細書において、LED素子の面積や配線等の構成部材の面積は、図1におけるxy平面視においてLED素子や配線等の構成部材が占める面積を指す。
 なお、図1に示したLED素子21~23の形状は、矩形状(正方形を含む)であるが、特に限定されない。
 ここで、LED素子21~23は、例えば、光を視認側に効率よく取り出すためのミラー構造を有している。そのため、LED素子21~23の透過率は、例えば10%以下程度と低い。しかしながら、本実施形態に係る透明表示デバイスでは、上述の通り、面積10000μm以下の微小サイズのLED素子21~23を用いている。そのため、例えば数10cm~2m程度の近距離から、透明表示デバイスを観察するような場合でも、LED素子21~23はほとんど視認できない。また、表示領域101において透過率が低い領域が狭く、背面側の視認性に優れている。その上、配線40等の配置の自由度も大きい。
 なお、「表示領域101において透過率が低い領域」とは、例えば、透過率が20%以下の領域である。以下同様である。
 また、微小サイズのLED素子21~23を用いているため、透明表示デバイスを湾曲させても、LED素子が損傷し難い。そのため、本実施形態に係る透明表示デバイスは、自動車用のウインドウガラスのような湾曲した透明板に装着したり、湾曲した2枚の透明板の間に封入したりして使用できる。ここで、透明基板10として可撓性を有する材料を用いれば、本実施形態に係る透明表示デバイスを湾曲させられる。
 LED素子21~23は、特に限定されないが、例えば無機材料である。赤色系のLED素子21は、例えばAlGaAs、GaAsP、GaP等である。緑色系のLED素子22は、例えばInGaN、GaN、AlGaN、GaP、AlGaInP、ZnSe等である。青色系のLED素子23は、例えばInGaN、GaN、AlGaN、ZnSe等である。
 LED素子21~23の発光効率すなわちエネルギー変換効率は、例えば1%以上、好ましくは5%以上、より好ましくは15%以上である。LED素子21~23の発光効率が1%以上であると、上述のように微小サイズのLED素子21~23でも充分な輝度が得られ、表示デバイスとして日中にも利用できる。また、LED素子の発光効率が15%以上であると、発熱が抑制され、樹脂接着層を用いた合わせガラス内部への封入が容易になる。
 画素ピッチPx、Pyはそれぞれ、例えば100~3000μm、好ましくは180~1000μm、より好ましくは250~400μmである。画素ピッチPx、Pyを上記範囲とすれば、充分な表示能を確保しつつ、高い透明性を実現できる。また、透明表示デバイスの背面側からの光によって生じ得る回折現象を抑制できる。
 また、本実施形態に係る透明表示デバイスの表示領域101における画素密度は、例えば10ppi以上、好ましくは30ppi以上、より好ましくは60ppi以上である。
 また、1画素PIXの面積はPx×Pyである。1画素の面積は、例えば1×10μm~9×10μm、好ましくは3×10~1×10μm、より好ましくは6×10~2×10μmである。1画素の面積を1×10μm~9×10μmとすれば、適切な表示能を確保しつつ、表示デバイスの透明性を向上させられる。1画素の面積は、表示領域101のサイズ、用途、視認距離等によって適宜選択すればよい。
 1画素の面積に対してLED素子21~23が占める面積の割合は、例えば30%以下、好ましくは10%以下、より好ましくは5%以下、さらに好ましくは1%以下である。1画素の面積に対してLED素子21~23が占める面積の割合を30%以下であれば、透明性及び背面側の視認性が向上する。
 図1では、各画素において、3つのLED素子21~23が、この順にx軸正方向に一列に並べて配置されているが、これに限定されない。例えば、3つのLED素子21~23の配置順を変更してもよい。また、3つのLED素子21~23を、y軸方向に並べてもよい。あるいは、3つのLED素子21~23を三角形の頂点に配置してもよい。
 また、図1に示すように、各発光部20が複数のLED素子21~23を備えている場合、発光部20におけるLED素子21~23同士の間隔は、例えば100μm以下、好ましくは10μm以下である。また、LED素子21~23同士は、互いに接するように配置されていてもよい。これにより、第1電源分岐線41aを共通化し易くなり、開口率を向上させられる。
 なお、図1の例では、各発光部20における複数のLED素子の配置順、配置方向等は互いに同じだが、異なっていてもよい。また、各発光部20が波長の異なる光を発する3つのLED素子を含む場合、一部の発光部20では、LED素子をx軸方向又はy軸方向に並べて配置し、他の発光部20では、各色のLED素子を三角形の頂点に配置してもよい。
 図1の例では、ICチップ30は、画素PIXごとに配置され、発光部20を駆動する。具体的には、ICチップ30は、LED素子21~23のそれぞれに駆動線45を介して接続されており、LED素子21~23を個別に駆動できる。ICチップ30は、例えば、アナログ領域と論理領域とを備えたハイブリッドICである。アナログ領域は、例えば、電流制御回路及び変圧回路等を含んでいる。
 なお、ICチップ30を複数の画素ごとに配置し、各ICチップ30が接続された複数の画素を駆動してもよい。例えば、ICチップ30を4画素ごとに1個配置すれば、ICチップ30の個数を図1の例の1/4に削減し、ICチップ30が占める面積を削減できる。また、ICチップ30は必須ではなく、パッシブマトリクス駆動のように、ICチップ30を利用しない駆動方式や、ICチップ30に代わりTFT(Thin Film Transistor)を用いて駆動してもよい。
 ICチップ30の面積は、例えば100000μm以下、好ましくは10000μm以下、より好ましくは5000μm以下である。ICチップ30の透過率は20%以下程度と低いが、上記のサイズのICチップ30を用いれば、表示領域101において透過率が低い領域が狭くなり、背面側の視認性が向上する。
 ICチップ30に代わりTFTを用いる場合、TFTの面積は、例えば500000μm以下、好ましくは30000μm以下である。
 図1に示すように、配線40は、電源線41、グランド線42、行データ線43、列データ線44、及び駆動線45を複数ずつ備えている。
 図1の例では、電源線41、グランド線42、及び列データ線44はy軸方向に延設されている。他方、行データ線43は、x軸方向に延設されている。
 また、各画素PIXにおいて、電源線41及び列データ線44は、発光部20及びICチップ30よりもx軸負方向側に設けられており、グランド線42は、発光部20及びICチップ30よりもx軸正方向側に設けられている。ここで、電源線41は、列データ線44よりもx軸負方向側に設けられている。また、各画素PIXにおいて、行データ線43は、発光部20及びICチップ30よりもy軸負方向側に設けられている。
 さらに、詳細には後述するが、図1に示すように、電源線41は、第1電源分岐線41a及び第2電源分岐線41bを備えている。グランド線42は、グランド分岐線42aを備えている。行データ線43は、行データ分岐線43aを備えている。列データ線44は、列データ分岐線44aを備えている。これら各分岐線は、配線40に含まれる。
 図1に示すように、y軸方向に延設された各電源線41は、y軸方向に並設された各画素PIXの発光部20及びICチップ30に接続されている。より詳細には、各画素PIXにおいて、電源線41よりもx軸正方向側において、LED素子21~23がこの順にx軸正方向に並設されている。そのため、電源線41からx軸正方向に分岐した第1電源分岐線41aが、LED素子21~23のy軸正方向側端部に接続されている。
 また、各画素PIXにおいて、ICチップ30は、LED素子21~23のy軸負方向側に配置されている。そのため、LED素子21と列データ線44との間において、第1電源分岐線41aからy軸負方向に分岐した第2電源分岐線41bが、直線状に延設され、ICチップ30のy軸正方向側端部のx軸負方向側に接続されている。
 図1に示すように、y軸方向に延設された各グランド線42は、y軸方向に並設された各画素PIXのICチップ30に接続されている。具体的には、グランド線42からx軸負方向に分岐したグランド分岐線42aが、直線状に延設され、ICチップ30のx軸正方向側端部に接続されている。
 ここで、グランド線42は、グランド分岐線42a、ICチップ30、及び駆動線45を介して、LED素子21~23に接続されている。
 図1に示すように、x軸方向に延設された各行データ線43は、x軸方向(行方向)に並設された各画素PIXのICチップ30に接続されている。具体的には、行データ線43からy軸正方向に分岐した行データ分岐線43aが、直線状に延設され、ICチップ30のy軸負方向側端部に接続されている。
 ここで、行データ線43は、行データ分岐線43a、ICチップ30、及び駆動線45を介して、LED素子21~23に接続されている。
 図1に示すように、y軸方向に延設された各列データ線44は、y軸方向(列方向)に並設された各画素PIXのICチップ30に接続されている。具体的には、列データ線44からx軸正方向に分岐した列データ分岐線44aが、直線状に延設され、ICチップ30のx軸負方向側端部に接続されている。
 ここで、列データ線44は、列データ分岐線44a、ICチップ30、及び駆動線45を介して、LED素子21~23に接続されている。
 駆動線45は、各画素PIXにおいて、LED素子21~23とICチップ30とを接続している。具体的には、各画素PIXにおいて、3本の駆動線45がy軸方向に延設され、それぞれがLED素子21~23のy軸負方向側端部とICチップ30のy軸正方向側端部とを接続している。
 なお、図1に示した電源線41、グランド線42、行データ線43、列データ線44、及びそれらの分岐線、並びに駆動線45の配置はあくまでも一例であり、適宜変更可能である。例えば、電源線41及びグランド線42の少なくとも一方が、y軸方向でなくx軸方向に延設されていてもよい。また、電源線41と列データ線44とを入れ換えた構成でもよい。
 また、図1に示した構成全体を、上下反転させた構成あるいは左右反転させた構成等でもよい。
 さらに、行データ線43、列データ線44、及びそれらの分岐線、並びに駆動線45は必須ではない。
 配線40は、例えばクロム(Cr)、チタン(Ti)、タングステン(W)、モリブデン(Mo)、銅(Cu)、アルミニウム(Al)、銀(Ag)、金(Au)等の金属、もしくは、それらの化合物、もしくは、積層物である。このうち、コスト的な観点から、低抵抗率である銅又はアルミニウムを主成分とする金属であることが好ましい。
 なお、図1には図示されていないが、配線40の表面は、配線40を目立たなくするため、図2を参照して後述する置換めっき膜PFによって被覆されている。
 図1に示した表示領域101における配線40の幅は、いずれも例えば1~300μm、好ましくは100μm以下、より好ましくは3~20μmである。配線40の幅が100μm以下であるため、例えば数10cm~2m程度の近距離から、透明表示デバイスを観察するような場合でも、配線40はほとんど視認できず、背面側の視認性に優れている。他方、後述する厚さの範囲の場合、配線40の幅を1μm以上であれば、配線40の抵抗の過度な上昇を抑制し、電圧降下や信号強度の低下を抑制できる。また、配線40による熱伝導の低下も抑制できる。
 ここで、図1に示すように、配線40が主にx軸方向及びy軸方向に延びている場合、透明表示デバイスの外部から照射された光によってx軸方向及びy軸方向に延びた十字回折像が発生し、透明表示デバイスの背面側の視認性が低下する場合がある。各配線の幅を狭くして、この回折を抑制し、背面側の視認性をさらに向上させられる。回折を抑制する観点から、配線40の幅を50μm以下、好ましくは10μm以下、より好ましくは5μm以下としてもよい。
 配線40の表面に凹凸が形成されていると、正反射が抑制され、配線40が目立たなくなる。そのため、配線40の表面粗さ(算術平均粗さ)Raは、1nm以上が好ましく、5nm以上がさらに好ましい。他方、耐久性の観点からは、置換めっき膜PF下の配線40の表面粗さRaは、小さい方が好ましい。例えば、配線40の表面粗さRaは、20nm以下が好ましく、15nm以下がさらに好ましい。
 配線40の電気抵抗率は、例えば1.0×10-6Ωm以下、好ましくは2.0×10-8Ωm以下である。また、配線40の熱伝導率は、例えば150~5,500W/(m・K)、好ましくは350~450W/(m・K)である。
 図1に示した表示領域101における隣接する配線40同士の間隔は、例えば3~100μm、好ましくは5~30μmである。配線40が密になっている領域があると、背面側の視認を妨げる場合がある。隣接する配線40同士の間隔を3μm以上とすれば、そのような視認の妨げを抑制できる。他方、隣接する配線40同士の間隔を100μm以下とすれば、充分な表示能を確保できる。
 なお、配線40が湾曲していること等によって配線40同士の間隔が一定でない場合、上述の隣接する配線40同士の間隔は、その最小値を指す。
 1画素の面積に対して配線40が占める面積の割合は、例えば30%以下、好ましくは10%以下、より好ましくは5%以下、さらに好ましくは3%以下である。配線40の透過率は、例えば20%以下、あるいは10%以下と低い。しかしながら、1画素において配線40が占める面積の割合を30%以下とすれば、表示領域101において透過率の低い領域が狭くなり、背面側の視認性が向上する。
 さらに、1画素の面積に対して発光部20、ICチップ30、及び配線40が占める面積の合計は、例えば30%以下、好ましくは20%以下、より好ましくは10%以下である。
<透明表示デバイスの断面構成>
 次に、図2を参照して、本実施形態に係る透明表示デバイスの断面構成について説明する。
 透明基板10は、絶縁性を有する透明な基板である。図2の例では、透明基板10は、主基板11及び接着剤層12である2層構造を有している。
 主基板11は、詳細には後述するように、例えば透明樹脂である。
 接着剤層12は、例えばエポキシ系、アクリル系、オレフィン系、ポリイミド系、ノボラック系等の透明樹脂接着剤である。
 なお、主基板11は、厚さが例えば200μm以下、好ましくは100μm以下等の薄いガラス板でもよい。また、接着剤層12は、必須ではない。
 主基板11を構成する透明樹脂として、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル系樹脂、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)等のオレフィン系樹脂、セルロース、アセチルセルロース、トリアセチルセルロース(TAC)等のセルロース系樹脂、ポリイミド(PI)等のイミド系樹脂、ポリアミド(PA)等のアミド系樹脂、ポリアミドイミド(PAI)等のアミドイミド系樹脂、ポリカーボネート(PC)等のカーボネート系樹脂、ポリエーテルスルホン(PES)等のスルホン系樹脂、ポリパラキシレン等のパラキシレンケイ系樹脂、ポリエチレン(PE)、ポリ塩化ビニル(PVC)、ポリスチレン(PS)、ポリ酢酸ビニル(PVAc)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)等のビニル系樹脂、ポリメタクリル酸メチル(PMMA)等のアクリル系樹脂、エチレン・酢酸ビニル共重合樹脂(EVA)、熱可塑性ポリウレタン(TPU)等のウレタン系樹脂、エポキシ系樹脂等を例示できる。
 上記の主基板11に用いられる材料のうち、耐熱性向上の観点からはポリエチレンナフタレート(PEN)、ポリイミド(PI)が好ましい。また、複屈折率が低く、透明基板を通して見た像の歪みや滲みを低減できる点では、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)、ポリビニルブチラール(PVB)等が好ましい。
 上記材料を単一で用いても、2種以上の材料を混合して用いてもよい。さらに、異なる材料の平板を積層させて主基板11を構成してもよい。
 透明基板10全体の厚さは、例えば1~1000μm、好ましくは5~200μmである。透明基板10の可視光の内部透過率は、例えば50%以上、好ましくは70%以上、より好ましくは90%以上である。
 また、透明基板10は可撓性を有していてもよい。これにより、例えば透明表示デバイスを湾曲した透明板に装着したり、湾曲した2枚の透明板の間に挟んで使用したりできる。また、100℃以上に加熱した際に収縮する材料であってもよい。
 図2に示すように、LED素子21~23及びICチップ30は、透明基板10すなわち接着剤層12上に設けられており、透明基板10上に配置された配線40と接続されている。図2の例では、配線40は、主基板11上に形成された第1メタル層M1、接着剤層12上に形成された第2メタル層M2から構成されている。
 図2において、ICチップ30の視認側表面での光の反射を抑制するため、カーボンブラックやチタンブラック等の無機顔料、有機黒色顔料や染料を含んだ樹脂によって、ICチップ30の視認側表面の少なくとも一部を覆ってもよい。それにより、ICチップ30を目立たなくできる。ICチップ30の背面側表面を上記樹脂によって覆ってもよく、両方の表面を上記樹脂によって覆ってもよい。
 あるいは、ICチップ30の視認側表面の50%以上を配線40で覆い、当該配線40の表面に後述する置換めっき膜PFを形成してもよい。このような構成によって、回折効果も加わって、ICチップ30の視認側表面の光沢が抑えられる。ICチップ30の表面を配線40によって覆う比率が、60%以上であれば、より好ましく、70%以上であれば、さらに好ましい。
 配線40の厚さすなわち第1メタル層M1の厚さと第2メタル層M2の厚さとの合計は、例えば0.1~10μm、好ましくは0.5~5μmである。第1メタル層M1の厚さは、例えば0.5μm程度、第2メタル層M2の厚さは、例えば3μm程度である。
 詳細には、図2に示すように、y軸方向に延設されたグランド線42は、電流量が多いため、第1メタル層M1及び第2メタル層M2を含む2層構造を有している。すなわち、グランド線42が設けられた部位では、接着剤層12が除去され、第1メタル層M1上に第2メタル層M2が形成されている。図2には示されていないが、図1に示した電源線41、行データ線43、及び列データ線44も、同様に、第1メタル層M1及び第2メタル層M2を含む2層構造を有している。
 ここで、図1に示すように、y軸方向に延設された電源線41、グランド線42、及び列データ線44と、x軸方向に延設された行データ線43とは、交差している。図2には図示されていないが、この交差部では、行データ線43は第1メタル層M1のみから構成され、電源線41、グランド線42、及び列データ線44は第2メタル層M2のみから構成されている。そして、この交差部では、第1メタル層M1と第2メタル層M2との間に接着剤層12が設けられ、第1メタル層M1と第2メタル層M2とが絶縁されている。
 同様に、図1に示した列データ線44と第1電源分岐線41aとの交差部では、第1電源分岐線41aが第1メタル層M1のみから構成され、列データ線44が第2メタル層M2のみから構成されている。
 また、図2の例では、グランド分岐線42a、駆動線45、及び第1電源分岐線41aは第2メタル層M2のみから構成され、LED素子21~23及びICチップ30の端部を覆うように形成されている。図2には示されていないが、第2電源分岐線41b、行データ分岐線43a、及び列データ分岐線44aも、同様に、第2メタル層M2のみから構成されている。
 なお、第1電源分岐線41aは、上述の通り、列データ線44との交差部では第1メタル層M1のみから構成され、それ以外の部位では第2メタル層M2のみから構成されている。また、透明基板10上に形成された配線40上に、銅、銀、金製等の金属パッドを配置し、その上にLED素子21~23及びICチップ30の少なくとも一方を配置してもよい。
 図2に示すように、置換めっき膜PFは、配線40を目立たなくするために、第2メタル層M2の視認側(すなわち透明基板10と反対側)の表面全体を覆うように形成されている。ここで、置換めっき膜PFの表面に微細な凹凸が形成されていてもよい。置換めっき膜PFは、目立たなくなるように配線40を変色させる膜であれば、特に限定されないが、例えば黒化処理膜である。
 なお、置換めっき膜PFは、第1メタル層M1の視認側(すなわち透明基板10と反対側)の表面全体も覆うように形成されてもよい。また、図2において、透明基板10側を視認側とし、その反対側を背面側としてもよい。その場合、背面側から観察した配線40を目立たなくできる。
 置換めっき膜PFの厚さは、特に限定されないが、例えば200nm以下であり、100nm以下が好ましい。少なくとも10nm以上であれば所望の色を呈することができ、好ましい。
 また、置換めっき膜PFの厚さは、下地の種類や位置に寄らず均一であることが好ましい。例えば、配線40の主面に平行な面と主面に対して傾斜した側面における置換めっき膜PFの厚さの差は、40%以下が好ましく、30%以下がより好ましく、20%以下がさらに好ましい。当該範囲であれば、置換めっき膜PFの主成分が金属であるため、置換めっき膜PFの厚さが大きくなる程、配線40が目立たなくなる。また、置換めっき膜PFの厚さが均一になれば、配線40内部での抵抗値のばらつきが小さくなり、高周波成分の劣化、位相のずれを低減できる。
 置換めっきの原理上、置換めっき膜PFは、下地の第2メタル層M2(もしくは第1メタル層M1)の金属よりもイオン化傾向が小さい金属である。
 上述の通り、置換めっき膜PFの下地の第2メタル層M2(もしくは第1メタル層M1)は、例えば銅やアルミニウムを主成分とする金属であるため、置換めっき膜PFは、例えばPd、Ru、Pt、Os、Ir、Re、Rh等の金属を主成分とする。また、置換めっき膜PFは、上記金属の塩化物等のハロゲン化物を含有してもよい。
 置換めっきは、例えば酸化膜を形成する黒化処理に比べ、配線40に接続されたLED素子21~23及びICチップ30にダメージを与えず、第2メタル層M2の表面上のみに置換めっき膜PFを形成できる。
 また、置換めっき膜PFを形成しても配線40の幅はほとんど変化しないため、背面側の視認性の悪化を抑制できる。
 さらに、置換めっき膜PFは、金属膜であるため、例えば酸化膜を形成する黒化処理に比べ、配線40の抵抗や寄生容量の増加を抑制できる。
 なお、ここでは無電解めっきのうち置換めっきを例に説明したが、還元めっきを用いてめっき膜を設けてもよい。還元めっきの原理上、酸化剤が電子を放出して還元めっき膜を形成するため、下地の第2メタル層M2(もしくは第1メタル層M1)のイオン化傾向やその大小に関わらず、めっき膜を形成できる。無電解めっきであれば、還元めっきであっても、電流を流さずにめっき膜を形成でき、置換めっきと同様の効果を奏する。
 表面に置換めっき膜PFが形成された配線40の色(置換めっき膜PF側から観察した配線40の色)は、1976年に国際照明委員会(CIE)によって規格化されたCIE L色空間を用いて表現できる。
 配線40の色は、表面に置換めっき膜PFが形成された配線40を露出させた状態で、例えばCIE標準光源D65を用いた反射測色計によって測定する。
 置換めっき膜PFが形成された配線40の明度Lは、L≦50を満たす。配線40の明度Lは、L≦45を満たすことが好ましい。
 置換めっき膜PFが形成された配線40の色度a、bは、a≦10、b≦10を満たす。配線40の色度a、bは、a≦5、b≦5を満たすことが好ましい。また、色度a、bは、-40≦a、-40≦bを満たすことが好ましく、-30≦a、-30≦bを満たすことがより好ましく、-10≦a、-10≦bを満たすことがさらに好ましい。
 上述の通り、配線40は、例えばクロム(Cr)、チタン(Ti)、タングステン(W)、モリブデン(Mo)、銅(Cu)、アルミニウム(Al)、銀(Ag)、金(Au)等の金属、もしくは、それらの化合物、もしくは、積層物である。
 ここで、配線40において置換めっき膜PFが形成されていない側の表面(図2における第1メタル層M1及び第2メタル層M2の背面側表面)は、反射率が低い、もしくは、黄色や赤味の少ない金属が好ましい。具体的には、当該表面が、クロム、チタン、モリブデン、タングステン、もしくは、それらの金属を含む合金が好ましい。あるいは、当該表面が、クロム、チタン、モリブデン、タングステン、銅、アルミニウムの酸化物であってもよい。これにより、背面側(すなわち透明基板10側)から観察した場合にも、配線40を目立たなくできる。当該表面の色度a、bは、-40≦a、-40≦bを満たすことが好ましく、-30≦a、-30≦bを満たすことがより好ましく、-10≦a、-10≦bを満たすことがさらに好ましい。
 保護層50は、発光部20、ICチップ30、及び配線40を覆って保護するように、透明基板10上の略全面に形成された透明樹脂である。
 保護層50の厚さは、例えば3~1000μm、好ましくは200~400μmである。200μm以上とすれば、高温高湿下における配線40の耐久性を高められ、300μm以上とすれば、さらに好ましい結果が得られる。
 保護層50の引張弾性率は、例えば10GPa以下である。引張弾性率が低い方が、温度や湿度等の環境変化に応じて発生する樹脂の膨張、収縮時の応力を低減でき、配線40の破損や置換めっき膜PFの劣化を抑制できる。
 保護層50の可視光の内部透過率は、例えば50%以上、好ましくは70%以上、より好ましくは90%以上である。
 保護層50を構成する透明樹脂として、ポリエチレン(PE)、ポリ塩化ビニル(PVC)、ポリスチレン(PS)、ポリ酢酸ビニル(PVAc)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)等のビニル系樹脂、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)等のオレフィン系樹脂、熱可塑性ポリウレタン(TPU)等のウレタン系樹脂、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル系樹脂、ポリメタクリル酸メチル(PMMA)等の各種アクリル系樹脂、エチレン・酢酸ビニル共重合樹脂(EVA)等、もしくは、それらの共重合体の熱可塑性樹脂を例示できる。
<透明表示デバイスの製造方法>
 次に、図2~図11を参照して、第1の実施形態に係る透明表示デバイスの製造方法の一例について説明する。図3~図11は、第1の実施形態に係る透明表示デバイスの製造方法の一例を示す断面図である。図3~図11は、図2に対応した断面図である。
 まず、図3に示すように、主基板11の一方の主面上の略全面に第1メタル層M1を成膜した後、第1メタル層M1をフォトリソグラフィによってパターニングし、下層配線を形成する。具体的には、図1に示した電源線41、グランド線42、行データ線43、及び列データ線44等が形成される位置に、第1メタル層M1によって下層配線を形成する。
 なお、電源線41、グランド線42、及び列データ線44における行データ線43との交差部には下層配線を形成しない。
 次に、図4に示すように、第1メタル層M1が形成された主基板11の主面の略全面に接着剤層12を成膜した後、タック性を有する接着剤層12上に(すなわち透明基板10上に)、LED素子21~23及びICチップ30を実装する。
 ここで、LED素子21~23は、例えば液相成長法、HVPE(Hydride Vapor Phase Epitaxy)法、MOCVD(Metal Organic Chemical Vapor Deposition)法等を用いて、ウェハ上に結晶を成長させた後、パターニングによって得られる。ウェハ上にパターニングされたLED素子21~23を、例えばマイクロトランスファープリンティング技術を用いて、透明基板10上に転写する。また、ICチップ30についてもLED素子21~23と同様に、例えばSiウェハ上にパターニングされたICチップ30を、マイクロトランスファープリンティング技術を用いて、透明基板10上に転写する。
 次に、図5に示すように、主基板11及び接着剤層12を含む透明基板10上の略全面にフォトレジストFR1を成膜した後、第1メタル層M1上のフォトレジストFR1をパターニングによって除去する。ここで、図1に示した行データ線43における電源線41、グランド線42、及び列データ線44との交差部のフォトレジストFR1は除去されない。
 次に、図6に示すように、フォトレジストFR1が除去された部位の接着剤層12をドライエッチングによって除去し、第1メタル層M1すなわち下層配線を露出させる。
 次に、図7に示すように、透明基板10上のフォトレジストFR1を全て除去する。その後、透明基板10上の略全面に図示しないめっき用シード層を形成する。
 次に、図8に示すように、透明基板10上の略全面にフォトレジストFR2を成膜した後、上層配線を形成する部位のフォトレジストFR2をパターニングによって除去し、シード層を露出させる。
 次に、図9に示すように、フォトレジストFR2が除去された部位すなわちシード層上に、めっきによって第2メタル層M2を形成する。これによって、第2メタル層M2によって上層配線が形成される。
 次に、図10に示すように、フォトレジストFR2を除去する。さらに、フォトレジストFR2の除去によって露出したシード層を、エッチングによって除去する。
 次に、図11に示すように、第2メタル層M2上に置換めっきにより置換めっき膜PFを形成する。
 最後に、図2に示すように、透明基板10上の略全面に保護層50を形成し、透明表示デバイスが得られる。
(第2の実施形態)
<透明表示デバイスを備える合わせガラスの構成>
 次に、図12、図13を参照して、第2の実施形態に係る合わせガラスの構成について説明する。図12は、第2の実施形態に係る合わせガラスの一例を示す模式的な平面図である。図13は、第2の実施形態に係る合わせガラスの一例を示す模式的な断面図である。
 図12、図13に示された合わせガラス200は、自動車のウインドウガラスのうちフロントガラスに用いられるが、特に限定されない。例えば、本実施形態に係る合わせガラスは、電車、船舶、航空機等を含む移動体すなわち車両全般の窓ガラスに使用できる。窓ガラスは、フロントガラス以外に、例えば、リアガラス、サイドガラス、ルーフガラス等を含む。
 まず、図12を参照して、合わせガラス200の平面構成について説明する。
 図12に示すように、合わせガラス200の周縁全体に例えば黒色で不透明な遮蔽部201が設けられている。遮蔽部201は、日光を遮蔽し、合わせガラス200を自動車に組み付けるための接着剤を紫外線から保護する。また、遮蔽部201によって、当該接着剤が外部から視認できなくなる。
 図12に示すように、透明表示デバイス100は、図1に示した表示領域101に加え、表示領域の周囲に設けられた非表示領域102を備えている。ここで、表示領域101は、第1の実施形態において説明した通り、多数の画素から構成され、画像が表示される領域であるため、詳細な説明を省略する。
 なお、図12は平面図だが、理解を容易にするため、非表示領域102及び遮蔽部201がドット表示されている。
 非表示領域102は、画素を備えておらず、画像が表示されない領域である。非表示領域102には、図1に示した電源線41、グランド線42、行データ線43、及び列データ線44に接続された太幅の配線が密集して設けられている。非表示領域102における配線の幅は、例えば100~10000μm、好ましくは100~5000μmである。配線同士の間隔は、例えば3~5000μm、好ましくは50~1500μmである。
 そのため、表示領域101が透明領域であるのに対し、非表示領域102は不透明領域であって、車内から視認できてしまう。ここで、非表示領域102が視認できると、合わせガラス200の意匠性が低下する。そこで、第2の実施形態に係る合わせガラス200では、透明表示デバイス100の非表示領域102の少なくとも一部が、遮蔽部201に設けられている。遮蔽部201に設けられた非表示領域102は、遮蔽部201に隠れ、視認できない。そのため、非表示領域102の全体を視認できる場合よりも、合わせガラス200の意匠性が向上する。
 次に、図13を参照して、合わせガラス200の断面構成について説明する。図13は、透明表示デバイス100の表示領域101における断面図である。
 図13に示すように、第2の実施形態に係る合わせガラス200は、中間膜を介して一対のガラス板220a、220bを貼り合わせたものである。そして、合わせガラス200は、この一対のガラス板220a、220bの間に、中間膜210a、210bを介して第1の実施形態に係る透明表示デバイス100を備えている。中間膜210a、210bは、例えばポリビニルブチラール(PVB)から構成されている。
 ここで、保護層50と中間膜210aの厚みの合計が、例えば3~1000μm、好ましくは200~400μmである。200μm以上とすれば、高温高湿下における配線40の耐久性を高められ、300μm以上とすれば、さらに好ましい結果が得られる。この場合、保護層50と中間膜aの厚さに応じた引張弾性率の加重平均は、例えば10GPa以下である。引張弾性率が低い方が、温度や湿度等の環境変化に応じて発生する樹脂の膨張、収縮時の応力を低減でき、配線40の破損や置換めっき膜PFの劣化を抑制できる。
 ここで、図14は、第2の実施形態に係る合わせガラスの他の一例を示す模式的な断面図である。図14に示した合わせガラス200では、透明表示デバイス100における保護層50が、例えばポリビニルブチラール(PVB)から構成され、中間膜としての機能も有している。そのため、図14に示した合わせガラス200では、図13において保護層50上に形成された中間膜210aを省略できる。このように、保護層50が、中間膜210aを兼ねていてもよい。
(第3の実施形態)
<透明表示デバイスの構成>
 次に、図15を参照して、第3の実施形態に係る透明表示デバイスの構成について説明する。図15は、第3の実施形態に係る透明表示デバイスの一例を示す模式的な部分平面図である。図15に示すように、本実施形態に係る透明表示デバイスは、図1に示した第1の実施形態に係る透明表示デバイスの構成に加え、表示領域101にセンサ70を備えている。すなわち、透明センシングデバイスとしての機能を有している。
 図15に示した例では、センサ70は所定の画素PIX間に設けられており、電源線41及びグランド線42に接続されている。また、センサ70からy軸方向に延びたデータ出力線46を介して、センサ70による検出データが出力される。他方、センサ70までy軸方向に延びた制御信号線47を介して、制御信号がセンサ70に入力され、センサ70が制御される。センサ70は、単数でも複数でもよい。複数のセンサ70が所定の間隔で、例えばx軸方向もしくはy軸方向に配置されていてもよい。
 以下の説明では、本実施形態に係る透明表示デバイスが自動車の窓ガラスのうちフロントガラスに搭載されている場合について説明する。すなわち、本実施形態に係る透明表示デバイスは、第2の実施形態に係る合わせガラスにも適用できる。
 センサ70は、例えば、車内及び車外の照度を検知するための照度センサ(例えば受光素子)である。例えば、センサ70が検知した照度に応じて、LED素子21~23による表示領域101の輝度を制御する。例えば、車内の照度に対して車外の照度が大きい程、LED素子21~23による表示領域101の輝度も大きくする。このような構成によって、透明表示デバイスの視認性がより向上する。
 また、センサ70は、観察者(例えば運転者)の視線を感知するための赤外線センサ(例えば受光素子)やイメージセンサ(例えばCMOS(Complementary Metal-Oxide-Semiconductor)イメージセンサ)でもよい。例えば、センサ70が視線を感知した場合のみ、透明表示デバイスを駆動する。例えば、透明表示デバイスを図17に示した合わせガラスに用いた場合、観察者が透明表示デバイスに視線を向けない限り、透明表示デバイスが観察者の視界を遮らなくなるため、好ましい。あるいは、イメージセンサであるセンサ70によって、観察者の動作を検出し、当該動作に基づいて、例えば透明表示デバイスをオン・オフしたり、表示画面を切り換える機能を有したりしてもよい。
 その他の構成は第1の実施形態に係る透明表示デバイスと同様である。
(第4の実施形態)
<透明センシングデバイスの構成>
 次に、図16を参照して、第4の実施形態に係る透明センシングデバイスの構成について説明する。図16は、第4の実施形態に係る透明センシングデバイスの一例を示す模式的な部分平面図である。
 図16に示すように、本実施形態に係る透明センシングデバイスは、図1に示した第1の実施形態に係る透明表示デバイスの構成において、各画素PIXに発光部20及びICチップ30に代えてセンサ70を備えた構成である。すなわち、図16に示した透明センシングデバイスは、発光部20を備えず、表示機能を有しない。透明センシングデバイスは、透明電子デバイスの一態様である。なお、透明センシングデバイスにおけるセンシング領域は、透明表示デバイス100における表示領域101に相当させてもよい。
 センサ70は特に限定されないが、図16に示した透明センシングデバイスでは、CMOSイメージセンサである。すなわち、図16に示した透明センシングデバイスは、行方向(x軸方向)及び列方向(y軸方向)に並んだ複数の画素PIXから構成された撮像領域301を備え、撮像機能を有する。図16には、撮像領域301の一部が示されており、行方向及び列方向に2画素ずつ計4画素が示されている。ここで、1つの画素PIXが一点鎖線によって囲んで示されている。また、図16では、図1と同様に、透明基板10及び保護層50が省略されている。また、図16は平面図だが、理解を容易にするため、センサ70をドット表示する。
 図16に示した例では、センサ70は各画素PIXに1つずつ設けられており、y軸方向に延びた電源線41及びグランド線42の間に配置され、両者に接続されている。また、センサ70からy軸方向に延びたデータ出力線46を介して、センサ70による検出データが出力される。他方、センサ70までy軸方向に延びた制御信号線47を介して、制御信号がセンサ70に入力され、センサ70が制御される。制御信号は例えば、同期信号やリセット信号等である。
 なお、電源線41が、図示しない電池に接続されていてもよい。
 ここで、図17は、センサ70の模式断面図である。図17に示したセンサ70は、裏面照射型CMOSイメージセンサである。なお、イメージセンサとしてのセンサ70も特に限定されず、表面照射型CMOSイメージセンサやCCD(Charge-Coupled Device)イメージセンサでもよい。
 図17に示すように、各センサ70は、配線層、半導体基板、カラーフィルタCF1~CF3、マイクロレンズML1~ML3を備えている。ここで、配線層の内部には内部配線IWが形成されている。また、半導体基板の内部にはフォトダイオードPD1~PD3が形成されている。
 配線層上に半導体基板(例えばシリコン基板)が形成されている。配線層の内部に形成された内部配線IWは、配線40(電源線41、グランド線42、データ出力線46、及び制御信号線47)とフォトダイオードPD1~PD3とを接続している。フォトダイオードPD1~PD3に光が照射されると、フォトダイオードPD1~PD3から電流が出力される。フォトダイオードPD1~PD3から出力された電流は、それぞれ図示しないアンプ回路によって増幅され、内部配線IW及びデータ出力線46を介して出力される。
 カラーフィルタCF1~CF3は、半導体基板の内部に形成されたフォトダイオードPD1~PD3上にそれぞれ形成されている。カラーフィルタCF1~CF3は、例えばそれぞれ赤色フィルタ、緑色フィルタ、青色フィルタである。
 マイクロレンズML1~ML3は、カラーフィルタCF1~CF3上にそれぞれ載置されている。凸レンズであるマイクロレンズML1~ML3によって集光された光が、それぞれカラーフィルタCF1~CF3を介して、フォトダイオードPD1~PD3に入射する。
 本実施形態に係るセンサ70は、透明基板10上における占有面積が250000μm以下の微小サイズを有するマイクロセンサである。換言すると、本明細書において、マイクロセンサとは、平面視での面積が250000μm以下の微小サイズを有するセンサである。センサ70の占有面積は、例えば、好ましくは25000μm以下、より好ましくは2500μm以下である。なお、センサ70が占有面積の下限は、製造上の諸条件等から例えば10μm以上である。
 なお、図16に示したセンサ70の形状は、矩形状であるが、特に限定されない。
 本実施形態に係る透明センシングデバイスは、第2の実施形態に係る合わせガラスにも適用できる。本実施形態に係る透明センシングデバイスが車両(例えば自動車)の窓ガラスのうちフロントガラスに搭載されている場合、センサ70によって、例えば、車内及び車外の少なくともいずれかの画像を取得できる。すなわち、本実施形態に係る透明センシングデバイスは、ドライブレコーダとしての機能を有する。
 なお、第4の実施形態に係る透明センシングデバイスにおけるセンサ70は、単数でもよい。また、第4の実施形態に係る透明センシングデバイスにおけるセンサ70も、イメージセンサに限らず、第3の実施形態において例示した照度センサ、赤外線センサ等でもよい。さらに、センサ70は、レーダセンサ、Lidarセンサ等でもよい。これらのセンサ70を用いた透明センシングデバイスが搭載された車両用窓ガラスによって、例えば車内や車外をモニタリングできる。
 すなわち、第4の実施形態に係るセンサ70は、透明基板10上における占有面積が250000μm以下の微小サイズを有するマイクロセンサであれば、特に限定されない。例えば、センサ70は、温度センサ、紫外線センサ、電波センサ、圧力センサ、音センサ、速度/加速度センサ等でもよい。
 その他の構成は第1の実施形態に係る透明表示デバイスと同様である。
 以下に、本発明に係る実施例を示すが、本発明は、以下の実施例に限定して解釈されるものではない。
 例1~6に係る透明表示デバイスにおいて、透明基板10の反対側から観察した配線の色及び配線による光の反射率を製造過程で測定した。そして、製造した透明表示デバイスの各配線に通電し、LED素子及びICチップの動作を確認した
 例1、2は比較例、例3~6は本発明の実施例である。
<例1>
 以下に、図2~図10を参照して、例1に係る透明表示デバイスの製造方法について説明する。
 まず、図3に示すように、厚さ0.7mmのガラス板を主基板11として用い、主基板11上の略全面に厚さ0.1μmのW-10Ti合金膜、厚さ0.30μmのCu膜、及び厚さ0.1μmのW-10Ti合金膜を含む3層構造の第1メタル層M1をこの順に成膜した。その後、第1メタル層M1をフォトリソグラフィによってパターニングし、下層配線を形成した。
 次に、図4に示すように、主基板11上の略全面にエポキシ樹脂である接着剤層12を成膜した後、タック性を有する接着剤層12上にLED素子21~23及びICチップ30を実装した。
 次に、図5に示すように、主基板11及び接着剤層12を含む透明基板10上の略全面にフォトレジストFR1を成膜した後、第1メタル層M1、ICチップ30上のフォトレジストFR1をパターニングによって除去した。
 次に、図6に示すように、フォトレジストFR1が除去された部位の接着剤層12をドライエッチングによって除去し、第1メタル層M1すなわち下層配線を露出させた。
 次に、図7に示すように、透明基板10上のフォトレジストFR1を全て除去する。その後、透明基板10上の略全面に厚さ0.1μmのW-10Ti合金膜及び厚さ0.15μmのCu膜を含むめっき用シード層を形成した。
 次に、図8に示すように、透明基板10上の略全面にフォトレジストFR2を成膜した後、上層配線を形成する部位のフォトレジストFR2をパターニングによって除去し、シード層を露出させた。
 次に、図9に示すように、フォトレジストFR2が除去された部位すなわちシード層上に、めっきによってCuを含む厚さ2.0~3.0μmの第2メタル層M2を上層配線として形成した。
 次に、図10に示すように、フォトレジストFR2を除去する。さらに、フォトレジストFR2の除去によって露出したシード層を、エッチングによって除去した。
 例1に係る透明表示デバイスでは、置換めっき膜PFを第2メタル層M2に形成しなかった。
 この図10に示す製造過程の透明基板10について、CIE標準光源D65を用いた反射測色計によって、配線40の色及び波長360~740nmの光の反射率を測定した。配線40の色は、定性的には銅色であって、CIE L色空間において、明度L=87、色度a=13、色度b=17であった。
 次に、図2に示すように、透明基板10上の略全面に厚さ300μmのシクロオレフィンポリマーを配置し、保護層50を形成した。
 最後に、図14に示す場合と同様に、保護層50を中間膜として、図2に示す保護層50上に厚さ2.0mmのソーダライムガラス板を配置した。CIE標準光源D65を用いた反射測色計によって、このソーダライムガラス板の色を測定したところ、CIE L色空間において、明度L=96、色度a=-1、色度b=0であった。
 例1に係る透明表示デバイスでは、配線40の色とガラス板220aの色との色差が大きく、銅色を呈する配線40が目立った。
 例1に係る透明表示デバイスの各配線40に通電し、LED素子21~23及びICチップ30の動作を確認したところ、正常に動作した。
<例2>
 例2に係る透明表示デバイスでは、図10に示す工程の後、図11に示すように、置換めっき膜PFを第2メタル層M2に形成した。
 具体的には、まず、図10に示す工程の後、置換めっきの前処理として、0.5分間、濃度1.0質量%の希硫酸によって透明基板10を洗浄した。
 次に、pH3.5の塩酸酸性雰囲気下の濃度0.1質量%の塩化パラジウム水溶液に、濃度0.05質量%以下の有機酸を微量添加した置換めっき液に、透明基板10を0.5分間浸漬させ、置換めっき膜PFを形成した。置換めっき液から取り出した透明基板10を濃度3.5質量%のトリエタノールアミン水溶液に1分間浸漬させた。
 この図11に示す製造過程の透明基板10について、CIE標準光源D65を用いた反射測色計によって配線40の色を測定した。配線40の色は、定性的にはややくすんだ銅色であって、CIE L色空間において、明度L=81、色度a=16、色度b=19であった。
 その後、例1と同様に、保護層50を形成し、保護層50上にガラス板220aを配置した。
 例2に係る透明表示デバイスでは、配線40の色とガラス板220aの色との色差が、例1に比べて小さくなったものの、まだ配線40がやや目立った。
 例2に係る透明表示デバイスの各配線40に通電し、LED素子21~23及びICチップ30の動作を確認したところ、正常に動作した。
<例3>
 置換めっき液への浸漬時間を1.5分に変更した以外は例2と同様に透明表示デバイスを製造した。
 例2と同様に、図11に示す製造過程の透明基板10について、CIE標準光源D65を用いた反射測色計によって配線40の色を測定した。配線40の色は、定性的には焦茶色に近く、CIE L色空間において、明度L=48、色度a=10、色度b=7であった。
 例3に係る透明表示デバイスでは、配線40の色とガラス板220aの色との色差が、例1、2に比べて小さくなり、配線40が目立たなかった。
 例3に係る透明表示デバイスの各配線40に通電し、LED素子21~23及びICチップ30の動作を確認したところ、正常に動作した。
<例4>
 置換めっき液への浸漬時間を2.5分に変更した以外は例2と同様に透明表示デバイスを製造した。
 例2と同様に、図11に示す製造過程の透明基板10について、CIE標準光源D65を用いた反射測色計によって配線40の色を測定した。配線40の色は、定性的には黒色に近く、CIE L色空間において、明度L=43、色度a=0、色度b=0であった。
 例4に係る透明表示デバイスでは、配線40の色とガラス板220aの色との色差が、例1~3に比べて小さく、配線40が目立たなかった。
 例4に係る透明表示デバイスの各配線40に通電し、LED素子21~23及びICチップ30の動作を確認したところ、正常に動作した。
<例5>
 置換めっき液への浸漬時間を3.5分に変更した以外は例2と同様に透明表示デバイスを製造した。
 例2と同様に、図11に示す製造過程の透明基板10について、CIE標準光源D65を用いた反射測色計によって配線40の色を測定した。配線40の色は、定性的には黒色に近く、CIE L色空間において、明度L=44、色度a=-4、色度b=-2であった。また、配線40の表面粗さRaを測定したところ、Ra=17nmであった。
 例5に係る透明表示デバイスでは、配線40の色とガラス板220aの色との色差が、例1~3に比べて小さく、配線40が目立たなかった。
 例5に係る透明表示デバイスの各配線40に通電し、LED素子21~23及びICチップ30の動作を確認したところ、正常に動作した。
 例5については、温度85℃湿度85%の環境に1200時間保存する耐久試験を実施した。耐久試験を実施した後、配線40の色を測定したところ、配線40の色は、CIE L*a*b*色空間において、明度L*=37、色度a*=12、色度b*=30であった。耐久試験前後での明度の変化量ΔL*=-7、色度の変化量Δa*=16、色度の変化量Δb*=32であった。
 さらに、例5については、X線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)を用いて、配線40上に形成された置換めっき膜PFの深さ方向分析を行った。その結果、約70nmの深さまで置換めっき膜PFを構成するPdが検出された。すなわち、置換めっき膜PFの厚さも約70nmと推察される。
<例6>
 置換めっきの前処理(0.5分間、濃度1.0質量%の希硫酸による透明基板10の洗浄)を省略した以外は例5と同様に透明表示デバイスを製造した。
 例2と同様に、図11に示す製造過程の透明基板10について、CIE標準光源D65を用いた反射測色計によって配線40の色を測定した。配線40の色は、定性的には黒色に近く、CIE L*a*b*色空間において、明度L*=38、色度a*=-3、色度b*=-5であった。また、配線40の表面粗さRaを測定したところ、Ra=9nmであった。
 例6についても、温度85℃湿度85%の環境に1200時間保存する耐久試験を実施した。耐久試験を実施した後、配線40の色を測定したところ、配線40の色は、CIE L*a*b*色空間において、明度L*=42、色度a*=-8、色度b*=-10であった。耐久試験前後での明度の変化量ΔL*=5、色度の変化量Δa*=-5、色度の変化量Δb*=-5であった。
 例6では、例5に比べ、明度の変化量ΔL*、色度の変化量Δa*、色度の変化量Δb*の絶対値がいずれも小さく、特に色度の変化量Δb*を劇的に抑制できた。
<配線の明度Lについて>
 以上の結果を踏まえ、配線40の明度Lについて説明する。
 例1、2に係る透明表示デバイスでは、配線40の明度Lがいずれも80を超えており、配線40が目立った。
 これに対し、例3~6に係る透明表示デバイスでは、配線40の明度Lが、L≦50を満たし、配線40が目立たなかった。さらに、例4~6に係る透明表示デバイスの配線40では、配線40の明度Lが、L≦45を満たし、配線40がより目立たなかった。
<配線の色度a、bについて>
 次に、配線40の色度a、bについて説明する。
 ここで、図18は、例1~6に係る透明表示デバイスの配線の色度a、bの分布を示すグラフである。図18において、横軸は色度a、縦軸は色度bを示している。
 図18に示すように、例1、2に係る透明表示デバイスでは、配線40の色度a、bがいずれも10を超えており、配線40が目立った。
 これに対し、例3~6に係る透明表示デバイスでは、配線40の色度a、bがa≦10、b≦10を満たし、配線40が目立たなかった。さらに、例4~6に係る透明表示デバイスでは、配線40の色度a、bがa≦5、b≦5を満たし、配線40がより目立たなかった。
<配線による光の反射率について>
 次に、配線による光の反射率について説明する。
 ここで、図19は、例1~6に係る透明表示デバイスの配線による波長360~740nmの光の反射率を示すグラフである。図19において、横軸は光の波長[nm]、縦軸は反射率[%]を示している。
 図19に示すように、例1、2に係る透明表示デバイスでは、特に波長600nm以上の光の反射率が高く、反射率が80%を超えている。
 これに対し、例3~6に係る透明表示デバイスでは、図19に示す波長360~740nmの全波長領域において、例1、2に係る透明表示デバイスよりも光の反射率が低く、40%以下になっている。さらに、例4~6に係る透明表示デバイスでは、図19に示す波長360~740nmの全波長領域において、光の反射率が30%以下になっている。
 なお、図19に示すように、例1、2に係る透明表示デバイスでは、波長550~600nm付近において、光の反射率が急激に上昇した。これに対し、例4~6に係る透明表示デバイスでは、波長550~600nm付近において、光の反射率の落ち込みが確認された。
 なお、本発明は上記実施形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更できる。
 この出願は、2021年11月19日に出願された日本出願特願2021-188461を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10 透明基板
11 主基板
12 接着剤層
20 発光部
21~23 LED素子
30 ICチップ
40 配線
41 電源線
41a 第1電源分岐線
41b 第2電源分岐線
42 グランド線
42a グランド分岐線
43 行データ線
43a 行データ分岐線
44 列データ線
44a 列データ分岐線
45 駆動線
46 データ出力線
47 制御信号線
50 保護層
70 センサ
100 透明表示デバイス
101 表示領域
102 非表示領域
200 合わせガラス
201 遮蔽部
210a、210b 中間膜
220a、220b ガラス板
301 撮像領域
CF1~CF3 カラーフィルタ
FR1、FR2 フォトレジスト
IW 内部配線
M1 第1メタル層
M2 第2メタル層
ML1~ML3 マイクロレンズ
PD1~PD3 フォトダイオード
PF 置換めっき膜
PIX 画素

Claims (12)

  1.  透明基板と、
     前記透明基板の主面上に配置され、250000μm以下の面積を有する電子素子と、
     前記電子素子に接続された幅100μm以下の配線と、を備え、
     前記配線における前記透明基板と反対側の表面は、無電解めっき膜によって被覆されており、
     前記無電解めっき膜側から観察した前記配線の色が、CIE L色空間において、L≦50、a≦10、b≦10を満たす、
    透明電子デバイス。
  2.  前記無電解めっき膜が、置換めっき膜である、
    請求項1に記載の透明電子デバイス。
  3.  前記配線が、銅を主成分として含む、
    請求項1又は2に記載の透明電子デバイス。
  4.  前記無電解めっき膜が、Pd、Ru、Pt、Os、Ir、Re、Rhのいずれかを主成分として含む、
    請求項1~3のいずれか一項に記載の透明電子デバイス。
  5.  前記配線の前記表面による波長360~740nmの光の反射率が、40%以下である、
    請求項1~4のいずれか一項に記載の透明電子デバイス。
  6.  前記透明基板上において前記電子素子を覆う透明な保護層をさらに備える、
    請求項1~5のいずれか一項に記載の透明電子デバイス。
  7.  前記保護層の厚さが、200~400μmである、
    請求項6に記載の透明電子デバイス。
  8.  前記電子素子は、10000μm以下の面積を有する発光ダイオード素子であり、
     当該透明電子デバイスが、透明表示デバイスである、
    請求項1~7のいずれか一項に記載の透明電子デバイス。
  9.  一対のガラス板と、
     前記一対のガラス板との間に設けられた透明電子デバイスと、を備えた合わせガラスであって、
     前記透明電子デバイスは、
     透明基板と、
     前記透明基板の主面上に配置され、250000μm以下の面積を有する電子素子と、
     前記電子素子に接続された幅100μm以下の配線と、を備え、
     前記配線における前記透明基板と反対側の表面は、無電解めっき膜によって被覆されており、
     前記無電解めっき膜側から観察した前記配線の色が、CIE L色空間において、L≦50、a≦10、b≦10を満たす、
    合わせガラス。
  10.  前記一対のガラス板は、周縁に設けられた不透明な遮蔽部を備え、
     前記透明電子デバイスは、透明領域の周囲に設けられた不透明領域を備え、
     前記透明電子デバイスの前記不透明領域の少なくとも一部が、前記一対のガラス板の前記遮蔽部に設けられている、
    請求項9に記載の合わせガラス。
  11.  自動車のウインドウガラスに用いられる、
    請求項9又は10に記載の合わせガラス。
  12.  透明基板の主面上に、250000μm以下の面積を有する電子素子と幅100μm以下の配線とを配置して接続する、透明電子デバイスの製造方法であって、
     前記配線における前記透明基板と反対側の表面を無電解めっき膜によって被覆し、
     前記無電解めっき膜側から観察した前記配線の色が、CIE L色空間において、L≦50、a≦10、b≦10を満たす、
    透明電子デバイスの製造方法。
PCT/JP2022/042470 2021-11-19 2022-11-16 透明電子デバイス、合わせガラス、及び透明電子デバイスの製造方法 WO2023090335A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021188461 2021-11-19
JP2021-188461 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023090335A1 true WO2023090335A1 (ja) 2023-05-25

Family

ID=86397118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042470 WO2023090335A1 (ja) 2021-11-19 2022-11-16 透明電子デバイス、合わせガラス、及び透明電子デバイスの製造方法

Country Status (1)

Country Link
WO (1) WO2023090335A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180114759A1 (en) * 2016-10-25 2018-04-26 Tdk Corporation Electronic component module and manufacturing method thereof
JP2018150584A (ja) * 2017-03-13 2018-09-27 パナック株式会社 大型導電パターン付透明基板
JP2019029659A (ja) * 2017-07-28 2019-02-21 Tdk株式会社 導電性基板、電子装置及び表示装置の製造方法
WO2021111783A1 (ja) * 2019-12-03 2021-06-10 株式会社ジャパンディスプレイ 表示装置
WO2021132092A1 (ja) * 2019-12-26 2021-07-01 Agc株式会社 フレキシブル透明電子デバイスの製造方法及び物品
WO2021132106A1 (ja) * 2019-12-26 2021-07-01 Agc株式会社 フレキシブル透明電子デバイスの製造方法及び物品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180114759A1 (en) * 2016-10-25 2018-04-26 Tdk Corporation Electronic component module and manufacturing method thereof
JP2018150584A (ja) * 2017-03-13 2018-09-27 パナック株式会社 大型導電パターン付透明基板
JP2019029659A (ja) * 2017-07-28 2019-02-21 Tdk株式会社 導電性基板、電子装置及び表示装置の製造方法
WO2021111783A1 (ja) * 2019-12-03 2021-06-10 株式会社ジャパンディスプレイ 表示装置
WO2021132092A1 (ja) * 2019-12-26 2021-07-01 Agc株式会社 フレキシブル透明電子デバイスの製造方法及び物品
WO2021132106A1 (ja) * 2019-12-26 2021-07-01 Agc株式会社 フレキシブル透明電子デバイスの製造方法及び物品

Similar Documents

Publication Publication Date Title
KR101789145B1 (ko) 투명한 디스플레이용 led 전광 판넬 및 그 제작 방법
US9818725B2 (en) Inorganic-light-emitter display with integrated black matrix
JP5966412B2 (ja) 画素チップ、表示パネル、照明パネル、表示装置および照明装置
EP2211386B1 (en) Light source apparatus and head-up display apparatus incorporating the light source apparatus
EP2328176B1 (en) Manufacturing method of a display panel
KR20180047559A (ko) 유기 발광 표시 장치
CN104077968B (zh) 显示装置和瓦片式显示装置
WO2021132092A1 (ja) フレキシブル透明電子デバイスの製造方法及び物品
CN110797369B (zh) 微型发光二极管显示面板
CN113228144B (zh) 透明显示装置及移动体
US10763309B2 (en) Display device
WO2021132106A1 (ja) フレキシブル透明電子デバイスの製造方法及び物品
US11730030B2 (en) Display device having a first wiring at a same layer as a lower metal layer and electronic device including the same
WO2023090335A1 (ja) 透明電子デバイス、合わせガラス、及び透明電子デバイスの製造方法
WO2020196134A1 (ja) 透明表示装置、透明表示装置付きガラス板、透明表示装置付き合わせガラス、及び移動体
US11538868B2 (en) Display device
WO2024143100A1 (ja) フレキシブル透明電子デバイス、合わせガラス、及びフレキシブル透明電子デバイスの製造方法
WO2021010219A1 (ja) 透明センシングデバイス、合わせガラス、及び透明センシングデバイスの製造方法
WO2021010217A1 (ja) 透明表示装置、合わせガラス、及び透明表示装置の製造方法
WO2022091999A1 (ja) 透明電子デバイス、合わせガラス、及び透明電子デバイスの製造方法
CN114551505A (zh) 显示装置及其制造方法
WO2022124169A1 (ja) 透明表示デバイス、合わせガラス、及び透明表示デバイスの製造方法
JP2022038445A (ja) 遮光層積層型基板
JP2021015262A (ja) 透明表示装置、合わせガラス、及び透明表示装置の製造方法
JP2024065379A (ja) 透明電子デバイス及び合わせガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE