WO2020195742A1 - ポリエステルフィルム及びその製造方法 - Google Patents

ポリエステルフィルム及びその製造方法 Download PDF

Info

Publication number
WO2020195742A1
WO2020195742A1 PCT/JP2020/009975 JP2020009975W WO2020195742A1 WO 2020195742 A1 WO2020195742 A1 WO 2020195742A1 JP 2020009975 W JP2020009975 W JP 2020009975W WO 2020195742 A1 WO2020195742 A1 WO 2020195742A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
resin
polyester film
polyester
mass
Prior art date
Application number
PCT/JP2020/009975
Other languages
English (en)
French (fr)
Inventor
考道 後藤
昇 玉利
雅幸 春田
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2020533042A priority Critical patent/JPWO2020195742A1/ja
Publication of WO2020195742A1 publication Critical patent/WO2020195742A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a biaxially stretched polyester film used in the packaging field of foods, pharmaceuticals, industrial products, etc., and a method for producing the same. More specifically, it is a carbon-neutral polyester film that has excellent pinhole resistance and bag breakage resistance and uses biomass ethylene glycol, and even if it is a long film roll with a long winding length, it is in the longitudinal direction.
  • the present invention relates to a biaxially stretched polyester film having little variation in physical properties and a method for producing the same.
  • Packaging materials used in foods, pharmaceuticals, etc. must have the property of blocking gases such as oxygen and water vapor, that is, gas barrier properties, in order to suppress the oxidation of proteins and fats and oils, maintain the taste and freshness, and maintain the efficacy of pharmaceuticals. It has been demanded. Further, gas barrier materials used for electronic devices such as solar cells and organic ELs and electronic parts require higher gas barrier properties than packaging materials such as foods.
  • a metal thin film made of aluminum or the like and an inorganic oxide such as silicon oxide or aluminum oxide are used on the surface of a base film layer made of plastic.
  • a gas barrier laminated film on which an inorganic thin film is formed is generally used.
  • PET film on which a thin film (inorganic thin film layer) of an inorganic oxide such as silicon oxide, aluminum oxide, or a mixture thereof is formed is transparent and the contents can be confirmed. Because it is, it is widely used.
  • PET film has excellent heat resistance and dimensional stability, and can be used even when harsh treatment such as retort sterilization is applied.
  • PET film is brittle, a bag made of a laminated film using this is used. There was a problem that the bag was torn or punctured when it was dropped, and the contents packed in the bag leaked.
  • PBT polybutylene terephthalate
  • Patent Document 3 at least PBT resin or a polyester resin composition in which PET resin is blended in a range of 30% by mass or less with respect to PBT resin is 2.7 to 4.0 times simultaneously in the vertical direction and the horizontal direction.
  • a biaxially stretched PBT film obtained by axial stretching is used as a base film layer. According to such a technique, a liquid filling packaging material having bending pinhole resistance, impact resistance, and excellent fragrance retention can be obtained.
  • the vertical direction of the film is also referred to as a film flow direction or an MD direction.
  • the lateral direction of the film is also referred to as the width direction or the TD direction of the film.
  • biomass is an organic compound photosynthesized from carbon dioxide and water, and by using it, it becomes carbon dioxide and water again, so-called carbon-neutral renewable energy.
  • biomass plastics made from these biomass raw materials has been rapidly progressing, and attempts have been made to produce polyester, which is a general-purpose polymer material, from these biomass raw materials.
  • the polyester made from plant-derived ethylene glycol as a raw material instead of ethylene glycol obtained from the conventional fossil fuel is a polyester produced by using ethylene glycol obtained from the conventional fossil fuel.
  • the bag made of a laminated film using the PET film has a problem that the bag is torn or a hole is opened when the bag is dropped, and the contents packed in the bag leak. Yes, a carbon-neutral polyester film using biomass ethylene glycol, which has excellent pinhole resistance and bag breakage resistance, has not yet been realized.
  • PET resin is blended in a range of 30% by mass or less with respect to PBT resin. It can be expected that it can be obtained by biaxially stretching the polyester resin composition, but in the case of a film composed of a polyester resin composition obtained by blending PET resin with PBT resin, PBT resin and PET or the like can be used. It is common to mix with other resins to form a film.
  • Japanese Unexamined Patent Publication No. 6-278240 Japanese Unexamined Patent Publication No. 11-10725 Japanese Unexamined Patent Publication No. 2017-09746 Japanese Unexamined Patent Publication No. 2012-097163
  • the present invention has been made against the background of the problems of the prior art. That is, it is a carbon-neutral polyester film that has excellent pinhole resistance and bag breakage resistance and uses biomass ethylene glycol, and even a long film roll with a long winding length has variations in physical properties in the longitudinal direction. It is an object of the present invention to provide a biaxially stretched polyester film having a small amount of biomass and a method for producing the same.
  • the present inventors obtained by biaxially stretching a polyester resin composition in which a PET resin using biomass ethylene glycol was blended in a range of 40% by mass or less with respect to a PBT resin.
  • the polybutylene terephthalate resin chips are supplied to the hopper from above, and a pipe having an outlet in the hopper and directly above the extruder (hereinafter, inner pipe).
  • inner pipe a pipe having an outlet in the hopper and directly above the extruder
  • the present invention has the following configuration.
  • At least 60 to 95% by mass of (A) polybutylene terephthalate and 5 to 40% by mass of (B) polyethylene terephthalate are contained, and at least 60% by mass or more of the polyethylene terephthalate (B) is derived from biomass.
  • a biaxially stretched polyester film characterized by being composed of ethylene glycol and a dicarboxylic acid unit derived from fossil fuel, which simultaneously satisfies the following (1) to (4).
  • the puncture strength measured according to JIS Z 1707 is 0.6 N / ⁇ m or more.
  • the degree of surface orientation of the film is 0.144 to 0.160.
  • the raw material resin chip of the polybutylene terephthalate (A) is supplied to the hopper from above, and the polyethylene terephthalate is passed through a pipe having an outlet in the hopper and directly above the extruder.
  • the present inventors have excellent pinhole resistance and bag breakage resistance, and are carbon-neutral polyester films using biomass ethylene glycol, which are long film rolls having a long winding length.
  • FIG. 1 is a schematic view for explaining an example of a method of mixing resin chips for producing the biaxially stretched polyester film of the present invention.
  • FIG. 2 is a partially enlarged view of FIG.
  • the polyester film of the present invention contains PBT (A) as a main component, and the content of PBT is preferably 60% by mass or more, more preferably 70% by mass or more. If it is less than 60% by mass, the piercing strength is lowered, and the film characteristics are not sufficient.
  • the dicarboxylic acid component preferably contains terephthalic acid in an amount of 90 mol% or more, more preferably 95 mol% or more, and further preferably 98 mol% or more. It is preferably 100 mol%.
  • the glycol component of 1,4-butanediol is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 97 mol% or more, and most preferably 1,4-butanediol at the time of polymerization. It does not contain anything other than by-products produced by the ether bond of the diol.
  • PET (B) is added in addition to the above PBT (A) for the purpose of adjusting mechanical properties, film forming property, and the like.
  • the content of PET is preferably 5% by mass or more. If it is less than 5% by mass, the film-forming property may decrease due to the crystallization of PBT.
  • the content of PET is preferably 40% by mass or less, more preferably 30% by mass or less. If it exceeds 40% by mass, the piercing strength is lowered, and the film characteristics are not sufficient.
  • the PET (B) used in the polyester film of the present invention is preferably composed of ethylene glycol derived from biomass and a dicarboxylic acid unit derived from fossil fuel.
  • PET composed of ethylene glycol derived from biomass and dicarboxylic acid unit derived from fossil fuel as PET (B)
  • the degree of biomass in the film can be increased, and a carbon-neutral film can be obtained. ..
  • Biomass-derived ethylene glycol is made from ethanol (biomass ethanol) produced from biomass as a raw material.
  • biomass-derived ethylene glycol can be obtained from biomass ethanol by a method of producing ethylene glycol via ethylene oxide by a conventionally known method.
  • dicarboxylic acid unit of polyester a fossil fuel-derived dicarboxylic acid is used.
  • dicarboxylic acid aromatic dicarboxylic acid, aliphatic dicarboxylic acid, and derivatives thereof can be used without limitation.
  • aromatic dicarboxylic acid include terephthalic acid and isophthalic acid
  • examples of the derivative of the aromatic dicarboxylic acid include lower alkyl esters of the aromatic dicarboxylic acid, specifically, methyl ester, ethyl ester, propyl ester and butyl. Esters and the like can be mentioned.
  • terephthalic acid is preferable, and dimethyl terephthalate is preferable as the derivative of the aromatic dicarboxylic acid.
  • aliphatic dicarboxylic acid examples include oxalic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, dodecanedioic acid, dimer acid, and cyclohexanedicarboxylic acid, which usually have 2 to 40 carbon atoms.
  • examples thereof include chain-like or alicyclic dicarboxylic acids.
  • a lower alkyl ester such as a methyl ester, an ethyl ester, a propyl ester and a butyl ester of the aliphatic dicarboxylic acid and a cyclic acid anhydride of the aliphatic dicarboxylic acid such as succinic anhydride
  • adipic acid, succinic acid, dimer acid or a mixture thereof is preferable, and succinic acid as a main component is particularly preferable.
  • a methyl ester of adipic acid and succinic acid, or a mixture thereof is more preferable.
  • dicarboxylic acids can be used alone or in combination of two or more.
  • the PET (B) contained in the biaxially stretched polyester film according to the present invention may be a copolymerized polyester in which a copolymerization component is added as a third component in addition to the above-mentioned diol component and dicarboxylic acid component.
  • a copolymerization component include a bifunctional oxycarboxylic acid, a trifunctional or higher polyhydric alcohol for forming a crosslinked structure, a trifunctional or higher polyvalent carboxylic acid and / or an anhydride thereof, and 3 Examples thereof include at least one polyfunctional compound selected from the group consisting of functional or higher oxycarboxylic acids.
  • a copolymerized polyester having a high degree of polymerization tends to be easily produced
  • a bifunctional and / or trifunctional or higher oxycarboxylic acid is particularly preferably used.
  • the use of a trifunctional or higher functional oxycarboxylic acid is most preferable because a polyester having a high degree of polymerization can be easily produced in a very small amount without using a chain extender described later.
  • the polyester may be a high molecular weight polyester obtained by chain-extending (coupling) these copolymerized polyesters.
  • a chain extender such as a carbonate compound or a diisocyanate compound can be used, but the amount thereof is usually 100 mol% of all the monomer units constituting the polyester, and the carbonate bond and the urethane bond are formed. It is usually 10 mol% or less, preferably 5 mol% or less, and more preferably 3 mol% or less.
  • the PET (B) used in the present invention can be obtained by a conventionally known method of polycondensing the above-mentioned diol unit and dicarboxylic acid unit. Specifically, a general method of melt polymerization such as performing an esterification reaction and / or a transesterification reaction between the above dicarboxylic acid component and a diol component and then performing a polycondensation reaction under reduced pressure, or an organic solvent. It can be produced by a known solution heating dehydration condensation method using.
  • the polycondensation reaction is preferably carried out in the presence of a polymerization catalyst.
  • the timing of adding the polymerization catalyst is not particularly limited as long as it is before the polycondensation reaction, and it may be added at the time of raw material preparation or at the start of reduced pressure.
  • Examples of the polymerization catalyst generally include compounds containing Group 1 to Group 14 metal elements excluding hydrogen and carbon in the periodic table. Specifically, at least one or more metals selected from the group consisting of titanium, zirconium, tin, antimony, cerium, germanium, zinc, cobalt, manganese, iron, aluminum, magnesium, calcium, strontium, sodium and potassium. Examples thereof include compounds containing organic groups such as carboxylates, alkoxy salts, organic sulfonates or ⁇ -diketonate salts, and inorganic compounds such as metal oxides and halides described above, and mixtures thereof.
  • the catalyst is preferably a compound which is liquid at the time of polymerization or which is soluble in an ester low polymer or polyester because the polymerization rate becomes high when the catalyst is melted or dissolved at the time of polymerization.
  • tetraalkyl titanate is preferable, and specifically, tetra-n-propyl titanate, tetraisopropyl titanate, tetra-n-butyl titanate, tetra-t-butyl titanate, tetraphenyl titanate, tetracyclohexyl titanate, tetra.
  • Benzyl titanates and mixed titanates thereof can be mentioned.
  • tetra-n-propyl titanate, tetraisopropyl titanate and tetra-n-butyl titanate titanium (oxy) acetylacetonate, titaniumtetraacetylacetonate, titaniumbis (ammonium lactate) dihydroxydo, polyhydroxytitanium stearate.
  • Titanium Lactate, Butyl Titanium Dimer, Titanium Oxide, Titania / Silica Composite Oxide eg, Product Name: C-94, manufactured by Acordis Industrial Fibers
  • Titanium (oxy) acetylacetonate, titanium tetraacetylacetonate, titanium / silica composite oxide for example, product name: C-94 manufactured by Acordis Industrial Fibers
  • zirconium compound examples include zirconium tetraacetylate, zirconium acetate hydroxide, zirconium tris (butoxy) stearate, zirconyl diacetate, zirconium oxalate, zirconium oxalate, potassium zirconium oxalate, and polyhydroxyzirconium.
  • zirconium ethoxydo zirconium tetra-n-propoxide, zirconium tetraisopropoxide, zirconium tetra-n-butoxide, zirconium tetra-t-butoxide, zirconium tributoxyacetylacetonate and mixtures thereof.
  • zirconium oxide or a composite oxide containing, for example, zirconium and silicon may be used.
  • zirconium tetraisopropoxide, zirconium tetra-n-butoxide, zirconium tetra-t-butoxide are preferred.
  • germanium compound examples include an inorganic germanium compound such as germanium oxide and germanium chloride, and an organic germanium compound such as tetraalkoxygermanium.
  • germanium oxide, tetraethoxygermanium, tetrabutoxygermanium and the like are preferable, and germanium oxide is particularly preferable, from the viewpoint of price and availability.
  • the lower limit of the amount of metal with respect to the produced polyester is usually 5 ppm or more, preferably 10 ppm or more, and the upper limit is usually 30,000 ppm or less, preferably 1000 ppm or less. It is more preferably 250 ppm or less, and particularly preferably 130 ppm or less. If too much catalyst is used, not only is it economically disadvantageous, but also the thermal stability of the polymer is low, whereas if it is too low, the polymerization activity is low, and the polymer is decomposed during polymer production. Is more likely to be triggered.
  • the amount of catalyst used here the amount of terminal carboxyl groups of the polyester produced is reduced as the amount of catalyst used is reduced, so a method of reducing the amount of catalyst used is a preferred embodiment.
  • the reaction temperature of the esterification reaction and / or transesterification reaction between the dicarboxylic acid component and the diol component is usually in the range of 150 to 260 ° C., and the reaction atmosphere is usually under an inert gas atmosphere such as nitrogen or argon. ..
  • the reaction pressure is usually normal pressure to 10 kPa.
  • the reaction time is usually about 1 hour to 10 hours.
  • a chain extender (coupling agent) may be added to the reaction system. After the completion of polycondensation, the chain extender is added to the reaction system in a uniform molten state without a solvent and reacted with the polyester obtained by polycondensation.
  • High molecular weight polyesters using these chain extenders can be produced by using known techniques.
  • the chain extender is added to the reaction system in a uniform molten state without a solvent, and is reacted with the polyester obtained by polycondensation.
  • Mw mass average molecular weight
  • the prepolymer has a mass average molecular weight of 20,000 or more, a small amount of coupling agent is used, and even under harsh conditions such as a molten state, it is not affected by the remaining catalyst, so that no gel is formed during the reaction. , High molecular weight polyester can be produced.
  • solid-phase polymerization may be carried out, if necessary, in order to further increase the degree of polymerization and remove oligomers such as cyclic trimers.
  • the polyester is chipped and dried, the polyester is pre-crystallized by heating at a temperature of 100 to 180 ° C. for about 1 to 8 hours, and then inert at a temperature of 190 to 230 ° C. It is carried out by heating under gas flow or under reduced pressure for 1 to several tens of hours.
  • the intrinsic viscosity of the polyester obtained as described above is preferably 0.5 dl / g to 1.5 dl / g, more preferably 0.6 dl / g. It is g to 1.2 dl / g. If the intrinsic viscosity is less than 0.5 dl / g, the mechanical properties required for a polyester film as a semitransparent reflective film base material, such as tear strength, may be insufficient. On the other hand, if the intrinsic viscosity exceeds 1.5 dl / g, the productivity in the raw material manufacturing process and the film forming process is impaired.
  • additives may be added in the polyester manufacturing process or to the manufactured polyester as long as its properties are not impaired, for example, a plasticizer, an ultraviolet stabilizer, a color retardant, and a matting agent.
  • a plasticizer for example, a plasticizer, an ultraviolet stabilizer, a color retardant, and a matting agent.
  • Deodorants, flame retardants, weather resistant agents, antistatic agents, thread friction reducing agents, mold release agents, antioxidants, ion exchangers, coloring pigments and the like can be added.
  • These additives are added in the range of 5 to 50% by mass with respect to the entire polyester resin composition.
  • the polyester film of the present invention may contain a polyester resin other than the above (A) and (B) for the purpose of adjusting mechanical properties and the like.
  • a polyester resin other than the above (A) and (B) at least one polyester resin selected from the group consisting of polyethylene naphthalate, polybutylene naphthalate and polypropylene terephthalate, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid and biphenyl.
  • PBT resin ethylene glycol, 1,3-propylene glycol, 1,2-propylene in which at least one dicarboxylic acid selected from the group consisting of dicarboxylic acid, cyclohexanedicarboxylic acid, adipic acid, azelaic acid and sebacic acid is copolymerized.
  • At least one diol component selected from the group consisting of glycol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, diethylene glycol, cyclohexanediol, polyethylene glycol, polytetramethylene glycol and polycarbonate diol is copolymerized. Examples thereof include the PBT resin used.
  • the upper limit of the amount of the polyester resin other than the PBT resin (A) and the PET resin (B) added is preferably less than 30% by mass, more preferably 25% by mass or less. If the amount of polyester resin other than PBT resin added exceeds 30% by mass, the mechanical properties of PBT are impaired, impact strength, pinhole resistance, or bag breakage resistance becomes insufficient, and transparency and gas barrier Sexual deterioration may occur.
  • the lower limit of the intrinsic viscosity of the PBT resin used in the present invention is preferably 0.9 dl / g, more preferably 0.95 dl / g, and further preferably 1.0 dl / g.
  • the upper limit of the intrinsic viscosity of the PBT resin is preferably 1.4 dl / g. If it exceeds the above, the stress at the time of stretching becomes too high, and the film forming property may deteriorate.
  • the PBT resin may contain conventionally known additives such as lubricants, stabilizers, colorants, antistatic agents, and ultraviolet absorbers.
  • lubricant type in addition to inorganic lubricants such as silica, calcium carbonate and alumina, organic lubricants are preferable, silica and calcium carbonate are more preferable, and silica is particularly preferable in that haze is reduced. These can be expressed as transparent and slippery.
  • the lower limit of the lubricant concentration is preferably 100 ppm, more preferably 500 ppm, and even more preferably 800 ppm. If it is less than the above, the slipperiness of the base film layer may decrease.
  • the upper limit of the lubricant concentration is preferably 20000 ppm, more preferably 10000 ppm, and even more preferably 1800 ppm. If it exceeds the above, transparency may decrease.
  • the polyester film obtained as described above preferably contains 0.5 to 8% of carbon derived from biomass as measured by radiocarbon (C 14 ) with respect to the total carbon in the polyester film. Since carbon dioxide in the atmosphere contains C 14 at a fixed ratio (105.5 pMC), the content of C 14 in plants that grow by taking in carbon dioxide in the atmosphere, such as corn, is also about 105.5 pMC. Is known to be. Moreover, C 14 are also known that do not contain little in fossil fuels. Therefore, the proportion of biomass-derived carbon can be calculated by measuring the proportion of C 14 contained in all carbon atoms in polyester.
  • the lower limit of the thickness of the polyester film of the present invention is preferably 3 ⁇ m, more preferably 5 ⁇ m, and even more preferably 8 ⁇ m. When it is 3 ⁇ m or more, the strength as a base film layer becomes sufficient.
  • the upper limit of the thickness of the polyester film of the present invention is preferably 100 ⁇ m, more preferably 75 ⁇ m, and even more preferably 50 ⁇ m. When it is 100 ⁇ m or less, the processing for the purpose of the present invention becomes easier.
  • the upper limit of the heat shrinkage rate after heating the polyester film of the present invention at 150 ° C. in the longitudinal direction for 15 minutes is preferably 4.0%, more preferably 3.0%, still more preferably 2%. .. If the upper limit is exceeded, the inorganic thin film layer may crack due to the dimensional change of the base film layer that occurs in the process of forming the protective film or in the high temperature treatment such as retort sterilization treatment, and not only the gas barrier property may deteriorate, but also printing etc. Pitch deviation may occur due to dimensional changes during processing.
  • the upper limit of the heat shrinkage rate after heating the polyester film of the present invention at 150 ° C. in the lateral direction for 15 minutes is preferably 3.0%, more preferably 2.0%, and further preferably 1%.
  • the inorganic thin film layer may crack due to the dimensional change of the base film layer that occurs in the protective film forming process or high temperature treatment such as retort sterilization treatment, and not only the gas barrier property may deteriorate, but also printing etc. Pitch deviation may occur due to dimensional changes in the width direction during processing.
  • the lower limit of the heat shrinkage rate after heating the polyester film of the present invention at 150 ° C. in the longitudinal direction for 15 minutes is preferably 0%. Even if it is less than the above, the effect of improvement cannot be obtained any more (saturation), and it may become mechanically brittle.
  • the lower limit of the heat shrinkage rate after heating the polyester film of the present invention at 150 ° C. in the lateral direction for 15 minutes is preferably 1.0%. Even if it is less than the above, the effect of improvement cannot be obtained any more (saturation), and it may become mechanically brittle.
  • the lower limit of the puncture strength of the polyester film of the present invention is preferably 0.6 N / ⁇ m. If it is less than 0.6 N / ⁇ m, the strength of the bag may be insufficient when used as a bag.
  • the maximum value of the puncture strength measured in the longitudinal direction from the surface layer of the film roll to the winding core every 100 m and measured according to JIS Z 1707 is Xmax (N), and the minimum value is the minimum value.
  • Xmin (N) and the average value are Xave
  • the lower limit of the impact strength of the polyester film of the present invention is preferably 0.05 J / ⁇ m. If it is less than 0.05 J / ⁇ m, the strength becomes insufficient when used as a bag.
  • the upper limit of the impact strength of the base film layer in the present invention is preferably 0.2 J / ⁇ m. Even if it is 0.2 J / ⁇ m or less, the effect of improvement may be saturated.
  • the lower limit of the plane orientation ( ⁇ P) of the polyester film of the present invention is preferably 0.144, more preferably 0.148, and even more preferably 0.15. If it is less than the above, the orientation is weak, so that sufficient strength cannot be obtained and the bag breaking resistance may be lowered.
  • an inorganic thin film layer and a protective layer are provided on the base film layer to form a laminated film. In some cases, the tension and temperature applied when the protective film is formed make it easy to stretch, and the inorganic thin film layer is cracked, so that the gas barrier property may be lowered.
  • the upper limit of the plane orientation ( ⁇ P) of the polyester film of the present invention is preferably 0.160, more preferably 0.158, and even more preferably 0.156. If it exceeds the above, the orientation is too strong, and not only the film-forming property is lowered, but also the pinhole resistance may be lowered because it becomes difficult to stretch.
  • the upper limit of haze per thickness of the polyester film of the present invention is preferably 0.66% / ⁇ m, more preferably 0.60% / ⁇ m, and even more preferably 0.53% / ⁇ m.
  • the polyester film of the present invention may be subjected to a corona discharge treatment, a glow discharge treatment, a flame treatment, a surface roughening treatment, and a known anchor coating treatment, as long as the object of the present invention is not impaired. It may be printed, decorated, or the like.
  • the production method is to supply and mix the polybutylene terephthalate resin (A) chip and the polyethylene terephthalate resin (B) chip to an extruder equipped with a hopper, and then supply and mix the polyester raw material from the extruder.
  • the electrostatic application method is a method in which a voltage is applied to an electrode installed in the vicinity of a molten resin sheet in contact with a rotating metal roll and in the vicinity of a surface opposite to the surface of the resin sheet in contact with the rotating metal roll. This is a method in which the resin sheet is charged and the resin sheet and the rotary cooling roll are brought into close contact with each other.
  • the polybutylene terephthalate resin chips are supplied to the hopper from above, and the pipe (hereinafter, may be referred to as an inner pipe) having an outlet in the hopper and directly above the extruder is used. It is preferable to supply a resin chip of polyethylene terephthalate (B), mix both chips, and melt-extrude the two chips.
  • a polybutylene terephthalate resin (A) chip and a polyethylene terephthalate resin (B) chip are mixed and placed in a hopper on an extruder, resin chips having different specific gravities and chip shapes can cause segregation of raw materials in the hopper.
  • FIG. 1 is a schematic view showing an example of the relationship between the extruder 2 provided with the hopper 1 and the inner pipe 3, and FIG. 2 is an enlarged view of a portion A of FIG.
  • the chips of the resin other than the polybutylene terephthalate resin (A) which is the main raw material such as the polyethylene terephthalate resin (B) are supplied through the inner pipe 3 and the polybutylene terephthalate resin (A) which is the main raw material
  • the chips are supplied from the upper part of the hopper 1.
  • the polyethylene terephthalate resin (B) chips segregate in the popper over time. Since it can be prevented, the mixing ratio of the polyethylene terephthalate resin (B) can always be kept constant.
  • the height (H2) of the outlet 4 of the inner pipe 3 preferably satisfies the following relationship (formula a), and satisfies both the relationships (formula a) and (b). Is more preferable.
  • H2 ⁇ H1 (formula a) In the formula, H1 indicates the height of the portion where the inner wall of the hopper is vertical (see FIG. 2).
  • 0.5 ⁇ L / tan ⁇ ⁇ H2 (Equation b) In the formula, L indicates the inner diameter of the outlet 4 of the inner pipe 3 (see FIG. 2). ⁇ is the angle of repose of another resin chip.)
  • the position where the resin other than the polybutylene terephthalate resin (A) chip is mixed with the polybutylene terephthalate resin chip (H3; see FIG. 2) is extruded. It can be located outside the machine and can prevent air from entering the extruder and generating bubbles.
  • the height H3 H2-0.5 ⁇ L / tan ⁇ of the mixing position of the resin other than the polybutylene terephthalate resin (A) chip is preferably higher than 0 m and less than 2 m. By setting the height above 0 m, it is possible to prevent air from entering the extruder. Further, if it is less than 2 m, the distance to the extruder can be kept short, and segregation of raw materials can be prevented.
  • the height H3 is preferably 0.3 m or more and 1.7 m or less, and more preferably 0.6 m or more and 1.4 m or less.
  • the lower limit of the heating and melting temperature of the resin is preferably 200 ° C., more preferably 250 ° C., and even more preferably 260 ° C. If it is less than the above, the discharge may become unstable.
  • the upper limit of the resin melting temperature is preferably 280 ° C, more preferably 270 ° C. If it exceeds the above, the decomposition of the resin proceeds and the film becomes brittle.
  • the method of extruding and casting the molten polyester resin is specifically a step of melting a resin composition containing 60% by mass or more of PBT resin to form a molten fluid (1), and discharging the formed molten fluid from a die. It has at least a step (2) of contacting with a cooling roll and solidifying to form a laminated unstretched sheet, and a step (3) of biaxially stretching the laminated unstretched sheet.
  • the method of melting the polyester resin composition to form a molten fluid is not particularly limited, but a preferred method includes a method of heating and melting using a single-screw extruder or a twin-screw extruder. Can be done.
  • the molten fluid is discharged from the die and brought into contact with the cooling roll to solidify.
  • the lower limit of the cooling roll temperature is preferably ⁇ 10 ° C. If it is less than the above, the effect of suppressing crystallization may be saturated.
  • the upper limit of the cooling roll temperature is preferably 40 ° C. If it exceeds the above, the crystallinity may become too high and stretching may become difficult.
  • the upper limit of the cooling roll temperature is preferably 25 ° C. When the temperature of the cooling roll is within the above range, it is preferable to lower the humidity of the environment near the cooling roll in order to prevent dew condensation. It is preferable to reduce the temperature difference in the width direction of the surface of the cooling roll. At this time, the thickness of the unstretched sheet is preferably in the range of 15 to 2500 ⁇ m.
  • the stretching method can be simultaneous biaxial stretching or sequential biaxial stretching, but in order to increase the puncture strength, it is necessary to increase the degree of plane orientation, and the film formation speed is high and the productivity is high. In terms of points, sequential biaxial stretching is most preferable.
  • the lower limit of the stretching temperature in the longitudinal stretching direction is preferably 55 ° C., more preferably 60 ° C. Breakage is unlikely to occur at 55 ° C. or higher. Further, since the vertical orientation of the film does not become too strong, the shrinkage stress during the heat fixing treatment can be suppressed, and a film with less distortion of the molecular orientation in the width direction can be obtained.
  • the upper limit of the stretching temperature in the longitudinal stretching direction is preferably 100 ° C., more preferably 95 ° C. When the temperature is 100 ° C. or lower, the orientation of the film is not too weak and the mechanical properties of the film are not deteriorated.
  • the lower limit of the draw ratio in the longitudinal stretching direction is preferably 2.8 times, particularly preferably 3.0 times. When it is 2.8 times or more, the degree of surface orientation is increased, the piercing strength of the film is improved, and the thickness accuracy of the film is improved.
  • the upper limit of the draw ratio in the longitudinal stretching direction is preferably 4.3 times, more preferably 4.0 times, and particularly preferably 3.8 times. When it is 4.3 times or less, the degree of orientation of the film in the lateral direction does not become too strong, the shrinkage stress during the heat fixing process does not become too large, and the distortion of the molecular orientation in the lateral direction of the film becomes small, resulting in As a result, the straight tearability in the vertical direction is improved. Moreover, the effect of improving the mechanical strength and the thickness unevenness is saturated in this range.
  • the lower limit of the stretching temperature in the transverse stretching direction is preferably 60 ° C., and if it is 60 ° C. or higher, fracture may be less likely to occur.
  • the upper limit of the stretching temperature in the transverse stretching direction is preferably 100 ° C., and when it is 100 ° C. or lower, the degree of orientation in the transverse direction increases and the mechanical properties are improved.
  • the lower limit of the draw ratio in the transverse stretching direction is preferably 3.5 times, more preferably 3.6 times, and particularly preferably 3.7 times. If it is 3.5 times or more, the degree of orientation in the lateral direction is not too weak, and the mechanical properties and thickness unevenness are improved.
  • the upper limit of the stretching ratio in the transverse stretching direction is preferably 5 times, more preferably 4.5 times, and particularly preferably 4.0 times. If it is 5.0 times or less, the effect of improving the mechanical strength and thickness unevenness is maximized (saturated) even in this range.
  • the lower limit of the heat fixing temperature in the heat fixing step is preferably 195 ° C., more preferably 200 ° C.
  • the upper limit of the heat fixing temperature is preferably 220 ° C., and if it is 220 ° C. or lower, the base film layer does not melt and is less likely to become brittle.
  • the lower limit of the relaxation rate in the heat relaxation section step is preferably 0.5%. If it is 0.5% or more, breakage may be less likely to occur during heat fixing.
  • the upper limit of the relaxation rate is preferably 10%. When it is 10% or less, the shrinkage in the longitudinal direction at the time of heat fixing becomes small, and as a result, the distortion of the molecular orientation at the edge of the film becomes small, and the straight tearability is improved. In addition, the film is less likely to sag and uneven thickness is less likely to occur.
  • the inorganic thin film layer is a thin film made of a metal or an inorganic oxide.
  • the material for forming the inorganic thin film layer is not particularly limited as long as it can be formed into a thin film, but from the viewpoint of gas barrier properties, inorganic oxidation such as silicon oxide (silica), aluminum oxide (alumina), and a mixture of silicon oxide and aluminum oxide Things are preferred.
  • inorganic oxidation such as silicon oxide (silica), aluminum oxide (alumina), and a mixture of silicon oxide and aluminum oxide Things are preferred.
  • a composite oxide of silicon oxide and aluminum oxide is preferable from the viewpoint of achieving both flexibility and denseness of the thin film layer.
  • the mixing ratio of silicon oxide and aluminum oxide is preferably in the range of 20 to 70% by mass of Al in terms of the mass ratio of the metal content. If the Al concentration is less than 20% by mass, the water vapor barrier property may be lowered. On the other hand, if it exceeds 70% by mass, the inorganic thin film layer tends to be hard, and the film may be destroyed during secondary processing such as printing or laminating, and the gas barrier property may be lowered.
  • the silicon oxide referred to here is various silicon oxides such as SiO and SiO 2 or a mixture thereof
  • aluminum oxide is various aluminum oxides such as AlO and Al 2 O 3 or a mixture thereof.
  • the film thickness of the inorganic thin film layer is usually 1 to 100 nm, preferably 5 to 50 nm. If the film thickness of the inorganic thin film layer is less than 1 nm, it may be difficult to obtain a satisfactory gas barrier property. On the other hand, even if the thickness exceeds 100 nm, the corresponding improvement effect of the gas barrier property can be obtained. This is not possible, and it is rather disadvantageous in terms of bending resistance and manufacturing cost.
  • the method for forming the inorganic thin film layer is not particularly limited, and is known, for example, a physical vapor deposition method (PVD method) such as a vacuum vapor deposition method, a sputtering method, or an ion plating method, or a chemical vapor deposition method (CVD method).
  • PVD method physical vapor deposition method
  • CVD method chemical vapor deposition method
  • the method may be adopted as appropriate.
  • a typical method for forming the inorganic thin film layer will be described by taking a silicon oxide / aluminum oxide thin film as an example.
  • a mixture of SiO 2 and Al 2 O 3 or a mixture of SiO 2 and Al is preferably used as the vapor deposition raw material.
  • Particles are usually used as these vapor deposition raw materials, but at that time, it is desirable that the size of each particle is such that the pressure at the time of vapor deposition does not change, and the particle diameter is preferably 1 mm to 5 mm.
  • heating methods such as resistance heating, high frequency induction heating, electron beam heating, and laser heating can be adopted. It is also possible to introduce oxygen, nitrogen, hydrogen, argon, carbon dioxide, water vapor or the like as the reaction gas, or to adopt reactive vapor deposition using means such as ozone addition and ion assist.
  • the film forming conditions can be arbitrarily changed, such as applying a bias to the film to be deposited (laminated film to be subjected to vapor deposition) or heating or cooling the film to be deposited.
  • a bias to the film to be deposited (laminated film to be subjected to vapor deposition) or heating or cooling the film to be deposited.
  • Such vapor deposition material, reaction gas, bias of the vapor-deposited body, heating / cooling, and the like can be similarly changed when the sputtering method or the CVD method is adopted.
  • an adhesive layer can be provided between the base film layer and the inorganic thin film layer for the purpose of ensuring the gas barrier property and the lamination strength after the retort treatment.
  • the resin composition used for the adhesive layer provided between the base film layer and the inorganic thin film layer includes urethane-based, polyester-based, acrylic-based, titanium-based, isocyanate-based, imine-based, polybutadiene-based resins, and epoxy. Examples thereof include those to which a curing agent such as a system, an isocyanate system, or a melamine system is added.
  • the resin composition used for these adhesive layers preferably contains a silane coupling agent having at least one type of organic functional group.
  • organic functional group include an alkoxy group, an amino group, an epoxy group, an isocyanate group and the like.
  • the resin compositions used for the adhesive layer it is preferable to use a mixture of a resin containing an oxazoline group, an acrylic resin and a urethane resin.
  • the oxazoline group has a high affinity with the inorganic thin film, and can react with the oxygen-deficient portion of the inorganic oxide generated during the formation of the inorganic thin film layer and the metal hydroxide, and exhibits strong adhesion to the inorganic thin film layer. ..
  • the unreacted oxazoline group existing in the adhesive layer can react with the carboxylic acid terminal generated by hydrolysis of the base film layer and the adhesive layer to form a crosslink.
  • the method for forming the adhesive layer is not particularly limited, and a conventionally known method such as a coating method can be adopted.
  • a coating method such as a coating method
  • the offline coating method and the in-line coating method can be mentioned as preferable methods.
  • the conditions of drying and heat treatment at the time of coating depend on the coating thickness and the conditions of the apparatus, but immediately after coating, they are fed into the stretching process in the perpendicular direction. It is preferable to dry in the preheating zone or the stretching zone of the stretching step, and in such a case, the temperature is usually preferably about 50 to 250 ° C.
  • a protective layer is provided on the inorganic thin film layer.
  • the metal oxide layer is not a completely dense film, but is dotted with minute defects.
  • the resin in the protective layer resin composition permeates the defective portion of the metal oxide layer.
  • the effect of stabilizing the gas barrier property can be obtained.
  • the gas barrier performance of the laminated film is greatly improved.
  • the resin composition used for the protective layer formed on the surface of the inorganic thin film layer of the laminated film of the present invention includes resins such as urethane-based, polyester-based, acrylic-based, titanium-based, isocyanate-based, imine-based, and polybutadiene-based resins, and epoxy.
  • resins such as urethane-based, polyester-based, acrylic-based, titanium-based, isocyanate-based, imine-based, and polybutadiene-based resins, and epoxy.
  • examples thereof include those to which a curing agent such as a system, an isocyanate system, or a melamine system is added.
  • the polar group of the urethane bond interacts with the inorganic thin film layer and also has flexibility due to the presence of the amorphous portion, so that damage to the inorganic thin film layer is suppressed even when a bending load is applied.
  • the acid value of the urethane resin is preferably in the range of 10 to 60 mgKOH / g. It is more preferably in the range of 15 to 55 mgKOH / g, and even more preferably in the range of 20 to 50 mgKOH / g.
  • the acid value of the urethane resin is within the above range, the liquid stability is improved when it is made into an aqueous dispersion, and the protective layer can be uniformly deposited on the highly polar inorganic thin film, so that the coat appearance is good. It becomes.
  • the urethane resin preferably has a glass transition temperature (Tg) of 80 ° C. or higher, more preferably 90 ° C. or higher.
  • Tg glass transition temperature
  • a urethane resin containing an aromatic or aromatic aliphatic diisocyanate component as a main component.
  • the proportion of aromatic or aromatic aliphatic diisocyanate in the urethane resin is preferably in the range of 50 mol% or more (50 to 100 mol%) in 100 mol% of the polyisocyanate component (F).
  • the ratio of the total amount of the aromatic or aromatic aliphatic diisocyanate is preferably 60 to 100 mol%, more preferably 70 to 100 mol%, still more preferably 80 to 100 mol%.
  • the "Takelac (registered trademark) WPB" series commercially available from Mitsui Chemicals, Inc. can be preferably used. If the ratio of the total amount of aromatic or aromatic aliphatic diisocyanates is less than 50 mol%, good gas barrier properties may not be obtained.
  • the urethane resin preferably has a carboxylic acid group (carboxyl group) from the viewpoint of improving the affinity with the inorganic thin film layer.
  • a carboxylic acid (salt) group for example, a polyol compound having a carboxylic acid group such as dimethylolpropionic acid or dimethylolbutanoic acid may be introduced as a copolymerization component as a polyol component.
  • the carboxylic acid group-containing urethane resin is synthesized and then neutralized with a salt-forming agent, an aqueous dispersion urethane resin can be obtained.
  • the salt forming agent examples include trialkylamines such as ammonia, trimethylamine, triethylamine, triisopropylamine, tri-n-propylamine and tri-n-butylamine, and N such as N-methylmorpholine and N-ethylmorpholine.
  • trialkylamines such as ammonia, trimethylamine, triethylamine, triisopropylamine, tri-n-propylamine and tri-n-butylamine
  • N such as N-methylmorpholine and N-ethylmorpholine.
  • N-dialkylalkanolamines such as -alkylmorpholins, N-dimethylethanolamine and N-diethylethanolamine. These may be used alone or in combination of two or more.
  • solvent examples include aromatic solvents such as benzene and toluene; alcohol solvents such as methanol and ethanol; ketone solvents such as acetone and methyl ethyl ketone; ester solvents such as ethyl acetate and butyl acetate; ethylene glycol.
  • aromatic solvents such as benzene and toluene
  • alcohol solvents such as methanol and ethanol
  • ketone solvents such as acetone and methyl ethyl ketone
  • ester solvents such as ethyl acetate and butyl acetate
  • ethylene glycol examples include polyhydric alcohol derivatives such as monomethyl ether.
  • the polyester film of the present invention is excellent in bag-breaking resistance and bending resistance, and a wide roll is formed on the base film layer to form an inorganic thin film layer and a protective layer to produce a gas barrier film. Even in such a case, it is possible to suppress streak-like wrinkles generated during heat transfer and make the gas barrier property in the width direction uniform.
  • thermosetting resin layer called a sealant.
  • the heat-sealable resin layer is usually provided on the inorganic thin film layer, but may be provided on the outside of the base film layer (the surface opposite to the adhesive layer forming surface).
  • the heat-sealing resin layer is usually formed by an extrusion laminating method or a dry laminating method.
  • the thermoplastic polymer that forms the heat-sealable resin layer may be any one that can sufficiently exhibit sealant adhesiveness, and is a polyethylene resin such as HDPE, LDPE, LLDPE, a polypropylene resin, or an ethylene-vinyl acetate copolymer. , Ethethylene- ⁇ -olefin random copolymer, ionomer resin and the like can be used.
  • At least one layer of a printing layer or another plastic base material and / or a paper base material is provided between or outside the inorganic thin film layer or the base film layer and the heat-sealing resin layer.
  • the above may be laminated.
  • water-based and solvent-based resin-containing printing inks can be preferably used.
  • the resin used for the printing ink include acrylic resin, urethane resin, polyester resin, vinyl chloride resin, vinyl acetate copolymer resin, and a mixture thereof.
  • Known printing inks include antistatic agents, light blocking agents, ultraviolet absorbers, plasticizers, lubricants, fillers, colorants, stabilizers, lubricants, defoamers, cross-linking agents, blocking agents, antioxidants, etc. Additives may be included.
  • the printing method for providing the print layer is not particularly limited, and known printing methods such as an offset printing method, a gravure printing method, and a screen printing method can be used.
  • known drying methods such as hot air drying, hot roll drying, and infrared drying can be used.
  • Heat shrinkage of film The heat shrinkage of the polyester film was measured by the dimensional change test method described in JIS-C-2151-2006.21, except that the test temperature was 150 ° C. and the heating time was 15 minutes. The test piece was used as described in 21.1 (a).
  • the reaction time was 3 hours.
  • the synthesized polymer was discharged into running water in the form of strands and pelletized by a pelletizer.
  • the pellet was dried at 160 ° C. for 5 hours and then solid-phase polymerized at 205 ° C. under vacuum at 50 Pa in a nitrogen atmosphere to obtain a polymer having an intrinsic viscosity of 0.8 dl / g.
  • the intrinsic viscosity was calculated from the melt viscosity measured at 35 ° C. using a phenol / tetrachloroethane (component ratio: 3/2) solvent.
  • Resin having an oxazoline group As a resin having an oxazoline group, a commercially available water-soluble oxazoline group-containing acrylate (“Epocross (registered trademark) WS-300” manufactured by Nippon Shokubai Co., Ltd .; solid content 10%) is prepared. did. The amount of oxazoline groups in this resin was 7.7 mmol / g.
  • Acrylic resin (B) As an acrylic resin, a 25% by mass emulsion of a commercially available acrylic acid ester copolymer (“Mobile (registered trademark) 7980” manufactured by Nichigo Vinyl Co., Ltd.” was prepared. This acrylic resin (B) The acid value (theoretical value) of was 4 mgKOH / g.
  • Urethane resin (C) As a urethane resin, a commercially available polyester urethane resin dispersion (“Takelac (registered trademark) W605” manufactured by Mitsui Chemicals, Inc .; solid content 30%) was prepared. The acid value of this urethane resin was 25 mgKOH / g, and the glass transition temperature (Tg) measured by DSC was 100 ° C. The ratio of aromatic or aromatic aliphatic diisocyanate to the total polyisocyanate component measured by 1 H-NMR was 55 mol%.
  • Urethane resin (D) As a urethane resin, a dispersion of a commercially available metaxylylene group-containing urethane resin (“Takelac (registered trademark) WPB341” manufactured by Mitsui Chemicals, Inc .; solid content 30%) was prepared. The acid value of this urethane resin was 25 mgKOH / g, and the glass transition temperature (Tg) measured by DSC was 130 ° C. The ratio of aromatic or aromatic aliphatic diisocyanate to the total polyisocyanate component measured by 1 H-NMR was 85 mol%.
  • Coating liquid used for the adhesive layer 1 Each material was mixed at the following blending ratio to prepare a coating liquid 1 (resin composition for an adhesive layer).
  • Coating liquid used for coating the protective layer 2 The following coating agents were mixed to prepare a coating liquid 2. Water 60.00% by mass Isopropanol 30.00% by mass Urethane resin (D) 10.00% by mass
  • Urethane-based two-component curable adhesive (“Takelac (registered trademark) A525S” manufactured by Mitsui Chemicals, Inc. and “Takenate” on the protective layer side of the gas barrier film shown in Examples 1 to 7 and Comparative Examples 1 to 3 described later.
  • Unstretched polypropylene film with a thickness of 70 ⁇ m as a heat-sealing resin layer (“P1147” manufactured by Toyo Boseki Co., Ltd.) by a dry laminating method using (registered trademark) A50 at a ratio of 13.5: 1 (mass ratio). ”) Are laminated and aged at 40 ° C. for 4 days to obtain a laminated laminate for evaluation.
  • the thickness of the adhesive layer formed of the urethane-based two-component curable adhesive after drying was about 4 ⁇ m.
  • Example 1 The method for producing the biaxially stretched polyester film used in each Example and Comparative Example is described below.
  • the physical properties of the following biaxially stretched polyester film are shown in Tables 1 and 2.
  • Example 1> Using a uniaxial extruder, 20% by mass of biomass-derived PET resin mixed with 80% by mass of PBT resin and silica particles having an average particle size of 2.4 ⁇ m as inert particles so as to be 7,000 ppm was blended at 290 ° C. After melting, it was introduced into the melt line. However, the biomass-derived PET resin was put in using an inner pipe as shown in FIG. 1 so as to be mixed with other raw materials before entering the extruder. Then, it was cast from a T-die at 265 ° C.
  • a cooling roll at 20 ° C. by an electrostatic adhesion method to obtain an unstretched sheet. Then, it was rolled 2.9 times in the longitudinal direction at 60 ° C., then passed through a tenter and stretched 4.0 times in the lateral direction at 90 ° C., and tension heat treatment at 200 ° C. for 3 seconds and relaxation of 9% for 1 second. After performing the treatment, the film was cooled at 50 ° C. for 2 seconds. Next, the grips at both ends were cut and removed by 10% to obtain a roll (hereinafter, referred to as a mill roll) of a polyester film having a thickness of 15 ⁇ m and a total width of 4200 mm. The obtained mill roll was slit, and two slit rolls having a roll width of 2080 mm were collected.
  • a mill roll hereinafter, referred to as a mill roll
  • a gas barrier laminated film was obtained by forming an inorganic thin film layer and a protective layer on a film slit by the method for forming an inorganic thin film layer and a protective layer shown below.
  • ⁇ Formation of inorganic thin film layer> A composite oxide layer of silicon dioxide and aluminum oxide was formed as an inorganic thin film layer on the slit film by an electron beam deposition method. Particulate SiO 2 (purity 99.9%) and A1 2 O 3 (purity 99.9%) having a thickness of about 3 mm to 5 mm were used as the vapor deposition source.
  • the thickness of the thus obtained films (inorganic thin layer / adhesive layer containing film) inorganic thin layer in the (SiO 2 / A1 2 O 3 composite oxide layer) was 13 nm.
  • the coating liquid 2 was applied onto the inorganic thin film layer formed by the above vapor deposition by the wire bar coating method, and dried at 200 ° C. for 15 seconds to obtain a protective layer.
  • the coating amount after drying was 0.190 g / m 2 (as Dry solid content).
  • Table 1 shows the film forming conditions, physical properties, and evaluation results of the obtained polyester film and gas barrier film.
  • Example 7 Using a uniaxial extruder, 80% by mass of PBT resin and 20% by mass of PET resin are mixed, and silica particles with an average particle size of 2.4 ⁇ m as inert particles have a silica concentration of 900 ppm with respect to the mixed resin. The mixture was melted at 290 ° C. and then introduced into a melt line. Then, it was cast from a T-die at 265 ° C. and adhered to a cooling roll at 20 ° C. by an electrostatic adhesion method to obtain an unstretched sheet. Then, the resin composition for the adhesive layer (coating liquid 1) was applied by the fountain bar coating method after the vertical stretching at 60 ° C. for 2.9 times roll stretching.
  • ⁇ Comparative example 3> Using a uniaxial extruder, a mixture of 80% by mass of PBT resin and 20% by mass of PET resin mixed with silica particles having an average particle size of 2.4 ⁇ m as inert particles so as to have an average particle size of 7000 ppm was melted at 290 ° C. Later, the melt line was introduced into a 12-element static mixer. The inner pipe was not used for mixing the PBT resin and the PET resin, and the PBT resin and the PET resin were mixed at the upper part of the hopper. Similarly to the above, the product was cast from a T-die at 265 ° C. and adhered to a cooling roll at 20 ° C. by an electrostatic adhesion method to obtain an unstretched sheet.
  • a mill roll of a polyester film having a thickness of 15 ⁇ m and a total width of 4200 mm.
  • the obtained mill roll was slit, and two slit rolls having a roll width of 2080 mm were collected.
  • Table 2 shows the film forming conditions, physical properties, and evaluation results of the obtained polyester film and gas barrier film.
  • the PBT ratio is within the range of the present invention, and PET derived from biomass as a PET raw material.
  • the variation in the puncture strength in the longitudinal direction is small by using the inner pipe for supplying the raw material.
  • Comparative Example 2 since the ratio of PET derived from biomass is increased, the degree of biomass is increased, but at the same time, the ratio of PBT is decreased, so that the mechanical strength such as puncture resistance is decreased.
  • Comparative Example 3 since the inner pipe was not used for supplying the raw materials and the raw material ratio fluctuated greatly in the longitudinal direction due to the segregation of the raw materials, the puncture strength in the longitudinal direction varied a lot.
  • the present invention is a carbon-neutral polyester film using biomass ethylene glycol while having excellent pinhole resistance and bag breakage resistance, and even a long film roll having a long winding length is in the longitudinal direction. It has become possible to provide a biaxially stretched polyester film having little variation in physical properties and a method for producing the same. Since these films can be widely applied as food packaging materials, they are expected to greatly contribute to the industrial world. In addition to packaging applications for pharmaceuticals and industrial products, it can also be widely used for industrial applications such as solar cells, electronic paper, organic EL elements, and semiconductor elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】 優れた耐ピンホール性、耐破袋性を有するとともに、バイオマス由来の原料を使用し、かつ長手方向の物性のばらつきが少ないポリエステルフィルムを提供すること。 【解決手段】 少なくとも(A)ポリブチレンテレフタレートを60~95質量%と(B)ポリエチレンテレフタレートを5~40質量%を含んでおり、前記ポリエチレンテレフタレート(B)のうちの少なくとも60質量%以上がバイオマス由来のエチレングリコールと化石燃料由来のジカルボン酸単位から構成されていることを特徴とする二軸延伸ポリエステルフィルムであって、下記(1)~(4)を同時に満足することを特徴とするポリエステルフィルム。(1)突刺し強度が0.6N/μm以上。(2)フィルムの面配向度が0.144~0.160。(3)フィルムの150℃の熱収縮率が、縦方向が0~4%、横方向が-1~3%。(4)縦方向及び横方向の厚み精度が15%以下。

Description

ポリエステルフィルム及びその製造方法

 本発明は、食品、医薬品、工業製品等の包装分野に用いられる二軸延伸ポリエステルフィルムに及びその製造方法に関する。更に詳しくは、優れた耐ピンホール性、耐破袋性を有し、バイオマスエチレングリコールを用いたカーボンニュートラルなポリエステルフィルムであると共に、巻き長の長い長尺のフィルムロールであっても長手方向の物性のばらつきの少ない二軸延伸ポリエステルフィルム及びその製造方法に関する。

 食品、医薬品等に用いられる包装材料は、蛋白質、油脂の酸化抑制、味、鮮度の保持、医薬品の効能維持のために、酸素や水蒸気等のガスを遮断する性質、すなわちガスバリア性を備えることが求められている。また、太陽電池や有機EL等の電子デバイスや電子部品等に使用されるガスバリア性材料は、食品等の包装材料以上に高いガスバリア性を必要とする。

 従来から、水蒸気や酸素等の各種ガスの遮断を必要とする食品用途においては、プラスチックからなる基材フィルム層の表面に、アルミニウム等からなる金属薄膜、酸化ケイ素や酸化アルミニウム等の無機酸化物からなる無機薄膜を形成したガスバリア性積層フィルムが、一般的に用いられている。

 二軸延伸ナイロンフィルムを基材フィルム層とするすることにより、内容物による耐ピンホール性が良好になり、袋の落下時の内容物の漏れが無くなることが知られていた(例えば特許文献5)。しかし、二軸延伸ナイロンフィルムは吸湿時の寸法変化が大きく、加工工程時に吸湿によりカールする問題点やレトルト殺菌のような過酷な処理が施された場合に収縮により形が変形するという問題点があった。

 一方、ポリエチレンテレフタレート(以下、PETと略記する)フィルムに酸化ケイ素や酸化アルミニウム、これらの混合物等の無機酸化物の薄膜(無機薄膜層)を形成したものは、透明であり内容物の確認が可能であることから、広く使用されている。(例えば特許文献1及び特許文献2)

 PETフィルムは、耐熱性や寸法安定性に優れ、レトルト殺菌のような過酷な処理が施された場合にも使用し得るが、PETフィルムは脆いため、これを使用した積層フィルムからなる袋は、落下時に袋が破れたり、穴が開いて、袋に詰められていた内容物が漏れるという課題が残されていた。

 これらの問題を解決するための手段として、二軸延伸したポリブチレンテレフタレート(以下、PBTと略記する)フィルムをもちいることが検討されている。

 例えば、特許文献3では、少なくともPBT樹脂、又はPBT樹脂に対してPET樹脂を30質量%以下の範囲で配合したポリエステル樹脂組成物を縦方向及び横方向それぞれ2.7~4.0倍同時二軸延伸することにより得られた二軸延伸PBTフィルムを基材フィルム層に使用することが知られていた。かかる技術によれば、耐屈曲ピンホール性、及び耐衝撃性を持ち、かつ優れた保香性を併せ持つ液体充填用包材が得られるというものである。

 なお、フィルムの縦方向は、フィルムの流れ方向又はMD方向ともいう。また、フィルムの横方向は、フィルムの幅方向又はTD方向ともいう。

 ところで、近年、循環型社会の構築を求める声の高まりとともに、材料分野においてもエネルギーと同様に化石燃料からの脱却が望まれており、バイオマスの利用が注目されている。バイオマスは、二酸化炭素と水から光合成された有機化合物であり、それを利用することにより、再度二酸化炭素と水になる、いわゆるカーボンニュートラルな再生可能エネルギーである。昨今、これらバイオマスを原料としたバイオマスプラスチックの実用化が急速に進んでおり、汎用高分子材料であるポリエステルをこれらバイオマス原料から製造する試みも行われている。

 例えば、特許文献4では、ジオール単位とジカルボン酸単位とからなるポリエステルを含んでなる樹脂組成物であって、ジオール成分単位がバイオマス由来のエチレングリコールであり、ジカルボン酸成分単位が石油由来のジカルボン酸であるポリエステルを、樹脂組成物全体に対して、50~95質量%含んでなることを特徴とする樹脂組成物及びフィルムが開示されている。

 かかる技術によれば、従来の化石燃料から得られるエチレングリコールに代えて、植物由来のエチレングリコールをその原料としたポリエステルは、従来の化石燃料から得られるエチレングリコールを用いて製造されたポリエステルであっても、従来の化石燃料由来のエチレングリコールを用いた場合と同等の機械的特性が得られるというものである。

 しかしながら、上述したように、従来のPETフィルムは脆いため、これを使用した積層フィルムからなる袋は、落下時に袋が破れたり穴が開いて、袋に詰められていた内容物が漏れるという課題があり、優れた耐ピンホール性、耐破袋性とバイオマスエチレングリコールを用いたカーボンニュートラルなポリエステルフィルムは未だ実現されていなかった。

 上記のような優れた耐ピンホール性、耐破袋性とバイオマスエチレングリコールを用いたカーボンニュートラルなポリエステルフィルムをえる手段としては、PBT樹脂に対してPET樹脂を30質量%以下の範囲で配合したポリエステル樹脂組成物を二軸延伸することにより得ることができるものと期待できるが、PBT樹脂に対してPET樹脂を配合したポリエステル樹脂組成物からなるようなフィルムの場合では、PBT樹脂とPETなどのその他の樹脂とを混合して成膜するのが一般的である。しかしPBTとその他の樹脂では、比重や樹脂チップの形状が異なる場合があるため、これら原料樹脂チップの偏析により、混合、押出し工程で原料比率のバラツキが生じ易く、フィルム長手方向で物性差が生じる。その結果、長尺な製品ロールの長手方向で均一な物性の製品が得られなくなるケースがある。

 さらにこれらに使用するPETとしてバイオマスエチレングリコールを用いたPETを用いた場合、上記で述べたような偏析により長手方向でフィルムのバイオマス度も変動してしまう懸念があった。

特開平6-278240号公報、 特開平11-10725号公報 特開2017―094746号公報 特開2012―097163号公報

 本発明は、かかる従来技術の課題を背景になされたものである。

 すなわち、優れた耐ピンホール性、耐破袋性を有するとともに、バイオマスエチレングリコールを用いたカーボンニュートラルなポリエステルフィルムであり、巻き長の長い長尺のフィルムロールであっても長手方向の物性のばらつきが少ない二軸延伸ポリエステルフィルム及びその製造方法を提供することである。

 本発明者らはかかる課題を解決するため鋭意検討した結果、PBT樹脂に対してバイオマスエチレングリコールを用いたPET樹脂を40質量%以下の範囲で配合したポリエステル樹脂組成物を二軸延伸して得られる二軸延伸ポリエステルフィルムにおいて、原料となる樹脂チップの混合に際しては、ホッパーに上方からポリブチレンテレフタレート樹脂チップを供給すると共に、ホッパー内であって押出機直上に出口を有する配管(以下、インナーパイプと称する場合がある)を通じて前記バイオマスエチレングリコールを用いたPET樹脂チップを供給して、両チップを混合し、溶融押し出しする事で、フィルムの長手方向で物性のばらつきが少なく、バイオマス度の均一なフィルムを得ることができることを見出し、本発明の完成に至った。

 すなわち本発明は、以下の構成からなる。

〔1〕 少なくとも(A)ポリブチレンテレフタレートを60~95質量%と(B)ポリエチレンテレフタレートを5~40質量%を含んでおり、前記ポリエチレンテレフタレート(B)のうちの少なくとも60質量%以上がバイオマス由来のエチレングリコールと化石燃料由来のジカルボン酸単位から構成されていることを特徴とする二軸延伸ポリエステルフィルムであって、下記(1)~(4)を同時に満足することを特徴とするポリエステルフィルム。

 (1)JIS Z 1707に準じて測定した突刺し強度が0.6N/μm以上。

 (2)フィルムの面配向度が0.144~0.160。

 (3)フィルムの150℃で15分間加熱後の熱収縮率が、縦方向が0~4%、横方向が-1~3%。

 (4)縦方向及び横方向の厚み精度がいずれも15%以下。

〔2〕 前記二軸延伸ポリエステルフィルム中の全炭素に対して、放射性炭素(C14)測定によるバイオマス由来の炭素の含有量が0.5~8%であることを特徴とする、前記〔1〕に記載の二軸延伸ポリエステルフィルム。

〔3〕 縦方向にフィルムロールの表層から巻き芯まで1000m毎にサンプリングし、JIS Z 1707に準じて測定した突刺し強度の最大値をXmax(N)、最小値をXmin(N)、平均値をXaveとしたときの、下記式[1]で表される突刺し強度のばらつきが20%以下であることを特徴とする、前記〔1〕又は〔2〕に記載のポリエステルフィルム。

 突刺し強度の長手方向ばらつき(%)=100×(Xmax-Xmin)/Xave・・・[1]

〔4〕 前記〔1〕~〔3〕いずれかに記載のポリエステルフィルムの少なくとも片方の面に無機薄膜層を有してなるガスバリア性積層フィルム。

〔5〕 ポリエステルフィルムと無機薄膜層の間に接着層を有することを特徴とする〔4〕に記載のガスバリア性積層フィルム。

〔6〕 無機薄膜層の表面に保護層を有することを特徴とする〔4〕又は〔5〕に記載のガスバリア性積層フィルム。

〔7〕 前記ポリエステル原料樹脂の溶融押出し工程において、ホッパーに上方から前記ポリブチレンテレフタレート(A)の原料樹脂チップを供給すると共に、ホッパー内であって押出機直上に出口を有する配管を通じて前記ポリエチレンテレフタレート(B)の原料樹脂チップを供給して、両チップを混合し、溶融押し出しすることを特徴とする〔1〕~〔3〕いずれかに記載のポリエステルフィルムの製造方法。

 本発明者らは、かかる技術によって、優れた耐ピンホール性、耐破袋性を有するとともに、バイオマスエチレングリコールを用いたカーボンニュートラルなポリエステルフィルムであり、巻き長の長い長尺のフィルムロールであっても長手方向の物性のばらつきが少ない二軸延伸ポリエステルフィルム及びその製造方法を提供することが可能となった。

図1は、本発明の二軸延伸ポリエステルフィルムを製造するための樹脂チップの混合方法の一例を説明する為の概略図である。 図2は図1の部分拡大図である。

 以下、本発明について詳細に説明する。

 本発明のポリエステルフィルムは、PBT(A)を主たる構成成分とするものであり、PBTの含有率60質量%以上が好ましく、さらには70質量%以上が好ましい。60質量%未満であると突刺し強度が低下してしまい、フィルム特性としては十分なものでなくなってしまう。

 主たる構成成分として用いるPBT(A)としては、ジカルボン酸成分として、テレフタル酸が90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは98モル%以上であり最も好ましくは100モル%である。グリコール成分として1,4-ブタンジオールが90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは97モル%以上であり、最も好ましくは重合時に1,4-ブタンジオールのエーテル結合により生成する副生物以外は含まれないことである。

 本発明のポリエステルフィルムは、上記PBT(A)のほかに力学特性や製膜性などを調整する目的でPET(B)が添加される。

 PETの含有率としては5質量%以上が好ましい。5質量%未満であるとPBTの結晶化により製膜性が低下することがある。

 PETの含有率としては40質量%以下が好ましく、さらには30質量%以下が好ましい。40質量%を超えると突刺し強度が低下してしまい、フィルム特性としては十分なものでなくなってしまう。

 また本発明のポリエステルフィルムに使用されるPET(B)としては、バイオマス由来のエチレングリコールと化石燃料由来のジカルボン酸単位から構成されていることが好ましい。

 PET(B)としてバイオマス由来のエチレングリコールと化石燃料由来のジカルボン酸単位から構成されたPETを用いることで、フィルム中のバイオマス度を上げることができ、カーボンニュートラルなフィルムを得ることが可能となる。

 バイオマス由来のエチレングリコールは、バイオマスを原料として製造されたエタノール(バイオマスエタノール)を原料としたものである。例えば、バイオマスエタノールを、従来公知の方法により、エチレンオキサイドを経由してエチレングリコールを生成する方法等により、バイオマス由来のエチレングリコールを得ることができる。また、市販のバイオマスエチレングリコールを使用してもよい。

 ポリエステルのジカルボン酸単位は、化石燃料由来のジカルボン酸を使用する。ジカルボン酸としては、芳香族ジカルボン酸、脂肪族ジカルボン酸、及びそれらの誘導体を制限なく使用することができる。芳香族ジカルボン酸としては、テレフタル酸及びイソフタル酸等が挙げられ、芳香族ジカルボン酸の誘導体としては、芳香族ジカルボン酸の低級アルキルエステル、具体的には、メチルエステル、エチルエステル、プロピルエステル及びブチルエステル等が挙げられる。これらの中でも、テレフタル酸が好ましく、芳香族ジカルボン酸の誘導体としては、ジメチルテレフタレートが好ましい。

 また、脂肪族ジカルボン酸としては、具体的には、シュウ酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、ドデカン二酸、ダイマー酸ならびにシクロヘキサンジカルボン酸等の、通常炭素数が2以上40以下の鎖状或いは脂環式ジカルボン酸が挙げられる。また、脂肪族ジカルボン酸の誘導体として、上記脂肪族ジカルボン酸のメチルエステル、エチルエステル、プロピルエステル及びブチルエステル等の低級アルキルエステルや例えば無水コハク酸等の上記脂肪族ジカルボン酸の環状酸無水物が挙げられる。これらのなかでも、アジピン酸、コハク酸、ダイマー酸又はこれらの混合物が好ましく、コハク酸を主成分とするものが特に好ましい。脂肪族ジカルボン酸の誘導体としては、アジピン酸及びコハク酸のメチルエステル、又はこれらの混合物がより好ましい。

 これらのジカルボン酸は単独でも2種以上混合して使用することもできる。

 本発明による二軸延伸ポリエステルフィルムに含まれるPET(B)には、上記のジオール成分とジカルボン酸成分に加えて、第3成分として共重合成分を加えた共重合ポリエステルであっても良い。共重合成分の具体的な例としては、2官能のオキシカルボン酸や、架橋構造を形成するために3官能以上の多価アルコール、3官能以上の多価カルボン酸及び/又はその無水物並びに3官能以上のオキシカルボン酸からなる群から選ばれる少なくとも1種の多官能化合物が挙げられる。これらの共重合成分の中では、高重合度の共重合ポリエステルが容易に製造できる傾向があるため、特に2官能及び/又は3官能以上のオキシカルボン酸が好適に使用される。その中でも、3官能以上のオキシカルボン酸の使用は、後述する鎖延長剤を使用することなく、極少量で容易に高重合度のポリエステルを製造できるので最も好ましい。

 また、上記ポリエステルは、これらの共重合ポリエステルを鎖延長(カップリング)した高分子量のポリエステルであってもよい。鎖延長剤としては、カーボネート化合物やジイソシアネート化合物等の鎖延長剤を使用することもできるが、その量は、通常ポリエステルを構成する全単量体単位100モル%に対し、カーボネート結合ならびにウレタン結合が通常10モル%以下、好ましくは5モル%以下、より好ましくは3モル%以下である。

 本発明において使用するPET(B)は、上記したジオール単位とジカルボン酸単位とを重縮合させる従来公知の方法により得ることができる。具体的には、上記のジカルボン酸成分とジオール成分とのエステル化反応及び/又はエステル交換反応を行った後、減圧下での重縮合反応を行うといった溶融重合の一般的な方法や、有機溶媒を用いた公知の溶液加熱脱水縮合方法によって製造することができる。

 また、重縮合反応は、重合触媒の存在下に行うのが好ましい。重合触媒の添加時期は、重縮合反応以前であれば特に限定されず、原料仕込み時に添加しておいてもよく、減圧開始時に添加してもよい。

 重合触媒としては、一般には、周期表で、水素、炭素を除く第1族~第14族金属元素を含む化合物が挙げられる。具体的には、チタン、ジルコニウム、錫、アンチモン、セリウム、ゲルマニウム、亜鉛、コバルト、マンガン、鉄、アルミニウム、マグネシウム、カルシウム、ストロンチウム、ナトリウム及びカリウムからなる群から選ばれた、少なくとも1種以上の金属を含むカルボン酸塩、アルコキシ塩、有機スルホン酸塩又はβ-ジケトナート塩等の有機基を含む化合物、更には前記した金属の酸化物、ハロゲン化物等の無機化合物及びそれらの混合物が挙げられる。これらの中でも、チタン、ジルコニウム、ゲルマニウム、亜鉛、アルミニウム、マグネシウム及びカルシウムを含む金属化合物、並びにそれらの混合物が好ましく、特に、チタン化合物、ジルコニウム化合物及びゲルマニウム化合物が好ましい。また、触媒は、重合時に溶融或いは溶解した状態であると重合速度が高くなる理由から、重合時に液状であるか、エステル低重合体やポリエステルに溶解する化合物が好ましい。

 チタン化合物としては、テトラアルキルチタネートが好ましく、具体的には、テトラ-n-プロピルチタネート、テトライソプロピルチタネート、テトラ-n-ブチルチタネート、テトラ-t-ブチルチタネート、テトラフェニルチタネート、テトラシクロヘキシルチタネート、テトラベンジルチタネート及びこれらの混合チタネートが挙げられる。また、チタン(オキシ)アセチルアセトネート、チタンテトラアセチルアセトネート、チタン(ジイソプロキシド)アセチルアセトネート、チタンビス(アンモニウムラクテイト)ジヒドロキシド、チタンビス(エチルアセトアセテート)ジイソプロポキシド、チタン(トリエタノールアミネート)イソプロポキシド、ポリヒドロキシチタンステアレート、チタンラクテート、チタントリエタノールアミネート、ブチルチタネートダイマー等も好適に用いられる。更には、酸化チタンや、チタンと珪素を含む複合酸化物も好適に用いられる。これらの中でも、テトラ-n-プロピルチタネート、テトライソプロピルチタネート及びテトラ-n-ブチルチタネート、チタン(オキシ)アセチルアセトネート、チタンテトラアセチルアセトネート、チタンビス(アンモニウムラクテイト)ジヒドロキシド、ポリヒドロキシチタンステアレート、チタンラクテート、ブチルチタネートダイマー、酸化チタン、チタニア/シリカ複合酸化物(例えば、Acordis Industrial Fibers社製の製品名:C-94)が好ましく、特に、テトラ-n-ブチルチタネート、ポリヒドロキシチタンステアレート、チタン(オキシ)アセチルアセトネート、チタンテトラアセチルアセトネート、チタニア/シリカ複合酸化物(例えば、Acordis Industrial Fibers社製の製品名:C-94)が好ましい。

 ジルコニウム化合物としては、具体的には、ジルコニウムテトラアセテイト、ジルコニウムアセテイトヒドロキシド、ジルコニウムトリス(ブトキシ)ステアレート、ジルコニルジアセテイト、シュウ酸ジルコニウム、シュウ酸ジルコニル、シュウ酸ジルコニウムカリウム、ポリヒドロキシジルコニウムステアレート、ジルコニウムエトキシド、ジルコニウムテトラ-n-プロポキシド、ジルコニウムテトライソプロポキシド、ジルコニウムテトラ-n-ブトキシド、ジルコニウムテトラ-t-ブトキシド、ジルコニウムトリブトキシアセチルアセトネートならびにそれらの混合物が挙げられる。また、酸化ジルコニウムや、例えばジルコニウムと珪素を含む複合酸化物を使用してもよい。これらの中でも、ジルコニルジアセテイト、ジルコニウムトリス(ブトキシ)ステアレート、ジルコニウムテトラアセテイト、ジルコニウムアセテイトヒドロキシド、シュウ酸ジルコニウムアンモニウム、シュウ酸ジルコニウムカリウム、ポリヒドロキシジルコニウムステアレート、ジルコニウムテトラ-n-プロポキシド、ジルコニウムテトライソプロポキシド、ジルコニウムテトラ-n-ブトキシド、ジルコニウムテトラ-t-ブトキシドが好ましい。

 ゲルマニウム化合物としては、具体的には、酸化ゲルマニウムや塩化ゲルマニウム等の無機ゲルマニウム化合物、テトラアルコキシゲルマニウムなどの有機ゲルマニウム化合物が挙げられる。価格や入手の容易さなどから、酸化ゲルマニウム、テトラエトキシゲルマニウム及びテトラブトキシゲルマニウムなどが好ましく、特に、酸化ゲルマニウムが好ましい。

 これらの重合触媒として金属化合物を用いる場合の触媒使用量は、生成するポリエステルに対する金属量として、下限値が通常5ppm以上、好ましくは10ppm以上であり、上限値が通常30000ppm以下、好ましくは1000ppm以下、より好ましくは250ppm以下、特に好ましくは130ppm以下である。使用する触媒量が多すぎると、経済的に不利であるばかりでなくポリマーの熱安定性が低くなるのに対し、逆に少なすぎると重合活性が低くなり、それに伴いポリマー製造中にポリマーの分解が誘発されやすくなる。ここで使用する触媒量としては、その使用量を低減させる程生成するポリエステルの末端カルボキシル基量が低減されるので使用触媒量を低減させる方法は好ましい態様である。

 ジカルボン酸成分とジオール成分とのエステル化反応及び/又はエステル交換反応の反応温度は、通常、150~260℃の範囲であり、反応雰囲気は、通常窒素、アルゴン等の不活性ガス雰囲気下である。また、反応圧力は、通常、常圧~10kPaである。また、反応時間は、通常、1時間~10時間程度である。

 上記した製造工程において、鎖延長剤(カップリング剤)を反応系に添加してもよい。鎖延長剤は、重縮合終了後、均一な溶融状態で、無溶媒で反応系に添加し、重縮合により得られたポリエステルと反応させる。

 これらの鎖延長剤(カップリング剤)を用いた高分子量ポリエステルは公知の技術を用いて製造することが可能である。鎖延長剤は、重縮合終了後、均一な溶融状態で無溶媒で反応系に添加し、重縮合により得られたポリエステルと反応させる。具体的には、ジオールとジカルボン酸とを触媒反応させて得られる、末端基が実質的にヒドロキシル基を有し、質量平均分子量(Mw)が20,000以上、好ましくは40,000以上のポリエステルプレポリマーに上記鎖延長剤を反応させることにより、より高分子量化したポリエステル系樹脂を得ることができる。質量平均分子量が20,000以上のプレポリマーであれば、少量のカップリング剤の使用で、溶融状態といった苛酷な条件下でも、残存する触媒の影響を受けないので反応中にゲルを生ずることなく、高分子量のポリエステルを製造することができる。

 得られたポリエステルは、固化させた後、さらに重合度を高めたり、環状三量体などのオリゴマーを除去するために、必要に応じて固相重合を行ってもよい。具体的には、ポリエステルをチップ化して乾燥させた後、100~180℃の温度で1~8時間程度加熱してポリエステルを予備結晶化させ、続いて、190~230℃の温度で、不活性ガス流通下又は減圧下で1~数十時間加熱することにより行われる。

 上記のようにして得られるポリエステルの固有粘度(オルトクロロフェノール溶液で、35℃にて測定)は、0.5dl/g~1.5dl/gであることが好ましく、より好ましくは0.6dl/g~1.2dl/gである。固有粘度が0.5dl/g未満の場合は引裂き強度をはじめ、半透過反射フィルム基材としてポリエステルフィルムに要求される機械特性が不足することがある。他方、固有粘度が1.5dl/gを越えると、原料製造工程及びフィルム製膜工程における生産性が損なわれる。

 ポリエステルの製造工程において、又は製造されたポリエステルには、その特性が損なわれない範囲において各種の添加剤を添加してもよく、例えば、可塑剤、紫外線安定化剤、着色防止剤、艶消し剤、消臭剤、難燃剤、耐候剤、帯電防止剤、糸摩擦低減剤、離型剤、抗酸化剤、イオン交換剤、着色顔料等を添加することができる。これら添加剤は、ポリエステル樹脂組成物全体に対して、5~50質量%の範囲で添加される。

 本発明のポリエステルフィルムには、力学特性などを調整する目的で上記(A)及び(B)以外のポリエステル樹脂を含有することができる。

 上記(A)及び(B)以外のポリエステル樹脂としては、ポリエチレンナフタレート、ポリブチレンナフタレート及びポリプロピレンテレフタレートからなる群から選ばれる少なくとも1種のポリエステル樹脂、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、シクロヘキサンジカルボン酸、アジピン酸、アゼライン酸及びセバシン酸からなる群から選ばれる少なくとも1種のジカルボン酸が共重合されたPBT樹脂、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール、ポリエチレングリコール、ポリテトラメチレングリコール及びポリカーボネートジオールからなる群から選ばれる少なくとも1種のジオール成分が共重合されたPBT樹脂などが挙げられる。

 これらPBT樹脂(A)及びPET樹脂(B)以外のポリエステル樹脂の添加量の上限としては、30質量%未満が好ましく、より好ましくは25質量%以下が好ましい。PBT樹脂以外のポリエステル樹脂の添加量が30質量%を超えると、PBTとしての力学特性が損なわれ、衝撃強度、耐ピンホール性、又は耐破袋性が不十分となるほか、透明性やガスバリア性が低下するなどが起こることがある。

 本発明に用いるPBT樹脂の固有粘度の下限は好ましくは0.9dl/gであり、より好ましくは0.95dl/gであり、更に好ましくは1.0dl/gである。

 原料であるPBT樹脂の固有粘度が0.9dl/g未満の場合、製膜して得られるフィルムの固有粘度が低下し、突刺し強度、衝撃強度、耐ピンホール性、又は耐破袋性などが低下するとなることがある。

 PBT樹脂の固有粘度の上限は好ましくは1.4dl/gである。上記を越えると延伸時の応力が高くなりすぎ、製膜性が悪化するとなることがある。固有粘度の高いPBTを使用した場合、樹脂の溶融粘度が高くなるため押出し温度を高温にする必要があるが、PBT樹脂をより高温で押出しすると分解物が出やすくなることがある。

 前記PBT樹脂は必要に応じ、従来公知の添加剤、例えば、滑剤、安定剤、着色剤、静電防止剤、紫外線吸収剤等を含有していてもよい。

 滑剤種としてはシリカ、炭酸カルシウム、アルミナなどの無機系滑剤のほか、有機系滑剤が好ましく、シリカ、炭酸カルシウムがより好ましく、中でもシリカがヘイズを低減する点で特に好ましい。これらにより透明性と滑り性と発現することができる。

 滑剤濃度の下限は好ましくは100ppmであり、より好ましくは500ppmであり、さらに好ましくは800ppmである。上記未満であると基材フィルム層の滑り性が低下となることがある。滑剤濃度の上限は好ましくは20000ppmであり、より好ましくは10000ppmであり、さらに好ましくは1800ppmである。上記を越えると透明性が低下となることがある。

上記のようにして得られるポリエステルフィルムは、放射性炭素(C14)測定によるバイオマス由来の炭素の含有量が、ポリエステルフィルム中の全炭素に対して0.5~8%含まれることが好ましい。

 大気中の二酸化炭素には、C14が一定割合(105.5pMC)で含まれているため、大気中の二酸化炭素を取り入れて成長する植物、例えばトウモロコシ中のC14含有量も105.5pMC程度であることが知られている。また、化石燃料中にはC14が殆ど含まれていないことも知られている。したがって、ポリエステル中の全炭素原子中に含まれるC14の割合を測定することにより、バイオマス由来の炭素の割合を算出することができる。

 本発明のポリエステルフィルムの厚みの下限は好ましくは3μmであり、より好ましくは5μmであり、さらに好ましくは8μmである。3μm以上であると基材フィルム層としての強度が十分となる。

 本発明のポリエステルフィルムの厚みの上限は好ましくは100μmであり、より好ましくは75μmであり、さらに好ましくは50μmである。100μm以下であると本発明の目的における加工がより容易となる。

 本発明のポリエステルフィルムの縦方向の150℃で15分間加熱後の熱収縮率の上限は、好ましくは4.0%であり、より好ましくは3.0%であり、さらに好ましくは2%である。上限を越えると保護膜の形成工程や、レトルト殺菌処理のような高温処理において生じる基材フィルム層の寸法変化により無機薄膜層に割れが生じ、ガスバリア性が低下する恐れがあるばかりか、印刷などの加工時の寸法変化により、ピッチズレなどが起こることがある。

 本発明のポリエステルフィルムの横方向の150℃で15分間加熱後の熱収縮率の上限は好ましくは3.0%であり、より好ましくは2.0%であり、さらに好ましくは1%である。上限を越えると保護膜の形成工程や、レトルト殺菌処理のような高温処理において生じる基材フィルム層の寸法変化により無機薄膜層に割れが生じ、ガスバリア性が低下する恐れがあるばかりか、印刷などの加工時の幅方向の寸法変化により、ピッチズレなどが起こるとなることがある。

 本発明のポリエステルフィルムの縦方向の150℃で15分間加熱後の熱収縮率の下限は好ましくは0%である。上記未満であってもと改善の効果がそれ以上得られない(飽和する)ほか、力学的に脆くなってしまうことがある。

 本発明のポリエステルフィルムの横方向の150℃で15分間加熱後の熱収縮率の下限は好ましくは1.0%である。上記未満であっても改善の効果がそれ以上得られない(飽和する)ほか、力学的に脆くなってしまうことがある。

 本発明のポリエステルフィルムの突刺し強度の下限は好ましくは0.6N/μmである。0.6N/μm未満であると袋として用いる際に袋の強度が不十分となることがある。

 本発明のポリエステルフィルムロールにおいて、フィルムロールを長手方向にフィルムロールの表層から巻き芯まで100m毎にサンプリングしJIS Z 1707に準じて測定した突刺し強度の最大値をXmax(N)、最小値をXmin(N)、平均値をXaveとしたときの、下記式(1)で表される突刺し強度のばらつきは20%以下であることが好ましく、さらに好ましくは15%以下、最も好ましくは10%以下である。

 突刺し強度の長手方向ばらつき(%)=100×(Xmax-Xmin)/Xave・・・(1)

 フィルムロールの長手方向の突刺し強度のばらつきが20%を超えると、ポリエステルフィルムを二次加工して製造された包装袋に品質のばらつきが生じる恐れがある。

 本発明のポリエステルフィルムの衝撃強度の下限は好ましくは0.05J/μmである。0.05J/μm未満であると袋として用いる際に強度が不十分となる。

 本発明における基材フィルム層の衝撃強度の上限は好ましくは0.2J/μmである。0.2J/μm以下でも改善の効果が飽和することがある。

 本発明のポリエステルフィルムの面配向度(ΔP)の下限は、好ましくは0.144であり、より好ましくは0.148であり、さらに好ましくは0.15である。上記未満であると配向が弱いため、十分な強度が得られず、耐破袋性が低下することがあるばかりか、基材フィルム層上に無機薄膜層と保護層を設けて積層フィルムとした場合に、保護膜の形成時にかかる張力と温度によって伸び易くなり、無機薄膜層が割れてしまうために、ガスバリア性が低下することがある。

 本発明のポリエステルフィルムの面配向度(ΔP)の上限は、好ましくは0.160であり、より好ましくは0.158であり、さらに好ましくは0.156である。上記を超えると配向強すぎて、製膜性が低下するばかりか、伸びにくくなるために耐ピンホール性が低下する恐れがある。

 本発明のポリエステルフィルムの厚みあたりのヘイズの上限は好ましくは0.66%/μmであり、より好ましくは0.60%/μmであり、更に好ましくは0.53%/μmである。0.66%/μm以下である基材フィルム層に印刷を施した際に、印刷された文字や画像の品位が向上する。

 また本発明のポリエステルフィルムには、本発明の目的を損なわない限りにおいて、コロナ放電処理、グロー放電処理、火炎処理、表面粗面化処理が施されてもよく、また、公知のアンカーコート処理、印刷、装飾などが施されてもよい。

 次に、本発明のポリエステルフィルムを得るため製造方法を具体的に説明する。これらに限定されるものではない。

 本発明のポリエステルフィルムを得るため製造方法は、ポリブチレンテレフタレート樹脂(A)チップと、ポリエチレンテレフタレート樹脂(B)チップとを、ホッパーを備えた押出機に供給及び混合し、該押出機からポリエステル原料樹脂をシート状に溶融押出し、キャスティングドラム上で冷却して未延伸シートを成形する工程、成形された前記未延伸シートを長手方向に延伸する縦延伸工程、前記縦延伸後に横延伸可能な温度に予熱する予熱工程、前記長手方向と直交する幅方向に延伸する横延伸工程、前記縦延伸及び横延伸を行なった後のフィルムを加熱し結晶化させる熱固定工程、前記熱固定されたフィルムの残留歪みを除去する熱緩和工程、及び熱緩和後のフィルムを冷却する冷却工程からなる。

[未延伸シート成形工程]

 まず、フィルム原料を乾燥あるいは熱風乾燥する。次いで、原料を計量、混合して押し出し機に供給し、加熱溶融して、シート状に溶融キャスティングを行う。

 さらに、溶融状態の樹脂シートを、静電印加法を用いて冷却ロール(キャスティングロール)に密着させて冷却固化し、未延伸シートを得る。静電印加法とは、溶融状態の樹脂シートが回転金属ロールに接触する付近で、樹脂シートの回転金属ロールに接触した面の反対の面の近傍に設置した電極に電圧を印加することによって、樹脂シートを帯電させ、樹脂シートと回転冷却ロールを密着させる方法である。

 原料となる樹脂チップの混合に際しては、ホッパーに上方からポリブチレンテレフタレート樹脂チップを供給すると共に、ホッパー内であって押出機直上に出口を有する配管(以下、インナーパイプと称する場合がある)を通じて前記ポリエチレンテレフタレート(B)の樹脂チップを供給して、両チップを混合し、溶融押し出しする事が好ましい。ポリブチレンテレフタレート樹脂(A)チップとポリエチレンテレフタレート樹脂(B)チップとを混合した状態で押出し機の上のホッパーに入れると、比重やチップの形状の異なる樹脂チップがホッパー内で原料偏析を起こす可能性があり、特にホッパーの内壁が鉛直でない箇所(斜めになっている部分)で原料偏析を起こす心配が高いが、インナーパイプを通じてホッパー内の押出機直上部にポリエチレンテレフタレート樹脂(B)をダイレクトに供給すると、比重やチップ形状が異なっていっても、原料偏斥を低減でき、ポリエステルフィルムを安定して工業生産することができる。

 具体的な混合手順の一例を図1に示す。図1は、ホッパー1を備えた押出機2と、インナーパイプ3との関係の一例を示す概略図であり、図2は前記図1のA部分の拡大図である。

 図1,2において、ポリエチレンテレフタレート樹脂(B)などの主原料であるポリブチレンテレフタレート樹脂(A)以外の樹脂のチップはインナーパイプ3を通じて供給され、主原料であるポリブチレンテレフタレート樹脂(A)のチップはホッパー1の上部から供給される。そしてインナーパイプ3の出口4が押出機直上(正確には押出機2の樹脂供給口5の直上)になっているため、ポッパー内で経時とともにポリエチレンテレフタレート樹脂(B)のチップが偏析することを防止できるので、ポリエチレンテレフタレート樹脂(B)の混合比率を常に一定に保つことができる。

 なお、前記インナーパイプ3の出口4の高さ(H2)は、以下の(式a)の関係を満足しているのが好ましく、(式a)及び(式b)の両方の関係を満足しているのがより好ましい。

 H2<H1 (式a)

 (式中、H1はホッパーの内壁が鉛直になっている部分の高さを示す(図2参照)。)

 0.5×L/tanθ<H2 (式b)

 (式中、Lはインナーパイプ3の出口4の内径を示す(図2参照)。θは他の樹脂チップの安息角である。)

 H2の高さを0.5×L/tanθよりも大きくすることで、ポリブチレンテレフタレート樹脂(A)チップ以外の樹脂がポリブチレンテレフタレート樹脂チップと混合される位置(H3;図2参照)を押出機の外部にすることができ、押出機内に空気が入って気泡が生じることを防止できる。

 ポリブチレンテレフタレート樹脂(A)チップ以外の樹脂の混合位置の高さH3=H2-0.5×L/tanθは、0mより高く、2m未満であるのが望ましい。0mより高くすることで、押出機内への空気の侵入を防止できる。また2m未満にすることで、押出機までの距離を短く保つことができ、原料偏析を防止できる。高さH3は、好ましくは0.3m以上1.7m以下であり、更に好ましくは0.6m以上1.4m以下である。

 樹脂の加熱溶融温度の下限は好ましくは200℃であり、より好ましくは250℃であり、さらに好ましくは260℃である。上記未満であると吐出が不安定となることがある。樹脂溶融温度の上限は好ましくは280℃であり、より好ましくは270℃である。上記を越えると樹脂の分解が進行し、フィルムが脆くなってしまう。

 溶融したポリエステル樹脂を押出し冷却ロール上にキャスティングする時に、幅方向の結晶化度の差を小さくすることが好ましい。このための具体的な方法としては、溶融したポリエステル樹脂を押出し、キャスティングする時に同一の組成の原料を多層化してキャスティングすること、またさらに冷却ロール温度を低温とすることが挙げられる。

 溶融したポリエステル樹脂を押出し、キャスティングする方法は、具体的にはPBT樹脂を60質量%以上含む樹脂組成物を溶融して溶融流体を形成する工程(1)、形成された溶融流体をダイスから吐出し、冷却ロールに接触させて固化させ積層未延伸シートを形成する工程(2)、前記積層未延伸シートを二軸延伸する工程(3)を少なくとも有する。

 工程(1)において、ポリエステル樹脂組成物を溶融して溶融流体を形成する方法は特に限定されないが、好適な方法としては、一軸押出機や二軸押出機を用いて加熱溶融する方法を挙げることができる。

 工程(2)において、溶融流体をダイスから吐出し、冷却ロールに接触させて固化させる。

 冷却ロール温度の下限は好ましくは-10℃である。上記未満であると結晶化抑制の効果が飽和することがある。冷却ロール温度の上限は好ましくは40℃である。上記を越えると結晶化度が高くなりすぎて延伸が困難となることがある。冷却ロール温度の上限は好ましくは25℃である。また冷却ロールの温度を上記の範囲とする場合、結露防止のため冷却ロール付近の環境の湿度を下げておくことが好ましい。冷却ロール表面の幅方向の温度差は少なくすることが好ましい。このとき、未延伸シートの厚みは15~2500μmの範囲が好適である。

[縦延伸及び横延伸工程]

 次に延伸方法について説明する。延伸方法は、同時二軸延伸でも逐次二軸延伸でも可能であるが、突刺し強度を高めるためには、面配向度を高めておく必要があるほか、製膜速度が速く生産性が高いという点においては逐次二軸延伸が最も好ましい。

 縦延伸方向の延伸温度の下限は好ましくは55℃であり、より好ましくは60℃である。55℃以上であると破断が起こりにくい。また、フィルムの縦配向度が強くなり過ぎないため、熱固定処理の際の収縮応力を抑えられ、幅方向の分子配向の歪みの少ないフィルムが得られる。縦延伸方向の延伸温度の上限は、好ましくは100℃であり、より好ましくは95℃である。100℃以下であるとフィルムの配向が弱くなり過ぎないためフィルムの力学特性が低下しない。

 縦延伸方向の延伸倍率の下限は好ましくは2.8倍であり、特に好ましくは3.0倍である。2.8倍以上であると面配向度が大きくなり、フィルムの突刺し強度が向上するほか、フィルムの厚み精度が向上する。

 縦延伸方向の延伸倍率の上限は好ましくは4.3倍であり、より好ましくは4.0倍であり、特に好ましくは3.8倍である。4.3倍以下であると、フィルムの横方向の配向度が強くなり過ぎず、熱固定処理の際の収縮応力が大きくなり過ぎず、フィルムの横方向の分子配向の歪みが小さくなり、結果として縦方向の直進引裂き性が向上する。また、力学強度や厚みムラの改善の効果はこの範囲では飽和する。

 横延伸方向の延伸温度の下限は好ましくは60℃であり、60度以上であると破断が起こりにくくなることがある。横延伸方向の延伸温度の上限は好ましくは100℃であり、100℃以下であると横方向の配向度が大きくなるため力学特性が向上する。

 横延伸方向の延伸倍率の下限は好ましくは3.5倍であり、より好ましくは3.6倍であり、特に好ましくは3.7倍である。3.5倍以上であると横方向の配向度が弱くなり過ぎず、力学特性や厚みムラが向上する。横延伸方向の延伸倍率の上限は好ましくは5倍であり、より好ましくは4.5倍であり、特に好ましくは4.0倍である。5.0倍以下であると力学強度や厚みムラ改善の効果はこの範囲でも最大となる(飽和する)。

[熱固定工程]

 熱固定工程での熱固定温度の下限は好ましくは195℃であり、より好ましくは200℃である。195℃以上であるとフィルムの熱収縮率を小さくなり、レトルト処理後においても、無機薄膜層がダメージを受けにくいため、ガスバリア性が向上する。熱固定温度の上限は好ましくは220℃であり、220度以下であると基材フィルム層が融けることがなく、脆くなり難い。

[熱緩和部工程]

 熱緩和部工程でのリラックス率の下限は好ましくは0.5%である。0.5%以上であると熱固定時に破断が起こりにくくなることがある。リラックス率の上限は好ましくは10%である。10%以下であると熱固定時の長手方向への収縮が小さくなる結果、フィルム端部の分子配向の歪みが小さくなり、直進引裂き性が向上する。また、フィルムのたるみなどが生じにくく、厚みムラが発生しにくい。

[無機薄膜層]

 本発明の二軸延伸ポリエステルフィルムの表面に無機薄膜層を設けることで、ガスバリア性を付与することが出来る。

 無機薄膜層は金属又は無機酸化物からなる薄膜である。無機薄膜層を形成する材料は、薄膜にできるものなら特に制限はないが、ガスバリア性の観点から、酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)、酸化ケイ素と酸化アルミニウムとの混合物等の無機酸化物が好ましく挙げられる。特に、薄膜層の柔軟性と緻密性を両立できる点からは、酸化ケイ素と酸化アルミニウムとの複合酸化物が好ましい。この複合酸化物において、酸化ケイ素と酸化アルミニウムとの混合比は、金属分の質量比でAlが20~70質量%の範囲であることが好ましい。Al濃度が20質量%未満であると、水蒸気バリア性が低くなる場合がある。一方、70質量%を超えると、無機薄膜層が硬くなる傾向があり、印刷やラミネートといった二次加工の際に膜が破壊されてガスバリア性が低下する虞がある。なお、ここでいう酸化ケイ素とはSiOやSiO等の各種珪素酸化物又はそれらの混合物であり、酸化アルミニウムとは、AlOやAl等の各種アルミニウム酸化物又はそれらの混合物である。

 無機薄膜層の膜厚は、通常1~100nm、好ましくは5~50nmである。無機薄膜層の膜厚が1nm未満であると、満足のいくガスバリア性が得られ難くなる場合があり、一方、100nmを超えて過度に厚くしても、それに相当するガスバリア性の向上効果は得られず、耐屈曲性や製造コストの点でかえって不利となる。

 無機薄膜層を形成する方法としては、特に制限はなく、例えば真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法(PVD法)、あるいは化学蒸着法(CVD法)等、公知の蒸着法を適宜採用すればよい。以下、無機薄膜層を形成する典型的な方法を、酸化ケイ素・酸化アルミニウム系薄膜を例に説明する。例えば、真空蒸着法を採用する場合は、蒸着原料としてSiOとAlの混合物、あるいはSiOとAlの混合物等が好ましく用いられる。これら蒸着原料としては通常粒子が用いられるが、その際、各粒子の大きさは蒸着時の圧力が変化しない程度の大きさであることが望ましく、好ましい粒子径は1mm~5mmである。加熱には、抵抗加熱、高周波誘導加熱、電子ビーム加熱、レーザー加熱などの方式を採用することができる。また、反応ガスとして酸素、窒素、水素、アルゴン、炭酸ガス、水蒸気等を導入したり、オゾン添加、イオンアシスト等の手段を用いた反応性蒸着を採用することも可能である。さらに、被蒸着体(蒸着に供する積層フィルム)にバイアスを印加したり、被蒸着体を加熱もしくは冷却するなど、成膜条件も任意に変更することができる。このような蒸着材料、反応ガス、被蒸着体のバイアス、加熱・冷却等は、スパッタリング法やCVD法を採用する場合にも同様に変更可能である。

[接着層]

 本発明のガスバイア性積層フィルムは、レトルト処理後のガスバリア性やラミネート強度を確保することを目的として、基材フィルム層と前記無機薄膜層との間に接着層を設けることができる。

 基材フィルム層と前記無機薄膜層との間に設ける接着層に用いる樹脂組成物としては、ウレタン系、ポリエステル系、アクリル系、チタン系、イソシアネート系、イミン系、ポリブタジエン系等の樹脂に、エポキシ系、イソシアネート系、メラミン系等の硬化剤を添加したものが挙げられる。これらの接着層に用いる樹脂組成物は、有機官能基を少なくとも1種類以上有するシランカップリング剤を含有することが好ましい。前記有機官能基としては、アルコキシ基、アミノ基、エポキシ基、イソシアネート基等が挙げられる。前記シランカップリング剤の添加によって、レトルト処理後のラミネート強度がより向上する。

 前記接着層に用いる樹脂組成物の中でも、オキサゾリン基を含有する樹脂とアクリル系樹脂及びウレタン系樹脂の混合物を用いることが好ましい。オキサゾリン基は無機薄膜との親和性が高く、また無機薄膜層形成時に発生する無機酸化物の酸素欠損部分や金属水酸化物とが反応することができ、無機薄膜層と強固な密着性を示す。また接着層中に存在する未反応のオキサゾリン基は、基材フィルム層及び接着層の加水分解により発生したカルボン酸末端と反応し、架橋を形成することができる。

 前記接着層を形成するための方法としては、特に限定されるものではなく、例えばコート法など従来公知の方法を採用することができる。コート法の中でも好適な方法としては、オフラインコート法、インラインコート法を挙げることができる。例えば基材フィルム層を製造する工程で行うインラインコート法の場合、コート時の乾燥や熱処理の条件は、コート厚みや装置の条件にもよるが、コート後直ちに直角方向の延伸工程に送入し延伸工程の予熱ゾーンあるいは延伸ゾーンで乾燥させることが好ましく、そのような場合には通常50~250℃程度の温度とすることが好ましい。

 コート法を用いる場合に使用する溶媒(溶剤)としては、例えば、ベンゼン、トルエン等の芳香族系溶剤;メタノール、エタノール等のアルコール系溶剤;アセトン、メチルエチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;エチレングリコールモノメチルエーテル等の多価アルコール誘導体等が挙げられる。

[保護層]

 本発明においては、前記無機薄膜層の上に保護層を有する。金属酸化物層は完全に密な膜ではなく、微小な欠損部分が点在している。金属酸化物層上に後述する特定の保護層用樹脂組成物を塗工して保護層を形成することにより、金属酸化物層の欠損部分に保護層用樹脂組成物中の樹脂が浸透し、結果としてガスバリア性が安定するという効果が得られる。加えて、保護層そのものにもガスバリア性を持つ材料を使用することで、積層フィルムのガスバリア性能も大きく向上することになる。

 本発明の積層フィルムの無機薄膜層の表面に形成する保護層に用いる樹脂組成物としては、ウレタン系、ポリエステル系、アクリル系、チタン系、イソシアネート系、イミン系、ポリブタジエン系等の樹脂に、エポキシ系、イソシアネート系、メラミン系等の硬化剤を添加したものが挙げられる。

 前記ウレタン樹脂は、ウレタン結合の極性基が無機薄膜層と相互作用するとともに、非晶部分の存在により柔軟性をも有するため、屈曲負荷がかかった際にも無機薄膜層へのダメージを抑えることができるため好ましい。

 前記ウレタン樹脂の酸価は10~60mgKOH/gの範囲内であるのが好ましい。より好ましくは15~55mgKOH/gの範囲内、さらに好ましくは20~50mgKOH/gの範囲内である。ウレタン樹脂の酸価が前記範囲であると、水分散液とした際に液安定性が向上し、また保護層は高極性の無機薄膜上に均一に堆積することができるため、コート外観が良好となる。

 前記ウレタン樹脂は、ガラス転移温度(Tg)が80℃以上であることが好ましく、より好ましくは90℃以上である。Tgを80℃以上にすることで、湿熱処理過程(昇温~保温~降温)における分子運動による保護層の膨潤を低減できる。

 前記ウレタン樹脂は、ガスバリア性向上の面から、芳香族又は芳香脂肪族ジイソシアネート成分を主な構成成分として含有するウレタン樹脂を用いることがより好ましい。

 その中でも、メタキシリレンジイソシアネート成分を含有することが特に好ましい。上記樹脂を用いることで、芳香環同士のスタッキング効果によりウレタン結合の凝集力を一層高めることができ、結果として良好なガスバリア性が得られる。

 本発明においては、ウレタン樹脂中の芳香族又は芳香脂肪族ジイソシアネートの割合を、ポリイソシアネート成分(F)100モル%中、50モル%以上(50~100モル%)の範囲とすることが好ましい。芳香族又は芳香脂肪族ジイソシアネートの合計量の割合は、60~100モル%が好ましく、より好ましくは70~100モル%、さらに好ましくは80~100モル%である。このような樹脂として、三井化学株式会社から市販されている「タケラック(登録商標)WPB」シリーズは好適に用いることが出来る。芳香族又は芳香脂肪族ジイソシアネートの合計量の割合が50モル%未満であると、良好なガスバリア性が得られない可能性がある。

 前記ウレタン樹脂は、無機薄膜層との親和性向上の観点から、カルボン酸基(カルボキシル基)を有することが好ましい。ウレタン樹脂にカルボン酸(塩)基を導入するためには、例えば、ポリオール成分として、ジメチロールプロピオン酸、ジメチロールブタン酸等のカルボン酸基を有するポリオール化合物を共重合成分として導入すればよい。また、カルボン酸基含有ウレタン樹脂を合成後、塩形成剤により中和すれば、水分散体のウレタン樹脂を得ることができる。塩形成剤の具体例としては、アンモニア、トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン等のトリアルキルアミン類、N-メチルモルホリン、N-エチルモルホリン等のN-アルキルモルホリン類、N-ジメチルエタノールアミン、N-ジエチルエタノールアミン等のN-ジアルキルアルカノールアミン類等が挙げられる。これらは単独で使用してもよいし、2種以上を併用してもよい。

 溶媒(溶剤)としては、例えば、ベンゼン、トルエン等の芳香族系溶剤;メタノール、エタノール等のアルコール系溶剤;アセトン、メチルエチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;エチレングリコールモノメチルエーテル等の多価アルコール誘導体等が挙げられる。

 以上より、本発明のポリエステルフィルムは、耐破袋性、耐屈曲性に優れ、かつ、基材フィルム層の上に、広幅のロールを無機薄膜層及び保護層を形成してガスバリアフィルムを製造するような場合においても、加熱搬送時に発生する筋状のシワを抑制し、幅方向のガスバリア性を均一にすることができる。

[包装材料]

 本発明の積層フィルムを包装材料として用いる場合には、シーラントと呼ばれるヒートシール性樹脂層を形成することが好ましい。ヒートシール性樹脂層は通常、無機薄膜層上に設けられるが、基材フィルム層の外側(接着層形成面の反対側の面)に設けることもある。ヒートシール性樹脂層の形成は、通常押出しラミネート法あるいはドライラミネート法によりなされる。ヒートシール性樹脂層を形成する熱可塑性重合体としては、シーラント接着性が充分に発現できるものであればよく、HDPE、LDPE、LLDPEなどのポリエチレン樹脂類、ポリプロピレン樹脂、エチレン-酢酸ビニル共重合体、エチレン-α-オレフィンランダム共重合体、アイオノマー樹脂等を使用できる。

 さらに、本発明の積層フィルムには、無機薄膜層又は基材フィルム層とヒートシール性樹脂層との間又はその外側に、印刷層や他のプラスチック基材及び/又は紙基材を少なくとも1層以上積層してもよい。

 印刷層を形成する印刷インクとしては、水性及び溶媒系の樹脂含有印刷インクが好ましく使用できる。ここで印刷インクに使用される樹脂としては、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂、酢酸ビニル共重合樹脂及びこれらの混合物が例示される。印刷インクには、帯電防止剤、光線遮断剤、紫外線吸収剤、可塑剤、滑剤、フィラー、着色剤、安定剤、潤滑剤、消泡剤、架橋剤、耐ブロッキング剤、酸化防止剤等の公知の添加剤を含有させてもよい。印刷層を設けるための印刷方法としては、特に限定されず、オフセット印刷法、グラビア印刷法、スクリーン印刷法等の公知の印刷方法が使用できる。印刷後の溶媒の乾燥には、熱風乾燥、熱ロール乾燥、赤外線乾燥等公知の乾燥方法が使用できる。

 次に、実施例により本発明をさらに詳細に説明するが、本発明は以下の例に限定されるものではない。なお、フィルムの評価は次の測定法によって行った。

[フィルムの厚み]

 JIS K7130-1999 A法に準拠し、ダイアルゲージを用いて測定した。

[フィルムの縦方向厚み精度]

 得られたフィルムロールの中央部から縦方向にフィルム片を切り出し、5cmピッチで、100箇所をダイアルゲージを用いて測定したときの最大厚みをTmax,最小厚みをTmin、平均厚みをTave とし、下記の式(1)より厚み精度(Tv)を求めた。

 縦方向Tv(%)={(Tmax-Tmin)/Tave}×100 (%)・・・[1]

[フィルムの幅方向厚み精度]

 得られた1000mm幅のフィルムロールを幅方向に切り出し、5cmピッチで、20箇所をダイアルゲージを用いて測定したときの最大厚みをTmax,最小厚みをTmin、平均厚みをTave とし、下記の式(2)より厚み精度(Tv)を求めた。

 幅方向Tv(%)={(Tmax-Tmin)/Tave}×100 (%)・・・[2]

[フィルムの面配向度ΔP]

 サンプルについてJIS K 7142-1996 A法により、ナトリウムD線を光源としてアッベ屈折計によりフィルム長手方向の屈折率(Nx)、幅方向の屈折率(Ny)を測定し、式(3)の計算式により面配向度ΔPを算出した。

 面配向度(ΔP)=(Nx+Ny)/2-Nz    [3]

[フィルムの熱収縮率]

 ポリエステルフィルムの熱収縮率は試験温度150℃、加熱時間15分間とした以外は、JIS-C-2151-2006.21に記載の寸法変化試験法で測定した。試験片は21.1(a)に記載に従い使用した。

[フィルムの突刺し強度]

 得られたポリエステルフィルムを5cm角にサンプリングし、株式会社イマダ製デジタルフォースゲージ「ZTS-500N」、電動計測スタンド「MX2-500N」及び突刺し治具「TKS-250N」を用いて、JIS Z1707に準じてフィルムの突刺し強度を測定した。単位はN/μmで示した。

[長手方向の突刺し強度のばらつき]

 得られたポリエステルフィルムロール(幅2080mm、巻き長30,000m)について、長手方向にフィルムロールの表層から巻き芯まで100m毎にサンプリングした。

 サンプリングした各フィルムについて、JIS Z 1707に準じて突刺し強度を測定した。

 得られた突刺し強度の最大値をXmax(N)、最小値をXmin(N)、平均値をXaveとし、下記式(4)で表される突刺し強度のばらつきを求めた。

 突刺し強度の長手方向ばらつき(%)=100x(Xmax-Xmin)/Xave ・・・・(4)

[フィルムのインパクト強度]

 株式会社東洋精機製作所製のインパクトテスターを用い、23℃の雰囲気下におけるフィルムの衝撃打ち抜きに対する強度を測定した。衝撃球面は、直径1/2インチのものを用いた。単位はJ/μmで示した。

[フィルムのバイオマス度測定]

 得られたフィルムバイオマス度は、ASTM D6866-16 Method B (AMS)に示された放射性炭素(C14)測定により行った。

 以下に本実施例及び比較例で使用する原料樹脂及び塗工液の詳細を記す。なお、実施例1-1~1-8、及び比較例1~5で使用し、表1及び表2に示した。

 1)PBT樹脂:後述する二軸延伸ポリエステルフィルムの作製において使用するポリブチレンテレフタレート樹脂は1100-211XG(CHANG CHUN PLASTICS CO.,LTD.、固有粘度1.28dl/g)を用いた。

 2)バイオマス由来PET樹脂(B-1):後述する二軸延伸ポリエステルフィルムの作製において使用するバイオマス由来PET樹脂として、以下の方法を用いて合成したものを用いた。

<バイオマス由来のポリエステルの合成>

 テレフタル酸83質量部とバイオマスエチレングリコール(インディアグライコール社製)62質量部とをスラリーとして反応槽に供給し、常法の直重方法で、エステル化反応を240℃で5時間行った。その後、トリメチルフォスフェート(アルドリッチ社製)を0.013質量部添加(酸成分に対して15mmol%)してから高温真空条件下の重合反応に移行させた。まず、40分間で、真空度を4000Pa、重合温度280℃にまで昇温し、ついでその重合温度280℃のまま、真空度を200Paまで下げて溶融重合反応を行った。反応時間は3時間であった。合成したポリマーは、ストランドの形で流水中に吐出し、ペレタイザによってペレット化した。そのペレットを160℃において5時間乾燥後、窒素雰囲気下50Paの真空下205℃で固相重合して固有粘度0.8dl/gのポリマーを得た。なお、固有粘度はフェノール/テトラクロロエタン(成分比:3/2)溶媒を用い、35℃で測定した溶融粘度から算出した。得られたポリマーの示差熱分析(装置:島津製作所DSC-60、測定条件:ヘリウムガス中、6℃/分で昇温)を行ったところ、ガラス転移温度は69℃を示し、化石燃料由来の原料から得られる既知のポリエチレンテレフタレートと同等であった。

3)化石燃料由来PET樹脂(B-2):後述する二軸延伸ポリエステルフィルムの作製において使用する化石燃料由来PET樹脂として、テレフタル酸//エチレングリコール=100//100(モル%)(東洋紡株式会社製、固有粘度0.62dl/g)を用いた。

3)オキサゾリン基を有する樹脂(A):オキサゾリン基を有する樹脂として、市販の水溶性オキサゾリン基含有アクリレート(株式会社日本触媒製「エポクロス(登録商標)WS-300」;固形分10%)を用意した。この樹脂のオキサゾリン基量は7.7mmol/gであった。

4)アクリル樹脂(B):アクリル樹脂として、市販のアクリル酸エステル共重合体の25質量%エマルジョン(ニチゴー・モビニール株式会社製「モビニール(登録商標)7980」を用意した。このアクリル樹脂(B)の酸価(理論値)は4mgKOH/gであった。

5)ウレタン樹脂(C):ウレタン樹脂として、市販のポリエステルウレタン樹脂のディスパージョン(三井化学株式会社製「タケラック(登録商標)W605」;固形分30%)を用意した。このウレタン樹脂の酸価25mgKOH/gであり、DSCで測定したガラス転移温度(Tg)は100℃であった。また、H-NMRにより測定したポリイソシアネート成分全体に対する芳香族又は芳香脂肪族ジイソシアネートの割合は、55モル%であった。

6)ウレタン樹脂(D);:ウレタン樹脂として、市販のメタキシリレン基含有ウレタン樹脂のディスパージョン(三井化学株式会社製「タケラック(登録商標)WPB341」;固形分30%)を用意した。このウレタン樹脂の酸価25mgKOH/gであり、DSCで測定したガラス転移温度(Tg)は130℃であった。また、H-NMRにより測定したポリイソシアネート成分全体に対する芳香族又は芳香脂肪族ジイソシアネートの割合は、85モル%であった。

7)接着層に用いる塗工液1

 下記の配合比率で各材料を混合し、塗工液1(接着層用樹脂組成物)を作製した。

  水                54.40質量%

  イソプロパノール         25.00質量%

  オキサゾリン基含有樹脂 (A)  15.00質量%

  アクリル樹脂 (B)        3.60質量%

  ウレタン樹脂 (C)        2.00質量%

8)保護層のコートに用いる塗工液2

 下記の塗剤を混合し、塗工液2を作製した。

  水                60.00質量%

  イソプロパノール         30.00質量%

  ウレタン樹脂(D)        10.00質量%

[ラミネート積層体の作製]

 後述する実施例1~7及び比較例1~3に示したガスバリア性フィルムの保護層側に、ウレタン系2液硬化型接着剤(三井化学株式会社製「タケラック(登録商標)A525S」と「タケネート(登録商標)A50」を13.5:1(質量比)の割合で配合)を用いてドライラミネート法により、ヒートシール性樹脂層として厚さ70μmの無延伸ポリプロピレンフィルム(東洋紡株式会社製「P1147」)を貼り合わせ、40℃にて4日間エージングを施すことにより、評価用のラミネート積層体を得た。なお、ウレタン系2液硬化型接着剤で形成される接着剤層の乾燥後の厚みはいずれも約4μmであった。

[ラミネート積層体の水蒸気透過度]

 前述のラミネート積層体に対して、JIS-K7129-1992 B法に準じて、水蒸気透過度測定装置(MOCON社製「PERMATRAN-W1A」)を用い、温度40℃、相対湿度90RH%の雰囲気下で、常態での水蒸気透過度を測定した。なお、水蒸気透過度の測定は、基材フィルム層側からシーラント側に水蒸気が透過する方向で行った。

[ラミネート積層体のレトルト後の水蒸気透過度]

 前述のラミネート積層体に対して、レトルト釜内で130℃の熱水中に30分間保持する湿熱処理を行い、40℃で1日間(24時間)乾燥し、得られた湿熱処理後のラミネート積層体について上記と同様にして水蒸気透過度を測定した。

 以下に各実施例及び比較例で使用する二軸延伸ポリエステルフィルムの作製方法を記す。また、下記二軸延伸ポリエステルフィルムの物性を表1及び表2に示した。

<実施例1>

 一軸押出機を用い、PBT樹脂を80質量%と不活性粒子として平均粒径2.4μmのシリカ粒子を7000ppmとなるように混合したバイオマス由来のPET樹脂を20質量%配合したものを290℃で溶融させた後、メルトラインに導入した。ただし、バイオマス由来のPET樹脂は、押出し機に入る前に他原料と混合するように図1に示すようなインナーパイプを用いて入れた。

 次いで265℃のT-ダイスからキャストし、20℃の冷却ロールに静電密着法により密着させて未延伸シートを得た。

 次いで、60℃で縦方向に2.9倍ロール延伸し、次いで、テンターに通して90℃で横方向に4.0倍延伸し、200℃で3秒間の緊張熱処理と1秒間9%の緩和処理を実施した後、50℃で2秒間フィルムを冷却した。

 次いで、両端の把持部を10%ずつ切断除去して厚みが15μm、全幅4200mmのポリエステルフィルムの全幅のロール(以下、ミルロールという)を得た。得られたミルロールをスリットして、ロール幅2080mm幅のスリットロール2本を採取した。

 以下に示した無機薄膜層及び保護層の形成方法でスリットしたフィルムに無機薄膜層と保護層を形成してガスバリア性積層フィルムを得た。

<無機薄膜層の形成>

 スリットしたフィルムに無機薄膜層として二酸化ケイ素と酸化アルミニウムの複合酸化物層を電子ビーム蒸着法で形成した。蒸着源としては、3mm~5mm程度の粒子状SiO(純度99.9%)とA1(純度99.9%)とを用いた。このようにして得られたフィルム(無機薄膜層/接着層含有フィルム)における無機薄膜層(SiO/A1複合酸化物層)の膜厚は13nmであった。またこの複合酸化物層の組成は、SiO/A1(質量比)=60/40であった。

<保護層の形成>

 塗工液2をワイヤーバーコート法によって、上記の蒸着で形成された無機薄膜層上に塗布し、200℃で15秒乾燥させ、保護層を得た。乾燥後の塗布量は0.190g/m(Dry固形分として)であった。

 以上のようにして、基材フィルム上に接着層/無機薄膜層/保護層をこの順に備えたガスバリア性積層フィルムを作製した。

 得られたポリエステルフィルム及びガスバリア性フィルムの製膜条件、物性及び評価結果を表1に示した。

<実施例2~6、比較例1,2>

 二軸延伸ポリエステルフィルム2~6、及び比較例1,2の二軸延伸フィルムの製膜工程において、PBT樹脂の比率、バイオマス由来PETと化石燃料由来PETの比率、縦横延伸倍率、リラックス率を表1及び表2に示した以外は、実施例1と同様に行った。

 得られたポリエステルフィルム及びガスバリア性フィルムの製膜条件、物性及び評価結果を表1及び表2に示した。

<実施例7>

 一軸押出機を用い、PBT樹脂を80質量%とPET樹脂を20質量%混合したものに、不活性粒子として平均粒径2.4μmのシリカ粒子をシリカ濃度として混合樹脂に対して900ppmとなるように配合したものを290℃で溶融させた後、メルトラインに導入した。次いで265℃のT-ダイスからキャストし、20℃の冷却ロールに静電密着法により密着させて未延伸シートを得た。

 次いで、60℃で縦方向に2.9倍ロール延伸し、縦延伸後に接着層用樹脂組成物(塗工液1)をファウンテンバーコート法により塗布した。その後、乾燥しながらテンターに導き、次いで、テンターに通して90℃で横方向に4.0倍延伸し、200℃で3秒間の緊張熱処理と1秒間9%の緩和処理を実施した後、50℃で2秒間の冷却を行った。

 次いで、両端の把持部を10%ずつ切断除去して厚みが15μm、全幅4200mmのポリエステルフィルムのミルロールを得た。得られたミルロールをスリットして、幅が2080mmのスリットロール2本を採取した。

 得られたポリエステルフィルム及びガスバリア性フィルムの製膜条件、物性及び評価結果を表2に示した。

<比較例3>

 一軸押出機を用い、PBT樹脂を80質量%と不活性粒子として平均粒径2.4μmのシリカ粒子を7000ppmとなるように混合したPET樹脂を20質量%配合したものを290℃で溶融させた後、メルトラインを12エレメントのスタティックミキサーに導入した。PBT樹脂とPET樹脂の混合にはインナーパイプを用いず、ホッパー上部で混合した。

 上記同様265℃のT-ダイスからキャストし、20℃の冷却ロールに静電密着法により密着させて未延伸シートを得た。

 次いで、60℃で縦方向に2.9倍ロール延伸し、次いで、テンターに通して90℃で横方向に4.0倍延伸し、200℃で3秒間の緊張熱処理と1秒間9%の緩和処理を実施した後、50℃で2秒間の冷却を行いフィルムを冷却した。

 次いで、両端の把持部を10%ずつ切断除去して厚みが15μm、全幅4200mmのポリエステルフィルムの全幅のロール(以下、ミルロールという)を得た。得られたミルロールをスリットして、ロール幅2080mm幅のスリットロール2本を採取した。

 得られたポリエステルフィルム及びガスバリア性フィルムの製膜条件、物性及び評価結果を表2に示した。

 表1及び表2に示すように、本発明によって得られた二軸延伸ポリエステルフィルムにおいて、実施例1~7にみられるように、PBT比率を本発明の範囲とし、PET原料としてバイオマス由来のPETを用いることで、比較例1に示した石油由来PETと用いた場合と物性上遜色なく、耐ピンホール性に優れ、バイオマス度の高いカーボンニュートラルなポリエステルフィルムを得ることが可能であった。

 また、本発明によって得られた二軸延伸ポリエステルフィルムは、原料の供給にインナーパイプを用いることによって、長手方向での突刺し強度のばらつきが小さくなっていた。

 比較例2は、バイオマス由来のPETの比率を増やしているのでバイオマス度は高くなるが、同時にPBTの比率が低下するので、耐突刺し性などの力学強度が低下した。

 比較例3は、原料の供給にインナーパイプを用いておらず、原料の偏析のために長手方向で原料比率の変動が大きくなるため、長手方向の突刺し強度のばらつきが多くなっていた。

Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002



 本発明によれば、優れた耐ピンホール性、耐破袋性を有するとともに、バイオマスエチレングリコールを用いたカーボンニュートラルなポリエステルフィルムであり、巻き長の長い長尺のフィルムロールであっても長手方向の物性のばらつきが少ない二軸延伸ポリエステルフィルム及びその製造方法を提供することが可能となった。これらのフィルムは食品包装材料として広く適用でき得ることから、産業界に大きく寄与することが期待される。

 また、医薬品、工業製品等の包装用途の他、太陽電池、電子ペーパー、有機EL素子、半導体素子等の工業用途にも広く用いることができる。

 1 ホッパー

 2 押出機

 3 インナーパイプ

 4 インナーパイプ出口

Claims (7)


  1.  少なくとも(A)ポリブチレンテレフタレートを60~95質量%と(B)ポリエチレンテレフタレートを5~40質量%を含んでおり、前記ポリエチレンテレフタレート(B)のうちの少なくとも60質量%以上がバイオマス由来のエチレングリコールと化石燃料由来のジカルボン酸単位から構成されていることを特徴とする二軸延伸ポリエステルフィルムであって、下記(1)~(4)を同時に満足することを特徴とするポリエステルフィルム。

    (1)JIS Z 1707に準じて測定した突刺し強度が0.6N/μm以上。

    (2)フィルムの面配向度が0.144~0.160。

    (3)フィルムの150℃で15分間加熱後の熱収縮率が、縦方向が0~4%、横方向が-1~3%。

    (4)縦方向及び横方向の厚み精度がいずれも15%以下。

  2.  前記二軸延伸ポリエステルフィルム中の全炭素に対して、放射性炭素(C14)測定によるバイオマス由来の炭素の含有量が0.5~8%であることを特徴とする、前記請求項1に記載の二軸延伸ポリエステルフィルム。

  3.  縦方向にフィルムロールの表層から巻き芯まで1000m毎にサンプリングし、JIS Z 1707に準じて測定した突刺し強度の最大値をXmax(N)、最小値をXmin(N)、平均値をXaveとしたときの、下記式[1]で表される突刺し強度のばらつきが20%以下であることを特徴とする、前記請求項1又は2に記載のポリエステルフィルム。

     突刺し強度の長手方向ばらつき(%)=100×(Xmax-Xmin)/Xave・・・[1]

  4.  前記請求項1~3いずれかに記載のポリエステルフィルムの少なくとも片方の面に無機薄膜層を有してなるガスバリア性積層フィルム。

  5.  ポリエステルフィルムと無機薄膜層の間に接着層を有することを特徴とする請求項4に記載のガスバリア性積層フィルム。

  6.  無機薄膜層の表面に保護層を有することを特徴とする請求項4又は5に記載のガスバリア性積層フィルム。

  7.  前記ポリエステル原料樹脂の溶融押出し工程において、ホッパーに上方から前記ポリブチレンテレフタレート(A)の原料樹脂チップを供給すると共に、ホッパー内であって押出機直上に出口を有する配管を通じて前記ポリエチレンテレフタレート(B)の原料樹脂チップを供給して、両チップを混合し、溶融押し出しすることを特徴とする請求項1~3いずれかに記載のポリエステルフィルムの製造方法。
PCT/JP2020/009975 2019-03-26 2020-03-09 ポリエステルフィルム及びその製造方法 WO2020195742A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020533042A JPWO2020195742A1 (ja) 2019-03-26 2020-03-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-058185 2019-03-26
JP2019058185 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020195742A1 true WO2020195742A1 (ja) 2020-10-01

Family

ID=72610119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009975 WO2020195742A1 (ja) 2019-03-26 2020-03-09 ポリエステルフィルム及びその製造方法

Country Status (3)

Country Link
JP (1) JPWO2020195742A1 (ja)
TW (1) TW202100627A (ja)
WO (1) WO2020195742A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168702A1 (ja) * 2021-02-03 2022-08-11 東洋紡株式会社 二軸配向ポリエステルフィルム及びその製造方法
WO2023157930A1 (ja) * 2022-02-17 2023-08-24 東洋紡株式会社 ポリアミドフィルムロール

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188471A1 (ja) * 2022-04-01 2023-10-05 タキロンシーアイ株式会社 ポリエステル系樹脂組成物及びポリエステル系シュリンクフィルム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012096469A (ja) * 2010-11-02 2012-05-24 Dainippon Printing Co Ltd バリア性フィルムおよびそれを用いた積層体
JP2012116082A (ja) * 2010-11-30 2012-06-21 Dainippon Printing Co Ltd ラミネートチューブ用積層体およびそれを用いたラミネートチューブ容器
JP2015036208A (ja) * 2013-08-12 2015-02-23 大日本印刷株式会社 バリア性フィルム、ならびにそれを用いた積層フィルムおよび包装体
WO2018062145A1 (ja) * 2016-09-28 2018-04-05 東洋紡株式会社 白色熱収縮性ポリエステル系フィルムロール
WO2019021759A1 (ja) * 2017-07-26 2019-01-31 東洋紡株式会社 ポリブチレンテレフタレートフィルムを用いた包装袋
JP2019155646A (ja) * 2018-03-09 2019-09-19 大日本印刷株式会社 バリア樹脂フィルム、バリア積層体及び該バリア積層体を用いた包装材料
WO2019187694A1 (ja) * 2018-03-30 2019-10-03 東洋紡株式会社 ポリエステルフィルムロール

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012096469A (ja) * 2010-11-02 2012-05-24 Dainippon Printing Co Ltd バリア性フィルムおよびそれを用いた積層体
JP2012116082A (ja) * 2010-11-30 2012-06-21 Dainippon Printing Co Ltd ラミネートチューブ用積層体およびそれを用いたラミネートチューブ容器
JP2015036208A (ja) * 2013-08-12 2015-02-23 大日本印刷株式会社 バリア性フィルム、ならびにそれを用いた積層フィルムおよび包装体
WO2018062145A1 (ja) * 2016-09-28 2018-04-05 東洋紡株式会社 白色熱収縮性ポリエステル系フィルムロール
WO2019021759A1 (ja) * 2017-07-26 2019-01-31 東洋紡株式会社 ポリブチレンテレフタレートフィルムを用いた包装袋
JP2019155646A (ja) * 2018-03-09 2019-09-19 大日本印刷株式会社 バリア樹脂フィルム、バリア積層体及び該バリア積層体を用いた包装材料
WO2019187694A1 (ja) * 2018-03-30 2019-10-03 東洋紡株式会社 ポリエステルフィルムロール

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168702A1 (ja) * 2021-02-03 2022-08-11 東洋紡株式会社 二軸配向ポリエステルフィルム及びその製造方法
WO2023157930A1 (ja) * 2022-02-17 2023-08-24 東洋紡株式会社 ポリアミドフィルムロール

Also Published As

Publication number Publication date
JPWO2020195742A1 (ja) 2020-10-01
TW202100627A (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
JP6607473B2 (ja) 熱収縮性フィルム用ポリエステル樹脂、熱収縮性フィルム、熱収縮性ラベル、及び包装体
CN109476857B (zh) 密封剂膜和其制备方法
WO2020195742A1 (ja) ポリエステルフィルム及びその製造方法
WO2020203106A1 (ja) ポリエステルフィルム及びその製造方法
JP2022022284A (ja) 積層体およびそれを備える包装製品
JP6927336B2 (ja) ガスバリア性積層フィルムおよびその製造方法
JPWO2018159157A1 (ja) 積層フィルム
JP2022009158A (ja) 積層体およびそれを備える包装製品
WO2020203105A1 (ja) ポリエステルフィルム及びその製造方法
JP6226245B2 (ja) ポリエステル樹脂組成物の積層体
JP6176301B2 (ja) ポリエステル樹脂組成物の積層体
JP6260597B2 (ja) ポリエステル樹脂組成物の積層体
JP6547817B2 (ja) ポリエステル樹脂組成物の積層体
JP6176300B2 (ja) ポリエステル樹脂組成物の積層体
WO2024024960A1 (ja) ガスバリアフィルム、積層体、および包装容器
WO2024024954A1 (ja) ガスバリアフィルム、積層体、および包装容器
WO2024024959A1 (ja) ガスバリアフィルム、積層体、および包装容器
WO2024024941A1 (ja) 二軸配向ポリエステルフィルム、積層体、および包装容器
WO2024024131A1 (ja) ガスバリアフィルム、積層体、および包装容器
WO2024024952A1 (ja) 二軸配向ポリエステルフィルム、積層体、および包装容器
WO2024024947A1 (ja) 二軸配向ポリエステルフィルム、積層体、および包装容器
CN113498376B (zh) 双轴取向聚酯薄膜和双轴取向聚酯薄膜的制造方法
JP2024018866A (ja) ガスバリアフィルム、積層体、および包装容器
JP2024018872A (ja) 二軸配向ポリエステルフィルム、積層体、および包装容器
JP6176299B2 (ja) ポリエステル樹脂組成物の積層体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020533042

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779147

Country of ref document: EP

Kind code of ref document: A1