WO2020195113A1 - サスペンション制御装置 - Google Patents

サスペンション制御装置 Download PDF

Info

Publication number
WO2020195113A1
WO2020195113A1 PCT/JP2020/002902 JP2020002902W WO2020195113A1 WO 2020195113 A1 WO2020195113 A1 WO 2020195113A1 JP 2020002902 W JP2020002902 W JP 2020002902W WO 2020195113 A1 WO2020195113 A1 WO 2020195113A1
Authority
WO
WIPO (PCT)
Prior art keywords
command value
vehicle
control device
command
unit
Prior art date
Application number
PCT/JP2020/002902
Other languages
English (en)
French (fr)
Inventor
隆介 平尾
修之 一丸
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112020001515.7T priority Critical patent/DE112020001515T5/de
Priority to JP2021508144A priority patent/JP7186282B2/ja
Priority to CN202080025013.8A priority patent/CN113646194A/zh
Priority to US17/440,435 priority patent/US20220161624A1/en
Priority to KR1020217027858A priority patent/KR102587419B1/ko
Publication of WO2020195113A1 publication Critical patent/WO2020195113A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
    • B60G17/01908Acceleration or inclination sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/80Exterior conditions
    • B60G2400/82Ground surface

Definitions

  • the present invention relates to a suspension control device mounted on a vehicle such as an automobile.
  • a suspension control device that detects or estimates the vehicle state and controls the suspension according to the result is known (see Patent Document 1). Further, there is known a suspension control device that acquires the road surface condition in front of the vehicle by an outside world recognition sensor such as a camera and controls the suspension (preview control) according to the acquired road surface condition (see Patent Document 2).
  • controllable conditions are limited to, for example, low vehicle speed or daytime when the weather is good and image recognition is possible.
  • the parameters of the control logic are optimized parameters under certain conditions. Therefore, it is not always possible to obtain the optimum command value on all road surfaces.
  • An object of the present invention is to provide a suspension control device capable of preview control without being provided with an external world recognition sensor and capable of obtaining an optimum command value for any road surface.
  • the suspension control device obtains external information from a force generation mechanism provided between the vehicle body side and the wheel side of the vehicle and capable of adjusting the generated force, and an external database provided outside the vehicle.
  • a receiving unit provided inside the vehicle for receiving and a control device provided inside the vehicle for adjusting the generated force of the force generating mechanism are provided, and the control device is provided inside the vehicle.
  • the motion detection unit that detects the motion of the vehicle, the internal command calculation unit that calculates the first command value to the force generation mechanism based on the internal information output from the motion detection unit, and the reception unit. It has an external command calculation unit that calculates a second command value to the force generating mechanism based on the external information, and from the first command value and the second command value to the force generating mechanism. It is characterized by determining the command value.
  • suspension control device According to the suspension control device according to the embodiment of the present invention, preview control is possible without providing an external world recognition sensor, and an optimum command value can be obtained for any road surface.
  • FIG. 1 shows a suspension control device according to the first embodiment.
  • left and right front wheels and left and right rear wheels (hereinafter collectively referred to as wheels 2) are provided on the lower side of the vehicle body 1 constituting the body of the vehicle.
  • These wheels 2 are configured to include tires (not shown). This tire acts as a spring that absorbs the fine irregularities on the road surface.
  • the vehicle speed sensor 3 detects, for example, the number of rotations of the wheel 2 (that is, the tire) and outputs this as vehicle speed (vehicle running speed) information to the controller 11 described later.
  • the controller 11 acquires the vehicle speed based on the vehicle speed information from the vehicle speed sensor 3.
  • the vehicle speed sensor 3 constitutes a vehicle speed detection unit that detects or estimates the vehicle speed.
  • the controller 11 is not limited to acquiring the vehicle speed from the vehicle speed information from the vehicle speed sensor 3, and may acquire the vehicle speed from, for example, CAN 10 (Controller Area Network) or the like.
  • the suspension device 4 is provided between the vehicle body 1 and the wheels 2.
  • the suspension device 4 is a damping force adjusting shock absorber (hereinafter referred to as a variable damper 6) provided between the suspension spring 5 (hereinafter referred to as a spring 5) and the vehicle body 1 and the wheel 2 in a parallel relationship with the spring 5. )
  • a damping force adjusting shock absorber hereinafter referred to as a variable damper 6
  • FIG. 1 schematically illustrates a case where a set of suspension devices 4 is provided between the vehicle body 1 and the wheels 2.
  • a total of four suspension devices 4 are individually and independently provided between the four wheels 2 and the vehicle body 1.
  • variable damper 6 of the suspension device 4 is a force generating mechanism provided between the vehicle body 1 side and the wheel 2 side and capable of adjusting the generated force.
  • the variable damper 6 is configured by using a hydraulic shock absorber with an adjustable damping force.
  • the variable damper 6 is provided with a damping force adjusting valve or the like for continuously adjusting the generated damping force characteristic (that is, damping force characteristic) from a hard characteristic (hard characteristic) to a soft characteristic (soft characteristic).
  • a force variable actuator 7 is attached.
  • a command current (command signal) corresponding to a command value is input from the controller 11 to the variable damping force actuator 7.
  • the variable damping force actuator 7 adjusts the damping force generated by the variable damper 6 according to the command value.
  • the damping force variable actuator 7 does not necessarily have to be configured to continuously adjust the damping force characteristics, and may be capable of adjusting the damping force in a plurality of stages of, for example, two or more stages. Further, the variable damper 6 may be a pressure control type or a flow rate control type.
  • the GPS receiver 8 is provided on the vehicle body 1 and receives a signal from a GPS (Global Positioning System) satellite (hereinafter referred to as a GPS signal).
  • the GPS receiver 8 calculates the current position of the vehicle based on the GPS signal.
  • the GPS receiver 8 outputs information on the current position to the controller 11.
  • the current position of the vehicle is not limited to the case of acquiring from the GPS receiver 8, and may be estimated by a technique such as a vehicle speed sensor, a gyro, or matching with a map.
  • the communication unit 9 is a receiving unit provided inside the vehicle.
  • the communication unit 9 receives a dynamic map as external information from the cloud C, which is an external database provided outside the vehicle.
  • Cloud C cloud computing
  • the communication unit 9 is provided on the vehicle body 1 and communicates with an external cloud C. For example, when a destination is set on the vehicle side, the communication unit 9 transmits information on the destination and the current position to the cloud C. Cloud C determines a travel route from the current position to the destination, and calculates a vehicle speed plan for traveling on the route.
  • the communication unit 9 receives from the cloud C a dynamic map in the vicinity of the current position including the route plan including the calculated route and the vehicle speed and the command value to the suspension device 4 (variable damper 6) according to the position and the vehicle speed. to download.
  • the downloaded dynamic map is stored in the dynamic map storage unit 14A of the controller 11.
  • the dynamic map is a digital map that combines a static high-precision map with dynamic position information such as traffic congestion information and traffic regulation.
  • the dynamic map also includes the optimum command value according to the position on the map and the vehicle speed.
  • CAN 10 is provided on the vehicle body 1. CAN information including various vehicle state quantities such as front-rear acceleration, lateral acceleration, yaw rate, steering angle, etc. is transmitted to the CAN 10. The CAN 10 is connected to the controller 11. The CAN 10 outputs CAN information to the controller 11.
  • the controller 11 is a control device provided inside the vehicle and adjusting the generated force of the variable damper 6.
  • the controller 11 includes a state estimation unit 12, a steering stability control unit 13, a dynamic map control unit 14, and a maximum value selection unit 15.
  • the state estimation unit 12 is provided inside the vehicle and is a motion detection unit that detects the motion of the vehicle.
  • the state estimation unit 12 estimates the state of the vehicle based on the CAN information from the CAN 10 and the vehicle speed from the vehicle speed sensor 3.
  • the vehicle speed does not have to be acquired directly from the vehicle speed sensor 3, and may be acquired via the CAN 10.
  • the CAN information includes various vehicle state quantities such as the vehicle's longitudinal acceleration, lateral acceleration, yaw rate, steering angle, and the like.
  • this vehicle state quantity includes delay time and noise. Therefore, the state estimation unit 12 estimates the state of the vehicle such as front / rear / left / right translation and yaw based on the vehicle state quantity acquired by CAN information or the like.
  • the state estimation unit 12 compensates for the delay time from the acquired vehicle state amount and removes noise based on the estimated vehicle state.
  • the state estimation unit 12 calculates the vehicle state amount (for example, front-rear acceleration, lateral acceleration, yaw rate, etc.) for which the delay time has been compensated, and the steering stability control unit 13 uses the internal information composed of the calculated vehicle state amount. Output to.
  • the steering stability control unit 13 is an internal command that calculates a first command value to the variable damper 6 (force generation mechanism) based on the vehicle state quantity (internal information) output from the state estimation unit 12 (motion detection unit). It is a calculation unit.
  • the steering stability control unit 13 calculates a steering stability feedback command value (hereinafter, referred to as an AFB command value) so that the damping force characteristic of the variable damper 6 becomes harder as the lateral acceleration increases, for example.
  • the AFB command value is the first command value calculated based on the vehicle state quantity output from the state estimation unit 12.
  • the dynamic map control unit 14 is an external command calculation unit that calculates a second command value to the variable damper 6 based on the dynamic map (external information) received from the communication unit 9.
  • the dynamic map control unit 14 calculates a feed forward command value (hereinafter referred to as an FF command value) so that the damping force characteristic of the variable damper 6 becomes hard or soft by the dynamic map according to the current position and vehicle speed of the vehicle. To do.
  • the FF command value is the second command value calculated based on the dynamic map received from the communication unit 9.
  • the dynamic map control unit 14 includes a dynamic map storage unit 14A, a current location vehicle speed / command table output unit 14B, and a command value calculation unit 14C.
  • the dynamic map storage unit 14A downloads a dynamic map including the position information of the road surface and the control command value optimized for the vehicle speed according to the current position, and temporarily stores the data on the route plan.
  • the current location vehicle speed / command table output unit 14B reads out the vehicle speed / command table of the current position from the dynamic map based on the current position and outputs it. If the current position is not on the dynamic map, the current location vehicle speed / command table output unit 14B has a predetermined fixed command value (for example, fixed to soft, fixed to hard, or fixed to an intermediate value between soft and hard). Outputs the vehicle speed / command table.
  • a predetermined fixed command value for example, fixed to soft, fixed to hard, or fixed to an intermediate value between soft and hard.
  • the command value calculation unit 14C calculates the FF command value according to the current vehicle speed from the vehicle speed / command table output from the current location vehicle speed / command table output unit 14B.
  • the command value calculation unit 14C outputs the FF command value to the maximum value selection unit 15.
  • the maximum value selection unit 15 compares the AFB command value output from the steering stability control unit 13 with the FF command value output from the dynamic map control unit 14, and finally determines the hard side (larger value). Select as a command value. As a result, the controller 11 determines the command value to the variable damper 6 from the AFB command value and the FF command value. The maximum value selection unit 15 outputs a command signal (command current) corresponding to the selected command value to the damping force variable actuator 7. As a result, the controller 11 controls the generated damping force of the variable damper 6 according to the command value.
  • the suspension control device has the above-described configuration, and its operation will be described next with reference to FIG.
  • the communication unit 9 transmits the current position and destination of the vehicle to the cloud C.
  • Cloud C determines a travel route from the current position to the destination, and calculates a vehicle speed plan for traveling on the route.
  • a dynamic map near the current location including the calculated route plan (route, vehicle speed), position, and command value to the variable damper 6 according to the vehicle speed is downloaded from the cloud C to the controller 11.
  • the dynamic map control unit 14 of the controller 11 calculates the FF command value of the four-wheel variable damper 6 based on the dynamic map according to the current position and the vehicle speed.
  • the controller 11 can feed-forward control the generated damping force of the variable damper 6 according to the road surface unevenness and the curve stored on the cloud C. As a result, the riding comfort and steering stability of the vehicle can be improved.
  • the controller 11 calculates the AFB command value to the variable damper 6 based on the CAN information (front-rear acceleration, lateral acceleration, yaw rate, steering angle).
  • the controller 11 feedback-controls the generated damping force of the variable damper 6 by using the AFB command value.
  • the suspension control device can deal with vehicle behavior that cannot occur in route planning.
  • FIG. 2 shows an example of the relationship between the road surface displacement, the road surface curvature, the command value (second command value), the position, and the vehicle speed stored in the dynamic map.
  • a map of command values, positions, and vehicle speeds downloaded from Cloud C is stored.
  • the command value based on the current position and vehicle speed is determined.
  • the example shown in FIG. 2 assumes a case where the traveling path includes an A road surface and a B road surface having different wavelengths.
  • the road surface input frequency is lower than the spring resonance frequency on both the A road surface and the B road surface, and the spring does not vibrate. Therefore, the command value of the dynamic map becomes constant by the command (soft command) for softening the variable damper 6.
  • the command value of the dynamic map is switched from the soft command to the hard command (command to make the variable damper 6 hard) at the position of the A road surface.
  • the command value of the dynamic map is switched from the soft command to the hard command at the position of the B road surface.
  • lateral acceleration exceeding a predetermined value is generated according to the road surface curvature. That is, the lateral acceleration increases only when the vehicle speed is high. Therefore, the command value of the dynamic map switches from the soft command to the hard command at the position where the lateral acceleration increases according to the road surface curvature.
  • the simulation conditions were vehicle specifications assuming an E-segment sedan.
  • As the simulation model a 1/4 vehicle model considering the on-spring and unsprung mass was used.
  • the road surface was a swell road shown in FIG. 3 in order to confirm the basic vibration damping performance on the spring.
  • a simulation was performed when the vehicle traveled at 80 km / h.
  • the feedback control rule was skyhook control.
  • the feed forward control using the cloud C is a control rule in which the skyhook control command is stored according to the position.
  • the simulation results are shown in FIG.
  • the current value (command value) by the feedforward control according to the dynamic map information according to the present embodiment substantially matches the current value (command value) by the conventional feedback control shown as a comparative example.
  • the spring acceleration and the spring displacement in FIG. 4 are substantially the same in the comparative example and the present embodiment. Therefore, it can be seen that the feedforward control according to the dynamic map information according to the present embodiment has the same performance as the conventional feedback control shown as a comparative example. As a result, it can be seen that even with feedforward control according to the position information without a sensor, the same vibration damping performance as the conventional feedback control can be realized, and the same performance can be realized while reducing the cost.
  • the suspension control device is provided on the vehicle body 1 side and the wheel 2 side of the vehicle, and is provided on the variable damper 6 (force generation mechanism) capable of adjusting the generated force, and on the outside of the vehicle.
  • a communication unit 9 (receiver) provided inside the vehicle that receives a dynamic map (external information) from the provided cloud C (external database), and a controller provided inside the vehicle that adjusts the generated force of the variable damper 6. 11 (control device) and.
  • the controller 11 is provided inside the vehicle and is based on the state estimation unit 12 (motion detection unit) that detects the motion of the vehicle and the vehicle state amount (internal information) output from the state estimation unit 12.
  • the steering stability control unit 13 (internal command calculation unit) that calculates the AFB command value (first command value) to the variable damper 6 and the FF command value to the variable damper 6 based on the dynamic map received from the communication unit 9. It has a dynamic map control unit 14 (external command calculation unit) that calculates (second command value), and determines a command value to the variable damper 6 from the AFB command value and the FF command value.
  • the controller 11 can download the FF command value according to the current position of the vehicle, the vehicle speed, and the like. Therefore, for example, the variable damper 6 can be preview-controlled even when there is no external visual recognition sensor, and the performance such as riding comfort and steering stability can be improved.
  • the controller 11 controls the variable damper 6 by combining an AFB command value for feedback control by the steering stability control unit 13 and an FF command value for feedforward control by the dynamic map control unit 14. Therefore, in addition to being able to change the control command before passing the road surface by the FF command value, it is also possible to control the variable damper 6 according to the vehicle state by the AFB command value. As a result, the vibration damping effect of the vehicle can be enhanced.
  • the controller 11 determines the command value to the variable damper 6 by using the FF command value for which the dynamic map control unit 14 performs feed forward control. Therefore, the controller 11 can determine the command value for the variable damper 6 so that the control command value is optimized based on the road surface information to be traveled from now on. Therefore, the controller 11 can determine the optimum command value on any road surface.
  • the steering stability control unit 13 calculates the AFB command value based on the CAN information provided in the vehicle. Therefore, it is not necessary to provide a new sensor such as an acceleration sensor only for suspension control, and the system can be simplified and the manufacturing cost can be reduced.
  • the dynamic map is the FF command value for the variable damper 6 determined according to the road surface and vehicle speed. Therefore, the dynamic map control unit 14 can calculate the FF command value according to the road surface on which the vehicle travels and the vehicle speed at that time based on the dynamic map.
  • FIG. 5 shows a second embodiment.
  • the feature of the second embodiment is that the ride comfort control is added to the feedback control.
  • the same components as those in the first embodiment described above are designated by the same reference numerals, and the description thereof will be omitted.
  • the controller 21 according to the second embodiment is a control device having substantially the same configuration as the controller 11 according to the first embodiment, provided inside the vehicle, and adjusting the generated force of the variable damper 6.
  • the controller 21 is configured by using, for example, a microcomputer.
  • the controller 21 includes a state estimation unit 12, a steering stability control unit 13, a ride comfort control unit 22, a dynamic map control unit 14, a command value correction unit 23, and a maximum value selection unit. It has 24 and.
  • the ride comfort control unit 22 calculates an internal command that calculates a first command value to the variable damper 6 (force generation mechanism) based on the vehicle state amount (internal information) output from the state estimation unit 12 (motion detection unit). It is a department.
  • the ride comfort control unit 22 includes a bilinear optimum control unit 22A (hereinafter referred to as BLQ22A), a damping coefficient limiting unit 22B, and a damping force map 22C.
  • the ride comfort control unit 22 is between the vehicle state quantity including the sprung velocity output from the state estimation unit 12 and the unsprung (wheel 2) and the unsprung (wheel 2) output from the state estimation unit 12.
  • the ride comfort feedback command value (hereinafter referred to as BFB command value) for reducing the vertical vibration on the spring is output.
  • the BFB command value is the first command value calculated based on the vehicle state quantity output from the state estimation unit 12.
  • the BLQ22A calculates the damping coefficient (target damping coefficient) of the variable damper 6 for reducing the vertical vibration on the spring from the vehicle state amount and the relative speed from the state estimation unit 12 based on the bilinear optimum control theory. To do.
  • the attenuation coefficient output from the BLQ 22A and the relative speed output from the state estimation unit 12 are input to the attenuation coefficient limiting unit 22B.
  • the attenuation coefficient limiting unit 22B independently limits the maximum value of the attenuation coefficient with a positive value and a negative value, respectively.
  • the damping coefficient limiting unit 22B limits the maximum value of the damping coefficient based on the relative speed in the vertical direction between the vehicle body 1 and the wheels 2.
  • the damping coefficient output from the damping coefficient limiting unit 22B and the relative velocity output from the state estimation unit 12 are input to the damping force map 22C.
  • the damping force map 22C is a map in which the relationship between the target damping coefficient and the command value is variably set according to the relative velocity.
  • the damping force map 22C has a BFB command value (first command value) output to the damping force variable actuator 7 based on the damping coefficient output from the damping coefficient limiting unit 22B and the relative velocity output from the state estimation unit 12. ) Is calculated.
  • the FF command value output from the dynamic map control unit 14 and the current position of the vehicle output from the GPS receiver 8 are input to the command value correction unit 23.
  • the command value correction unit 23 compares the route plan determined by the cloud C with the current position. When the command value correction unit 23 determines that the current position follows the route plan, the command value correction unit 23 outputs the FF command value output from the dynamic map control unit 14 as it is. On the other hand, when the command value correction unit 23 determines that the current position deviates from the route plan, the command value correction unit 23 corrects the FF command value output from the dynamic map control unit 14 to zero.
  • the AFB command value from the steering stability control unit 13 or the BFB command value from the ride comfort control unit 22 is larger (hard side value) than the FF command value. Therefore, the feedback control command (first command value) based on the vehicle state quantity is preferentially selected over the feedforward control command (second command value) based on the dynamic map.
  • the maximum value selection unit 24 has an AFB command value output from the steering stability control unit 13, a BFB command value output from the ride comfort control unit 22, and a command value correction unit 23 output from the dynamic map control unit 14. Compare with the FF command value corrected by, and select the one with the hardest side (larger value) as the final command value. As a result, the controller 21 determines the command value to the variable damper 6 from the AFB command value and the BFB command value which are the first command values and the FF command value which is the second command value. The maximum value selection unit 24 outputs a command signal (command current) corresponding to the selected command value to the damping force variable actuator 7. As a result, the controller 21 controls the generated damping force of the variable damper 6 according to the command value.
  • the controller 21 preferentially selects the AFB command value and the BFB command value, which are the first command values, and determines the command value to the variable damper 6.
  • the controller 21 includes a command value correction unit 23 that corrects the FF command value from the dynamic map control unit 14. Therefore, the command value correction unit 23 compares the route plan with the current position, and when it is determined that the route plan deviates from the route plan, the FF command value is set to zero in order to prevent uncertain control. As a result, when the route is deviated from the route plan, the feedback control by the steering stability control unit 13 and the ride comfort control unit 22 is preferentially executed.
  • the controller 21 can be used as the steering stability control unit 13 and the riding comfort.
  • the variable damper 6 can be feedback-controlled by the control unit 22. Therefore, for example, even when the communication with the cloud C is interrupted, the variable damper 6 can be appropriately controlled.
  • the ride comfort control unit 22 calculates the target damping coefficient by the control rule by the bilinear optimum control.
  • the present invention is not limited to this, and the ride comfort control unit may obtain the target damping coefficient and the target damping force by feedback control such as sky hook control and H ⁇ control.
  • FIG. 6 shows a third embodiment.
  • a feature of the third embodiment is that a vertical acceleration sensor is attached to the vehicle in order to detect the movement of the vehicle.
  • the same components as those in the first embodiment described above are designated by the same reference numerals, and the description thereof will be omitted.
  • the unsprung acceleration sensor 31 and the unsprung acceleration sensor 32 are vertical acceleration detection units attached to the vehicle.
  • the unsprung acceleration sensor 31 and the unsprung acceleration sensor 32 are included in the motion detection unit.
  • the spring acceleration sensor 31 is provided on the vehicle body 1 side of the vehicle.
  • the on-spring acceleration sensor 31 detects the vibration acceleration in the vertical direction on the vehicle body 1 side on the upper side of the spring, and outputs the detection signal to the controller 33 described later.
  • the unsprung acceleration sensor 32 is provided on the wheel 2 side of the vehicle.
  • the unsprung acceleration sensor 32 detects the vibration acceleration in the vertical direction on the wheel 2 side which is the unsprung side, and outputs the detection signal to the controller 33 described later.
  • the controller 33 according to the third embodiment is a control device having almost the same configuration as the controller 11 according to the first embodiment, provided inside the vehicle, and adjusting the generated force of the variable damper 6.
  • the controller 33 is configured by using, for example, a microcomputer.
  • the controller 33 includes adders 34 and 36 and a subtractor 35.
  • the integrator 34 calculates the sprung velocity, which is the velocity in the vertical direction of the vehicle body 1, by integrating the detection signal from the sprung acceleration sensor 31.
  • the integrator 34 outputs the sprung velocity.
  • the subtractor 35 subtracts the detection signal from the spring-down acceleration sensor 32 from the detection signal from the spring-up acceleration sensor 31, and calculates the difference between the spring-up acceleration and the spring-down acceleration. At this time, this difference value corresponds to the relative acceleration between the vehicle body 1 and the wheels 2.
  • the integrator 36 integrates the relative acceleration output from the subtractor 35 and calculates the relative velocity in the vertical direction between the vehicle body 1 and the wheels 2.
  • the integrator 36 outputs the relative velocity.
  • controller 33 includes a state estimation unit 12, a steering stability control unit 13, a ride comfort control unit 37, a dynamic map control unit 14, and a maximum value selection unit 38.
  • the ride comfort control unit 37 is configured in the same manner as the ride comfort control unit 22 according to the second embodiment.
  • the ride comfort control unit 37 gives a first command to the variable damper 6 (force generation mechanism) based on the spring-up acceleration and the spring-down acceleration (internal information) output from the spring-up acceleration sensor 31 and the spring-down acceleration sensor 32. It is an internal command calculation unit that calculates the value.
  • the ride comfort control unit 37 has a relative speed between the sprung speed output from the integrator 34 and the unsprung (vehicle body 1) and unsprung (wheel 2) output from the integrator 36. Based on the above, the BFB command value (first command value) for reducing the vertical vibration on the spring is output.
  • the ride comfort control unit 37 includes a BLQ 22A, a damping coefficient limiting unit 22B, a bilinear optimum control unit 37A (hereinafter referred to as BLQ37A), a damping coefficient limiting unit 37B, and a damping force similar to the damping force map 22C according to the second embodiment. It has a map 37C.
  • the BLQ37A is a variable damper 6 for reducing vertical vibration on the spring from the spring-up velocity output from the integrator 34 and the relative velocity output from the integrator 36 based on the bilinear optimum control theory. Calculate the damping coefficient (target damping coefficient).
  • the damping coefficient limiting unit 37B limits the maximum value of the damping coefficient based on the relative speed in the vertical direction between the vehicle body 1 and the wheels 2.
  • the damping force map 37C is a BFB command value as a first command value output to the damping force variable actuator 7 based on the damping coefficient output from the damping coefficient limiting unit 22B and the relative speed output from the integrator 36. Is calculated.
  • the maximum value selection unit 38 sets the AFB command value output from the steering stability control unit 13, the BFB command value output from the ride comfort control unit 37, and the FF command value output from the dynamic map control unit 14. Compare and select the one with the hardest side (larger value) as the final command value. As a result, the controller 33 determines the command value to the variable damper 6 from the AFB command value and the BFB command value which are the first command values and the FF command value which is the second command value. The maximum value selection unit 38 outputs a command signal (command current) corresponding to the selected command value to the damping force variable actuator 7. As a result, the controller 33 controls the generated damping force of the variable damper 6 according to the command value.
  • the suspension control device includes an on-spring acceleration sensor 31 and an unsprung acceleration sensor 32 attached to the vehicle.
  • the controller 33 calculates the sprung velocity and the relative velocity by integrating the signals from the sprung accelerometer 31 and the sprung accelerometer 32. Therefore, since the vehicle behavior can be directly detected, the effect of feedback control such as ride comfort control can be enhanced.
  • the integrator 36 is used.
  • the output relative velocity may be used.
  • FIG. 7 shows a fourth embodiment.
  • the feature of the fourth embodiment is that the dynamic map control unit and the ride comfort control unit calculate command values composed of damping coefficients, and the controller limits the magnitude of these command values to command values to the variable damper. Is to decide.
  • the same components as those in the third embodiment described above are designated by the same reference numerals, and the description thereof will be omitted.
  • the controller 41 according to the fourth embodiment is a control device having almost the same configuration as the controller 33 according to the third embodiment, provided inside the vehicle, and adjusting the generated force of the variable damper 6.
  • the controller 41 is configured by using, for example, a microcomputer.
  • the controller 41 includes adders 34 and 36 and a subtractor 35. Further, the controller 41 includes a state estimation unit 12, a dynamic map control unit 42, a steering stability control unit 43, a ride comfort control unit 44, an adder 45, and a damping force map 46.
  • the dynamic map control unit 42 is an external command calculation unit that calculates a second command value to the variable damper 6 based on the dynamic map (external information) received from the communication unit 9.
  • the dynamic map control unit 42 is configured in the same manner as the dynamic map control unit 14 according to the first embodiment. However, the dynamic map control unit 42 sets the steering stability feed forward command value (hereinafter referred to as the AFF command value) according to the current position and vehicle speed of the vehicle by the dynamic map, and sets the target damping for improving the steering stability. Calculate the coefficient.
  • the dynamic map control unit 42 uses the dynamic map as a ride comfort feed forward command value (hereinafter referred to as a BFF command value) according to the current position and vehicle speed of the vehicle, and targets damping for improving the ride comfort. Calculate the coefficient.
  • the AFF command value and the BFF command value are second command values calculated based on the dynamic map received from the communication unit 9.
  • the steering stability control unit 43 is an internal command that calculates a first command value to the variable damper 6 (force generation mechanism) based on the vehicle state quantity (internal information) output from the state estimation unit 12 (motion detection unit). It is a calculation unit.
  • the steering stability control unit 43 calculates an AFB command value composed of a damping coefficient (target damping coefficient) such that the damping force characteristic of the variable damper 6 becomes harder as the lateral acceleration increases, for example.
  • the AFB command value is a first command value calculated based on the vehicle state quantity output from the state estimation unit 12.
  • the ride comfort control unit 44 gives a first command to the variable damper 6 (force generation mechanism) based on the spring-up acceleration and the spring-down acceleration (internal information) output from the spring-up acceleration sensor 31 and the spring-down acceleration sensor 32. It is an internal command calculation unit that calculates the value. Specifically, the ride comfort control unit 44 has a relative speed between the spring-loaded speed output from the integrator 34 and the spring-loaded (vehicle body 1) and spring-loaded (wheel 2) output from the integrator 36. Based on the above, the BFB command value (first command value) including the damping coefficient (target damping coefficient) for reducing the vertical vibration on the spring is calculated.
  • the ride comfort control unit 44 outputs a B command value for improving the ride comfort based on the calculated BFB command value and the BFF command value input from the dynamic map control unit 42.
  • the ride comfort control unit 44 includes a bilinear optimum control unit 44A (hereinafter referred to as BLQ44A), an adder 44B, and a damping coefficient limiting unit 44C.
  • the BLQ37A is based on the bilinear optimum control theory, and is used to reduce the vertical vibration on the spring as a BFB command value from the sprung velocity output from the integrator 34 and the relative velocity output from the integrator 36.
  • the damping coefficient (target damping coefficient) of the variable damper 6 of the above is calculated.
  • the adder 44B adds the BFB command value consisting of the attenuation coefficient output from the BLQ37A and the BFF command value consisting of the attenuation coefficient output from the dynamic map control unit 42.
  • the adder 44B outputs the added attenuation coefficient to the attenuation coefficient limiting unit 44C.
  • the attenuation coefficient limiting unit 44C independently limits the maximum value of the attenuation coefficient with a positive value and a negative value, respectively.
  • the damping coefficient limiting unit 44C limits the maximum value of the damping coefficient based on the relative speed in the vertical direction between the vehicle body 1 and the wheels 2. As a result, the ride comfort control unit 44 outputs the B command value including the damping coefficient whose maximum value is limited in order to improve the ride comfort.
  • the adder 45 is output from the dynamic map control unit 42, the AFB command value consisting of the damping coefficient output from the steering stability control unit 43, the B command value consisting of the damping coefficient output from the ride comfort control unit 44, and the dynamic map control unit 42. Add the AFF command value consisting of the damping coefficient.
  • the adder 44B outputs the added damping coefficient to the damping force map 46.
  • the damping coefficient output from the adder 45 and the relative velocity output from the integrator 36 are input to the damping force map 46.
  • the damping force map 46 is a map in which the relationship between the target damping coefficient and the command value is variably set according to the relative velocity.
  • the damping force map 46 calculates a command value to be output to the damping force variable actuator 7 based on the damping coefficient output from the adder 45 and the relative velocity output from the integrator 36.
  • the dynamic map control unit 42 outputs the AFF command value and the BFF command value composed of the attenuation coefficient.
  • the ride comfort control unit 44 adds the BFB command value consisting of the damping coefficient calculated based on the spring speed and the relative speed and the BFF command value from the dynamic map control unit 42, and then assigns the damping coefficient limit to B Output the command value.
  • the controller 41 is a target obtained by adding the AFB command value output from the steering stability control unit 43, the B command value output from the ride comfort control unit 44, and the AFF command value output from the dynamic map control unit 42.
  • the damping coefficient and the relative velocity are input to the damping force map 46, and the final command value is calculated.
  • the controller 41 controls the variable damper 6 based on the final command value.
  • a damping coefficient limit is applied to the B command value that controls the riding comfort, and a sudden change in damping force is suppressed.
  • the AFB command value and the AFF command value for controlling the maneuverability shall be unlimited command values. As a result, it is possible to maintain the rise of the maneuverability control command and improve the maneuverability performance.
  • the command values of the target attenuation coefficient are used.
  • the present invention is not limited to this, and the command value of the target damping force may be used.
  • the damping force map becomes a map showing the relationship between the target damping force, the relative velocity, and the command value.
  • the controller may calculate the command value based on this damping force map.
  • the command values (AFF command value, BFF command value) output from the dynamic map are commanded to keep the damping ratio constant according to the vehicle specifications. It absorbs the difference in the magnitude of the command value.
  • the damping ratio ⁇ can be expressed by the following equation (1), where the on-spring mass m, the suspension spring constant k, and the suspension damping coefficient c.
  • the damping coefficient c of the suspension may be set as in the equation of Equation 2 according to the damping ratio ⁇ , the sprung mass m, and the suspension spring constant k.
  • the appropriate control timing differs depending on the natural frequency, it is possible to respond by transmitting the vehicle specification information from the vehicle side in advance on the cloud and outputting the command according to the specification from the cloud. Basically, the higher the natural frequency of the vehicle, the earlier the command timing, and the lower the natural frequency, the later the command timing.
  • a force generating mechanism for generating an adjustable force between the vehicle body 1 side and the wheel 2 side is configured by a variable damper 6 composed of a damping force adjusting hydraulic shock absorber.
  • the force generation mechanism may be configured by an air suspension, a stabilizer (kinesus), an electromagnetic suspension, or the like in addition to the hydraulic shock absorber.
  • cloud C was taken as an example as an external database.
  • the present invention is not limited to this, and may be, for example, a database of a server computer provided outside the vehicle.
  • the external information is not limited to the dynamic map, and may be any information including a command value to the variable damper according to the position and the vehicle speed.
  • the suspension control device used in the four-wheeled vehicle has been described as an example.
  • the present invention is not limited to this, and can be applied to, for example, a two-wheeled three-wheeled vehicle, a work vehicle, a truck or a bus which is a transport vehicle, or the like.
  • the suspension control device of the first aspect receives external information from a force generating mechanism provided between the vehicle body side and the wheel side of the vehicle and capable of adjusting the generated force, and an external database provided outside the vehicle.
  • a receiving unit provided inside the vehicle and a control device provided inside the vehicle to adjust the generated force of the force generating mechanism are provided, and the control device is provided inside the vehicle.
  • the motion detection unit that detects the motion of the vehicle, the internal command calculation unit that calculates the first command value to the force generation mechanism based on the internal information output from the motion detection unit, and the above-mentioned received from the reception unit. It has an external command calculation unit that calculates a second command value to the force generating mechanism based on external information, and a command value to the force generating mechanism from the first command value and the second command value. It is characterized by determining.
  • the internal command calculation unit calculates the first command value based on the CAN information provided in the vehicle.
  • the motion detection unit includes a vertical acceleration detection unit attached to the vehicle.
  • control device preferentially selects the first command value and determines the command value to the force generation mechanism. It is said.
  • the external information is the second command value to the force generating mechanism determined according to the road surface and the vehicle speed. ..
  • the first command value and the second command value are attenuation coefficients
  • the control device has the attenuation coefficient of the first command value. It is characterized in that the command value to the force generating mechanism is determined by limiting the magnitude of the second command value with the damping coefficient.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

サスペンション制御装置は、可変ダンパと、クラウドからダイナミックマップを受信する車両の内部に設けられる通信ユニットと、可変ダンパの発生力を調整するコントローラと、を備えている。コントローラは、車両の内部に設けられ、車両の運動を検出する状態推定部と、状態推定部から出力される内部情報に基づいて可変ダンパへのAFB指令値を算出する操縦安定性制御部と、通信ユニットから受信したダイナミックマップに基づいて可変ダンパへのFF指令値を算出するダイナミックマップ制御部と、を有している。コントローラは、AFB指令値とFF指令値とから、可変ダンパへの指令値を決定する。

Description

サスペンション制御装置
 本発明は、例えば自動車等の車両に搭載されるサスペンション制御装置に関する。
 車両状態を検出または推定し、その結果に応じてサスペンションを制御するサスペンション制御装置が知られている(特許文献1参照)。また、カメラ等の外界認識センサによって車両前方の路面状況を取得し、取得した路面状況に応じてサスペンションを制御(プレビュー制御)するサスペンション制御装置が知られている(特許文献2参照)。
特開2014-069759号公報 特開平11-42918号公報
 ところで、車両状態に応じてサスペンションを制御する場合には、車両状態を取得するために、各種のセンサが必要になる。このため、例えば加速度センサ、車高センサ、外界認識センサ等のようなセンサの数が増えると、システムが複雑化し、製造コストが高い。
 また、プレビュー制御をする場合は、車両前方の限られた範囲しか検出できず、検出範囲が狭い。このため、制御可能な条件が、例えば低車速時または画像認識が可能な天候のよい昼間等に限られてしまう。
 さらに、従来技術では、制御ロジックのパラメータは、一定の条件下で最適化されたパラメータとなっている。このため、あらゆる路面で最適な指令値が得られるとは限らない。
 本発明の目的は、外界認識センサを備えずにプレビュー制御が可能で、あらゆる路面に対して最適な指令値を得ることができるサスペンション制御装置を提供することにある。
 本発明の一実施形態によるサスペンション制御装置は、車両の車体側と車輪側との間に設けられ発生する力を調整可能な力発生機構と、前記車両の外部に設けられる外部データベースから外部情報を受信する前記車両の内部に設けられる受信部と、前記車両の内部に設けられ、前記力発生機構の発生力を調整する制御装置と、を備え、前記制御装置は、前記車両の内部に設けられ、該車両の運動を検出する運動検出部と、該運動検出部から出力される内部情報に基づいて前記力発生機構への第1指令値を算出する内部指令算出部と、前記受信部から受信した前記外部情報に基づいて前記力発生機構への第2指令値を算出する外部指令算出部と、を有し、前記第1指令値と前記第2指令値とから、前記力発生機構への指令値を決定することを特徴としている。
 本発明の一実施形態によるサスペンション制御装置によれば、外界認識センサを備えずにプレビュー制御が可能で、あらゆる路面に対して最適な指令値を得ることができる。
本発明の第1の実施形態によるサスペンション制御装置を示す全体構成図である。 路面上下変位、路面曲率およびダイナミックマップによる指令値の一例を示す説明図である。 シミュレーションに用いた路面形状の一例を示す説明図である。 減衰力可変アクチュエータに供給する電流値、ばね上加速度およびばね上変位の時間変化を示す特性線図である。 本発明の第2の実施形態によるサスペンション制御装置を示す全体構成図である。 本発明の第3の実施形態によるサスペンション制御装置を示す全体構成図である。 本発明の第4の実施形態によるサスペンション制御装置を示す全体構成図である。
 以下、本発明の実施形態によるサスペンション制御装置を、4輪自動車に適用した場合を例に挙げ、添付図面に従って詳細に説明する。
 図1は、第1の実施形態によるサスペンション制御装置を示している。図1において、車両のボディを構成する車体1の下側には、例えば左,右の前輪と左,右の後輪(以下、総称して車輪2という)が設けられている。これらの車輪2は、タイヤ(図示せず)を含んで構成されている。このタイヤは、路面の細かい凹凸を吸収するばねとして作用する。
 車速センサ3は、例えば車輪2(即ち、タイヤ)の回転数を検出し、これを車速(車両の走行速度)情報として後述のコントローラ11に出力する。コントローラ11は、車速センサ3からの車速情報に基づいて、車両速度を取得する。このとき、車速センサ3は、車両速度を検出または推定する車両速度検出部を構成している。なお、コントローラ11は、車速センサ3からの車速情報から車両速度を取得するものに限らず、例えばCAN10(Controller Area Network)等から車両速度を取得してもよい。
 サスペンション装置4は、車体1と車輪2との間に介装して設けられている。サスペンション装置4は、懸架ばね5(以下、スプリング5という)と、スプリング5と並列関係をなして車体1と車輪2との間に設けられた減衰力調整式緩衝器(以下、可変ダンパ6という)とにより構成される。なお、図1は、1組のサスペンション装置4を、車体1と車輪2との間に設けた場合を模式的に図示している。4輪自動車の場合、サスペンション装置4は、4つの車輪2と車体1との間に個別に独立して合計4組設けられる。
 ここで、サスペンション装置4の可変ダンパ6は、車体1側と車輪2側との間に設けられ、発生する力を調整可能な力発生機構である。可変ダンパ6は、減衰力調整式の油圧緩衝器を用いて構成されている。可変ダンパ6には、発生減衰力の特性(即ち、減衰力特性)をハードな特性(硬特性)からソフトな特性(軟特性)に連続的に調整するため、減衰力調整バルブ等からなる減衰力可変アクチュエータ7が付設されている。減衰力可変アクチュエータ7には、コントローラ11から指令値に応じた指令電流(指令信号)が入力される。減衰力可変アクチュエータ7は、指令値に応じて可変ダンパ6が発生する減衰力を調整する。
 なお、減衰力可変アクチュエータ7は、減衰力特性を必ずしも連続的に調整する構成でなくてもよく、例えば2段階以上の複数段階で減衰力を調整可能なものであってもよい。また、可変ダンパ6は、圧力制御タイプでもよく、流量制御タイプであってもよい。
 GPS受信機8は、車体1に設けられ、GPS(Global Positioning System)衛星からの信号(以下、GPS信号という)を受信する。GPS受信機8は、GPS信号に基づいて車両の現在位置を算出する。GPS受信機8は、現在位置の情報をコントローラ11に出力する。なお、車両の現在位置は、GPS受信機8から取得する場合に限らず、例えば車速センサ、ジャイロ、地図とのマッチングなどの技術によって推定してもよい。
 通信ユニット9は、車両の内部に設けられる受信部である。通信ユニット9は、車両の外部に設けられる外部データベースとなるクラウドCから外部情報としてのダイナミックマップを受信する。クラウドC(クラウド・コンピューティング)は、ネットワークを経由してユーザにサービスを提供する。通信ユニット9は、車体1に設けられ、外部のクラウドCと通信する。例えば車両側で目的地を設定すると、通信ユニット9は、目的地および現在位置の情報をクラウドCに送信する。クラウドCは、現在位置から目的地までの走行経路を決定し、経路を走行する車速計画を算出する。通信ユニット9は、算出された経路および車速を含む経路計画と、位置、車速に応じたサスペンション装置4(可変ダンパ6)への指令値とを含む現在位置近傍のダイナミックマップをクラウドCから受信(ダウンロード)する。ダウンロードされたダイナミックマップは、コントローラ11のダイナミックマップ保存部14Aに保存される。このとき、ダイナミックマップは、静的な高精度地図に、渋滞情報や通行規制などの動的な位置情報を組み合わせたデジタル地図である。ダイナミックマップは、地図上の位置と車速に応じた最適な指令値も含んでいる。
 CAN10は、車体1に設けられている。CAN10には、前後加速度、横加速度、ヨーレイト、操舵角等のような各種の車両状態量を含むCAN情報が伝送されている。CAN10は、コントローラ11に接続されている。CAN10は、コントローラ11にCAN情報を出力する。
 コントローラ11は、車両の内部に設けられ、可変ダンパ6の発生力を調整する制御装置である。コントローラ11は、状態推定部12と、操縦安定性制御部13と、ダイナミックマップ制御部14と、最大値選択部15とを備えている。
 状態推定部12は、車両の内部に設けられ、車両の運動を検出する運動検出部である。状態推定部12は、CAN10からのCAN情報と車速センサ3からの車速とに基づいて車両の状態を推定する。なお、車速は、車速センサ3から直接的に取得する必要はなく、CAN10を経由して取得してもよい。
 このとき、CAN情報は、例えば、車両の前後加速度、横加速度、ヨーレイト、操舵角等のような各種の車両状態量を含んでいる。しかしながら、この車両状態量は、遅れ時間やノイズが含まれている。そこで、状態推定部12は、CAN情報等によって取得した車両状態量に基づいて、前後左右並進、ヨーのような車両の状態を推定する。状態推定部12は、推定した車両の状態に基づいて、取得した車両状態量から遅れ時間を補償すると共に、ノイズを除去する。状態推定部12は、遅れ時間の補償等が行われた車両状態量(例えば、前後加速度、横加速度、ヨーレイト等)を算出し、算出した車両状態量からなる内部情報を操縦安定性制御部13に出力する。
 操縦安定性制御部13は、状態推定部12(運動検出部)から出力される車両状態量(内部情報)に基づいて可変ダンパ6(力発生機構)への第1指令値を算出する内部指令算出部である。操縦安定性制御部13は、例えば横加速度が大きくなるに従って、可変ダンパ6の減衰力特性がハードとなるような操縦安定性フィードバック指令値(以下、AFB指令値という)を算出する。このとき、AFB指令値は、状態推定部12から出力される車両状態量に基づいて算出される第1指令値である。
 ダイナミックマップ制御部14は、通信ユニット9から受信したダイナミックマップ(外部情報)に基づいて可変ダンパ6への第2指令値を算出する外部指令算出部である。ダイナミックマップ制御部14は、車両の現在位置と車速に応じて、ダイナミックマップにより、可変ダンパ6の減衰力特性がハードまたはソフトとなるようなフィードフォワード指令値(以下、FF指令値という)を算出する。このとき、FF指令値は、通信ユニット9から受信したダイナミックマップに基づいて算出される第2指令値である。
 ダイナミックマップ制御部14は、ダイナミックマップ保存部14A、現在地車速・指令テーブル出力部14Bおよび指令値算出部14Cを備えている。ダイナミックマップ保存部14Aは、路面の位置情報と車速に最適化された制御指令値を含むダイナミックマップを、現在位置に応じてダウンロードし、経路計画上のデータを一時的に保存する。
 現在地車速・指令テーブル出力部14Bは、現在位置を基にダイナミックマップから現在位置の車速・指令テーブルを読み出して出力する。仮に、現在位置がダイナミックマップに無い場合は、現在地車速・指令テーブル出力部14Bは、予め決められた一定の指令値(例えば、ソフトに固定、ハードに固定またはソフトとハードの中間値に固定)となる車速・指令テーブルを出力する。
 指令値算出部14Cは、現在地車速・指令テーブル出力部14Bから出力された車速・指令テーブルから現在の車速に応じたFF指令値を算出する。指令値算出部14Cは、FF指令値を最大値選択部15に出力する。
 最大値選択部15は、操縦安定性制御部13から出力されたAFB指令値と、ダイナミックマップ制御部14から出力されたFF指令値とを比較し、ハード側(大きい値)となる方を最終的な指令値として選択する。これにより、コントローラ11は、AFB指令値とFF指令値とから、可変ダンパ6への指令値を決定する。最大値選択部15は、選択した指令値に応じた指令信号(指令電流)を減衰力可変アクチュエータ7に出力する。これにより、コントローラ11は、可変ダンパ6の発生減衰力を指令値に応じて制御する。
 本実施形態によるサスペンション制御装置は、上述の如き構成を有するもので、次に、その作動について図1を参照して説明する。
 まず、車両側から目的地設定を行うと、通信ユニット9は、車両の現在位置と目的地をクラウドCに送信する。クラウドCは、現在位置から目的地までの走行経路を決定し、経路を走行する車速計画を算出する。算出された経路計画(経路、車速)と位置、車速に応じた可変ダンパ6への指令値を含む現在地近傍のダイナミックマップは、クラウドCからコントローラ11にダウンロードされる。
 車両が走行を開始すると、コントローラ11のダイナミックマップ制御部14は、現在位置と車速に応じて、ダイナミックマップに基づいて、4輪の可変ダンパ6のFF指令値を算出する。コントローラ11は、FF指令値を用いることによって、クラウドC上に保存されている路面凹凸やカーブに応じて、可変ダンパ6の発生減衰力をフィードフォワード制御することができる。これにより、車両の乗り心地や操縦安定性を向上させることができる。
 但し、信号や駐車車両等により経路計画どおりには走行できない場合がある。このため、コントローラ11は、CAN情報(前後加速度、横加速度、ヨーレイト、操舵角)に基づいて、可変ダンパ6へのAFB指令値を算出する。コントローラ11は、AFB指令値を用いることによって、可変ダンパ6の発生減衰力をフィードバック制御する。これにより、本実施形態によるサスペンション制御装置は、経路計画では発生し得ない車両挙動に対応することができる。
 次に、図2にダイナミックマップに保存される路面変位、路面曲率、指令値(第2指令値)、位置、車速の関係例を示す。このダイナミックマップには、クラウドCからダウンロードされた指令値、位置、車速のマップが保存されている。ダイナミックマップに基づいて、現在の位置と車速に基づく指令値が決定される。図2に示す例は、走行経路に波長の異なるA路面とB路面が含まれる場合を想定している。
 車速が低い場合(低車速の場合)には、A路面とB路面のいずれでも、路面入力周波数がばね上共振周波数より低くなり、ばね上が振動しない。このため、ダイナミックマップの指令値は、可変ダンパ6をソフトにする指令(ソフト指令)で一定になる。
 車速が低車速より高く高車速よりも低い場合(中車速の場合)には、A路面の入力周波数が共振周波数付近となる。このため、A路面のみ可変ダンパ6をハードにする制御を行うために、ダイナミックマップの指令値は、A路面の位置で、ソフト指令からハード指令(可変ダンパ6をハードにする指令)に切り替わる。
 車速が中車速よりも高い場合(高車速の場合)には、B路面の入力周波数が共振周波数付近となる。このため、B路面のみ可変ダンパ6をハードにする制御を行うために、ダイナミックマップの指令値は、B路面の位置で、ソフト指令からハード指令に切り替わる。
 また、高車速の場合は、路面曲率に応じて予め決められた値以上の横加速度が発生する。即ち、車速が高い場合のみ横加加速度が大きくなる。このため、ダイナミックマップの指令値は、路面曲率に応じて横加加速度が大きくなる位置で、ソフト指令からハード指令に切り替わる。
 次に、本実施形態によるサスペンション装置の効果を確認するため、クラウドCが無い従来通りのフィードバック制御を行った場合と、クラウドCからのダイナミックマップに基づくフィードフォワード制御を行った場合とについて、それぞれの指令値を比較した。なお、フィードフォワード制御の指令値は、事前に路面の位置に合わせて決める。
 シミュレーション条件は、Eセグメントのセダンを想定した車両諸元とした。シミュレーションモデルは、ばね上とばね下質量を考慮した1/4車両モデルを用いた。路面は、基本的なばね上の制振性能を確認するために、図3に示すうねり路とした。車両が80km/hで走行する場合について、シミュレーションを行った。
 フィードバック制御則は、スカイフック制御とした。クラウドCを用いたフィードフォワード制御は、スカイフック制御指令を位置に応じて記憶させた制御則である。シミュレーション結果を図4に示す。図4に示すように、本実施形態によるダイナミックマップ情報に合わせたフィードフォワード制御による電流値(指令値)は、比較例として示す従来のフィードバック制御による電流値(指令値)とほぼ一致する。これに加え、図4中のばね上加速度およびばね上変位は、比較例と本実施形態とで、ほぼ一致する。このため、本実施形態によるダイナミックマップ情報に合わせたフィードフォワード制御は、比較例として示す従来のフィードバック制御と同等な性能であることが分かる。これにより、センサ無の位置情報に合わせたフィードフォワード制御でも、従来のフィードバック制御と同等の制振性能が実現でき、コストを低減しながら、同等な性能を実現できることが分かる。
 かくして、本実施形態によれば、サスペンション制御装置は、車両の車体1側と車輪2側との間に設けられ発生する力を調整可能な可変ダンパ6(力発生機構)と、車両の外部に設けられるクラウドC(外部データベース)からダイナミックマップ(外部情報)を受信する車両の内部に設けられる通信ユニット9(受信部)と、車両の内部に設けられ、可変ダンパ6の発生力を調整するコントローラ11(制御装置)と、を備えている。
 これに加え、コントローラ11は、車両の内部に設けられ、車両の運動を検出する状態推定部12(運動検出部)と、状態推定部12から出力される車両状態量(内部情報)に基づいて可変ダンパ6へのAFB指令値(第1指令値)を算出する操縦安定性制御部13(内部指令算出部)と、通信ユニット9から受信したダイナミックマップに基づいて可変ダンパ6へのFF指令値(第2指令値)を算出するダイナミックマップ制御部14(外部指令算出部)と、を有し、AFB指令値とFF指令値とから、可変ダンパ6への指令値を決定する。
 これにより、通信ユニット9さえ有していれば、コントローラ11は、車両の現在位置や車速等に応じたFF指令値を、ダウンロードすることができる。このため、例えば外界視認センサが無い状態でも、可変ダンパ6をプレビュー制御することが可能になり、乗り心地や操縦安定性等の性能を向上することができる。
 また、コントローラ11は、操縦安定性制御部13によるフィードバック制御を行うAFB指令値と、ダイナミックマップ制御部14によるフィードフォワード制御を行うFF指令値と、を組み合わせて可変ダンパ6を制御する。このため、FF指令値によって路面通過前に制御指令を変更することができるのに加え、AFB指令値によって車両状態に応じた可変ダンパ6の制御も可能である。この結果、車両の制振効果を高めることができる。
 コントローラ11は、ダイナミックマップ制御部14によるフィードフォワード制御を行うFF指令値を用いて、可変ダンパ6への指令値を決定する。このため、これから走行する路面情報に基づいて、制御指令値が最適化されるように、コントローラ11は、可変ダンパ6に対する指令値を決定することができる。従って、コントローラ11は、あらゆる路面において最適な指令値を決定することができる。
 また、操縦安定性制御部13は、車両に設けられるCAN情報に基づいてAFB指令値を算出する。このため、サスペンション制御を行うためだけに加速度センサ等の新たなセンサを設ける必要がなく、システムを簡略化して、製造コストを低減することができる。
 さらに、ダイナミックマップは、路面と車速に応じて定めた可変ダンパ6へのFF指令値である。このため、ダイナミックマップ制御部14は、ダイナミックマップに基づいて、車両が走行する路面と、そのときの車速に応じたFF指令値を算出することができる。
 次に、図5は第2の実施形態を示している。第2の実施形態の特徴は、フィードバック制御に乗り心地制御を追加したことにある。なお、第2の実施形態では、上述した第1の実施形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
 第2の実施形態によるコントローラ21は、第1の実施形態によるコントローラ11とほぼ同様に構成され、車両の内部に設けられ、可変ダンパ6の発生力を調整する制御装置である。コントローラ21は、例えばマイクロコンピュータを用いて構成されている。
 図5に示すように、コントローラ21は、状態推定部12と、操縦安定性制御部13と、乗り心地制御部22と、ダイナミックマップ制御部14と、指令値補正部23と、最大値選択部24とを備えている。
 乗り心地制御部22は、状態推定部12(運動検出部)から出力される車両状態量(内部情報)に基づいて可変ダンパ6(力発生機構)への第1指令値を算出する内部指令算出部である。乗り心地制御部22は、双線形最適制御部22A(以下、BLQ22Aという)と、減衰係数制限部22Bと、減衰力マップ22Cとを備えている。乗り心地制御部22は、状態推定部12から出力されるばね上速度を含む車両状態量と、状態推定部12から出力されるばね上(車体1)とばね下(車輪2)との間の相対速度とに基づいて、ばね上の上下振動を低減するための乗り心地フィードバック指令値(以下、BFB指令値という)を出力する。このとき、BFB指令値は、状態推定部12から出力される車両状態量に基づいて算出される第1指令値である。
 BLQ22Aには、状態推定部12から出力される車両状態量が入力されるのに加えて、状態推定部12から出力されるばね上(車体1)とばね下(車輪2)との間の相対速度が入力される。BLQ22Aは、双線形最適制御理論に基づいて、状態推定部12からの車両状態量と相対速度とから、ばね上の上下振動を低減するための可変ダンパ6の減衰係数(目標減衰係数)を算出する。
 減衰係数制限部22Bには、BLQ22Aから出力される減衰係数と、状態推定部12から出力される相対速度とが入力される。減衰係数制限部22Bは、減衰係数の最大値を正の値と負の値でそれぞれ独立して制限する。減衰係数制限部22Bは、車体1と車輪2との間の上下方向の相対速度に基づいて、減衰係数の最大値に制限を加える。
 減衰力マップ22Cには、減衰係数制限部22Bから出力される減衰係数と、状態推定部12から出力される相対速度とが入力される。減衰力マップ22Cは、目標とする減衰係数と指令値との関係を、相対速度に従って可変に設定したマップである。減衰力マップ22Cは、減衰係数制限部22Bから出力される減衰係数と、状態推定部12から出力される相対速度とに基づいて、減衰力可変アクチュエータ7に出力するBFB指令値(第1指令値)を算出する。
 指令値補正部23には、ダイナミックマップ制御部14から出力されるFF指令値と、GPS受信機8から出力される車両の現在位置とが入力される。指令値補正部23は、クラウドCによって決定された経路計画と現在位置とを比較する。指令値補正部23は、現在位置が経路計画に従っていると判断した場合には、ダイナミックマップ制御部14から出力されるFF指令値をそのまま出力する。一方、指令値補正部23は、現在位置が経路計画から外れたと判断した場合には、ダイナミックマップ制御部14から出力されるFF指令値をゼロに補正する。この場合、FF指令値よりも、操縦安定性制御部13からのAFB指令値または乗り心地制御部22からのBFB指令値の方が大きな値(ハード側の値)となる。このため、ダイナミックマップによるフィードフォワード制御の指令(第2指令値)よりも、車両状態量に基づくフィードバック制御の指令(第1指令値)が優先して選択される。
 最大値選択部24は、操縦安定性制御部13から出力されたAFB指令値と、乗り心地制御部22から出力されたBFB指令値と、ダイナミックマップ制御部14から出力されて指令値補正部23によって補正されたFF指令値とを比較し、最もハード側(大きい値)となるものを最終的な指令値として選択する。これにより、コントローラ21は、第1指令値であるAFB指令値およびBFB指令値と、第2指令値であるFF指令値とから、可変ダンパ6への指令値を決定する。最大値選択部24は、選択した指令値に応じた指令信号(指令電流)を減衰力可変アクチュエータ7に出力する。これにより、コントローラ21は、可変ダンパ6の発生減衰力を指令値に応じて制御する。
 かくして、第2の実施形態でも、第1の実施形態とほぼ同様の作用効果を得ることができる。また、第2の実施形態では、乗り心地制御部22によるフィードバック制御を追加したから、ダイナミックマップ制御部14によるフィードフォワード制御ができない場合でも、車体1の上下方向の振動を抑制して、乗り心地を改善することができる。
 さらに、コントローラ21は、第1指令値であるAFB指令値およびBFB指令値を優先して選択し、可変ダンパ6への指令値を決定する。具体的には、コントローラ21は、ダイナミックマップ制御部14からのFF指令値を補正する指令値補正部23を備えている。このため、指令値補正部23は、経路計画と現在位置とを比較し、経路計画から外れたと判断した場合に、不確かな制御を防止するために、FF指令値をゼロにする。これにより、経路計画から外れた場合には、操縦安定性制御部13および乗り心地制御部22によるフィードバック制御が優先的に実行される。この結果、例えばクラウドC上の情報が古く、実際の路面状態は工事、事故などによって、路面凹凸、車速、曲率が想定外の場合にも、コントローラ21は、操縦安定性制御部13および乗り心地制御部22によって、可変ダンパ6をフィードバック制御することができる。従って、例えばクラウドCとの通信が途絶えた場合でも、可変ダンパ6を適切に制御することが可能になる。
 なお、第2の実施形態では、乗り心地制御部22は、双線形最適制御による制御則により目標減衰係数を算出するものとした。本発明はこれに限らず、乗り心地制御部は、例えばスカイフック制御、H∞制御等のフィードバック制御により、目標減衰係数や目標減衰力を求めてもよい。
 次に、図6は第3の実施形態を示している。第3の実施形態の特徴は、車両の運動を検出するために、上下方向の加速度センサが車両に取り付けられていることにある。なお、第3の実施形態では、上述した第1の実施形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
 ばね上加速度センサ31およびばね下加速度センサ32は、車両に取り付けられる上下加速度検出部である。ばね上加速度センサ31およびばね下加速度センサ32は、運動検出部に含まれる。
 ばね上加速度センサ31は、車両の車体1側に設けられている。ばね上加速度センサ31は、ばね上側となる車体1側で上下方向の振動加速度を検出し、その検出信号を後述のコントローラ33に出力する。
 ばね下加速度センサ32は、車両の車輪2側に設けられている。ばね下加速度センサ32は、ばね下側となる車輪2側で上下方向の振動加速度を検出し、その検出信号を後述のコントローラ33に出力する。
 第3の実施形態によるコントローラ33は、第1の実施形態によるコントローラ11とほぼ同様に構成され、車両の内部に設けられ、可変ダンパ6の発生力を調整する制御装置である。コントローラ33は、例えばマイクロコンピュータを用いて構成されている。
 図6に示すように、コントローラ33は、積分器34,36、減算器35を備えている。積分器34は、ばね上加速度センサ31からの検出信号を積分することによって、車体1の上下方向に対する速度となるばね上速度を演算する。積分器34は、ばね上速度を出力する。
 減算器35は、ばね上加速度センサ31からの検出信号からばね下加速度センサ32からの検出信号を減算し、ばね上加速度とばね下加速度との差分を演算する。このとき、この差分値は、車体1と車輪2との間の相対加速度に対応する。
 積分器36は、減算器35から出力された相対加速度を積分し、車体1と車輪2との間の上下方向の相対速度を演算する。積分器36は、相対速度を出力する。
 また、コントローラ33は、状態推定部12と、操縦安定性制御部13と、乗り心地制御部37と、ダイナミックマップ制御部14と、最大値選択部38とを備えている。
 乗り心地制御部37は、第2の実施形態による乗り心地制御部22と同様に構成されている。乗り心地制御部37は、ばね上加速度センサ31およびばね下加速度センサ32から出力されるばね上加速度およびばね下加速度(内部情報)に基づいて、可変ダンパ6(力発生機構)への第1指令値を算出する内部指令算出部である。具体的には、乗り心地制御部37は、積分器34から出力されるばね上速度と、積分器36から出力されるばね上(車体1)とばね下(車輪2)との間の相対速度とに基づいて、ばね上の上下振動を低減するためのBFB指令値(第1指令値)を出力する。乗り心地制御部37は、第2の実施形態によるBLQ22A、減衰係数制限部22B、減衰力マップ22Cと同様な、双線形最適制御部37A(以下、BLQ37Aという)、減衰係数制限部37B、減衰力マップ37Cを備えている。
 BLQ37Aは、双線形最適制御理論に基づいて、積分器34から出力されるばね上速度と、積分器36から出力される相対速度とから、ばね上の上下振動を低減するための可変ダンパ6の減衰係数(目標減衰係数)を算出する。減衰係数制限部37Bは、車体1と車輪2との間の上下方向の相対速度に基づいて、減衰係数の最大値に制限を加える。減衰力マップ37Cは、減衰係数制限部22Bから出力される減衰係数と、積分器36から出力される相対速度とに基づいて、減衰力可変アクチュエータ7に出力する第1指令値としてのBFB指令値を算出する。
 最大値選択部38は、操縦安定性制御部13から出力されたAFB指令値と、乗り心地制御部37から出力されたBFB指令値と、ダイナミックマップ制御部14から出力されたFF指令値とを比較し、最もハード側(大きい値)となるものを最終的な指令値として選択する。これにより、コントローラ33は、第1指令値であるAFB指令値およびBFB指令値と、第2指令値であるFF指令値とから、可変ダンパ6への指令値を決定する。最大値選択部38は、選択した指令値に応じた指令信号(指令電流)を減衰力可変アクチュエータ7に出力する。これにより、コントローラ33は、可変ダンパ6の発生減衰力を指令値に応じて制御する。
 かくして、第3の実施形態でも、第1の実施形態とほぼ同様の作用効果を得ることができる。また、第3の実施形態によるサスペンション制御装置は、車両に取り付けられるばね上加速度センサ31およびばね下加速度センサ32を備えている。コントローラ33は、ばね上加速度センサ31およびばね下加速度センサ32からの信号を積分演算することによって、ばね上速度と相対速度を算出する。このため、車両挙動を直接検知できるため、例えば乗り心地制御のようなフィードバック制御の効果を高めることができる。
 なお、操縦安定性制御部13が相対速度を用いてAFB指令値を算出する場合には、状態推定部12からの車両状態量に基づいて相対速度を取得するのに代えて、積分器36から出力される相対速度を用いてもよい。
 次に、図7は第4の実施形態を示している。第4の実施形態の特徴は、ダイナミックマップ制御部および乗り心地制御部が減衰係数からなる指令値を算出すると共に、コントローラは、これらの指令値の大きさを制限して可変ダンパへの指令値を決定することにある。なお、第4の実施形態では、上述した第3の実施形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
 第4の実施形態によるコントローラ41は、第3の実施形態によるコントローラ33とほぼ同様に構成され、車両の内部に設けられ、可変ダンパ6の発生力を調整する制御装置である。コントローラ41は、例えばマイクロコンピュータを用いて構成されている。
 図7に示すように、コントローラ41は、積分器34,36、減算器35を備えている。また、コントローラ41は、状態推定部12と、ダイナミックマップ制御部42と、操縦安定性制御部43と、乗り心地制御部44と、加算器45と、減衰力マップ46とを備えている。
 ダイナミックマップ制御部42は、通信ユニット9から受信したダイナミックマップ(外部情報)に基づいて可変ダンパ6への第2指令値を算出する外部指令算出部である。ダイナミックマップ制御部42は、第1の実施形態によるダイナミックマップ制御部14と同様に構成されている。但し、ダイナミックマップ制御部42は、車両の現在位置と車速に応じて、ダイナミックマップにより、操縦安定性フィードフォワード指令値(以下、AFF指令値という)として、操縦安定性を向上させるための目標減衰係数を算出する。これに加え、ダイナミックマップ制御部42は、車両の現在位置と車速に応じて、ダイナミックマップにより、乗り心地フィードフォワード指令値(以下、BFF指令値という)として、乗り心地を向上させるための目標減衰係数を算出する。AFF指令値およびBFF指令値は、通信ユニット9から受信したダイナミックマップに基づいて算出される第2指令値である。
 操縦安定性制御部43は、状態推定部12(運動検出部)から出力される車両状態量(内部情報)に基づいて可変ダンパ6(力発生機構)への第1指令値を算出する内部指令算出部である。操縦安定性制御部43は、例えば横加速度が大きくなるに従って、可変ダンパ6の減衰力特性がハードとなるような減衰係数(目標減衰係数)からなるAFB指令値を算出する。AFB指令値は、状態推定部12から出力される車両状態量に基づいて算出される第1指令値である。
 乗り心地制御部44は、ばね上加速度センサ31およびばね下加速度センサ32から出力されるばね上加速度およびばね下加速度(内部情報)に基づいて、可変ダンパ6(力発生機構)への第1指令値を算出する内部指令算出部である。具体的には、乗り心地制御部44は、積分器34から出力されるばね上速度と、積分器36から出力されるばね上(車体1)とばね下(車輪2)との間の相対速度とに基づいて、ばね上の上下振動を低減するための減衰係数(目標減衰係数)からなるBFB指令値(第1指令値)を算出する。乗り心地制御部44は、算出したBFB指令値と、ダイナミックマップ制御部42から入力されるBFF指令値とに基づいて、乗り心地を向上させるためのB指令値を出力する。乗り心地制御部44は、双線形最適制御部44A(以下、BLQ44Aという)と、加算器44Bと、減衰係数制限部44Cとを備えている。
 BLQ37Aは、双線形最適制御理論に基づいて、積分器34から出力されるばね上速度と、積分器36から出力される相対速度とから、BFB指令値として、ばね上の上下振動を低減するための可変ダンパ6の減衰係数(目標減衰係数)を算出する。
 加算器44Bは、BLQ37Aから出力される減衰係数からなるBFB指令値と、ダイナミックマップ制御部42から出力される減衰係数からなるBFF指令値とを加算する。加算器44Bは、加算した減衰係数を、減衰係数制限部44Cに出力する。
 減衰係数制限部44Cは、減衰係数の最大値を正の値と負の値でそれぞれ独立して制限する。減衰係数制限部44Cは、車体1と車輪2との間の上下方向の相対速度に基づいて、減衰係数の最大値に制限を加える。これにより、乗り心地制御部44は、乗り心地を向上させるために、最大値が制限された減衰係数からなるB指令値を出力する。
 加算器45は、操縦安定性制御部43から出力される減衰係数からなるAFB指令値と、乗り心地制御部44から出力される減衰係数からなるB指令値と、ダイナミックマップ制御部42から出力される減衰係数からなるAFF指令値とを加算する。加算器44Bは、加算した減衰係数を、減衰力マップ46に出力する。
 減衰力マップ46には、加算器45から出力される減衰係数と、積分器36から出力される相対速度とが入力される。減衰力マップ46は、目標とする減衰係数と指令値との関係を、相対速度に従って可変に設定したマップである。減衰力マップ46は、加算器45から出力される減衰係数と、積分器36から出力される相対速度とに基づいて、減衰力可変アクチュエータ7に出力する指令値を算出する。
 かくして、第4の実施形態でも、第1,第3の実施形態とほぼ同様の作用効果を得ることができる。また、第4の実施形態では、ダイナミックマップ制御部42は、減衰係数からなるAFF指令値およびBFF指令値を出力する。乗り心地制御部44は、ばね上速度と相対速度に基づいて算出した減衰係数からなるBFB指令値と、ダイナミックマップ制御部42からのBFF指令値とを加算した後に、減衰係数制限を付与したB指令値を出力する。コントローラ41は、操縦安定性制御部43から出力されるAFB指令値と、乗り心地制御部44から出力されるB指令値と、ダイナミックマップ制御部42から出力されるAFF指令値とを加算した目標減衰係数と相対速度を減衰力マップ46に入力し、最終的な指令値を算出する。コントローラ41は、この最終的な指令値に基づき可変ダンパ6を制御する。これにより、乗り心地制御を行うB指令値には減衰係数制限を付与して、急激な減衰力変化を抑制する。これに対し、操安性制御を行うAFB指令値およびAFF指令値は、制限のない指令値とする。これにより、操安性制御指令の立ち上がりを維持し、操安性性能を向上させることができる。
 なお、第4の実施形態では、目標減衰係数の指令値(AFB指令値、AFF指令値、BFB指令値、BFF指令値)を用いるものとした。本発明はこれに限らず、目標減衰力の指令値を用いてよい。この場合、減衰力マップは、目標減衰力、相対速度および指令値の関係を示すマップになる。コントローラは、この減衰力マップに基づき、指令値を算出してもよい。
 また、第4の実施形態では、ダイナミックマップから出力される指令値(AFF指令値、BFF指令値)は、車両諸元に応じて減衰比を一定に保つよう指令とすることで、車両諸元を指令値の大きさの違いを吸収する。減衰比ζは、ばね上質量m、サスペンションばね定数k、サスペンション減衰係数cとすると、以下の数1の式で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 これにより、減衰比ζを一定にするには、サスペンションの減衰係数cを、減衰比ζ、ばね上質量m、サスペンションばね定数kに応じて数2の式のように設定すればよい。
Figure JPOXMLDOC01-appb-M000002
 ここで、基本設定に対して補正するように構成する場合は、目標の減衰係数cに対して基本設定を1、現在の車両を2、補正係数をGとすると、以下の数3の式で表すことができる。これにより、基本設定の目標減衰係数(目標減衰力)に補正係数Gを乗算することにより、諸元違いによる指令値の大きさ違いを吸収することができる。
Figure JPOXMLDOC01-appb-M000003
 また、固有振動数により適切な制御タイミングが異なるため、クラウド上で事前に車両の諸元情報を車両側から送信し、諸元に応じた指令がクラウドから出力されることにより、対応できる。基本的には、車両の固有振動数が高いほど指令のタイミングが早く、固有振動数が低いほど指令のタイミングが遅くなる。
 前記各実施形態では、車体1側と車輪2側との間で調整可能な力を発生する力発生機構を、減衰力調整式の油圧緩衝器からなる可変ダンパ6により構成する場合を例に挙げて説明した。しかし、本発明はこれに限るものではなく、例えば力発生機構を液圧緩衝器の他に、エアサスペンション、スタビライザ(キネサス)、電磁サスペンション等により構成してもよい。
 前記各実施形態では、外部データベースとしてクラウドCを例に挙げて説明した。本発明はこれに限るものではなく、例えば車両の外部に設けられたサーバコンピュータのデータベースでもよい。また、外部情報は、ダイナミックマップに限らず、位置、車速に応じた可変ダンパへの指令値を含む情報であればよい。
 前記各実施形態では、4輪自動車に用いるサスペンション制御装置を例に挙げて説明した。本発明はこれに限るものではなく、例えば2輪、3輪自動車、または作業車両、運搬車両であるトラック、バス等にも適用できるものである。
 前記各実施の形態は例示であり、異なる実施の形態で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。
 次に、上記実施形態に含まれるサスペンション制御装置として、例えば、以下に述べる態様のものが考えられる。
 第1の態様のサスペンション制御装置は、車両の車体側と車輪側との間に設けられ発生する力を調整可能な力発生機構と、前記車両の外部に設けられる外部データベースから外部情報を受信する前記車両の内部に設けられる受信部と、前記車両の内部に設けられ、前記力発生機構の発生力を調整する制御装置と、を備え、前記制御装置は、前記車両の内部に設けられ、該車両の運動を検出する運動検出部と、該運動検出部から出力される内部情報に基づいて前記力発生機構への第1指令値を算出する内部指令算出部と、前記受信部から受信した前記外部情報に基づいて前記力発生機構への第2指令値を算出する外部指令算出部と、を有し、前記第1指令値と前記第2指令値とから、前記力発生機構への指令値を決定することを特徴としている。
 第2の態様としては、第1の態様において、前記内部指令算出部は、前記車両に設けられるCAN情報に基づいて前記第1指令値を算出することを特徴としている。
 第3の態様としては、第1または第2の態様において、前記運動検出部は、前記車両に取り付けられる上下加速度検出部を含むことを特徴としている。
 第4の態様としては、第1ないし第3のいずれかの態様において、前記制御装置は、前記第1指令値を優先して選択し、前記力発生機構への指令値を決定することを特徴としている。
 第5の態様としては、第1ないし第4のいずれかの態様において、前記外部情報は、路面と車速に応じて定めた前記力発生機構への前記第2指令値であることを特徴としている。
 第6の態様としては、第1ないし第5のいずれかの態様において、前記第1指令値および前記第2指令値は減衰係数であり、前記制御装置は、前記第1指令値の減衰係数と前記第2指令値の減衰係数との大きさを制限して前記力発生機構への指令値を決定することを特徴としている。
 尚、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 本願は、2019年3月27日付出願の日本国特許出願第2019-060489号に基づく優先権を主張する。2019年3月27日付出願の日本国特許出願第2019-060489号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。
 1 車体 2 車輪 3 車速センサ 4 サスペンション装置 6 可変ダンパ(力発生機構) 7 減衰力可変アクチュエータ 8 GPS受信機 9 通信ユニット(受信部) 10 CAN 11,21,33,41 コントローラ(制御装置) 12 状態推定部(運動検出部) 13,43 操縦安定性制御部(内部指令算出部) 14,42 ダイナミックマップ制御部(外部指令算出部) 15,24,38 最大値選択部 22,37,44 乗り心地制御部(内部指令算出部) 31 ばね上加速度センサ(上下加速度検出部) 32 ばね下加速度センサ(上下加速度検出部)

Claims (6)

  1.  サスペンション制御装置であって、該サスペンション制御装置は、
     車両の車体側と車輪側との間に設けられ発生する力を調整可能な力発生機構と、
     前記車両の外部に設けられる外部データベースから外部情報を受信する前記車両の内部に設けられる受信部と、
     前記車両の内部に設けられ、前記力発生機構の発生力を調整する制御装置と、
     を備え、
     前記制御装置は、
     前記車両の内部に設けられ、該車両の運動を検出する運動検出部と、
     該運動検出部から出力される内部情報に基づいて前記力発生機構への第1指令値を算出する内部指令算出部と、
     前記受信部から受信した前記外部情報に基づいて前記力発生機構への第2指令値を算出する外部指令算出部と、
     を有し、
     前記第1指令値と前記第2指令値とから、前記力発生機構への指令値を決定することを特徴とするサスペンション制御装置。
  2.  請求項1に記載のサスペンション制御装置において、
     前記内部指令算出部は、前記車両に設けられるCAN情報に基づいて前記第1指令値を算出することを特徴とするサスペンション制御装置。
  3.  請求項1または2に記載のサスペンション制御装置において、
     前記運動検出部は、前記車両に取り付けられる上下加速度検出部を含むことを特徴とするサスペンション制御装置。
  4.  請求項1ないし3のいずれか1項に記載のサスペンション制御装置において、
     前記制御装置は、前記第1指令値を優先して選択し、前記力発生機構への指令値を決定することを特徴とするサスペンション制御装置。
  5.  請求項1ないし4のいずれか1項に記載のサスペンション制御装置において、
     前記外部情報は、路面と車速に応じて定めた前記力発生機構への前記第2指令値であることを特徴とするサスペンション制御装置。
  6.  請求項1ないし5のいずれか1項に記載のサスペンション制御装置において、
     前記第1指令値および前記第2指令値は減衰係数であり、
     前記制御装置は、前記第1指令値の減衰係数と前記第2指令値の減衰係数との大きさを制限して前記力発生機構への指令値を決定することを特徴とするサスペンション制御装置。
PCT/JP2020/002902 2019-03-27 2020-01-28 サスペンション制御装置 WO2020195113A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112020001515.7T DE112020001515T5 (de) 2019-03-27 2020-01-28 Radaufhängungssteuerungsvorrichtung
JP2021508144A JP7186282B2 (ja) 2019-03-27 2020-01-28 サスペンション制御装置
CN202080025013.8A CN113646194A (zh) 2019-03-27 2020-01-28 悬架控制装置
US17/440,435 US20220161624A1 (en) 2019-03-27 2020-01-28 Suspension control apparatus
KR1020217027858A KR102587419B1 (ko) 2019-03-27 2020-01-28 서스펜션 제어 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-060489 2019-03-27
JP2019060489 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020195113A1 true WO2020195113A1 (ja) 2020-10-01

Family

ID=72609771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002902 WO2020195113A1 (ja) 2019-03-27 2020-01-28 サスペンション制御装置

Country Status (6)

Country Link
US (1) US20220161624A1 (ja)
JP (1) JP7186282B2 (ja)
KR (1) KR102587419B1 (ja)
CN (1) CN113646194A (ja)
DE (1) DE112020001515T5 (ja)
WO (1) WO2020195113A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023055122A (ja) * 2021-10-05 2023-04-17 本田技研工業株式会社 電動サスペンション装置
EP4186720A1 (de) * 2021-11-26 2023-05-31 Audi AG Aktive fahrwerksregelung für ein kraftfahrzeug

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113110186A (zh) * 2021-04-19 2021-07-13 华东交通大学 可随路面激励调整的汽车悬架系统用磁流变阻尼器控制器
JP7544010B2 (ja) * 2021-09-14 2024-09-03 トヨタ自動車株式会社 マップデータ、マップ更新方法、車両制御方法、及び車両制御システム
JP7544009B2 (ja) * 2021-09-14 2024-09-03 トヨタ自動車株式会社 マップデータ、マップ更新方法、車両制御方法、及び車両制御システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02227311A (ja) * 1989-03-01 1990-09-10 Hitachi Ltd 車両制御装置
JP2000318634A (ja) * 1993-03-17 2000-11-21 Denso Corp 車両制御装置
JP2002248921A (ja) * 2001-02-21 2002-09-03 Toyota Central Res & Dev Lab Inc 車両用懸架装置の制御装置
JP2010083329A (ja) * 2008-09-30 2010-04-15 Hitachi Automotive Systems Ltd サスペンション制御装置
JP2013049394A (ja) * 2011-08-31 2013-03-14 Hitachi Automotive Systems Ltd サスペンション制御装置

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1142918A (ja) 1997-07-25 1999-02-16 Nissan Motor Co Ltd サスペンション装置
JP4549738B2 (ja) * 2004-05-27 2010-09-22 株式会社日立製作所 車両の制御システム及び制御システム並びに制御方法
JP2008012960A (ja) * 2006-07-03 2008-01-24 Kayaba Ind Co Ltd 緩衝器の制御装置
ITMI20061403A1 (it) * 2006-07-19 2008-01-20 Milano Politecnico Metodo ed apparato per controllare una sospensione semiattiva
US8285447B2 (en) * 2007-03-20 2012-10-09 Enpulz, L.L.C. Look ahead vehicle suspension system
JP4567034B2 (ja) * 2007-08-08 2010-10-20 本田技研工業株式会社 減衰力可変ダンパの制御装置
US7872764B2 (en) * 2007-10-16 2011-01-18 Magna Electronics Inc. Machine vision for predictive suspension
US8451140B2 (en) * 2007-12-20 2013-05-28 International Business Machines Corporation Monitoring road surface conditions
DE102009021671A1 (de) * 2009-05-16 2010-11-18 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung und Verfahren zum geregelten Bedämpfen eines Fahrzeugs
WO2013034561A1 (en) * 2011-09-06 2013-03-14 Land Rover Suspension control device
US9533539B2 (en) * 2011-10-20 2017-01-03 GM Global Technology Operations LLC Vehicle suspension system and method of using the same
EP2851220B1 (en) * 2012-05-14 2016-10-19 Nissan Motor Co., Ltd. Vehicle control device and vehicle control method
JP6026207B2 (ja) * 2012-09-28 2016-11-16 日立オートモティブシステムズ株式会社 サスペンション制御装置
US8788146B1 (en) * 2013-01-08 2014-07-22 Ford Global Technologies, Llc Adaptive active suspension system with road preview
DE102013101639A1 (de) * 2013-02-19 2014-09-04 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zur Bestimmung eines Fahrbahnzustands
WO2014152482A2 (en) * 2013-03-15 2014-09-25 Levant Power Corporation Multi-path fluid diverter valve
EP3626485B1 (en) * 2013-03-15 2024-05-29 ClearMotion, Inc. Active vehicle suspension improvements
DE102014204519A1 (de) * 2013-04-08 2014-10-09 Ford Global Technologies, Llc Vorrichtung und Verfahren zur proaktiven Steuerung eines Schwingungsdämpfungssystems eines Fahrzeugs
JP5941886B2 (ja) * 2013-08-30 2016-06-29 本田技研工業株式会社 サスペンション制御装置
DE102013217870B4 (de) * 2013-09-06 2022-10-06 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zum Betreiben eines Dämpfungssystems für ein Kraftfahrzeug
US10377371B2 (en) * 2014-04-02 2019-08-13 ClearMotion, Inc. Active safety suspension system
DE102015205369B4 (de) * 2014-04-04 2019-08-22 Ford Global Technologies, Llc Verfahren zum Betrieb eines Federungssystems
US10160281B2 (en) * 2014-05-02 2018-12-25 Ford Global Technologies, Llc Road roughness preview with drive history
JP6482789B2 (ja) * 2014-08-19 2019-03-13 Kyb株式会社 サスペンション制御装置
US9682602B2 (en) * 2015-01-26 2017-06-20 Showa Corporation Control apparatus for damping force varying damper and damping force varying damper system
US9937765B2 (en) * 2015-04-28 2018-04-10 Ram Sivaraman Method of adapting an automobile suspension in real-time
KR102373365B1 (ko) * 2015-05-29 2022-03-11 주식회사 만도 다단 스위치를 구비한 전자제어 현가장치 및 그의 감쇠력 제어 방법
DE102015007592A1 (de) * 2015-06-16 2016-12-22 Audi Ag Trajektoriebasierte Fahrwerksregelung
JP2017015244A (ja) * 2015-06-30 2017-01-19 日立オートモティブシステムズ株式会社 シリンダ装置
US10160447B2 (en) * 2015-10-20 2018-12-25 Ford Global Technologies, Llc Systems and methods for abrupt road change assist and active suspension control
US9902229B2 (en) * 2016-02-19 2018-02-27 GM Global Technology Operations LLC Methods and systems for optimizing vehicle ride using road preview
JP6620051B2 (ja) * 2016-03-29 2019-12-11 株式会社ショーワ サスペンション制御装置、および、サスペンション装置
JP2017217933A (ja) * 2016-06-03 2017-12-14 アイシン精機株式会社 車高調整装置
CN116176201A (zh) * 2016-11-18 2023-05-30 北极星工业有限公司 具有可调节悬架的车辆
JP6273059B1 (ja) * 2017-03-24 2018-01-31 株式会社ショーワ 車両制御装置、および、車両
JP6480983B2 (ja) * 2017-06-16 2019-03-13 本田技研工業株式会社 電磁サスペンション装置
US10518887B2 (en) 2017-06-29 2019-12-31 The Boeing Company Rotationally-engaged quick installation track fitting
JP6359163B1 (ja) * 2017-08-03 2018-07-18 株式会社ショーワ サスペンション制御装置、および、サスペンション装置
WO2019065289A1 (ja) * 2017-09-27 2019-04-04 日立オートモティブシステムズ株式会社 車両制御装置
DE102017220094A1 (de) * 2017-11-10 2019-05-16 Volkswagen Aktiengesellschaft Verfahren und Fahrerassistenzsystem zur Verbesserung eines Fahrkomforts eines Fortbewegungsmittels sowie Fortbewegungsmittel
KR102417398B1 (ko) * 2017-12-15 2022-07-06 현대자동차주식회사 회피 후 안정화방식 샤시통합제어 방법 및 차량
JP7058340B2 (ja) * 2018-09-25 2022-04-21 日立Astemo株式会社 サスペンション制御装置
EP3911527A4 (en) * 2019-01-16 2022-11-02 Clearmotion, Inc. METHOD AND DEVICE FOR DYNAMIC CONTROL OF THE SUSPENSION SYSTEM OF A VEHICLE
KR102648181B1 (ko) * 2019-06-19 2024-03-15 현대자동차주식회사 능동 차고 제어방법
KR102706256B1 (ko) * 2019-07-08 2024-09-12 현대자동차주식회사 Ecs의 노면정보 보정방법 및 시스템
US20230152106A1 (en) * 2020-04-23 2023-05-18 ClearMotion, Inc. Terrain-based vehicle navigation and control
KR20210135797A (ko) * 2020-05-06 2021-11-16 현대자동차주식회사 차량의 서스펜션 제어 장치 및 그 방법
WO2022011499A1 (en) * 2020-07-13 2022-01-20 Gudsen Engineering, Inc. Vehicle sensors arrangement and method for mapping road profiles
JP7322855B2 (ja) * 2020-10-23 2023-08-08 トヨタ自動車株式会社 路面情報作成装置及び車両制御システム
US11932072B2 (en) * 2021-03-08 2024-03-19 DRiV Automotive Inc. Suspension control system and method with event detection based on unsprung mass acceleration data and pre-emptive road data
KR20230013566A (ko) * 2021-07-19 2023-01-26 현대자동차주식회사 차량용 서스팬션 제어 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02227311A (ja) * 1989-03-01 1990-09-10 Hitachi Ltd 車両制御装置
JP2000318634A (ja) * 1993-03-17 2000-11-21 Denso Corp 車両制御装置
JP2002248921A (ja) * 2001-02-21 2002-09-03 Toyota Central Res & Dev Lab Inc 車両用懸架装置の制御装置
JP2010083329A (ja) * 2008-09-30 2010-04-15 Hitachi Automotive Systems Ltd サスペンション制御装置
JP2013049394A (ja) * 2011-08-31 2013-03-14 Hitachi Automotive Systems Ltd サスペンション制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023055122A (ja) * 2021-10-05 2023-04-17 本田技研工業株式会社 電動サスペンション装置
EP4186720A1 (de) * 2021-11-26 2023-05-31 Audi AG Aktive fahrwerksregelung für ein kraftfahrzeug
US11760365B2 (en) 2021-11-26 2023-09-19 Audi Ag Active chassis control for a motor vehicle

Also Published As

Publication number Publication date
KR20210116659A (ko) 2021-09-27
KR102587419B1 (ko) 2023-10-10
DE112020001515T5 (de) 2021-12-16
JPWO2020195113A1 (ja) 2021-12-16
US20220161624A1 (en) 2022-05-26
CN113646194A (zh) 2021-11-12
JP7186282B2 (ja) 2022-12-08

Similar Documents

Publication Publication Date Title
WO2020195113A1 (ja) サスペンション制御装置
KR102174283B1 (ko) 서스펜션 제어 장치
CN110267832B (zh) 车辆变动控制装置
JP5809474B2 (ja) 車体姿勢制御装置
US8880293B2 (en) Vehicle motion control apparatus and suspension control apparatus
US7788011B2 (en) Braking and drive force control apparatus for a vehicle
KR102654627B1 (ko) 차량 제어 장치, 차량 제어 방법 및 차량 제어 시스템
JP7446434B2 (ja) サスペンション制御装置およびサスペンション装置の制御方法
JP2021192997A (ja) 車両の走行状態制御装置及び方法
WO2020129202A1 (ja) 制御装置、懸架システム
JP2008247357A (ja) サスペンション制御装置
JP7507105B2 (ja) サスペンション制御装置
JPH1024844A (ja) 車両用振動制御装置
JP7253516B2 (ja) サスペンションシステム
WO2020195295A1 (ja) サスペンション制御装置
JP2009078761A (ja) サスペンション制御装置
JP2009196504A (ja) サスペンション制御装置
JP7365963B2 (ja) 制御装置
WO2023282275A1 (ja) 車両制御装置および車両制御システム
JP3860247B2 (ja) 懸架系の減衰力制御装置
WO2024142840A1 (ja) 制御装置
WO2024009702A1 (ja) 電子制御サスペンションの制御装置および制御方法
WO2023048085A1 (ja) 車両制御装置および車両制御システム
JP2002293121A (ja) サスペンション制御装置
JP2021109517A (ja) サスペンション制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776855

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508144

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217027858

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20776855

Country of ref document: EP

Kind code of ref document: A1